Συλλογές | |
---|---|
Τίτλος |
A data mining-based framework to identify shoppers’ missions |
Εναλλακτικός τίτλος |
Εφαρμογή τεχνικών εξόρυξης γνώσης για την αναγνώριση των αγοραστικών αποστολών των καταναλωτών |
Δημιουργός |
Griva, Anastasia, Γρίβα, Αναστασία |
Συντελεστής |
Athens University of Economics and Business, Department of Informatics Μηλιώτης, Παναγιώτης Πραματάρη, Αικατερίνη Μπαρδάκη, Κλεοπάτρα |
Τύπος |
Text |
Φυσική περιγραφή |
80p. |
Γλώσσα |
en |
Περίληψη |
Consumers' behavior and expectations for service have changed dramatically in recent years, as they have become more demanding. Many organizations have identified the need to become more customer centric, facing increased global competition (Bull, 2003; Phan & Vogel, 2010). Therefore, in order to respond to the ever increasing demands of consumers, they are trying to develop innovative methods for managing their customers (Anderson et al., 2007). At the same time computers have become far more powerful, and new technological trends have been developed, such as Big Data, Business Intelligence (BI), Data Mining (DM) (Provost & Fawcett, 2013). These new trends give us the opportunity to process large volumes of data and extract valuable information. Like any other business, so do retailers have realized the importance of applying these new technological trends to support decision making and satisfy their customers (Bertino, 2011). However, there is only sparse research in the context of retailing in order to discover patterns in customers' behavior, to empower decision making, and to satisfy the demanding consumers (Wang & Zhou, 2013). |
Λέξη κλειδί |
Data mining Consumer behaviour Electronic data processing Consumer motives Consumer spending Εξόρυξη δεδομένων Συμπεριφορά καταναλωτή Καταναλωτική δαπάνη Καταναλωτικά κίνητρα Επεξεργασία δεδομένων |
Ημερομηνία έκδοσης |
02-2014 |
Άδεια χρήσης |
https://creativecommons.org/licenses/by/4.0/ |