Συλλογές
Τίτλος Machine learning methods for measuring extreme risks and an empirical application on financial markets
Εναλλακτικός τίτλος Μέθοδοι μηχανικής εκμάθησης στην μέτρηση υψηλών κινδύνων και εμπειρική εφαρμογή στην χρηματοοικονομική αγορά
Δημιουργός Kosti, Konstantina, Κωστή, Κωνσταντίνα
Συντελεστής Athens University of Economics and Business, Department of Economics
Dendramis, Yiannis
Antoniou, Fabio
Varthalitis, Petros
Τύπος Text
Φυσική περιγραφή 97p.
Γλώσσα en
Αναγνωριστικό http://www.pyxida.aueb.gr/index.php?op=view_object&object_id=9268
Περίληψη Παρουσίαση των χρηματοοικονομικών και μη-χρηματοοικονομικών κινδύνων τους οποίους αντιμετωπίζουν τα χρηματοπιστωτικά ιδρύματα. Επιπλέον, παρουσιάζονται τα στατιστικά εργαλεία, όπως η Αξία σε κίνδυνο και η Αναμενόμενη απώλεια, καθώς και οι μέθοδοι μηχανικής εκμάθησης που χρησιμοποιούνται για την ανίχνευση και μέτρησή τους. Τέλος, παρουσιάζεται η εμπειρική ανάλυση, στην οποία χρησιμοποιήθηκαν υψηλής συχνότητας χρηματοοικονομικά δεδομένα για την υλοποίηση των τεχνικών που αναφέρονται προηγουμένως.
In this paper I try to present the most common financial and non-financial risks that a Bank or anyFinancial Institution face and which originate from their sector of activity itself. Moreover, there isan analytical presentation of the statistical tools and machine learning methods that are used for theirdetection and calculation. Afterwards, my attention focuses on several techniques such as Value atRisk, Expected Shortfall and Backtesting that Banks and Financial Institutions are obliged toperform, alongside with a very detailed presentation of the main Machine Learning Tools that existand that help with the realization of these techniques. Finally, in my empirical analysis I use high-frequency financial data to perform these techniques and to provide an illustration of the sectionsabove.
Λέξη κλειδί Αναμενόμενη απώλεια
Διαχείριση κινδύνου
Στατιστικά μοντέλα
Machine learning
Value at risk
Expected shortfall
Risk management
Statistical models
Αξία σε κίνδυνο
Μηχανική εκμάθηση
Διαθέσιμο από 2022-03-16 19:56:37
Ημερομηνία έκδοσης 03/16/2022
Ημερομηνία κατάθεσης 2022-03-16 19:56:37
Δικαιώματα χρήσης Free access
Άδεια χρήσης https://creativecommons.org/licenses/by/4.0/