OIKONOMIKO NANEIMIZETHMIO AGHNOQN
TMHMA TAHPO®OPIKHX

METAINIITYXIAKO AINTAQMA EIAIKEYXHX (MSC)/

AITAQRMATIKH EPI'AXTA

= B,

«A&wrdynon kar viomoinon RFID teyxvoroyrdv kKau
POTOT®V OTO TAAICIO OWIYEIPIGNG TN EPOOLACTIKNG
aAvcidac»

Agovtiaong Nektaprog

\ M305005 —

AGHNA, ®efipovaprog 2007

¢nm\doo 000000, 0

30J0WLYY
HURROY OINRLIIL3NYL OXINOKOXIO

METAIITYXIAKO AININQMA EIAIKEYXHY (MSc)
ota INHPOPOPIAKA XY2THMATA

AHIAQMATIKH EPI'A2TA
81385

-

«A&rohdynon kai viomoinon RFID teyvoloytov kat
APOTOTMV GTO TAAICL0 drayeipiong TG EPOOLAGTIKNG
aAvoioac»

Agovtuaong Nektaprog

\ M305005 /

Empiénov KaOnyntig: Aékropag A. Ilpapatapn
EEotepikoc Kpimig: Aéktopag A. Xatinavroviov

OIKONOMIKO IMANEINNIZXTHMIO A@HNON
TMHMA I[TAHPO®OPIKHX

A®HNA, ZEIITEMBPIOX 2007

Abstract

RFID 1s a powerful new technology with many possible applications. Whenever and
wherever applied, it has the ability to extend the capabilities of existing applications in
ways never imagined before.

This thesis starts by presenting the RFID technology, its core components, and the
global standards that govern its applications and continues by introducing this
technology in the field of supply chain management. It discusses certain issues in
supply chain management that are to be resolved in the SMART project (FP6-IST-
2005). It evaluates commercial RFID solutions in the context of supply chain
management and, finally, it concludes with an implementation that handles the RFID

need of the SMART project.

Table of Contents

L INErOAUCTION ...ttt ettt 6
L1 ReSEArCh COMEXt...civuieiiiiiiiieieieeietieiettest et e e e e sae st et ete sttt sbesae s 6
L2 WOTK @PPrOACH c.ccuiiiiiiiciiie ettt e 7
1.3 Structure of the theSiS....ccouviiiiiiiii e 8

2. REID tECHNOLOZY ..eevviiiieiriieiieeie ettt ettt et ettt ss et et eente b et essenneanees 10

3. RFID architecture and standards.........cccoeeeeecierieeneciesienee e sieesee e 16
3.1 Class 1 Generation 2 UHF Air Interface Protocol Standardcccccceevienee. 17

3.1.1 Special Chip-Level Features: Higher Bit Rate........ccccoccocveniiniiininnennne. 19
3.1.2 Special Chip-Level Features: ‘Dense Reader Mode’........................i. 20
3.1.3 The EPC Class StIUCIUTE.ceeiittiiiitenniieeeniiee et eeier et eans 22
3.2 EPC Tag Data Standard...........cceeoeieneenieiienin et 23
3.3 EPC Tag Data Translation Standardc..ccccoeveiiiiiiiiinice e 25
3.4 Reader Protocol (RP) Standardooooviiiiiiiiiiieieereree e 27
3.5 Reader Management (RM) Standard..........cccovceermvenerennieeniennnenniiciiie e 28
3.6 Application Level Events (ALE) Standardccccceviviiiiiiiiiin 30
3.7 Object Naming Service (ONS) Standard ..., 32
3.8 EPC Information Services (EPCIS)oooiiiiieiiiiiiiiiiiriee it 34
3.9 EPCglobal Certificate Profile Standard...................c.cocooiii 36
3.10 Architectural Framework Documentccccccevviiieciiniiniciiiiii e, 37
3.11 Drivers of Generation3 Development..........c.cccoceeiieieieinnininninninennrennnnn 40
3.12 Software Defined Radio: Flexible, Future-proof RFID Infrastructure........... 40
3.12.1 Solving the Problem of Tag Variation & Iterationcccooveneiniinnnns 40
3.12.2 A Definition 0f SDRcooiiiiiiiieein ettt 41
3.12.3 Brief History of SDRcocccciiiiiiiiiiiiiiiiec e 42
3.12.4 Benefits of SDR in RFID Readers......ccccooveviiiiiiiiiiiiiiciiii 42

4. RFID in supply chain management.......c.ceueiieiemenirmeiiinieii s 43
4.1 Common APPlICAtIONS......cceiivirirrintiriitiieiet et 46
4.2 Applications in supply chain management..............cooveioiiiini 49

5. Commercial RFID SOLUHOTIS «...vviiiiieeioieiee ettt e 53
5.1 IBM SOIUHON .ottt 53
5.2 SAP SOIUTION ..eeetitiieeeriee ettt ettt et s e e 55
5.3 STUN SOIULION «.eeeeeeieieeeeee bt eee et ee st e ssbe e s e e s atn e e 57
5.4 Oracle SOIULION. ...cevirererreeteeeterestbre ettt 59

4]Page

5.5 General evaluation of commercial SOIUtIONSevvviiireeiierreeeeeie et eiirreaens 59

6. RFID solution for the SMART research project..........cccoouiouriiiiiiienceiininieiieen 61
6.1 The SMART Research Project.......cccooeoeiviciiiiiiinininiiiin i 61
OV U141 0) (354150 11210 Lo} o OO U OO TP ST PO ORPSPPTITPPTO 65
6.3 ReCOMMENAALIONSocveiiiiieiieterieee e eseeesseseesbeeseet e saesnsernenaesnasaeas s 70

RN o) o7=) T b OO OO OSSOSO OO UUU R TTSPPRPRRS 71
I ADBDIevIationS.......ccocoiiicieeeee ettt e s 71
1L L300 ToTe1 21 o)) 2O OO OSSR RO PRP PR 75
T S T Y (O € et oo TS o e = e e s T 77

AlLENCONTOIIET.JAVA. ...eemreiireiiiiieiiiiir it 77
IntermecTFSCONtrOlIEr.JAVA.....ooiiieieie et 97

5|Page

1. Introduction

1.1 Research Context

he advent of e-business has created several challenges and opportunities in the

supply chain environment. The Internet has made it easier to share

information among supply chain partners and the current trend is to try to
leverage the benefits obtained through information sharing across the supply chain to
improve operational performance, customer service, and solution development.
Furthermore, the emergence of new technologies, such as Radio Frequency
Identification, is expected to revolutionize many of the supply chain operations by
reducing costs, improving service levels and offering new capabilities for identifying
unique product instances. The expected benefits from the use of both the Internet and
new information technologies are to grow substantially if their scope of implementation
is extended from internal warehouse and distribution processes to supply-chain
processes involving collaborating partners. At the same time there is a clear turn and
focus on the customer, on increasing consumer value and ultimately on building
consumer enthusiasm.
The above trends represent major forces that are expected to revolutionize the supply
chains of the future. In this context, is should be generally recognized that exploiting
the possibility of unique identification of product instances in supply chain
management processes through intelligent and innovative collaborative information
systems and electronic services, and in supporting in-store processes to inform educated
customers and build consumer loyalty, would be very beneficial.
Currently, automatic product identification implementations take place internally
mainly within a company, with the objec‘tiveﬁto alltomate warehouse management
processes in the first run. The priority and effort placed behind such implementations
by the US Department of Defense and global retailers such as Wal-Mart, METRO,
TESCO etc. combined with the pressure they put on their suppliers indicate that this
technology has already become a market mandate. The Electronic Proquct Code, Wthh

is a global-standards-based implemenzation of the RFID technology (see WWW.gci-

6|Page

net.org and www.epcglobalinc.com), is the standard adopted in all these initiatives. The

EPC can be viewed as a continuation of barcode scanning, though EPC makes a

significant step forward with the ability to support mass serialized identification.

In this context, the target of this thesis is to study the RFID technology as it currently
stands through the EPCglobal RFID standards and then support the SMART research
project with a solution which will address some of the project’s requirements.

The SMART project utilizes the RFID technology in order to get information about
objects that exist within the supply chain, objects that are characterized by their high
mobility and their existence in variable environmental conditions. In this context, the
thesis’s specific targets are to explore the protocols, RFID equipment and existent
middlewares that provide extra functionality, as we are going to see later on, and finally

provide recommendation in these fields, for the project’s needs.

1.2 Work approach

In this thesis, as it has been clearly depicted in this report, we first examined the RFID
technology from a technological point of view, so that we could have a clear and
confident understanding of this technology; understand its capabilities and its
drawbacks, thus rendering ourselves capable of having a judicial opinion on the current
trends and applications of the RFID technology. This understanding derives from th
pondering of the EPCglobal standards that reign the field of RFID in the ﬁeld of supply
chain management. Then we studied specific matters in the field of supply chain
management that can be addressed with the introduction of this technology that enables
unique identification of products.

We then explored RFID solutions from major software vendors that target the field of
supply chain management (SCM). The target of this phase was to evaluate these
solutions against out needs within the SMART project. These solutions were tested as
thoroughly as possible. The products available for evaluation purposes were installed
and evaluated through their working interface, while the products which were not

T|Page

Sy aerae frpcte e kel S

available for evaluation were evaluated through their manufacturer’s release
information publicly available.

Finally, we proceeded with the design. and implementation of a solution that can be
used as a central point of building solutions that are capable of addressing issues in the
field of supply chain management. Towards this objective, we contributed in an open
source project named Accada Project. The Accada project, as it will be clearer later on,
contributes in the field of RFID technology, by providing implementation for RFID
standards which are published by EPCglobal. When the Accada project achieves a more
mature state, it will provide a complete standards-based framework for building
applications targeted in the field of SCM. Our contribution is part of the Reader Module
of the Accada Project and this contribution will be discussed in further detail in chapter
6.

1.3 Structure of the thesis

This report is divided into three parts. In the first part, we examine thoroughly the RFID
technology with the architecture and standards that are defined in the scope of supply
chain management. In the second part, we, examine the field of supply, chain
management, and the applications of RFID technology in SCM. Finally we discuss the
SMART research project which tries to address collaboration issues in supply chain
management with the use of RFID technology. In this part we also discuss the specific
implementation that was carried out. In ‘the following figure we visualize the

association between the research process we followed during the thesis and the chapters

of this report.

[T U NN A maa)

8|Page

T R FETRE
{1 R '*"!,‘ A% B3 A L=
- EEr A & s R0 e

Rese*grc;_:;;_“ =, . Report
= Pr’égséﬁﬁfqg ~ Chapters

r 4: RFID in
1 Mane

ntiAn O

0

J - vt | | R
APPE dix [

- PSS U AP

- — e |- P g e

2. RFID technology

utomatic identification procedures (Auto-ID) have become very popular in

many service industries, purchasing and distribution logistics, industry,

manufacturing companies and material flow systems. They exist to provide
information about people, animals, goods and products in transit. The omnipresent
barcode labels that triggered a revolution in identification systems some considerable
time ago are being found to be inadequate in an increasing number of cases. Barcodes
may be extremely cheap, but their stumbling block is their low storage capacity and the
fact that they cannot be reprogrammed.
The technically optimal solution would be the storage of data in a silicon chip. The
most common form of electronic data-carrying device in use in everyday life is the
smart card based upon a contact field (telephone smart card, bank cards). However, the
mechanical contact used in the smart card is often impractical. A contactless transfer of
data between the data-carrying device and its reader is far more flexible. In the ideal
case, the power required to operate the electronic data-carrying device would also be
transferred from the reader using contactless technology. Because of the procedures
used for the transfer of power and data, contactless ID systems are called RFID SX%}?.IBS‘
(Radio Frequency Identification). B
RFID systems are closely related to the smart cards described above. Like smart card
systems, data is stored on an electronic data-carrying device — the transponder.
However, unlike the smart card, the power supply to the data-carrying device and the
data exchange between the data-carrying device and the reader are achieved without the
use of galvanic contacts, using instead magnetic or electromagnetic fields. The
underlying technical procedure is drawn from the fields of radio and radar engineering.
The abbreviation RFID stands for radio frequency identification, i.e. information
carried by radio waves. Due to the numerous advantages of RFID systems compared
with other identification systems, RFID systems are now beginning to conquer new

mass markets. One example is the use of contactless smart cards as tlckets for ShOlr"t‘

ERYRE R NI I A £ R

distance public transport.
The EPC Network of enabling technologies started development at the Auto-ID Center

10| Page

at the Massachusetts Institute of Technology and now is being commercialized under
the leadership of EPCglobal. These technologies are the leading RFID-based solutions
for global, open supply chain applications. The roster of companies committed to using
EPC standards and mandating that their suppliers support EPC specifications is
growing rapidly and currently includes the U.S. Department of Defense (DoD), with
more than 43,000 suppliers; Wal-Mart, with more than 20,000 suppliers; The METRO
Group; Albertson’s; Target Corporation; Best Buy; Tesco; and others.

The EPC Network is comprised of five fundamental technologies:

o Electronic Product Code
Like the Universal Product Code (UPC) bar code, the EPC identifies the
manufacturer and product version, but has an additional serial number field to
identify uniquely each identical item.

e EPC ID System (tags, printer/encoders, and readers)
An EPC tag consists of a microchip attached to an antenna. The EPC data is
typically stored in the EPC tag while embedded in a “smart” label being printed
on an EPC printer/encoder. The label incorporating the tag is applied to an item
during the manufacturing process. EPC tags communicate their data to EPC
readers via radio waves and deliver information to local business information
systems using EPC middleware.

¢ EPC Middleware PULAICH L GO0 R IUS
This software specification for services enables data exchange between an EPC
reader, or network of readers, and business information systems.

e Object Name Service (ONS)
Business information systems need a way of matching the EPC to the database
information about that item. The ONS is an automated networking service that
provides this service by linking computers to sites on the World Wide Web. It is
based on the popular and globally accepted DNS protocol.

¢ EPC Information Systems (EPCIS)

EPC Information Systems enable users to exchange data with trading partners
based on EPCs.
11|Page

These technologies are going to be discussed in further detail in chapter 3, RFID

Architectures and Standards.

The EPC Network grew out of perspectives that only open RFID systems and standards
— paralleling the open EAN.UCC system of bar code standards — would support a
global supply chain. RFID systems enable objects to “report” information about them in
real time without human intervention and can give a company visibility into real-time
information about inventory locations, histories and quantities. The goal of the EPC
Network is to let companies leverage their internal RFID structures to gain
exponentially by capturing and sharing real-time business information across entire
companies and with trading partners. In other words, RFID deployments based on open,
standardized EPC interfaces that enable interoperability and multi-vendor
implementations may achieve the ultimate in global data sharing: Total asset visibility.
That is why so many leading companies are supporting and driving the adoption of
EPCglobal standards for the EPC Network.
The scale of this undertaking is huge, unlike anything attempted with RFID
technologies before. However, many leading consumer packaged goods (CPG)
companies and technology vendors are no longﬁrs%ylpg “‘if j\p‘lllfh“when”/&k‘ls t‘(z‘ts.‘lj \IJF:I:’Cl
Network vision becomes a reality. A great deal of investment already has been made in
RFID pilots. As with all emerging technologies and grand visions, the reality is that
initial discovery phases lead to new conclusions and results that modify original
thinking and — in the case of RFID — raised expectations for this technology.
In effect, this is what occurred with the UHF Generation 1 (Genl) specifications. The
Class 0 and Class 1 protocols that came out early in the cycle when the Wal-Mart and
DoD mandates were issued for case and pallet auto-identification. What was needed
was a methodology that would allow readers to communicate to low-cost tags that
would carry only the EPC “license plate” number. The EPC would tie back through
ONS to databases that could hold an infinite amount of dynamic data about each item.

(S OHBe. URBIRC anvinte ancilead win Rt
Genl UHF RFID technology stressed low cost and simplicity. The idea was to limit the

EPC number to a “license plate” that pointed to the product-related data associated with

12|Page

each item stored on databases held in back-office systems. In addition, the Gen 1
protocols provided guidelines for the operating characteristics of readers and tags,
covering frequencies, emissions standards, anti-collision methods (to address
contention where multiple tags are seen by the reader simultaneously), and secure data
transmission practices.

Similar to the UPC code that provides for manufacture, product, version, and serial

data, the EPC data structure was envisioned to contain:

e A header that identifies the EPC version number,
e The EPC manager, which typically would be the manufacturer's name,
e The object class or version information, which essentially is the product
information,
e A serial number, which would be information specific to an item in an object
class.
Originally both 64—bit and 96fbit EPICdatastrl)Jctures V,\'/ere ;')'ro‘posed' Smc‘i many ‘O?J.E?t
classes and serial numbers were not needed initially, a family of 64-bit data structures
was proposed to keep down the price of Gen 1 RFID chips. The more robust 96-bit
EPC provides unique identifiers for 268 million companies, each with up to 16 million
object classes, with 68 billion available serial numbers in each object class. The Gen 1
Class 0 and Class 1 tags were specified by EPCglobal to contain the EPC data structure,
a cyclic redundancy check (CRC) to verify the tag data, and a kill or destruct code that
would deactivate the tag and no longer allow it to respond to reader commands. As
originally specified by EPCglobal, Class O were read-only tags. Class 1 were specified
as write once/read many tags, so in addition to the other functions, Class 1 needed a
“lock” command to prevent any further modification of the tag information once
written. Both classes had a “kill” function to ensure user privacy after product sale. No
other data or tag functionality was considered as part of the Class 0 and Class 1

specifications, however important variations did occur.

As with all new technology, Gen 1 products rapidly evolved beyond the original

specifications. There are now 96-bit versions of both Class 0 and Class 1 in use. There

13|Page

are also versions that extend the Class 0 and Class 1 specifications published by
EPCglobal:

e For example, while Class 1 specifies one-time-programmability of the EPC data
field, in practice “Class 1 compliant” tags may be read/write.
e There are also “Class 0+” products that are one-time field programmable but are

read using the specified Class 0 air interface protocol.

Gen 2 was developed in response to shortcomings of the Gen I technology that were
discovered during pilot projects with early adopters. These early adopters soon found
that it was more practical to leverage their significant investments in RFID to begin to
transform their internal processes to be more productive. It became apparent that tags
that could be read to and written to many times were more effective for many of their
operations, such as pallet and case reshipment in distribution centers and third-party
logistics operations. In addition, it made sense in many applications to allow the tags to
carry more data than just a 64-bit EPC number. In effect, the tags themselves became
minj databases of important information, They, goqld integrate direcfly with their
existing bar code-based IT infrastructure without any need to reference a back-office
system. Also, the Gen 2 RF transmission protocol specification was specifically
designed to provide robust, international operation under new European and Asian UHF
radio regulations for RFID that were changed after Gen 1 products had been designed.
The Gen 2 specification stipulates more EPC memory on the chip, a minimum of 96
bits and up to 256 bits. Most of the organizations that have committed to Gen 2
technology have issued supplier requirements that specify the use of 96-bit identifiers.
Therefore, suppliers and other participants in these supply chains must have an IT

infrastructure capable of processing 96-bit data to produce and read Gen 2 tags.

Differences between Gen 1 and Gen 2 technology are summarized in the following

figure. |

14|Page

i ' bl ia ol Uil

Generation 1

Generation 2

860MHz -
F -
requency 860MHz - 930MHz 930MHz
Field-programmable 64 or 96 bits 96 to 256 bits
Re-programmable
(read/write) s R
Class 0 - Specified as read only
Field-kill-able Class 1 - Specified as Write | Yes

once/Read many

Figure:Genl vs. Gen2

There are other differences among the Genl and Gen2 RF transmission protocols that

for the most part are transparent to users and are unlikely to impact implementation

planning. The complete specifications are available on the EPCglobal Web site

(http://www.epcglobalinc.org). It is also worth noting that EPCglobal performed some

interoperability testing to provide guidance to the market on the essential functions of

“EPC compliant” products. For example, tags made by “Manufacturer X", are

compliant with the Class 1 specification, and can be read using a reader made by

“Manufacturer Y”” when encoded by “Printer/Encoder Z.”

1 R IYACAY]

15|Page

3. RFID architecture and standards

n November 2003, the Global Commerce Initiative (GCI) published the “The EPC

Roadmap”, a report that outlined the combined technology and process initiatives

that have the potential to revolutionize the consumer products/retail industry. In
this report, the GCI Executive Board strongly recommended the global standards based
implementation of radio frequency identification technology, supported by the use of
standards-based tags, readers, tag content and information flows in the retail supply
chain. In 2004, the first set of global standards were developed and established via
EPCglobal, a worldwide, user-driven standards organization for the Electronic Product
Code.
EPCglobal Inc. is a joint venture between EAN Intl. (European Article Numbering) and
the UCC (Universal Code Council) and is governed by the EPCglobal Board of
Govemnors. The Board of Governors of EPCglobal is obliged to guide the organization
towards achieving worldwide adoption and standardization of EPC technology in an
ethical and responsible way. It is a subscqber—dnven orgamzatlon complrlse(LiJ ‘Qf
industry leaders and organizations focused on creating global standards for the
EPCglobal Network. Its goal is increased visibility and efficiency throughout the supply
chain and higher quality information flow between companies and their key trading
partners.
In few words EPCglobal is the de facto organization that is responsible for the
standardization process of the RFID technology. As a consequence we will examine
now the standards published by EPCglobal regarding the RFID technology and the
proposed architecture and architectural elements. Standards and specifications provide
the common definitions, functionality and language for the hardware and software
components of the EPCglobal Network. They help advance the EPCglobal community
toward a common objective, namely, ‘i‘r'nplem!er‘l)t'l‘qg the ,?P?ﬁlf?‘??l. 'I‘\‘Iﬁtv‘s:‘%rl(("t‘(,)"i'{r'; rove
visibility and efficiency in today's global, multi-industry supply chain. EPCglobal
Specifications result from the work that began under the auspices of the Auto-ID Center

at MIT and form the foundation for the EPC/RFID technology that the EPCglobal
community has begun implementing worldwide.

16|Page

3.1 Class 1 Generation 2 UHF Air Interface Protocol Standard

The Generation 2 specification is a 94-page engineering document entitled “EPC™
Radio-Frequency Identity Protocols / Class-1 Generation-2 UHF RFID / Protocol for
Communications at 860 MHz — 960 MHz”. It describes in considerable detail how
Generation2 RFID tags should communicate with RFID readers (1).

Some key points of the specification are:

e Tags must be able to communicate on any frequency between 860MHz to
960MHz. To account for variations in regional radio regulations, readers may
operate using any permitted frequency within that range.

e Tags must be able to understand three different modulation schemes: Double
Sideband-Amplitude Shift Keying (DB-ASK), Single Sideband-Amplitude Shift
Keying (SS-ASK) and Phase-Reversal Amplitude Shift Keying (PR-ASK).
Readers will determine which modulation scheme is used, within the context of
government radio regulations.

o Tags must be able to transmit at several different speeds or data rates: 80kbits,
160kbits, 320kbit and 640kbits. Readers determine what speed to use. For
perspective, Generationl protocols communicated at between 70 and 149kbits.
In theory, the higher data rates of Generation 2 will allow faster tag reads, but in
practice many other factors beyond raw transmission speed contribute to real
world read rates, and the higher data rates may sometimes result in lower
reliability.

e Generation 2 tags support Electronic Product Codes up to 256 bits long,
whereas Generation 1 tags support Electronic Product Codes up to 96 bits long.

e Generation 2 includes a method to support ‘dense-interrogator channelized

signaling’ (sometimes called ‘dense reader mode’) which is an attempt to reduce
interference between EPC readers, by making it less likely that reader signals
will be drowning out tag responses. This mode is intended for use in locations
where multiple readers are in operation gt the same fime Implementation of s

UHTCTOlD sprogus vt

part of the specification is optional for reader makers. Again, real world

17|Page

performance will depend on many factors, including external interference from
other devices, such as UHF cordless telephones, industrial equipment and

legacy UHF wireless LAN equipment.

The most obvious conclusion to draw from the Generation 2 specification document is
that Generation 2 is something of a ‘Chinese Menu’ for RFID. The multiple options for
modulation, for example, provide a number of different ways to do the same thing,
which is to receive data from tags. The specification also provides for many optional
commands, as well as vendor-specific custom commands. To be fully compliant with
the specification, a tag must offer the full menu. The reader, on the other hand, can pick
and choose among these options by, for example, determining the modulation scheme
and data rate the tag should use in the context of a particular communication attempt.
For a variety of reasons, including achieving good performance in a wide variety of end
user applications and to function effectively in the presence of external interference, the
reader is likely to dynamically choose among these many options to fit each particular

circumstance. This is why EPC Generation 2 is called a ‘multi-protocol protocol’.

EPC Generation 2 has a much higher potential for variation than any other RFID tag. Its
‘Chinese Menu’ approach to the underlying communication protocol is one reason for
this, but there are other reasons too. For example, different tag vendors will understand
the specification in slightly different ways. Some vendors may implement only some of
the options due to schedule or cost constraints. Some will add proprietary ‘extensions’.
Some tags will have two antennas, while others will only have one antenna. Even
among tags made by the same vendor, variations will be introduced over time, by
design changes for cost or manufacturability reasons or attempts to deliver better

performance.

While compliance tests and adherence to the specification will deliver a basic degree of

Y RN (SN ISERTRSN T T N TN R N N T O A R OT R [VA PR 1
interoperability between different ‘Generation 2’ flavors, RFID readers may need to
address each variation differently to achieve optimal performance from each one, and
among mixed populations of Generation 2 tags from different vendors. The

unprecedented number of tag vendors competing in the Generation 2 market means that

18|Page

a declaration of ‘Generation 2’ compliance may not, in itself, be an assurance of
optimal, or even acceptable, performance from all tags.

Until Generation 2, the RFID industry has never seen this degree of support for a single
platform before, and true interoperability will require a subtle, nuanced approach to
RFID infrastructure. The potential for broad variation means missteps in purchasing
RFID readers could cause significant and unforeseen problems for system integrators

and end users.

3.1.1 Special Chip-Level Features: Higher Bit Rate

One new feature of Generation 2 is a higher speed or data transmission (or ‘bit rate’)
than in Generation 1 tags. Generation 2 tags will be capable of sending data and
responding to commands at speeds up to 8 times faster than Generation 1 tags. In
theory, this higher bit rate will lead to a greater number of tags being read per second.
The increase in real-world tags read per second will not keep pace with the increase bit
rate, however, as higher speeds necessarily introduce higher error rates and greater
noise susceptibility, and longer EPC codes (up to 256 bits) will also consume some of
the extra communication capacity.

One analogy that for this situation is that buying a faster car does not guarantee your
commute will be quicker — total commuting time is strongly dependent on externalities
like traffic and road conditions. The same is true of tag data rate versus tag read rate. It
is likely that Generation 2 will deliver faster tags reads than Generation I, in many
situations.

But the real-world performance increase will npt be directly proportional.to the
increased data rate provided by Generation 2, and in some situations the best course of

action may be for the reader to fall back on a lower data rate mode for communication

reliability reasons.

19|Page

3.1.2 Special Chip-Level Features: ‘Dense Reader Mode’

Another new feature of Generation 2 is ‘dense reader mode’. Dense reader mode is

intended to help avoid reader interference with tag responses, by reserving certain sub-

parts of the government allocated radio spectrum for tags to use. As tags are much

weaker communicators than readers, this has some benefit in helping tags to work in

situations where multiple readers are operating in close proximity.

However, ‘dense reader mode’ is not a panacea for every problem that can arise when

many readers are operating in close quarters. There are several important aspects to

interference, not all of which are addressed by ‘dense reader mode’. These include:

Other devices besides RFID readers may be operating in or around the UHF
spectrum. These devices are free to hop into channels being used by tags, and
can drown them out. In the US, for example, unlicensed FCC Part 15 devices,
such as RFID readers, cordless telephones, wireless LAN equipment, industrial
equipment, etc, are permitted the same pricrity, in, UHE, spectrum, use, The
presence of even one non-RFID device in an end-user facility may partially or
completely negate the potential benefits of dense-reader mode, because non-
RFID devices will most likely not adhere to the channelization scheme required
for dense-reader mode to be effective.

Not all Generation 2 RFID readers must support ‘dense reader mode. It is an
optional part of the Generation 2 specification. Even a single non-dense-reader
mode RFID reader, such as a handheld reader, a UHF active tag system, or a
legacy proprietary RFID system, may also drown out tag responses and negate
the potential benefits of dense-reader mode.

Passive RFID tags, such as Generation 2 tags, are broadband backscatter
devices. : ' nore

As such, when they respond to one reader’s interrogation on a certain frequency,
they are actually modulating a response across all frequencies simultaneously.
This backscatter modulation can be picked up by any reader within view of the

responding tag, which can lead to interference even at much longer distances

[ENETEE Rt

if)[Plage

than those at which the tag can be effectively read. Thus, all tags being read by a
given reader are potential interference generators to all nearby readers. This
effect will be particularly pronounced in environments such as long rows of
warehouse loading dock doors in which large numbers of tags are being
interrogated by large numbers of readers, and all readers and tags are operating
in close proximity.

Most importantly, as several papers by Auto-ID Labs’ Director Dr. Daniel
Engels have pointed out, in addition to being broadband backscatter
‘transmitters’, tags are also ‘broadband receivers’ — tags have no knowledge of
reader channels. The receiver on a tag is akin to a crystal radio set, in that its
frequency selectivity is limited only by the properties of the tag’s antenna. This
is in fact enforced by the Generation 2 specification, because the Generation 2
specification requires tags to operate from 860-960MHz. Thus, a given tag will
receive all transmissions being sent at the same time by all readers in view, even
if the readers are operating in ‘dense reader mode’ and are therefore using
different channels. This is a fundamental problem with contemporary RFID, and
is best solved by precise, time-based reader synchronization that aims to prevent
two readers trying to talk to the same tag at the same timg. Because of“t‘hils,
time-based reader synchronization is the most important strateéy for managing
dense reader environments. Unfortunately, the Generation 2 ‘dense reader
mode’ does not address this important shortcoming of the broadband receiver on
Generation 2 tags.

‘Dense reader mode’ should therefore be thought of as a first step toward
operation in dense reader environments. But it is not a cure-all for the
limitations of today’s passive RFID technology. The fundamental problems of
dense reader environments, including the tag’s broadband transmission and
reception, remain to be solved in future generations of passive RFID

technology.

A LHUGERER LA DroDICc with Contemporary Kei), and

21|Page

3.1.3 The EPC Class Structure

The EPC Tag Class Structure is often misunderstood. ‘Class’ is not the same as
‘Generation’. Class describes a tag’s basic functionality — for example whether it has
memory or a battery. Generation refers to a tag specification’s major release or version
number. The full name for what is popularly called EPC Generation 2 is actually EPC
Class 1 Generation 2, indicating that the specification refers to the second major release
of a specification for a tag with write-once memory.

The full EPC Class Structure is:

=\
Class V

Class V tags are essentially readers, They can power other Class |, I and Il tags,
as well as communicate with other Class IV tags and with each other wirelessly.

Class |V

Class IV tags are active tags, They may be capable of broad-band .
| peer-to-peer communication with other active tag in the same |
|

Class ll|
Class [ll tags are semi-passive RFID tags. They may support
broadband communication,

Class I

ottt

‘Class || tags are passive ags with additional functionality ‘ ‘ I
like memory or encryption,

Class | 7/ Class 0

Class 0/Class | tags are read-only passive identity tags

The Class O designation was added to the Generation 1 system long after the Class 1
specification was created. Class 1 tags, of which ‘Generation 2’ is an example, contain
a write once memory for storing an Electronic Product Code. Class 2 tags add
additional memory that can be changed frequently, for storing additional data — for

example from an onboard sensor. Class 3 tags add batteries for longer read ranges and

22|Page

higher reliability, but are fundamentally passive backscatter tags. Class 4 tags are
essentially active tags that can communicate with other Class 4 tags as well as readers.
Class 5 tags are not really tags at all - they are essentially wireless networked readers.
The intent of the EPC Class Structure is to provide a modular structure that covers a
wide variety of possible types of tag functionality. For example, the communication
protocol

for a battery-powered tag should be the same as the protocol for a battery-less tag, with
only the addition of necessary commands to support the battery. This way, protocols are
kept simple, and if the battery on a battery-powered tag fails or dies, the tag can simply
behave like a battery-less tag and still have some utility to the end user. This kind of
modularity is far easier in theory than in practice — nonetheless technologies tend to
converge over time, and there is desire within the EPC movement to deliver the dream
of a modular, multi-functional stack of tag protocols. This adds another dimension to
the variety of tags that a reader infrastructure must be able to adjust to. Now that the
disparity between Class 0 and Class 1 has been eliminated by Class 1 Generation 2, the
next likely step is to add a battery-tag to the system. This may take the form of a

Generation 2, Class 3 tag — or it could point the way to a whole new generation entirely.

3.2 EPC Tag Data Standard

The Electronic Product Code is an identification scheme for universally identifying
physical objects via Radio Frequency Identification: (RFID) tags: and'other ‘means.'The
standardized EPC Tag Encodings consists of an EPC (or EPC Identifier) that uniquely
identifies an individual object, as well as a Filter Value when judged to be necessary to
enable effective and efficient reading of the EPC tags.

The EPC Identifier is a meta-coding scheme designed to support the needs of various
industries by accommodating both existing coding schemes where possible and
defining new schemes where necessary. The varibus coding schemes are referred to as
Domain Identifiers, to indicate that they provide object identification within certain

domains such as a particular industry or group of industries. As such, the Electronic

23|Page

Product Code represents a family of coding schemes (or “namespaces”) and a means to
make them unique across all possible EPC-compliant tags. These concepts are depicted

in the chart below.

Key Terminology

+— Standard EPC Tag Encoding

~ Header | _ Foranc 8

e 1|II.:I_-:.'-"_:" .'__j’ 14 Fartibon Valus
s -

T ———

oimeam [dentifer -~ -

EPC or EPC ldentifier
=.g. SGTIM, SGLN, SSCC, GID

This standard applies to RFID tags fconformi_ng to “EPC Radio-Frequency Identity
Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-
960MHz Version 1.0.9” (“Gen2 Specification”). These standards define completely that
portion of EPC tag data that is standardized, including how that data is encoded on the
EPC tag itself (i.e. the EPC Tag Encodings), as well as how it is encoded for use in the
information systems layers of the EPC Systems Network (i.e. the EPC URI or Uniform
Resource Identifier Encodings). |

The EPC Tag Encodings include a Header field followed by one or more Value Fields.
The Header field defines the overall length and format of the Values Fields. The Value
Fields contain a unique EPC Identifier and a required Filter Value when the latter is
judged to be important to encode on the tag itself. The EPC URI Encodings provide the
means for applications software to process EPC Tag

Encodings either literally (i.e. at the bit level) or at various levels of semantic

abstraction that is independent of the tag variations. This document defines four

categories of URI:

1. URIs for pure identities sometimes called “canonical forms.” These contain
SR e, TnChe et e Tt chd g encoded on the

24|Page

only the unique information that identifies a specific physical object, location or
organization, and are independent of tag encodings.

2. URIs that represent specific tag encodings. These are used in software
applications where the encoding scheme is relevant, as when commanding
software to write a tag.

3. URIs that represent patterns, or sets of EPCs. These are used when instructing
software how to filter tag data.

4. URIs that represent raw tag information, generally used only for error reporting

purposes.

In the current version of the EPC — EPC Version 1.3 — the specific coding schemes
include a General Identifier (GID), a serialized version of the EAN.UCC Global Trade
Item Number (GTIN), the EAN.UCC Serial Shipping Container Code (SSCC), the
EAN.UCC Global Location Number (GLN), the EAN.UCC Global Returnable Asset
Identifier (GRAI), the EAN.UCC Global Individual Asset Identifier (GIAI) and the
DOD Construct. (2)

- ovrivibin [EYRT TR Piear connialiditre

3.3 EPC Tag Data Translation Standard

This EPC Tag Data Translation (TDT) specification (3) is concerned with a machine-
readable version of the EPC Tag Data Standards specification, in contrast to the Tag
Data Standard which describes in terms of human readable encoding and decoding rules
for each coding scheme, how to translate between three representations of the electronic
product code. The machine-readable version can be readily used for validating EPC
formats as well as translating between the different levels of representation in a
consistent way. This specification describes how to interpret the machine-readable
version. It contains details of the structure and elements of the _pac}}ingrreac}aglg
markup files and provides guidance on how it might be used in automatic translation or
validation software, whether standalone or embedded in other systems.

The Tag Data Translation process translates one representation of EPC into another

25|Page

representation, within a particular coding scheme. For example, it could translate from
the binary format for a GTIN on a 64-bit tag to a pure-identity URI representation of
the same identifier, although it could not translate a SSCC into a SGTIN or vice versa.

The Tag Data Translation concept is illustrated in Fi gilre 1.

\ —_

f \ Other
Q\wvm.epcglobalinc.org/ // Numbe:ing

XML Table }{ XML Tabte Systems
Encoding/ || Company \ (VIN, 1ATA, ct:’) I,
Decoding || Prefixindex i Auxiliary

Rules {64-blt tags) XML tahlas
- Tor lookup

Updating of TDT processing rules via
download of XML markup on periodic basis

i sy Y RO TR INRSIRN]

Tag Data Translation capabilities may be implemented at any level of the EPC Network
stack, from readers, through filtering middleware, as a pre-resolver to the Object Name
Service (ONS), as well as by applications and networked databases complying with the
EPCIS interface. Tag Data Translatlc;r;u converts between different levels of
representation of the EPC and may make use of external tables, such as the Company
Prefix Index lookup table for 64-bit tags. It is envisaged that Tag Data Translation
software will be able to keep itself up-to-date by periodically checking for and
downloading TDT markup files, although a continuous network connection should not
be required for performing translations orvalidations, since the TDT markup files and
any auxiliary tables can be cached between periodic checks; in this way a generic

translation mechanism can be extensible to further coding schemes or variations for

longer tag lengths, which may be introduced in the future.

The current verswn of the TDT spec1flcat1on Svers1on 1.0) is fully compauble with TDS

...... reonpICiic e a Ay ees el LV ONCEWUOLK

Ver81on 1.1 Rev. 1.27.

26|Page

3.4 Reader Protocol (RP) Standard

Reader Protocol (4) is an interface standard that specifies the interactions between a
device capable of reading/writing tags and application software. In other words, this
standard defines the way that EPCglobal compliant software applications interact with
tag readers.

The Reader Protocol specifies the interaction between a device capable of reading (and
possibly writing) tags, and application software. An example of a Host is an EPC-aware
middleware or application, though the Reader Protocol itself does not require that any
particular middleware or an application be used.

Note that the interaction between the Reader and RF tags is outside the scope of this
specification. A goal of the Reader Protocol is to insulate the Host from knowing the
details of how the Reader and tags interact. Readers MAY employ a variety of
protocols to interact with tags (not exclusively RF tags: e.g., a Reader MAY be capable
of reading optical bar codes), but the same Reader Protocol as specified in this standard
is used between the Reader and Host.

The commands have been defined as SHALLs and CANs. The Reader Protocol
Conformance Requirements will be developed to categorize readers by the functions
they perform. Readers’ profiles will be developed to help conduct fair and accurate
conformance tests. It is possible that existing CANs may change to reflect the profilgs. |

The Reader Protocol is specified in three distinct layers, as illustrated below:

Content of Reader/Host
Excnhanges (absract syntax) Reader Laye r
' |
Message formating [o
Message framing Mess agm g Layer B Each pair is
- Message syntax called a
= EP’O(lnformatlon > _L-[essagjng
I ‘Transport
i o | Binding
O/S-provided network facility ‘_ e
Transport Layer _)

27|Page

The layers are:

e Reader Layer
This layer specifies the content and abstract syntax of messages exchanged
between the Reader and Host. This layer is the heart of the Reader Protocol,
defining the operations that Readers perform and what they mean.

e Messaging layer
This layer specifies how messages defined in the Reader Layer are formatted,
framed, transformed, and carried on a specific network transport.

e Transport Layer
This layer corresponds to the networking facilities provided by the operating

system or equivalent.

The Reader Protocol specification provides for multiple alternative implementations of
the Messaging and Transport Layers. Each such permutation is called a
Messaging/Transport Binding (MTB). Different MTBs provide for different kinds of
transport, e.g., TCP/IP versus Bluetooth versus serial line. Different MTBs may"also”
provide different means for establishing connections (e.g., whether the Reader contacts
the Host or the Host contacts the Reader), initialization messages required to establish
synchronization, and means for provisioning of configuration information. Multiple
standard MTBs are defined in this specification. Others may be defined and specified in

separate, companion specifications.

2.5 Reader Management (RM) Standard

The Reader Management Standard (5) defines Version 1.0 of the wire protocol used by
management software to monitor the operating status and health of EPCglobal
compliant RFID Readers. This document complements the EPCglobal Reader Protocol
Version 1.1 specification. In addition, this document defines Version 1.0 of the

EPCglobal SNMP RFID MIB and specifies the set of SNMP MIBII groups required to

28LPage

asrenIne of copfronratian ontarmatinn Arttints

comply with this EPCglobal Reader Management Specification over SNMP. The terms
“tag Reader” and “Reader” include RFID tag Readers, supporting any combination of
RF protocols, fixed and hand-held, etc. It also includes Readers of other kinds of tags,
such as bar codes. Tag Readers, despite the name, may also have the ability to write
data into tag memory.

The Reader Management Protocol specifies the interaction between a device capable of
interfacing with tags, and management software. The host may be a fully featured
Management Console capable Qf processing SNMP messages, or a dedicated
application capable of communicating with fhé Readér to interface with RFID tags and
monitor its health.

The collection of tag data between the Reader and the Host is defined in the EPCglobal
Reader Protocol Version 1.1. This document focuses on the communication protocol
required to monitor the health of the Reader.

This standard defines two separate but related management protocol specifications.

1. Specifies the EPCglobal SNMP MIB for monitoring the health of a Reader.

2. Specifies the EPCglobal Reader Management Protocol for monitoring the health of a
Reader.

Number 2 follows the same layering structure defined by the EPCglobal Reader
Protocol Version 1.1 [RP1]. This specification defings an XML MTB_ which
complements that defined by the Reader Protocol. The Transport details can be found in
the Reader Protocol Specification 1.1. The SNMP MIB components are also defined in

detail in this specification.

29|Page

Content of Reader/Host
e] S Reader Management Command Set

Message formatting -

Message framng - Security

services - Connection XML SNMP
establishment ' ;

O/S-provided network

trensport facility Serial TCP UDP

Figure: Protocol Layers Mapping

The SNMP MIB is an example of another Message/Transport binding. The MIB is a
structuring and representation of Reader Object Model elements that conforms to the
SNMP specification “Structure of Management Information Version 2 (SMIv2)” (6).
The SNMP protocol has a well defined messaging protocol and transport layer for
getting and setting information, event notification, and security facilities. The figure
above depicts two MTB examples. On the left, the Reader Protocol Message Format
using XML as input and output, and TCP as the transport. On the right, SNMP defining
the Message formatting and UDP as the message transport. Note that the same Reader

Management Command Set applies to both MTBs.

[Y e
3.6 Application Level Events (ALE) Standard

This EPCglobal Board-ratified standard specifies an interface through which clients
may obtain filtered, consolidated Electronic Product Code data from a variety of
sources (7). The design of this interface recognizes that in. most EPC. processing
systems, there is a leve] of proc‘:es;c,ir.l'g thé’t”r'éduce;the volume of data that comes
directly from EPC data sources such as RFID readers into coarser “events” of interest to
applications. It also recognizes that decoupling these applications from the physical

layers of infrastructure offers cost and flexibility advantages to technology providers

T T T G s B

and end-users alike.
The processing done at this layer typically involves: receiving EPCs from one or more
data sources such as readers, accumulating data over intervals of time, filtering to
eliminate duplicate EPCs and EPCs that are not of interest, counting and grouping
EPCs to reduce the volume of data and reporting in various forms. The interface
described in this standard and the functionality it implies, is called “Application Level
Events”, or ALE.
In early versions of the EPCglobal Network Architecture, originating at the Auto-ID
Center at the Massachusetts Institute of Technology (MIT), these functions were
understood to be part of a specific component termed “Savant.” The term “Savant” has
been variously used to refer generically to any software situated between RFID readers
and enterprise applications, or more specifically to a particular design for such software
as described by an MIT Auto-ID Center document “The Savant Specification Version
0.1” or to a later effort by the Auto-ID Center Software Action Group that outlined a
generalized container framework for such software. Owing to the confusion
surrounding the term, the word “Savant” has been deprecated by EPCglobal in favor of
more definite specifications of particular functionality. The interface described is this
standard is the first such definite specification.
The role of the ALE interface within the EPCglobal Network Architecture is to provide
independence between the infrastructure components that acquire the raw EPC data, the
architectural component(s) that filter & count that data, and the applications that use the
data. This allows changes in one without requiring changes in the other, offering
significant benefits to both the technology provider and the end-user. The ALE
interface described in the specification achieves this independenge through, three means:
e It provides a means for clients to specify, in a high-level, declarative way, what
EPC data they are interested in, without dictating an implementation. The
interface is designed to give implementations the widest possible latitude in
selecting strategies for carrying out client requests; such strategies may be
influenced by performance goals, the native abilities of readers which may carry
out certain filtering or counting operations at the level of firmware or RF

protocol, and so forth.

31|Page

* It provides a standardized format for reporting accumulated, filtered EPC data
that is largely independent of where the EPC data originated or how it was
processed.

e It abstracts the sources of EPC data into a higher-level notion of “logical reader,”
often synonymous with “location,” hiding from clients the details of exactly what
physical devices were used to gather EPC data relevant to a particular logical
location. This allows changes to occur at the physical layer (for example,
replacing a 2-port multi-antenna reader at a loading dock door with three “smart
antenna” readers) without affecting client applications. Similarly, it abstracts
away the fine grained details of how data is gathered (e.g., how many individual
tag read attempts were carried out). These features of abstraction are a
consequence of the way the data specification and reporting aspects of the

interface are designed.

Unlike the earlier MIT “Savant Version 0.1” effort, this specification does not specify a
particular implementation strategy or internal interfaces within a specific body of
software. Instead, this specification focuses exclusively on one external interface,
admitting a wide variety of possible implementations so long as they fulfill the contract
of the interface. For example, it is possible to envision an implementation of this
interface as an independent piece of software that speaks to RFID readers using their
network wireline protocols. It is equally’ possible; however, to envision another
implementation in which the software implementing the interface is part of the reader

device itself.

3.7 Object Naming Service (ONS) Standard

The EPCglobal Network architecture provides a method for the inclusion of
commercial (both physical and otherwise) products within a network of information
services. This architecture makes several axiomatic assumptions, the most important

being that it should leverage ex1st1ng Internet technology and infrastructure as much as

R T O B ey ¥ PO SR RN pU i uie UL AL

32|Page

possible. In most situations the EPC will denote some physical object. EPC identifiers
are divided into groups, or namespaces. Each of these namespaces corresponds to a
particular subset of items that can be identified. For example, XML Schemas are
denoted using the ‘XML’ namespace, raw RFID tag contents are kept in the ‘raw’
namespace. The ‘id’ namespace is generally reserved for EPCs that can be encoded
onto RFID tags and for which services may be looked up using ONS. This ‘id’
namespace is further subdivided into sub-namespaces corresponding to different
naming schemes for physical objects, including Serialized GTINs, SSCCs, GLNs, etc.
These namespaces are defined normatively in the EPCglobal Tag Data Standards (2).
Each of the sub-namespaces that are defined by the Tag Data Standard has a slightly
different structure depending on what they identify, how they are used, and how they
are assigned. The SGTIN is used to identify an individual product that is assigned by
the company that creates that product. Thus the SGTIN contains an EPC Manager
Number, an Object Class, and a Serial Number. Other sub-namespaces such as the
SSCC go directly from the EPC Manager Number to the Serial Number and have no
concept of an “Object Class”. This document only specifies the ONS lookup
mechanism for the SGTIN sub-namespace. As such, in many cases its statements about
concepts such as “Object Class” or “Serial Number” are specific to the SGTIN
namespace and should not be construed as applying to all EPC namespaces.
Specifications for those other namespaces are the subject of future work within the
ONS Working Group.

In order to further leverage the use of Internet derived technology and systems, the EPC
is encoded as a Uniform Resource Identifier (URI). URIs are the I?asig g?dressing

ridabitl)

scheme for the entire World Wide Web and ensure that the EPC Network is compatible
with the Internet going forward.

While an addressing scheme by itself is useful, it can only be used within a network
when a mechanism is provided to authoritatively look up information about that
identifier (8). This EPC ‘resolution’ mechanism is called the Object Naming Service or
ONS and is what forms the core.integrating, or ‘truth’ verifying, principle of the
EPCglobal Network.

This standard specifies how the Domain Name System is used to locate authoritative

33|Page

metadata and services associated with the SGTIN portion of a given Electronic Product
Code. Its target audience is developers that will be implementing Object Naming
Service resolution systems for applications. Future work by the ONS Working Group
will address how ONS is used for the other namespaces that make up the EPC and that
are outlined in the EPCglobal Tag Data Standard (9).

3.8 EPC Information Services (EPCIS)

This specification is currently an EPCglobal working draft and is currently available

only to EPCglobal subscribers. The primary vehicle for data exchange between

EPCglobal Subscribers in the EPCglobal Architecture Framework is EPC Information

Services (EPCIS). As explained below, EPCIS encompasses both interfaces for data

exchange and specifications of the data itself.

EPCIS data is information that tradjng partpers share to gain more insight into,what is

happening to physical objects in locations‘ not under their direct control. (EPCIS data

may, of course, also be used within a company’s four walls.) For most industries using
the EPCglobal Network, EPCIS data can be divided into five categories, as follows:

e Static Data, which does not change over the life of a physical object. This includes:
Class-level Static Data; that is, data which is the same for all objects of a given
object class For consumer products, for example, the “class” is the product, or SKU,
as opposed to distinct instances of a given product. In many industries, class-level
static data may be the subject of existing data synchronization mechanisms such as
the Global Data Synchronization Network (GDSN); in such instances, EPCIS may
not be the primary means of exchange.

o Instance-level Static Data, which may. differ from one instance to the.next within a
given object class. Examples of instance-level static data include such things as date
of manufacture, lot number, expiration date, and so forth. Instance-level static data
generally takes the form of attributes associated with specific EPCs.

e Transactional Data, which does grow and change over the life of a physical object.

Thls InCIUdeS: . [V RN E IR TS (Y - W BUHIUYY D,

34|Page

¢ Instance Observations, which re_cor_d events that occur in the life of one or more
specific EPCs. Examples of instance observations include “EPC X was shipped
at 12:03pm 15 March 2004 from Acme Distribution Center #2,” and “At
3:45pm9 22 Jan 2005 the case EPCs (list here) were aggregated to the pallet
EPC X at ABC Corp’s Boston factory.” Most instance observations have four
dimensions: time, location, one or more EPCs, and business process step.

e Quantity Observations, which record events concerned with measuring the
quantity of objects within a particular object class. An example of a quantity
observation is “There were 4,100 instances of object class C observed at 2:00am
16 Jan 2003 in RetailMart Store #23.” Most quantity observations have five
dimensions: time, location, object class, quantity, and business process step.

e Business Transaction Observations, which record an association between one or
more EPCs and a business transaction. An example of a business transaction
observation is “The pallet with EPC X was shipped in fulfillment of Acme Corp
purchase order #23 at 2:20pm.” Most business transaction observations have
four dimensions: time, one or more EPCs, a business process step, and a

business transaction identifier.

The EPCIS Data Specifications provide a precise definition of all the types of EPCIS
data, as well as the meaning of “event” as used above. Transactional data differs from
static data not only because as it grows and changes over the life of a physical object,
but also because transactional data for a given EPC is typically generated by many
distinct enterprises within a supply chain. For example, consider an object that is
manufactured by A, who employs transportation company B to ship to distributor C,
who delivers the object by way of 3rd party logistics provider D to retailer E. By the
time the object reaches E, all five companies will have gathered transactional data about
the EPC. The static data, in contrast, often comes exclusively from the manufacturer A.
A key challenge faced by the EPCglobal Network 13 o allow, any participant.in, the
supply chain to discover all transactional data to which it is authorized, from any other

participant.

35|Page

3.9 EPCglobal Certificate Profile Standard

The EPCglobal Architecture Framework document (10) describes how security
functions such as authentication, access control, validation and privacy protection of
individuals and corporations will be distributed across many of the roles/interfaces
operating within the EPCglobal network. For example, EPCIS Interface responsibilities
include a means for mutual authentication of two parties exchanging EPCIS data across
that interface. Another example is the securing of communications between RFID
readers and filtering/collection middleware, or reader management systems, when those
elements are operating within a non-trusted network environment.

The authentication of entities (subscribers, services, physical devices) operating within
the EPCglobal network serves as the foundation of any security function incorporated
into the network. The EPCglobal architecture allows the use of a variety of
authentication technologies across its defined interfaces. It is expected, however, that
the X.509 authentication framework will be widely employed within the EPCglobal
network.

To ensure broad interoperability and rapid deployment while ensuring secure usage,
this standard defines a profile of X.509 certificate issuance and usage by entities in the
EPCglobal network. The profiles defined in this document are based upon two Internet
standards, defined in the IETF’s PKIX Working Group, that have been well
implemented, deployed and tested in many existing environments. The first of these
specifications is RFC3280 - Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile (11). RFC3280 profiles the format and
semantics of certificates and certificate revocatlc‘)\n\hst';lsA (CI%L:‘S)L {or f?g/lgﬁiﬂ?}‘ .P_K.{.ﬁlﬂﬂ
is itself a profile of the ITU X.509 standard. The second is RFC 3279 - Algorithms and
Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile (12). This specification defines algorithm identifiers and
ASN.1 encoding formats for digital signatures and subject public keys used in Internet
PKI as defined in RFC3280. The goals of this specification are as follows:

36|Page

tiret A Y FPUbiie Rev o intrastracnire O ervie -nand

* Ensure compatibility with, and thus fully leverage, existing deployed PKI
infrastructure. As such, the intent of the profiles defined below is not to define
any new functionality that may require updates to existing infrastructure, but to
simply clarify and narrow (profile) functionality that already exists.

¢ Ensure compatibility with existing deployed applications currently used in the
supply chain.

e Define a minimum set of capabilities that shall be supported to ensure broad
interoperability, while still allowing interested parties to extended and/or further

refine to suit their individual requirements.

3.10 Architectural Framework Document

This document defines and describes the EPCglobal Architecture Framework. The
EPCglobal Architecture Framework is a collection of interrelated standards for
hardware, software, and data interfaces (“EPCglobal Standards”), together with core
services that are operated by EPCglobal and its delegates (“EPCglobal Core Services”),
all in service of a common goal of enhancing the 'supply chain through the use of
Electronic Product Codes. The primary beneficiaries of the EPCglobal Architecture
Framework are EPCglobal Subscribers and other Solution Providers. An EPCglobal
Subscriber is any organization that uses EPCglobal Core Services, or participates in
the EPCglobal Standards Development Process to develop EPCglobal Standards.
EPCglobal Subscribers may be further-classified as End-users or Solution Providers (or
both). An End-user is an EPCglobal Subscriber that employs EPCglobal Standards and
EPCglobal Core Services as a part of its business operations. A Solution Provider is an
organization that implements for End-users systems that use EPCglobal Standards and
EPCglobal Core Services. (A Solution Provider may or may not itself be an EPCglobal
Subscriber.) Informally, thclawsy\n‘ergisti‘q, effect of EPC\gllobal Subscribebr‘s.mmfﬁ{]all‘cti‘r\lﬁ

with EPCglobal and with each other using elements of the EPCglobal Architecture

Framework is called the “EPCglobal Network.” This document has several aims:

37|Page

To enumerate, at a high level, each of the hardware, software, and data standards that
are part of the EPCglobal Architecture Framework and show how they are related.
These standards are implemented by . hardware and software systems in the
EPCglobal Network, including components deployed by individual EPCglobal
subscribers as well as EPCglobal Core Services deployed by EPCglobal and its
delegates.

To define the top level architecture of EPCglobal Core Services, which provide
common services to all subscribers of the EPCglobal Network, through interfaces
defined as part of the EPCglobal Architecture Framework.

To explain the underlying principles which have guided the design of individual
standards and Core Service components within the EPCglobal Network. These
underlying principles provide unity across all elements of the EPCglobal
Architecture Framework, and provide guidance for the development of future
standards and new Core Services.

To provide architectural guidance to end users and technology vendors seeking to
implement EPCglobal Standards and to use EPCglobal Core Services, and to set

expectations as to how these elements will function.

This document exists only to describe the overall architecture, showing how the

different components fit together to form a cohesive whole. It is the responsibility of

other documents to provide the technical detail required to implement any part of the

EPCglobal Architecture Framework. Specifically:

Individual hardware, software, and data interfaces are defined normatively by
EPCglobal specifications, or by standards produced by other standards bodies.
EPCglobal specifications are developed by EPCglobal membership through the
EPCglobal Standards Development Process (SDP). EPCglobal specifications are
normative, and implementations are subject to conformance and certification
requirements. An example of an interface is the UHF Class 1 Gen 2 Tag Protocol,
that specifies a radio-frequency communications protocol by which a Radio

Frequency Identification (RFID) tag and an RFID reader device may interact. This

38|Page

interface is defined normatively by the UHF Class 1 Gen 2 Tag Protocol
Specification.

e The design of hardware and software components that implement EPCglobal
specifications are proprietary to the vendors and end users that create such
components. While EPCglobal specifications provide normative guidance as to the
behavior of interfaces between components, implementers are free to innovate in the
design of components so long as they correctly implement the interface
specifications. An example of a component is an RFID tag that is the product of a
specific tag manufacturer. This tag may comply with the UHF Class 1 Gen 2 Tag

Protocol Specification.

A special case of components that implement EPCglobal specifications are components
that are operated and deployed by EPCglobal itself (or by other organizations to which
EPCglobal delegates responsibility). These components are referred to as EPCglobal
Core Services, and provide services to all EPCglobal subscribers. The design of these
components is the responsibility of EPCglobal or its delegates, and design details may
be made public at EPCglobal’s discretion «'¢ Cotimoncin o ninmieinent e atons
An example of an EPCglobal Core Service is the Object Name Service (ONS), which
provides a logically centralized registry through which an EPC may be associated with
information services. The ONS is logically operated by EPCglobal; from a deployment
perspective this responsibility is delegated to a contractor of ONS that operates the
ONS “root” service, which in turn can delegate responsibility to other services operated

by other organizations.

At the time of this writing, there are many parts of the EPCglobal Architecture
Framework that are well understood, and for which EPCglobal standards already exist
or are currently in development. There are other parts of the EPCglobal Architecture
Framework that are less well understood, but where a need is believed to exist based on
the analysis of known use cases. In these cases, the architectural approach has not yet
been finalized, and therefore work on developing standards or designing additional
Core Services has not yet begun (though architectural analysis is underway within the

Architecture Review Committee). This document clearly identifies which parts of the

" o 39|Page

EPCglobal Architecture Framework are understood architecturally and which parts
need further work. This document will be the basis for working through and ultimately
documenting the architectural decisions around the latter parts as work continues. (13)
The following figure visualizes the core components of the EPCglobal proposed

architecture.

3.11 Drivers of Generation3 Development

The EPC system will not stop at Generation 2. The mass market for RFID that
Generation 2 will create, should result in new waves of innovation as vendors compete
and users become more sophisticated and demanding in terms of reduced cost and
increased functionality. As was the case with EPC Generation 1 these competitive
pressures will quickly lead to ideas and inventions that cannot be contained within the
Generation 2 specification. At this point, most likely around early 2007, the
development of a Generation 3 tag will be introduced to the EPC standards
development process. Just as occurred with the Generation 1 to Generation 2 transition,
successful Generation 2 incumbents will resist this transition in turn, while
entrepreneurs, start ups and large corporations coming late to the EPC market will jump
in. The momentum will build, and around 2008 or 2009 Generation 3 tags will appear,
starting the cycle described here all over again. The RFID reader infrastructure must be

ready for more change.

3.12 Software Defined Radio: Flexible, Future-proof RFID
Infrastructure

3.12.1 Solving the Problem of Tag Variation & Iteration

The problem of continuous change in the E?C p;arke; posed in presented in this thesis

is vitally important for all RFID users and especially those responsible for buying and

40|Page

mnstalling RFID reader infrastructure. While tags are the consumables of the RFID
systems, constantly varying, iterating and regenerating, the RFID reader infrastructure
is a deployed capital expense that cannot easily or cost effectively be replaced every
time a new tag variant appears. Further, the comings and goings of tags are not neatly
synchronized. Generation 1 did not turn into Generation 2 at the stroke of midnight —
the two generations must coexist, perhaps for a reasonable amount of time. And once
Generation 1 has disappeared, the reality (and hype) surrounding Generation 3 will
begin, as well as the introduction of new classes of tag. All this change is good — in fact
crucial — for the RFID user. It will deliver ever-improving performance, and ever-
decreasing costs. But it can only flourish is the RFID reader infrastructure is not an
impediment to change — if it can endlessly and easily adapt and adjust as new variations
of tag appear and disappear. The technology that enables this endless adaptation is
called Software Defined Radio or SDR.

3.12.2 A Definition of SDR

A software-defined radio (SDR) uses software for the modulation and demodulation of
radio signals. An SDR performs the majority of its signal processing in the digital
domain, most commonly in a digital signal processor (DSP), which is a type of
microprocessor specifically optimized for signal processing functions. The magic of an
SDR based RFID reader is that it can teceive'and transmit-a newform:'of 'RFID
communication protocol simply by running new software on existing SDR hardware.

A software-defined RFID reader consists of an RF analog front end (“AFE”) that
converts RF signals to and from the reader’s antennas into an analog baseband or
intermediate frequency signal, and analog to digital converters and digital to analog
converters which are used to convert these signals to and from a digital representation
that can be processed in software running on the reader’s digital signal processor.

Put simply, RFID readers based on SDR technology store all protocol information in
software, and use protocol-neutral hardware to generate and detect radio waves. This is
in contrast to conventional RFID readers, where protocols are created by adding

hardware, and changing protocols requires changing components in the reader.

41 |Page

3.12.3 Brief History of SDR

Software defined radio technology has long been important in the military context,
where new radio equipment must inter-operate with legacy equipment, much of which
is used for many years beyond its design lifetime. Additionally, the US military is often
called upon to work together with allies that have old, outdated equipment that is
incompatible with the more modern US communication hardware. This is exaétly
analogous to the Generation 1 to Generation 2 (and beyond) transition in RFID.
Military SDR projects date back to the early 1990s, and several were fielded in that
time frame. Aware of these developments, in 1999 the MIT Auto-ID Center began
exploring the idea of using SDR in RFID readers. This resulted in a development
contract to ThingMagic LLC in 2001. ThingMagic demonstrated the first SDR-based
RFID reader at the Auto-ID Center’s Board Meeting in Cambridge, Massachusetts in
November 2001. Commercial SDR-based RFID readers were first introduced by
ThingMagic in 2003.

3.12.4 Benefits of SDR in RFID Readers™ LR

SDR-based readers offer significant benefits to RFID users. In particular, SDR-based
designs have a unique ability to adjust and upgrade to new protocols, and to be
constantly improved via firmware upgrades. With the addition of standard networking
capabilities such as remote management, large networks of deployed SDR-based RFID
readers can be upgraded in a matter of minutes from a remote console in a customer’s
Network Operations Center, instantly becoming capable of reading new types of tag.

SDR-based RFID readers must be able to support via firmware upgrades, at least the

current, the previous and the next RFID generation.

42|Page

auust dhu O BCwW OGS, and 1o be

4. RFID in supply chain management

FID is a technology that can be integrated to unlimited environments. It can
make our lives a lot easier in day-to-day situations and processes. It can alter
processes in our work, in our personal life, in the enterprise. As it has been
clearly stated in the introduction, this report is focused in the applications of the RFID
technology in the field of supply chain management. Before we continue discussing this
kind of applications, we will see in little detail what the most common applications of

RFID are in this early and immature state of this technology.

While this technology has grown over the last three years, much of the growth came
from traditional, established applications such as security/access control, automobile
immobilization, toll collection, and animal tracking. At present, many emerging
applications remain in the early adopter phase (i.e., pallet tracking, POS/m-commerce,
baggage handling, etc.). However, the increase in available RFID applications suggests
that the technology is moving beyond traditional application niches. Manufacturers
have proven that RFID technology works in many application environments and end

users have developed a better (yet incomplete) understanding of the benefits of RFID

tCChI’IOIOgy. LU I bucuastu b thiC apnedbioies b e Kk

While the potential for viable RFID applications appears virtually limitless, the lack of
implemented standards and high RFID system costs often become the decisive barriers
to greater adoption. While the traditional application segments will continue to enjoy
solid growth, opportunities are rapidly unfolding in the emerging application segments.

The most imponant of these segments A& .5 viee vewse o wr (e viowH cane

e Baggage Handling

e Rental Item Tracking

¢ POS m-Commerce

e Real time Location System (RTLS)
e Supply Chain Management

43 |[Page

Applications are constantly being developed to streamline data capture applications.

Whether in the supply chain or in mobile computing, RFID appiications typiéal]y fall

into one of the categories below:

Closed Loop Systems
Closed loop systems are systems that are traditionally considered standalone and

they are used in the following:

o Assembly operations

o Manufacturing processes

o Work in Progress

o Animal tracking

o Healthcare (Inventory and equipment control)

For example, an automotive manufacturer may use RFID technology in their
manufacturing plants to track car frames as they move through the paint stations.
The information is used for internal purposes only to track inventory and quality
control.

Open Systems

When information concerning the movement of products that incorporate RFID tags
is shared with others, this is considered an open system. A prime example of this
would be sharing movement information of products as they travel through the
supply chain. Pallet tags being loaded on a truck from a manufacturer would be read
and that information could be shared with the appropriate downstream warehouse or
distribution center. Likewise, when the warehouse or distribution center unloads the
trucks, the same pallet tags are read and that information can be shared with the

upstream manufacturer.

Open systems are rarely used now because of the lack of database and protocol
standards that define how this information will be shared. However, their potential

is tremendous, as they would enable companies to track a single pallet, case or item

44 |Page

throughout the supply chain, instead of relying upon input from each touch point.

The EPC initiative within the supply chain is a good example of an open system.

Point of Sale

These systems are used as fast payment systems such as toll road applications,
gasoline payment, or parking garage applications. Mobil/Exxon Speedpass is a POS
application example that allows customers to pay for their gas (and purchases at
some grocery stores) by passing an RFID-enabled ID card over an RFID reader at
the gas pump. The system automatically charges the customer’s credit or debit card
with the expense. Electronic toll collection systems and parking garage access are

other examples of point-of-sale applications.

|

Closed loop

Open Systems Point of Sale
systems

45|Puce

4.1 Common Applications

The following are only a sampling of the applications using RFID. The applications
receiving the most press these days are those associated with pallet and case tracking in
the supply chain. The following application examples should indicate there are
seemingly unlimited opportunities to implement RFID technology in a variety of

markets and for numerous uses.

e Transportations
New passports are now being manufactured with an integrated RFID chip which
contains encrypted information about the passport’s owner. When all passports are
replaced with the new ones, automated passport checking could be possible with the
use of face recognition systems. Additionally, passport forgery will now be very

difficult.

o Baggage Handling
Most airlines currently use bar coding systems in their baggage handling operations,
but unfortunately baggage still arrives at the wrong location on occasion. Airlines are
developing RFID tags embedded into the bar coded baggage tags to interact with the
conveyance systems. These RFID systems ensure that baggage reaches its intended

location the first time.

¢ Library Information Systems
Libraries are using RFID systems for tracking books and other properties. Books are
being tagged with a separate RFID tags to accelerate checkout, and they control
theft. A book leaving the premises without.being checked out will, set off an alarm.
Even if the book is not recovered, the system is automatically updated to show that it

is not available for checkout.

e Returnable Containers Tracking

By tracking pallets, totes and other containers with RFID, and building a record of

what is stored in the container. Returnable Product Containers (RPCs) are used to

46 |Page

package and transport produce. A-grower-packs and ships fruits and vegetables in
RPCs for travel through distribution to a store’s produce department. When the
product container is empty, it is returned for cleaning and reuse. The RFID tag is
used not only to keep track of the location of the RPC, but also to document its
cleaning history, from the date and temperature of the washing to the chemicals

used.

Car Dealerships
RFID systems can be used to manage inventory of automobiles in new and used car

dealerships and in rental car lots.

Rental Cars
For rental car companies, RFID would allow fast and easy access to maintenance

and service records.

Hospitals

RFID can be useful in checking. out and..tracking expensive medical equipment.
Placing an RFID tag on the diagnostic or monitoring machine could read these
devices as they leave one area and enter another. This would allow quick and

efficient location of these most important devices.

Animal Identification
RFID is being used in the cattle industry in the hopes of helping identify the source
of disease and medical histories. Secure identification of cattle by means of a tag

inserted into the stomach of an animal provides accurate records for automated farm

management.

Point of Sale
An RFID-enabled ID card (Mobil/Exxon Speedpass) allows customers to pay for

their gas by passing a card over an RFID reader at the gas pump. The system

47|Page

HupOHdI gevices,

automatically charges the customer’s credit or debit card with the expense

Toll Roads and Parking Garages

Electronic toll collection systems and parking garage access are other examples of
point-of-sale applications. Having an RFID tag within your automobile allows
frequent users of toll roads to simply drive through the toll stations. The tag will be
read and they can be billed each month. The same could be true for charging for use

at parking garages.

Utility Companies

RFID could be used to identify where buried cables, pipes, etc are located.

Security and Access Control
The movement and use of valuable equipment and personnel resources can be
monitored through RF tags attached to tools, computers, etc. or embedded in credit-
card-size security badges.

oy maru du UUILE CadiTCS
Supply Chain Management
Large corporations which wish to remove costs and inefficiencies in supply chain
operations are driving much of the recent interest in RFID and smart label
technology. The idea of scanning pallets as they arrive in distribution centers or back
store docks and instantly updating the system with all of the contents of the pallet is
appealing to many companies that are currently paying a small army of people to
accomplish this task as a full-time job. Reallocating those personnel resources could
potentially provide a substantial increase in productivity and efficiency for these
operations. This is the area where current attention is being focused. This is because

of the mandates from Wal-Mart and the Department of Defense to their top suppliers

to implement RFID when shipping products to them,.

48 |Page

4.2 Applications in supply chain management

Having these in mind we will now bring the focus in the field of SCM. Operating an
integrated supply chain requires continuous information flows, which in turn help to
create the best product flows. The customer remains the primary focus of the process.
Achieving a good customer-focused system requires processing information both
accurately and in a timely manner for quick response systems that require frequent
changes in response to fluctuations in customer demand. Controlling uncertainty in
customer demand, manufacturing processes, and supplier performance are critical to

effective SCM.

Successful SCM requires a change from managing individual functions to integrating
activities into key supply chain processes. Traditionally, both upstream and downstream
portions of the supply chain have interacted as disconnected entities receiving sporadic
flows of information over time.

For example, the purchasing department placed orders, as requirements became
necessary and marketing, responding to customer demand, interfaced with various
distributors and retailers and attempted to satisfy this demand. Orders were periodigally
given to suppliers and their suppliers had no visibility at the point of sale or use.
Satisfying the customer, often translated into demands for expedited operations
throughout the supply chain as member firms reacted to unexpected changes in demand.
In many major corporations, such as 3M, management has reached the conclusion that
optimizing the product flows cannot be accomplished without implementing a process

approach to the business. (14)

The consumer products/retail industry has long taken advantage of new digital
technologies to transform its operations. Going back to early mainframes in the 1950s,
through the adoption of the barcode and electronic point-of-sale (POS) devices in the
1970s, up to more recent innovations such as electronic data interchange (EDI) and
Internet-based commerce, successive waves of new technologies have helped companies
better manage operations and improve service to suppliers, customers and consumers.

RFID technology, and, in particular, the standardized EPC and its associated information

49 |Page

1 - e b bbddbind .

flow via the EPCglobal Network, are poised to enable the next wave of evolution in the
way manufacturers, retailers and their business partners share information and work
together to satisfy consumer demand. EPC can be thought of as an extended barcode
containing a serialized item key that enables individual products to be uniquely
identified. Unlike existing barcode technology, EPC systems, based on the use of radio
frequencies, do not require line-of-sight scanning. This fundamental change improves
the speed and potential accuracy of data collection and provides the following new

capabilities:

e Faster scanning and product handling, with the capability to support hundreds of
tag "reads” per second (versus one-at-a-time as with barcodes) and to conduct
automated scanning with limited manual intervention.

e New opportunities to collect inventory information and “see” the flow of
products, potentially in real time and in locations not previously feasible across
the supply chain and in the store.

e Automated “triggering” of appropriate actions (e.g., replenishment orders, stock
alerts) with less manual intervention.

e Identification of discrete items, for example by flagging duplicate or invalid

codes, thus enhancing the execution of promotions, track and trace, product

authentication and Other.activities,A CUILC LU Wi i i G TUHOW R IO W
Pallet/ ftem- Pervasive
Cese-Level > Level > RFID

Opportunities and Benefits

Supply Chain Execution and Collaboration

Time

Envisioned evolution of EPC adoption

50| Page

The focus for most companies and in most product categories today is on pallet- and

case-level tagging. Even at this level, EPC adoption can lead to a better consumer

shopping experience by enabling companies to improve supply chain execution and

collaboration. Looking further out, the broader vision for EPC is to tag individual

products at the item level. While technology costs remain too high, in the industry to

make this feasible in the near term, for most product categories, these costs will

inevitably come down as EPC adoption scales across various industries including

consumer products/retail. As this occurs, consumers will likely see increased value and

noticeable enhancements to the shopping experience, enabled by new supply chain and

store management practices. For example:

Product out-of-stocks would become very rare, as “intelligent”, EPC-capable
store fixtures provide retailers and manufacturers with stock visibility all the way
to the shelf and enable more dynamic restocking procedures.

The assortment and presentation of products would be more aligned with
consumer shopping preferences, as EPC data is used to improve category
management and automated shelf-level monitoring helps ensure compliance with
plan-o-grams. (v g U G
Shoppers would only see “fresh” products available for purchase, as item-level
stock monitoring helps retail employees quickly and efficiently identify aging or
obsolete products that should be removed from the sales floor.

Store employees, with access to item level product inventory information, could
quickly help a customer find a specific size, color or model anywhere in the store
or throughout the retail chain.

Consumers could obtain valuable information that helps them make better
shopping decisions (for example, product features, usage instructions and
promotions on complementary products), through digital displays or information
kiosks that interact with EPC tagged products.

The checkout process would no longerrbe a primary source of consumer pain, as

EPC-tagged products make possible rapid, automated tallying of purchases.

51|Page

G BRI YO B Ll DAIC s L,

EPC might ultimately become pervasive throughout the consumer environment, as a
wide range of consumer devices become capable of interacting with tagged products.
Glimpses of potential future applications can be seen today in other markets, such as
RFID-based toll collection systems for automobiles .and identification systems for pets.
As successive generations of EPC technology are developed and deployed, they will
likely become the basis of unimagined shopping experiences and product/service
offerings. While it is difficult to predict with certainty what new applications and
services will emerge, the successful ones will surely be those that respond best to

consumers’ needs.
We will now see some commercial software solutions provided by major software

vendors, in the field of SCM that utilize or focus on the RFID technology and then we

will conclude by describing our approach and solution proposed for the RFID part of
the SMART project.

Cultt Wil Loatdiiity MW hab Hew appiivdtioly did

52|Page

5. Commercial RFID solutions

n this chapter we will discuss in little detail some commercial solutions in the field
of SCM. These solutions are provided by major vendors in the field of SCM and
they use RFID either as the central point of the solution or as a plug-in of existent

proven solutions.

5.1 IBM Solution

The solution proposed by IBM is based on Java Enterprise Edition (J2EE) technology
and the infrastructure can be supported by the RFID Premises Server or by the
Remote Server. The selection between these two servers should depend on the

company’s needs.

e RFID Premises Server . e Y e an SUTLUUTES T LI TICTU
It can be implemented at either remote locations or a central data center. It is
designed to collect and filter data from RFID devices, execute business processes
and integrate the RFID information with third-party software applications for ERP

(enterprise resource planning) and warehouse management.

An IBM RFID solution is made up of three different elements: Devices,
WebSphere® RFID Premises Server V1.1, and a WebSphere integration server:

e Devices, such as readers, scanners, printers, etc., embedded with WebSphere
RFID Device Infrastructure. Device Infrastructure is an RFID-enabled
middleware product that JBM provides to select partners to place on their

devices.
e IBM WebSphere RFID Premises Server, a middleware product that

aggregates, monitors, interprets, and escalates RFID events to detect critical
operational events.

53|Page

Pt duuny Wb LN

e An IBM integration server, such as WebSphere Business Integration Server
or Server Foundation, is recommended to allow customers to fully integrate
the information flowing in from the edge of their business with their

enterprise operations.

WebSphere RFID Premises Server is targeted for deployment in warehouses,
distribution centers, or manufacturing plants. Premises Server is a robust, extensible
J2EE application platform for the integration of RFID events from RFID devices
into business processes. In addition to providing the ability to filter, aggregate,
monitor and escalate RFID events to detect critical business operational events or to

track the location of physical objects, Premises Server:

e Delivers starter kits for commonly needed functions, including Dock Door
Receiving and Print-Verify-Ship

e Supports SUSE Linux 8§ and Windows 2003 Server

e Provides integration with new RFID pri‘n.ters“and readers =

¢ Provides material for capécity plannihg énd performance planning, so that

you can more effectively plan for your RFID deployment

(15)

¢ Remote Server

It is designed to be deployed remotely. It is tailored mainly toward integrating the
newer handheld, kiosk and self-service environments with legacy devices such as

IBM POS (point-of-sale) terminals. It provides:

e Mobile shopping devices with personalized information at the consumer’s
fingertips.
e Transaction log (Tlog) handling for non-IBM 4690 applications to move

POS data to headquarters.

e RFID technology to speed the checkout process and locate merchandise in
the store.

54|Page

e Digital merchandising solutions that can provide consumers with dynamic
product information and comparisons on demand.
e Accurate inventory information to help prevent erroneous reordering of

merchandise.

WebSphere® Remote Server delivers a fully integrated platform to help manage
remote environments such as retail stores and branch offices. This infrastructure
offering extends the IBM Enterprise Business Integration technology to
distributed locations, enabling integration from the enterprise to the edge of your
business. A retailer manage the business more cost effectively, help increase
employee productivity, and create a unique shopping experience for the
consumers. Employees have better access to customer, product, and sales
information, increasing productivity and providing better service to consumers.
WebSphere Remote Server is a key component of the Store Integration

Framework and the IBM on demand operating environment (16).

The Premises and Remote servers each come with a built-in WebSphere Application
Server, an IBM Universal DB2 database repository and IBM Tivoli management tools,
among other components. The Premises server can be used for remote server

management, too.

5.2 SAP solution T DUSTICSS 1HOFC oSt cHiecon el Beln ineregse

The mySAP Supply Chain Management (mySAP SCM) application is software that can
help your organization transform a linear supply chain into an adaptive supply chain
network, in which communities of customer-centric, demand-driven companies share
knowledge, intelligently adapt to changing market conditions, and proactively respond
to shorter, less predictable life cycles (17).

Based on the SAP NetWeaver™ platform, SAP RFID is designed to handle the massive

amount of additional data accumulated from scanning RFID tags. It minimizes the

55|Page

replication of data across systems and processes by:

1. Focusing on business-related events rather than all data captured in the RFID

infrastructure

2. Basing decision-support applications on aggregated, rather than granular data as

much as possible.

The following figure depicts the architecture of SAP’s solution.

The SAP’ Solution Package for Massive Auto-ID Data

e At

SAP Event Management

SAP Py
. mySAP™ ERP
Enterprise .5 f
Portal . Analytics

B Financials
B Human Capital
S TTR I RVI T RTCT IR Y 1) et ¥ ,vtmm uumR‘ziu GHY e N
r anagemen

B Operations
8 Corporate
Services

SAP Auto-ID Infrastructure

It is composed by the following components:

e SAP Auto-ID Infrastructure
Integrates all automated communication and sensing devices including bar-code
devices, Bluetooth devices, and RFID readers and printers. It does not only filter,

buffer, verify, and aggregate data coming from different hardware sources, but

56 |Puge

also gives business context to the data, drawing on the applications in mySAP™
ERP that support the business processes in question — inventory management and

warehouse management, for example.

e ERP adapters
ERP adapters are responsible for synchronizing electronic product code number
ranges across multiple auto-ID infrastructures. They also support packing,
unpacking, loading, unloading, and advanced shipping notification (ASN)

processes that involve RFID data.

e SAP Event Management
This software tracks and exchanges auto-ID data through the various
infrastructures and systems used by your supply chain partners, providing cross-

warehouse and cross-company inventory visibility.

e SAP Enterprise Portal
The portal provides role-based access to — and a single view of — key RFID
information coming from supply chain activities. It enables your supply network

partners to access event management and report information.

e SAP Exchange Infrastructure
SAP Exchange Infrastructure (SAP XI) helps minimize administrative effort by
queuing and sequencing messages being exchanged among mySAP ERP, auto-

ID infrastructure, and event management software.

5.3 SUN Solution

The SUN’s solution is named Java System RFID and it is based, obviously, on the java
language. The Java System RFID Software is Sun's standards-based RFID Middleware

that provides all this basic functionality and more along with the ability to operate at

57T|Page

high levels of reliability and scalability in mission critical deployments. In addition to
device and event management, the Java System RFID Software provides a RFID
Information Server and the requisite interfaces to enterprise information systems to
facilitate the storage and integration of business events with the enterprise's business

processes (18).
The solution is composed by the following components:

e Java System RFID Event Manager
It is designed to process streams of tag or sensor data (event data) coming from
one or more reader devices. The RFID Event Manager has the capability to filter
and aggregate data prior to sending it to a requesting application. The RFID
Event Manager can also be programmed with other types of filters to enforce

specific business rules.

e Java System RFID Information Server
Provides access to significant business events generated by the Java System
RFID Event Manager. It also serves as an integration layer that offers several
options for integrating the RFID Event Manager with existing EIS or custom

enterprise applications.

Using software and application programming interfaces (APIs) that are part of the Java
Enterprise System enables developers to quickly and flexibly integrate EPC data with
enterprise applications. Data from the RFID Event Manager feeds into Sun’s RFID
Information Server, where it is stored and made available in a consistent manner to any

application that needs it.
Java System RFID Software is shipped with built-in support for a variety of industry-

leading printers and readers. Developers and integrators can create adapters for other

devices with the Java System RFID Software Toolkit.

. 58|Page

5.4 Oracle Solution

Oracle’s solution is named RFID and Sensor-Based Services.

Based on Oracle Database 10g, Oracle Application Server 10g, Oracle Enterprise
Manager 10g, and Oracle E-Business Suite 11i.10, Oracle Sensor-Based Services
enable companies to quickly and easily integrate sensor-based information into their
enterprise systems. Oracle's solution includes a Compliance package, an RFID pilot

kit, and integrated support in Oracle E-Business Suite and Oracle Application Server

(19).

The key components of the Oracle’s solution are:
e (Capture Information: Oracle Application Server 10g
e Manage Information: Oracle Database 10g
¢ Analyze Information: Oracle Business Intelligence

e Access Information: Oracle Application Server Portal and Wireless

5.5 General evaluation of commercial solutions

The solutions that are discussed in this chapter were evaluated as thoroughly as possible
given the fact that some of them were available free with an evaluation license, while
others were not, so we had to evaluate them based completely on the vendor provided
release information.

Based on this mixed experience, the outcome of the evaluation process is that currently
very few solutions are designed based on the RFID technology. Most commercial
solutions are the common SCM solutions provided by software vendor with the
addition of an RFID module. As a consequence of this fact, if one wants to use the
functionality provided exclusively by the RFID, he has to purchase the full package,
which contains the tenfold functionality in comparison with the functionality needed.
That is because the RFID part is a module and needs the full package in order to work.

Our general impression of the domain of commercial RFID solutions, is that it is

59|Page

characterized by great immaturity. There is a lot if distance that needs to be covered so
that they can be characterized as standards-based and fully modular. The paradigm that
is introduced with the RFID technology, named Internet Of Things, can only be
manipulated with RFID-oriented and RFID-centric solutions, which take into account

the continuous data streams of RFID tagged objects.

60|Page

6. RFID solution for the SMART
research project

6.1 The SMART Research Project

he practices described in chapter 4 (information-sharing work practices and

infrastructures between trading partners to support the use of free, standards-

based information exchange and enable transformed business processes)
which are identified by a GCI and IBM joint report of a shared vision for transforming
business processes (20), are totally in line with the objectives of the SMART research
project.
The SMART Research Project is partly funded by the European Commission through
the IST program (No. ST-5-034957-STP) and aims at the intelligent integration of
supply chain processes and consumer services based on unique product identification in
a networked business environment.
More specifically, the SMART project will provide the infrastructure, electronic
services and software applications to enable supply chain collaboration and innovative
consumer services in the above context, based on a scalable-distributed-architecture and
building on the possibilities provided by peer-to-peer networks, web-service
orchestration and choreography, data-stream systems and smart tagging technologies.
The SMART collaboration infrastructure shall be in close integration with the GDSN
and EPC Network information infrastguctures and wil] operate as an additional layer.on
top of them, in order to provide a complete and solid collaboration framework offering
innovation to specific supply chain processes and consumer services.
The project specifically focuses on the following application areas, where some

indicative usage scenarios are given as examples below:

e Consumer information services: For example, the consumer is guided through
the store to find the products he/she is looking for; the consumer can track-down

to a product instance the quality and history in front of the store-shelf; the

61 |Page

consumer can see other useful information while in front of the shelf, such as
whether the product is available in the back-room and request it or whether there

is a joint/ personalized promotion, etc.

Store management: For example, shelf replenishment practices change based on
real-time information about shelf availability and product shortages; both the
retailer and the supplier are notified in case a product is missing from the shelf;
the store personnel but also the supplier can dynamically monitor the shelf

appearance and the extent to which a shelf planogram is applied, etc.

Promotion/ event execution: For example, retailers and suppliers are able to
dynamically manage their promotional offerings to consumers, e.g. lower the
price of specific product instances in real-time due to freshness limitations or
poor consumer response; they run promotion pilots and get real-time information
about promotion effectiveness before rollout; they monitor product availability in

relation to promotion events and take corrective actions, etc.

Product traceability and reverse logistics: For example, suppliers can track down
to the point-of-sales the location of their products/ displays/ pallets so that they
can withdraw products from the market in case of a food crisis or close
expiration date as well as get pallets/ "dwi,s‘p\lgly\s‘plawK after an event, delivc?lrx to the

store, etc.

Inventory management and collaborative replenishment (CRP/VMI, CPFR): For
example, demand forecasting algorithms are updated to take into account the
extra information provided by unique product identification in combination with
promotion events and shelf availability information that was not available before;
retailers use this information to manage store and warehouse inventories more
efficiently; suppliers also get this information in real-time to more efficiently

manage their buyers inventory in a CRP/VMI or CPFR collaboration process.

s » Liloe . moatlate v thiat tlhase
i 62 [Da §e

The above processes have been identified by industry leaders as high-priority areas
where the possibility to uniquely identify product instances is expected to have the

greatest business impact and render the most immediate results.

The project’s specific objectives include:

e To enable innovative in-store consumer services and new supply-chain
collaboration scenarios which exploit the capabilities for unique-product
identification and real-time information.

e The provision of a scalable, reliable and secure infrastructure supporting
information sharing, collaboration and electronic services in the above context

e The development of new decision-support algorithms and software tools, taking
advantage of unique product identification capabilities and real-time
information flows, to support store operations and supply chain processes

e The establishment of a collaborative services repository to enable the open and
dynamic integration of supply chain processes in a global environment

e The provision of reliable and real-time end-to-end information about product
quality and history to supply chain partners as well as to educated consumers
through innovative electronic services.

o The development of a technological framework incorporating inter-
organizational standardized processes in the above context, exploiting the
innovative technologies of web-service orchestration and choreography and
supporting the required process transformation.

e The assessment from a business and marketing perspective of the impact that
the developed services will have on increasing consumer value and building

consurner loyalty.

As an example, the following figure presents an indicative scenario enabled by the
respective SMART service supporting dynamic ‘pricing, under' the' “Proftidtion/ event

execution” application area, where the supplier collaborates with the retailer in order to

63|Page

reduce the price of some products approaching their expiration date.

Supplier's Retailer's Retail
Office Headquarers Store
r) R

CC:. Headguartexrs
Notificazion: Products
approaching expiratioa date

PR ﬁ

._!
LA
From: Jupplier and Headguarters

,.‘»
GG o e o] \w/
p a e = A
To: Score I
Irstruction: Reduce price of m“?
products approaching expiration

dutc

Indicative dynamic-pricing scenario enabled by SMART

The main technologies employed in the course of the SMART project include the
following:

e Smart-tagging technologies and radio-frequency identification (RFID), enabling
unique product instance identification in an automatic way

e Web-service orchestration and/or- choreographysin order to +enable inter-
organizational process integration in a distributed network environment.

e Data-stream management systems supporting continuous queries based on
transient data streams regarding product movement across various stages of the
supply chain, e.g. store, warehouse etc.

e Real-time analytics and decision support supporting critical supply chain

process and consumer services based on unique product identification

information

Our contribution in this project, which is the basis of this thesis, covers the first bullet.

It evaluates the RFID technology, within the current context, it proposes a standards-

64|Page

based solution to enable unique product instance identification in an automatic way and
to provide updates for context-dependent important information and, finally, it provides
an implementation for a part of this solution. The matters of implementation are

discussed in the following chapter.

6.2 Implementation

Due to the fact that for the RFID module of the SMART project we want total control
over the capabilities and the configuration of the module, we have decided to follow a
custom, standards-based approach. This module should be capable of utilizing the
available readers, reading data from them, perform cleaning operations on that data and
finally providing this information to the upper levels of the architecture.

The following figure represents a typical RFID based information system. On this
figure we have indicated where the application layer of the SMART project is located.
We have also indicated where our contribution lies. It handles the essential data input of

the SMART application layer.

SMART

Open stindarg based interfaces o
? -'-P;c:t;.;ﬂ-l;;o. ----- pTTToTTTeTem 7 Anal Raports and . £
Srsluson locgkup ! Fupnoss Precoss Mgmt ' notmzz(om [»mupvm Coenont Sot..’-__ 1
----------------- Events and WorKion Management -~~~ 7~
Cis ol 1 Erents, Messages, Bustness Rines '

Data Collection and Management)

Covection Stovoge, Smoarhing Firering, Agy egauon

R Device Interfaces, Management
T Reo P Beceda 1 BRI Fokat | Hendhdd 3 Cther
Resdors 7 SKannony ' APy 5 FC g Terrrirals H
Our e e e 7 Al b e ypi bl dg satd IHPULGUL
Impiementation
65|Page

The ratified Reader Protocol, which has been discussed previously in this report, was
released in the second semester of 2006. As a consequence, each vendor that
manufactures and provides RFID readers to the market has been, until now, equipping
these readers with a custom, proprietary communication interface protocol. There are
even many cases, that readers from the same vendor are equipped with a different
protocol. So if someone wants to communicate, for example, with an Intermec reader
he has to read the reader’s specification, understand the protocol, which includes
messages and commands, and then be able to get data from this (and only this) type of
reader. The situation becomes much more complicated, when we add to the
environment many RFID readers from different vendors.

So, for our solution to be in line with the EPCglobal standards, we decided to
implement a proxy which would be able to translate the proprietary protocol commands
and messages of the readers we used, to the standard messages and commands of the
Reader Protocol.

EPC technology, especially when implemented using RFID, generates a very large
number of object reads throughout the supply chain and.eventually into consumer
usage. Many of those reads represent non-actionable “noise.” Thus we need to build a
filtering module, which will perform cleaning operation on the data provided by the
lower level, the RFID Readers. This module should be able to trigger events, based on
rules that we would set. The best way to do this is by implementing the Application
Level Events Specification. The Apphcatgon EevelEvents (ALE)grPYlfle§lalfll§6&b},?
interface to a standard set of accumulation, filtering, and counting operations that

produce “reports” in response to client “requests.” The client is responsible for

interpreting and acting on the meaning of the report (i.e., the “business logic”).

During our research in the field of the RFID technology, we ran across the Accada
Project. Accada is an open source RFID prototyping platform that implements the EPC
Network specifications. It is intended to foster the rapid prototyping of RFID
applications and to accelerate the development of an Internet of Things. The Accada
project was initiated by Christian Floerkemeier, Matthias Lampe, and Christof Roduner

of the Distributed Systems Group at ETH Zurich led by Friedemann Mattern and the

MVAATTTE SO e~ TNt TV T onsT avante . aconrt
66|Page

Auto-ID Lab at ETH Zurich/University of St. Gallen led by Elgar Fleisch.
The Accada project has three working groups that work on the different levels of the
EPCglobal architecture stack. So within the Accada project, exist:

e The Accada Reader Project
The objective of the Reader Project is to implement the reader role in the EPC
Network and to develop the appropriate tools that facilitate communication with

the reader instance.

e The Accada Filtering & Collection project
The objective of the Filtering & Collection Project is to implement the Filtering
& Collection role in the EPC Network and to develop the appropriate tools that

facilitate communication with the Filtering & Collection instance.

¢ The Accada EPCIS project
The objective of the EPCIS Project is to implement the EPCIS role in the EPC
Network and to develop the appropriate tools that facilitate communication with

an EPCIS Repository instance.

Each of these projects implements the corresponding protocols that were described in

chapter 3.

Our decision to build an application using the same protocol stack (except from the
highest level — EPCIS) with the same protoéols per stack level guided us to join Accada
and contribute to this project. The components that will be utilized in the SMART

project when this is complete are represented in the following figure:

67|Page

EPCIS Repository

EPCIS Capture EPCIS Query
Interface Interface

EPCIS Capturing EPCIS Accessing
Application Application

Filtering & Collection
(ALE) Interface

Filtering & Collection
(RFID Middleweare)

I Reader Protocol

RFID Reader

The Accada Reader Project utilizes a hardware abstraction layer (HAL), which is a
point of integration of all the different types of readers and their supported protocols. It
provides an application programming interface (API) that needs to be implemented for
every RFID reader that should be available under the HAL. Our contribution to the
project was the HAL implementation for two readers; The *Alien 8750 RFID Reader
and the Intermec IF5 RFID reader. In that way, these two readers became accessible via
the Reader Protocol. One can have a better perspective of the contribution via the
following figure. The middle layer (reader protocol proxy) is a translation layer

between the lower (proprietary) protocols and higher (standardized) protocol.

oo 08|Page.

Evand 1 Event 2

!

<reportSpecs>
<raponSpec repontName="reponi">
<reportSet set="CURRENT"/>
<output includeTag="true™/>
</reportSpec>
<reportSpec reportName="repon2">
<reportSet set="ADDITIONS"/>
<output includeCount="true"/>
<jreportSpec>
<reporSpec reportName="rapond">
<rapontSet sat="DEL ETIONS />
<groupSpec>

Filtering and Coltaboration
Layer

>

1.)_ AlienController R ﬂ:\lermechSControllet\
[} N + 30

< Sy

& -

e g

§ ey .

& L

wader setNotifyAddress(getHostAddress(}, getlistenerPort(}}:
reaner. seiNotifyFormatiAienClass 1 Reader XML_FORMAT),
teadet satNotify Trioger (" TrueFalse™):
reader. saiNotifyhloda(AbenClass 1 Raader ONJ;
raader. autoMoeRassl{);
rsades.satautoStop Timerinteryal).
reader.setiutoModei AllenCla ss 1Reader. ON).

U —
— —
/7 Alien 8750 A Trtermec IFE™

ATTRIBUTE ANTS=1.2
READ STRING{10.5), ANTS

WHERE EPCID=0x13DA3FED22300

() (i)

RFID Readers

It must now be clear that our implementation is positioned in level O of the system

stack, as it was depicted previously in this chapter.

The Filtering and Collection project utilizes the Reader protocol in order to generate the
events defined by the Application Level Events protocol. So, by making these readers

RP-enabled we accomplished the readers’ ability to generate clean and useful

69|Page

information.

The method communication between the SMART RFID subsystem and the rest of the
SMART Collaboration system has not yet been defined and thus remains as a future
work. This could be accomplished via a database, a flat file of data stream, or, even
better, a combination of those, with a dynamic selection of the type of communication
based on criteria like the importance of the timeline of an event or the available storage

capacity or the type of usage (e.g. long-term inventory management).

6.3 Recommendations

Regarding the hardware specifications that need to be met if the SMART case, so that
the proposed solution is possible to be implemented, we should state that the following

are mandatory:

e RFID Readers implementing the EPCglobal Specification for RFID Air
Interface Protocol (1), thus reading in the UHF band,

e RFID Tags compliant with the EPCglobal Specification for RFID Air Interface
Protocol (1). Additionally, due to the fact that in the field of supply chain, the
products move within populated areas with many electromagnetic interferences
and noise, the RFID tags should also have high reading rate and should be
equipped with two or more embedded antennas for more accurate readings.

e A proxy server running the reader protocol. This proxy will run the Accada’s
implementation of the reader protocol and will translate the reader protocol
messages received by the upper levels of the EPCglobal Architecture stack, to

the proprietary messages of each RFID reader that will be used.

70|Page

[.

7. Appendix

Abbreviations

ALE - Application Level Events
API - Application Programming Interface
ASN - Abstract Syntax Notation

C

CGP - Consumer Packaged Goods
CRC - Cyclic Redundancy Check
CRL - Certificate Revocation List

D

DNS - Domain Name Service
DoD - Department of Defence (USA)

E

EAN - European Article Numbering
EDI - Electronic Data Interchange
EPC - Electronic Product Code
EPCIS - EPC Information Systems

71|Page

G

GCI - Global Commerce Initiative

GDSN - Global Data Synchronization Network
Genl - Generation 1

Gen2 - Generation 2

GIAI - Global Individual Asset Identifier

GID - General Identifier

GLN - Global Location Number

GRAI - Global Returnable Asset Identifier
GSCEF - Global Supply Chain Forum

GTIN - Global Trade Item Number

H

HAL - Hardware Abstraction Layer

IAB - Internet Architecture Board
IETF - Internet Engineering Task Force
IP - Internet Protocol

K

L

M

MIB - Management Information Base
MTB - Message Transport Binding

72|Page

N

0

ONS - Object Name Service
OSU - Ohio State University

P

PKIX - Public-Key Infrastructure X.509 group

Q

R

RFID - Radio Frequency Identification
RM - Reader Management

POS - Point Of Sale

RP - Reader Protocol

RPC - Returnable Product Container

SCM - Supply Chain Management

SDR - Software Defined Radio

SMART - Intelligent Integration of Supply Chain Processes and Consumer Services
based on Unique Product Identification in a Networked Business Environment

SMI - Structure of Management Information

SNMP - Simple Network Management Protocol

SSCC - Serial Shipping Container Code

T

TCP - Transfer Control Protocol

73|Page

UCC - Uniform Code Council
UDP - User Datagram Protocol
UHF - Ultra High Frequency
UNF - University of North Florida
UPC - Universal Product Code

W

X

XML - eXtensible Markup Language

74|Page

1.

Bibliography

1. EPCglobal Inc. Specification for RFID Air Interface. 2005. version 1.0.9.
2. —. Tag Data Standards. version 1.3.

3. —. EPC Tag Data Translation Standard.

4. —. Reader Protocol Standard. version 1..1.

5. —. Reader Management Standard. version 1.0.

6. IETF Network Working Group. Structure of Management Information Version 2
(SMIv2). s.1. : IETF, 1999. RFC 2578.

7. EPCglobal Inc. Application Level Events Standard. version 1.0.

8. IETF Network Working Group. IAB Technical Comment on the Unique DNS Root.
s.1. : IETF, 2000. RFC 2826.

9. EPCglobal Inc. Object Naming Service (ONS) Standard. version 1.0.

10. —. Certificate Profile Standard.

11. IETF Network Working Group. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List Profile. s.1. : IETF, 2002. RFC 3280.

12. —. Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List Profile. s.]. : IETF, 2002. RFC 3279.

13. EPCglobal Inc. Architectural Framework Document.

14. Issues in Supply Chain Management. Lambert, Douglas and Cooper, Martha.
2000, Industrial Marketing Management, pp. 65-83.

15. WebSphere RFID Premises Server. /BM. [Online] http://www-
306.ibm.com/software/pervasive/ws_rfid_premises_server/.

16. WebSphere Remote Server. IBM. [Online] http://www-
306.ibm.com/software/webservers/remoteserver/.

17. mySAP SCM. SAP. [Online] Httli://wwwl 1.sap.com/solutions/business-
suite/scm/index.epx.

18. Sun Java System RFID Software. SUN. [Online]
http://www.sun.com/software/products/rfid/index.xml.

19. Oracle. RFID and Sensor-Based Services. [Online]

http://www .oracle.com/technologies/rfid/index.html.

20. GCI and IBM. A Shared Vision for Transforming Business Processes.

21. Supply Chain Management: an analytical framework for critical literature review.
Croom, Simon, Romano, Pietro and Giannakis, Mihalis. 2000, European Journal of
Purchasing & Supply Management, pp. 67-83.

22. Supply Chain Management: the idustrial organization perspective. Ellram, L. 1,
1991, International Journal of Physical Distribution and Materials Management, Vol.

21, pp. 13-22.
23. Using inventory for competitive advantage through supply chain management.

i

75|Page

Jones, T. and Riley, D. 5, 1985, International Journal of Physical Distribution and
Materials Management, Vol. 15, pp. 16-26.

24. Introduction to the special issue on global supply chain management. Lee, H. and
Ng, S. 3, 1997, Production and Operations Management, Vol. 6, pp. 191-192.

25. Supply Chain Management: supplier performance and firm performance. Tan, K.,
Kannan, V. and Handfield, R. 1998, International Journal of Purchasing and Material
Management 34 (3), pp. 2-9.

76 |Page

ITI. Source Code

AlienController.java

package org.accada.reader.hal.impl.alien:

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import

com.
com.
com.
com.
com.
com.
com.
java

java

java.

java

java

java.

org.
org.
org.
org.
org.
orxg.

org.

alien
alien.
alien.

alien

.enterpriseRFID.notify.Message;

enterpriseRFID.notify.MessagelListener;

enterpriseRFID.notify.MessageListenerService;

.enterpriseRFID.reader.AlienClass0lReader;

alien.enterpriseRFID.reader.AlienClasslReader;

alien.enterpriseRFID.reader.AlienReaderException;

alien.enterpriseRFID. tags.Tag;

.net.InetAddress;

.net .UnknownHostException;

.util.

accada.
accada.

accada.

accada

accada.
apache.

apache.

util.HashMap;
.util.HashSet;

Map;

util .Vector;

reader
reader
reader
.reader

reader

.hal
.hal
.hal.
.hal.
.hal.

.HardwarelAbstraction;

.ControllerProperties;

DiagnosticInfo;
HardwareException;

Observation;

commons.logging.Log;

commons . logging.LogFactory;

import static org.accada.reader.hal .HardwareException. *;

/**

*

* @author Nektarios Leontiadis, Athens University of Economics and Business
*/

public class AlienController implements HardwareAbstraction, MessagelListener(

private static Log log;
private static MessageListenerService listener;

private static AlienClasslReader reader;

private static final String LOCK_CODE = String.valueOf (0xAB);
private static final int EVALUATION_INTERVAL = 1000; //lsec

private ControllerProperties props;
private String readerld;

private String [] activeAntennas;
private int numOfServices;

private String[] servicelist;
private boolean continuousIsRunning;
private int interval;

private String prefix;

private String mode;

private String diagnostic;

private String([] sourcelds;

78| Puage

static{

log = LogFactory.getLog(AlienController.class);
listener = new MessageListenerService(4000);

reader = new AlienClasslReader () :;

/** Creates a new instance of AlienContoller */
public AlienController (String readerId) {
super () ;
this.readerId = readerld;
continuousIsRunning = false;
sourcelds = null;

initialize();

private void initialize(){
String address,username,password, port;
String errMessage;

String interval;

props = new ControllerProperties(readerId);

if (reader!=null && reader.isOpen{())
reader.close();

try {
address = props.getParameter ("ipAddress");
username = props.getParameter ("username");

password = props.getParameter ("password");

79|Page

port = props.getParameter (“"port");
interval = props.getParameter ("interval");
this.interval = (interval null) ?EVALUATION_INTERVAL:Integer.parselnt (interval);
activeAntennas = props.getParameter ("activeAntennas").split(",");
numOfServices = Integer.parselnt(this.props.getParameter ("numberOfServices"));
servicelList = new String[numOfServices];
for (int i=0; i<numOfServices; i++) {
serviceList[i]= this.props.getParameter("service_"+(i+l));
}
} catch (Exception ex) ({
errMessage = "Couldn't initialize the reader:" + ex.getMessage();
ex.printStackTrace() ;
log.fatal (errMessage) ;

return;

// throw new HardwareException{errMessage, SERVICECODE_INITIALIZE, COMPLETIONCODE_NOERROR,
EXECUTIONCODE_NOERROR, readerid);

}
try {

reader.setUsername (username) ;

reader.setPassword (password) ;

reader.setConnection(address+":"+port) ;

reader.open() ;

reader.setMask(AlienClasslReader.ALL_MASK) ;
} catch (Exception ex) {

ex.printStackTrace() ;

errMessage = "Could not connect to the reader: "+ex.getMessage();

80| Pagc

log.fatal (errMessage) ;

public Observation([] identify(String prefix, int estimateNoTags, String mode,

throws HardwareException {

return identify(null, prefix, estimateNoTags, mode, diagnostic);

/**

*

will

This is used for synchronous and asynchronous identifies.

* Dbe filled with the tags that have been asynchronously read

*/

public Observation[] identify(Message taglist, String prefix, int estimateNoTags,

diagnostic) throws HardwareException {

DiagnosticInfo info;

HashMap <Integer, Vector> elements = new HashMap <Integer,

Observation [] observations;
Observation observation;
Vector temp;

Tag [] tags;

Tag tag;

Long time;

synchronized (reader) {
if(reader.isOpen()) {

observations = new Observation

[activeAntennas.length];

In the latter,

Vector>();

String diagnostic)

the taglist parameter

String mode, String

81||);1~:-

try |
if(taglist == null) {
if (prefix '= null)
reader.setTagMask (prefix) ;
time = System.currentTimeMillis();
tags = reader.getTagList();

} else(

tags taglist.getTagList () ;
time = taglist.getDate().getTime();
}
//Mute tags if requested
if (mode!=null && mode.equals ("MUTE"))

reader.sleepTag((prefix!=null)?prefix:"");

if(tags !'= null){
for (int i = 0; 1 < tags.length; i++) {
tag = tags(il];

if (elements.containsKey(tag.getAntenna())) {

elements.get (tag.getAntenna()) .add(tag.getTagID());

telse(
temp = new Vector();
temp.add(tag.getTagID()) ;
elements.put (tag.getAntenna (), temp);

82|Puge

for (int i 0; i1 < activeAntennas.length; i++) (

temp = elements.get(Integer.parselnt (activeAntennas([i]));

observation = new Observation(diagnostic);
observation.setReaderId(readerId) ;
observation.setSourceld(activeAntennas[i]);
observation.setTimestamp (time) ;

if(temp != null)

observation.setTaglds (temp) ;

observations[i] = observation;
}
return observations;
} catch (Exception ex) {
ex.printStackTrace() ;
log.error (ex.getMessage()) ;
throw new HardwareException (ex.getMessage());
}finally{
try {
reader.setMask (AlienClasslReader.ALL_MASK) ;
} catch (AlienReaderException e) {

e.printStackTrace() ;

}

} else

throw new HardwareException("Not connected", SERVICECODE_IDENTIFY,
EXECUTIONCODE_COMMUNICATIONERROR, COMPLETIONCODE_NOERROR, readerId);

83|Puge

}//synchronized

public void continuousIdentify(String prefix, int estimateNoTags, String mode, String diagnostic)
throws HardwareException {

if(!listener.isRunning()) {
listener. setMessageListener (this);
listener.startService();
}
try {
if (prefix!=null)
reader.setTagMask (prefix) ;
// Set up Notification.
// Use this host's IPAddress, and the port number that the service is listening on.

reader.setNotifyAddress (InetAddress.getLocalHost () .getHostAddress (),
listener.getListenerPort());

reader.setNotifyFormat (AlienClasslReader .XML_FORMAT); // Listener only supports XML messages
reader.setNotifyTrigger ("TrueFalse"); // Notify whether there's a tag or not
reader .setNotifyMode (AlienClasslReader .ON) ;

// Set up AutoMode
reader .autoModeReset () ;
reader .setAutoStopTimer (interval) ;

reader.setAutoMode (AlienClasslReader .ON) ;
this.prefix = prefix;

this.mode = mode;

this.diagnostic = diagnostic;

84|Pugc

continuousIsRunning = true;

} catch (UnknownHostException ex) {
ex.printStackTrace() ;

} catch (AlienReaderException ex) {

ex.printStackTrace () ;

public Observation[] multiplexIdentify(String[] sourcelds, String prefix, int estimateNoTags, String
mode, String diagnostic) throws HardwareException {

return multiplexIdentify(null, sourcelds, prefix, estimateNoTags, mode, diagnostic);

public Observation[] multiplexIdentify (Message 'taglist, String[] sourcelds, String prefix, int
estimateNoTags, String mode, String diagnostic) throws HardwareException {

DiagnosticInfo info;

Observation [] observations;
Observation observation;

HashMap <Integer,Vector> observed;
Vector taglds;

Tag [] tags;

Tag tag;

Long time;

HashSet <Integer> sources;

synchronized (reader) {

if (reader.isOpen()) {

85|Puage

observed = new HashMap <Integer,Vector>();

sources new HashSet<Integer> () ;

for (int i1 = 0; 1 < sourcelds.length; i++) {
sources.add(Integer.parselnt (sourcelds([i]));

}

try {
observations = new Observation [sourceIds.lengthl];
if(taglist == null){

if (prefix != null)

reader.setTagMask (prefix) ;

time = System.currentTimeMillis{();
tags = reader.getTagList();
} else(
tags = taglist.getTagList();
time = taglist.getDate() .getTime();

if (mode!=null && mode.equals ("MUTE"))

reader.sleepTag((prefix!i=null) ?prefix:"");

if(tags !'= null){
for (int 1 = 0; i < tags.length; i++) {
tag = tags([i];

if (sources.contains(tag.getAntenna())) {

if

(observed.containsKey(tag.getAntenna())) {
observed.get (tag.getAntenna()) .add(tag.getTagID()) ;

86|Page

} else{
tagIds = new Vector();
tagIds.add(tag.getTagID{()) ;
observed.put (tag.getAntenna (), taglds);

for (int i = 0; i < sourcelds.length; i++) {
tagIds = observed.get(Integer.parselnt (sourcelds([i]));
observation = new Observation{diagnostic);
observation.setReaderId (readerId) ;
observation.setSourceId(sourceIds[i]);
observation.setTimestamp (time) ;
if(tagIds !'= null)
observation.setTaglds (observed.get (Integer.parselnt (sourcelds[i]))});

observations([i] = observation;

return observations;
} catch (Exception ex) {
ex.printStackTrace () ;
log.error (ex.getMessage());
throw new HardwareException(ex.getMessage());

}finally{

87|Page

try {
reader .setMask (AlienClasslReader .ALL_MASK) ;
} catch (AlienReaderException e) ({

e.printStackTrace () ;

}
} else

throw new HardwareException("Not connected", SERVICECODE_IDENTIFY,
EXECUTIONCODE_COMMUNICATIONERROR, COMPLETIONCODE_NOERROR, readerId);

}//synchronized

public void multiplexContinuousIdentify(String[] sourcelds, String prefix, int estimateNoTags, String
mode, String diagnostic) throws HardwareException {

continuousIdentify(prefix, estimateNoTags,mode, diagnostic);

this.sourcelds = sourcelds;

public void stopContinuousIdentify() throws HardwareException {
try {
reader .autoModeReset () ;
listener.stopService();
sourceIlds = null;
} catch (AlienReaderException ex) {
ex.printStackTrace() ;

throw new HardwareException("Could not stop continuous identify");

}

continuousIsRunning = false;

88|Page

public boolean isContinuousIdentifying() throws HardwareException {

return continuousIsRunning;

public void messageReceived(Message message) {

System.err.println(message.getXML()) ;

try {
if (sourcelds == null)
identify(message, prefix, -1, mode, diagnostic);
else

multiplexIdentify(message, sourcelds, prefix, -1, mode, diagnostic);
} catch (HardwareException ex) {

ex.printStackTrace () ;

public String[] getSourcelds() throws HardwareException ({

return activeAntennas;

public void setParametér (String param, String value) throws HardwareException {
try {
String [} paramNames = props.getParameterNames() ;
for (int i = 0; 1 < paramNames.length; i++) ({

if (paramNames [i]) .equalsIgnoreCase{param)) {

89|Page

props.setParameter (param, value);
initialize();

break;

}

} catch (Exception ex) {
ex.printStackTrace () ;
log.debug (ex.getMessage (), ex) ;
log.error (ex.getMessage()) ;

throw new HardwareException(ex.getMessage());

public String{] getParameterNames () throws HardwareException {
try {
return props.getParameterNames () ;
} catch (Exception ex) (
ex.printStackTrace() ;
log.debug (ex.getMessage (), ex) ;
log.error (ex.getMessage());

throw new HardwareException(ex.getMessage());

public String getParameter (String param) throws HardwareException ({
try {

return props.getParameter (param) ;

9|Puge

} catch (Exception ex) {
ex.printStackTrace() ;
log.debug(ex.getMessage (), ex) ;
log.error (ex.getMessage());

throw new HardwareException(ex.getMessage());

public String[] getServices() throws HardwareException {

return servicelList;

public String(] getIdentifyModi () throws HardwareException ({

return new String [l {"ContinuousIdentify"}:;

public String[] getDevicelInfo() throws HardwareException ({

try {
if (reader.isOpen()) {
return new String{] {reader.getReaderName (), reader.getReaderType(),
reader .getReaderVersion()};
}
} catch (AlienReaderException ex) {
ex.printStackTrace () ;
log.debug (ex.getMessage (), ex) ;
log.error (ex.getMessage());
throw new HardwareException(ex.getMessage());

91|Pugc

return null;

public void programTagId(String idold, String idNew) throws HardwareException {
synchronized (reader) {
try |
if (reader.isOpen()) {
reader .setTagMask(id0o1d) ;
programTagld (idNew) ;
}
} catch (Exception ex) {
try {
reader.setMask(AlienClasslReader .ALL_MASK) ;
} catch (AlienReaderException e) {
e.printStackTrace() ;
}
ex.printStackTrace() ;
log.error (ex) ;
throw new HardwareException{ex.getMessage());
}
}//synchronized

public void programTagId(String idNew) throws HardwareException {
String currFunction;

try {
synchronized (reader) {

92|Puge

if (reader.isOpen()) {
currFunction reader .getReaderFunction() ;

reader .setReaderFunction(AlienClasslReader . FUNCTION_PROGRAMMER) ;
reader .programTag (idNew) ;

reader.setReaderFunction (currFunction) ;

}

} catch (Exception ex) {
ex.printStackTrace() ;
log.error (ex) ;

throw new HardwareException{ex.getMessage());

public void reset() throws HardwareException {
try {
initialize();
synchronized (reader) {
reader .wakeTag("");
}
} catch (Exception ex) {
ex.printStackTrace() ;
log.error (ex) ;

throw new HardwareException(ex.getMessage());

93 [Pugc

public void kill(String id) throws HardwareException {
synchronized (reader) {
try {
if (reader.isOpen()) {
reader.setTagMask (id) ;
reader.lockTag (LOCK_CODE) ;
reader .killTag (id+LOCK_CODE) ;
}
} catch (Exception ex) {
try {
reader.setMask (AlienClasslReader .ALL_MASK) ;
} catch (AlienReaderException e) {
e.printStackTrace();
}
ex.printStackTrace() ;
log.error({ex) ;

throw new HardwareException(ex.getMessage());

public void conceal (String id) throws HardwareException {
synchronized (reader) {
try {
if (reader.isOpen{)) {
reader.setTagMask(id) ;

reader .sleepTag (id) ;

) 94 |Page

}
} catch (Exception ex) [

try {
reader.setMask (AlienClasslReader.ALL_MASK) ;

} catch (AlienReaderException e) {
e.printStackTrace() ;

}

ex.printStackTrace () ;

log.erxor (ex) ;

throw new HardwareException(ex.getMessage());

/************** NOT IMPLEMENTED ***************/

‘public int getBlockSize() throws HardwareException {

throw new HardwareException("Not supported: getBlockSize", 0, EXECUTIONCODE_SERVICE_NOTSUPPORTED,
COMPLETIONCODE_NOERROR, readerId);

}
ipublic byte[] readBytes(String id, int from, int length) throws HardwareException {

throw new HardwareException("Not supported: readBytes", SERVICECODE_READ,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, COMPLETIONCODE_NOERROR, readerId);

}

public byte[] multiplexReadBytes (String[] sourceIds, String id, int from, int length) throws
HardwareException {

95|Page

throw new HardwareException("Not supported: multiplexReadBytes", SERVICECODE_READ,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, COMPLETIONCODE_NOERROR, readerId);

)

public void writeBytes(String id, int from, byte([] data) throws HardwareException {

throw new HardwareException("Not supported: writeBytes", SERVICECODE_WRITE,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, COMPLETIONCODE_NOERROR, readerId);

}

public void multiplexWriteBytes(String[] sourcelds, String id, int from, byte[] data)

throws
HardwareException {

throw new HardwareException("Not supported: multiplexWriteBytes", SERVICECODE_WRITE,

EXECUTIONCODE_SERVICE_NOTSUPPORTED, COMPLETIONCODE_NOERROR, readerId);
}

9 |Puge

IntermeclFS5Controller java

package org.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

/**

*

* @author Nektarios Leontiadis, Athens University of Economics and Business

*/

public class IntermecIF5Controller implements HardwareAbstraction{

java.
java.
java.
java.
java.

java
java
java
org.
org.
org.
org.
org.
stat
org.

private
private
private

private
private
private
private
aprivate
private

accada.reader.hal.impl.intermec;

io.BufferedReader;
io.DataOutputStream;

i0.I0Exception;

io.InputStreamReader;

net.Socket;

.net .UnknownHostException;
.util.ArrayList;

.util.Vector;
accada.reader.hal.ControllerProperties;
accada.reader .hal .HardwareAbstraction;
accada.reader .hal .HardwareException;
accada.reader.hal.Observation;
apache.commons.logging.Log;

ic org.accada.reader.hal .HardwareException.*;
apache.commons.logging.LogFactory;

static Log log;

static final String LOCK_CODE = String.valueOf (0xBB);
static Socket socket;

ControllerProperties props;

BufferedReader in;

DataOutputStream out;

String readerId;

String activeAntennas[], activeAntennasString;
String currMask;

97 |Puge

private
private
private
private
private
private

static{
log
}

int numOfServices;
String address;

int port;

String[] servicelist;
String readerlInfol];
String eol;

= LogFactory.getLog(IntermecIF5Controller.class);

/** Creates a new instance of IntermecIF5Controller */
public IntermecIFS5Controller(String readerId) {
super () ;
this.readerid = readerId;
initialize();

}

private

void initialize() {

String errMessage, line;

props = new ControllerProperties{readerId);

try

{
address = props.getParameter ("ipAddress");
port = Integer.parselnt (props.getParameter ("port"));
activeAntennasString = props.getParameter ("activeAntennalds");
activeAntennas = activeAntennasString.split(","):
eol = props.getParameter ("endOfLineChars") ;
if (eol==null)
eol="\r\n";
numOfServices = Integer.parselnt(this.props.getParameter ("numberOfServices"));
servicelist = new String(numOfServices];
for (int i=0; i<numOfServices; i++) {

servicelList[i]= this.props.getParameter ("service_"+(i+1l));
}

98| Page

connect () ;

if (readerInfo == null){
readerInfo = new String [} {"Intermec IF5 RFID reader"};

}
} catch (Exception ex) {
errMessage = "Couldn't initialize the reader:" + ex.getMessage();
ex.printStackTrace() ;
log.fatal (erxrMessage) ;

}

private final void connect() throws UnknownHostException, IOException, HardwareException({
if(in==null || out==null || socket==null || !socket.isConnected()) {
String charsRead;
socket = new Socket{address,port);
in= new BufferedReader (new InputStreamReader (socket.getInputStream()));
out=new DataOutputStream(socket.getOutputStream());
for (int i1=0; i<8; i++)
System.err.println(in.readLine());

}

private final void disconnect () {
try {
if (socket!=null && socket.isConnected())
socket.close() ;
} catch (IOException ex) {
ex.printStackTrace() ;
}
}

private ArrayList <String> read(String prefix, String antennas) throws HardwareException({
ArrayList <String> tags=new ArrayList <String>{();

try {
String charsRead;

99 |Page

int tagsRead=0;

connect () ;
synchronized(out) {
if (antennas!=null) {
antennas = antennas.trim().replace(’ ',","');
out .writeBytes ("ATTRIBUTE ANTS="+antennas+eol) ;
} else{
out .writeBytes ("ATTRIBUTE ANTS="+activeAntennasString+eol);
}

do {
charsRead=in.readLine() ;
if (charsRead.equals ("OK>"))
break;
}while(true);

out.writeBytes ("READ ANT") ;

if (prefix!=null && !prefix.trim().equals("")){
out .writeBytes (" WHERE EPCID="+prefix);

}

out.writeBytes(eol);

do {
charsRead=in.readLine() ;
if(charsRead.startsWith("EVT:") || charsRead.trim().equals("")
| |charsRead.equals ("ERR") || charsRead.contains ("NOTAG"))

continue;

if (charsRead.equals{("OK>"))
break;

tags.add(charsRead) ;
}while(true) ;
}//synchronized
return tags;
} catch(Exception ex) {

100|P;lgc

ex.printStackTrace() ;
log.error(ex);

throw new HardwareException(ex.getMessage());

}

public Observation{] identify(String prefix, int estimateNoTags,
HardwareException ({

ArrayList <String> tags;

String mode, String diagnostic) throws

Observation [] observation = new Observation[activeAntennas.length];

Vector [] taglds = new Vector[activeAntennas.length];
String [] line;

for (int 1 = 0; i < activeAntennas.length; i++) (
taglds[i] = new Vector();
}

tags = read(prefix, null);
for (String reading : tags){
line = reading.split(",");
//1line[0]: antenna id
//line(l]: epcid
taglds[Integer.parselnt(line[l])-1].add(line(0]});

for (int i = 0; 1 < activeAntennas.length; i++) {
observation[i] = new Observation(diagnostic);
observation[i] .setReaderId(readerId) ;
observation([i] .setSourceld(activeAntennas(i]);
observation[i] .setTimestamp (System.currentTimeMillis());
observation[i] .setTagIlds (tagIds{i]);

}

return observation;

}

public Observation[] multiplexIdentify(String[] sourceIds, String prefix, int estimateNoTags,

mode, String diagnostic) throws HardwareException {

String

101|])::‘L

ArraylList <String> tags;

Observation (] observation = new Observation|[activeAntennas.length];
Vector [] taglds = new Vector[activeAntennas.lengthl;

String (] line;

StringBuilder antennas = new StringBuilder();

final char SPACE = ' ';

7

for (int i = 0; i < activeAntennas.length; i++) {
tagIds(i] = new Vector();

}

for (int i = 0; i < sourcelds.length; i++) {
antennas .append (sourcelds(i]) ;

//in read() the spaces are going to be replaced with commas except from the last one which is
ommited

antennas .append (SPACE) ;
}

tags = read(prefix, antennas.toString());

for(String reading : tags){
line = reading.split(",");
//line[l]): antenna id
//1ine[0]): epcid
tagIds[Integer.parselnt(line[l])-1]).add(1line(0]);
}

for (int i = 0; 1 < sourceIds.length; i++) {
observation{i] = new Observation{diagnostic);
observation[i] .setReaderlId(readerId);
observation[i) .setSourceld(sourcelIds[i]);
«observation[i].setTimestamp (System.currentTimeMillis());
if(tagIds !'= null && tagIds.length!=0)
c observation[i] .setTagIds(taglds[Integer.parselnt (sourcelds(i])-11);
}

return observation;

102|Page

}

public byte[] readBytes(String id, int from, int length) throws HardwareException {
return multiplexReadBytes(null, id, from, length);
}

public byte[] multiplexReadBytes (String[] sourcelds, String id, int from, int length) throws
HardwareException
String read=new String(), temp;
String antennas;

if (sourcelds!=null) {
antennas = sourcelds[0];
for {(int 1 = 1; i < sourceIds.length; i++) {
antennas += ", "+sourcelIds(i];
}
} else{
antennas = activeAntennasString;

}

try {
connect () ;
synchronized (out) {
out.writeBytes ("ATTRIBUTE ANTS="+antennas+eol) ;
in.readLine () ;
out JwriteBytes ("READ STRING("+from+", "+length+") WHERE EPCID="+id+eol);

System.err.println ("ATTRIBUTE ANTS="+antennas+eol);
System.err.println("READ STRING("+from+", "+length+") WHERE EPCID="+id+eol) ;

temp = in.readLine();
if (temp.equals ("OK>"))
break;
try{
read=new String(temp.split(", ") (1) .replace("\"", ""));
}catch (Exception e) {

103 [Pagi

//If we have not read from a tag and we

will be thrown

}

public void writeBytes(String id, int from, byte([] data)

}

//and we'll get here
read = temp:;
}
lwhile(true);
return read.getBytes();

} catch (Exception ex) (
ex.printStackTrace() ;
log.error (ex) ;

throw new HardwareException(ex.getMessage());

multiplexWriteBytes (null, id, from, data);

public: void multiplexWriteBytes(String[] sourcelds,
HardwareException

String read;
String antennas;
StringBuilder command;

//Build the write command
command = new StringBuilder ("WRITE ") ;
//The format is WRITE STRING (addr, length)=data,
//StringBuilder is very fast in concatenations
for (int i = 0; i < data.length; i++) {
command . append ("STRING (") ;
command . append (from+i) ;
command.append(",1l)=");
command.append (data[i]) ;
//if this is the last byte don't add a comma
if(i+l1 == data.length)
break;
command.append (", ");

String id,

int from,

throws HardwareException ({

byte[] data)

throws

have an error or something else an exception

104|Pagc

}
command.append (" WHERE EPCID=");
command.append (id) ;

if (sourcelds!=null) {
antennas = sourcelds(0];
for (int i = 1; i < sourcelds.length; i++) {
antennas += ", "+sourcelds[i];
}
} else({
antennas = activeAntennasString;

}

try {

connect () ;

synchronized(out) {
out.writeBytes ("ATTRIBUTE ANTS="+antennas+eol);
in.readLine () ;
out.writeBytes (command+eol) ;
read = in.readLine();
System.err.println(command) ;
System.err.println(read) ;

}

} catch (Exception ex) {
ex.printStackTrace() ;
log.errox (ex);
throw new HardwareException (ex.getMessage());
}
if (read.contains ("WRERR"))
throw new HardwareException("Write incomplete", SERVICECODE_WRITE,
COMPLETIONCODE_EXECUTIONERROR, EXECUTIONCODE_INVALIDPARAMETER, readerId);

}
public String(] getSourcelds() throws HardwareException {

return activeAntennas;

}

ORN .

try {

String [] paramNames
for (int i 0;

public void setParameter(String param, String value) throws HardwareException {

props.getParameterNames () ;
i < paramNames.length; i++) {
if (paramNames [i] .equalsIgnoreCase (param)) {
props.setParameter (param, value);
disconnect () ;
initialize();
break;
}
}
} catch (Exception ex) ({
ex.printStackTrace() ;
log.error (ex);

throw new HardwareException(ex.getMessage());

}

public String[] getParameterNames ()
try {
return props.getParameterNames () ;
} catch (Exception ex) {
ex.printStackTrace() ;
log.debug (ex.getMessage (), ex) ;
log.error (ex.getMessage ()) ;
throw new HardwareException(ex.getMessage());

throws HardwareException {

}

public¢ String getParameter (String param)
try {
return props.getParameter (param) ;
} catch (Exception ex) {
ex.printStackTrace () ;
log.errox(ex);

throw new HardwareException{ex.getMessage()):

throws HardwareException {

106|Page

}

public String[] getServices() throws HardwareException {
return servicelist;

}

public String(] getDeviceInfo() throws HardwareException {
return readerInfo;

}

public int getBlockSize() throws HardwareException {
return 2;

}

public void programTagId(String idold, String idNew) throws HardwareException {
String read;

try {
connect () ;
synchronized (out) {
out.writeBytes ("ATTRIBUTE ANTS="+activeAntennasString+eol);
in.readLine() ;
out.writeBytes ("WRITE EPCID="+idNew+" WHERE EPCID="+idOld+eol) ;
read = in.readLine();
System.err.println{read) ;
}
do {
read = in.readLine();
System.err.println(read);
if (read.equals ("OK>") || read.contains("ERR"))
break;
}while(true) ;
if (read.contains ("WRERR"))
throw new HardwareException("Write programTagId", SERVICECODE_WRITE,
COMPLETIONCODE_EXECUTIONERROR, EXECUTIONCODE_INVALIDPARAMETER, readerId);

} catch (Exception ex) {
ex.printStackTrace() ;

107 |Page

log.error (ex);
if (ex instanceof HardwareException)
throw (HardwareException)ex;
throw new HardwareException(ex.getMessage());

}

public void programTagId(String idNew) throws HardwareException {
programTagId("000", idNew) ;
}

public void reset() throws HardwareException {
disconnect () ;
initialize();

/**
* NEEDS REFINEMENT
*/
public String[] getIdentifyModi () throws HardwareException {

return new String [] {"NON_MUTE"};
}

JXEEEER**xx k%% NOT IMPLEMENTED * %% %k k sk ks kxnx/

/**

* This command should work according to the reader’s manual. During the tests it was apparent
* that it didn’t work and so it was deactivated. The code that should work is commented out.
x/

public void kill(String id) throws HardwareException {

throw new HardwareException("Not supported”, 0, COMPLETIONCODE_NCERROR,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, readerId);

// try {

/7 //first lock (protect) then kill
/7 connect () ;

// synchronized (out) {

108 [Page

/7 out.writeBytes ("PROTECT ON PERMANENT WHERE EPCID="+id+" PASSWORD="+LOCK_CODE+eol) ;

// System.err.println("PROTECT ON PERMANENT WHERE EPCID="+id+" PASSWORD="+LOCK_CODE+eol) ;
// if(!in.readLine() .startsWith{"OK")) {

/7 System.err.println();

//

throw new HardwareException("Kill error",SERVICECODE_WRITE,

COMPLETIONCODE_EXECUTIONERROR, EXECUTIONCODE_TAGCOMMUNICATIONERROR, readerId):
/7 }

// out .writeBytes ("KILLTAG WHERE EPCID="+id+eo0l) ;//+" PASSWORD="+LOCK_CODE+eol) ;
// }

// if(lin.readLine() .startswWith("0OK"))

!/

throw new HardwareException("Kill error",SERVICECODE_WRITE,
COMPLETIONCODE_EXECUTIONERROR, EXECUTIONCODE_TAGCOMMUNICATIONERROR, readerId);

// } catch (Exception ex) {

// log.error (ex) ;

// if (ex instanceof HardwareException)

// throw (HardwareException)ex;

// else(

// ex.printStackTrace() ;

// throw new HardwareException(ex.getMessage());
// }

// }

}

public void continuousIdentify(String prefix, int estimateNoTags,
throws HardwareException (

throw new HardwareException("Not supported", 0, COMPLETIONCODE_NOERROR,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, readerId);

}

String mode, String diagnostic)

public void multiplexContinuousIdentify(String[] sourcelds,
mode, String diagnostic) throws HardwareException {
throw new HardwareException("Not supported”, 0, COMPLETIONCODE_NOERROR,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, readerId);
}

String prefix, int estimateNoTags, String

public void stopContinuousIdentify() throws HardwareException ({

throw new HardwareException("Not supported", 0, COMPLETIONCODE_NOERROR,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, readerId);

109|Puge

)

public boolean isContinuousIdentifying() throws HardwareException {
throw new HardwareException("Not supported", 0, COMPLETIONCODE_NOERROR,
EXECUTIONCODE _SERVICE_NOTSUPPORTED, readerId);
}

public void conceal (String id) throws HardwareException {
throw new HardwareException("Not supported", 0, COMPLETIONCODE_NOERROR,
EXECUTIONCODE_SERVICE_NOTSUPPORTED, readerId);
}
1

110|Page

