Συλλογές
Τίτλος Statistical methods and machine learning algorithms in credit risk
Εναλλακτικός τίτλος Στατιστικές μέθοδοι και αλγόριθμοι μηχανικής μάθησης στον πιστωτικό κίνδυνο
Δημιουργός Mantzos, Georgios, Μάντζος, Γεώργιος
Συντελεστής Chatziantoniou, Damianos
Athens University of Economics and Business, Department of Management Science and Technology
Ntzoufras, Ioannis
Karlis, Dimitrios
Τύπος Text
Φυσική περιγραφή 50p.
Γλώσσα en
Αναγνωριστικό http://www.pyxida.aueb.gr/index.php?op=view_object&object_id=10841
Περίληψη Η παρούσα διπλωματική εργασία εξετάζει την πρόβλεψη της αθέτησης πληρωμών πιστωτικών καρτών από την σκοπιά των κλασικών στατιστικών μεθόδων και νέων πιθανών εναλλακτικών προσεγγίσεων, όπως αλγόριθμοι μηχανικής μάθησης. Το πρόβλημα αντιμετωπίζεται ως ένα πρόβλημα δυαδικής ταξινόμησης χρησιμοποιώντας τη μέθοδο SMOTE για την προσαρμογή της κατανομής των κλάσεων των μεταβλητών σε σύνολα δεδομένων και τις κατάλληλες μεθόδους επιλογής μεταβλητών προκειμένου να διατηρηθούν εκείνες με τα πιο σχετικά χαρακτηριστικά και να ενισχυθεί η συνολική απόδοση των μοντέλων. Η επιλογή του καλύτερου μοντέλου βασίζεται στον συνδυασμό της ακρίβειας του μοντέλου αλλά και του AUC. Το μοντέλο SVM, έχοντας εφαρμόσει τη μέθοδο επιλογής μεταβλητών LASSO, είχε την καλύτερη απόδοση από τα υπόλοιπα μοντέλα.
This thesis examines the prediction of default on credit card payments from the aspect of classical statistical methods and new potential alternative approaches such as machine learning algorithms. The problem is faced as a binary classification problem using Minority Oversampling Technique (SMOTE) for imbalanced dataset and the appropriate variable selection methods in order to keep the most relevant features and enhance the overall performance of the models. The selection of the best model is based on the combination of accuracy of the model and Area Under Curve. The Support Vector Machine (SVM) model, having applied LASSO variable selection method, performed better than the rest of the models.
Λέξη κλειδί Μηχανική μάθηση
Πιστωτικός κίνδυνος
Machine learning
Credit risk
Διαθέσιμο από 2023-11-14 01:20:37
Ημερομηνία έκδοσης 10/02/2023
Ημερομηνία κατάθεσης 2023-11-14 01:20:37
Δικαιώματα χρήσης Free access
Άδεια χρήσης https://creativecommons.org/licenses/by/4.0/