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ABSTRACT

The lognormal, inverse gaussian, and gamma probability distribution
models are fitted to data of durations of dry and wet epochs obtained
from real time series of spatially averaged rain rate. Each model’s
parameters are estimated by the statistical methods of moments and
maximum likelihood, based on TOGA-COARE measurements of
tropical rainfall. The hypotheses of independence and identical
distribution (i.1.d.) among durations of dry or wet epochs are tested. The
effects of variation of the spatial scale on the values of moments of dry
and wet epoch durations are also investigated, pointing to self-similarity
of the underlying probability distributions, or at least simple scaling of

their moments.
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IHEPIAHYH

Ot xatavopég mBavotnTag AoyapiBuikn] KOVOVIKY, avTioTpoomn
Gauss, kot yappa, eAEYYOVIAL G TPOG TNV TPOCUPUOYT TOVE OTIG
d1épxeLleg ENPAOV KAl LYPHOV TEPLOS®Y Ol OTOIEG TPOKVMTOLY OO
TPAYUUTIKES XPOVOCEIPES YWPIKOV HECWV evidoeng Bpoyxng. Ot
napaueTpol kabevdg amd ta tpia LILOSEiYUATA EXTIHAVTAL UE TIG
oTATIOTIKES HEBOOOVS TV POV Kol HEYIOTNG TBAVOQAVELAC, UE
Bédon peTpnoeic Tpomik@v Bpoyontdocewv and to meipapa TOGA-
COARE. Ermiong, yivetar éleyyoc tov vrobBécewv aveaptnoiog
KOl TAVTOTIKNG KOTAVOUNG HETAED TV OLOPKEIDV ENPAV 1 LYPOV
neprodwv. TErog, peretdtar m emidpacn g HETABOANG T1G
YOPIKNG KAMOKAG OTIC TIUEC TV POTOV ENPOV KAl LYPOV
TePLOdWV, AVAdEIKVOOVTAG TNV OQUTO-OUHOLOTNTO TTE AVIICTOLYMG
VTOKEIHEVNC KATAVOUNS miBavotnTtag, T TOLAGYLOTOV  ATAN

KALAK®OOM TOV AVILICTOLY®V POTOV.



TABLE OF CONTENTS

1 INTRODUCTION.....coeveverremeeecssscsssssssssersesasessssses 1
2 LITERATURE SURVEY AND OBJECTIVES........... 3
2.1 EMPIRICAL LOGNORMALITY OF CLOUD CHARACTERISTICS...ccecvvvvennene. 3

2.2 INVERSE GAUSSIANITY EMERGING FROM STOCHASTIC BUDGET OF

IMOISTIUREN. c-c- B o oocsaenee nesanunssosannnsresansonsanastesenessMMieos Mosesonsssanssanasasaacnseans 6
2.3 THE CANDIDACY OF GAMMA DISTRIBUTION .......covvenurisnissnnssnneessnsannes 10
3 DATA AND TESTING FOR RANDOMNESS..... 13
3.1 DESCRIPTION OF THE DATA.....cccoctiiriiiiniiniinntinttieicnincreeene e 13
3.2 TESTING RANDOMNESS .....ccveoveverentriereseneenesessentsseencesesesssessossssessons 15
3.2.1 DRY SPELLS ...coitiiiinieenereesrtesniaessaessseesnesssesntesssessesassssssssssnssanes 16
3.2.2 WET SPELLS ..ccutrtirtrrereeseseessneeeteeseesseestesesstascssesssssesssessssessanns 17
4 ESTIMATION AND GOODNESS OF FIT. 18
4.1 ESTIMATION OF PARAMETERS ......cttrniiiitennenninnrenseessecsiesessssnesssnsses 18
4.2 TESTS AND COMPARISON OF GOODNESS OF FIT......cccccoeunvirinricncnen. 21
4.2.1 DRY EPOCH DURATION .....cccovenuiierieiinnrennnecniiininsnisessesessssesssanes 24
4.2.2 WET EPOCH DURATION ....cceeeruereeerinnirsieeisieisienscesiessesssnesssscsssssnes 27
5 SCALING EFFECTS ...ccccocerrenantecccsssnasssssssssasssssossssssssssossssaassssasnssssoss 31
5.1 SCALING OF DRY SPELLS.....ccoeetrseerreernunenesineiinieseisnesisssessasssssssanans 35
5.2 SCALING OF WET SPELLS ....cccoctrieeiinriiennienensinniiniesiessssssessssssasssesons 41
6 CONCLUSION...cciciisrnenscansescsssssssssssssssossasssnsassassassessasessasssses 49
REFERENCES........oociinniinnicsnsaissssicsssesssasssnsssassansen ceeses 54
APPENDIX



LIN1 OF IABLES
Table 1. Numbers of dry and wet blocks of the time series which correspond to the
fIVE AIBA SIZES. wouviuieiiiiiiiieiiccttce et ae ettt bbb st se st es e aeseneaeas 14
Table 2. Results obtained after the application of the Runs test to the dry sequences.16

Table 3. Results obtained after the application of the Runs test to the wet sequences.17

Table 4. Lognormal, Inverse Gaussian and Gamma parameters of Dry phases for each

LIIT1E SIS e eeiuurrrrrreeeiiieitieeeteeeaereeeeessaasnnnseesassssseessssssansessssssnsessasssssesssssssssessessssssnnses 20

Table 5. Lognormal, Inverse Gaussian and Gamma parameters of Wet phases for each

LIITIE SEIIES . ceuuereeeerrrerearriieirteeeeesereeeeeeeesssnsesesassessonsssessnsressnesssnseessessssasnessesasnssesssss 21

Table 6. Goodness of fit of the three probability models for dry durations

COITESPONAING t0 2X2 KM? GICA........eeoeereeereeeeereeeeeesereeeeeeeseeesesesssesssesssessessseee 24

Table 7. Goodness of fit of the three probability models for dry durations

corresponding to 4x4 K2 GEER....eerreeeeeeeeseeeeessesesssssesessssssesseeseemesseesssssseesee 24

Table 8. Goodness of fit of the three probability models for dry durations

COITESPONAINg t0 6X6 KIM? ATEA............eeiveeereereeeieeeeeseereeeseereseeeseseseesseeseseesseasens 25

Table 9. Goodness of fit of the three probability models for dry durations

COTTESPONAIng t0 8X8 KMZ IEA.........vurreeeerieeeeerieeeeeeeseeeeeeeeeseseseeeseeseeseeseeessseseeeees 25

Table 10. Goodness of fit of the three probability models for dry durations

corresponding to 10X 10 KM% IEA..............cviveevreireeeeeeesseeeeeseeseeseseseeeeeeeseseaeens 26

VI



Table 11. Goodness of fit of the three probability models for wet durations

COrTESPONAING t0 2X2 KIMZ AIEA... ..o ceeeeeeeereeeeeeeeeseaseeessesessesesssesessessasssssssassassaens 27

Table 12. Goodness of fit of the three probability models for wet durations

COITESPONAing t0 4X4 KIM? AIEA. .....eevveeeeeeeeeeeeseeeeeveesseessssessssssssesssasesssssssssaesses 28

Table 13. Goodness of fit of the three probability models for wet durations

COITESPONAING t0 6X6 KM% ATEa........ce.eeeeeeeeeeeeeeeesessssesssssssesssssessnssessassessassassanes 28

Table 14. Goodness of fit of the three probability models for wet durations

cOrTespOnding t0 8x8 KM® Area............ovvueeeeuncecencessesenssesssssssssesssessassssssssssssns 29

Table 15. Goodness of fit of the three probability models for wet durations

cOITesponding t0 10X 10 KIMZ IEA............eeeeeeeereeeeeeeenecssneessssesssssssssessssnssssesossnes 29
Table 16. Lognormal and Inverse Gaussian mean and variance of dry durations. .....32
Table 17. Lognormal and Inverse Gaussian mean and variance of wet durations......32

Table 18. The logarithms of the ratios of the means of Dry epoch durations, for scale
A, under the Lognormal and Inverse Gaussian models (MLE and MME), the scale

A and its 1ogarithim. .....ccciieviieieccrteetrcte ettt 36

Table 19. Squared correlation, Slope, and Sum of Squared Residuals of regressions of

log( M,/ M,) on logA under LN and IG models for dry durations. .........c.ceueneeee.. 36

Table 20. The logarithms of the ratios of the variances of Dry epoch durations, for
scale A, under the Lognormal and Inverse Gaussian models (MLE and MME), the

scale A and its 1ogarithm. .....ccccciiiiiiiieiiirc ettt 38

VII




Table 21. Squared correlation, Slope, and Sum of Squared Residuals of regressions of

log( v,/ Vl) on logh under LN and IG models for dry durations. ........cc.cceveuucn.... 38

Table 22. Tabulation of Dry sample moments of order k=1,..., 20 and the results

(slope, R squared, and Sum of Squared Residuals) of regressions of

log{l\A/Ix(k)/Ml(k)] O LOGA . eververeeerenstee st enessaes e tesessetsssensesnsessssssssssnnsanns 40

Table 23. Tabulation of the logarithms of the ratios of the means of Wet epoch
durations, for scale A, under the Lognormal and Inverse Gaussian models (MLE

and MME), the scale A and its logarithm. ..........cccccccoeernnicrinininnincicceecnne 41

Table 24. Squared correlation, Slope, and Sum of Squared Residuals of regressions of

log(MJL / Ml)on logA under LN and IG models for wet durations. ....................... 42

Table 25. Tabulation of the logarithms of the ratios of the variances of Wet epoch
durations, for scale A, under the Lognormal and Inverse Gaussian models (MLE

and MME), the scale A and its logarithm. ..........ccccceeeeeveeninnecinininniinniieeecnnes 43

Table 26. Squared correlation, Slope, and Sum of Squared Residuals of regressions of

log( v, /V, ) on logh under LN and IG models for wet durations........................... 43

Table 27. Tabulation of Wet sample moments of order k=1,...,20 and the results

(slope, R squared, and Sum of Squared Residuals) of regressions of

log{I\A/Ix( k)/M,( k)] O I G 46

VIII



LIST OF FIGURES

Figure 1. Regressions of log(MJL /M,) on logh under LN and IG model for dry

QUIALIOMIS. 1uueereeeereaeeerteaeiereeriraataeeeessessessasesssosassessennsssssssssssesssssssanmtestesnnnsnnasssssssss 37

Figure 2. Regressions of log(Vl /V,) on logh under LN and IG model for dry

QUEATIONS. coeeeerieereneerterereniieteetuueeseeremssesseasessesersntsessssssnssesnsssssssennnssesassesssrnnssssesennans 39

Figure 3. Regressions of log(Ml /Ml) on logh under LN and IG model for wet

QUTALIONIS. .veeeeeirunereerieerrernrresssssessesssasssssssssssossessssssssssssssssessssnsnsassssssransnssssssssssasass 42

Figure 4. Regressions of log(VJL /Vl) on logh under LN and IG model for wet

QUTALIOTIS. - eeeeerererenrenerrserseesessessessasssssesssssesesesssssssssssnsennsssssnasesnasssesssssssanssssasasasssanses 44

Figure 5. Regressions of log{l\‘/Ix(k)/ Ml(k)] on log\ for order k=1, 2, 10, 20 of wet

SAMPIE MOMENLS. ..cceviiieiitiiiieininrerrteterer e res s st s s e e sassesas st ssussnssssssn st snens 47

Figure 6. Plot of the slope A(k) versus the order k=1,..., 20 of wet sample moments.48

IX



CHAPTER 1

INTRODUCTION

Rainfall is undoubtedly a physical process of extremely high variability, in
both space and time, difficult to measure, model, and predict, despite a growing
scientific interest in understanding its properties and complex structure, either in the
time domain, or in the space domain, or in both. Given a fixed geographic region S,
and an instantaneous map (or snapshot) of rain intensities (measured in mm/hr) over
S at a fixed instant of time, one may consider such a map as being a realization of a
random field. Then, one may obtain the spatial average of these intensities over any
sub-region A of S (i.e. A < S), and this average may be considered as being the value
of a single random variable. Letting the time flow, and obtaining the spatial average
of rain intensity over the same sub-region A, for each single instant of time, a
random function of time will emerge, which may be considered as being a sample
function from a stochastic process referred to as spatially averaged rain rate
process over A. Since rainfall is an intermittent phenomenon, stopping and restarting
off and on in an alternating manner, every sample function of any spatially averaged
rain rate process over any region, is bound to be a non-negative function, presumably
continuous, at least when the region over which the spatial averages are obtained is
large enough, attaining positive values when it rains somewhere in the region, and
zero value when it does not rain anywhere in the region. The disjoint time intervals
supporting the positive values are referred to as wet epochs (or wet spells), and the
also disjoint time intervals where the zero value is attained are referred to as dry

epochs (or dry spells). The subject of interest in this dissertation is the probability



distribution of the duration of wet and of dry epochs of spatially averaged rain rate
processes, and the presentation of the material is organized as follows.

Section 2 is a review of some literature on the basis of which the lognormal,
inverse Gaussian, and gamma probability distributions are selected as candidate
parametric models for the probability distribution of wet and dry epoch duration.

Section 3 is concerned with testing the hypotheses of independent and
identically distributed (i.i.d.) values for the data of dry and wet epoch durations.
These data have been obtained from the analysis of real measurements of rain rate,
collected during the 1992-93 TOGA-COARE experiment in a tropical region, and
they are described in detail. To test these hypotheses is of interest here, because their
truth is implied in the recent work of Freidlin and Pavlopoulos (1997), which is also
the work suggesting the inverse Gaussian as being an appropriate model for the
probability distribution of dry anq wet epoch durations. These tests have been made
on the basis of runs above and below the median, using the Wald-Wolfowitz
statistic.

Section 4 is concerned with the parameter estimation and the goodness of fit
of each one of the above three parametric models to data of dry and wet epoch
durations, based on the y*-test statistic.

Section 5 is a first attempt to identify any scaling properties of the probability
distributions of dry and wet epoch durations, with respect to magnification of the
spatial scale 0 < A < | of the region over which rain rate is averaged. Section 6
concludes this dissertation with a summary of the obtained results, and some

complementary comments.



CHAPTER 2

LITERATURE SURVEY AND OBJECTIVES

2.1 Empirical Lognormality of Cloud Characteristics

The occurrence of rainfall events in space and time is intimately linked with
the physical processes of formation, growth, and dissipation of clouds. Key variables
used in order to quantify measurable characteristics of a cloud, whether in motion or
stationary, are discerned into two main categories, one of the so called extensive or
geometric cloud variables, and the other of the intensive cloud variables. The class of
extensive cloud variables contains variables which quantify the size or the geometry
of the cloud, such as horizontal dimension (or diameter), vertical dimension (or
height), area of vertical projection, and volume of the cloud. On the other hand, the
class of intensive cloud variables contains variables which quantify the strength or
the potential of the cloud with respect to the amount of water content held in it. Such
variables are the lifetime (or duration) of a cloud, the volume or the mass of rainfall
produced by it, and its intensity which is defined as the ratio of the produced rainfall
volume over the lifetime of the cloud. The works of Biondini (1976), Lopez (1977),
and Houze and Cheng (1977) unanimously reveal that the empirical probability
distribution for many of the extensive and intensive variables of clouds, seem to
conform quite well to the lognormal model. This empiricism is confirmed in several
cloud populations from different geographic regions and during different seasons. In
particular, Biondini (1976) reported that during the 1968-70 EML experiment near
Miami, Florida, the logarithms of rainfall volumes, and the logarithms of lifetimes of

clouds that produced rainfall, followed a normal probability distribution, regardless



of their classification to dissipating stationary clouds and to merging clouds in
motion. Lognormality was also significantly evident in the empirical probability
distribution of the corresponding intensities of the studied cloud population.

Lopez (1977) reported significant evidence for lognormality of height,
horizontal dimension, and also of duration of clouds, based on radar echo
measurements on different cloud populations from Venezuela (1973), Puerto Rico
(1955), Arizona (1958, 1967), Massachusetts (1949), N.W. Atlantic (1976), and
elsewhere. Moreover, Houze and Cheng (1977) presented a detailed analysis of
cloud populations observed by radar echoes during the three phases of the well
known GATE experiment, conducted in the summer of 1974 in the Eastern tropical
Atlantic, off the West coast of Africa. The results reported in that study, confirmed
that in all three phases of GATE, the echo heights, the echo durations, and also the
echo areas covered by clouds fol{owed lognormal probability distributions.

In an effort to provide an explanation of this omnipresent empirical
lognormality in cloud characteristics, Biondini (1976) and Lopez (1977) have
resorted to the Law of Proportionate Effect (LPE), which is the main mathematical
scheme associated with the genesis of lognormal distributions; see Aitchison and
Brown (1963), Crow and Shimizu (1988).

From Crow and Shimizu (1988), and from Kedem and Chiu (1987b), it is
clear that the lognormal distribution may not be the best model for rain rate.
However, Kedem and Chiu (1987b), argue that the fit of lognormal to area averaged
rain rate improves as the area size increases. This very conclusion has also been
reached by Pavlopoulos and Kedem (1992), though in a different way.

Biondini’s approach is reducing the problem to the explanation of

lognormality in the extensive cloud variables only, under the somewhat ad-hoc



assumption that there is a power law relationship between extensive and intensive
cloud variables. That is, if £ denotes any one of the extensive variables, and if [ is

any one of the intensive variables, Biondini assumes that there is a relationship of the

form I =a- E® (or equivalently log/ =loga +&-log E ) between them. Under such a
relationship, of course, if £ is lognormally distributed, then / will have to be
lognormally distributed as well, however with different parameter values.
Consequently, formulating a stochastic differential equation analogue of the law of
proportionate effect, as a continuous time model driven by Brownian motion for the
growth of cloud size, Biondini argues heuristically that the probability distribution of
cloud size is indeed lognormal.

The approach taken by Lopez is somewhat different, although he also tried to
introduce the law of proportionate effect in terms of a growth process for cloud
parcels. The assumptions made by Lopez were two. According to the first
assumption, a cloud parcel grows due to the entrainment of moist air from the
surrounding environment into the cloud, so that the rate of entrainment increases
proportionally with the size of the cloud parcel. According to the second assumption,
the size of a cloud grows due to a merging process of smaller cloud elements, where
the rate of merging is again randomly proportional to the size of the merging
elements.

In light of the above comments, it becomes rather interesting to investigate
the plausibility of lognormality in the probability distribution of rainfall duration
itself, instead of cloud duration. Indeed, during the lifetime of a cloud, if any rain is
produced by it, this rain may fall during one single sub-interval, or it may fall
intermittently during several sub-intervals of the cloud’s lifetime. However, the

current interest here is not on the duration of rainfall produced by single clouds, but



on duration of spatially averaged rainfall produced by whole systems of clouds over
the region of interest.

2.2 Inverse Gaussianity Emerging from Stochastic
Budget of Moisture

In a more recent work by Freidlin and Pavlopoulos (1997, hereafter
abbreviated FP), a new stochastic model has been proposed in order to describe the
temporal variability of the amount of moisture contained in the atmospheric column
above a fixed region. A most interesting feature of the model is that it accounts for
the intermittent behavior of rainfall produced in the column, in terms of a hysteresis
effect .of the moisture content process between two fixed threshold values
0<xg<x;<co. For a coherent presentation of the FP model some notation is

introduced. Without loss of generality, suppose that the column is not precipitating at

an initial instant ¢ =¢&,. Eventually, the column will start precipitating at some
random instant 7, > &, it will stop again at a sequel random instant & > 7, > ¢, it
will restart precipitating at a later random instant 7, > £ > 7, > ¢, then it will stop
anew at a sequel random instant £,> 7, > & > 7, > ¢, and so on ad infinitum. For
each n>1, the so defined random time intervals ®, =[¢,_,,7,) are the dry epochs
of the column, the random intervals ¥, =[r,,£,) are the wet epochs of the column,

and ¢,=7,-¢&,_, and y,=¢&, —1, are the corresponding dry and wet epoch

durations. The set 7] = U(D,, is the set of all dry instants, and 7; = U‘P,, is the set of

nzl n2l

all wet instants in the history of the column. Moreover, let X ,' denote the amount of

moisture contained in the column at any given dry instant ¢ € 7;, and let X° denote



the amount of moisture contained in the column at any given wet instant ¢ €7.
Then, according to the model suggested by FP, the evolution of the column’s
moisture content in the course of time is modeled as a piece-wise glued diffusion
process formulated in terms of the stochastic differential equations

Xi=u+p W, , teT (1)

X =pu-p+B,W, , tely (2
driven by a standard Wiener process W = {W, ; ¢t 2 0}. The parameter x4 >0 denotes
the net rate of moisture converging into the column, the parameter p > x>0 denotes
the rate of precipitation produced by the column when it rains, and both parameters
are treated, ideally, as being constants. Under this setting, the stochastic processes
X'={X;teT} and X°={X’;tel;} are diffusions with constant drift
coefficients >0 and u - p <0 respectively, and also with constant diffusion
coefficients #,>0 and fF,>0. Equations (1) and (2) express a budget of the
amount of moisture X, contained in the column at any given instant ¢ 20 (dry or
wet), taking into account the trade off between incoming moist air and outgoing
moisture in the form of precipitated water. Under equation (1) the moisture content
tends to grow due to the positive drift x> 0, while under equation (2) the moisture
content tends to decay due to the negative drift 4 — p <0.

A fine point in the conception of such a model is the assumption that there
exist two critical thresholds of moisture content 0 < x, < x, <, of which the upper
threshold x, is referred to as saturation threshold, and the lower one x, is referred to
as dehydration threshold. The nomenclature associated with these two thresholds is

justifiable in the following sense. During any dry epoch ®, =[&,_,,7,) the moisture



of the column is X, = X, evolving as a diffusion with drift x>0 according to (1),
until it hits the saturation threshold x, from below. At that very instant 7, the
moisture content is X, = x,, the diffusion of equation (1) is killed, the column starts
to precipitate, and the moisture content starts to evolve according to the diffusion of
equation (2). That is, during the wet epoch ‘¥, =[r,,£,) following precisely after

the dry epoch @, , the moisture content is X, = X, until, due to the negative drift

n?

4 —p <0, the moisture content hits the dehydration threshold x, from above. At
that very instant &, , the moisture content is X, = x,, the diffusion of equation (2) is
killed, the column stops precipitating, and equation (1) takes over anew to dictate the
evolution of moisture content in the next dry epoch ®,,, =[¢,,7,,,). Thus, the
sample paths of the unconditional moisture content process X ={X, ;t2>0} are
obtained by gluing together the‘sample paths of the conditional diffusion processes
X'={X';teT} and X’ ={X,;r eT;}. The gluing operation occurs precisely at
the killing boundary x, of X! when ¢ =r,, and at the killing boundary x, of X,
when ¢t =¢£,, forevery n>1.

As pointed out by FP, the above model captures the intermittent behavior of
rainfall by means of a hysteresis effect. That is, once rainfall starts at an instant
where the moisture hits the saturation threshold x,, it will continue raining until the
moisture hits the dehydration level x,, after eventually several up-crossings and
down-crossings of x,. Similarly, once rainfall stops at an instant & where the
moisture hits the dehydration level x,, it will remain stopped until the moisture hits

the saturation threshold x,, after eventually several down-crossings and up-crossings



of x,. Another consequence of the model, pointed out by FP, is that the dry epoch
durations {¢,},,, and the wet epoch durations {y,},, are both sequences of
independent and identically distributed (i.i.d) random variables, due to the positive
recurrence of the diffusions described by the equations (1) and (2) ; see Bhattacharya
and Waymire (1990). Moreover, it is also a well known probabilistic fact - see Karlin
and Taylor (1975) - that the common probability distribution of each one of these two
sequences of i.i.d. random variables belongs to the family of inverse Gaussian
probability distributions. The probability density function of an inverse Gaussian
distribution involves only two parameters m >0 and / >0, and is given by the

formula ; see Johnson and Kotz (1970)

! I (s=m)’
i e L 0

According to FP, the probability density functions of dry and wet epoch durations,

expressed in terms of the model’s parameters are given, respectively, by

1 — X 1 2
”¢(S)=ﬁ'exp{_m'[(xl—XO)-.u'S] } s>0 (4,
”W(S)=ﬁs—3~exp{—ﬁ'[(xl—xo)—(p-u)-s]z}, s>0  (5).

Indeed, both (4) and (5) are reducible to the standard inverse Gaussian probability

density function (3) by using the corresponding reparametrization for

2
Dry Pha m, = X =% l, = X%

X, = X, X, = X, ?
Wet Phase m, = ) i el I
P—H B,



Thus, the stochastic model for budget of moisture introduced by FP, leads to
explicit inverse Gaussian probability laws governing the durations of dry and wet

epochs. Moreover, the parameters involved x, —x,, 0, &4, f,, B, are all physically

interpretable, and also estimable (see FP for more details). For these reasons it is a
rather worthy task to compare the goodness of fit of inverse Gaussian Laws against
that of lognormal laws, regarding real data of dry and wet epoch durations. This very
task shall be carried out in Section 4, while in Section 3 the i.i.d. hypotheses for dry

and wet epoch durations shall be tested.

2.3 The Candidacy of Gamma Distribution

So far, in this section, some motivation has been reasoned regarding the
candidacy of the lognormal aqd inverse Gaussian probability laws as plausible
models for the probability distribution of wet and dry epoch durations.

However, before proceeding to the quantitative comparison of these two
candidates with respect to their goodness of fit to real data, it is interesting to
contemplate on the possibility of a third candidate, namely the Gamma probability
law.

In a series of review papers on the mathematical structure of rainfall
representations, Waymire and Gupta (1981a, 1981b, 1981c) gave quite a thorough
summary of the efforts made by researchers (hydrologists, meteorologists,
mathematicians) to model the structure of rainfall in time and space.

From that review it becomes evident that the main stream of rainfall
modeling, in a time span of nearly two decades, was dominated by point process type

of models. This fact may be attributed to the very influential work of LeCam (1961)
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on the subject. Since then, other approaches have emerged more recently, based on
multiplicative random cascades (see Gupta and Waymire (1990, 1993)) or models
based on diffusion type of processes (see Pavlopoulos and Kedem (1992)).
Nevertheless, point process type of models, regarding both temporal and spatial
aspects of rainfall structure, remain to be a rather popular and valid approach.

In a most simple minded point process type of approach to modeling the
temporal structure of rainfall, the number of occurrences of rainfall events may be
modeled in terms of Poisson counting processes. Under such a model, the durations
of wet and dry epochs will follow exponential probability distributions with different
parameters; see Crovelli (1971) and Eagleson (1978). Since exponential distributions
are special cases of Weibull and of Gamma distributions, it is conceivable that the
probability distributions of dry and wet epoch durations may be more adequately
modeled by these more general families of probability distributions, namely the
Weibull or the Gamma family. In fact, Grayman and Eagleson (1971) did fit Weibull
distributions to data of dry and wet epoch durations obtained from rainfall records in
units of 10-minute increments. In the same work, Grayman and Eagleson (1971)
investigated the stochastic dependence between the duration and the total intensity
of rainfall per storm, and developed regression relations between these two variables.
Motivated by this work, Crovelli (1971) introduced a bivariate gamma density as a
model for the joint probability distribution between duration and magnitude of
rainfall.

In light of this history, it is of interest to investigate the goodness of fit of
Gamma distributions to the lengths of dry and wet spells of spatially averaged rain

intensity. This task will be executed in the fourth section, along with a comparison of

11



the fits among the three candidate distributions, Lognormal, inverse Gaussian, and
Gamma.

A similar comparison between Lognormal, Inverse Gaussian, and Gamma
distribution tails has been made by Short, Shimizu, and Kedem (1993) regarding
their fit to data of area averaged rain rate. In particular, it has been shown
conditionally on large values, that Lognormal gives very high variability, Inverse
Gaussian much less, and Gamma gives the least. This tail behavior distinguishes

between the three distributions.
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CHAPTER 3

DATA AND TESTING FOR RANDOMNESS

3.7 Description of the Data

The data which shall be used in this dissertation are a small portion of a data
set of rain rate measurements collected during a 21 day period (December 20, 1992
through January 9, 1993) known as Cruise 2 of the Intensive Observing Period (IOP)
of the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere

Response Experiment (COARE).

The measurements were obtained from two Doppler precipitation radars,
which were scanning every ten (10) minutes a large tropical region in the China Sea,
of approximate size 300 kmx400 km, located at 2° South and 156° East. The two
radars, named TOGA and MIT, were on board the ships R/V Xiangyanghong#5
(Peoples’ Republic of China) and R/V JV Vickers (U.S.A), respectively. Rain rates
were obtained from the reflectivities of each radar snapshot, which then were binned

over small pixels of size 2x2 km? each.

The used data set consists of five synchronous time series of instantaneous

spatial averages of rain rate over fixed sub-regions of sizes: a) 10x10 km? (5x5
pixels), b) 8x8 km? (4x4 pixels), ¢) 6x6 km?* (3x3 pixels), d) 4x4 km® (2x2 pixels), €)
2x2 km? (1x1 pixel), which lied within the intersection of the ranges of the two

radars. Moreover, each sub-region is nested inside all the ones which are larger in
size. This means, that each measurement in each of the five synchronous series,

corresponds to a different single snapshot and it is the average of 25, or 16, or 9, or 4,
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or 1 values of rain rate obtained from the binned reflectivities over the corresponding

25, 16,9, 4, 1 contiguous pixels of the snapshot.

Blocks of zeros and blocks of positive spatial averages, appearing in
alternating sequence in each of the five time series, correspond to the dry and wet
phases respectively. The dry and wet epoch durations are estimated by the
corresponding number of measurements in a given block multiplied by 10 minutes.
The TOGA-COARE data base consists of 3024 snapshots. However, each of the
above five time series is shorter by 28 which are missing. Those 28 missing
observations were identified with respect to their time coordinate and they appeared
in each time series in a formation of 11 blocks. This means that some blocks of zero
or positive measurements border with a block of missing measurements, yielding just
a few dry or wet phases of ambiguous length. In order to avoid this kind of problem,
those blocks (of zeros or of po;itive measurements) which border with blocks of
missing values, have been discarded. After this censoring operation, the numbers of
dry and wet blocks have been counted for each of the five time series, and they are

tabulated in Table 1.

TABLE 1
TIME SERIES DRY WET
5x5 pixels, 10x10 km? 172 175
4x4 pixels, 8x8 km® 162 167
3x3 pixels, 6x6 km? 149 154
2x2 pixels, 4x4 km? 153 159
1x1 pixels, 2x2 km® 138 144

Table 1. Numbers of dry and wet blocks of the time series which

correspond to the five area sizes.
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Explicit information about the lengths of dry and wet durations, in units of
hours, for each one of the five nested regions, is given in the Tables A-J of the

Appendix.

3.2 Testing Randomness

In Section 2, it was pointed out that, according to the model introduced by
Freidlin and Pavlopoulos (1997), the durations of dry and wet epochs must be
sequences of i.i.d. random variables. In order to test the validity of this point, for
processes of spatially averaged rain rate, a certain ramification of the well known
Wald-Wolfowitz test, based on the number of runs above and below the median, is
employed (see Brownlee (1965)). Given a sample of observations from a continuous
parent probability distribution, each observation is replaced by the symbol A or B
according to whether it is greater than (above) or less than (below) the median of the
sample. In this labeling process, observations which coincide with the median are
discarded from the sample. The result of this operation is a sequence of type AA BB

AA BBB A BBB AAA BBB, for example. Then, the total number n, of A’s, the total

number n, of B’s, and the total number U of runs of like elements are computed. In
the above example, n,=8, n,=11, and U=8, since there is a total of 8 runs (underlined
strings of labels).

If n, and n, are both large enough scores (i.e. larger than 10), then under the
null hypothesis that the sample consists of i.i.d. observations, the probability
distribution of U is well approximated by a normal law with mean and variance given

by (Wolfowitz (1944)):
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(nl +n2)2(n, +n, - 1) '

It is worth noting that this asymptotic result makes no further assumptions
about the parent distribution of the sample, except that it is of continuous type, which
is to say that it establishes a non-parametric test. Including a continuity correction,

suggested by Wallis (1952), the test rejects the null hypothesis of randomness (i.i.d.)

if the absolute value of the statistic

exceeds a specified percentile of the standard normal distribution. Namely, at the

0<a<1 level of significance, the null hypothesis is rejected if |[Z|>Z ,

is the (1-0/2)100% percentile of the normal law N(0, 1).

2

, where Z
1

2
"2

This non-parametric test is applied to the observed samples of dry and of wet

durations, separately for each area size in the following two subsections.

3.2.71 Dry Spells

Table 2, summarizes the information of the above test, applied to sequences of

dry durations for each one of the examined area sizes.

TABLE 2. DRY SEQUENCES B
AREA MEDIAN OBSERVATIONS OBSERVATIONS | RUNS MEAN OF V ARIANCE TEST P-

(HOURS) ABOVE THE BELOW THE RUNS OF RUNS STATISTIC VALUE

MEDIAN (n,) MEDIAN (n,) | (U) (1) (o%) @) TWO

SIBEB

10x10 km® | 0.6667 76 82 75 | 79.8861 | 39.1346 | -0.7011 | 0.483
8x8 km> | 0.6667 79 72 69 | 76.3377 | 37.3363 | -1.119 | 0.263
6x6 km®> | 0.6667 71 68 71 | 70.4676 | 34.4658 | 0.1759 | 0.8604
4x4 km® | 0.6667 75 72 63 | 74.4694 | 36.4677 | -1.8165 | 0.069%
2x2 km? | 0.8333 66 65 53 | 664962 | 32.4943 | -2.2798 o.(@

Table 2. Results obtained after the application of the Runs test to the dry

sequences.
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It is clearly seen that, as the size of the area decreases, the hypothesis that the
sequence of dry durations is an i.i.d. sequence tends to be not valid. In other words,
there is no ample evidence to support the null hypothesis, except in the case of 6x6
km’. We note that the smallest p-value 2.26% corresponds to the smallest area (2x2
km?), and the largest p-value corresponds to the intermediate size area (6x6 km?).
Nevertheless, at 1% level of significance we cannot reject the null hypothesis,

regardless of the area size.

3.2.2 Wet Spells

Table 3, tabulates the information regarding the results of applying the runs
test above and below the median to the sequences of wet duraticns, corresponding to

the five examined area sizes.

TABLE 3. WET SEQUENCES

‘

AREA MEDIAN | OBSERVATIONS | OBSERVATIONS | RUNS | MEAN OF | VARIANCE TEST P-VALUE
(HOURS) ABOVE THE BELOW THE RUNS OF RUNS | STATISTIC Two

MEDIAN (n,) MEDIAN (n,) (9)] () (o) Z) SIDED

10x10 km* 0.5 75 84 72 | 80.2453 | 39.2441 | -1.2364 | 0.2162
8x8 km? 0.5 70 83 78 | 76.9477 | 37.4481 | 0.2537 | 0.7998
6x6 km?® 0.5 70 72 65 | 71.9859 | 35.2341 | -1.0927 | 0.2746
4x4 km? 0.5 59 79 60 | 68.5507 | 32.8142 | -1.4054 | 0.1598
2x2 km* | 0.3333 61 58 56 | 60.4622 | 29.4601 | -0.7299 | 0.4654

Table 3. Results obtained after the application of the Runs test to the wet
sequences.

It is clearly seen here that the null hypothesis cannot be rejected considering
1%, 5%, and 10% levels of significance for each one of the sub-region sizes. The
smaller estimated two sided p-value is 15.98% (4x4 km*® region) while the larger is
79.98% (8x8 km® region). Thus, there is enough evidence to support the i.i.d.

hypothesis for sequences of wet epoch duration.
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CHAPTER 4

ESTIMATION AND GOODNESS OF FIT

4.1 Estimation of Parameters

This section deals with the estimation of parameters of the Lognormal,

Inverse Gaussian, and Gamma models, for dry and wet phases.

Given the standard form of the Lognormal density

1 1 Iogx—u2
-exp-E-— ,X>0,uneR, 6>0

the maximum likelihood estimators (MLE) of the parameters are (Johnson and Kotz

(1970)

logx, i(logxi - ﬁ)z

IMs

=33
It
Il

and the method of moments estimators (MME) are

&)/

i = log

Given the standard form of the Inverse Gaussian density

|. 1
| -ex —
Vor - x° p{ 2

-(x-m)z}, x>0,/>0,m>0
m--X
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the MLE of the parameters are (Johnson and Kotz (1970))

and the MME are

and note that m =X=m.

Finally, given the standard form of the Gamma density

1 X
_a—.x“"-exp -—,x>0,a>0,,8>0,
B (a) {ﬂ}

the MLE are approximated (Johnson and Kotz (1970)) by

~
—

+

n

|

<

‘Q)

n
SHE

($x) X $x,)
’ ni‘éan-I |
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Tables 4 and S, corresponding to dry and wet phases, provide the estimates of

the parameters (MLE, MME) of the three distributions obtained from the analyzed

five time series. For each time series (appearing under TS on both tables where TS

1, TS 2, TS 3, TS 4 & TS 5 correspond to the areas 2x2 km?, 4x4 km?, 6x6 km’,

8x8 km?, 10x10 km?, respectively), the parameters of Lognormal, Inverse Gaussian

and Gamma distributions, respectively, have been estimated. For example, for the

dry phases (Table 4), referring to the time series TS 1 (scanned area 2x2 km?), the

Lognormal MLE are n=-0.1075 and o*=1.7779; the Inverse Gaussian MME are

m=2.157 and /=0.882, and finally the Gamma MME are a=0.4089 and [#=5.2749.

TABLE 4
DRY

LOGNORMAL INVERSE GAUSSIAN GAMMA

m c m l a B
TSy MLE | MME | MLE | MME | MLE |{ MME | MLE | MME | MLE | MME | MLE | MME
11-0.1075{0.1502 {1.7779 1.2371 | 2.157 | 2.157 [ 0.5599 | 0.882 [0.7054]0.4089(|3.0579{5.2749
2 1-0.2427{ 0.047511.6771 1.08 1.7995 | 1.7995 |1 0.5298 | 0.9253 |0.7382|0.5142]2.4376|3.4995
3 1-0.22021 0.0395 | 1.5877| 1.0699 | 1.7763 | 1.7763 | 0.5666 | 0.9274 |10.765910.5221{2.3192(3.4021
4 1-0.29031-0.082211.4344} 1.0094 ]1.525711.5257{0.5757} 0.8748 |0.8405/|0.5734(1.8152|2.6607
51-0.3816(|-0.1789(1.4478| 1.0613 | 1.4215|1.4215|0.5284 | 0.752 |0.8204] 0.529 {1.7327|2.6869

Table 4. Lognormal, Inverse Gaussian and Gamma parameters of Dry

phases for each time series.
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TABLE 5

WET
LOGNORMAL INVERSE GAUSSIAN GAMMA
K o m ! a ,B

MLE | MME | MLE | MME | MLE | MME | MLE | MME | MLE | MME | MLE | MME

-0.8405(-0.7746 | 0.9951 | 1.0075 |0.7627 | 0.7627 | 0.4856 |0.4386[1.0211}0.5751]0.7469|1.3262

-0.7418|-0.6935 | 0.9988 | 1.0323 10.8375|0.8375(0.5256 |0.4633{1.0293(0.5532(0.8137|1.5139

-0.58991-0.4843 | 1.1009 | 0.9446 10.9881 | 0.9881 | 0.5556 |0.6286]1.0082|0.6362| 0.98 |1.5531

) Wt 19| —

-0.6425-0.5542 | 1.1537 | 1.1183 | 1.005 | 1.005 | 0.5099 (0.4879[0.9133]0.4855]1.1004{2.0699

wn

-0.6276(-0.5136 1.2173 | 1.1203 | 1.0476 | 1.0476 | 0.4938 [0.5071] 0.882 {0.4841|1.1877]2.1639

Table 5. Lognormal, Inverse Gaussian and Gamma parameters of Wet

phases for each time series.

4.2 Tests and Comparison of Goodness of Fit

In this section the goodness of fit of each of the three distributions (Gamma,
Inverse Gaussian, Lognormal) is tested by using the well known #* -statistic defined

by

< (0,-E,))’
=T E)

where k is the number of groups into which the data are partitioned, O; is the number

of observations belonging to the i-th group, Ei(g) is the expected number of

observations in the i-th group, under the null hypothesis, and 3 is the vector of the
estimates of the parameters ¢ of the probability distribution which is tested under

the null hypothesis.

It is a well known fact (Cramer, (1974)) that the probability distribution of the

2
7 statistic is approximately a X distribution with (k-h-1) degrees of freedom,




where h is the number of the estimated parameters. The goodness of fit of each

distribution is simply judged by how small is the value of the 3 statistic and also by

how large is the corresponding P-value of the test.

Clearly, for the Lognormal distribution $=(p, ¢®), for the Inverse Gaussian
case J=(m, ), and for the Gamma case F=(a, ). In all three cases, h is equal to
two, and therefore the degrees of freedom of approximate Chi-Square distribution are
k-3.

In the cases where the expected number of observations in the last group

Ei(§ ) are less than five, these frequencies have been included in the very previous

group, so as to obtain E, &) greater than five (see also Peters and Summers (1968),
Yamane (1973)). In each such case, the grouping of the observed data is modified in
the same way, and therefore the number of degrees of freedom (DF) of the Chi-

Square distribution is reduced by one (see Tables 6-10, and Tables 11-15).

[t is important to note that, due to the fixed sampling frequency of one
snapshot in every 10 minutes (or 0.1667 hours) by the radar, the data sets of dry and
wet durations do not include any values less than 0.1667 hours. Thus, it is
appropriate, instead of fitting the standard densities, to fit the truncated versions at

fl
0.1667 hours. In general, the truncated fitted density is given by Ja,—((W)_ (see for

q f(w)dw

example Kedem et al. (1990)), where f(.) in our case is one of the Lognormal, Inverse
Gaussian, or Gamma standard densities, and q= 0.1667. For example, for the dry

data, the truncated fitted Inverse Gaussian densities are (for MLE, MME respectively)
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fIG.dry(x) fIG,dry(x)
f.xwflﬁ dry(x)dx f:(,é, f[G,dry(x)dx

It is also noted that, for the Lognormal distribution, the calculation of the

integrals of the density is direct via the relation

[ mon{ 4o phs] fol=r)

where @ is the cumulative distribution function of the standard normal distribution

N(0,1). On the other hand, for the Inverse Gaussian and the Gamma case, the integrals

have been calculated via numerical integration.

All the information obtained from the fits of MME and MLE estimates of the
Lognormal, inverse Gaussian, and Gamma densities to data of dry and wet epoch
durations, is summarized in tables given in the following two sub-sections. The first
column of the table, named classes, for each time series (that is, for each size of the
area), contains the endpoints of the intervals into which the data were grouped (i.e. for
the 2x2 km’ area of dry phases, we have [0.1667-1.25), [1.25-2.15), [2.15-2.8), [2.8-
4), [4-6), [6-9.5), [9.5-0), in units of hours). The second column contains the
observed frequencies of the data (durations falling into i-th class). The fitted
frequencies correspond to Lognormal, Inverse Gaussian and Gamma densities,
truncated at 0.1667 (either MLE or MME). Also, the values of the Chi-Square
statistic, the corresponding P-values and the degrees of freedom (DF) are tabulated.
We separately examine the fitting for either the dry or the wet phase, respectively, in

the following two subsections.
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4.2.1 Dry Epoch Duration

In this subsection, the next five tables (Tables 6-10) summarize the

information regarding the fits of the densities, for each case of the examined area size.

1st) Smaller area (2x2 km?)

TABLE 6
2x2 KM¢ FITTED
LOGNORMAL INVERSE GAUSSIAN GAMMA
CLASSES | FREQUENCIES| MLE |  MME MLE | MME MLE | MME
0.1667| 1.25 79 76.1212 69.8539 82.6215 76.8539 |57.5537 | 59.443
1.25) 2.15 19 22.4299 26.4314 18.8869 22.199 | 25.217 21.4654
2.15 2.8 8 9.1487 10.8585 7.5863 8.9734 112.5572 |10.5908
2.8 4 9 10.0942 11.7005 8.5728 10.0051 |[15.7184 |13.6832
4 6 10 8.3298 9.092 7.5393 8.4713 {14.0661 |13.5246
6 9.5 6 5.9593 5.8302 5.9973 6.2305 | 9.1899 11.08
9.5 ) 7 59168 42334 6.7957 5.2668 | 3.6977 8.2128
TOTAL 138 138 138 138 138 138 138
CHISQUARE 1.4297 5.6101 1.01249 1.5822 15.226 12.381
P -VALUE 0.839 0.1322 0.9079 0.812 0.0016 | 0.0147
DF 4 3 4 4 3 4

Table 6. Goodness of fit of the three probability models for dry durations

corresponding to 2x2 km’* area.

2nd) Small area (4x4 km?)

TABLE 7
dx4 KM FITTED
LOGNORMAL  |INVERSE GAUSSIAN GAMMA
CLASSES |FREQUENCIES | MLE | MME | MLE MME MLE | MME
0.1667 1.3 95 92.734 | 86.477 | 97.679 91.75 73.042 | 73.5168
1.3 2.4 24 26.704 | 32.664 |22.733 | 27.812 [33.428729.8423
24 3.17 9 9.2581 | 11.018 | 8.0432 | 9.6727 [14.1503| 12.901
3.17 4.9 10 10.704 | 11.868 | 9.851 11.267 17.679 {17.2381
49 9 9 8.4472 | 7.9029 | 8.7751 8.7445 |12.2852|14.6417
9 ) 6 5.1524 | 3.0692 | 59189 3.7534 [2.41487| 4.8601
TOTAL 153 153 153 153 153 153 153
CHISQUARE 0.5583 | 5.2806 | 0.2671 1.328 14.4765(12.6796
P -VALUE 0.9059 | 0.0713 [ 0.9661 | 0.5148 |(0.00072]0.00176
DF 3 2 3 2 2 2

Table 7. Goodness of fit of the three probability models for dry durations

corresponding to 4x4 km’ area.
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3rd) Medium area (6x6 km?)

TABLE 8
66 KM FITTED
LOGNORMAL INVERSE GAUSSIAN GAMMA
CLASSES | FREQUENCIES|  MLE | MME MLE | MME MLE | MME
0.1667| 1.5 99 97.3648 | 92.9504 | 100.775 | 96.7782 | 79.2059 | 78.8443
15[ 235 17 '18.8178 | 22.6748 | 16.0746 | 19.2834 | 242714 | 21.4751
235 3.2 9 10.1256 | 11.888 | 8.8819 | 10.4664 | 15.4088 | 13.9828
321 5.1 10 10.8433 | 11.8553 10.1795 11.3863 | 17.8325 | 17.5805
5.11 8.1 7 6.3051 5.9716 6.6499 6.62 9.1863 11.0955
8.1 @ 7 5.5436 3.6599 6.4392 4.4657 3.0951 | 6.02185
TOTAL 149 149 149 149 149 149 149
CHISQUARE 0.85297 | 4.78727 | 0.15654 | 1.46179 | 13.4714 12.8
P -VALUE 0.83676 | 0.0913 0.98428 | 0.48148 | 0.00119 | 0.00509
DF 3 2 3 2 2 3

Table 8. Goodness of fit of the three probability models for dry durations

corresponding to 6x6 km? area.

4th) Large area (8x8 km?)

TABLE 9
8x8 KM FITTED
LOGNORMAL | INVERSE GAUSSIAN GAMMA
CLASSES | FREQUENCIES| MLE | MME | MLE | MME | MLE | MmME
0.1667| 1.3 104 103.671 | 99.9817 | 107.193 | 103.775 | 85.168 | 84.6623
1.3] 2.1 21 23.1434 | 27.0897 | 20.0784 | 23.3393 |29.5781] 26.2036
2.4 29 11 11.8434 | 13.4281 | 10.6017 | 12.0662 |17.8669 | 16.3779
291 4.1 9 9.2710 | 9.8683 | 8.8173 | 9.5929 |[14.8079| 14.7198
4.1 6 8 6.6367 | 6.3636 | 6.8898 | 6.9049 | 9.6967 | 11.3264
6 0 9 7.4344 | 52686 | 8.4199 | 6.3211 | 4.8824 | 8.7102
TOTAL 162 162 162 162 162 162 162
CHISQUARE 0.87729 | 5.10939 | 0.37501 | 1.67476 |11.9709 | 10.4253
P -VALUE 0.83091 | 0.16396 | 0.94536 | 0.64256 |0.00252| 0.01528
DF 3 3 3 3 2 3

Table 9. Goodness of fit of the three probability models for dry durations

corresponding to 8x8 km? area.
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5Sth) Larger area (10x10 km?)

7 B j TABLE10
10x10 kM2 FITTED
LOGNORM.L INVERSE GAUSSIAN GAMMA
CLASSES | FREQUENCIES|  MLE | MME MLE | MME | MLE | MME
0.1667 1 102 98.5383 | 93.2288 | 102.926 | 99.0644 | 77.2807] 77.7168
1 5 19 23.2853 | 26.6411 | 20.3559 | 22.8994 |26.522223.2252
1.5 2 12 13.8178 | 15.8314 | 12.1189 | 13.6263 | 18.6728 | 16.4051
2 2.5 9 8.9003 | 10.0084 | 8.0187 | 8.8990 |13.3926]12.0734
2.5 3.1 7 7.0557 | 7.7051 | 6.6019 | 7.1790 |11.2482]10.6679
3.1 45 10 80509 | 9.2352 | 8.9459 | 9.3301 |14.3232[15.1148
45 6.5 6 54750 | 5.0990 | 6.0349 | 5.7994 | 7.4043 | 9.7924
6.5 © 7 59767 | 4.2509 | 6.9979 | 5.2023 | 3.1559 | 7.0044
TOTAL 172 172 172 172 172 172 172
CHISQUARE 1.49944 | 5.59836 | 0.36829 | 1.62697 |17.3385| 14.782
P-VALUE 0.91313 | 0.23122 | 0.99616 | 0.89797 | 0.00166 | 0.01134
DF 5 4 5 5 4 5

Table 10. Goodness of fit of the three probability models for dry durations

corresponding to 10x10 km’ area.

Overall, we note that MLE fit better than MME, for each distribution model.

Examining carefully the above tables of the durations of the dry epochs, from smaller

to larger area sizes, we can clearly see that the fitting which corresponds to Inverse

Gaussian distribution is significantly better than the one obtained by the Lognormal

distribution, for all the sizes of the areas. More specifically, the results are almost

perfect considering either the Chisquare values or the p-values of the IG fits. For the

MLE, the p-values have range from 90.79% (size 2x2 km?, Table 6 ) to 99.616%

(size 10x10 km?, Table 10). Also, dramatically better are the fits of MME IG densities

than the fits of MME LN densities. The fitting that corresponds to Gamma

distribution is clearly very poor for all the area sizes, for both MME or MLE.
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All the above suggest that the Inverse Gaussian is a better model than

Lognormal and Gamma distributions for dry durations of spatially averaged rain rate.

On the other hand, Gamma appears to be a most inadequate model for dry epoch

durations.

4.2.2 Wet Epoch Duration

This subsection deals with the fitting of the three distributions (Inverse

Gaussian, Lognormal and Gamma) which correspond to the wet durations. The next

five tables (Tables 11-15) summarize all the information needed for this comparison.

1st) Smaller area (2x2 km?)

TABLE 11
2x2 KM FITTED
LOGNORMAL INVERSE GAUSSIAN GAMMA

CLASSES | FREQUENCIES| MLE | MME MLE |  MME MLE | MME
0.1667 1 109 109.341| 106.4649 | 105.935 105.511 95.9519 |89.0336
1l 1.35 12 12.7201| 13.2982 | 12.4995 12.2396 17.8467 | 159124

1.35] 2.05 11 11.6801| 12.5542 | 12.5885 12.4994 18.2936 | 18.6
2.05] 29 6 5.3877 | 59814 | 6.5624 6.6901 8.0696 |10.7783
2.9 © 6 48706 | 5.7012 | 6.4148 7.0599 3.8382 |9.67578
TOTAL 144 144 144 144 144 144 144
CHISQUARE 0.3771 | 0.39522 | 0.3841 0.53 6.598 12.06
P-VALUE 0.5391 | 0.82069 | 0.8253 0.767 0.01 0.002

DF 1 2 2 2 1 2

Table 11. Goodness of fit of the three probability models for wet durations

corresponding to 2x2 km? area.
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2nd) Small area (4x4 km?)

TABLE 12
x4 Ku¢ FITTED
LOGNORMAL | INVERSE GAUSSIAN GAMMA
CLASSES |FREQUENCIES | MLE | MME | MLE | MME MLE | MME
0.1667| 1.15 123 123.81 [120.906] 120.39 119.853 |110.2205{101.894
1.15) 1.7 15 16.285 [16.995816.1675| 15.7722 23.7679 |21.4794
1.7 2.35 9 8.6395 | 9.302 | 9.4802 94316 13.6791 |14.6087
2.35] 3.25 6 5.1779 | 5.7536 | 6.3022 6.4553 7.5544 |10.5838
3.25 © 6 5.0925 | 6.0428 | 6.6596 7.48748 3.7782 |10.4342
TOTAL 159 159 159 159 159 159 159
CHISQUARE 0.4139 | 0.2913 [ 0.24502| 0.46779 6.3559 |12.3495
P-VALUE 0.8131 | 0.86446| 0.8847 | 0.79144 0.01169 |0.00208
DF 2 2 2 2 1 2

Table 12. Goodness of fit of the three probability models for wet durations

corresponding to 4x4 km’ area.

3rd) Medium area (6x6 km?)

TABLE 13
6x6 KM FITTED
LOGNORMAL | INVERSE GAUSSIAN GAMMA
CLASSES |FREQUENCIES MLE | MME | MLE | MME MLE | MME
0.1667 1 103 103.427 |101.72|103.419| 103.187 | 87.782 |84.876
1 1.6 2] 23.044 [24.69921.2247| 22.0051 30.23 [26.676
1.6 235 13 12.6666 | 13.34 |12.5213| 12.7936 | 19.209 [18.584
235 4.4 13 10.601 |[10.593|11.8144| 11.6255 | 14.699 |18.485
4.4 © 4 426098 [3.6441| 5.0203 | 4.3886 | 2.0801 |5.3789
TOTAL 154 154 154 154 154 154 154
CHISQUARE 0.49943 |1.1149{0.34873| 0.11028 | 7.4659 |8.7363
P-VALUE 0.47975 | 0.291 [0.83999| 0.73983 | 0.0063 |0.0127
DF 1 1 2 1 1 2

Table 13. Goodness of fit of the three probability models for wet durations

corresponding to 6x6 km® area.

28




4th) Large area (8x8 km?)

TABLE 14
8x8 KM FITTED
LOGNORMAL ~ |INVERSE GAUSSIAN GAMMA

CLASSES | FREQUENCIES| MLE | MME | MLE | MME MLE | MME
0.1667 1 126 126.081 |123.09| 123.13 123.05 109.24 | 101.983

1.25 2 19 20.1149 |21.288| 19.369 | 19.171 29332 | 25.838

2| 2.85 9 9.5432 | 10.285| 10.25 10.209 15.594 | 16.1517

2.85| 4.1 6 5.8186 [6.3448| 7.0198 | 7.0599 8.8163 | 12.0228

4.1 © 7 5.4423 15.9961 | 7.2354 | 7.5111 4.0201 | 11.0048

TOTAL 167 167 167 167 167 167 167
CHISQUARE 0.54425 |0.6624 | 0.3823 | 0.4094 9.0012 15.107
P-VALUE 0.76176 |0.7181| 0.826 0.8149 0.0027 | 0.00052
DF 2 2 2 2 1 2

Table 14. Goodness of fit of the three probability models for wet durations

corresponding to 8x8 km? area.

Sth) Larger area (10x10 km?)

TABLE 15
10x10 KM FITTED
LOGNORMAL  |INVERSE GAUSSIAN GAMMA
CLASSES |FREQUENCIES | MLE | MME MLE | MME MLE MME
0.1667 1 120 116.672 | 113.056 | 115.4441 | 115.3777| 95.4849 | 91.3892
1 1.5 18 22.5712 | 23.9183 | 20.5898 | 20.7446 | 28.8282 | 24.4389
1.5 2.1 12 13.7871 | 14.7761 | 13.3666 | 13.4454 | 20.9162 | 18.8169
2.1 28] 8 8.3383 | 8.9535 | 8.7741 8.7999 | 13.6627 | 13.8624
2.8 4 7 6.6712 | 7.1252 | 7.7567 7.7427 | 10.4328 | 13.1436
4 6.2 5 42716 | 4.4895 | 5.5843 5.5245 | 4.8224 | 9.2929
6.2 © 5 2.6882 | 2.6817 | 3.4845 | 3.3649 | 0.8527 | 4.0560
TOTAL 175 175 175 175 175 175 175
CHISQUARE 2.61028 | 3.63213 | 0.88299 |0.986382 | 20.9345 | 19.31419
P-VALUE 0.45569 | 0.30403 | 0.829531 | 0.804547 | 0.000109 | 0.000235
DF ,,, 3 3 3 3 3 3

corresponding to 10x10 km* area.
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The results regarding the five above tables, which correspond to the wet

phases of varying area sizes (from smaller to larger) are as follows:

a) The superiority of the Inverse Gaussian distribution fitting still holds versus the
Lognormal one, considering the MLE. The p-values of IG have range from 88.47%
(size area 4x4 km?, Table 12) to 82.53% (size area 2x2 km?, Table 11), while the
p-values of LN are from 45.569% (size area 10x10 km? Table 15) to 81.31%
(size area 4x4 km?, Table 12) indicating that the hypotheses of IG and LN are not

rejectable.

b) The fittings of both truncated versions of IG and LN for wet durations, are rather
not as good as the ones obtained for the dry durations, where the p-values were

larger than 90%, i.e. in the IG case.

¢) The fits of the Gamma distribution model, as in the case of dry durations, indicate

clearly that the Gamma distribution is an inadequate model for wet durations.
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CHAPTER 5

SCALING EFFECTS

This section is concerned with the investigation of scaling of the moments
with respect to the spatial scale, under both the IG and the LN model for dry and wet

epoch durations, and also under no specific parametric model.

The values of the spatial scale A in the case of the five nested sub-regions
which have been considered in this work are: A =1 (for 10x10 km?), A =0.8 (for 8x8

km3), A = 0.6 (for 6x6 km?), A =0.4 (for 4x4 km?), and A =0.2 (for 2x2 km?).

It is well known (see Johnson & Kotz (1970)) that mean and variance for the

Lognormal distribution LN(u, o®) are given by the formulae:

MLOGNORMAL=exp{'U+§}’ ‘
VDOGNORMAL {2'“ u 02 [ - 1]

and for the Inverse Gaussian (m, /) distribution are given by

M[NVERSE GAussian — M

3
m

V[NVERSE GAUSSIAN = 1

Table 16 tabulates MLE and MME estimates of M, V under the Lognormal

and the Inverse Gaussian model for dry epoch durations.

Table 17 tabulates MLE and MME estimates of M, V under the Lognormal

and Inverse Gaussian model for wet epoch durations.
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TABLE 16. DRY DURATIONS

AREA SCALE | MEAN (LN) |VARIANCE (LN)|MEAN (IG)| VARIANCE (IG)
A

MLE |[MME]| MLE | MME |MLE=MME| MLE | MME |
2x2 kmZ. 0.2 2.1846 |2.1571| 23.4691 | 11.3793 2.157 17.924 | 11.3784
4x4 km2 0.4 1.8146 |1.7995| 143232 | 6.29715 | 1.7995 | 10.999 | 6.29757
6x6 km2 0.6 1.7747 [1.7762] 12.2601 | 6.04157 | 1.7763 | 9.8917 | 6.04341
8x8 kmZ2 0.8 1.5325 [1.5258] 7.50862 | 4.05989 | 1.5257 | 6.1689 | 4.0597
10x10 kmZ2 1 1.4082 [1.4216] 6.45211 | 3.81959 | 1.4215 5436 | 3.8196

Table 16. Lognormal and Inverse Gaussian mean and

variance of dry

durations.
TABLE 17. WET DURATIONS
AREA SCALE MEAN (LN) |VARIANCE (LN)|MEAN (IG){ VARIANCE (IG)
A

MLE MME MLE 7MME MLEfMME MLE MME

2x2 km< 0.2 0.7097 | 0.7627 | 0.8587 1.0115 0.7627 09137 |1.01156
4x4 km?Z 0.4 | 0.7847 | 0.8375 | 1.0561 | 1.2678 | 0.8375 | 1.1176 |1.26792
6x6 km< 0.6 0.9613 | 0.9881 | 1.8546 1.5345 0.9881 1.7364 |1.53472
8x8 km< 0.8 0.9365 1.005 1.9029 | 2.0801 1.005 1.9907 | 2.0805
10x10 km< 1 09812 | 1.0477 | 2.2896 | 2.2673 1.0476 2.3283 [2.26722

Table 17. Lognormal and Inverse Gaussian mean and

durations.

variance of wet

Table 16, corresponding to the DRY phases, shows that as the size of the area

increases, the MME and MME means decrease under either the LN or the IG model.

This behavior seems to be rather natural, because for larger areas, there is a larger

number of pixels contributing to the persistence of rainfall. This suggests that the

DRY durations become shorter as the area becomes larger. Moreover, this shortening

has an effect of reducing also the variability of dry duration, which can indeed be seen

in the decay of variances in Table 16 in all cases.
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On the other hand, considering the WET phase durations in Table 17, it is
seen that the mean of wet durations increases as the area size increases, for either
MLE or MME under both the LN and IG model. This seems to be rather natural, for
the same reason that was explained in the previous paragraph. Thus, the obvious
conclusion is that the mean of wet durations increases, and the mean of dry durations
decreases, as the size of the area increases. Moreover, Table 17 shows that, in all

cases, the variance of wet duration increases as the size of the region increases.

Thus, a natural question raised at this point, is whether there is some specific
relation between the spatial scale A and the corresponding mean or variance of wet or

dry durations of spatially averaged rain rate.

In the rest of this section, a first attempt is made to investigate the possibility
of scaling of the probability distributions of dry and wet epoch durations, with
respect to the scale magnification 0 <A<1 applied to the size of a given sub-region

AcS (see Introduction).

Strictly speaking, if W, denotes the wet epoch duration of spatially averaged
rainfall over a sub-region A, of a fixed larger region S, then the stochastic process
{WA; Ac S}, parametrized by the sub-regions AcS, is said to be a self-similar (or
simple scaling) process, if and only if there is a fixed constant 8 €R, such that for

every A>0, the finite dimensional distributions (f.d.d) of the process

{WM; Ac S}coincide with the f.d.d of the process {k "W, Ac S}.

If this property holds, then obviously, for every AcS, and for every A >0, the

random variables W,, and A °-W, will have the same probability distribution, and

therefore the same moments, provided that the moments exist.
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Thus, simple scaling in the strict sense defined in terms of f.d.d, implies a
weaker notion of simple scaling, in the sense that there is a fixed constant 8 €R, such
that for every AcS, and for every A>0, it holds that E(W;j\)=7\.°k -E(W:), or

equivalently that

M, (k
log{ M,((k))} =0-k-logh  (6),

provided that M, (k) = E(W¥, ) < <o, for every k1.

This weaker notion of simple scaling is referred to as simple-scaling in the
wide sense. For a general discussion or notions of scaling related in particular with
rainfall processes, we refer to Kedem and Chiu (1987a), and Gupta and Waymire

(1990).

What is actually investigated in this section, is the simple scaling in the wide

sense, for the duration of dry and wet epochs.

Note that equation (6) expresses a simple log-log linear relationship between
. M, (k) o
the ratio of k-order moments M. (k)" and the scale of magnification
1

0<A<1, whose slope 8- k is itself a linear function of the moment’s order k>1. The
constant 6€R is referred to as scaling exponent.
In particular, for k=1 the notation is simplified if we set M, = M, (1) for

every 0 <A<l, and equation (6) reduces to

o) oon @
oMl— og .
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Also note that if (6) holds true for k=1 and for k=2, then it is elementary to

show that also the variances V, = V(WM) =M, (2)-[M, (1)]* obey a relation similar

lg(ylj—%l A 8
0 v, =206-log (8).

Another elementary consequence of (7) and (8) is that the coefficient of

to (6) for k=2, namely

variation \/—\7: / M, remains constant for every 0 <A<1, and also that if (7) and (8)
hold, then equation (6) for k=2 holds true also.

The exact same arguments may be repeated in order to speak of strict and
wide sense simple scaling of the stochastic process {D A AC S}, parametrized by
the sub-region AcS, where D, denotes the dry epoch duration of spatially averaged
rainfall over a sub-region A of a fixed region S.

The rest of this section is divided into two sub-sections, where the scaling of

dry and wet epoch durations is investigated separately.

5.1 Scaling of Dry Spells

In this subsection it will be shown that there is significant statistical evidence
supporting the validity of equations (7) and (8). In other words it will be shown that

the mean and the variance of dry epoch durations possess the property of simple

M
scaling. This task will be carried out via simple linear regression of log(M—l] and of
1

V.
log(vx] on log), using the MLE and MME estimates of mean and variance of dry
1

durations under the Lognormal (LN) and inverse Gaussian (IG) models.
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M
Table 18 summarizes the MME and MLE estimates of log(vj under the

1
LN and IG models. Table 19 summarizes the information of slope, squared

correlation, and sum of squared residuals, obtained from the corresponding linear

. Mk
regressions of lo M on log.

1

TABLE 18
LN 1G
MLE MME MLE=MME| Log(}) A

log(M, /M,) | log(M, /M,) | log(M, /M,)

0.4392 0.417 0.417 -1.6094 0.2
0.2536 0.2358 0.236 -0.9163 0.4
0.2314 0.2227 0.223 -0.5108 0.6
0.0846 0.0707 0.071 -0.2231 0.8
0 0 0 0 1

Table 18. The logarithms of the ratios of the means of Dry epoch durations,
for scale A, under the Lognormal and Inverse Gaussian models (MLE and MME),

the scale A and its logarithm.

TABLE 19
Lognormal Inverse Gaussian
MLE MME MLE=MME
Squared Corr. 0.97417 0.97280 0.97274
Slope -0.287698 -0.271809 -0.271832
SSR 0.00820883 0.00772644 0.00774697

Table 19. Squared correlation, Slope, and Sum of Squared Residuals of

regressions of log(Mx/ Ml) on logA under LN and IG models for dry durations.

Figure 1 shows the plots of the points (logA, log(M 4/ Ml)), and of the best

fitting straight line obtained from the corresponding linear regression.
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Figure 1. Regressions of log(Mx / M,) on logA under LN and IG model for

dry durations.

[t is clear that, under both models (LN and IG), the squared correlation is quite
high, the sums of squared residuals extremely low, and the negative slope values quite

close to one another.

Table 20 summarizes the MME and MLE estimates of log(V,1 / Vl) under the
LN and IG models. Table 21 summarizes the information of slope, squared

correlation, and sum of squared residuals, obtained from the corresponding linear

regression of log(Vl/V,) on logA.
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TABLE 20
LN IG

MLE MME MLE MME | Log (}) A

log(Vl/Vl) log(V,/V,) log(V,/V,) log(VA/V,)
1.291276 | 1.09165 | 1.1931125 | 1.091561 | -1.60944 0.2
0.797473 | 0.499954 | 0.7047426 | 0.500007 | -0.91629 0.4
0.64194 0.45852 | 0.5986597 | 0.458811 | -0.51083 0.6
0.151645 | 0.061012 | 0.1264889 | 0.060963 | -0.22314 0.8
0 0 0 0 0 1

Table 20. The logarithms of the ratios of the variances of Dry epoch

durations, for scale A, under the Lognormal and Inverse Gaussian models (MLE

and MME), the scale A and its logarithm.

TABLE 21
) 7Loén017'mia1 7 R WIr;fsérGaussiiVé.n
MLE MME MLE MME
Squared Corr. | = 0.98145 0.97946 0.97984 0.97942
Slope -0.847650 -0.658415 -0.775270 -0.658444
SSR 0.0508001 0.0340119 0.0462552 0.0340686

Table 21. Squared correlation, Slope, and Sum of Squared Residuals of

regressions of log( v,/ V,) on logA under LN and IG models for dry durations.

Figure 2 shows the plots of the points (logA, log( V./V, )), and of the best

fitting straight line obtained from the corresponding linear regression.
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Figure 2. Regressions of log(Vl / Vl) on logh under LN and IG model for

dry durations.

Again, these fits are quite remarkable under both LN and IG models. Also
note that if 8 ay =-0.2718 is used as an estimate of the scaling exponent for the mean
(Table 19), then 2éd,y =-0.5436 is not really very close to the estimated values of the

slope of (8) (Table 21). This deviation may be due to some partial inadequacy of the

assumed parametric models.

Thus, under the adoption of either one of the LN or IG models, the first two
moments of dry epoch duration seem to conform with the property of wide sense

simple scaling.
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However, if one is not willing to adopt a specific parametric model (such as
IG or LN) for the probability distribution of dry epoch duration, then one should

simply rely on the non-parametric sample estimates of the moments

and to proceed with the linear regressions of log[I\A/Il(k)/ Ml(k)] on logA in order to
test the validity of equation (6) for each k>1. This task has indeed been carried out for
the first twenty moments (1<k<20) of dry epoch durations, and the information of the

corresponding linear regression is summarized in Table 22.

TABLE 22. DRY SAMPLE MOMENTS AND REGRESSION INFORMATION
ORD Mo.z(k) M0_4(k) Moﬁ(k) Mo_s(k) M,(k) SLOPE|R SQRD SSR
1 2.16 1.8 1.78 1.53 1.42] -0.273868] 0.97149] 0.00823342
2 16.03 9.54 9.2 6.39 5.84] -0.622095] 0.98141] 0.0274201
3 216.66 73.24 69.77 40.72 38.45[-0.986545] 0.96751| 0.1222541
4 4031.1 648.37 612.45 310.81 317.9] -1.355674] 0.93023] 0.5156458
5 88679.46 6171.93 5791.77| 2606.71] 2997.37| -1.715966] 0.88478 1.43441
6 21139743 61505.76 57418.23 23174.74 30753.33[ -2.058314| 0.84091] 2.998245
7 52267698 633421.42 589024.44 214570.13 334114.76] -2.38165] 0.802]  5.23822
8[ 1314000000 6690335.9 6205551.3 2048011.8 3776025.5] -2.689407] 0.76871] 8.140436
9 33270000000 72099112 66797263 20018185 43854810] -2.985742[ 0.74076] 11.670046
10 8 455E+11 789702759 731782552 199428072] 518992914} -3.274805( 0.71755] 15.791044
11] 2.152208E+13{ 8764991838 8133997313 2017661243 6221752583 -3.5595| 0.69839] 20.46715
12| 5.483258E+14] 98346428610 91500674379 20671372221| 75250434672] -3.8418| 0.68263[ 25.66851
13| 1.39758E+16]1113446466622]1039533316764| 213967292563| 915674580583 -4.1233] 0.66966] 31.37046
14] 3.56295E+17| 1.270079E+13| 1.190704E+13[2233396492191] 1.118876E+13| -4.4046( 0.65898| 37.55404
15] 9.084319E+18| 1.457876E+14] 1.373134E+14| 2.347235E+13| 1.37109E+14] -4.6864] 0.65015] 44.20495
16( 2.316335E+20] 1.68236E+15] 1.592466E+15| 2.480694E+14] 1.683475E+15] -4.9689] 0.64283| 51.31259
17| 5.906424E+21| 1.950235E+16] 1.855543E+16] 2.633713E+15| 2.069849E+16[ -5.2522| 0.63673] 58.86926
18| 1.506106E+23] 2.269596E+17] 2.170633E+17| 2.806577E+16] 2.547299E+17| -5.5365] 0.63163] 66.86942
19] 3.840525E+24| 2.650191E+18[ 2.547692E+18 2.999859E+17| 3.136931E+18] -5.8216/0.627334] 75.30915
20( 9.793276E+25| 3.103738E+19| 2.998696E+19| 3.214378E+18] 3.864804E+19| -6.1076] 0.6237| 84.18573

Table 22. Tabulation of Dry sample moments of order k=1,..., 20 and the

results (slope, R squared, and Sum of Squared Residuals) of regressions of

log{I\A/Ix(k)/l\A/Il(k)] on logh.
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Clearly enough, for k>5 the squared correlation between log{I\A/Il(k) / I\A/Il(k)]
and logh becomes rather poor to support the validity of equation (6) beyond the

fourth moment.

However, the pseudo-slopes A(k) are highly correlated with the corresponding
moment’s order k, with squared correlation coefficient 0.999, and sum of squared

residuals 0.2673. The best fitting line through the origin to the points (k, A(k)),
estimated on the basis of 1<k<20, is given by the equation A(k) =-0.3138 k. That

is, the pseudo-scaling exponent of dry durations is estimated by édry =-0.3138.

5.2 Scaling of Wet Spells

Work similar to that presented in the previous subsection, is done here in

order to investigate the scaling properties of wet epoch durations.

Table 23 summarizes the MME and MLE estimates of log( M,/ Ml), under
the LN and IG models for the duration of wet epochs. Table 24 summarizes the

information of slope, squared correlation, and sum of squared residuals, obtained

from the corresponding linear regressions of log(MJL / M,) on log\.

TABLE 23
LN IG

MLE MME MLE=MME Log (\) A

log(MX/M,) log(MX/M,) log(Ml/M,)

-0.324 -0.3174 -0.3174 -1.6094 0.2
-0.2235 -0.2239 -0.2238 -0.9163 0.4
-0.0205 -0.05855 -0.0585 -0.5108 0.6
-0.0467 -0.0416 -0.0415 -0.2231 0.8

0 0 0 0 1

Table 23. Tabulation of the logarithms of the ratios of the means of Wet

epoch durations, for scale A, under the Lognormal and Inverse Gaussian models

(MLE and MME), the scale A and its logarithm.
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TABLE 24

Lognormal Inverse Gaussian
MLE MME MLE=MME
Squared Corr. 0.94734 0.97713 0.97713
Slope 0.199742 0.201892 0.201855
SSR 0.00829619 0.00356924 0.00356662

Table 24. Squared correlation, Slope, and Sum of Squared Residuals of

regressions of log(Mk / Ml) on logX under LN and IG models for wet durations.

Figure 3 shows the plots of the points (logA, log(MJL /M,)), and of the best

fitting straight line obtained from the corresponding linear regression.
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Figure 3. Regressions of log(Ml/ M,) on logA under LN and IG model for

wet durations.
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All the same, under both LN and IG models, the squared correlation is

remarkably high (MME cases), the sums of squared residuals extremely low, and the

positive slope values quite close to one another.

Table 25 summarizes the MME and MLE estimates of log( v,/ V,), under the

LN and IG models for the duration of wet epoch durations. Table 26 summarizes the

information of slope, squared correlation, and sums of squared residuals, obtained

from the corresponding linear regressions of log( v,/ Vl) on logA.

TABLE 25

LN IG
MLE MME MLE MME Log (A) A

log(V,/V,) | log(V./V,) |log(V,/V,) | log(V,/V,)
-0.9807 -0.8071 -0.9354 -0.8071 | -1.6094 0.2
-0.7738 -0.5814 -0.7339 -0.5812 | -0.91629 0.4
-0.2107 -0.3904 -0.2933 -0.3902 | -0.5108 0.6
-0.185 -0.0862 -0.1566 -0.0859 | -0.22314 0.8
0 0 0 0 0 1

Table 25. Tabulation of the logarithms of the ratios of the variances of Wet

epoch durations, for scale A, under the Lognormal and Inverse Gaussian models

(MLE and MME), the scale A and its logarithm.

TABLE 26
Lognormal Inverse Gaussian
MLE MME MLE MME
Squared Corr. 0.96806 0.97790 0.97916 0.97794
Slope 0.651314 0.548137 0.631635 0.548043
SSR 0.0523535 0.0253949 0.0317645 0.0253409

Table 26. Squared correlation, Slope, and Sum of Squared Residuals of

regressions of log( v,/ Vl) on logk under LN and IG models for wet durations.
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Figure 4 shows the plots of the points (logh, log(V,t /Vl)), and of the best

fitting straight line obtained from the corresponding linear regression.
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Figure 4. Regressions of log( v,/ V,) on logA under LN and IG model for

wet durations.

Again, under both LN and IG models, the squared correlation is remarkably

high, and the sums of squared residuals low enough. Also note that if ém =0.2018

is used as an estimate of the scaling exponent for the mean of wet durations (Table

24), then 2@)%,t =0.4036 is not very close to the estimated values of the slope of (8)

(Table 26). This discrepancy may again be attributed to some partial inadequacy of

LN and IG in modeling the distribution of wet epoch durations.

44



Therefore, under the adoption of either one of the LN or IG models, there is
rather significant indication that the first two moments of wet epoch durations do
conform with the property of wide sense simple scaling. This indication is supported
by the very significant correlation in the log-log linear relations (7) and (8), but it is
slightly shattered by the non-exact doubling rule between the estimates of the

corresponding slopes 0 and 26 of (7) and (8).

Thus, it is of interest to resort to non-parametric sample estimates of the

moments
A P
M).(k) S ﬁzl//:(l)
n=|

of Wet epoch durations (for 0 <A<1), and to proceed with the linear regressions of
log{l\A/Ix(k)/ I\A/II(k)] on logh, for k>1, in order to verify or reject the hypothesis of
wide sense simple scaling of wet epoch durations.

This task has indeed been carried out for the first twenty sample moments

(1=k<20) of wet epoch durations, and the information of the corresponding linear

regressions is summarized in Table 27.

Figure 5 depicts the plots of the points (logA, log(I\A/Il(k)/l\Alll(k))), and the
best fitting straight line obtained from the corresponding linear regression, only for a
small selection of values of k=1, 2, 10, 20. Quite similar are also the graphs

corresponding to the rest of the values of k.
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TABLE 27. WET SAMPLE MOMENTS AND REGRESSION INFORMATION

ORD 1\A/Ioa(k) MOA(k) Mo.a(k) 1C'Io.s(k) Ml(k) SLOPE R SQRD SSR

1 0.76 0.84 0.99 1 1.05] 0.204678| 0.97873]0.00340497
2 1.59 1.97 2.51 3.09 3.36| 0.497537| 0.98826|0.01099755
3 5.6 8.33 10.62 16.55 18.28] 0.78163| 0.98416( 0.0367802
4 25.22 46.83 58.41 112.02 123.73| 1.030742] 0.98204} 0.0726831
5 129.35 302.74 368.53 847.07 932.16| 1.257678] 0.9803| 0.1189061
6 712.89] 2099.42| 2501.41 6804.51 7473.831 1.477147| 0.97854| 0.1789546
7 4096.61 15121.1 17685.2] 56771.48] 62465.49] 1.697726| 0.97691| 0.254829
8 24154.69( 111388.431 128168.45| 486168.44] 537979.46{ 1.922936| 0.97552| 0.347029
9 144849.3| 832720.05{ 944293.2| 4243094.2| 4738702.2| 2.153481| 0.97441 0.45555
10 | 878890.52 6290558.2| 7040505.1| 37563632| 42460773| 2.388861| 0.97354] 0.580112
11 5378685.3] 47891135| 52974736| 336192929| 385483413| 2.628164| 0.97287| 0.720383
12 | 33131109 366786240|401508660( 3.034E+09| 3.535E+09| 2.870483| 0.97237| 0.875801
13 | 205111156{ 2.822E+09) 3.061E+09| 2.757E+10| 3.267E+10| 3.115072| 0.97198| 1.046443
14 | 1.275E+09| 2.18E+10{2.345E+10] 2.518E+11| 3.037E+11| 3.361042| 0.97167| 1.231871
15 7.95E+09]| 1.688E+11| 1.804E+11} 2.309E+12| 2.836E+12] 3.608249] 0.97146] 1.430712
16 | 4971E+10| 1.31E+12{1.392E+12] 2.124E+13{ 2.658E+13{ 3.85628| 0.9713} 1.643822
17 | 3.11SE+11| 1.019E+13( 1.077E+13| 1.96E+14| 2.498E+14| 4.104643| 0.97115] 1.872087
18 | 1.955E+12| 7.938E+13}:8.357E+13| 1.812E+15| 2.353E+15| 4.353466| 0.97107| 2.112417
19 | 1.229E+13] 6.189E+14| 6.494E+14] 1.678E+16] 2.22E+16| 4.602478 0.971] 2.366864
20 | 7.735E+13| 4.831E+15| 5.053E+15| 1.556E+17| 2.098E+17]| 4.851893} 0.97094| 2.635609

Table 27. Tabulation of Wet sample moments of order k=1,...,20 and the

results (slope, R squared, and Sum of Squared Residuals) of regressions of

log[I\A/Ix(k)/l\A/Il(k)] on logA.
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Figure 5. Regressions of lo I\A/Il(k) M, (k)| on logA for order k=1, 2, 10,
1

20 of wet sample moments.

Remarkable enough is the fact that the values of the squared correlation in
Table 27, are persistently very high, between 97% up to almost 99%, throughout the

range of 1<k<20. This is indeed a strong piece of evidence supporting the log-log

. N . M, (k) .

linear relationship between the ratio M (k) of moments of wet epoch durations
i

and the parameter of spatial scale A, for every 1<k<20, as required according to
equation (6).
On the other hand, the sums of squared residuals are growing as the order k

increases. This growth is slower for the first ten orders, compared to the growth

corresponding to larger orders k, and also more conducive to the goodness of fit of the

best fitting straight line.
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However, more striking of all is the perfectly linear growth of the slope of the
corresponding best fitting straight line, as the order k increases. This perfection is

easily detectable even by eye, if the slope A(k) is plotted against the order k as in

Figure 6.
PLOT OF SLOPE VERSUS THE ORDER OF THE SAMPLE MOMENTS
S [ ]
[
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Figure 6. Plot of the slope A(k) versus the order k=1,..., 20 of wet sample

moments.

Obviously, the slope of the best fitting straight line, passing through the origin
(0, 0) to the points with coordinates (k, A(k)) of Figure 6, will provide an estimate of
the scaling exponent 6, > 0. Indeed, linear regression of the slopes A(k) on k, yields
squared correlation coefficient 0.9999, sum of squared residuals 0.01703, and the
corresponding equation of the best fitting line through the origin is A(k) =0.2414 k.
Therefore, ém =0.2414 is the estimated value of the scaling exponent of wet epoch
duration with respect to the spatial scale of the region over which rain rate is spatially

averaged.
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CHAPTER 6

CONCLUSION

On the basis of some literature and empiricism, the parametric families of
lognormal, of Inverse Gaussian, and of Gamma distributions have been proposed as
plausible models for the probability distribution of dry and of wet epoch duration in

processes of spatially averaged (instantaneous) rain rate.

Real data of such dry and wet epoch durations, obtained from the TOGA-
COARE measurements of tropical rainfall on an array of nested square regions,
whose sizes vary from 10x10 km® to 2x2 km?, have been used for testing the
goodness of fit of the proposed distribution models. The fits of the gamma model are
very poor in all spatial scales, indicating the inadequacy of the model. The fits of
both the lognormal and the Inverse Gaussian models are very good in all spatial
scales, for both dry and wet epoch durations. Nevertheless, in all cases the fit of
Inverse Gaussian is considerably better than the corresponding fit under the

lognormal model.

This fact is also supported on a theoretical basis, since according to the
model proposed by Freidlin and Pavlopoulos (1997), it follows that the probability
distribution of dry and wet epoch durations, in a given atmospheric column, belongs
to the Inverse Gaussian family and its parameters are physically interpretable. On the
other hand, the plausibility of the lognormal model is based mostly on empiricism,
and the only available theoretical explanation is of heuristic nature (Biondini (1976),

Lopez (1977)).
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In the sequel, under the assumption that the probability distributions of dry
and of wet epoch duration are of continuous type (i.e. without discrete atoms), the
Wald-Wolfowitz test for runs above and below the median has been employed in
order to test the hypothesis of randomness (that is, i.i.d. structure) in data of dry and

wet epoch durations.

The results of this non-parametric test show that in all spatial scales the
hypothesis of randomness in data of wet epoch duration is not rejected for levels of
significance a<0.15, since the obtained p-values are all higher than 15% (see Table
3). This fact provides enough evidence supporting the hypothesis of randomness in
data of wet epoch duration. On the other hand, the hypothesis of randomness in data
of dry epoch duration is not rejected for levels of significance a<0.26 in areas of
size 6x6 km? or larger, and it is not rejected for levels a<0.02 in areas of smaller
size (see Table 2). Thus, ong may argue that as the size of the region decreases, the
randomness of dry durations tends to be rejectable for levels of significance higher
than 2%. Nevertheless, at the strict level of significance a=0.01, TOGA-COARE
data support the hypothesis of randomness, both of dry and of wet durations of
spatially averaged rain rate, for all spatial scales. This conclusion is also in
agreement with the theoretically implied randomness of dry and wet epoch

durations, according to the model introduced by Freidlin and Pavlopoulos (1997).

The last part of this dissertation has been concerned with the dependence of
the probability distribution, and more specifically of the moments, of wet and dry
duration, on the scale A of the region over which rain rate is (spatially) averaged.
Under both models, lognormal and Inverse Gaussian, it has been shown that the

mean and the variance of dry and of wet duration, are (simply) scaling in the sense
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of equations (7) and (8) respectively. From these first indications, one may
conceivably attribute the scaling to strict self similarity of the processes { D,;Ac S}

and {WA ;A S}, of dry and wet epoch duration respectively. However, if this was
indeed true, then there should be two scaling exponents 6, and 6, such that in
the  sense of finite  dimensional distributions the  equalities

8 9

{DM;AgS}={X d'y-DA;AgS} and {WM;AgS}={7L v W,; ACS

should hold, for every A>0. Consequently, the slope of the log-log linear
relationship between the ratio of the variances V, /V, and the spatial scale A, should

equal twice the slope of the log-log linear relationship between the ratio of means
M, /M, and A.

In fact though, the obtained estimates of these slopes, for dry and wet
durations, under lognormal or Inverse Gaussian model, revealed a deviation from'

this “doubling rule”. This masking of the “doubling rule” has been attributed to

potential imperfections of both the lognormal and the Inverse Gaussian models.
Thus, the investigation, of simple scaling of the moments of dry and wet

duration, in the sense of the log-log linear relationship (6), with linear slope

A(k) = 8-k, has been based on the non-parametric sample estimates of the moments

I\A/Il( k), where k denotes the order of the moment and A is the spatial scale. Working
with moments of order 1<k<20, and values of spatial scale A =1, 0.8, 0.6, 0.4, 0.2,
Tables 22 and 27 show the extremely rapid growth of moments as the order k

increases, both for dry and wet durations respectively.
In the case of dry durations, simple scaling of the sample moments does not
seem to hold, since the squared correlation between log(I\A'I,L(k)/ Ml(k)) and logh
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drops significantly for values of the order k>5. Therefore, the process
{D A ACS } is rather unlikely to possess the property of self-similarity.

In the case of wet durations, there is indeed strong evidence of simple scaling

of the sample moments, since the squared correlation between

log(I\A/Ix(k) / Ml (k)) and log)\ maintains remarkably high values, greater than 0.97, for

every 1<k<20, so as to support the validity of the log-log linear relationship
log( M, (k)/ Ml(k)) = A(k) - logh. Moreover, the slope A(k) is a linear function of the
order k, with slope estimated by éwﬂ = (0.2414. Therefore, the process
{WA ;AcS } is likely to be a self-similar process with respect to the spatial scale

0<X<1, and if this is truly the case, then éwet = 0.2414 is an estimate of the

corresponding scaling exponent.

The practical yalue of self-similarity of the process {WA ;AcS } of wet
epoch duration of spatially averaged rain rate, parametrized by the subregions A of a
larger region of interest S, is the fact that it makes possible the drawing of inferences
about the duration of rainfall in the region S on the basis of data of rainfall duration
in smaller subregions of S. That is, if S is associated with the spatial scale of
reference A=1, then any other subregion AcS may be associated with a spatial scale
value 0<A<l, and in light of self similarity the probability distribution of W

coincides with the probability distribution of A B -W,. Thus, knowing the

distribution or the moments of W,= W, and having an estimate of the scaling
exponent 9., it is possible to make inferences about the duration of rainfall W on

the larger region S. This application is of great interest with regard to large tropical
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and sub-tropical regions where networks of monitoring stations are very limited due

to physical constraints, such as oceanic surface or rainforest jungle.
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APPENDIX

APPENDIX.

The Appendix includes the following ten tables (Tables A-J) which contain the Dry and
Wet blocks converted to units of hours. They correspond to five different sizes of examined
areas of the TOGA-COARE experiment.

TABLE A

2.5 0.3333 01667 | | LS

1 0.3333 5.5 01667
4.5 0.6667 - 3.1667 5
0.5 0.1667 1.3333 0.3333
0.5 0.1667 0.5 2.8333

1 0.5 0.3333 3

2 0.6667 1.5 2.5
1.8333 3.3333 0.3333 4.1667
0.6667 0.3333 0.1667 2.1667
0.6667 0.1667 0.1667 1.3333
0.3333 1.8333 0.1667 10.8333
3.5 0.1667 0.1667 0.1667
0.6667 7.5 0.1667 0.8333
0.6667 0.1667 10.8333 0.6667
0.1667 0.1667 1 0.1667
1.1667 4.1667 0.3333 4.5
0.3333 11 0.3333 3
0.1667 E 4 8.8333
0.8333 0.3333 14.1667
0.1667 0.5 9.1667

0.5 0.1667 3.6667
0.1667 1.6667 9.5
0.3333 8.3333 0.6667
3.1667 1.3333 4.8333

4 1 2.3333

3 0.1667 5

2 1.5 1.6667
0.1667 0.3333 0.1667

0.5 0.3333 2.5

25.5 0.1667 1.6667
0.1667 0.1667 1.1667
0.1667 7.6667 1.5

2.5 1.6667 0.1667
0.6667 0.3333 0.1667
0.1667 2.3333 0.8333
1.1667 1.3333 15
0.1667 0.8333 7.3333
0.1667 1.3333 0.8333
0.8333 0.3333 0.8333
0.1667 2.3333 9.8333

Table A. Lengths of the dry blocks of rain rate averages converted to units of
hours over a 2x2 km® region of TOGA-COARE in sequence by column.



APPENDIX

TABLE B
0.1667 5.3333 3.5 1.6667
0.1667 0.6667 2 0.1667
0.1667 0.1667 0.1667 0.3333
0.5 0.1667 0.1667 0.3333
6.3333 2 0.8333 0.6667
1.5 4.5 0.1667 1.5
0.1667 1 0.1667 1.3333
0.1667 0.3333 0.3333 0.3333
0.3333 0.1667 0.1667 0.5
1.6667 0.3333 2.1667 0.5
0.8333 0.6667 2.5 0.3333
0.8333 0.1667 0.1667 0.6667
0.8333 0.1667 2.8333 0.1667
0.3333 0.1667 0.1667 0.5
0.1667 0.1667 2.8333 0.1667
0.1667 2 2.5 0.1667
0.1667 0.8333 0.1667 0.1667
0.3333 0.3333 0.3333 0.3333
0.5 0.1667 0.1667 1
2 i 0.5 1 0.1667
0.5 0.3333 0.1667 0.1667
0.1667 0.1667 0.1667 0.1667
0.3333 0.1667 0.6667 0.3333
0.1667 0.3333 0.1667 0.5
1.3333 0.6667 0.1667
0.3333 0.3333 1.8333
0.8333 0.1667 0.8333
1.1667 0.3333 3.3333
3.3333 0.1667 0.3333
0.1667 0.1667 0.6667
0.3333 0.1667 0.6667
0.5 2.1667 0.1667
0.3333 0.1667 0.1667
0.1667 0.1667 1
0.1667 0.3333 0.1667
1.1667 0.3333 0.1667
1 0.1667 2
1.3333 0.5 0.1667
0.8333 0.1667 0.1667
1.1667 1.8333 1

Table B. Lengths of the wet blocks of rain rate averages converted to units of
hours over a 2x2 km" region of TOGA-COARE in sequence by column.
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TABLE C
1.3333 0.1667 0.3333 1.1667
0.8333 0.5 0.1667 1.5
1 0.1667 2 0.1667
4.5 0.3333 0.1667 0.3333
0.5 0.3333 5.5 1.5
0.3333 0.6667 3.1667 7.3333
1 0.3333 0.5 0.6667
2 0.3333 0.3333 0.8333
0.1667 3.3333 0.5 9
0.6667 0.1667 0.3333 0.3333
0.1667 0.1667 1.5 1.5
0.6667 0.8333 0.1667 0.1667
0.1667 0.8333 0.1667 4.8333
3.1667 0.1667 0.1667 0.1667
0.1667 7.3333 0.1667 0.1667
0.1667 0.1667 1 2.3333
0.3333 3.8333 2 2.6667
0.1667 10.833 7.1667 1.6667
1.1667 1.3333 0.6667 0.5
0.5 0.1667 0.1667 3.8333
0.5 0.1667 0.3333 0.3333
0.1667 0.1667 0.1667 1.1667
0.1667 1 0.1667 1
3.1667 0.5 0.3333 9.3333
0.6667 8 2.6667 1
3.1667 0.1667 6.3333 0.1667
2.8333 1 7.5 0.3333
2 0.5 9 0.5
0.1667 0.1667 1.8333 0.1667
0.5 0.1667 1.5 0.3333
0.1667 1.3333 4.5 3.8333
1.3333 0.1667 4.8333 3
12 0.1667 0.5 8.5
10.667 7.5 4.8333
0.8333 1.6667 2.3333
0.1667 0.3333 0.5
2.5 2.3333 4
0.5 1.3333 1.5
1 0.8333 2.1667
0.1667 1.3333 1.3333

Table C. Lengths of the dry blocks of rain rate averages converted to units of

hours over a 4x4 km* region of TOGA-COARE in sequence by column.
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TABLE D
0.1667 1.5 0.1667 0.1667
0.1667 0.8333 1.8333 l
0.3333 1.3333 3.5 0.6667
0.1667 5.5 2 1.3333
0.5 0.6667 0.1667 0.5
6.3333 0.1667 0.1667 0.1667
1.6667 0.1667 0.3333 2.3333
0.1667 7.8333 1.1667 0.1667
0.1667 0.8333 0.1667 1.5
0.5 - 0.1667 0.3333 1.6667
0.1667 0.3333 0.1667 0.1667
1.8333 0.8333 0.5 0.5
1 0.1667 0.1667 0.3333
1 0.1667 2.1667 0.3333
0.1667 0.1667 2.5 0.8333
1.1667 0.1667 0.3333 1.5
0.5 0.1667 3.1667 1.3333
0.1667 P 2.1667 2.8333 0.5
1.3333 1.3333 3 0.6667
2.8333 0.6667 0.3333 0.3333
0.5 0.5 0.3333 0.5
0.1667 0.5 0.1667 0.6667
0.5 0.5 0.6667 0.1667
0.1667 0.3333 1.1667 0.8333
0.1667 0.3333 0.1667 0.5
1.3333 0.1667 0.1667 0.3333
0.5 0.6667 0.1667 1
2.3333 0.6667 0.1667 0.3333
35 0.1667 0.1667 0.5
0.3333 0.1667 0.8333 0.5
0.1667 0.1667 0.1667 0.1667
0.1667 0.5 0.3333 0.5
0.1667 0.3333 0.3333 1.1667
0.1667 0.1667 0.1667 0.1667
0.1667 0.3333 2 0.3333
0.6667 3.1667 0.1667 0.1667
1 0.3333 0.8333 0.1667
0.1667 0.3333 3.5 0.5
0.3333 0.1667 0.3333 0.8333
2.3333 0.3 0.6667

Table D. Lengths of the wet blocks of rain rate averages converted to units of
hours over a 4x4 km* region of TOGA-COARE in sequence by column.
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TABLE E

0.3333 0.3333 0.5 0.3333
1.1667 0.3333 0.1667 0.6667
0.6667 0.6667 1.5 7.1667
0.1667 0.3333 0.1667 0.6667
0.6667 0.3333 0.1667 0.8333

4.5 3.3333 0.1667 9
0.1667 0.6667 0.1667 0.3333
0.1667 0.5 0.3333 1.3333
0.1667 0.3333 5.6667 0.1667
0.8333 1 1 4.8333
1.8333 5.6667 0.5 2.1667
0.6667 0.1667 1.3333 2.5
0.1667 3.8333 7.1667 1.5

0.5 10.8333 0.6667 0.1667
0.1667 1.3333 0.1667 1.1667
2.6667 0.1667 0.3333 2
0.1667 | 0.1667 0.1667
0.3333 0.5 0.3333 0.8333
1.1667 8 2.6667 0.8333
0.3333 0.1667 0.1667 8.8333

0.5 0.8333 1.8333 0.5
2.8333 0.3333 3.6667 0.1667
0.1667 1.1667 7.5 0.3333
0.6667 0.1667 9 0.5

3 0.1667 1.6667 0.1667
2.8333 7.5 1.5 3.8333
1.8333 1.5 4.5 3
0.1667 0.3333 4.5 8.5
0.3333 2 0.5 0.5
0.1667 1.3333 4.8333
1.3333 0.1667 1.5

12 1.3333 0.5

10 0.1667 0.5

0.5 0.1667 3.1667
0.6667 2 0.5
0.1667 5 1.5
2.3333 0.1667 2.1667
0.8333 3.1667 1.1667
0.1667 0.3333 1.1667
0.1667 0.3333 1.5

Table E. Lengths of the dry blocks of rain rate averages converted to units of hours
over a 6x6 km” region of TOGA-COARE in sequence by column.
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TABLE F
0.1667 6.3333 0.3333 1.3333
0.3333 0.1667 03333 0.6667
0.5 ~0.1667 0.5 0.1667
0.1667 7.8333 0.1667 4.6667
0.1667 0.8333 23333 0.3333
0.5 0.1667 2.5 1.6667
0.1667 1.6667 0.3333 0.3333
6.3333 0.3333 3.1667 0.5
1.8333 0.5 2.8333 0.3333
0.3333 0.6667 3 0.3333
I 0.1667 0.1667 1
0.1667 0.1667 0.1667 1.5
3.1667 2.1667 0.3333 1.3333
0.1667 1.3333 0.3333 1.8333
1.1667 0.6667 0.1667 0.8333
1.5 0.5 0.1667 0.8333
0.8333 1.6667 0.6667 0.1667
1.3333 0.3333 1.1667 1.1667
3 | 0.1667 0.1667 0.1667
1.5 0.6667 0.1667 1
0.1667 0.6667 0.5 0.8333
0.1667 0.1667 0.1667 1
0.3333 05 . I 0.8333
13333 1.5 0.3333 0.6667
0.5 0.1667 0.1667 1
2.5 0.3333 0.1667 0.1667
3.6667 3.1667 0.3333 0.5
0.3333 0.3333 0.3333 1.6667
0.1667 0.5 0.3333 0.8333
0.1667 0.1667 2 0.1667
0.1667 0.8333 0.3333 0.1667
0.1667 0.3333 1 0.5
0.1667 2.3333 35 0.8333
0.3333 3.6667 0.3333 0.3333
0.6667 2 0.1667
[.1667 0.1667 0.8333
0.1667 0.1667 0.1667
3.3333 1.8333 0.1667
1.6667 0.1667 1.1667
2.6667 0.1667 0.6667

Table F. Lengths of the wet blocks of rain rate averages converted to units of hours
over a 6x6 km2 region of TOGA-COARE in sequence by column.
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TABLE G
0.1667 5.6667 0.6667 1.0000
1.1667 0.1667 1.0000 0.5000
0.5000 1.8333 0.1667 0.8333
0.6667 1.6667 3.1667 8.8333
4.5000 10.8333 0.8333 0.3333
0.8333 1.0000 2.1667 0.1667
1.8333 0.1667 3.0000 0.5000
0.6667 1.0000 0.3333 0.1667
0.1667 0.1667 1.0000 3.8333
0.1667 3.6667 3.1667 3.0000
2.3333 4.0000 4.5000 8.5000
0.1667 0.1667 1.6667 0.1667
0.3333 0.8333 1.5000
0.5000 0.3333 1.5000
0.3333 0.8333 2.6667
0.5000 0.1667 4.5000
0.3333 7.5000 0.3333
2.3333 1.1667 0.1667
0.6667 0.1667 4.3333
3.0000 0.1667 1.5000
2.8333 2.0000 0.3333
1.8333 1.3333 0.1667
0.3333 0.1667 2.1667
0.1667 1.3333 0.8333
0.1667 0.1667 0.1667
0.1667 1.8333 1.0000
0.5000 1.5600 0.8333
0.3333 5.0000 1.0000
0.1667 0.1667 1.0000
7.1667 0.1667 1.1667
3.3333 2.5000 1.3333
1.3333 0.1667 0.3333
1.5000 0.3333 0.1667
6.8333 0.3333 0.3333
0.5000 0.1667 0.6667
0.6667 1.5000 6.3333
2.3333 0.1667 0.5000
0.6667 0.1667 0.5000
0.1667 0.1667 5.0000
0.1667 0.3333 0.1667
0.3333 5.5000 0.3333
0.6667 0.8333 0.6667
0.3333 0.5000 0.1667
0.3333 1.3333 4.8333
1.5000 7.1667 2.1667
1.6667 0.6667 2.5000
0.6667 0.3333 1.3333
0.5000 0.1667 0.1667
0.3333 0.1667 1.0000
0.8333 2.6667 0.1667

Table G. Lengths of the dry blocks of rain rate averages converted to units of hours
over a 8x8 km" region of TOGA-COARE in sequence by column.
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TABLE H

0.1667 2.6667 0.1667 0.3333 0.8333
0.3333 6.8333 1.8333 0.3333 0.6667
1.0000 0.1667 0.1667 1.0000 1.6667
0.1667 7.8333 0.1667 3.6667 0.5000
9.3333 0.8333 0.1667 0.1667 1.6667
0.3333 0.1667 0.6667 0.5000 0.8333
1.0000 0.1667 0.5000 0.3333 0.1667
0.1667 1.6667 0.5000 1.0000 0.1667
0.1667 | 0.3333 0.3333 0.3333 0.5000
0.1667 0.5000 2.3333 0.1667 1.0000
2.8333 0.6667 3.0000 0.3333 0.6667
0.8333 0.1667 3.1667 1.6667

0.1667 0.3333 2.8333 0.8333

4.8333 2.1667 3.0000 0.1667

1.5000 1.3333 0.3333 1.6667

0.1667 0.1667 0.1667 0.6667

0.5000 0.8333 0.5000 0.1667

0.3333 0.5000 0.5000 4.8333

1.3333  0.1667 0.1667 0.3333 ]
0.5000 - 2.1667 0.1667 0.1667

6.3333 0.3333 0.6667 1.6667

0.3333 0.8333 1.5000 0.1667

0.3333 0.1667 , 0.1667 0.3333

0.1667 0.8333 0.6667 0.6667

0.1667 0.1667 0.1667 0.6667

0.3333 0.5000 1.5000 0.3333

0.3333 1.5000 0.1667 1.1667

0.3333 0.1667 0.1667 0.1667

0.1667 4.0000 0.1667 1.6667

0.1667 0.3333 0.5000 1.3333

0.1667 0.1667 0.1667 1.8333

0.1667 0.5000 0.1667 0.8333

0.1667 0.3333 0.1667 1.0000

0.1667 0.8333 0.8333 0.1667

0.2333 0.3333 0.1667 1.3333

0.6667 2.3333 0.1667 0.1667

1.5000 5.8333 0.3333 0.3333

33333 0.1667 0.3333 2.6667

1.8333 0.3333 2.0000 1.1667

Table H. Lengths of the wet blocks of rain rate averages converted to units of hours over a 8x8 km-
region of TOGA-COARE in sequence by column.
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TABLE 1

0.5 0.5 0.8333 0.1667 0.6667
0.1667 2.1667 0.1667 0.6667 1.1667
1.1667 0.1667 1.8333 0.1667 1.1667

0.5 0.1667 5 0.1667 0.3333
0.6667 0.1667 0.3333 2.5 0.1667
3.1667 0.1667 0.5 0.6667 0.1667
1.1667 0.6667 0.3333 ] 0.6667
0.6667 0.3333 0.1667 0.1667 6.3333
1.8333 0.3333 2 1.8333 0.5
0.6667 0.6667 1.1667 0.1667 0.3333
0.1667 0.5 1.1667 0.1667 8.8333
0.1667 1.5 0.1667 0.3333 0.1667
2.3333 0.1667 1.8333 0.8333 0.5
0.1667 0.3333 i 2.1667 0.1667
0.1667 0.3333 0.3333 3 3.8333
0.1667 0.1667 4.5 0.1667 0.1667
0.3333 0.6667 0.3333 1 2
0.3333 4.3333 0.1667 3.1667 2.3333
0.3333 1.1667 0.1667 4.5 1.3233
2.1667 0.1667 2.5 1.5 1
0.6667 1.8333 0.1667 1.1667 0.1667

3 1.6667 0.1667 1.5 0.8333
2.8333 6 0.1667 2.6667 0.5
1.8333 0.1667 1.5 4.1667 0.5
0.3333 0.6667 0.1667 0.1667 8.5
0.1667 1.3333 0.1667 4.3333 0.1667

0.5 2 12.3333 1.5 0.5
0.3333 0.8333 0.1667 0.3333 0.1667
0.1667 0.1667 0.3333 0.1667 3.8333
7.1667 0.8333 5.1667 2.1667 3
3.1667 0.1667 0.1667 0.6667 8.5
1.3333 3.6667 0.8333 l 0.1667
1.3333 4 0.5 0.3333
6.8333 0.1667 1.1667 0.1667

0.5 0.6667 6.8333 1

Table [. Lengths of the dry blocks of rain rate averages converted to units of hours over a 10x10 km" region of
TOGA-COARE in sequence by column.
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TABLE J
0.1667 3.5 0.1667 0.3333 0.3333
03333 2.1667 4 0.1667 1.6667
1  2.6667 0.1667 0.6667 1
0.1667 7 ' 0.1667 15 0.1667
0.1667 0.1667 | 0.3333 1.1667 3
9.5 7.8333 | |  0.1667 0.1667 0.3333
0.3333 0.8333 1 1.6667 0.3333
1 0.1667 - 0.3333 0.1667 1.6667
0.1667 0.1667 ' 0.8333 0.1667 0.1667
0.1667 0.5 3 0.1667 0.3333
0.1667 1.6667 6 0.1667 0.6667
2.8333 0.1667 0.1667 0.1667 0.8333
1 0.5 0.3333 0.1667 1.8333
0.5 0.8333 0.1667 0.6667 0.3333
5 0.6667 0.1667 0.1667 1.8333
1.5 0.5 1.8333 0.1667 1.3333
0.1667 0.3333 0.1667 0.1667 0.6667
0.6667 0.1667 0.1667 1 2
0.3333 2.1667 0.1667 0.1667 1.1667
1.3333 1.3333 0.1667 0.1667 1
0.5 0.1667 0.6667 0.3333 1.6667
5.3333 0.8333 0.5 0.5 0.1667
0.8333 0.1667 0.6667 2.3333 0.3333
0.5 0.1667 3 0.3333 2.8333
0.2333 0.1667 6.3333 0.5 1.3333
0.5333 0.1667 2.8333 1.1667 1.3333
0.5333 0.6667 3.1667 4.1667 2.6667
0.1667 0.1667 0.1667 0.5 0.5
0.3333 2.1667 0.1667 0.3333 1.8333
0.3333 0.5 0.3333 1 0.8333
0.1667 0.8333 0.1667 0.3333 0.1667
0.1667 0.1667 0.1667 0.1667 0.1667
0.1667 0.8333 0.5 2.3333 0.5
0.5 0.1667 0.5 0.8333 1
0.8333 2.5 0.1667 0.1667 I

Table J. Lengths of the wet blocks of rain rate averages converted to units of hours over a 10x10 km" region of
TOGA-COARE in sequence by column.



The following table contains the estimated quantities obtained from the data of Dry and
Wet durations (the original data exist in the Tables A-J). These quantities are very useful,

because they are used for the parameter estimation of Lognormal, Inverse Gaussian, and Gamma

distributions (MLE or MME).

APPENDIX

AREA | EPOCH | NUM.OF 2 12 | GEOME-
KM? | DURAT- | oBserva- 2X 2.X} | LlogX, ZLEI'%J 210X, - ) TRIC
IONS TIONS MEAN

10 x10 DRY 172 244.5 1004.53 -65.63 325.52 249.027 0.6828
WET 175 182.83 587.36 -110.19 354.19 212.35 0.533

8 x8 DRY 162 247.1672 | 1034.748 | -47.0295 | 281.3991 232.3799 0.7480
WET 167 168.834 517.4139 | -105.3523 | 323.3656 191.9568 0.5321

6x6 DRY 149 264.6673 | 1370.555 | -32.8135 262.96 236.5749 0.8023

WET 154 152.1674 386.694 -90.8547 | 277.186 169.5448 0.5544

4x4 DRY 153 275.33 1459 -37.14 288.8 256.6 0.7845
WET 159 133.17 313.14 -117.94 302.51 158.81 0.4763

2x2 DRY 138 297.67 2212.28 -14.841 246.44 245.36 0.8980

WET 144 109.83 22942 -121.03 296.56 143.2947 0.4315
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