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ABSTRACT

Fotini Fanara

Risk processes with Delayed Claim settlement.
October 1999

The usual model of a risk business is based on a point process N which
describes the times that a claim occurs and a sequence {Z,} of independent
and identically distributed random variables having the same distribution
function F that describes the size of the claims. By studying this model,
typically one derives asymptotic results about the probability of ruin such as
the classical exponential approximations of Lundberg’s.

In this thesis we introduce a modified risk process, which attempts to
capture the effect of delays in claim settlement as well as claim settlement in
installments. As in the classical risk model, our goals are very much the same.
We want to approximate the sum of the delayed claims by an appropriate
probability function, to study the probability function of ruin, find a possible
exponential bound, and calculate Lundberg’'s exponent. More specifically we
introduce three different models: a single contract (ON-OFF) process
characterizing the delayed claims of our model, a model of M such processes,
and a superposition model of the process as M tends to infinity. The first
model, while of limited practical significance, constitutes a building block for
the analysis of superposition models which are closer to reality.

For the analysis of the single contract model we use renewal theoretic
tools, which, together with an asymptotic analysis of Laplace transformations
via Tauberian theorems gives expressions for the asymptotic mean and
variance of the process. These enable us to develop a diffusion approximation
using Brownian motion for our processes. Here we make use of the theory of
weak convergence of probability measures on metric spaces. By using this
result we can calculate the upper bound for the ruin probability and give a
crude Lundberg exponent.

For calculating Lundberg’'s exponent we resort to Large Deviation
techniques. We consider the moment generating function of the sum of claims
up to time ¢, say f(t.6)=Ee #® (where A(t) is the sum of claims up to time )
and, using once more renewal theoretic techniques we evaluate

a(9)-1im[ﬁ,t!logf(t,0). This in turn, with the help of Large Deviation

techniques allows us to obtain asymptotic expressions for the probability of
ruin. An application is made of the above when claims are exponentially

distributed.



Finally, we examine the asymptotic properties of the superposition model
when the number of contracts becomes large. In particular, we obtain
conditions under which the claim arrival process converges to a Poisson
process.

VI



NEPIAHWH
dwreiviy Pavapa

Ailadikacieg Kivduvou pg kaBuoTepnuéveg
aoQAaAIOTIKEG {NJiEG.

OktwRpiog 1999

To ouvnBeg povtédo pidg diadikaciag kivduvou e uia aoQaAoTIKA
etaipeia Bacietar oe pia onueiakry diadikacia N n omroia TTePIypAPEl TOUG
XPOVOUG KaTd TOUG OTToioug dnuioupyouvTal ol aTTaiTAoEIG-{rUiES Kal pia oeipa
{Z} amd avegdptnTeg KAl I0OVOHEG Tuxaieg METARANTEG, €xovrag Tnv idia
ouv@pTnon KATavopng F n otroia TTEPIyPA®el TNV aTToTIUNON-KOCTOG TWwV
{nuwv.  MeAetwvtag autdé 10 pOVvTEAO  KATOl0¢  UTTOPEl  va  ByGAel
atroreAéouara yia tny moavotnTa KataoTpoPnS TNG acPaMIoTIKAS ETAIPEiag,
OTTWG N KAACTIKN TTpocéyyion Tou Lundberg.

Ye autiy TN OITAWMATIK €ioaydyoupe pia Tpotrotroinuévn diadikacia
kivBUvou, n omoia culAapBaver Tnv évvoia NG kabucTtepnuévng dnuiag 1600
KaQAQ 000 OTO KAQOOIKO HOVIEAO TNG OTIMIAIAE TTANPWHNAS Twv CnHIWV.
@£AoupE va TTPOCEYYICOUME TO ABpOoICHA Twy KaBuoTepnuévwy Cnuiwy atro
MIa KaQTAAANAn ouvdptnon mlavotnrag, va peAetiooupe Tnv TmBavotnta
KQTaoTPOPNAG, va Bpouue éva mlavd ekBeTIkG @PAYHa KAl va UTTOAOYIOOUME
Tov ekB€tn Tou Lundberg. Mo cuykekpipéva eicaydyoupe Tpia dIAPOPETIKA
MovTéAa: pia Bidikaoia evog oupBoAaiou (ON-OFF) n omoia xapaktnpilel Tig
KQBUOTEPNHEVEG QTTQITACEIS TOU MOVTEAOU pag, éva poviéAo M 1éroiwv
dradikaciwv kar éva cuvduacoud dedopévwy M Ttéroiwv diadikaoiwy, Twv
amaiticewy OAwv autwyv Twv n diadikaciwv e pia diadikaoia Kivduvou
kaBwg 1o N Teivel aTO ATTEIpo (superposition model). To TTpwTo HOVTEAO, av Kal
TTEPIOPICHEVNS TTPAKTIKAG ONpaciag, eivar oAU Baoikd kabwg ta aAAa duo
givar ETTEKTA0EIC QUTOU.

Ma tnv avaAuon Tou TIPWTOU HOVTEAOU XPNOIMOTTOIOUNE avavEWTIKA
epyaAgia, ta ofroia, padi TNV QOUPTITWTIKA avAAucn HETAOXNHATICUWY
Laplace péow Twv Tauberian Bewpnudtwy Jdivouv ekQPACEIS yi@ TNV
QOUNTITWTIKA péon T kal T diagTropd tng diadikaciag. 'ETo1 €iuaoTe KAvoi
va KAVOUHE HIa TTPoCEyyion diaxucng XpnoIHOTToIWVTAg Kivnon Brown yia Tig
diadikacieg pag. E&w xpnoipotroiolpe TN Bewpia acBevoug guyAIong PETPWY
meavétnrag o0  METPIKOUG xwpoug. Kdvovrag xprion autwv  Twv
QTOTEAECHATWY EKTIHAME éva Avw @pdAyua TnG mOaveTnTag KaraoTpoPrig Kat
éva pn akpipn ex6étn Tou Lundberg.

MNa évav 1Mo akpiBr) utmroAoyioud Tou exBétn Tou Lundberg pia dAAn
HéBodoc TepidauBdverar auth Twv Large deviation (Eupeiag S1aoTropdg)
TEXVIKWY. Bewpouue Tnv Trpuinrg POTI) Tou aBpoiouaTog TWV ATTAITICEWY
péxpl T omyun t f(tB)=Ee AU (6mou At) eivai To dBpoiopa Twv

VII



araiTigewy pEXP! T XPOVIKN oTiyur) {) Kai XPNOIUOTTONUVTAG AVAVEWTIKEG
TEXVIKEG UTTOAOYiIfoUpE TO @, (8) =lim,_, %logfk(t,e). Auto pe T BorBaia Twyv

Large deviation TeXVIKWY pag EMITPETTEI VA TTAPOUKNE QOUUTITWTIKEG EKPPATEIC
yia Tnv mBavornra karaoTpo@ns. YTrapxel evOEIKTIKA wia epapuoyr orav n
KQTavourj Twv aQTmraiTACEWV gival n ekBeTIK.

TEANOG, HEAETAHE QOUNPTITWTIKEG 1IDIOTNTEC TOU superposition povrélou étav o
apiBudg Twv CUUPPBOAdiwV  Yivel TTOAU PEYAAOG. ZUYKEKPIMEVA TTAIPVOUME
KATTOIEG OuVOnkeg Kartw amod mi¢ omoieg n diadikacia kATw arrd TNV oTToia
@Bdvouv o1 {npieg akoAoubei Tnv karavour] Poisson.
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Chapter 1

Insurance Risk Processes with
Delayed Claims

Collective risk theory is concerned with the random fluctuations of the total
assets, the risk reserve, of an insurance company. Consider a company which only
writes ordinary insurance policies such as accident, disability, fire, health, and
whole life. The policyholders pay premiums regularly and at certain random times
make claims to the company. A policyholder’s premium, the gross risk premium,
is a positive amount composed of two components. The net risk premium is
the component calculated to cover the payments of claims on the average, while
the security risk premium, or safety loading, is the component which protects
the company against large deviations of claims from the average and allows an
accumulation of capital.

We are dealing with a risk model with delayed settlement. Below we will
introduce some models which describe the risk reserves and the way claims are
settled by the insurer. In practice claim settlement, particularly for large claims,
frequently occurs in installments often spread out over significant periods of time.
Therefore, we will consider not only the time each claim occurs, but also the
time interval necessary in order for the insurer to settle the claim. One typically
assumes this time to be a random variable with a given distribution. Models that
incorporate the time period between the epoch a claim occurs and the epoch the
final installment has been payed are known in the insurance risk literature as
delayed settlement models.

Several authors have considered models that capture some aspects of de-



layed settlement. Among them we mention Boogaert and Haezendonck (1989).
Neuhaus (1992), Kliippelberg and Mikosch (1993), and Brémaud (1998).

In the section that follows we give more details regarding delayed claims as
well as a brief review of some recent papers on this topic.

1.1 Delayed claims

In the classical insurance risk model with initial reserve or capital u and premium
rate ¢, the basic stochastic elements are

the epochs when claims occur, denoted by To =0, 11,75, ...,

the number of claims up to time ¢, defined by N(t),

the claim sizes, X;, i = 1,2, o

the total claim amount by time ¢, S(¢) = Zf;(f) X;, and

the risk reserve at time ¢, i.e. Y(t) = u + ct — S(¢).

In the classical risk theoretic models it is assumed that the claims are settled
by the insurer at the time they occur. In reality this is rarely the case. Very
often a claim is unknown to the insurer when it occurs and is reported after a
cerain time of delay. There is always a delay between the time a claim occurs and
the time of the settlement, i.e. payment of that claim by the insurance company.
The period of time between these two events is called the settling delay. Another
kind of delay is caused by the claims whose existence is known but their cost
development is incomplete as e.g. in rehabilitation following accidents. If the
delay degenerates at zero the process reduces to the classical risk model, where
it is assumed that the claims are settled by the insurer immediately at the time
when they occur. Of course, in the classical risk model the settling delay has no
real impact on the insurer’s surplus. On the contrary when interest and inflation
are taken into consideration, the settling delay affects this surplus.

Many authors have discussed the problem of delayed settlement and have
given models that capture various aspects of this problem. A frequently used
model is the "transient integrated shot noise process”. In this model we assume

2



that when a claim occurs, the company is not required to pay immediately the
full amount in one lump sum. Instead the occurrence of a claim generates a
stream of payments that may extend for months or years into the future. In this
case the risk process becomes

N(2)
Rty=u+ct— > h(Z,t—-T:),

k=1

where {7, } are the claim occurrence epochs and h(r, s) is a function that describes
the payment rate at time s as a result of a claim of total size r occuring at time
0. Because of the delayed claims the sample paths of the resulting risk process
R(t) are smoother than those of the classical model.

A more general risk model considered by a number of authors is the following

St)=> Xu(t-Tn), t>0 (1.1)
n>1
The above is the explosive shot noise process where X, X;, X, ..., are i.i.d.

random non-null measures with support on R*, X,(t) = X,([0,¢]), t > 0, and
(T,)n € N are random variables such that N(t) := #{n : T,, < t} is a homoge-
neous Poisson process with intensity a > 0.

We assume that for n € N the functions (X,(t));>0 are non-decreasing and
cadlag. So the realizations of (X,(t))i>0 are measure-defining functions. The
mean and the variance of the stochastic process (S(t)):>¢ are versions of Camp-

bell’s theorem.

One way for finding the moments and covariances is by calculating the Laplace
functional of the random measure S. We have

t
E[e®5®] = exp{—At(1 -t / Ee"¥®gy)}, (1.2)
0
where )\ is the rate of the Poisson process.

Now from (1.2) by differentiating at a = 0 we get the following
§ t
u(®) = E[S©®) = A [ (X (u))du
t
o%(L) = Var[S(t)] = /0 E[X2(u)|du

3



Cov[S(s), S(t)] = o*(s) + )\/Os E[X(v)X(u,u+t— s)ldu

by assuming that u(t) < oo and o?(t) < oc.

The moment functions of S are not invariant under shifts except for the Com-
pound Poisson process, that is why (S(t));>0 is not stationary of any order.

The Poisson shot noise as in (1.1) has been investigated for i.i.d. stochastic
processes (X,(t))e>0, » € N, whose sample paths decrease to zero. It is also a
natural realization of the classical compound Poisson process.

This can also be applied to some specific insurance problems. The explo-
sive shot noise process can be viewed as a model for delay in claim settlement.
The T,,, n € N, are considered as the claim arrival times, and the measure
Xn(- = T,) describes the evolution of hte pay-off process for the n** claim. Since
every realization of the process X, (t) is a non-decreasing function of ¢, the limit
lim 00 Xn(t) = Xn(00) exists (possibly infinite) and is the total pay-off caused
by the n® claim. Then (S(t))t > 0 as defined in (1.1) is the total claim amount
process. )

The model in (1.1) is introduced in Boogaert and Haezendonck (1989) and
also Kliippelberg and Mikosch (1995) and Bremaud (1998).

The limit distributions of the process
S(@¢) — p()
a(t)
have been characterized by Lane (1984) as infinitely divisible laws. For study-
ing the asymptotic normality we can start by a Berry-Essen estimate under the
Lyapunov-type condition.

fort — oo

We can also use a functional version of Central Limit Theorem. Now we must
recall that we work in D[0, 1] which is the space of cadlag functions on the unit
interval. We suppose that D[0, 1] is equipped with the supremum-norm topology
and with projection g-algebra.

We define

S(xt) — p(xt)
o(t) '

Now we can establish the conditions for the convergence of the finite-dimensional

distribution of the process S(t). From Lane (1984) we have the following theorem,

S:(t) = 0<z<1, t>0

4



which resembles closely the Lindeberg condition for sums of independent random
variables, that will help us establish those conditions.

Theorem 1 When the following conditions hold :
Var[S(t)] < oo, for allt,
pe = E[S(t)] and o? ~Var[S(t)] 00 ast— o0
then the condition

af/ yFi(y)dy — 0, forallz >0
Ioy

is nesessary and sufficient for convergence in distribution of Z(t) to a normal
N(0,1) limit, as t — oo.

Where it is o
Fdw) = [ Ful(-v.v)it slA(ds)

where we denote the distribution of X (t,s) by Fx(z;t,8) = P{X(t,s) < z}and
F xis the tail distribution.

Now for creating the conditions requested the following theorem (see Klup-
pelberg and Mikosch 1995) holds. We need some regularity conditions on the
process (X (t))¢>o involving some regular variation property in RZ. A measurable
function f : R, X Ry — Ry is regularly varying in R? if for all z,y > 0 the limit

. fl=t,yt)
Clz.9) = B =0

exists and is positive. In this case C(z,y) is homogeneous, i.e.
Clkx, ky) = k*C(z,y)

holds for all z,y, k > 0 and some fixed number p, and C(1,1) = 1. p is called the
index the index of regular variation and we write / € RV(p).

Theorem 2 Suppose that E[X(s)X(t)] € RV(p— 1),p > 1. Then the limits
C(z,y) = }_’f& Cov[Sa(t), Sy (t)],



where T, y € [0, 1], exist and are finile. Moreover, there exist a Gaussian process
(Bz)o<z<1with zero mean and covariance function C(z,y), 0 < z, y < 1, and
with almost surely continuous paths. The finite-dimensional distributions of the
process S(t) converge to those of B if and only if

1 0 t
a%(t) /ea(t) yA P{X(u) > y}dudy — 0, for everye > 0.

Yet another model is the following: A loss may be unpaid because it has not
yet been reported or because its size has not yet been settled. “IBNR” Incurred
But Not yet Reported must be understood as “IBNP” (Incurred But Not Paid)
in most cases. IBNR-models are mathematical models allowing to estimate the
future losses akin to casualties which have already occured.

We introduce a sequence of non-negative, iid delay variables (D, )n,eny which
are independent of (T, )nen and of (X, )nen and modify model (1.1) as follows

N(©)
SP(t) =Y Xa(t—T.—Dn), t=>0.
n=1

Then the n'® claim occurs at time T},, but it is only reported after a random delay
D,,. This can be considered as a replacement of the claims arrival process (T3, )nen
by (T + Dn)nen- Using the properties for the probability generating functional
of the Poisson process (N(t)):>0 we see that the process (S(¢));>0 generates an
infinitely divisible random measure S? with Laplace functional

Lf = Bexp{- [ f(x)d5°()}
= exp{-ABa(| ["(1-exp(~ [ f@)dX(@~u—y)}dudFo(y)}.
where Fp is the distribution of D.

Last but not least, one can consider claims arriving according to an inhomo-
geneous Poisson processes. Here (N (t));>¢ is an inhomogeneous Poisson process
with intensity measure A(t), £ > 0, i.e. A is a continuous non—decreasing function
satisfying A(0) = 0 and A(t) < oc for all ¢ > 0.

For each of the previous models Campbell’s Theorem (see Appendix) can be
applied for calcualating moments of order k.

6



1.2 Stable Lévy motion approximation in col-
lective risk theory

In this section, quite independent from the previous section, we are dealing with
a different approximation of our risk process. This analysis was carried out in
Furrer, Michna and Weron (1997). A risk process can also be approximated by
an a-stable Lévy motion (1 < a < 2) with drift. Here especially relevant are
weak approximations whenever we have heavy-tailed claims.

Here our mathematical model is the following

N(®)

Rt)=u+ct— ) Y,

k=1

where we assume that claims occur at jumps of the point process N = (N(t);t >
0). Here the distribution of N (maybe a Poisson maybe not) plays no important
role in our analysis.The successive claims (Y} : k € N) are assumed to form a
sequence of independent, identically distributed random variables with E[Y;] =
g > 0. The initial risk reserve of the company is u > 0 and the gross risk premium
is ¢ > 0 per unit time.

Remark 1 The notation X ~ S,(o, 5, i) indicates that the random variable X
has a stable distribution, characterized by four parameters

i) the indez of stability, 0 < a < 2,
ii) the scale parameter, o > 0,
ii) the skewness parameter, =1 < 3 <1 and

w) the shift parameter, p € R

The definition of an univariate stable distribution derives from the stability
property that the family of stable distributions is preserved under convolution.

Definition 1 A stochastic process Z, = (Z,(t) : t > 0) is called (standard)
a-stable Lévy motion if



(1) Z4(0) = 0 almost surely,

(it) Z, has independent increments,

(7'“) Za(t) - Za(s) ~ Sa((t - 3)2'1-7,51 0)
forany0 <s<t<oc and forsomeO0<a<2,|8|<1.

The sequence (Q™ : n € N) of risk processes are given as follows

Nt

(n) (W) o )y 9

QW =u+cMi— Y vV, t>0.
k=1

We now assume that the claims are of the form

Y,
Y(") — ,_k’
T p(n)

H
where (Y : k € N) is a sequence of iid random variables with common distribu-
tion function F' and mean p such that

1 n
o(n) ;(Yk —p) = Za(1),

n — 0o. The function ¢ is given by:
o) = ¥/ L(n),

where L is slowly varying at infinity.

The condition a > 1 is needed to guarantee a finite mean of the variable Z,(t).

Theorem 3 Let the sequence (Y; : k € N) be as above and let (N™ : n € N) be
a sequence of point processes such that :

N®(t) - Ant
o(n)

in probability in the Skorokhod topology for some positive constant A\. Assume

also that
lim (c(") - /\n—ﬁ'—) =
e p(n)

—0,n — o0



lim u™ = wu.
n—co

Then
1 NP

(n) (n) _ 1/a
u™ M — —— Yi = u+ct — AVZ,(8),
p(n) kgl

n — oc in the Skorokhod topology.

Proposition 4 Let (N(t) : t > 0) be a renewal process with inter-occurance
times (Ty : k € N) and assume that there ezist a positive constant A and a slowly

varying function L such that

L %(Tk—l)—»B(t). n — oc

o(n) 5 A
in the Skorokhod topology where o(n) = \/nL(n). Then, for 1 < a < 2 we have
N(nt) — Ant
Nt —€nt o o

in probability in the Skorokhod topology.
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Chapter 2

The Single Contract Model

Here we examine the free reserve process, i.e. reserve for fluctuations in the tech-
nical results, assuming that there is a single contract which provides a constant
rate ¢ of premium income and generates claims at times 7,,, n = 1,2,3,.... These
claims are settled at constant rate which we will assume equal to 1 without loss of
generality. While this model is far from being realistic and has little practical sig-
nificance in itself, it will provide a basic building block from which multicontract
models of practical interest will be constructed.

To specify the statistics of the model, let {X,}, {Ya}. n = 1,2,.... be two
independent sequences of non-negative i.i.d. random variables. We assume that
P(X, <z)= F(z), P(Y, <y) =1—¢e*, y > 0. Define the point processes
{To;n = 1,2,3,...}, {Sn;n = 0,1,2,...} via the relationships Sp = 0, S, =
Sp1+ Yy +Xn,and T, = Sp1 + Y, n=1,2,.... Thus, X, is the amount of
time it takes to settle the n’th claim which occurs at time T,, while Y, is the
amount of time that elapses between the settlement of the n’th claim (at time
Sn) and the occurrence of the n + 1'th claim (see figure 2.1, below). It is further
assumed in this model that during the time one claim is being settled, another

one cannot occur.

11
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We assume that, initially, the insurer has free reserves u and that ¢ > i ifb}’x

ensuring profitability for the insurer on the average (positive safety loading). If
we define the process {a:;t > 0} as

op =Y LT, <t <Sy)

n=1

then .
Alt) == /0 auds

is the total amount that has been paid by the insurer by time ¢, while Z; :=
u + ct — A(t) is the free reserves process. This model resembles the classical risk
model with Poisson times, where an asymptotic expression for the probability of
ruin is obtained using the Cramér-Lundberg asymptotic formula. Instead we will
use a diffusion approximation approach. This will allow us to extend our analysis
to multi—contract portfolios.

2.1 Asymptotic Mean and Variance Calculations
for the Single Contract Model

As a first step towards this goal we will compute the expected amount of money
paid by the insurer by time t, EA(t) as well as the variance Var[A(t)] using
standard renewal~theoretic arguments (see Cinlar, 1975, Asmussen, 1987). In-
deed, {as;t > 0} is a regenerative process with respect to the ordinary renewal
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process {T,;n = 1,2,...} and thus, using standard arguments, we can obtain the

following renewal equation for f (t) :== EA().

= E[A(t);Ty > t] + E[A(t);Th < {]
= BT >+ [ “EJAQ) | Ty = u|C(du)

= BlA@KT >4+ [ "EJA(TY) | Ty = uG(du) + / * BJA(T,, 1] | T\ = u)G(dw)

a2

—
-

g

where, A(s,t] := f, 4 cudu = A(t) — A(s) and G(t) = P(X: + Y1 < t). We thus

have
f (t) = E[A@l);Ty >t]+ E[A(Th);Th <t} + /Ot ft— w)G (du)
= E[A(TiAt)]+ /Ot ft- u)G(du)
= b(t) + Ot ] (t — u)G(du)

with
b(t) == E[A(T1 A t)],

~

whence we obtain the following renewal equation for f (¢):

Fo=40+ [ Ft-wa@w. (21)

Taking Laplace transforms in this last equation we have
¢ ~ o0 (e t ~
8 / e [ (t)dt = s / e~ *tb(t)dt + / et / F (t — wG(du)dt.
0 0 0 0

Denote by f(s) := s [Ce } (t)dt the Laplace transform of ; (and similarly by
b(s) the Laplace transform of b(t)) and G(s) := [ e~ **dG(t) the above equation
gives ) X o

f(8) =b(s) + F(s)G(s), (2.2)
(Note the difference in definition of the Laplace transform for functions such as
f(t) and measures such as the distribution function G cf. section 3.2.1)

Clearly, since G(t) = P(X; +Y; < t), G(s) = X(s)xi‘-_—s, in view of the

independence of X; and Y;, where X(s) and 35 are the Laplace transforms
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of X; and the exponential random variable Y] respectively. Next we obtain an
expression for b(s) as follows

b(s) = s /:e"‘E[A(TI/\t)]dt

T aC
= E[L se” " A(t)dt + A se *t A(Ty)dt]
= B[ semt(t - Vi)dt] + BIAT) (= ()%, 13,)]

Y

X1+Y1 Xi+1n
- E] /Y ste=*tdt] — E| / Yise~*tdt] — E[A(T) (€)% 1y, ).
1 1

Taking into account the fact that A(T}) = [ a,du = X;. the above expres-
sion becomes

5(8) = E [_Xle—s(X1+Y1) _ }/16—8(.\’1+Y1) + }/le—slﬁ _ le—s(xrl-}ﬁ) + le—syl]
S S

-E [__Yle—s(xl+}’1) + Yle—sYl] _ E[_lele—s(X1+Y1)] .

Now, use the independence of'X,, Y;. as well as the fact that E [Xie~o%1] =
—X'(s) (where prime denotes differentiation with respect to s) to obtain

b(s) = X'(s)Y(s)+Y'(s)X(s) = V'(s) - %X(S)Y(s) + %Y’(s) —V'(s)X(s)
+Y'(s) — X'(s)Y (s)

or
" 1. A 1 A
X(s) = —= =~
(s) sX(s)/\+8+s/\+3
A 1-X(s)
T A4+s s (23)

Denoting by Fj(z) := 7117 Jo[L — F(y)]dy the integrated tail distribution that cor-
responds to F' and using the fact that its Laplace transform is related to the
Laplace transform of F via the relationship Fj(s) := l—uﬂﬂ we have from (2.2)

and (2.3) :

M Xi(s)

T+ M X () @4

flo) = -
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2.2 Laplace Transform for the Second Moment
E[A(t)’]

In this section we will use a renewal-theoretic argument in order to obtain the
Laplace transform of h(t) := E[A(t)?]. Combined with the results of the previous
section, and the fact that Var[A(t)] = E[A(t)?] — E[A(¢)]? this will provide the
asymptotic behavior of the variance.

Ao = BT >0+ [ " E[A%t) | Ty = u]G(du)
= E[AYt);Ty > ] +‘/0tE [( o audu + [ adu)2 | Ty = uJG(du)

The integral in the last term above can be rewritten as the following sum of three
terms:

/ ‘B [( T audu)’ | T, = uJG(du) + [ " BLA%(¢ — w)]G(du)
+ 2/0tE [ ol aydu | T) = u] E [f;l adu | Ty = u]G(du)
/ “E[AT)) | Ty = WG(du) + / " BA(t — w)|G(du)
v f " E[(A(T) | Ty = w]E[A(t — w)|G(du),
and hence
M) = ELL@ST >4+ [ BT Ty < )G(du) + / " E[A2(t — w)]G (du)
=7 "E[(X, | Ty = WE[A(t — w)]G(du),
which gives
h(t)-= E[A(Tll\t)QH-/Oth(t—u)G(du)—+—2/OtE_[(Xl | T1 = u}f(t—u)G(du). (2.5)

We now compute the Laplace transform h(s) := s [° e~ *h(t)dt. The transform
of the first term on the right hand side of {2.5) is

T 00 3
s [T e ElAT At))at = E[ [ se Ayt + [ se““Az(Tl)dt],;ﬁ}fjl\;
0 0 T e

a

- E [ / T et — Y1)2dt] +E [A?(T1 JeoT1]

Y
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where, in the first equality we have used Fubini’s theorem. Taking into account
that A(T}) = X, and the independence of X; and Y; this last expression can be
rewriten in terms of the Laplace transforms of X;. Y7, and their derivatives as

2 A (1_X('S)+X'(s)). (2.6)

;A+s 8

The Laplace transform of the third term on the right hand side of (2.3) is
o rt ~
s/ / e YE[X) | Ty =] f (t — v)G(du)
o Jo
= / e ™EX, | T\ = u]G(du)/ se~ 7Y f (t — u)dt
1] u
= f(s) /OOC E[X1e™* T | Ty = u]G(du)

A X'(s)f(s), 2.7)

— 3 ; -8(X14+Y1) -
f(s)E[X,e ] T

where in the last step we have used the independence of X; and Y7 and f (s) is

the Laplace transform of } (t) given in (2.4). Hence, taking into account (2.6},
(2.7), we obtain (after considerable rearranging) the following expression for the
Laplace transform of h(t) = E[A(t)?]

s 2 dmXi(s) AX'(s)
AU 52 (1 + M X (s) - 1+ /\#1X1(3))2) . 29

2.3 Tauberian Theorems and Asymptotics

A key result in deducing the asymptotic behaviour of a real function, f(z) asz —
oo in terms of the behaviour of its Laplace transform is Karamata’s Tauberian
theorem. Standard references for this topic are Widder [33], Bingham, Goldie,
and Teugels, [4], and Feller [13]. We begin with the following

Definition 2 [Functions of Slow Variation] A measurable functionl : Rt —
R is slowly varying at infinity if, for every x > 0,

. l(zy)
Iim —* = 1.
y=30 [(y)

We say that 1 is slowly varying at 0 if [(1/x) is slowly varying at infinity.
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Examples of familiar functions that are slowly varving at infinity include
functions I(z) that converge to a strictly positive, finite limit, as £ — ¢, and
l(z) = log(z).

Following Feller [13]. let U be the measure concetrated on [0. ] such that its
Laplace transform

(/} (s) = /Ox e U {dzr} (2.9)

exists for s > 0. It will be convinient to describe the measure U in terms of
its improper distribution function defined for z > 0 by [U{0,z}]. Under fairly

A
general conditions the behaviour of [/ near the origin uniquely determines the
asymptotic behaviour of U(z) as £ — oc and vice versa. Any relation describing

A
the asymptotic behaviour of U in terms of [ is called a Tauberian theorem,

whereas theorems descibing the behaviour of 6’ in terms of U are usually called
Abelian.

If f: R — R is locally integrable, and vanishes on (—oc.0). it is convenient
to define its Laplace transform as

f@t) = s/: e T f(x)dr = s/ooo e  f(x)dz, (2.10)

again for all s for which the integral converges absolutely. It is importrant to
note the slightly different definition of the Laplace transform for measures and
functions respectively. We tacitly followed this convention in the previous sec-
tions.

The following fundamental theorem due to Karamata (see [13], [4], [33]) will
enable us to obtain the asymptotic behaviour of f (t) = EA(t) and h{t) =
E[A(t)?] (and hence that of Var[A(t)]) as t — oc from the corresponding behav-
iour of their Laplace transforms near zero. (For two real functions f, g. write

f(z) ~ g(z) as x — oc (respectively z — 0) if ﬁ—(% —1.)

Theorem 5 (Karamata’s Tauberian Theorem) Let U be a non-decreasing
right-continuous function on R with U (z) = 0 for all z < 0. If I varies slowly
and ¢ > 0, p > 0, the following are equivalent

Ulz) ~ cxﬂz(x)r(TlJrl—) (2.11)
where r — oc,
0 (5) ~ es77I(:) (2.12)
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where s | 0.

When ¢ = 0, (2.9) is to be interpreted as U(z) = o(zfl(x)); similarly for
(2.10).

It is important to note that the slowly varying function [(-) which appears in
(2.11) and (2.12) is the same.

Indeed. from (2.4) we readily see that

: . duXi(s) Aty
imsF () =M T ()~ 15 e

since X;(0) = 1. Therefore Karamata’s theorem applies (with p = 1, I(x) = 1.

and ¢ = ﬁ’;’?) and allows us to conlude that

I f@) a1
1m =
5

or. equivalently, that
P A
t) ~ ——t.
F)~ 17 V™

Taking this analysis one step further, consider the function }: @) - ﬁ%t

which has Laplace transform f (s) — %Tﬁ’:ﬂ and consider its behaviour near the
origin. We have

lim | f(s) = Lo Yy M XI:-AI
s14+ Ay slo 1+ /\/111 1+ /\[LIXI(S)

__Am ()
L+ A1 14 A X(0) 2014 )

(In the above computation we have used the fact that the mean of the integrated
tail distribution Fy is —X}(0) = £2 (see, e.g. Cinlar, 1975). ) Therefore,

Karamata’s theorem shows that f (t) — ﬁ")“l“—lt ~ —'271%\?11—)2 which we rewrite as

~ /\\/ll /\ﬂ?
£y = s +o(1). 2.13
FO=100" sa 7 e TV (2.13)
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Let us now repeat this process for i(s) given in (2.8). It is immediate that

.m( MnXi(s) _ AX'(s) )
10 \ 1+ A Xp(s) (14 A X1(s))?

Aty z
2 2.14

and hence, from Karamata’s theorem it follows that

2
h(t) ~ 2 (ﬂ—) .

. 27
1;{{)18 h(s)

1+/\/.L1

Consider now the Laplace transform of A(t) — t? (—’\-‘i‘—)2 which can be written

1+
A 2 Aty :
h(s s? (1 + A/Ll)

_2 ( M Xi(s) ) _ ( M ) L A1=X(9) +5X(s)
s2 \\1+ 2 Xi(s) 1+ Aps s 1+ MuXi(s)? )’
Multiplying the above expression by s and taking the limit as s | 0 gives, with
the help of de I’'Hopital’s rule,

i s 2 ( A \'\ e 1 2(An)?
lslf?s(h(s) 7 (Hm))‘zm Tt )

Therefore, appealing once more to Karamata’s theorem, we have

e A - 1 2(M)? .
hit) =t <1 +/\#1> +t2u1 ((1 o)y +/\u1)3) + O(1). (2.15)

as

We are now in position to combine (2.13) and (2.15) in order to obtain the
following asymptotic expansion for the variance

_ _ g 2 /\/.IQ 5 .
Var[A(t)] = h(t)— f (¢) lf————(1 np v (2.16)

2.4 Asymptotic Mean and Variance for i/ Con-
tracts

We now examine a model consisting of M independent contracts, each behaving
like the model introduced in the beginning of this chapter. The contracts are not
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assumed to have necessarily identical parameters. In particular we assume that
the k'th (k = 1.2,.... M) contract has exponential rate Ay and claim duration
with mean pjx and second moment poy.

Ag(t) is the sum of claims up to time ¢ of the k th process. i.e.

Au(t) = /Ot ax(s)ds

By using the renewal arguments and Laplace transformations we want to
obtain a formula for the mean of A;(t) and also the variation of A(2).

Second model We consider now a more complex problem. We will denote by

M
A(t) == Axl(t),
k=1
S
the sum of claims up to time ¢ the superposition of of n independent replicates
of Ax(t). This model is closer to a real model and can have different claim X
distributions each time. The Y distribution continues being an exponential with
the same or different parameters. We now examine this kind of problem, but now
the formulas for the first and second order moments are easier to obtain.

Here we should make a parenthesis.

Two other possible models

In this parentheses we discuss two other possible models that can derive, we call
them the third and fourth model respectively.

Third model By taking the limit for A/ in the previous model, M — oc. we
examine another kind of model very similar with the previous, but now we work
mostly asymptotically. Because of the way this model is defined we are able to
use Limit Theorems for superpositions.
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Fourth and general model Finally. a very interesting model is obtained by
assuming that the X and Y random variables have unknown distributions and
they are not necessary independent. This last model is a generalized form of all
the models that were previously described. In other words we can obtain from
this one all the previous as well as their properties.

Returning to our second model we have:
Now we can expand our model by having a new A(t) = X, 4;(t) with A;(t)
defined as previously. This model is closer to a real risk model with delayed claims

that has different claim distributions each time. We suppose that Y has the same
exponential distribution with the same parameter A for every ¢ process of the Al.

For the mean

M ALy Apa;
E L. : .
-3 EA0) =3 (i - o)

=1

In patricular, when all the contracts have the same characterisics, we have

Apy Ao
E[A(t) =M (t - :
()] ( 14+ A 2(1+/\u1)2)

For the variance

In the case where the model has different claim distributions each time

M

~ M e M Atto;
Var[A(t)] = Var[lz:; Ai(t)] = ;VW[A‘U z t(l + Apyg;)3

In the case where the claims have the same distribution with the same para-

meters

Apto

We can see and easily prove that the above results fulfill Campbell’'s Theorem

(see Appendix section 6.5 and Daley, D.J. and D. Vere-Jones 1988).

Here we can introduce a case of great importance for understanding our model
In the long run that seems to simplify some things.
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So we define

A
/\M—--A—[

and also assume that the claims have the same distribution with the same para-
meters.

In this case, for the mean we have

AMmi AMi2 )
E[A(t)] = M|t -
()] ( L4+ Ampr 2(1 + Ayrp)?

A A
i M2 Ko
= M|[t—X - M — Moo PAU — AT

( T+ 2m 201+ 7%#1)2) Moo LA T A

= ——E[ftl(t)] — Mu (2.17)

While for the variance we have

Var[A(t)] = Mt Nt _ 2k Moo EAUL2
(1 + App)? T+ 5w 77
= \—/ET[TA@ Moo Mo (2.18)

It is obvious that from (2.17) and (2.18) Campbell’s Theorem is fully applied.
What is more (2.17) and (2.18) is in fact our already defined third model.

2.5 Details and properties for the third model
and approximation of the claim number process
by the Poisson distribution.

By taking the limit for M in the previous model, M — oc, we examine an-
other kind of model very similar with the previous, but now we work mostly
asymptotically.

In fact, if Ay = X’}— and also assume that the claims have the same distribution
with the same parameters we get (2.17) and (2.18).
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By the above we can understand that asymptotically for our model (and
more specifically the second and third one) the amount A(¢) of the sum of de-
layed claims is the sum of individually negligible number of claims (of each point
process). The negligible number of claims is due to the way the distribution of
the silent times is defined. It is for the parameter of the exponential distribution
of the silent times that A\yy = 2 and so for M — oo it is obvious that Ay — 0

M
and so the time periods, that the claims come. tend to be very few.

Because of the way this model is defined we are able to use Limit Theorems
for superpositions.

Our goal is to approximate our model by a model that the arrival of the claims

follow the Poisson distribution. Having achieved this, we are able to examine
many properties and asymptotic results.
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Chapter 3

Portfolios with a Large Number
of Contracts

3.1 Superpositions of point processes

We begin our analysis with some facts regarding superpositions of point processes.

The formal setting for studying the sum or superposition of a large number of
point processes (or random measures) is a triangular array {£,; : i = 1.... ,m,;n =
1,2,...} and its associated row sums

sn = zﬂ fm',
=1

n = 1,2,.... If for each n the processes {{,; : i = 1,...,m,} are mutually
independent, we speak of an independent array.

Definition 3 When an independent array satisfies the condition that for all = >
0 and all bounded A € By

lim sup P{&:(A) >} =0

the array is uniformly asymptotically negligible.



When we are dealing with a triangular array the previous condition reduces

to

lim sup P{Nni(A) >0} =0.

Proposition 6 The triangular uniformly asymptotically negligible array {N,; :
i=1,...,myn = 1,2,...} converges weakly to a Poisson process with mean
measure p if and only if for all bounded Borel sets A with p(6A) = 0,

S5 P{Nui(4) > 2} =0 (31)
where n — oc and m:_
$* P{N,u(A4) > 1} — u(4) (32)

i=1

where n — .

3.2 Portfolios consisting of a large number of
contracts

In this section we will examine the behavior of portfolios consisting of a large
number of contracts of the type considered in chapter 2. In order to obtain an
asymptotic result we will suppose that we are given a double array of such single
contract models. The n’th row of the array consists of n independent ON/OFF
processes with exponential silent periods with rates A,;, ¢ = 1,2,...,n, and active
periods with distribution F. N,; is the point process of the beginnings of active
periods of the i’th process in the n’th row. We will assume that the rates A.;
satisfy the following two conditions:

Condition C1: max;<p An; — 0 as n — oo.
Condition C2: 3 ,c, Ani — A € (0,00) as n — oc.

We will show that as n — oo, the claims occur according to a Poisson process
with rate A and hence the resulting claim process is

oo t
S(t) = Z./o UT, < s < T, + Xo)ds
n=1

26



where {T},} are the points of the Poisson process with rate A when claims occur,
and {X;} are i.i.d. random variables with distribution F' that correspond to the
duration of payments. Hence this is an integrated Poisson shot noise process as
described and analyzed in Kliippelberg and Mikosch (1995) and Brémaud (1998).

In our model we remark that the random measure &,; is denoted by N,,;, since
we now have a triangular array of point processes. So by N,;(A) we denote the
number of times we get a claim in a Borel set A.

In the sequel we shall need the following

Lemma 7 Let {\;},i=1,2,...,n,n=1,2,..., be a double array of nonnega-
tive real numbers satisfying C1 and C2 above. Then

n
: _ ——A,“'.’t —
(g ) St

for any x > 0.

Proof: From the inequality

t
— <l-et<t
1+t

which holds for any ¢t > 0 it follows that

n n

<1 +n;iz$ Z( mz) < .’L'. Ani.

= =1 i=1

This inequality can be reinforced to obtain

1 xZ)\m<Z(1—e ’\’““)<zzz\m

14+ rmax;<p, A

Letting n — oo above and using conditions C1 and C2 establishes the lemma.

In order to use Proposition 1 we first need to show that we have a uniformly
asymptotically negligible array. Setting N,;(z) := N,;(0,z], it suffices to show
that

Jixgosqp P{N;i;(z) >0}=0
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Proof: Starting with the inequality
E[Nyi(z)] > P{Nyni(z) = 0} + P{N,:(z) > 0}
it follows that

P{N,i(z) > 0} < E[Npi(z)] = E G o FrR () (3.3)

where
Gri(z) = 1 — e 2,

However, G:EHI) * F**(z) < G;gkﬂ) (z) and thus from (3.3) we have that

P{Nni(z) >0} < Y. G¥V(2) = Mz

k=0

Letting n — oc in the above inequality and taking into account C1 we have

lim sup P{N,;(z) > 0} < z lim sup A,; =0.
n—0o0 < n—oo tsn

This establishes that under condition C1 we have indeed a uniformly asymptoti-

cally negligible array.

Now we should prove that the two conditions (3.1) and (3.2) hold. We should
show that .

=1
where 7 — oc and

3" P{Noi(z) 2 1} — p(z)

i=1
where n — oc.
We first check (3.1):
Proof: We have

> Pul2) 22 S 3-Gid+ Fla) < 3. G220

However G:2(z) < (Gri(z))? and thus the right hand side of the above inequality
is less than

I?SanXGni(-T) ;Gni(x) = (1 — o (maxicn ,\,.,-)z) -0
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as n — 2 in view of Lemma 1 and conditions C1 and C2. This establishes (3.1).
We will establish now that (3.2) holds as well

Proof: Indeed we have

n

Z P(Ni(z Z:: Z (1 —-e ’\’"I) AT

i=1

as a consequence of Lemma 1. Hence (3.2) holds with p(r) = Ar.
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Chapter 4

Diffusion Aproximation

We shall consider approximation of a risk reserve process for our first model by
a Wiener process (or Brownian motion) using a functional central limit theorem.

We follow Grandell (1977).

Our main mathematical tool is the theory of weak convergence of probability
measures on metric spaces.

4.1 Theory of weak convergence

Let D = D|0, oc) be the space of cadlag functions on [0, 00). Those are functions
which are right continuous at each point of [0,00) and which have a left limit
at each point of [0,00). D is separable and metrisable with a complete metric
,endowed with the Skorokhod J; topology.

Let Z, X, Xa,..., be stochastic processes. It is possible to give a precise
meaning of X, 4z , 1.e. X, tends in distribution to Z. This is the same as to

say that the distributions of X, converge weakly to the distribution of Z.

We consider the function St X = sup X (t) from D into the real line.
0<t<T

If X, % Z then S7 X, > SrZ for all finite T such that P{Z(T-) = Z(T)} =
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StX, — SrZ means ordinary convergence in distribution for random vari-
ables.

The situation is more difficult for an infinite period since X, < Z does in

general not imply that sup,>¢Xn(t) < sup;>o Z(1).

If St X > u the risk business is said to be ruined before time 7.

Definition 4 A standard Wiener process W = {W(t);t € [0,00}} is a process
with stationary and independent increments such that W (1) is normally distrib-
uted with E[W (t)] = 0 and Var[W(1)] = 1. The distribution function W (1) will
be denoted by P.

Our risk model is X(¢) = Y(t) — ct. Generally the gross risk premium is
choosen so large that X has amegative drift. Therefore it is not surprising that
it will turn out to be natural to approximate X by a Wiener process with drift.

Skorohod has shown that
YT'+ K —ozr YT — K
P Wit)—~t)>z}=1-& TP ————
{Sup( () '7) :L‘} ( \/T )+e ( \/T )

0<t<T

for z >0 and v > 0.

This probability is the basis for many results in the section for estimating a
Normal limit for the first model.

P{S7Z > z} is a continuous function for all z > 0. Therefore P{SrX, >
x} — P{StZ} for all z > 0 and all finite T

Definition 5 A sequence of functions (yn)nen in D converges uniformly on com-
pacta to a function y if

sup |yn(t) —y(t)] — 0 as n — oc for each fixed k € N.
0<t<k

Definition 6 A stochastic process Y = (Y (t))t > 0 is said to be in D if all
its paths are in D. Let Y, Y1,Ys,..., be stochastic processes in D with Y in
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C[0,0c); i.e. Y belongs to D and has continuous paths. We say that Y, converges

in distribution to Y, and we write Y, % Y if, for each fired k € N, E[f(Y,)] —
E[f(Y)] for all bounded and continuous functionals f on D|0,oc] equipped with
the uniform metric .

Definition 7 (Polish space) Let S be a separable and complete metric space
and let B(S) be the o-algebra generated by open sets. A space with these topological
properties is called Polish.

We may note that the metric p which we work with do not need to be the
metric that makes S complete. Let £;, &, ..., be S-valued random variables with
distributions P, Py, Py, ...,. If s fdP, — [5 fdP for all bounded and continuous
functions f : S — R we say that £, converges in distribution to £ and use the

notation &, 4, & or that P, converges weakly to P.

The main motivation for the study of weak convergence is the following the-
orem given by Billingsley (1968, pp.30-31).

Theorem 8 (main theorem of weak convergence) Ifh is a measurable func-
tion from S into some metric space S’ and if
d
& — ¢

then also,

h(&n) = h(E),
provided that P{£ €the set of discontinuity points of h} = 0.

We shall be interested in a function h which is not continuous. The following
theorem is a special case of a result given by Billingsley (1968, p.25).

Theorem 9 Let {h,} be a sequence of continuous functions from S into some
separable metric space S’ with metric p'. If

(1) h(x) = limg_» hx(z) is a well-defined function S — S,

(ii) & ¢,
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(iii) limg .o limsup,_ .. P{p/ (hi(&s), R(&,)) > =} =0 for each = > 0,

then
h(€a) = h(€).

Let A; denote the class of strictly increasing continuous functions from [0, ¢]
onto itself. For z and y in D[0,t] we define a metric p by

plz,y) = jnf (max(|| zo A=y, A~e: [)),
where x 0 A(s) = z(A(38)), e:(s) = s and || 2 || = suppe,<; | Z(s) |-

With this metric D[0,t] is Polish. The space D|0,t] has the same properties
as D[0, 1] for which Billingsley (1968) is the standard reference.

Consider the function S, : D[0,t] — R defined by S,z = supgc,<; Z(s) as
previously. We shall prove that this function is continuous .

Proof: Choose ¢ > 0 and z and y € D0, t] such that p(z,y) < £. There exists
A € Aysuch that || zod—y || < cand | A—e || < e. Since Sz = Syzo A it follows
that y(s) < S,z + ¢ for all s and thus S;y < S;z + £ and thus | Siz — Sy |[< ¢
which was to be proved.

Let A be the set of strictly increasing continuous functions from [0, oc) onto
itself and let € € A be defined by e(s) = s. Take z, z;, 73, ... € D.

Let z, — r mean that there exist Ay, Ag, ..., such that

Sup | Zn © An(s) — z(s) |— 0
0<s<t

as n — oc for all finite ¢ € (0, c0) and that:

sup | An(s) —s|—0

0<s<t

as n — oc. With this definition of convergence D is Polish.

The following theorem brings the question of convergence in distribution of
D-valued stochastic processes back to convergence in distribution of D[0. t]-valued

processes.
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Theorem 10 Let X, X;,Xs,... be D-valued stochastic processes and let iy,
ta,... € (0,00) be such that ty — oc as k — oc and such that P{X(t;) =
X(ty)} =1 for all k. Then

Sy, Xn > S, X

as n — oo if and only if
X. %X

asn— ocC.

Remark 2 From now on all processes are assumed to be D—valued.

Suppose that X, <4, X and assume that X is continuous in probability. i.e.

P{X(t")=X(t)} =1for all t. It follows that :
5. Xn S S, X.
Consider now the function s defined by

sz = sup z(t)
£>0

for all x € D, where s is a function from D into (—oo0, oc].

If X, 4, X it does not in general follow that sX, 4, sX. In order to realize
this we consider X,, = z, with probability one where

1 ift>n
xn(t)_{() int<n

The following theorem may be helpful in some cases.

Theorem 11 Assume that X, (0) = 0 for all n that X is continuous in prob-
ability. If X, 2 X and if lim; .. limsup,_ . P{sup,; Xa(t) > 0} = 0 then
s X, 45X,

The following theorem is useful for proving weak convergence.



Theorem 12 Let X;.X,...., be either summation processes, i.e. sums of inde-
pendent random variables, or stochastic processes with stationary and independent
increments. Define &, by £,(t) = Xn(nt) and let £ be a stochastic process with
stationary and independent increments.

IFE.(t) S £(t) for allt € [0.) then

d

& — &

4.2 Theorems useful in diffusion approximation

Now we shall prove two theorems that depend on the theory of weak convergence
that is already discussed. Those two theorems are useful for obtaining a Normal
or Brownian limit.

Theorem 13 Let Y, LW and define X, and Z by
Xn(t) = [Y(nt) — c,nt]/by/n

and
Z(t) = W(t) -t
Then
X 2 7
i

(¢n — an)V/n — 7b.

Proof: We have X, (t) = lY(f;t\)/—Eant] _ n(cb’l/_ﬁa)t'

Define h, by h,(t) = ﬂ%\/——n—aﬁ and h by h(t) = vt and thus X,, =Y, — h,,. For
all ¢ we have

sup | ha(s) = h(s) =) V2292, g

0<s<t

as n — oc and thus h, — h in D.

Since h is continuous the result follows from the theorem of weak convergence.
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For proving the other part of the theorem we consider ¢t = 1. Then we have

Vilen —a)t a W(1)

Xa(1) = V(1) = Y=

Since Y,(1) % W (1) it follows that

\/7_‘(01;)— a)t )

Alternatively we can replace b, instead of b, i.e a term that depends on the
th sequence of a point process according to our first model.

We define 9 (r,u,t) as the ruin probabitity accepted by the company where
r is the safety loading, u is the initial capital and ¢ time.

Theorem 14 Assume that Y, W and let 6, x and t be constants. Then
) St+zx 2z [ft—1
—_— =] — T2 i
nlﬁﬁlo‘”(ﬁ’m‘/ﬁ’t") q’( NG )+e " Q( bVt )

Proof: We have

z\/n, tn) = P

6 n
sup (Y(s) — (a+ 7)3) > x\/_}

" 6
\/T—l’ 0<s<nt
0<s<nt

{
- P% sup (Y (ns) — (a+7)ns >xf}

ogljfm(}’(ns) (a+ -—\;%)ns) > z\/ﬁ}

Y (ns) — (a+ -\%)ns T
s sup 5 > — 5.
0<s<nt N b

It follows from the previous Theorem that

¢ (%,w\/ﬁ,tn) - P{stZ > %},

where Z(t) = W (¢) — (4)t.
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4.2.1 Building approximation for our first model by a
Wiener process

All stochastic processes considered have their realizations in the space D of func-
tions that are right continuous and have left hand limits. Our first model is
already defined previously. We consider the function S7.X = supg<,<7 X (t), from
D into the real line, and we define our risk model in an inverse kind of way.We

have

X(t) = A(t) — ct (4.1)

We will investigate through our risk model the approximation of ruin proba-
bilities for a finite period of time.

The idea is to approximate X by a Wiener process. Generally the gross
risk premium is choosen so large that X has negative drift. Therefore it is not
surprising that it will turn out to be natural to approximate X by a Wiener
process with drift. If there shall be any hope to approximate X by a Wiener
process, we must in some way be able to use the central limit theorem. We
consider A(t) because it is the only part of X (¢) that involves random variables.
One, and probably the only natural, way of doing that is to compress time. If we
only compress time everything will explode and therefore we have to normalize

in some way.

We assume that everything depends on n.

We consider A, defined by

and assume that

for some choice of a, and b,.

Let us now consider the risk process X (¢) and the ruin probability P{SrX >
u}.If we shall be able to use the assumptions that A, %4 W in some way. Let a,
and b, be constants and consider
X(nt) —aptn

Xu(t) ™G
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A(nt) — c,nt —apnt

b.v/n

bn A(nt) —annt | (an —c, —ag)tn
bln bn\/T_l bln\/ﬁ

By choosing a), = a, — ¢, and b, = b, we have

X, 5w

and so

P{SrX, >u} = P{StW > u}.

For obtaining a limit that is Brownian motion but has also a (negative) drift
we introduce the following theorems and propositions.

Here we should introduce one result from the first section of this chapter.

Firstly

. Ay ¥T'+ K conea (YT — K
P{ozttlgT(W(t) ,t)>r} 1 @( T )+e @(‘\/T)

for z > 0 and v > 0, ® the distribution function of W (1).

Theorem 15 Let A, — W and define X,, and Z by
X, (t) = [A(nt) — cnt] /bR

and
Z(t) =W(t) — .
Then
X % Z
uf

(cn — an)v/n

- 7

bn

where a, = ,u_lﬁ_ and b, = Var[_:(t)]'
An

Here from (4.2) we have




where g2 is defined as \—/9—'%4—@-2

So while already having estimated a, = ;%l,\I,, — ¢y, it should be Elnb;/—ﬁ — —.

Now from the theorem we have X,(t) = A(T;,?\—/%" =~ caBizgaht and Z(t) =

W(t) — vt. Thus X, 5 Z iff “a=2=) /n — 4,

So it is . ,
— — 1
e ST 2
b, i
or ,
a,\/n N
bn
or .
(G — <)
—/n— —y.
bn

As we expected by defining an inverse kind of risk process the drift here is
negative. Now f012‘ Xa(t) = [A(nt) — ennt]//n and Z(t) = W(0,0%t) — t i.e. for
v =1 and b, = %- we have

Sy, g (14

(2 —cn)
#1+,\;_2 vn— -1 (4.5)
t

Other cases

Now we can distinguish two cases in the above general way of dealing with our

problem.

In the first case we can assume that the counting process does not depend on
n, so IV, := N and as a result ¢, = c or ¢, does not depend on n and this goes

for A\, as well.
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So the (4.5) result becomes
( a1 T—c|vn——1
M1+ 3

In the second case we assume that it is only A, constant. So we have that
(4.5) becomes

2!
—-c n— —1
(T -eva

and it is also

and

4.2.2 Calculating the upper bound for a ruin probability
and a crude Lundberg exponent

We shall now try to derive approximate ruin probabilities by using the previous
Theorem. The constants a and b can be regarded as parameters characterising
the portfolio. we shall interpret a as the net risk premium and b as a measure
of the dangerousness of the risk business. A strategy for the company can be
formulated as follows.The company decides to accept a certain ruin probability
under a certain time.We have r = ¢ — m, the safety loading, where m is the
mean of A(t). The safety loading and the amount u can be regarded as decision
variables. Let 1(r,u,t) be the ruin probability.If the company accepts a ruin
probability p up to time T it is natural to choose r and u such that ¥(r, u,t) = p.
Using the second theorem from the second section of this chapter, we can get the
appropriate approximation for the ruin probability.

Theorem 16 Assume that A, > oW and let z, t be constants,

lim o (Jr,ov/m,tn) = 1- @ () + 770 (§37).

n—oo

where b? = Yard@®)

t
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Consider now (A, %, T). Choose n and put § = A\\/n,z =u/\/nandt=T/n.
According to the main theorem the approximation ¥'(\,u,T) = 1— @(%’%’5) +

e 2w/ b2q)(’\TT—ﬁ—") seems reasonable if A is small, u is large and T is very large in the

sense that u, A !, and v/T are all of the same order. Further this approximation
shall not be used when very small ruin probabilities are of interest. The reason for
this belief is an association with the question of Large Deviations in connection
with the ordinary central limit theorem.

If we allow T to tend to infinity then we get :
Y(r,u) =2

This last result is the probability of ruin for an infinite period of time.

From previous section it is proven that for the variance we have

2 _ Var(A(t)) _ Ao

b .
R FES VN

A

The problem is that X, 4, Z does in general not imply that sup,5o Xa(t) 2
sup,>q Z(t). In other words the problem is that the time-point of ruin may tend
to infinity during the limit procedure.

In Grandell’s paper it is shown that under some regularity conditions in the
Poisson case we can obtain such a limit.

Now we can expand our model by having a new A(t) = YN, A;(t) with
A;(t) defined as previously.This model is closer to a real risk model with delayed
claims that has different claim distributions each time. Here we can again apply
a functional central limit theorem for obtaining a Normal limit.
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Chapter 5

Large Deviations Heuristics —
Calculating Lundberg’s
exponent.

Suppose that X;, i = 1,2,3,..., are i.i.d. with distribution function F, cor-
responding mean m = [ zF(dz), and moment generating function M(6) :=
fre?*F(dz). Set S, = X; + -+ + X,,. The weak law of large numbers guarran-
tees that

Jim P(S,>nz)=0 forzr>m (5.1)
and similarly that
Jim P(S,<nx)=0 forz<m (5.2)

One important question is how fast do the above probabilities go to zero. It turns
out that they go to zero exponentially fast (we always assume having light tails
- exponentially fast convergence doesnot always hold when having heavy tails),
i.e. that

P(S, > nz) <e ™®  forxr>m. (5.3)
In the above formula note that the exponential rate of decay I(z) is a function
of z. The meaning of (5.3) is made precise if we state it as

lim 1 log P(S, > nz) =—I(x) forz >m. (5.4)

n—oo
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5.1 Chernoff bounds

In the same framework as before X;, i = 1,2,... are assumed to be i.i.d. r.v.’s
with moment generating function M (6). We start with the obvious inequality

1(S, > nz)e™™® < 5~

which holds for all real 8 since the exponential is non-negative. Taking expecta-
tions in the above inequality we obtain

P(Sn > nx) < e—nzoE[egxl+X2+"'+Xn] - e—nz’ﬂl\/f(e)n

The above inequality provides an upper bound for P(S, > nz) for each § € R.
Since the left hand side in the above inequality does not depend on § we can
obtain the best possible bound by setting

P(Sn > TM)) < Hgf e—n{ze—log M@)} — e—nsupg{za—log M(6)}

Define now the rate function

I(z) = sup {z0 —log M(8)}. (5.5)

With this definition the Chernoff bound becomes
P(S, > nz) < e ™M@ (5.6)

In many cases this upper bound can be turned into an asymptotic inequality.
This is the content of Cramér’s theorem.

5.2 Applications in Risk Theory

Large Deviation Theory has been applied to sophisticated models in risk theory.
Assume that an insurance company settles a fixed number of claims in a fixed
period of time, assume also that it receives a steady income p form premium
payments The sizes of the claims are random and there is therefore the risk
that, at the end of some planning period of length T, the total amount paid in
settlements of claims will exceed the total income from premium payments over
the period. This risk is inevitable, but the company will want to ensure that
it is small (in the interest of its reinsurers or some regulatory agency). So we
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are interested in the small probabilities concerning the sum of a large number of

random variables.

If the sizes X; of claims are independent and identically distributed, then
we can apply Cramér’s Theorem to approximate the probability of ruin, the
probability that the amount Y7, X, paid out during the planning period T
exceeds the premium income pT received in that period:

T
PO X, >pT)m e 10,

t=1

If we require that the risk of ruin is small, for example e™" for some large
positive number 7, then we can use the rate-function I to choose an appropriate

value of p
1 & .
P(T z X;>p e
t=1
e—TI(p) e T

I(p) ~

(4]

s

Since I(z) is convex, it is monotonically increasing for z greater than the
mean of X; and so the equation

I(p) =

S0

has a unique solution for p.

In general, whenever the rate-function can be approximated near its maximum
by a quadratic form, we can expect the Central Limit Theorem to hold.

The name ”Large Deviations” arises from the contrast between the Central
Limit Theorem and Large Deviation Theory. The Central Limit Theorem governs
random fluctuations only near the mean - deviations from the mean of the order of
7"-1-'. Fluctuations which are of the order of o are, relative to typical fluctuations,
much bigger : they are large deviations from the mean. They happen only rarely,
and so Large Deviation Theory is often described as the theory of rare events,
events which take place away from the mean, out in the tails of the distribution.



5.2.1 Theory for infinite horizon used for estimating Lund-
berg’s exponent

Recalling the model of risk theory we discussed above we have that since the sizes
of the claims are random, there is the risk that at the end of the planning period
T, the total amount paid in settlement of claims will exceed the total assets of the
company. When we discussed this model before, we assumed that the only asset
of the company with whom the company has to cover the claims is the income
from premium payments; it is however likely that the company would have some
other assets, say a fixed value u at the begining. We want to evaluate the risk
of the amount 337, X, paid out over the planning period T exceeding the total
assets pT + u of the company. This risk-theory model is similar to a single-server
queue: the claims are like customers, the premium income is like service capacity
and the initial assets u are like a buffer, guarding temporarily against large claims
which exceed the premium income.

We assume that the sizes X; of the claims are independent and identically dis-
tributed s that we can apply Cramér’s Theorem to approximate the probability
of ruin.

T
Y X, >z)me T,

t=1

I

-

where £ =p + 7.

Our problem is finding the right exponent so we can approximate the ruin
probability for our first model.

With
X(t) = ct — A(t)

and

S, = T, — A(T,),

where the T,’s are as in Chapter 2, we want to compute

P{inf X(t) < —u} = P{inf S, < —u} = P{u < sup(—Sn)}
t>0 nenN neN

Since s
P{=" >z} m e @)

n
we have T

P{S, > u} = P{%" > %) et = o E
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so that

- _ 1(%) IR
P{%r)ng(t)<—u}ze’“L‘~72+e oy pe v 4

and the term which dominates when u is large is the one for which i;*—) is the

n

smallest, that is the one for which I—(IQ is a minimum

I(z)
. — egué‘

P{sup S, > u} ~ g ¥mir=
neN

We note that we can also characterise 6 in the following terms

I
HSmé'n—ffl if and only if 93% for all z.

= if and only if fz < I(z) for all =
= if and only if max, {0z ~ I(z)} < 0;
thus
§ < ¢ if and only if A(6) <0

and so
6 =max{f: A(0) <0}

which is our final result.

For the same problem, that is calculating Lundberg’s exponent, another method
is the following by calculating the mean E(e?4*®)), where Ai(t) is the sum of
claims up to time ¢ of a k process and is defined as our first model.

Defining
fi(t,6) = B(&4+0)

we take 1 log fi(t,0) = ax(6) then
fe(t,0) ~ e, (5.7)

where the ax(#) is what we are looking for. Hopefully in the above steps we
conclude to an equation the solution of which gives us the expected result. For
this result we make use of Laplace theorems.
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5.3 Calculating Lundberg’s exponent - condi-
tions

We assume of course that ¢ < 1 because otherwise there would be no risk of ruin.

A first result, but an asymptotic one, that helps us realize what we should
expect is the following:

By assuming the result in (5.7) it is
E[ef40)]

aoe €
we can make use of it for obtaining a quick result for F'(s,8). And then

c

F(s,0) = /0“’ e~ f(t,0)dt = /Ooo e ' E[e?40]dt = /Ooo e "ce'®'dt = ek

So it is .
: F = . 5.
(870) s — l(e) (D 8)
By applying s = 0 we get the Laplace transform while s = 0. that is
(&
F = .
©.0) = =7

In order to simplify the notation we will drop the subscript k in Ag(t). We thus
have

f(t,g) — E[eO[A(t)—L‘t]] — E[eo[A(t)—ct];Tl > t] + E[eo[‘“t)"“];Tl < t]
t
= E[AO- T > ]+ /0 E[AO-< | T} = u]G(du)

t t
= E[SLAO- Ty > ] +/ E[eelﬂ) a(sMe=ctl | Ty = 4] G(du)
0
t
= E[fAO-. Ty > ¢ +/ E[fXi—cXi=enl | Ty — o f(t — u, 6)G(du)
0

t
= b(t) + /0 E[PX1-eXi=eYil | 7y = o) f(t — u, 0)G(du)

Here I apply the Laplace transform and it is
/ = e f(t,0)dt = / = e "b(t)dt
0 0
o0 t
+ /o e /0 E[#¥ XM | Ty — o] £t — u, 8)G(du)dt
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/oo e f(t,0)dt = /me"‘b(t)dt
0 0
oy] t
+/o e""e’“/o E[@i—eXi-Nl | Ty = yle ™™ f(t — u.0)G(du)dt

F(s,6) = B(s)

+/0°° e F(t — u. 0)d(t — u) /0°° e~ LKoo | T = 4] G(du)

F(s,8) = B(s) + F(s,8) A T e[ —e K- | Ty = 4] G(du)

A last form for the solution of F(s,8) is the following

- B(s) -
F(S, 9) = 1— fooo e—suE[ea[Xl—cxl—cYﬂ l Tl = u]G(dU) . (0.9)

For B(s) in (3.9) we work as follows

B(s) = /0 ~ emoth(t)dt
= foo et E[®AO. Ty > {]dt
0

_ /00 e_stE[eolfot a(s)ds—ct]; Tl > t]dt
0

— E[/X1+Y1 e—stea[f(: a(a)ds—ct]dt]
0

= E[/Yl e-stee[_[: a(s)da—ct]dt n X1+7
0

e—atee[ﬁ; a(s)ds— ct]dt]
¢!

= E[/Yl e““‘e'mdt] + E[/X1+Y1 e_steol(t—lﬁ)—ct]dt]
0 Y

= E[- 1 [e—(s+co)t]3f1] + Ele~" / 2 gl (10— (s+eO)t 7y

s+ cl Y
1 X1+Y1
— E[— P (e—(s+(:9)Y1 _ 1)] o E[C-GYI L e—[(s+c0)—0]tdt]
: 1
1
— _ —(s+e8)Y1 _ ) 41 ~(s+c0)+01.X1+ 1
El s+c0(e DIEgEl s+c€—0[e ™
1 1 1
== —(s+cO)h E —(s+cO)Y11 _
s+c9E[e ]+s+c0+s+c6’ 0 le ]
1
= . 0E[e—(a+c0—o)X1]E[e—(s+c9)Y1]
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B(s) = /oooe“"b(t)dt
1

1
= ~——8+00Y(s+c0)+3+c0 + T 0Y(e+c0)-—
1
—mX(s +C0 C 0)Y(s +C9)

where Y (s+cf) and X (s+c8—8) are the Laplace transforms of the exponential
and the F distribution at s + cf and s + cf — 0 respectively.

For the denominator of (5.9) we work in the same way as previously. We
define the denominator as

1-C(s) =1 /Ooo e~ E[fX-eXi-Nl | Ty = 4])G(du).
So for C(s) it is

L C(s) = _/Ome_“’"E[eofxl‘cxl“cyll | Th = u]G(du)
f E[e~*e/Xi-eX1-e%l | 7y — ) (du)

_ /m E[e—s(X1+Y1)eG(X1—cX1—ch) |1= U]G(du)
(1}
= E[el0--0)X1| gl (s+e0)]

C(8)=X*(0—s—ch)Y(s+ch)

where X*(0 — s — cf) and Y (s + cf) are the moment generating function of F’
distribution evaluated at # — s — cf and the Laplace transform of the exponential
distribution evaluated at s + cf respectively.

So (5.9) becomes

F(s,8) = —s_+lc§Y(3+60) + s+lc9 + m%j;Y(s+C0)[1 - X(s+cf-0)]
1-X*(0—s—cO)Y(s+ch)

(5.10)

Thus (5.10) gives us a final formula for the solution of F(s,8). We want to
find those solutions for s that makes F(s,8) tend to infinity. In other words we
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are looking for the poles of (5.10). In order to eliminate poles that are not real
ones we try to change the final form of F(s,8).

It is

F(s.8) = LA -Y(s+eh)]+ 5[l — X(s+ 8= 9)]Y (s +ch)
Wi, 1—-X*(0—s—cO)Y(s+ch)

F(S H) — s+1c0[1 - A+.;\+r:9] + a+c19-0 [l - X(S + Co - 0)]',\.;._;\;_(;3
’ l—X*(G—S—Ce)m

F(S 9) — s-:ce Aj—t—c}-oco + s+c:9—0 [1 X(S + 00 0 ]A+s+c0

’ l—X'(a—S—CO)m

F(s.6) = s+ mmamall — X+ 00— 0)ds
" 1—X*(0—s—c0),\+s+co

1+ 5350 — X(s+c0-0)]
A+s+cl— AX*(0—s—ch)

(5.11)

F(s,0) =

The numerator is finite provided that
s+cl—02>—y,

where — is the abscissa of convergence for the Laplace transform of F. (Clearly
v20.)

So we must check what happens in case we have a distribution for which

s+cf—6— —.

From s+cf -0 — —y = s — —7v — cf + 0. For the above limits we get that
(5.11) has a zero to zero limit. That is why we apply the de I’Hopital rule and

we have that 1
lim F(s,0)=—-——

8— —y—c0+8 A

Because we get a limit other than infinity it is obvious that the value s =
cf — 0 — 7y could not be the solution we are looking for.

Now we concetrate on the denominator. We believe that the denominator is
going to give the exponent we are looking for or in other words some assumptions
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that should be fullfilled. The appropriate 8 will make the denominator a zero, so
6 will a pole of the F(s,8) function. In the case where we have one or more poles
6* of the F'(s,8) function it is proven in the chapter-theory that we choose the 6
that is greater than the others.

The denominator is:
1-X"(0—5s—ch)Y(s+ch).

So our equation is

A
e * == pe— 9: = — * — —— _—
1-X"@0-s—)Y(s+c)=0=>1~-X"(0—s 66))\-{-34—09 0
A

= X0 — 5 — c0)—2
1=K (0 Ce)/\+s+09

A 0
:—i\+—c:‘x*(9—s—09)

or equivalently
L X(s—6(1—c)) = A_+f\+_69 (5.12)

First of all we want the greater s for which F(s,8) — oc. We call this
s* = 8(6), i.e. it depends on 6. Then by using the Large Deviation Principle
we want the maximum 6, call it 8*, of the s(8) = 0 equation. This argument is
equivalent to set s = 0 in the 5.12 and try to find 6*.

From (5.12) setting s = 0 we obtain the condition

X(-01-c)=1+%, (5.13)

This is a first condition from which we can derive the maximum 6 for which
(5.7) exists. We are aware that in order for the insurance business to be profitable
on the average we need the following contition to hold (positive safety loading)

o(BIX] +3) > B[X] »

EX(1-¢)< (5.14)

>

The above condition should be verified also by our model. From (5.13) we can
make a diagram versus § of two functions f1(6) = X (—6(1—c)) and f(9) = 1+ <.
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These two function are both increasing and so we can have one or two solutions
for 8. The case where we have one solution is a trivial one. because obviously

then 8 = 0.

Here we either have the § = 0 and # < 0 case or the § =0 and § > 0 case. So
we should choose between these two solutions and because we want the greater
one we choose the # = 0 and 8 > 0 case. So our 6* is the one for which 8* > 0.
For the second case it should be that the slope of f5(§) should be larger than the

slope of f;(8).

That is p
c
3> @X(—G(l —¢)) =
EX(1-¢)] < §

This last argument verifies (5.14).

So the final two conditions required for estimating (@) and € are the following
(5.13) and (5.14), respectively

cl
X(-1—-¢)) =1+ 3

or

E[X(1-¢)] < §

5.3.1 An application

Now we can make a certain application of the above when the F-distribution is
the exponential distribution.

We work with the denominator, since all the other possible solution for getting
the fraction to infinity have already been eliminated according to the general

problem.

Now (5.12) becomes

7 A+ s+cl
p+s—01-c) A
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Now we solve this equation with s as the unknown parameter and it is
2+ 8N4+ —0+2c0) + (Ach — M + B — ch? + c?6%) =0

from this ordered to s equation we expect that according to the general situation
for s = 0 we obtain the greater . So the of the last equation should be zero this
will only happen if —4(Acf — A + cOu — cb? + c26?) = 0. From this equality we
have two solutions for 8. The first solution # = 0 is a trivial one, but the second
one refers to a positive solution, which was what we intended for, and is

7 =z 2

T1—-¢ ¢

Here the condition (5.14) should be fulfilled and because it is 8 > 0 fullfilled.
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Chapter 6

Appendix

6.1 Characteristic functions.

A simple solution of an extremely wide range of problems of probability theory,
especially those associated with the summation of independent random variables,
is obtained by means of characteristic functions, the theory of which has been
developed in Analysis and it is known by the name of Fourier transformations.

Definition 8 The ezpectation of a random variable € is called of the random
variable £, where t is a real parameter. If F(x) is the distribution function of the
variable £, then its characteristic function is

o(t) = / e dF (z). (6.1)

From the fact that | € |= 1 for all real values of ¢, it follows that the integral
(6.1) exists for all distribution functions, in other words a characteristic function

may be defined for every random variable.

Theorem 17 A distribution function is uniquely defined by its characteristic
function.

1 e—ity — e—itz

F(z) = — lim lim | —————(t)dt

21 y—o0 c—0o0 ¢ 1

[}
ot



Characteristic functions play a major role in risk theory. Here, the two the-
orems of Helly are of great importance and useful both computationally and for
establishing existence in limiting arguments.

6.1.1 Helly’s Theorems

Theorem 18 (Helly’s first Theorem) Any sequence of uniformly bounded non-

decreasing functions Fi(z), F3(z), ..., Fa(z), ..., contains at least one subsequence
F,,(z), Fay(2),. .., Fa(x),. .., that converges weakly to some nondecreasing func-
tion F(z).

Theorem 19 (Helly’s second Theorem) Let f(z) be a continuous function

and let the sequence of non-decreasing uniformly bounded functions : Fi(x), Fy(z),. ..

converge weakly to the function F(x) on some finite interval a < x < b, where a
and b are continuity points of the function F(z) ; then

lim | " [(2)dFa(z) = / " f(z)dF (x).

The Generalized Second Theorem of Helly follows.

Theorem 20 (The Generalized Second Theorem) If the function f(z) is
continuous and bounded over the entire line —oc < x < oc, the sequence of
uniformly bounded nondecreasing functions Fi(z), F3(z), ..., Fa(z),.. ., converges
weakly to the function F(z) and limg o Fp(—00) = F(—00), limp_e Fr(+0c) =
F(+oc) , it follows that:

lim [ f(2)aFu(e) = [ f(2)dF ().

Now, we give two other limit theorems. Limit theorems for characteristic
functions i.e. the Direct Limit theorem and the Converse Limit theorem which
are proven with the help of the Generalized Helly Theorem and Helly's First
theorem respectively, state that the correspondence existing between distribution
function and characteristic function is not only one-to-one, but also continuous.



6.1.2 Limit Theorems

Theorem 21 (The Direct Limit Theorem ) If a sequence of distribution func-
tions Fi(z), Fao(z),. .., Fa(x),..., converges weakly to the distribution function
F(x), then the sequence of characteristic functions fi(t). fa(t),. .., fa(t),..., con-
verges to the characteristic function f(t). This convergence is uniform in each
finite interval of t.

Theorem 22 (The Convergence Limit Theorem ) If a sequence of charac-
teristic functions fi(t), fa(t),..., fa(t),... converges to the continuous function
f(t), then the sequence of distribution functions Fi(z), Fa(z),.... Fy(x),... con-
verges weakly to some distribution F(x).

Classical Central Limit theorems such as those requiring the Lindeberg con-
ditions use characteristic functions for their proof.

6.1.3 Lindeberg condition

Forany 7 >0
o) N EEL S

where Fy(z) is the distribution function of the variable &; and a;, = E[&], b2 =
Var[&], B2 = S°7_, b2 = Var[Y 1., &]- Roughly speaking, this condition requires
that the variance b2 is due mainly to masses in an interval whose length is small
in comparison with B2, It is clear that —‘L is less than ¢2 plus the left side in (6.2)
and, ¢ being arbitrary, (6.2) implies that for arbitrary € > 0 and n sufficiently

large
by,
< .
= (63)

(l)

where k =1,...,n
This, of course, implies that B,, — oc.

The ratio -g"; may be taken as a measure for the contribution of the compo-
nent X, to the weighted sum %’: and so (6.3) may be described as stating that

asymptotically %: is the sum of many individually negligible components.
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When the Lindeberg condition holds then the distribution functions of the
sums : bl_,. Y i-1(&x — ai) converge to the Normal distribution law, where: a; =

E[&], b = Varl&], BY = 50, b = Var[£E, &

6.1.4 Other theorems and definitions

Theorem 23 (Lyapunov’s Theorem(1)) If a sequence of mutually indepen-
dent random variables &;,&s, ... ,&,, - .., for any constant T > 0 satisfies the Lind-
berg condition

1 n
i ‘/ — ap)’dFu(z) = 0
nl—I»Iolo B,2l kzzzl |z—ag|>7Bn (-’L‘ ak) k(x)

then, as n — oc,

[ 1 f= 2
P(—= &r—ap) <z —r———/ e 2dz
Bz ;;5::1( k) ) o J- oo
uniformly in z.

)

Corollary 24 If the independent random variables &,,&,, ... ,&n, - .., are identi-

cally distributed and have a finite variance different from zero, then as n tends
to infinity,
P2 S (6 — Bl&) < L[ %4
(B > (& % :v)-—r\/z_ﬂ:[we 2

nop=1

uniformly in x.

Theorem 25 (Lyapunov’s Theorem(2)) If for a sequence of mutually inde-

pendent random variables &, &, ..., &, ... il is possible to choose a positive
number 6 > 0 such that asn — oc
1 n
B2+ kz_:l Ell & —ax "] <z) =0

then as n tends to infinity
P 3 (6 - ) <2) » o= [ e %
Bn k=1 g 21 J-o0

A ke e o 5
ansformly in x.



Definition 9 (lattice distribution) A discrete random variable & has a lattice
distribution if there exist numbers a and h > 0 such that all possible values of £
may be represented in the form a + kh, where the parameters k can assume any
integral values (—oo < k < oc) and h is called the span of the distribution.

The Poisson, Bernoulli and other distributions are lattice distributions.

Lemma 26 For a random variable £ to have a lattice distribution it is necessary
and sufficient that for some t # 0 the absolute value of its characteristic function
be equal to unity.

6.2 Infinitely Divisible Distributions

All the abaove can be very useful in the theory of Infinitely Divisible Distributions.

6.2.1 Definitions, theorems and properties

Definition 10 A distribution law F(z) is called infinitely divisible if, for any n
its characteristic function is the nth power of some other characteristic function.
It is clear that this definition is equivalent to the following : the law F(x) is
called infinitely divisible if, no matter what natural number n is taken, the random
variables distributed in accordance with the F(z) law is the sum of n independent
random variables &1, &, .. ., &n, ... with one and the same distribution law Fy,(z)
(dependent on number of summands n).

Some of the most important properties of the infinitely divisible distributions
(Lévy distributions) which are given more in detail below are :

(1) Sums of independent infinitely divisible r.v.’s are also infinitely divisible.

(it) If a sequence of infinitely divisible r.v.’s converges in distribution to o
finite limit then this limit is also infinitely divisible.

_‘-\‘
—

(iii) All infinitely divisible distributions can be represented in térwisof a comeé

A
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o
.
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Lévy and Khinchine.

Theorem 27 (Canonical Representation) For a distribution function F(x)
with finite variance to be infinitely divisible, it is nesessary and sufficient that the
logarithm of its characteristic function have the form:

logp(t) = int + [ {6~ 1~ itm}%dG(m) (6.4)

where 7y is a real constant and G(z) is a nondecreasing function of bounded vari-
ation.

Any infinitely divisible law is either a convolution of a finite number of Poisson
laws and the normal law or the limit of a uniformly converging sequence of such
laws. We thus see that the Normal and Poisson laws are the basic elements that
comprise every infinitely divisible law.

The Theorems that follow give conditions that suffice for a given sequence
of infinitely divisible distribution functions to converge to the limit distribution
function (also infinitely divisible function).

Theorem 28 (Limit Theorem) In order for a sequence {F,(x)} of infinitely
divisible distributions functions to converge, as n — oo, to some distribution
function F(z) and for their variances to converge to the variance of the limit
law, it is necessary and sufficient that there exist a constant v and the function

G(z), for which, as n— oo,
(i)Gn(z) converges weakly to G(z)
(#1)Gn(o¢) — G(—o0) — G(oc) — G(—o0),
(i) — 7,

where 7, and G,(x) are defined by formula (6.4), for the law F,(x), and the
constant v and the function G(x) define, by the same formula. the limit law F(z).
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Now some Limit Theorems for Sums follow :

Theorem 29 The distribution functions of the sequence of sums

g"=€"l+§n2+”'+€nkn

converge to a limit distribution function as n — oo if and only if the sequence
of infinetely divisible laws whose characteristic function have logarithms given by

the formula:
kn

Yalt) = Y{itElgn) + [(e" — 1dF,, ()

k=1
to converge to a limit law.

Definition 11 An elementary system is a double sequence satisfying the follow-
ing conditions:
(1) The variables &,, have finite variances

(2) The variances of the sums ¢, are bounded from above by a constant C
which is independent of n

(3) B = max Var(€,,) — 0 as n — oc. The last requirement means that

the effect of the individual terms in the sum becomes smaller and smaller with
increasing n.

Theorem 30 Every distribution law that is a limit law for the distribution func-
tions of sums in an elementary system is infinitely divisible with finite variance
and, conversely, every infinitely divisible law with finite variance is a limit law
for the distributions functions of the sums of some elementary systems.

Then there are two theorems for convergence to the Normal and Poisson Laws.

Theorem 31 If an elementary system is normalized by the relations
kn
3 / 2%dF, (z) = 1
k=1 ‘
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and

/IJF,,A_(.I,‘) =0.
wherel < k<k,,n=12.....

then for the convergence of the distribution functions of the sums &, = &,, +
§ny + - +&n,, to the normal law it is necessary and sufficient that for all 7 > 0,

as n tends to infinity,
kn

Z/ r*dF,, (z) — 0.
ZT>T

k=1

Theorem 32 Let an elementary system that obeys the conditions
kn
Z E[ﬁnk] — A
k=1
and
kn
3 Varlg,, ] — A
: k=1
The distribution function of the sums §, = &, + &, + -+ + &n,,, converge to the

law
P(z)=0, forz <0

or
AK,
Pi)= > e_)‘ﬁ, forz >0

0<k<z

if and only if for any 7 > 0
kn
Y. [ atdFn(e+Elé,]) -0
k=1viz-1>7

forn — oc.

6.3 Stable Distributions

A class of infinitely divisible distributions which will play an important role in
our analysis of risk processes with delayed claims are stable distributions.
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Definition 12 A4 distribution R is stable if for each n there ezist constants c, >
0, v, such that

Xi+Xo++Xn=5, 2 caX + v,
R is not concetrated at one point and is stable in a strict sense if v, = 0.

It can in fact be shown that the norming constants are of the form ¢, = n'/®

with 0 < a < 2. The constant a will be called the characteristic exponent of R.

Theorem 33 If R is stable with an ezponent a # 1 the centering constant b may
be chosen so that R(z + b) is strictly stable.

It is
Sl/aXl + tl/aXz = (S + t)l/aX.
From here we can see the importance of the normal distribution that is due
largely to the Central Limit Theorem. The Central Limit Theorem proves that
the normal distribution or Wiener process is the only stable distribution with
finite variance (any stable distribution with finite variance corresponds to a = 2).

For distributions with infinite variance similar limit theorems may be formu-
lated, but the norming constants must be chosen differently. The interesting
point is that all stable distributions and no others occur as such limits. This
is something that we are going to use in approximating the sum of the delayed

claims.

6.4 Other Definitions

6.4.1 Compound Poisson Process

A stochastic process {X(t);t > 0} is said to be a Compound Poisson Process if
it can be represented, for £ > 0, by
N(t)

X(t) = Z _Xi,
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where {N(t);t > 0} is a Poisson process and {X;,i = 1,2....} is a family of
independent and identically distributed random variables that is independent of
the process {N(t);t > 0}. Thus, if {X(t);t > 0} is a compound Poisson process
then X (t) is a compound Poisson random variable.

6.4.2 Diffusion Process

A continuous time parameter stochastic process which posseses the (strong)
Markov property and for which the sample paths X (t) are (almost always) con-
tinuous functions of ¢ is called a diffusion process.

Every diffusion process satisfies the following condition.

For every £ > 0,

bm %P{] X(t+h) —z/X(t) = 2} = 0 (6.5)

forall zin I.

A Markov process for which (6.5) holds in an appropriate uniform sense is a
diffusion process.

Definition 13 A stochastic process ts continuous in probability if for any = > 0

and s > 0
%1_15P{| X(t)—-X(8) >=}=0.

A criterion frequently used to check that a one—-dimensional stochastic process
X(t) (not necessarily possessing the Markov property) has continuous path real-
ization is the condition of Kolmogorov now stated.

Let {X(t),t > 0} be a stochastic process obeying the bound

Ell X(t)— X(s) "] < c| ¢(t) —p(s) |12, for all s, ¢ > 0, where a, 7y and ¢ are
positive constants independent of s and ¢ and p is a continuous non decreasing
function. Then there exist an equivalent version X (t) possessing continuous

paths.
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6.5 The Generalized Campbell’s Theoerm

Equations of the form (6.7)have been included under the name Campbell's The-
orem. The following come from Daley, D.J. and D. Vere-Jones (1988).

For any random measure § on the c.s.m.s. X and any Borel set A, consider
the expectation

M(A) = E[¢(A)] finite or infinite). (6.6)

Clearly, M inherits the property of finite additivity from the underlying ran-
dom measure €. Moreover, if the sequence {A,} of Borel sets is monotonic in-
creasing to A, then by monotone convergence M(A,) T M(A). Thus, M(:) is
continuous from below and therefore a measure. In general, it need not take
finite values, even on bounded sets. When it does so, we say that the expectation
measure of £ exists and is given by (6.6).

When it does exist, the above argument can readily be extended to the random
integrals [ fd¢ for f € BM(X). Thus, if f is the indicator function ofthe
bounded Borel set A, E[f fd§] = M(A). Extending in the usual way through
linear combinations and monotone limits we find

E| / fde] = / fAMf € BM(X) (6.7)

The expectation measure M(-) may also be called the first moment measure of

£.
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