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ABSTRACT

Lyra Maria

STATISTICAL QUALITY CONTROL TECHNIQUES FOR
AUTOCORRELATED PROCESSES

January 2003

The Statistical Quality Control (SQC) is a group of techniques which,
combined with management, help to achieve continuous improvement in the
production process.

A standard tool of SQC is the Statistical Process Control (SPC) applied
to processes that generate independent and identically distributed random
variables. However, high volume production processes yield process data
which are autocorrelated.

To accommodate autocorrelated data, many SPC methodologies have
been developed. Independently to the SPC technique, the Engineering Process
Control (EPC) strategy has been used in the parts industry. The EPC also aims
in quality improvement but via a different path than the one of SQC.

The aim of this dissertation is to analyze both the SPC and EPC
strategies for autocorrelated data and to assess the optimization and
improvement in the production process when the two techniques are being

combined.
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Introduction

CHAPTER 1

Introduction

The development of the statistical field called ‘Quality Control’ was
due to the need of improving the quality of manufactured goods as well as
services, with both being products used by our society. Quality improvement
methods can be applied to any area within a company or organization.

The term ‘quality’ can be summarized in eight dimensions each one of
which specifies quality in a different way. These components are:

e Performance (i.e., if the product does what it is meant to do).

e Conformance (i.e., whether or not the product follows the exact

standards specified by the company).

e Reliability (i.e., if the product does or does not fail too often).

e Durability (i.e., the period within which the product is considered

as being valid).

e Serviceability (i.e., how easily the product can be repaired).

e Features (i.e., what are the characteristics of the product).

e Appearance (i.e., how attractive is its visual construction).

e Reputation (i.e.,, how well ‘known’ the product or the company

are).

The quality characteristics cannot be measured in the same way for all

cases. There are situations where the characteristic can be measured in a
continuous scale as is the length, the weight or the voltage and it is called
variables data. On the other hand, we confront attributes data if the
characteristic takes the form of discrete counts, for example when the
number of nonconforming products (that is, failing to meet at least one of
the specifications) or the number of nonconformities (i.e., specific types

of failure) in each unit are measured.
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In practical terms, quality is inversely proportional to variability, since
more repairs and warranty claims means more rework and, thus, more spent
time, effort and money. Consequently, quality improvement is achieved via
the reduction of variability in the manufacturing process.

Three major areas where statistics is applied for quality improvement
are:

1. Acceptance sampling. This is the area of quality control that
has been first developed and it is connected with inspection and testing of
the incoming raw materials provided by the supplier or of the final
product. The inspection is done to a sample of units selected at random
from a lot and a decision has to be made about accepting or rejecting the
whole lot according to the percentage of the nonconforming products of
the sample, that is the ones that fail to meet one or more of the process’s
specifications.

2. Statistical Process Control (SPC). The main tool of this area is
the control chart in which the averages of measurements of a quality
characteristic in samples taken from the process are plotted versus time or
the sample number. The chart consists of three lines: the central line (CL),
which shows where this characteristic should fall if there were no
exceptional sources of variability, the upper specification limit (USL),
which is the largest value allowed for the characteristic, and the lower
specification limit (LSL), being the smallest value allowed. As long as the
measurements of the samples are within this range, we consider that the
product has a satisfactory performance. Statistical process control was an
improvement over the acceptance sampling because it detects an eventual
problem inside the process instead of just checking the suitability of an
already finished product.

3. Experimental design. This is the most recent approach in
statistical control and it helps to discover the key variables influencing the
quality characteristics we are interested in. By systematically varying the
controllable input factors of the process, it is possible to determine the
effect that these factors have on the output product parameters. This area
is a further improvement since it provides a better understanding of the

data.



Introduction

Among these three basic areas, our attention will be focused primarily
on the Statistical Process Control (SPC) area because it is the one most
broadly used in industry. Control charts were developed under the assumption
that process observations are independent. With the development of advanced
measurement technology and the increase of sampling frequency, many of
today’s manufacturing processes display inherently autocorrelated behavior.
The presence of autocorrelation in observed data values can profoundly
impact the performance of traditional control charts. A solution to this
difficulty has been the construction of new control charts or the expansion of
the standard ones in order to take into consideration the autocorrelation
structure of the data.

After having identified the important variables and their relationship
with the process output, then an on-line technique can be employed for
monitoring the process. Once the dynamic nature of the relationship between
the inputs and the outputs is understood, it may be possible to adjust the
process in order to keep future values of the product characteristic close to
the target of the process. This adjustment is called Engineering Process
Control (EPC) or feedback control adjustment and it differs from the
statistical control charts in which corrective action is taken only after a
sample average has already fallen outside the specified control limits.

The aim of this thesis is to present the most recent approaches
concerning the autocorrelated manufacturing process including both the SPC
and EPC techniques for quality improving, which may be combined and
integrated to form a more elaborate system termed Automatic Process
Control (APC). The performance of the two methods tools is thoroughly
studied and the best choice is provided according to the particularity of the
data.

Specifically, Chapter 2 discusses the traditional control charts of the
SPC technique applied to uncorrelated data, Chapter 3 briefly mentions the
most popular time-series models applied to correlated data, Chapter 4 is
referred to the control charts used when the process consists of observations
that are dependent over time, Chapter 5 concentrates on the performance of
the control charts described in Chapter 4, Chapter 6 introduces the most

common tools of the EPC/APC system, Chapter 7 is concerned with more
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special issues of EPC, Chapter 8 combines the performance of the EPC/APC
tools and Chapter 9 describes some other types of EPC techniques less
encountered in practice. Finally, in Chapter 10 some general comments and

conclusions are applied.
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CHAPTER 2

Overview of the most common control charts

2-1 Introduction

The Statistical Process Control consists of a variety of tools easy to
implement, with the control charts being the ones used extensively in industry
because of combining simplicity and effectiveness. A brief description of
these tools along with a more elaborate reference to the control charts is the
subject of section 2-2. In section 2-3 the Shewhart-type control charts are
presented, while section 2-4 is concerned with control charts for attributes,
that is, quality characteristics that cannot be conveniently represented
numerically. The alternative to Shewhart control charts, i.e., the EWMA and
CUSUM charts, are illustrated in section 2-5, while section 2-6 presents the
more recent Spectral chart, constructed to detect cyclic behaviors in the

process mean.

2-2 Properties of Statistical Process Control (SPC)

The SPC area is known to have seven major tools that help detect the
time point at which the process deviates from its normal conditions and that
provide ways to identify the cause of this deviation. Many types of control
charts are constructed according to the change of the pattern of the process

mean that one wishes to detect more effectively.

2-2.1 Basic tools of SPC

It is recommended that before ‘forcing” the product to meet the

requirements needed, the stability of the process must be ensured. In other
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words, the process should be centered around a target value for each specific
characteristic. A set of diagnostic and problem-solving tools helping to
achieve process stability and, thus, to reduce variability is known as the
‘magnificent seven’. These are:

- Histogram or stem-and-leaf plot

- Check sheet

- Pareto chart

- Cause-and-effect diagram

- Scatter diagram

- Control chart

The histogram, as well as the stem-and-leaf plot, displays the
frequency distribution, i.e., the arrangement of the data by magnitude. What
we look forward to is a histogram (or a stem-and-leaf plot) in which the great
mass of the data is centered on the target value and the rest of the data are
dispersed little around this nominal value. The check sheet is also used at the
early stages of SPC implementation, where the historical or current operating
data of the process are collected. The Pareto chart is a frequency distribution
of attribute data arranged by category, while the cause-and-effect diagram is
used to analyze potential causes after a defect or problem has been identified
in the process and has been isolated for further study. The scatter diagram
plots two variables (these may be the values of an important raw material and
the corresponding values of the output characteristic) in order to define the
potential relationship between them. The existence of correlation between the
two variables does not necessarily imply causality, which must be verified
only after having used designed experiments.

The control chart has been introduced as the main tool of SPC because
it has been proven to be a technique useful for improving productivity,
preventing defects effectively by not resulting in unnecessary process
adjustment and, lastly, providing diagnostic information as well as
information about process capability. The control chart may be presented by
the following general model. If h is a sample statistic measuring the quality
characteristic of interest, with mean u, and standard deviation oy, then the

center line and upper and lower control limits are:
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UCL = Un + L oy
Center line = puy (2-1)
LCL = Kh - L Onh

where L is the distance of the control limits from the center line expressed in
standard deviation units. This general theory of control charts was first
proposed by Walter S. Shewhart and the control charts conforming to these
principles are called Shewhart control charts.

In standard applications of statistical process control, a state of
statistical control is identified with a random process, that is, a process
generating independent and identically distributed (iid) random variables.
Once a state of statistical control is attained, departures typically are reflected
in extreme individual observations (outliers) or aberrant sequences of
observations (runs above and below a level or runs up and down).

Departures from a state of statistical control are discovered by plotting
and viewing data on control charts, such as the Shewhart, the Cumulative Sum
(CUSUM), the Exponentially Weighted Moving Average (EWMA), and
moving-average charts. Having found departures, we hope to find
explanations for them in terms of assignable or special causes. ‘Assignable
cause’ is a term introduced by Shewhart, while ‘special cause’ is an
alternative term suggested by Deming. We then hope to move from ‘out of

control’ to ‘in control’ by correcting or removing the special causes.

2-2.2 Out-of-control patterns detected by control charts

The assignable causes that affect a production process may be
summarized in groups based on the type of the out-of-control patterns. Some

of these types are the following (Beneke et al., 1988):

1. Sudden shift in level. This condition is associated with a sudden
change in the average of the process. This change could be caused by an
alteration of the process setting, a difference in raw materials, or a minor

failure of a machine part.
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2. Trend or steady change in level. This condition is associated
with a gradual change in the average of the process. Some of the causes
for this condition are tool wear and equipment deterioration.

3. Several populations. This condition exists when items come
from more than one population. Some of the causes for this condition are
items from different suppliers, machines, or workers being plotted on the
same chart.

4. Recurring cycles. The process has periodic high and low points
that might provide cause for concern. Some of the causes for recurring
cycles are the seasonal variations in incoming materials, the recurring
effects of temperature and humidity, any daily or weekly chemical,
mechanical or psychological events, and the periodic rotation of
operators.

The Shewhart control charts, as well as the most recently developed
charts CUSUM and EWMA, were constructed for detecting special causes of
the first three types, while a more recent chart called the ‘Spectral chart’ was
initiated in an effort to take into account the fourth type. All these charts are

further presented in more detail.

2-3 Shewhart-type control charts

The Shewhart control charts are charts used to implement variables,
that is quality characteristics that are measured on a numerical scale. When
dealing with a variable, it is usually necessary to monitor both the mean value
of the quality characteristic and its variability. The mean quality level is
controlled via the chart for means. Process variability can be monitored with
either a control chart for the standard deviation, called the S chart, or a

control chart for the range, called an R chart.

2-3.1 General properties

In order to construct a control chart for the quality characteristic we
are interested in, our first step is to take m samples each containing n

observations of the characteristic during the process. The m preliminary
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samples help us to construct the trial control limits. If all m past points are
inside the control limits, then we consider that the process is in control and
the trial control limits may be used for controlling future production. This
analysis of past data is referred to as a phase 1 analysis, in which about 20-25
samples of size 3-5 each should be used. On the other hand, if out-of-control
points are found, we should check whether they were due to assignable causes
or not. In the first case, the points should be discarded and the trial limits are
recalculated using only the remaining points. In the second situation, the
points may be eliminated, as previously, or be retained if they do not distort
the control limits significantly.

The phase 2 analysis consists of plotting the points of the new
collected samples on the control chart with limits calculated from the
preliminary samples. If p is the average of the process, the best estimator of p

is the grand average X , where:

I
+
I

)

=
!

- (2-2)

3+

and x_ is the average of the mth sample (consisting of n observations).

Assuming that the quality characteristic is normally distributed with mean pu
and standard deviation g, the probability is 1-a that any sample mean x will

fall between:

U210 5= P21 -2 and  p-Z).020 5= p-Z) a2 -2 (2-3)

Jn Jn

Therefore, if u and o are known, they could be used to calculate the
upper and lower control limits for sample means. It is customary to replace
Z\.w2 by 3, so that three-sigma limits are employed. If a sample mean falls
outside of these limits, it is an indication that the process mean is no longer
equal to u. The three-sigma limits setting Z;.o/» =3 correspond to a = 0.0027,
meaning that 27 out of 10 000 observations may fall out of the control limits
without being the result of an assignable cause. In other words, « is the

probability of type I error, i.e., the probability that, although the null
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hypothesis that the process is in control is true, we have an out-of-control
sign. This sign is often called a false alarm. On the other hand, 8 symbolizes
the probability that, while the null hypothesis is not true, meaning that the
process is out-of-control, we do not have points out of the control limits.
Consequently, 1-8 is the probability that we successfully consider the process
as being out-of-control.

The Average Run Length (ARL) is the expected number of samples
taken before the shift is detected, or ARL = 1/P(one point plots out of
control).Thus, the in-control ARL (ARLy) = 1/a, while the out-of-control
ARL (ARL,;) = 1/(1- ). Naturally, when the process has been fallen out-of-
control, a small value for the ARL is desired, while if there is not any
assignable causes disturbing the data, the ARL value is prefered to be large so
that a false alarm is avoided.

When the mean p and the standard deviation ¢ are not known and have
to be estimated, there are two approaches available depending on if the
standard deviation of the process is estimated by the sample range or by the
sample standard deviation. The first approach gives the (X, R) control chart

and the second is known as the (X, S) control chart.

2-3.2 The (X, R) control chart

If xi, X2,...X, is a sample of size n, then the range of the sample is the
difference between the largest and the smallest observation, that is R = Xpax —
Xmin- Since we have a set of m samples, we calculate m sample ranges, i.e. Ry,

R,...Rn The average range R is the average of all of the m ranges. It has

been proven that & = i, where d, is the mean of the value R/g. With x the

2

estimator of 4 and R /d; the estimator of ¢, the values of the (¥, R) chart are:

Control limits of the X chart
UCL=X+3R/dy/n=X+A,R
Center line = X

LCL= x-3R/d;/n=X- AR (2=4)

10
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Control limits of the R chart
UCL = R+36,= R +3d; R /d,=(1+3d3/d;) R=D4R

Center line =R

LCL = R-36,= R-3d3R/dy=(1-3d3/d;) R=D3R  (2-5)

where A, = 3/d2J_, 6, =d,—, D3= 1-3ds/d, and D4s=1+3ds/d,. If the true

S| =

values of g and ¢ are known, then the parameters of the (x, R) chart are

modified as follows:

Control limits of the X chart: standards given
UCL=p+3 L =ptA o
Vn
Center line = u

ICL=p-3C=py-Ac (2-6)
Jn

Control limits of the R chart: standards given
UCL=dy0 +3d3 0=(d; +3d3) 6 =D, 0
Center line = d,0
LCL=dy0-3d30=(d;-3d3) 0=D; ¢

Values of d;, A, A;, Dy, D;, D3, D4 are tabulated in tables according to
the sample size n. These tables can be easily found in the litterature (e.g., see
Montgomery, 2001).

An example of an (X, R) chart in which the quality characteristic is the
weight of the product and 60 samples of 4 products each have been chosen
randomly from the process, is presented in Figure 2-1. The calculations for
the limits of the chart have been based on Eq(2-4) and (2-5). The means of all
the samples are inside the control limits indicating that these limits may be
used in order to check for the compatibility of future samples instead of
calculating new limits each time we gather a new random sample. The
average ranges of all samples are also inside the control limits of the R chart

and, thus, the standard deviations do not imply an out-of-control situation.

11
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The(x-bar,R) chart
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Figure 2-1: A typical (X, R) control chart.

2-3.3 The (x, S) control chart

The x and S control charts are preferred to the ¥ and R charts when
the sample size n is large (usually greater than 10) or when the sample size is
variable from sample to sample, because in this case the range method for
estimating ¢ loses statistical efficiency. An unbiased estimator of ¢* which is

widely known is the sample variance:

n

> x, - %)

§P=l (2-7)
n-1

However, S is an unbiased estimator of c40, where ¢4 is a constant

depending on the sample size n. Furthermore, the standard deviation of S is
0y1-c; . Therefore, when m preliminary samples are available, each of size

n, Sis the average of the standard deviations of all the m samples and S/ c4

1s an unbiased estimator of ¢. The three-sigma control limits for the Xand S

charts are:

Control limits of the X chart
UCL=X+3S8 /ca/n=X+A3S
Center line = x

LCL = X-3S/ca/n=%-A3S (258)

12
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Control limits of the S chart

UCL = §+36,= §+3£w/1—cf = (1+3y1-c /cg) S=B,S
C

4

Center line = S

LCL= §-35,= 5-33,/1—@3 =(1-341-c2 /c) S=B3§ (2-9)
C4

If the true values of the mean u and of the standard deviation ¢ of the

process are known, then the limits of the X and S charts become:

Control limits of the X chart: standards given

UCL=p+3 L =p+tA 0
Fl

Center line =

LCL=p-3-T=p-Agc (2-10)
Jn

n

Control limits of the S chart: standards given
UCL = c40 + 3 04/1-c? =(ca+34/l-c} ) g =Bgo
Center line = c40

LCL =40 - 3 041-c} =(c4-341-c} )0 =Bsa

Values of ¢4, A3, B3, B4, Bs and Bg can also be found easily in tables,
implemented in the literature, according to the selected sample size n.

It is generally assumed that when the data arise independently from a
common normal distribution, it should not make difference if the range
method or the standard deviation method are used as estimates of ¢. However,
the (x, S) chart seems to be a safer approach in more extreme cases, as when
trends and oscillations affect the data (Cryer and Ryan, 1990). With the wide
use of relative software, the construction of the (X, S) chart is not time-
consuming any more and it has replaced the (x, R) chart that was used for its
simplicity only. Figure 2-2 presents a typical x and S chart using Eq(2-8) and
(2-9) for the same data as in Figure 2-1.

13
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The (x-bar,S) chart
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Figure 2-2: A typical (X, S) control chart.

Two subcategories of the x and S charts are:
1. TheXx and S charts with variable sample size

If the samples do not all have the same number of observations, one
way to deal with the problem is to use weighted averages in calculating X and
S . This will lead to upper and lower control limits that are not a straight line
but vary according to the sample size. An alternative is to calculate the
average sample size or to use the sample size which is the most often so as to
design a control chart with a single value for the upper and a single for the
lower limit.
2. TheX and S charts for Individual measurements

In many situations, the sample consists of an individual unit because
the production rate may be very slow. In many applications of the individuals
control chart we use the moving range of two successive observations in order
to estimate process variability. The moving range is defined as MR| = |x;-X1.1|

and its control limits are:

Control limits of the MR chart
MR

UCL = x+3 =x +3MR/1.128

2
Center line = x

MR o 3 MR/1.128 (2-11)

LCL = x-3

2

14
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Control limits of the R chart
UCL =Dy MR = 3.267 MR
Center line = MR
LCL = D3 MR =0 (2-12)

where 1.128 is the value of d;, 3.267 is the value for D4 and 0O is the one for
D; as they are indicated from the corresponding tables for n=2 (e.g., see
Montgomery, 2001). Cryer and Ryan (1990) proposed, however, that the

estimation of ¢ for the Individuals chart should be based on S/c4 of the (X, S)

control chart because MR /d; tends to inflate the variance considerably.

2-3.4 Selection of the sampling scheme

In our analysis about constructing the Shewhart control charts, we
considered that the choice of the sample size was evident. In practice,
however, it is difficult to decide on a specific value for it. The concept of
rational subgroups is of great help but a choice has still to be made between
taking samples consecutively or selecting items at a long time interval apart
the one from the other. The first approach is more effectively used when the
primary scope is to detect shifts in the process while the second when a
difference between two samples is of main concern. Consequently, the
sampling scheme is defined by both the sample size and the sampling
frequency.

A final remark is that a problem may not be indicated exclusively by
an out-of-control point, but the existence of a nonrandom pattern may also
reveal an abnormality in the process. A set of decision rules for recognizing
nonrandom patterns consists of considering the process as being out of control
if either:

e One point plots outside the three-sigma control limits

e Two out of three consecutive points plot beyond the two-sigma
limits (known as warning limits)

e Four out of five consecutive points plot at a distance of one-

sigma or beyond from the center line

15
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e Eight consecutive points plot on one side of the center line.
However, when using the above decision rules simultaneously, the
probability of type I error is inflated, resulting in an excessive number of
false alarms. That is why, the sensitizing rules should be applied with

considerable caution.

2-4 Control charts for attributes

When a quality characteristic cannot be conveniently represented
numerically, it is often suitable to classify it as conforming or
nonconforming to the specifications. The quality characteristics of this type

are called attributes.

2-4.1 Control charts for fraction/number nonconforming

The fraction nonconforming (p) is the ratio of the number of
nonconforming items in a population to the total number of items in that
population. The sample fraction nonconforming is the ratio of the number of

nonconforming units in the sample D to the sample size n, that is p=D/n.
Because the distribution of the random variable p can be obtained by the
binomial, its mean value is p=p and 0'; =p(1-p)/n. If the fraction

nonconforming of the process is not known, then it is estimated from m

samples by calculating p;=Di/n for each sample and then by averaging the

m p;’s to get:

p=_— (2-13)

Therefore, by substituting p with p if the true fraction nonconforming

i1s unknown, the control limits of the chart for fraction nonconforming are

specified as:

16
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Control limits of the p chart

UCL = p+3 | 24=P)
n

Center line = p (2-14)

LCL = p-3 | 20=P)
I

It is, however, possible and more convenient sometimes to base a
control chart on the number nonconforming (np) rather than the fraction
nonconforming (p). The control limits for the np chart are derived by a simple

modification of Eq(2-14) as:

Control limits of the np chart

UCL = np+34/np(1- p)

Center line = np (2-15)

LCL = np-3+/np(1- p)

Figure 2-3 illustrates typical p and np charts in which the number of
nonconforming items observed in each sample of size 5 varied between 0 and
2. It seems that only the 13™ sample has an unusual number of
nonconformities (i.e., 3), that is why a signal has been marked at this point.
Obviously, the np chart is just a multiplier of the p chart and, thus, the

information obtained is similar with both charts.

P chart np chart
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’ ‘ H - =
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—ers - A& -3,081.=0,00E+00

T L] T
o 10 20 e 40
Sample Number

0.5 —

04 —
)

\A,[h | M\ -
= geke-dek - & =x | -3.08L=0,00E+00
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Figure 2-3: The p and np charts for m = 40 samples of size n = 5 each.
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2-4.2 Control charts for nonconformities (defects)

A nonconforming item is a unit of product that does not satisfy one or
more of the specifications for that product. Each specific point at which a
specification is not satisfied results in a defect or nonconformity. The number
of defects (c) is consider to follow the Poisson distribution since it defines the
number of occurrences at a specific interval. Therefore, the mean and the
variance of the random variable ¢ are both equal to c itself. If no standard is
given for ¢, then it is estimated as the observed average number of
nonconformities in a preliminary sample of inspection units. The limits of the

control chart for nonconformities are:

Control limits of the ¢ chart

UCL = c+3+/c
Center line = ¢ (2-16)
LCL = ¢-3c

A more obvious approach would probably be to construct a control
chart for the number of nonconformities per inspection unit (u). The value u
can be considered as the ratio of the total nonconformities in a sample over
the n inspection units. The control chart for nonconformities per unit (the u

chart) has the following limits:

Control limits of the u chart

UCL = u+3 \/%

Center line = u (2-17)

LCL = u-3 \/%

Figure 2-4 shows both a ¢ and a u chart with the number of
nonconformities varying between 2 and 7. All samples seem to have a
reasonable number of defects under the specific scheme. The lower limit of

the chart is set to zero, because there can be no negative value for the defects.
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Figure 2-4: The ¢ and u charts for m = 40 samples of size n=S5 each.

2-5 The third-generation control charts: CUSUM and EWMA

A great disadvantage of the Shewhart control charts is that they only
use information on the last plotted point so as to draw conclusions about the
stability of the process. Two effective alternatives to the Shewhart control
chart considering the entire sequence of plots are the Cumulative Sum
(CUSUM) and the Exponentially Weighted Moving Average (EWMA) control
charts. Both the CUSUM and the EWMA charts have been proven (e.g., see
Lucas and Saccucci, 1990) to perform better than the Shewhart control chart
when we are interested in detecting small shifts. In other words, their ARL
value is smaller when the shift of the process mean is between 0.50 to 20

more or less than the initial mean of the process.

2-5.1 The CUSUM control chart

If the process is in control, the quality characteristic x has a normal
distribution with mean po (this is the target value of the characteristic) and a
standard deviation o. This assumption is the same as the one used in the
Shewhart control charts, with the difference that now it is not the averages of
the samples that are plotted but these are modified as accumulating

derivations from o The derivations that are above target are summarized in
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the statistic C* (one-sided upper cusum), while the ones below target are

symbolized as C” (one-sided lower cusum). More precisely,

Plotted points on the CUSUM chart
C’i = max {0,(x; — poy-K+C"i.1}
Ci= mim{0,(o-K) - xi+Ci.1},

where C*o= Cx=0 and K=@ =60/2 when the shift is expressed as

[ = Mo t+ 60.

Control limits of the CUSUM chart (2-18)
UCL=H
Center line = po

LCL =-H

K is often called the ‘reference value’ and its value is defined
according to the smallest shift in the process mean (measured in standard
errors and expressed by §) that is considered important to be detected quickly.
There are many debates concerning the value of H and K. However, according
to the ARL performance of various values for H computed using simulation, it
has been proven that, by considering H and K as multiples of the standard
deviation o, i.e. H=ho and K=ko, a value of 4 or 5 for h and of 0.5 for k
gives smaller values to ARL when a shift has occurred and larger when no
shift has occurred than do other choices (see Montgomery, 2001). Thus, these
are the recommended values for h and k. If an out-of-control point appears,
one should search for the assignable cause, take any corrective action
required and then reinitialize the cusum at 0.

The cusum chart specified in Eq(2-18) presents the case where the
sample size is only one unit. If n is greater than 1, the value x; should be

replaced by the mean of the sample X, and ¢ by the standard deviation

ax=0/«/;,where 0 is usually estimated from the data. Finally, Eq (2-18)

could be modified to account for the variability and not only for the

derivation from the mean of the data if we set (xi- poyo;, instead of xi- o

X
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This is often called the ‘Standardized Cusum chart’. Figure 2-5 shows a

typical CUSUM chart for the same data used in the previous Figures.

The Fast Initial Response (FIR) or Headstart Feature

This procedure was revised by Lucas and Crosier (1982) to improve
the sensitivity of a cusum at process start-up. The Fast Initial Response (FIR)
or headstart sets the starting values C*y and C7 equally to a nonzero value (a
good choice whould be H/2, i.e., a 50% headstart). If the process is in control,
the values of C'y and C’y are soon not affected by the headstart because
consecutive observations near the target value set the cusums rapidly to zero.
On the other hand, if the process is out-of-control, points are plotted out of
cusums earlier than when no headstart has been used. Therefore, if the FIR is
applied to the CUSUM chart, there is a great possibility of detecting a shift

faster.

The CUSUM chart
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X ¥

\
}
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Cumulative Sum

— -6.43606
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T [ T [ T T
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Subgroup Number

Figure 2-5: The CUSUM control chart with n=4, k=0.5 and h=4.

2-5.2 The EWMA control chart

The EWMA control chart was introduced by Roberts (1959). It is also
effective when small shifts should be detected and its performance is
approximately equivalent to that of the CUSUM chart. Furthermore, it is
somewhat easier to operate and it is model free. The consecutive points

plotted on the EWMA chart, as well as the control limits, are calculated as:

21



Overview of the most common control charts

Plotted points of the EWMA chart

il )
z,= X + (1-Nzj., = )\Z(l—/{)jx‘._j +(1- N)'zg, with starting value zo = o
=0

(2-19a)

Control limits of the EWMA chart

A 5] = A
UCL = po+Lo,=pot+ U\/(Z—ﬂ)[ ( ) ]z—-)oc Mo + Lo K(Z—l)

Center line = pg (2-19b)

A 2 B A
LCL = po-Lo,=uo- Lo \/m [1 ~(1-a) ] i—e po-La ,(7-7)

where ¢ is the estimated standard deviation of the original data X.

From Eq(2-19a), it is easily seen that the weights A(1- N’ decrease
geometrically with the age of the sample mean and that they sum to unity.
The plotted points are not the observations themselves but they are the sum of
the weighted values of all the previous observations. The fact that the
observations are accumulated makes the detection of a shift quicker, so that
less time is needed to observe an out-of-control signal than when the
Shewhart-type control chart is used.

Considering Eq(2-19b), one observes that, since the term [1-(1- N)*]
approaches unity as i gets large, after the EWMA chart has run for several
time periods, its control limits are stabilized. Simulation procedures for the
ARL performance of the EWMA have shown that values of A in the interval
0.05 < A £0.25, and L around 3 give satisfactory values for the average run
length (e.g., see Montgomery, 2001).

A rule of thumb is that if small shifts are to be detected, then a small
value for N is more appropriate and a larger value otherwise. This is to be
expected since a smaller smoothing constant gives more weight to older
observations and, thus, the effect if the shift is small is accumulated more
than when the smoothing constant is large. Hence, smaller shifts are detected
sooner when A is small. In contrast, when the shift is large, it is detected
sooner, since more weight is given to more recent observations that have a

higher mean. If A = 1, the EWMA chart is equivalent to the Shewhart.
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To design an EWMA control scheme, Lucas and Saccucci (1990)
proposed to select a value for the parameter A that results in the minimum
ARL for the specified shift that one wants to detect. They have provided
tables with the ARL values for various cases derived by simulation
procedures, so as to help someone decide upon the most appropriate value for
A

If each sample consists of more than one unit (n>1), then x; should be
replaced by x; and ¢ by o; =o//n in Equation (2-19b). Figure 2-6 represents

an EWMA chart for the data that were also used in the previous Figures.

The EWMA chart
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Figure 2-6: The EWMA control chart with n=4, A=0.2 and L=3.

The FIR Feature
As in the case of the CUSUM chart, the FIR feature is also useful in

the EWMA schemes, especially if the value of N is small. This is because,
when A is small, the variance of the control statistic converges slowly to its
asymptotic value and, thus, control schemes based only on the asymptotic
standard deviation tend to be insensitive at start-up. The FIR feature in the
EWMA control chart is obtained by simultaneously implementing two one-
sided EWMASs, each with a headstart (HS). One EWMA has a HS above the
target value and the other below the target value. If the process is off aim at
start-up, the EWMA with the appropriate HS (which usually has a starting
value of 50% between the process target and the control limits) will give an
out-of-control signal more quickly. On the other hand, if the process is in-

control, at least initially, the two EWMAs will tend to converge.
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Combined Shewhart-EWMA chart
Although the CUSUM and the EWMA control charts perform well

against small shifts, the Shewhart chart reacts better to large shifts.
Consequently, the Shewhart control charts should be used along with the third
generation charts (EWMA and CUSUM) in order to be protected both against
small and large shifts in the mean. This is achieved by adding Shewhart limits
to an EWMA (or CUSUM) control scheme, so that an out-of-control signal is
given if the EWMA (or CUSUM) statistic is outside the control limits or if

the current observation is outside the Shewhart limits.

The EWMA control scheme compared to the CUSUM
The property of the EWMA chart that it is not sensitive to normality

has been proven from the fact that applying this chart to nonnormal
distributions does not affect the ARL values (e.g, see Montgomery, 2001)
something that does not happen in the case of Shewhart or CUSUM charts. In
terms of the ARL properties, there is little practical difference between the
EWMA and the CUSUM chart. According to the study of Lucas and Saccucci
(1990), the ARL values for the EWMA chart are usually somewhat smaller
than the ones of the CUSUM up to a value of the shift near the one that the
scheme was designed to detect. Beyond this shift, though, the CUSUM chart
has smaller ARL values and, thus, it detects the mean shifts more quickly than

the EWMA.

2-6 The Spectral chart

Spectral analysis has been used to detect and evaluate periodicities in
equally spaced time-ordered data by decomposing the data into its periodic
components. This is the technique based on which the spectral control chart
has been developed by Beneke et al. (1988) with the purpose of detecting
periodic behavior. The spectral control chart is much more recent than the
Shewhart, CUSUM and EWMA and it is not very commonly applied in the
manufacturing procedure. According to the spectral analysis, n consecutive
measurements of the process average represent a finite realization of a time

series and a value computed at time t can be represented by (Chatfield, 1984):
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Xi=o0p/2 + Z(ak coswt+b,sinw,t), t=1,2,..,n
k=1

where wy = 27k/n, k=0,1,2,...,m

oax=2m) X cosw,t,k=0,1,2,....m (2-20)
t k

t=1

by=2/n) X sinwt, k=1,2,...,m and m = n/2 with n even
t k

t=1

The frequencies wy can be expressed in cycles per unit time as fx =
w/2m = k/n. The period corresponding to the frequency fi is then given by T =
n/k. The Fourier series contains periodic components at each of the
frequencies w;, w3, ..., wm This type of analysis partitions the variability of
the data into components at frequencies 27/n, 4%/n, ..., m. The component at
frequency wy = 27k/n is referred to as the kth harmonic. For k # n/2 (i.e., wy #

7), the kth harmonic is given by:

o, coswit + by sinwyt = Ry cos(wit + ¢y), where

Ry = amplitude of the kth harmonic = (ax*> + bi?)'”? and (2-21)

¢« = phase of the kth harmonic

The periodogram can be visualized as a bar chart consisting of k cells.
Its purpose is to estimate the spectrum of the process, analogous to the way a
histogram is used to estimate the probability density function of a
distribution. The area of each histogram rectangle is the contribution of each
of the frequencies, wy, to the variance of the data. An example of a

periodogram with m = 5 ordinates is given in Figure 2-7.
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Figure 2-7: Example of a Periodogram with five ordinates. \:
\\,\ )
R
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The periodogram can be estimated from the original observations X,
X3 . X, The kth periodogram ordinate (the height of the kth histogram

rectangle) is calculated as:

t=1 t=1

2 n 2
I(w) = 1/nT {[ZX, cosa)kt} +[ZX, sina)kt] }, k=1,2,...,m (2-22)

In order to search for cycles in the original observations, we can test
the hypothesis Ho: X; = p + €, versus Hy: X; = p + A coswt + B sinwt + ¢,
where u, w, A and B are unknown constants and ¢, are independent and
identically distributed random variables with mean 0 and standard deviation

0. A statistic that can be used to test the hypothesis is (Fuller, 1976):

[L
1 m
— ZI (“)k)
m )i
ordinates, each of which is distributed as a X*-distribution with 2 degrees of

freedom. (2-23)

, where I is the largest among the m periodogram

E:

The derivation of the distribution of ¢ is provided by Beneke et al.
(1988) and a table of the percentage points of the largest ordinate to the
average (i.e., £) is given by Fuller (1976).

The spectral control chart that detects the presence of cyclic behavior
of the process mean is based on a test of the hypothesis mentioned previously.
The null hypothesis Hy (that is, cycles are not present) is rejected if the
periodogram ratio, £, is larger than the critical value for the desired
significance level.

The spectral control chart consists of an upper limit only, which is the
critical value for the desired significance level. The value plotted at each time
point is the ratio of the largest periodogram ordinate to the average of all
ordinates. An out-of-control signal is given when the value plotted falls above
the control limit line. Figure 2-8 illustrates the general form of the spectral
control chart. When a value exceeds the upper control limit, the frequency w;

and period 27/w; corresponding to the largest periodogram ordinate are
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identified. The first value to be plotted is computed using the first n
observations (X;, X3, , X;) and the procedure described previously. To

obtain the next plotted value, X, is dropped and X,., is added, and so forth.

/\\/

Figure 2-8: A spectral control chart with frequency = wy and period = n/k.

Several comments concerning the spectral contol chart made by Beneke et al.
(1988) are:

(1) Since adjacent values use n-1 of the same process observations
in computing the periodogram, there is a significant positive autocorrelation
on the spectral control chart. An out-of-control signal does not produce a
sudden jump upward as in the Shewhart chart when there is a change in the
process average. Rather, the values plotted on the spectral control chart rise
slowly as a cyclic tendency becomes more pronounced over time.

(i)  Computations can be expedited in two different ways. Since the
process observation X,., is dropped and the observation X, is added to spectral
chart computations, considerable computation time may be saved by storing
values from one point in time to the next. If n is large, a fast Fourier
transform may be more efficient.

(ii1)) The formula for I(wyx) assumes that X, are observed at equally
spaced time intervals. If the observations are at irregular time intervals or
have some consecutive data points missing, this procedure cannot be used.
However, if only a few observations are missing and they are not adjacent,
interpolation between the known points surrounding the missing ones could
solve the problem.

(iv) The spectral control chart works best when detecting cyclic
variations that follow a sinusoidal form.

(v)  The choices of sampling frequency and the number of

observations are related in determining the effectiveness of the spectral chart.
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Beneke et al. (1988) showed that the spectral control chart is superior
for detecting cyclic variations but it is not effective for detecting shifts in the
process mean. On the other hand, the Shewhart and EWMA charts perform
poorly when the mean appears to have a cyclic behavior, because their limits
are based on the variability of the data, which, apart from the random
variability of the process, it also includes the variability caused by the cycle
in the process mean. Therefore, the spectral control chart should be used
along with the standard control charts, so that both shifts and cycles in the

process mean can be detected.
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CHAPTER 3

Time series models for autocorrelated data

3-1 Introduction

In Chapter 2, the standard control charts were presented assuming that
the processes of interest are not submitted to a specific pattern and, thus,
insinuating that there is no dependence between successive observations over
time. However, the existence of correlation among the data is a situation
which is very often confronted in practice, since the same machines are used
in the fabrication of goods and samples are taken once after a short time
interval. The best way to be released from this correlation structure is simply
to estimate it and subtract it from the observed data, so as to be left with the
uncorrelated structure only.

The estimation of the autocorrelated processes is achieved via the time
series models. In section 3-2 the fundamentals of the time series approach are
presented, section 3-3 explains the structure of the most widespread stationary
time series models, called the ARMA models, and section 3-4 describes the

class of nonstationary models, termed as ARIMA processes.

3-2 Basic properties of autocorrelated data

Traditional statistical process control (SPC) assumes that consecutive
observations from a process are normally and independently distributed with
mean p and standard deviation ¢. When this assumption is valid, the
statistical properties of the control chart (the false alarm rate, the ARL etc.)
can be easily determined. If the assumed uncorrelated structure is not valid,
then an effort is made to estimate the form of the dependency by trying to

find a model that fits the data. The first thing to do is calculate the mean, the
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variance and the correlation of the observed data, so that an idea is formed

about the structure of the process.

3-2.1 Autocorrelated data in industry

Often in industrial practice, in continuous as well as discrete
production processes, observations are actually not independent but more or
less correlated. Autocorrelated behavior means that there are carryover effects
from earlier observations. The mechanism of these carryover effects must be
sought. Examples @ include chemical processes where consecutive
measurements on product characteristics are interrelated or when the process
is organized in batches. Under such conditions, traditional SPC procedures
may be ineffective, indeed inappropriate, for monitoring, controlling, and
improving process quality. The main difficulty is that when systematic
nonrandom patterns are present, casual inspection makes it hard to separate
special causes and common causes. A natural solution to this difficulty is to
model systematic nonrandom patterns by time-series models that go beyond
the simple benchmark of independent and identically distributed (iid) random
variables.

One possibility, for example, is a first-order autoregressive model, in
which each observation may be regarded as having arisen from a regression
model for which the current observation on the process is the dependent
variable and the previous observation is the independent variable. If an
autoregressive time-series model fits this data set, leaving only residuals that
are consistent with randomness, it is futile to search for departures from
statistical control since only special causes are now left. Otherwise, these
departures will be confounded with the dominant autoregressive behavior of
the data. Hence, when the data suggest lack of statistical control, one should
attempt to model systematic nonrandom behavior by time-series models-
autoregressive or other- before searching for special causes.

Figure 3-1 reveals the difference between an independent (a) and a
correlated process (b). In (a) nothing can be said about the next possible value
of the process, in (b) however there is strong evidence that the following

value will be positive. The existence of autocorrelation may be a good thing
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in that it helps predicting the next value. Another aspect with which we could
consider the two processes is that a model was fitted adequately to the
correlated process of Figure 3-1(b), such that when the model predicted
values were subtracted from the data set, what was left was the uncorrelated
process of Figure 3-1(a). This procedure of model fitting is similar to the
simple regression procedure, where a line is fitted to the data, with the

difference that the autocorrelated case is a much more complicated procedure.

(a) (b)
Independent process
Autocorrelated process
' . b | { *- .'Iln
R
300 — ' -..II ;Tl‘rl I'l,"—. I" |
200 — n i AT |
190 . AAY W

Figure 3-1: Independent (a) versus autocorrelated process (b).

3-2.2 The autocovariance and autocorrelation functions

The autocorrelation over a series of time-oriented observations 1is

measured by the autocorrelation function (ACF):

o = Cov(xy, Xwx)/ V(xy), k=0,1..., where
Cov(xy, Xi.x) is the covariance (ACVF) of observations that are k time periods
apart, i.e., Cov(Xy, Xk)=E {(X-tx)( Xp-k — tx)} (3-1)
Note that if k = 0, ACVF = V(x,)

Both px and V(x() are assumed to be constant, that is the observations
are spread around a fixed value p,, they have all a constant variance V(x,) and
the covariance depends only on the lag between the two time periods, 1.e.,
Cov((xt, xt.k)= Cov(xy, Xt+k) = Y(k). This is the definition of a stationary time-

series. The sample mean (¥ ), the sample autocorrelation function p(k) and
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the sample autocovariance function 7(k) for a set x,,.._ X, of observations of a

stationary time series are the sample analogues of those for the mean,
autocovariance and autocorrelation functions shown in Eq(3-1). The

x ,7(k), p(k) and the sample Partial Autocorrelation Function & equal:

7 (k)= , -n<k<n (3-2)
n

plk)= =p(k)/7(0), -n<k<n.
Usually, we compute values of p(k) for k < n/4.
The sample PACF for any set of observations x;,...X, is given by:

4(0)=1 and @(k)=¢,, for k =1, where @,,is the last component of ¢,=I}'7,,

[, =[7(i-))1%,-1 is the sample covariance matrix and 7y =[7(1),... 7(kK)]".

3-3 The ARMA process

If the autocorrelated data set seems to be stationary, then the most

widespread class of models applied to the data is the class of ARMA models.

3-3.1 Definition and properties of the ARMA process

The time series {x;} is an ARMA(p,q) process if it is stationary and if for
every t, X; 91 X1 - ...- @pXip = € + 8161+, + 0461, Where € is iid random

variable with mean 0 and variance ¢°. (3-3)

Eq(3-3) is valid only when the polynomials ¢(z) = (1- ¢1z -...- ¢,z°)
and 6(z) = (1+ 6,z +... 84z%) have no common factors and a unique stationary
solution exists if and only if ¢(z) #0 for all |z]|=1 (see Brockwell and
Davis,1996). Two major properties of the ARMA model are the causality and

the invertibity, which are defined as:
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Causality:
An ARMA(p,q) process is causal if there exist constants {y;}such that

i‘y/j’«:o and X;= it//jZ,_j for all t. 3-4)
j=0 =0

Causality is equivalent to the condition ¢(z) #0 for all |z]<1.

Invertibility:
An ARMA(p,q) process is invertible if there exist constants {m} such that

2'7I,|<oo and Z, =§:)njx,_j for all t. (3-5)
J= Jj=

Invertibility is equivalent to the condition 8(z)*¢(z) #0 for all |z] <1.

3-3.2 Modeling the ARMA processes

The determination of an appropriate ARMA(p,q) model to represent an
observed stationary time series involves:
1. Estimation of the process mean p.
2. Order selection (the choice of p and q).
3. Estimation of the coefficients (¢, i=1,...p and 6;, j=1,...q) and

the variance of €, ¢°.

Estimation of the process mean u

The mean is estimated by the sample mean given by Eq(3-2), which is
not unbiased in this case because of the autocorrelation of the data but which,
however, still holds some good properties. It is suggested to subtract the
sample mean from the data, so that a zero-mean ARMA model is appropriate

to be fitted to the adjusted series.

Order selection

As a general rule, choosing p and q arbitrarily large is not
advantageous. Fitting a very high order model will generally result in a small
0?, but when using the fitted model for forecasting, the mean squared error of
the forecasts will depend not only on o’ but also on the errors arising from

estimation of the parameters of the model. A criteria helping to decide upon a
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good choice for p and q is the Akaike (defined below) together with a bias-
corrected version of it. After having estimated a number of ARMA models
with different values for p and q, we select the one with minimum Akaike

value.

Estimation of the model coefficients and of ¢*

For fixed values of p and q, good estimators for ¢ and 8 can be found
by considering the data to be observations 'of a stationary Gaussian time series
and then maximizing the likelihood with respect to the p+q+1 parameters
b1,... Pp, 01,..., 04 and o?. Maximization is carried out by searching
numerically for the maximum likelihood after specifying initial parameter
values with which to begin the search. The closer these are to the maximum
likelihood estimates, the faster the search will be.

There exist many methods for preliminary parameter estimation
proposed by Brockwell and Davis (1996) as is the ‘Yule-Walker Estimation’,
the ‘Burg’s algorithm’, the ‘Innovations Algorithm’ and the ‘Hannan-
Rissanen Algorithm’. After initial values for ¢ and 8 have been provided by
the use of one of the above methods, the maximum likelihood estimation

searches for the values of ¢ and 8 that minimize the reduced likelihood given

by:

Maximum likelihood estimators

G2 =S(¢3’é}’; , where S(&,é)=i(Xj —Xj)z iy and q?,é are the values of

J=1

¢, 6 that minimize ¢ (¢,0)=In(n"'S(¢, )+ n' Y Inr, (3-6)
Jj=l

Finally, for fixed p and q, ¢, and §, are selected to minimize the bias-

corrected Akaike criterion:

Akaike criterion
AICC= -2InL(¢y, 84, S(¢p, 04)/n)+2(p+q+1)n/(n-p-q-2) (3-7)
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By repeating the estimation procedure for various values of p and q
and calculating the Akaike value using Eq(3-7), we may consider the values

for p and g that minimize AICC as the optimal ones.

3-3.3 Goodness-of-fit of the ARMA process

In order to verify the appropriateness of the specified ARMA(p,q)
model, its autocorrelation function 1is compared with the sample
autocorrelation defined in Equation (3-2). Methods for computing the
autocorrelation function of causal ARMA processes are given in Brockwell
and Davis (1996). Similarly, the sample Partial autocorrelation and the model
Partial autocorrelation are compared. If there are not serious deviations
between the sample and the model values for all lags, then the particular
ARMA(p,q) model is considered adequate to fit the data. If this is not the
case, other models should be tried.

With the purpose of checking the model fit, the most common approach
is to calculate the residuals (observed values - values estimated by the
model). If the model has fitted the data well, the residuals should be left to be
white noise, that is, a sequence of uncorrelated random variables, each with 0

mean and variance o°. The most common way to find if the residuals are

white noise is to plot them between the bounds il.'96/\/—1; [based on the fact
that the distribution of an iid sequence is N(0,1/n)], in which they will fall
with 95% probability. If we compute the autocorrelations of the residuals up
to lag 40 and find that more than 2 values (i.e., 40*0.5) fall outside the
bounds, then we should reject the iid hypothesis. Other tests for checking the
validity of the hypothesis are the ‘Portmanteau test’, the ‘Turning Point’ test,
the ‘Difference Sign test’ and the Rank test’ (see Brockwell and Davis,1996).
Figure 3-2 presents the ACF/PACF functions where the longer lines
indicate the ones estimated by the data and the shorter lines are the ones
derived by the Maximum Likelihood estimates for the ARMA(1,1) model: X,
= 0.8202X;.1+ €; -0.9766¢.,. It is obvious that both the sample ACF and PACF
are very close to their model analogues. That is why, both the ACF and PACF

of the residuals shown in Figure 3-3 are compatible with the ones coming
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from pure white noise, since they are inside the 95% bounds denoted by the

dotted lines (apart from when lag = 0 in which case the correlation is always

equal to 1).
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Figure 3-2: The sample/model ACF (a) and the sample/model PACF (b) for the process
X, = 0.8202X,.,+ ¢ -0.9766¢,.,.
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Figure 3-3: The ACF (a) and PACF (b) of the residuals after the model X, = 0.8202X,,+
€ -0.9766¢,., has been applied.

3-3.4 The most common ARMA models

Usually, the construction of ARMA models with a large number of
estimated parameters is avoided due to their complexity. In statistical process

control, a few parameters are often sufficient to explain the autocorrelation
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structure. The simplest and most popular ARMA charts together with their

properties are further presented.

3-3.4.1 The MA(q) process

The MA(q) is a Moving Average process of order q if the stationary

time series {X;} satisfies the equations:

Xt = € + 0]6(-]+...+ qul.q .
where €, is identically and independently distributed random variable with

mean 0 and variance o” and 6, ..., 64 are constants with 8¢ =1. (3-8)

In other words, the MA(q) is an ARMA(p,q) process with p=0 and q>0.

a) ACVF and ACF of the MA(q) process
The mean, autocovariance and autocorrelation functions specified by

the model MA(q) are:

E(X) =0
azzvl_tle.e. iflk| < q

W)= T ’ (3-9)
\0,if|k|>q

p(x) = y(k)/ K0)

By setting q=1, we get the ACVF and ACF of the MA(1) process.

b) Order selection

The MA(q) process is said to be g-correlated because, as seen from Eq
(3-9), for lag>q, its autocorrelation function becomes 0. Since the inverse is
also true, i.e., a stationary g-correlated time series with mean O can be
represented as the MA(q) process, a good way to estimate q is to represent
graphically the sample autocorrelation function and specify q to the value
above which the sample autocorrelation becomes 0. More precisely, if the

sample ACF of the data is significantly different from 0 for k<q, i.e.,
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| p(k)|>1.96//n for k<q and it is negligible for k>q (| p(k)|<1.96//n ), then a
MA(q) model is suggested.

¢) Estimation of the model coefficients

The preliminary estimation methods used for the MA(q) model are
either the “Innovations” or the “Hannan-Rissanen” algorithms. After using the
Maximum Likelihood estimation based on the initial values of 6;..., 04
estimated by the one of the above preliminary methods, the AICC value
should be calculated using Eq(3-7) and the q value resulting in the minimum

AICC will be the one retained.

3-3.4.2 The AR(p) process

The time series {X;} is an Autoregressive process of order p, AR(p),

if the stationary time series {X,} satisfies the equations:

Xi=1Xeq + ...t ¢pXt-p+ €1,
where ¢; is identically and independently distributed random variable with
mean 0 and variance 02, €. is uncorrelated with X; for s<t and ¢,,..., ¢, are

constants. (3-10)

The AR(p) is an ARMA(p,q) process with p>0 and q=0.

a) ACVF and ACF of the AR(1) process

There is not a general closed formula for the ACVF and ACF of the
AR(p) process. Therefore, only the autocovariance and autocorrelation
functions of the AR(1) process will be provided because this is the most
common case among all the AR(p) schemes that are used in industry. The

mean, ACVF and ACF functions of the AR(7) model are calculated as:

E(X,) =0
¥(x) = o™ %(0), where k =0, *1,... (3-11)

p(k) = ¢|k|, k=0, +1,...
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b) Order selection

The PACF of an AR(p) process has the properties o(p)=¢p, and a(k)=0
for k>p. Therefore, if the sample PACF of a set of n observations is
significantly different from 0 for 0< k < p and negligible for k>p, then an
AR(p) model might provide a good representation for the data. To decide
what is meant by negligible, we can use the fact that for an AR(p) process the

sample PACF values at lags greater than p are approximately independent

N(0,1/n) random variables, so that if ld(k}>l.96/\/; for 0< k < p and

o‘z(k]<l.96/ Jn for k>p, an AR(p) model is suggested for the data.

¢) Estimation of the model coefficients

For an AR(p) model, the preliminary estimation method should be one
of the ‘Yule-Walker’ or the ‘Durbin-Levinson’ algorithms. Then, the
Maximum Likelihood estimation is applied for various values of p and the
value of p minimizing the AICC criterion given by Eq(3-7) is the one we

finally decide to keep.

3-3.4.3 The ARMA(1,1) process

The time series {X;} is a first-order Autoregressive Moving-Average

process, ARMA(1,1), if it is stationary and satisfies for every t the equation:

Xi — dXa= € + fea,
where ¢, is identically and independently distributed random variable with

mean 0 and variance ¢° and ¢* §=0. (3-12)

The ARMA(1,1) model contains simultaneously the information provided

from both the AR(1) and MA(1) models.
a) ACVF and ACF of the ARMA(1,1) process

The autocovariance and autocorrelation functions of the ARMA(L,1)

model are given by:

39




Time series models for autocorrelated data
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p(x) = v(k)/ ¥(0)

The variance of an ARMA(1,1) model is (Box and Jenkins, 1976):

0= (1-2¢,0,+ 8, a*/(1- ¢,?),

where 0 is the standard deviation of the random error terms é;. (3-14)

b) Order selection for the general ARMA(p,q) model

For models with p>0 and >0, the sample ACF and PACF are difficult
to distinguish. However, an approach would be to combine the methods used
for the separate MA(q) and AR(p) processes, so that p and q are selected to be
the values above which the PACF and the ACF values respectively become 0.

¢) Estimation of the model coefficients

The preliminary estimation methods used for the ARMA(p,q) model
and, consequently, for the ARMA(1,1) model are either the “Innovations™ or
the “Hannan-Rissanen” algorithms. After using the Maximum Likelihood
estimation, the minimization of the AICC value will indicate the values for p
and q to use. The parameter estimation and the choice of the ARMA model to

be fitted are provided by user friendly packages.

3-3.5 Forecasting stationary time series

In time series applications, we often consider the problem of predicting
future values of the process, X,:, when h>0, with known mean p and
autocovariance 7 in terms of the past values {Xy,...X,} up to time n. The goal

is to find the linear combination of {X,,...X;} which forecasts X, with
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minimum squared error. Thus, the linear predictor of X,:, based on
{Xs,...X;} has the form: X'M,,= co + Xy + ...+ ¢, X, It is known from the
statistical theory that the minimum-squared error criterion finds the optimal
value of X, by minimizing the quantity:

n+h

E(Xnsh = X,0p)* = E[Xnsn — (Co + ¢1Xn + ...+ X)) (3-15)

There are two recursive approaches of determining the best linear
predictor. These are the “Durbin-Levinson” and the “Innovations” algorithm.

Both approaches are described extensively in Brockwell and Davis (1996).

3-4 The ARIMA process

In the previous section, the stationary ARMA models have been
studied. However, we should also examine the case in which a set of
observations {xi,...,x,} does not seem to be generated by a stationary time
series. If the data do not exhibit apparent deviations from stationarity or, in
other words, the autocovariance function of the data is rapidly decreasing,
then an ARMA model should be fitted to the mean-corrected data. Otherwise,
we confront an ARIMA model and a transformation should be applied to the

data in order to make them stationary.

3-4.1 Definition of ARIMA models

A wide range of nonstationary time series may be fitted by
Autoregressive Integrated Moving Average (ARIMA) processes, that is,
processes which, after differencing finitely many times, reduce to ARMA
models. If d is a nonnegative integer, then {X;} is an ARIMA(p,d,q) model
if:

Y. = (l-B)dXt is a causal ARMA(p,q) process,
where (1-B)! =V ¢ is the lag-d difference operator and B is the backward shift
operator, such that BX=X.;. (3-16)
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For example, the lag-one difference operator Vis: VX, =(1-B)X; = X;-
X1, the lag-two difference operator V2 is: V(V (X)) =(1-B)’X, = (1-
2B+Bz)Xt = X-2X;.1 + Xy, etc. An equivalent definition of the one given by
Eq(3-16) is that X, satisfies the equation of the form:

¢*(B)X, = 6(B)e;, with ¢*(B)X, = ¢(B)(1-B)’X,,
where €, is white noise with 0 mean and variance o> and ¢(z), 0(z) are

polynomials of degrees p and g, respectively, while ¢(z)=0 for |z]<1. (3-17)

The ARIMA(p,d,q) process reduces to an ARMA(p,q) process if d=0.

The IMA model
A special case of the ARIMA(p,d,q) model is the Integrated Moving

Average model (IMA) which has no autoregressive term (i.e. p=0). The first-

order IMA (that is, when d=1) is specified as:

-1 t-1
VX=e+0Y gorXe=Xu +e+60) g (3-18)
i=0 i=0

where 0 < § < 1. An IMA with 8+0 is a nonstationary process with variance
0’(1+ 6°t) increasing linearly in t. Special cases of the IMA family arise when
6 = 0 giving an iid process and when §=1 giving a random walk. For 0<6<1,
the IMA is equivalent to a random walk observed with iid measurement error
(Box and Jenkins, 1976).

The IMA(1,1) or, equivalently, ARIMA(0,1,1) model has only one §

parameter to be estimated, i.e:

Xt = X[-l + € - 0 €1 (3'19)

The model of Eq(3-19) describes nonstationary behavior (that is, the
variable X; drifts as if there is no fixed value of the process mean). This
model often arises in chemical and process plants when X, is an uncontrolled
process output, so that no control action has been taken to keep the variable to

a target value.
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3-4.2 Transformation of the ARIMA models

Deviations from stationarity are usually suggested by the graph of the
time series itself or by the sample autocorrelation function. Three kinds of
transformation are commonly applied to the nonstationary time series in order

to eliminate the specific cause of nonstationarity. These are:

a) Unstable variability

If inspection of the graph reveals a strong dependence of variability on
the level of the series, then a Box-Cox transformation can be used in order to
stabilize variability. This transformation proposes a new time series {Y,} with

stabilized variance where:

X! -1
InX,A=0

The logarithmic transformation for A =0 is appropriate when the standard

deviation of the series increases linearly with the mean.

b) Trend and seasonality

If the graph of the time series reveals the existence of trend (the mean
of the process is systematically increasing or decreasing) and seasonality (a
pattern is repeated every fixed time period), then there are two approaches to
the problem:

1. Classical decomposition of the series into a trend component, a
seasonal component and a random residual component. Then the trend is
estimated by applying a smoothing filter (exponential or moving average), the
seasonal component is estimated next and, finally, the trend is reestimated by
applying a filter or fitting a polynomial (linear or quadratic). All these
estimation methods are described in detail in Brockwell and Davis (1996). At
last, the estimated trend and seasonal component are subtracted from the

model and a stationary time series is left.
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2. Differencing. If the trend can be expressed in terms of a polynomial
of degree k, then the application of the operator V¥*! to the data eliminates
the trend and results in a time series with constant 0 mean. The seasonal
component with period d can be eliminated by applying the V4 operator
defined by V 4X, = (1-BHX, = Xi-Xeg. It is preferable to eliminate the seasonal
component first and the trend afterwards so as to be left with the residual term
which is a stationary time series. Figure 3-4(a) shows a time series with a
seasonal component of period 12 and with variability increasing linearly with
the mean, while in (b) the logarithmic transformation and the application of
the operator V; has made the series stationary. The fit of an ARMA model

can now be suggested as it was done in the previous section.
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Figure 3-4: An ARIMA model with d=12 (a) transformed in an ARMA model (b).
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CHAPTER 4

Control charts for autocorrelated processes

4-1 Introduction

In the previous chapter we were concentrated in modeling
autocorrelated processes of the form of ARIMA models. By referring to
ARIMA models we implicitly assume that the ARMA models are also
included, since they form a subcategory of the ARIMA ones. Once an
appropriate ARIMA process has been specified for the observed data leaving
a pure series of independent stationary residuals with nonrandom pattern, then
the control charts are able to test whether the production process is in control,
1.e., no shift in the mean or in the standard deviation of the process has been
occurred, or not.

A variety of control charts for autocorrelated processes has been
proposed. These include traditional charts with modified control limits
described in section 4-2, or charts applied to the residuals, as presented in
section 4-3. Section 4-4 recommends the use of forecasting tools with
traditional control charts applied to the forecast errors. Finally, in section 4-5

a recent chart called the ARMA chart is initiated.

4-2 Traditional charts modified for autocorrelated processes

4 . . .
Since our concern is on processes following a correlated pattern, the

lack of independence among the observations should be taken into account
when monitoring these processes. A lot of work has been done in an effort to
widen the control limits of the standard control charts, so that the number of

false alarms due to the inherent patterned structure of the data is reduced.
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4-2.1 The modified Shewhart Control Chart

In Chapter 2 we initiated the standard mode of the Shewhart control

limits as:

UCL = pux + L oy
Center line = py, (4-1)
LCL = pux - L oy

We have already discussed that the Shewhart chart is a plot of the
observations themselves and it is designed so as to have a small chance of
obtaining an out-of-control signal when the process is in control, and a higher
chance of an out-of-control signal when the process is out of control.
Assuming that only one observation is provided at each time period, that is
the Shewhart chart is an Individuals chart, it may account for the
autocorrelation of the data if o, is not the pure standard deviation of the
process any more, but it now depends on the particular correlation structure
(i.e., on the parameters of the appropriate ARIMA model). For example, if the
fitted model is ARMA(1,1), having the form of Eq(3-12), its variance has
been specified from Eq (3-14) as:

o= (1-2¢:0,+ 0,°) 0 2/(1- ¢17),
with ¢.” being the variance of the random error term (symbolized as ¢? in the
previous Chapter). By substituting both the squared error of the variance
given from Eq (3-14) and the mean of the process (known or estimated from
the data) to Eq (4-1) and by setting L to a fixed value (usually 3), we have
constructed the control limits for the modified Shewhart Control Chart. 1If

more than one observation is available at each sample, then the standard

deviation g4 can be substituted by ax/«/;.

The modified Shewhart Control Chart has been proposed by Wardell,
Moskowitz and Plante (1992). It is an extension of the original Shewhart chart
since for independent processes, that is, when ¢; and 6; are equal to 0, o, 0,
and the standard limits of the Shewhart chart are derived.

Figure 4.1(a) presents the original Shewhart chart applied to a set of

autocorrelated data with mean 9 for the first 98 points and 10 for the last 32!
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Because we did not take into account the dependency of the process, run
counts suggest that the process is nearly always out of control, sometimes on
the high side and sometimes on the low side, so that the shift in the mean is
confused with the autocorrelation of the data. Note that the control limits
were calculated from the first 98 points because these were considered as the
steady state of the process.

Figure 4.1(b) presents the modified Shewhart chart in which we have
calculated 0%, = 0.66 using Eq(3-14) after fitting adequately an ARMA(1,1)
model with ¢ = 0.74, § = 0.32 and 052 = (0.475. This chart has much fewer out-
of-control points since its limits are wider but it has still confused the
common and special causes to some degree by not clearly distinguishing the

shift in the mean from the inherent autocorrelation stucture.
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Figure 4-1: The standard (a) and the modified (b) Shewhart control charts for an
ARMA(1,1) model.

Obviously, if another ARMA model apart from the ARMA(L,1) is
appropriate for the process, then its estimated standard deviation is the one
replaced in Eq(4-1). Estimates for the variance of various ARMA models can
be found in Box and Jenkins (1976).

4-2.2 The EWMAST chart

The EWMA chart has been proven satisfactory in some cases of

autocorrelated processes even by not taking into account the correlation of the
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data. However, Zhang (1998) proposed the EWMAST chart to improve the
performance of the simple EWMA when the data are related. Its limits are
different from the ones of the original EWMA chart being wider when the
process is positively autocorrelated. The plotted observations are not the
original ones, X, but the recursive ones, z,, exactly as in the case of the simple
EWMA, i.e., z; = NXx(+(1-N)z..;. What is changed compared to the EWMA chart
is just the control limits. That is, the values z, are again plotted on a chart
with centerline p and Lo limits of the form p + Lo, with the only difference

being the value of 0,, which is now calculated as:

0.2 =N@2- N 0’ {1 -(1-2)"+ 2i pleX1-2) x[1-(1- ,1)2‘"*)]} (4-2)
k=1

Assuming no change of autocorrelation in the series {X;}, the
EWMAST chart will signal changes of the process mean. It is not difficult to
see that when the data come from an iid process, that is, p(k) = 0 when k 21,
Eq (4-2) become.s:, 0.2 = N(2- >\)0x2[1-(1-)\)2‘], which is the variance of the
original EWMA chart as it was presented in Eq(2-19b). Thus, the ordinary
EWMA chart is a special case of the EWMAST when {X;} forms an iid
sequence.

Zhang (1998) also proved that when t is large, there exists an integer M

so that an approximate variance of z; asymptotically is:

0.2~ N(2- \) 0% {1 + 2§ p(k)1=A) x[1= (1= A )™ ]} (4-3)

When the process is iid, Eq (4-3) becomes: ¢,> ~ N(2- No,2, being
exactly the asymptotic variance of the EWMA chart also shown in Eq(2-19b).
Because |p(k)|<1 for |k|>0, the approximation of Eq(4-3) is very good
even for a fairly strongly autocorrelated process. Zhang suggested, after
having conducted simulation studies, to use M=25 when A\ > 0.2, because M
should be large enough in order to avoid large estimation errors of the

autocorrelations.
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We remind that in practice, p and 0, are estimated based on some
historical data of {X;} when the process is under control, so u is replaced by
the sample mean and 0> and p(k) in Eq (4-2) by their sample estimates
specified by Eq(3-2).

Zhang (1998) summarizes the implementation of the EWMAST chart
in the following steps:

1. Determine a period with N ( 2100) observations when the process is

in a stable condition. Calculate the sample process mean, X, &,, using the

sample process standard deviation and, finally, calculate the sample

autocorrelations p(k) for k=1,...25 of all observations to that point.

2. Calculate the approximate EWMAST standard deviation &_ from
Eq(4-3) with an appropriate A\ (usually equal to 0.2) and M=25.

3. The EWMAST chart is constructed by charting the values z
calculated from Eq(2-19) as in the EWMA chart with centerline at X and
limits at x+ L&, .

4. Once the EWMAST chart gives a signal indicating that the process
is out of control, the process mean needs to be reestimated when the process
is stable again and the centerline of the chart needs to be adjusted to the new
level. The process variance and autocorrelations also need to be checked if
they need any adjustment or not. The most practical thing to do is to update
the autocorrelations and the process variance at regular intervals and do the
same thing for the centerline if it is not fixed to a specified target.

Figure 4-2 illustrates an EWMA and an EWMAST chart for the
autocorrelated data also used in Figure 4-1. The variance of the EWMAST
chart was calculated by its asymptotic form of Eq(4-3), by setting A\ equal to
0.2 and M=25. Once again, the limits of these charts have been calculated
from the first 98 values, which are the ones being in statistical control.

The EWMA chart (with A=0.2) has many out-of-control points caused
by the autocorrelation of the data so that the shift in the mean does not reveal
an unusual situation. On the other hand, the EWMAST has much wider limits,
and the mean shift seems to be detected through the observation of an unusual

upward trend.
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Figure 4-2: The EWMA and the EWMAST charts both applied to autocorrelated data.

4-3 Traditional control charts applied to the residuals

Another way to monitor the related observations is to assume that the
residuals, left after the estimation of the correlation structure, are
uncorrelated. This permits us to apply the standard control charts with no

objections any more concerning the process structure.

4-3.1 The Common Cause and Special Cause Charts

The idea of plotting the residuals of the correlated data on a control
chart after having fitted the appropriate ARIMA model, instead of charting
the original data, has been proposed by Alwan and Roberts (1988). The
authors summarized this procedure in two steps by initiating the Common-

cause and Special-cause charts.

4-3.1.1 The Common Cause Chart (CCC)

The Common Cause Chart (CCC) simply plots the fitted values that are
determined by fitting the correlated process by an ARIMA model. This chart
assumes that no special causes have occurred. Strictly speaking, it is not a
control chart because it has no limits with its intention being of just giving a
representation of the current and estimated or predicted state of the process.
It provides guidance in seeking better understanding of the process and in

achieving real-time process control by giving a view of the level of the
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process and of the evolution of that level through time. More precisely, the
model of the fitted values can be interpreted as a set of observations which
can be thought of as a random disturbance plus a random-walk trend or drift
reflecting a certain fraction of the sum of all past random disturbances. Thus,
a part of each disturbance continues to affect the process in the future.

The fitted values are estimates of the underlying random-walk trend
i.e., they follow a random-walk without drift. The common-cause chart
essentially accounts for the systematic variation in the process. In most
situations in practice where SPC data are correlated, the systematic variation
in the data is much larger, and, thus, more important with respect to
influencing product quality, than are special-cause effects. After as much of
the systematic variation is removed as possible, a special-cause chart can then
be used to establish process capability and to monitor process quality.

Wardell, Moskowitz and Plante (1992) thought that often the forecasts
themselves can be used to signal an out-of-control condition before the
residuals indicate the change has occurred. For that reason they derived limits
for the CCC chart but only for the specific case where the process is
described by an ARMA(1,1) model. The plotted values of the CCC chart are
the forecasts. The one-step ahead forecast minimizing the mean squared
deviation between the forecast and the observed value for the ARMA(L,1)
model is given by (Box and Jenkins, 1976) as:

Fei = (1-9)p + (¢1- 01)X, + 01F,,

where F1=the forecast made at time t for period ¢+/and p is fixed. The

control limits for the CCC chart (CLy) are of the form:

CLF =Nl + LOF,
where p is the mean of the process but also of the forecast since the error

terms are independent with mean 0, and the variance of the forecast is:

2
0%k = Var(Fu1) = ("’1' ~6,) (1-2¢,' 6,' + 6,*)a.”,

2
i

while for large t the steady-state variance is: \/*:9
-4,y . . .
olp = (o, ‘2) 0%, with ¢.’ being the variance of the error term. (4-4)
1 - ¢l \\:)
\":\ru.
N
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Figure 4-3 illustrates the fitted values of the ARMA(1,1) model used
also for the previous figures with ¢ = 0.74 and § = 0.32, plotted on an CCC
chart. The steady-state variance was easily calculated by Eq(4-4) as equal to
0.19. However, in our case the CCC chart is not of any help since it has many

out-of-control points even before the mean shift has occurred.
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Figure 4-3: The CCC chart for an ARMA(1,1) model with ¢ = 0.74 and 6 = 0.32.

4-3.1.2 The Special Cause Chart (SCC)

This is a traditional Shewhart chart of the residuals (i.e., of the
difference between the actual process values and their forecasts) from fitting
ARIMA models based on the simple thinking that assignable causes impacting
the process should also impact the residuals. The SCC chart can be used in
traditional ways to detect any special causes without the danger of
confounding special causes with common causes. The residuals are now iid
data and, thus, all traditional tools of process control are applicable. Since the
mean of the residuals is 0, the centerline of the SCC chart is 0, and the
standard deviation used is the standard deviation of the residuals og? ,which
must be equal to ¢ if the process is fitted correctly. Thus, the limits of the
SCC chart are:

UCLg =L 0o,
Centerline = 0 4-5)
LCLR =-L O¢
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Some of the major reasons that the Alwan and Roberts (1988) approach
is appealing include the following:

(a) It takes advantage of the fact that the process is correlated to
make forecasts of future quality,

(b) the special-cause chart is based on the assumption that the residuals
are random, so all of the assumptions of traditional SPC are met and, hence,
any of the traditional tools for SPC can be used, including run rules,
cumulative sum (CUSUM) charts, and so forth,

(c) similarly, the special-cause chart can be used to detect any
assignable cause, including changes in the structure of the time series,

(d) the methodology used to obtain the charts is straightforward and
does not require a great deal of sophistication on the part of the user,
especially with the availability of user-friendly software packages to fit
time series models, and

(e) unlike other methods for dealing with correlated data that have
been limited to AR(1) or MA(1) time series, the method can be applied to any
type of time series model.

Figure 4-4(a) shows the SCC chart for the same autocorrelated data as
in the previous graphs, in which the ARMA(1,1) model with ¢ = 0.74 and 8 =
0.32 has been fitted. The mean shift was not detected, probably because the
Shewhart chart does not detect small shifts quickly. On the other hand, Figure
4-4(b),
instead of 10 as in Figure 4-4(a), shows that the residuals chart detects the

in which the mean for the last 32 observations has shifted to 11

out-of-control state.
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Figure 4-4: The residuals chart for a mean shift of 1¢ (a) and of 20 (b).
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Since any SPC control chart may be used to plot the residuals, apart
from the Shewhart chart or the individuals chart, the EWMA and CUSUM
may be used as well so as to improve sensitivity to small process shifts.
Concerning the CUSUM chart for residuals, Runger, Willemain and Prabhu,
(1995) strongly recommend against the standard practice of using K= 6/2
(where & is the mean shift expressed in terms of the standard deviation)
whenever the autocorrelation is reasonably high. They proved that for an
AR(1) model with parameter ¢ and if 6 = 1, a choice of K = (1- ¢)/2 is to be

preferred.

4-3.2 The Weighted and Unweighted Batch Means charts

Runger and Willemain (1995) doubted that the residuals are strictly
uncorrelated because the fitted time-series model could possibly be
inadequate. They proved that for an AR(1) process, if the mean of the process
shifts by 6 standard deviations from target, then the mean of the first residual
after the shift is 6, and of the consequent residuals is 6(1-¢) instead of 0, i.e.,:

R, =6 +¢, if t =1, and
=6(1-¢) + ¢, iIf t>1.
Thus, the AR(1) model responds to the change in the mean and

partially incorporates the shift in the mean into its forecasts.

4-3.2.1 The Weighted Batch Means (WBM) chart

Bischak, Kelton and Pollock (1993) derived a way to eliminate the
possible autocorrelation left in the residuals by using independent subgroups
of residuals to monitor the process mean. Starting with an ARMA model, they
calculated the weights needed to cancel autocorrelation between batch means
as functions of the batch size and the model parameters. If the batch size is b
and the j™ batch is formed from consecutive data values X-1yp+i, the j*

weighted batch mean is:

b
Y= Y WX i =1,2... (4-6)
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The batch size b can be selected to tune performance against a
specified shift 6. The weights must sum to unity for Y; to be an unbiased
estimate of the process mean u. For AR(p) processes, the optimal weights are
the same for the middle of the batch but differ in sign and magnitude for the
first and last values in the batch. For example, for the AR(1) model, Runger
and Willemain (1995) proved that the weights are:

- -Q
M o)
w, = 1/(b-1), i=2,...b-1 (4-7)
1

b= ——————

(B-1)1-9)

Given normal data and any batch size b>1, the optimal weights produce

batch means that are 11d normal with mean and variance:

E(Y;) = g and Var(Y,) = ————— (4-8)

(I=@) (b-1)

To construct the WBM chart of the residuals, we form in batches
successive residuals derived from the respective observations. Runger and
Willemain (1995) proved that the WBM of size b is the average of b-1
successive residuals divided by (1-¢), i.e., by substituting (4-7) in (4-6), the

WBM of the residuals is Yj+= IL’ with 7 being the average of the b-1
-9

residuals rjp+2, Ijp+3, ..., Ijb+b. These Y; values of the residuals are plotted on
the WBM chart with control limits equal to + Loy, where oy is derived from

equation (4-8) for an AR(1) model.

4-3.2.2 The Unweighted Batch Means (UBM) chart

The UBM chart, also proposed by Runger and Willemain (1995),
differs from the WBM chart in that it gives equal weights to every point in the
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batch. In this case all weights are w; = 1/b for i = 1,..,b and by substituting

these weights to Eq(4-6), we derive the j'™ unweighted batch mean as:

b
Z X(/"-l)bﬂ'

VJ:Lb—,j—'l,Z,.. (4‘9)

The unweighted batch means define a model-free approach and they
can be plotted and approximately analyzed on a standard Individuals control
chart with the control limits of traditional individuals charts. As distinct from
residual plots, UBM charts retain the simplicity of averaging observations to
form a point on a control chart. With UBM, averaging is used to dilute the
autocorrelation of the data.

The important implication of UBM is that, though one does not need to
make an ARMA model of the data, one has to determine an appropriate batch
size b which is more difficult to do when not being guided by the selection of
a time-series model. Runger and Willemain (1995) provided a detailed
analysis of batch sizes for AR(1) models and recommended to select the batch
size that reduces the lag one autocorrelation of the batch means to
approximately 0.1.

Simulation analysis often use Fishman’s (1978) procedure: Start with
b=1 and double b until the lag one autocorrelation of the batch means is
sufficiently small. The advantages and disadvantages from further increasing
the batch size are the same as for a conventional Shewhart chart. Larger
batches are more effective for detecting smaller shifts, though smaller batches
respond more quickly to larger shifts.

The example of autocorrelated data that we have been used to construct
the graphs of this chapter up till now cannot be fitted adequately by a model
of AR(1) type, in order to verify the findings of the authors. What we can do,
though, is just create subgroups of residuals instead of considering them as
individual observations. If for example, we consider every 3 consecutive
residuals as one batch, then Figure 4-5 shows that in fact both the 10 shift (a)
and the 20 shift (b) in the mean are detected more successfully than in the

case of the individual residuals chart shown in Figure 4-4.
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Figure 4-5: The Shewhart chart of the residuals with n=3 for 10 (a) and 2¢ (b) shift of

the process mean.

4-4 Control charts applied to the forecast errors

Another approach to deal with autocorrelated data has been proposed
by Montgomery and Mastrangelo (1991). The proposed procedure is to plot
one-step-ahead EWMA prediction errors on a control chart. Two versions of
the same procedure are provided: the M-M chart and the Moving Center-line

EWMA control chart.

4-4.1 The M-M chart

The EWMA is not only used to monitor a process but it can also
provide a forecast of where the process mean will be at the next time period.
The usual EWMA can be written as z; = N+H(1-N)zy1 = Zeg+ NX¢ — Z1) =
= Zi.1+ Ney, because if we view z;.; as a forecast of the process mean in period
t, we can think of x; - z..; as the forecast error ;.

If the process can be modeled by the first-order integrated moving
average model IMA(1,1), being of the form x; = x,.;+ €, - f¢,.; shown also in
Eq(3-19), it has been proven by Box and Jenkins (1976) that the
corresponding EWMA with A=1- is the optimal one-step-ahead forecast for

this process. That is, if XM (t) is the forecast of the observation in period t+1

made at the end of period t, then:
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X{H (t) = Zt.
The sequence of one-step-ahead prediction errors € = X - X’, (t-1) is

independently and identically distributed with mean zero. Therefore, control
charts could be applied to these one-step-ahead prediction errors. The optimal
parameter A is found by minimizing the sum of squares of the errors e:.

In general, if the observations from the process are positively
autocorrelated and the process mean does not drift too quickly, the EWMA
with an appropriate value for N will provide an excellent one-step-ahead
predictor. Consequently, we would expect many processes obeying first-order
dynamics (that is, they follow a slow drift) to be well represented by the
EWMA without being exactly modeled by the first-order integrated moving
average model. The one-step-ahead prediction errors could be plotted in a
Special Cause chart described in section 4-3.1.2 in the place of the residuals.

This scheme, for simplicity called the M-M chart, is like the residual
chart except that the IMA(1,1) model is assumed for all the processes and the
prediction errors are used. It could be accompanied by a chart of the original
observations on which the EWMA forecast is superimposed, as the chart of
the original observations allows process dynamics to be visualized while the
chart of the residuals does not.

If the process is modeled as an AR(1), then the EWMA forecast may
not be the best predictor for this model (as it is for the IMA(1,1)), but it is
still an accurate forecast. Cox (1961) has shown that the optimal EWMA
forecast (in the sense that the mean squared error is minimized) for an AR(1)

process with parameter ¢ is given by:

A=1-[(1- $)/2¢], where 1/3<¢ <1 (4-10)

By extending the EWMA forecast, if the IMA(1,1) model is not very
different from the true process, the one-step ahead prediction could replace
the residuals derived from fitting ARIMA models. Thus, a broader idea could
be formed by constructing both the residuals and the M-M chart. If the one of
the two charts results in out-of-control signals, while the other does not, one

should be suspicious about the estimation of the true correlation structure,
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4-4.2 The Moving Center-line EWMA control chart

Montgomery and Mastrangelo (1991) initiated another control chart
combining both the information about the state of statistical control and the
process dynamics. Assuming that the one-step-ahead prediction errors (or
alternatively the model residuals) e; are normally distributed, then the usual

three-sigma control limits on these errors satisfy the probability statement:

P[-30 < e < 30] = 0.9973— P[-30 < x- X, (t-1)< 30] = 0.9973—>
P[ X, (t-1)-30 < x, < X, (t-1)+ 30] = 0.9973,

where ¢ is the standard deviation of the errors or of the residuals e, The
Moving Center-line EWMA control chart plots the one-step-ahead predictors

instead of the errors themselves and it is constructed as:

UCLH-] =zt +30
Center line = z; (4-11)
LCLt+1 VA -30

where the standard deviation of the one-step-ahead prediction errors or of the
model residuals is estimated by dividing the sum of squared prediction errors
for the optimal A by the number of observations n. The Moving Center-line
EWMA control chart would be preferable from an interpretation standpoint to
a control chart of residuals and a separate chart of the EWMAs, as it
combines information about process dynamics and statistical control in one

chart.

4-5 A new chart for correlated data: The ARMAST chart

The Autoregressive Moving Average (ARMA) chart for independent
and identically distributed processes and the ARMAST chart for
autocorrelated processes were introduced by Jiang, Tsui and Woodall (2000).
Assuming that the ARMAST chart is applied to a known stationary process
{X.}, the ARMAST statistic Z, with parameters ¢ and 8 can be represented

by:
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-1
Z, = 00X, + aZ(p""X,_k , where a =¢8- 8 and 8, is chosen so that the sum of

k=1

the coefficients is unity when Z, is expressed in terms of . (4-12)

The ARMA chart signals when Z, >Lg, ,where:

-

[
0, = {95 +20,a0> 9" plk)+

|
k=1 i=1

0" plj- l’)} 0.0,

=1

L

The asymptotic or steady-state variance is: (4-13)
2 2 o
2 2 a pa k-1 2
a," = <6; + +2| 6o+ —— k) 0.
{ " l-9? ( ’ l—cozlz:l(p A )} ’

When the original process is an ARMA(1,1) process with parameters u
and v, the application of the ARMA chart to the ARMA(1,]1) process 1s
proved by Jiang, Tsui and Woodall (2000) to result in a generalized
ARMA(2,2) model, that is:

Z, = (@tu)Zig — QuZiat Oooy — (8+ Oov) cu+ Ov iy (4-14)

In general, because the autocorrelation structure of the ARMA chart on
an ARMA(1,1) process depends on the parameters of the charting process (¢
and 8) as well as those of the original process (u and v),the performance of
the ARMA chart depends on all four parameters. It is, therefore, hard to
characterize the performance of the ARMA chart. However, if the parameters
of the ARMA chart of Eq (4-14) are chosen as ¢=v and 6/6,=u, then the
monitoring process reduces to Z; = 8oy Jiang, Tsui and Woodall (2000)
proved that this monitoring process as well as the mean shift pattern of the
class of ARMA chart are the same with those of the SCC chart of Alwan and
Roberts (1988) except for the scaling constant 6, Therefore, the performance
of the ARMA chart with ¢=v and 8/8y=u is identical to the performance of the
SCC chart applied to an ARMA(1,1) process with parameters u and v.

When the data are uncorrelated, then Eq(4-12) becomes: Z, = 8oy -

fan.1+ @Z; and, since the coefficients must sum to unity when Z, is expressed
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in terms of o, it is derived that 8, = 1+8-¢. Note that the ARMA chart reduces
to the EWMA chart if the data are not correlated, and §=0 and ¢=1-\. Thus,,
the ARMA chart can be considered as an extension of the EWMA chart. The
steady-state variance when the data are independent and identically

distributed is derived from Eq (4-13) when X, = ot and p(k) =0.

Choosing the parameters of the ARMA chart

It is difficult to derive the optimal parameters of the monitoring
process, but the authors proposed a heuristic strategy including the
calculations of the transient shift ur = fop (that is, the mean value when the
process begins, at t =0), and of the steady-state (or asymptotic, with t = o0)
shift ps = p

Consequently, the transient signal-to-noise ratio and the steady-state

signal-to-noise ratio are derived by the formulas:

Rt = pr/0, and Rg = us/0, , respectively (4-15)

The transient signal-to-noise ratio measures the capability of a chart to
detect a shift in the first few runs, while the steady-state signal-to-noise ratio
measures the ability to detect the shift in the later runs and is used if the shift
has not been discovered soon after it has been interfered into the process, that
is, when the transient signal-to-noise ratio is low.

Jiang, Tsui and Woodall (2000) suggested that if the transient ratio can
be tuned to a high enough value of about 5 by choosing appropriate ARMA
chart parameters, the corresponding chart will be able to detect the shift
quickly. On the other hand, if this ratio is smaller than 3, the shift will likely
be missed at the transient state and needs to be detected in the later runs. In
this case, the steady-state ratio becomes more important for detecting the shift
efficiently at the steady state. The steady state ratio should not be tuned too
high, however, because it may result in an extremely small transient ratio and
make the transition of the shifts from the transient state to the steady state
very slow. To make the chart detect the shift fast in the steady state, a balance

is needed to make a trade-off between the transient ratio and the steady-state
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ratio when choosing the charting parameters. Based on these guidelines, the

design of Figure 4-6 is derived (Jiang, Tsui and Woodall, 2000).

Design of ARMA chart

Specify the shift level to
be detected

Plot Ry and R; vs.

¢and .
MaxR, >—

-

e
-;a-ﬂ‘"" Mg xFL-F:I;”:_:_:F l
Check the decreasing
Choose (¢,0) rate of Ry
to max Ry

Choose (¢,9) to
max Rg Rate high

> :u___ Choice of (¢,0) Choose (¢,8) so that Rg €

—

T [2.5,3.5]

Figure 4-6: Parameter design of ARMA charts.

If one does not know the process model, it is still possible to design an
ARMA chart. In this case, the standard deviation of the original process (o)
can be estimated by the sample autocovariance of the data and the standard
deviation of the charting process (0,) can be estimated from the sample
autocovariance of the ARMA statistics. The ratio 0,/0, can then be estimated
and the two signal-to-noise ratios can be obtained as:

Rr =0y0 /0, and Rs = 04 /0,

Figure 4-2 presenting the EWMA (with parameters § = 0 and ¢=1-\ =

0.8) as well as the EWMAST chart are examples of the ARMA chart.The
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performance of the ARMAST chart is studied in detail in the next Chapter.
However, even though it may be very sufficient in detecting special causes for

some cases, its complexity makes it not at all practical for widespread use.
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CHAPTER 5

Performance of charts for autocorrelated data

5-1 Introduction

In the previous chapter we were concentrated on the description of the
most popular control charts used in the case when the process is of some
autocorrelation type. Apart from the design of these charts, one would be
interested to know in which case a chart is superior to others, because,
naturally, there is no chart outperforming the others for all types of
autocorrelation and for all estimation procedures. Section 5-2 describes the
criteria used to combine the performance of the charts, as well as the
guidelines for conducting simulation studies used for deriving more accurate
conclusions on the effectiveness of the charts. In section 5-3 the performance
of the modified standard charts is examined. The effectiveness of the
residuals charts and of the charts applied to forecast errors is discussed in
sections 5-4 and 5-5, respectively. Lastly, section 5-6 concerns the

performance of the ARMA chart, presented in the previous chapter.

5-2 The design of simulation studies

The simulation approach is used to create the data needed for
combining the effectiveness of the control charts. The reason why simulation
is preferred to real data is that, in the second case, one does not know if the
statistical control state of the process has been changed and when this change
has occurred. On the contrary, if the data is created, one may interpose a shift
at a specific time point and, then, he can simply observe by which charts the
known shift has been detected. For more accurate results, the above procedure

is repeated for many similarly constructed data.
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5-2.1 The most common performance criteria

The performance of the charts has been studied by many authors
having based their results on some performance criteria. The performance

criteria most frequently used are:

a) The ARL criterion

The Average Run Length (ARL) is the most widely used measure of
performance that helps one decide about the ability of a chart to detect shifts
of the process quickly. As it has been already mentioned, it is the average
number of observations until an out-of-control point is observed. For a given
control chart, we desire the ARL to be large when no assignable cause has
occurred (i.e., when the shift in the process mean is 0), because otherwise we
would falsely consider the process as being out-of-control. On the other hand,
if there is a shift in the mean, we desire the ARL to be small, that is, to have a
signal the quickest possible.

When comparing the performance of different charts, the ARL value is
meaningful only if it is initially specified to a fixed number, so that all charts
start with the same performance. That is why, the ¢ multipliers of the control
charts (i.e., the L’s in Eq(2-1)) are manipulated in order to have the same in-
control ARL. The value of the in-control ARL used is often 370, because this
is the in-control ARL of the 30-limits Shewhart chart. It is analogous to
matching the Type I errors so that the Type II errors can be compared in a
more meaningful way.

It is usually difficult to find a close formula for the calculation of the
average run length especially for charts designed for autocorrelated processes
and, usually, there is no standard calculation method for all ARIMA models.
Zhang (1997) has initiated a formula for the ARLs of the residual chart but
only for AR(1) and AR(2) processes. Runger and Willemain (1995) suggest a
computational method for the ARL of the WBM and UBM charts when the
process is of AR(1) type.

Apart from the ARL itself, one could use as performance measurement

the probability of signaling within a fixed period. For example, Wiel (1996)
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chose the probability of signaling within 10 periods after the shift as an
alternative for the ARL value, which he denoted by P(10).

b) The run-length distribution criterion

A more reliable criterion is to use not only the average of the run
length, but, if possible, to have a broad idea about its distribution. However,
apart from the run-length distribution of Shewhart control charts on iid data
which is widely known to be the geometric, it is much more difficult to
calculate the probability distribution of monitoring schemes used for
autocorrelated data.

Three good ways to study the run-length distributions of a monitoring
scheme are:

(1) by analytically deriving it,
(2) by approximating it in a discrete Markov-chain representation, and
(3) by building it up through Monte Carlo simulation.

Though simple analytical results are available for deriving the run-
length distribution of the Shewhart individual charts, this is not the case with
the CUSUM scheme for which a computational technique based on Markov
chains is, however, available by Brook and Evans (1972), and a similar
approach is described in detail for the EWMA charts by Lucas and Saccucci
(1990).

By knowing the probability function of the ARL distribution, one can
derive the first and second moments, which can be used to find the average
run length (ARL) as well as the standard deviation of the run length (SRL).
This is what was done by Wardell, Moskowitz and Plante (1994) who
determined the run-length distribution of the special-cause chart as an
extension of the run-length distribution of the standard Shewhart control
chart. They found closed-form solutions for the residuals chart if q > p in the
fitted ARMA(p,q) process and semiclosed-form solutions for q < p for
computing the ARL and the SRL recursively. Jiang, Tsui and Woodall (2000)
considered a Markov chain approach to approximate the run-length

distribution of the ARMA chart.
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Knowledge of the run-length distribution enforces the objectivity when
comparing different monitoring schemes, because the fact that in some cases
the SRL may be larger than the ARL itself shows that in these charts the
detection of the shifts is not precise. Thus, these charts may be considered
inferior to others with smaller SRL even if their ARL value 1s smaller, too.
However, if only the ARL values were available this conclusion would be

impossible.

¢) The Cumulative Distribution Function (CDF) criterion

The in-control run-length distributions of the Shewhart, the CUSUM
and the EWMA charts for uncorrelated observations, as well as of control
charts on positively correlated observations, are right-skewed. Furthermore,
the EWMA as a forecasting tool, recovers quickly from disturbances in the
process and, therefore, the ‘window of opportunity’ available for detecting
process shifts may be quite small. This makes the probability of detection
within the first few observations after the shift particularly important. That is
why Superville and Adams (1994) suggested the use of the CDF of the run
length, which is the percentage of signals given by the ith observation after
the shift. The CDF 1is an alternative criterion to the ARL for detecting
disturbances in positively autocorrelated data, because the ARL is often

distorted in these cases.

d) The Dynamic Step Response Function (DSRF)

The dependence of the EWMA and ARMA forecasts (and,
consequently, of the parameters N and (¢, 9), respectively) on past data result
in a dynamic reaction to the shift and, thus, in the gradual convergence to a
new steady value instead of an immediate set up to a new value. Another
approach to account for the distortion of the ARL in this case is, apart from
the CDF value described above, the proposed by Wardell, Moskowitz and
Plante (1992) DSRF criterion. The DSRF describes how the forecast (or the
residual in the case of the SCC chart) would dynamically react to a shift in
the process mean if there was no noise in the process (i.e., if the process was

completely deterministic). The authors specified the DSRF values, if the
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model of the process is ARMA(1,1), for four charts: the Individuals, the
EWMA, the CCC and the SCC as follows:

Individuals chart: DSRF(j) = 8/ Ly

EWMA chart: DSRFy(j) = o[1-(1-0)']/Ly

.6 1-6/
CCC chart: DSRF(j) = — (¢, -6,
L, 1-6,

[5_5(¢1 —gl{l“ 01} ]]’

1-6,

SCC chart: DSRFR(j) =

t\«l,__.

R
where j is the number of observations since the step change occurred, 6 is the
size of the step change and L is the 0 multiplier for each chart.

In all cases, the DRSF has been normalized by the value of the upper
control limit, so a normalized response of 1 or larger indicates that the mean
of the statistic has exceeded its upper limit (since noise has been removed, the
time at which the step response function exceeds 1 or -1 is a rough
approximation to the ARLs of the charts, but it is not exact). Knowing the
dynamic response of each chart to a shift in the process mean allows us to
explain the difference in ARLs when comparing the performance of these four

charts.

e) The signal-to-noise (SN) ratios

Jiang, Tsui and Woodall (2000) had used the transient and steady-state
signal-to-noise ratios in order to choose appropriate parameters of the ARMA
chart for autocorrelated processes. Since the transient ratio measures the
capability of the chart to detect the shift in the first few runs and the steady-
state ratio measures the chart efficiency in later runs, these two ratios can be

well used as a performance criterion in the place of the ARL values.

5-2.2 Guidelines for the simulation procedures

One of the ways for estimating a performance criterion is known as the
Monte- Carlo simulation. This method is said to be the most accurate, since it
solves the estimation problems by creating situations close to the real ones.

That is why most authors conducted simulation studies to estimate the ARL
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value of a control chart according to which they, afterwards, specified an
approximate close formula for ARL, or verified the one already formed. The
basic idea of the simulation is that in order to have a good idea about the
performance of a chart, one should not use one set of data to conclude about
the detection or not of a process shift, but this procedure must be repeated
many times if one wants to make sure about the results of his study. The
general simulation plan is constructed in the following manner (inspirated by
Adams and Tseng, 1998):

1. For uncorrelated data a series of r values with r usually being
between 10 000-100 000 is generated from a well-known distribution
(usually the normal) with fixed parameters. To create correlated data, a set
of r random values [€’s ~ N(0,1)] is generated and the observations x,’s
are calculated using Eq(3-3), 1.e., X — @1Xe.1 - ... - PpXp = €, T 016t F
f€i.q of the general ARMA model with fixed values for p and q. Several
values of ¢ and @ are often used ranging from 0O to 1. Apparently, some
initial values for x and € should be specified.

2. If the data are autocorrelated, the residuas of the observations or

the EWMA forecast residuals are calculated after having estimated the
parameter values ¢ and 6 by the procedure mentioned in Chapter 3 and

described in detail in Box and Jenkins (1976).

3. The first (usually 100) values of the residuals or of the EWMA
forecasts (or of the observations themselves if they are iid) are discarded
to allow a ‘burn-in’ period, so that the effect of the initial values is
removed.

4. The remained residuals or the EWMA forecasts (or the
observations themselves) are monitored using the control charts we are
interested in and the chosen performance criterion is calculated for this
data set for each chart.

5. Steps (1)-(4) are repeated many times (for example 1000). The
performance criterion for each type of control chart is recorded for each
simulation repetition (each repetition consisting of 10 000 - 100 000
observations) and the average value of the criterion of interest based on

1000 repetitions is obtained for each chart.
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Naturally, this general plan will be different from study to study by
often allowing for data sets in which a mean shift occurs at a specific time
point or using fixed formulas to calculate some performance criterion, as is
the DSRF measurement. Obviously, many criterions may be calculated for

each data set to help derive accurate conclusions.

5-3 Performance of traditional charts based on simulation studies

Chapter 4 presented the most popular control charts referring to
autocorrelated processes. Among the efforts to find a chart that detects shifts
quickly, an idea was to modify the already existing standard charts. The
performance of these charts is an important issue, so that one knows which

chart is more appropriate according to the manufacturing process of interest.

5-3.1 Performance of the modified Shewhart chart

Wardell, Moskowitz and Plante (1992) have conducted a simulation
approach for an AR(1), a MA(1) and an ARMA(1,1) model and deduced that
the modified-Shewhart chart does not perform well (in terms of its ARL
values) in the case of correlated data and it rarely achieves a predicted ARL
lower than those obtained by other charts. Conventional control charts such as
the Shewhart chart (modified or not) are not completely robust to deviations
from the assumption of process randomness, namely when observations are
correlated.

Increasing the subgroup size of the modified-Shewhart chart for
ARMA(1,1) models substantially increased its ability to detect shifts in the
mean quickly, exactly as happens when the observations are independent,
shown by Wadsworth, Stephens and Godfrey (1986). This would suggest that
when it is possible and practical to take observations in subgroups rather than
individually, one should do so to improve the performance of the modified-
Shewhart control chart. However, if the data are truly autocorrelated, each
point on a Shewhart chart will still show runs which are essentially due to

correlation resulting from common causes rather than any special cause. Thus,
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in autocorrelated processes, care should be taken when using either the simple

or the modified Shewhart chart.

5-3.2 Performance of the EWMAST chart

Zhang (1998) combined the performance of the EWMAST chart with
those of the traditional Shewhart, as well as the residuals chart and the M-M
chart, for AR(1), MA(1) and ARMA(1,1) processes in terms of their ARL
values. For AR(1) processes, the EWMAST chart (with A= 0.1 and A=0.2)
performs better than the residual chart for weak and medium autocorrelations
(¢<0.75), especially for small to medium mean shifts. When the
autocorrelations are positive, the EWMAST chart has very large in-control
ARLs, but the residuals chart has much smaller out-of-control ARLs and, thus,
performs better than the EWMAST for detecting a mean shift, especially
when the shift is large. The ARL values of the EWMAST and of the residuals
chart for some of the simulated AR(1) models, studied by Zhang (1998), are
shown in Figure 5-1.

For an AR(2) process, when the process is not near nonstationary (i.e.,
o1+ ¢, is not near 1), the EWMAST performs better than the residuals chart,
especially when the mean shift is not large. Thus, the residuals chart
performs better than the EWMAST chart only when the process is near
nonstationary with strong positive autocorrelations.

In most cases of the AR(1) model, the EWMA performs better than the
Shewhart chart when the mean shifts are less than or equal to 20,. Only when
¢ is positive and large (e.g., $=0.95) and the mean shift is large (=30,) does
the Shewhart chart perform better than the EWMAST. Similarly to the AR(2)
process, the EWMAST chart performs much better than the Shewhart
chart except when the process has strong positive autocorrelations or the
mean shift is large. The conclusions for ARMA(1,1) processes are similar.

Compared to the M-M chart, even when the mean shifts are medium or
large, the out-of-control ARLs of the M-M chart are much larger than those of
the EWMAST. Only when ¢=0.95, the M-M chart performs relatively well but
even in this case the residual chart is slightly better than the M-M chart.Zhang
(1998) used various N\ for the EWMAST chart and showed that for detecting
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small shifts, a value of 0.1 or 0.2 for A is better. Furthermore, the adjustment
of the control limits for various in-control ARLs did not effect their
conclusions. An obvious advantage of using the EWMAST chart is that there

is no need to build a time series model as for the residual chart.

() =05 (b) =05

W T

- N\

Sum of EWMAST-Res
g 8
11

Sum of EWMAST-Res

(c) pi=05 (@ pHi=05

Sum of EWMAST-Res
g
1
Py~
Sum of EWMAST-Res
& 8
1)

00 05 10 20 30 I
00 05 10 20 30

rreen shit

Figure 5-1: ARLs of the EWMAST with A=0.2 and of the Residuals chart for AR(1)
processes with ¢=0.5, 0.95, -0.5, -0.95 where: — EWMAST, ---- Residuals chart.

5-4 Performance of the residuals charts

The effectiveness of the residuals chart (i.e., of the SCC chart) should
be compared to other types of control charts. Another issue is to assess the
relative performance of the residuals chart, that is, to apply different standard
charts on the residuals in order to confirm which of the standard charts
detects the mean shift more quickly when the residuals and not the original

data are the ones plotted.
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5-4.1 Performance of the SCC chart compared to traditional charts

Many simulation studies have been conducted in order to compare the
effectiveness of the residuals charts versus the original ones which have not
been modified to take into account the autocorrelation of the data. Wardell,
Moskowitz and Plante (1994) determined mathematically the run-length
distribution of the special-cause control chart (i.e., the Shewhart chart on the
residuals) for a given ARMA(p,q) process and were, thus, able to draw some
conclusions based on the relative performance of the SCC chart, the original
Shewhart chart and the EWMA applied to correlated data.

To compare the ARLs of the special-cause chart (SCC) to the ARLs of
the Shewhart and the EWMA charts for AR(1) processes, Wardell, Moskowitz
and Plante (1994) used the simulation procedure and set the parameter A\ of
the EWMA as 0.1. They proved that in terms of the ARL, the SCC chart for
AR(1) processes is superior to traditional control charts only when the
process is highly negatively correlated. The reason for this is that, when the
process is negatively autocorrelated and the mean shifts, the one-step-ahead
forecast moves in the opposite direction of the shift. This causes the residual,
that is the difference between the observation and the forecast, to be very
large, and, hence, the shift is detected earlier.

Wardell, Moskowitz and Plante (1992) showed that when the process is
AR(1), the modified-Shewhart and the Common Cause (CCC) charts have the
same ARL, though when the process is MA(1), the SCC chart and the CCC
have the same ARL. They also proved that when the process is ARMA(1,1)
with various parameters for ¢ and 8 for a shift of / standard deviation, the
EWMA chart has a smaller ARL than the modified Shewhart, the SCC and the
CCC charts over most of the stationary region. This conclusion is shown
graphically in Figure 5-2.

As the shift of the mean is increased to 3 standard deviations, the CCC
chart dominates most of the region with the EWMA still being superior when
the autoregressive parameter ¢ is negative and the moving average parameter
6 is positive, as shown in Figure 5-3. By setting the in-control ARL to110
instead of 370, the EWMA chart again dominates most of the stationary

region when the shift in the mean is small. However, as the shift increase§,

74



Performance of charts for autocorrelated data

the other charts perform much better and again the CCC chart has the smallest
predicted ARL among the 4 charts when the shift in the mean is 3 standard
deviations.

Thus, according to Wardell, Moskowitz and Plante (1992) for an
ARMA(1,1) process, the EWMA chart is very good at detecting small shifts
and performs well for large shifts when the autoregressive parameter is
negative and the moving average parameter is positive. However, since in
practice we are usually more interested in detecting the larger, more costly
shifts quickly, the SCC becomes more attractive. As the shift increases, the
SCC and CCC charts perform better over a wide range of the ARMA(1,1)
parameters. This is especially true if these two are used conjointly as they
should.

It is also advantageous to draw limits to the CCC chart so as to help
detect shifts in the process mean, since, when the shift is 3 standard
deviations, the out-of-control condition is predicted by the forecasts in the
CCC chart before the other charts indicate a process change. As no chart is
obviously dominant under every condition, it would be worthwhile to measure
the degree of correlation in the process data to decide which control chart
would best suit the particular needs.

The most interesting part, though, were the deductions of Wardell,
Moskowitz and Plante (1994) concerning the probability mass function of the
run-length distribution for an SCC chart which has a very long tail and, thus,
inflates both ARL and SRL. Therefore, although the ARL of the SCC for an
AR(1) model is often longer than other charts (since a positive autocorrelation
of the process is more possible than a negative one), the SCC chart has a
higher probability of detecting a shift immediately during the dynamic
response to the shift. The original Shewhart chart had a smaller probability of
detecting the shift immediately for an AR(1) model, but the probability
increased with higher run lengths. This results from the fact that when the
shift first occurs, there is a large discrepancy between the observation and its
forecasted value in the SCC chart, giving a large residual. In the next
instance, however, the forecasted values begins to reflect the fact that the
observations have shifted upward, and the forecasts shift up also. Hence, the

residuals become smaller again.
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The SRL of the SCC chart is smaller than the ARL when the process is
negatively autocorrelated, while in the case of positive autocorrelation the
SRL is greater than the ARL, so the time at which we actually detect the
signal is not at all precise, except in the case where the ARL is equal to 1.

Wardell, Moskowitz and Plante (1992) used the DSRF measurement to
determine how the EWMA forecasts, as well as, how the residuals from the
ARMA model, will react dynamically to a shift in the process mean. They
used the formulas described in section 5-2.1d) and found that for an
ARMA(1,1) model when the data are negatively correlated, the CCC DSRF
moves in the opposite direction of the shift in the mean. This causes the time
until the forecast exceeds its control limits to be very long. The times when
the CCC chart does well when the autocorrelation is negative are when the
forecast falls below the lower control limit. This occurs when the

autocorrelation is close to —1 and when the shift is relatively large.

Figure 5-2: ARLs for a shift of one standard deviation:
EWMA [ |.ccc [ll.scc R

Figure 5-3: ARLs for a shift of 3 standard deviations:

EWMA [ |, ccc [ll,scc B Shewhart [ ]
In both charts the horizontal axis is the values of § and the vertical the ¢ values so that

the dominance region for different combinations of ¢ and 8 is seen for all the four

charts.
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5-4.2 Relative performance of the residuals chart

We have already discussed that the residuals, after an ARIMA model
has been fitted to the data, may be plotted on every traditional chart with no
exception. Up to now we were concentrated only on the SCC chart, which is
the Shewhart chart of the residuals, but the other control charts could be
equally used. It is very obvious that since the residuals are uncorrelated, all
the conclusions concerning the traditional control charts for iid data are also
valid for the residuals charts. Thus, as Lucas and Saccucci (1990) have
deduced, the EWMA and CUSUM control charts are effective when small
shifts in the mean should be detected and the Shewhart control schemes are
superior for detecting large shifts. Furthermore, the properties of the EWMA
are very close to those of the CUSUM schemes.

However, both Wardell, Moskowitz and Plante (1994) and Zhang
(1998) showed that the residuals charts may not have after all the expected
performance since in many cases they have been outperformed by traditional
charts and even by the simple Shewhart chart. This may be due to the fact that
if the model of the process and its parameters have not been well estimated,
then some autocorrelation in the data still remains and, thus, the residuals are
not as uncorrelated as they should be. To solve this problem, Runger and
Willemain (1995) proposed the weighted batch means which use the same
time series model to determine the weights that render batch means
uncorrelated.

They made comparisons of Shewhart ARLs for AR(1) data and showed
that both batch means residual charts (WBM and UBM) outperform the
simple residuals charts in almost all cases studied with the UBM chart
performing best of all, although that in general model-based inference
parametric models are more powerful than nonparametric.

The WBM is superior to the residuals chart (i.e. the SCC) in the
case of small mean shifts, because for independent data, it is well known that
larger subgroups provide greater sensitivity to small shifts. On the other
hand, the residuals chart is more effective than any batching strategy for

very large shifts because, for a large enough 6 even one observation is
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unequivocal evidence of a shift in the mean. In this case, there is no need to

wait to collect an entire batch of data to declare an out-of-control condition.

5-5 Performance of control charts applied to forecast errors

Another way of estimating the residuals is to use the EWMA
predictions proposed by Montgomery (1991) and, thus, calculate the forecast
residuals. Superville and Adams (1994) performed a simulation study to
quantify the effect of forecast recovery on the ARL of forecast-based schemes
(EWMA predictors) and the relative performance of the Individuals, CUSUM
and EWMA control charts applied to forecast errors for the AR(1) model.
Control limits for each control chart on the forecast errors were determined to
yield in-control ARLs of 250 or 500, the parameter A for the EWMA chart on
forecast residuals was set equal to 0.1 (its optimal value minimizing the sum
of squares of the errors e;) as denoted from Eq(4-10) for the AR(1) model.
The values of ARL and CDF were recorded for different shift sizes.

Based on the ARL values, Superville and Adams (1994) showed that
the CUSUM and EWMA charts detect more quickly shifts in the process
mean of size up to 2¢. On the other hand, for larger shifts, the Individuals
chart signals more quickly. These results are consistent with those of Lucas
and Saccucci (1990) for uncorrelated data. However, the magnitude of the
ARLs for the independent case (¢=0) are significantly smaller than those for
the non-independent case (¢>0) due in a large part to the recovery property of
the forecasting tool.

The percentage of signals detected by the ith observation after the
shift, that is, the CDF criterion presented in section 5-2.1c), also reveals a
dominance of the CUSUM and EWMA control charts for small shifts, while
the Individuals control chart provides a higher probability of signaling
quickly for larger shifts. A substantial remark based on the CDF criterion,
though not detected by the ARLs, is that the Individuals chart produces a
signal on the observation immediately following the shift for approximately
50% of the simulated data sets with relatively few signals for subsequent
observations, while the probability of either the CUSUM or the EWMA

control chart of detecting a shift just after it has occurred is much lower.
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We remind that the same conclusion was drawn by Wardell, Moskowitz
and Plante (1994) for the residuals chart. This phenomenon results from the
tendency of the EWMA forecast to recover quickly from process shifts
suggesting that in forecasting schemes, the superiority of the EWMA and
CUSUM charts for detecting step shifts is doubtful, at least in the case of
AR(1) models. That is why, for correlated data, the monitoring of forecast
residuals should be accompanied by the monitoring of the raw data.

A relative study was conducted by Adams and Tseng (1998), who
simulated an AR(1) process and an IMA(1,1) process, obtained one-step-
ahead forecasts and constructed EWMA, CUSUM and Individuals charts (with
and without the sensitivity rules described in Chapter 1) on the forecast
residuals. Because of the estimation error in ¢, the resulting one-step-ahead
forecast residuals are not iid but are positively correlated, hence, the ARL of
each control chart differs from the expected value of 225 which is the ARL
when ¢ has been estimated correctly.

For AR(1) models, if ¢ is overestimated, then the EWMA control
chart and the CUSUM provide larger ARLs than the Individuals control
chart with and without run rules. The difference among the ARLs of the
four control charts increases with the magnitude of overestimation of ¢.
When ¢ is underestimated, the EWMA and CUSUM control charts
provide shorter ARLs than the other two control charts (with and without
run rules) with the difference among the ARLs of the four control charts
being less substantial as the magnitude of underestimation of ¢ increases.

Figure 5-4 displays the ARLs for the Individuals control chart, the
Individuals control chart with runs rules, the EWMA control chart and the
CUSUM control chart applied to forecast residuals for an AR(1) process for
which the true ¢ is estimated as being equal to 0.5. This figure shows
graphically the above discussion about the robustness of the charts of interest.

In general, the results for an IMA(1,1) process are the opposite of those
for an AR(1) process. When @ is overestimated, the EWMA and CUSUM
control charts provide smaller ARLs than anticipated, with the differences
among ARLs for the four control charts decreasing as the magnitude of the
overestimation of @ increases. The Individuals control chart with or

without run rules have smaller ARLs than anticipated when 6 is

79



Performance of charts for autocorrelated data

underestimated. though the EWMA and CUSUM have very large ARLs in
this case.

The performance of the two Individuals control charts are superior to
the EWMA and CUSUM in the sense that they are less sensitive to estimation
error in the process parameters. The explaﬁation for the nonrobustness of the
EWMA and CUSUM charts on the misspecification of the model parameters
is the following: when the ARMA parameters are estimated with error, the
forecast based monitoring scheme does not remove all the autocorrelation
structure from the raw data, and the forecast residuals are correlated. As a
result, the basic assumption of independence for the traditional control charts
applied to the forecast residuals is still violated. Unlike the CUSUM and
EWMA control charts, the Individuals control chart does not incorporate all
past data into the plotted value, thus, its performance is not as seriously
affected by the autocorrelation of forecast residuals caused by the estimation
error. In general, the Individnals control chart with run rules is more affected
by autocorrelation of the forecast residuals than is the Individuals control
chart without run rules. The case of IMA(1,1) models with estimated § =0.5 is
illustrated in Figure 5-5.

To summarize the conclusions of Adams and Tseng (1998) on the
robustness of forecast-based control charts, we deduce that the performance
of the Individuals control charts is superior to the performances of the EWMA
and CUSUM charts in the sense that the in-control ARLs are better
maintained in the presence of estimation error. When ¢ is overestimated or
is underestimated, the forecast residuals are negatively correlated, thus, the
EWMA and CUSUM charts provide much larger than anticipated ARLs,
though the opposite is true when the forecast residuals are positively
correlated. Finally, Adams and Tseng (1998) showed that substantial sample
sizes are required for estimating process parameters and that updating and
validating parameter estimates would be prudent.

Unlike the fact that Montgomery (2001) suggests to use the EWMA
predictor even when the process is not of IMA(1,1) type, Tseng and Adams
(1994) demonstrate that the use of the EWMA forecast for models other than

the IMA(1,1) can lead to unexpected performances and should be avoided.
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Estimated phi=0.5 for AR(1) models
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Figure 5-4: Average Run lengths for control charts applied to forecast residuals used
for monitoring various AR(1) processes if their estimated parameter ¢ = 0.5: — Ind

with runs, ---- Ind, ..... EWMA, . — . CUSUM.

Estimated thita=0.5 for IMA(1,1) models

20000 =

10000 —

Sum of ARL

Py

0 P

i I 1 t 1 1 LI 1 LI LI T T 71 T 1 T T
0,00,06,10,16,20,28,30,38,40,48,50,56,60,68,70,76,80,86,90,95,00

true thita values

Figure 5-5: Average Run lengths for control charts applied to forecast residuals used

for monitoring various IMA(1,1) processes if their estimated parameter § = 0.5 with

the annotation of Figure 5-4.

5-6 Performance of the ARMAST chart

Jiang, Tsui and Woodall (2000) assumed that because both the SCC
and EWMAST charts are special cases of the ARMAST chart, it is possible to

derive an ARMA chart with appropriate parameter values that outperforms
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both the SCC and EWMA charts. They proved that the ARMAST with
appropriately chosen parameters either outperforms or performs competitively
with the best of the EWMAST and SCC charts at least for AR(1) and
ARMA(1,1) processes. Since both the transient and steady-state ratios are
higher than those of the EWMAST chart, the ARMAST chart significantly
improves the efficiency of detecting small mean shifts. When the data are
uncorrelated, though, the optimal ARMA chart can be slightly better than the
EWMA chart but the difference is not as significant as for the autocorrelated
processes.

Jiang, Tsui and Woodall (2000) also showed that the WBM with
optimal batch size is not as competitive as the ARMAST chart in all AR(1)
processes. For ARMA(1,1) processes it is difficult to derive the optimal batch
size and weights for the WBM chart. For an AR(1) model, the ARMAST chart
1s better than the CUSUM chart of residuals for detecting small shifts but it is
worse than the SCC for detecting large shifts because the ARMA chart is
designed to detect small shifts. It can be shown that the EWMA chart applied
to the residuals can be modeled as a special case of the higher-order ARMA
charts. This design, however, may involve too many parameters making it too

complicated for implementation.
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CHAPTER 6

The Engineering Process Control (EPC)

6-1 Introduction

Adams and Tseng (1998) showed that when the parameter estimates of
the ARIMA model are not very appropriate, serious distortion may be done to
the forecast-based schemes. Given the difficulties of model specification and
a lack of robustness to parameter estimation, one might conclude that
forecast-based monitoring schemes are of little value in practical settings.

There is a second approach, though, for monitoring a process and
reducing its variability. This alternative method is based on adjusting the
process using information about its current value or the deviation of the
current value from a desired target, and it is often called feedback
adjustment or Engineering Process Control (EPC). This approach
obviously differentiates from the SPC technique that reduces variability by
detecting and removing causes of variation. Section 6-2 concentrates on the
skeptic of the new approach compared to the widespread SPC methodology,
section 6-3 describes the background and design of EPC, section 6-4 presents
the most popular tools of EPC, section 6-5 gives an application that helps to
better understand the use of EPC, section 6-6 refers to some other EPC
schemes having the property of minimum cost instead of minimum variance,

and section 6-7 discusses cases in which the EPC method is appropriate.

6-2 Differences between the SPC and EPC techniques

SPC aims to identify and act on causes of process changes (special/
assignable causes) and on important contributors to variation that can be

regarded as chronic noise (common causes). Control charts are very popular
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as an on-line SPC tool and they involve two phases: the first is to achieve a
state of statistical control and the second is to monitor the process so as to
signal statistically significant deviations from the previously established
statistical control. However, many commonly encountered circumstances are
not amenable to the SPC approach. Apart from the case in which the process
is autocorrelated, so the wrongly estimated model makes the SPC approach
almost useless, other examples include:

e The process is subject to occasional shifts. Even when the
causes of the shifts are known, it may be impossible to remove them, as is,
for example, the raw material variability.

e The process is undergoing slow drift. In this case, SPC is not
very effective because the drift must drift a certain distance before control
action is taken, in response to an alarm. But if an inexpensive control
action is available, then there is no reason to wait until the process has
drifted ‘far enough’. In addition, SPC does not specify what the control
action should be.

In cases such as these, the EPC approach may be a good alternative
since it does not remove the root or assignable causes but it uses continuous
adjustments to keep process variables on target by transferring variability in
the output variable to an input control variable with which the relationship is
known.

In general, both techniques have the objective of reducing variability
but they accomplish it in different ways. SPC looks for signals indicating
assignable causes assuming that the process data can be described in terms of
statistically independent observations that fluctuate around a constant mean.
On the other hand, EPC 1s based on process compensation and regulation
(instead of process monitoring), in which some maniputable process variables
are adjusted to keep the process output on target. In other words, EPC
assumes that there is a specific dynamic model that links the process input
(manipulated variable) to the process output (quality characteristic) and, thus,
a series of regular control actions to the input variable will keep the process

output close to the desired target.
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Montgomery (2001) gives a successful example helping someone to
comprehend the superiority of the feedback adjustment to the SPC method in
some cases: consider the process of driving a car, with the objective of
keeping it in the center of the right-hand lane (or equivalently, minimizing
variation around the center of the right-hand lane). The driver can easily see
the road ahead, and process adjustments (corrections to the steering wheel
position) can be made at any time at negligible cost. Consequently, if the
driver knew the relationship between the output variable (car position) and
the manipulated variable (steering wheel adjustment), he would obviously
prefer using the feedback-control scheme to control the car position, rather

than wait until the car is off the road to take some action.

6-3 Design of EPC

Provided that the future process performance is predictable (that is,
there is a correlation in the data able to be identified) and that there exist
readily adjustable variables for which the impact of performance is known,
then the data is a good candidate for EPC. In order to have a better
understanding of the procedure, it is preferable to follow the successive steps

proposed by Faltin et al. (1993), summarized below.

Step 1: Initial process assessment

Successful use of EPC requires past information to be representative of
future performance. The autocorrelation of the observed process performance
might be empirically assessed from a plot of the process against time or it
may involve a formal autocorrelation analysis. For such an evaluation to
provide useful results, the ‘right data’ must be available, that is compensatory
control actions that wipe out the underlying relationships should be taken into

account so as not to effect the statistical evaluations.
Step 2: Model formulation

Model formulation involves building upon the previously established

correlations to develop a mathematical model that will be useful for future
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prediction and, thus, for control. Typical models to represent changes in
process performance over time involve three components:

Y =Xe1 + Dt ey,
where Y, is the output of the process at time period t, X.; is the effect of any
control action taken after the (t-1)°' observation, D, is the effect of the
underlying disturbances on the true process mean at time t, and e 1s an
independent random variable with mean 0 and variance 0.’ indicating the

random effect of all the remaining negligible components.

1) Developing a time series model for the disturbance term D,

The disturbance term D, includes all of the correlation of the data
through time. Autocorrelation is not necessarily bad. It, does, however, mean
that the process is somewhat predictable and this suggests the possibility of
compensation. The disturbances may be changes in the raw materials tending
to have immediate as well as lasting effects to the output variable.

The disturbance term, that is, the autocorrelation structure or common
causes of the model in terms of the SPC jargon, is usually represented by an
appropriate autoregressive integrated moving average (ARIMA) model. The
time series model provides a framework to determine how well past process
performance predicts future performance and it usually works well provided
that the major causes that impacted process performance in the past continue
to apply. A simple ARIMA model frequently used is the first-order integrated
moving average [IMA(1,1)] for which we have already discussed that the best
predictor for the next measurement is an exponentially weighted moving

average (EWMA) of the current and past measurements, that is,

21+l = 821 o (1-6)2t= (1')\) 21+ )‘Zt,
because § = 1-\ (6-1)

The simplicity of the IMA(1,1) model and especially of the EWMA
predictor is a major reason for its attractiveness. Higher order ARIMA models
can also be applied if they provide richer and more accurate presentations.

Sometimes, one can improve predictions of process performance by

basing these not only on feedback of past performance, but also.on
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measurements of other important process variables. If there is sufficient
understanding of the process and timely measurements on appropriate
impacting variables, they can be used as a feedforward mechanism for
predicting future process performance. An example of feedforward
adjustment is measurements of relevant properties of the raw materials that
feed into the process.

Thus, one could add to the time series model, appropriate regression-
type terms involving measurements of variables that impact process
performance. Adding such terms will make it necessary to modify the part of
the time series model that previously accommodated the effect of variables
that are now explicitly included in the model. Use of a feedforward scheme,
when applicable, has the potential of providing important improvements in a

timely manner.

2) Including control variables (X,) in the model

Our previous goal was to consider predicting future process
performance as a function of past process performance and of impacting
process variables that can be measured, which, at least in the short run, cannot
be changed. For EPC to be viable, there must, in addition, exist control
variables whose adjustment will have a predictable effect on process
performance and will provide the desired short-term reduction in variability.
Thus, we need to add into the model the impact on process performance of
such control variables and, therefore, represent the process dynamics
appropriately. In the chemical industry the amount of catalyst is a popular
control variable.

The relationship between the control and the output variables may be
of many different types. The simplest and most often used relation, however,
is of linear form, leading to the following model for the effect of the
manipulate variable to the quality characteristic of interest:

Y. = X, + D,=bu; + D,
where Xi.; has the linear form of bu,,, with u;.; being the measurement of the
control variable at the end of period t-1, and D, is the time series model

already specified.
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3) The error-term e, of the model

The error-term e, encompasses error of observation (that is, sampling
and measurement error), as well as sources of process variability between
observations. The error term is assumed to have 0 mean because the partial
errors annul the one the other, and variance equal to oe2 which is estimated by
the data. The variance o.° is the fundamental variability of the complete
process or, in other words, is the common-cause variability. Since the
definition of common-cause variability is the one that is common to all
material produced or the one that can be affected only by a change in the

g 010 5 . o 2
system, the common-cause variability is associated with 0.°.

Step 3: Procuring the needed data

Given a potentially appropriate process model, the next step is to
estimate the parameters of the model and assess its usefulness. This requires
appropriate data from the process. Often, EPC is applied on an existing
process on which some sort of action has been taken in the past. Carefully
maintained records of process performance over a long period of time might
provide a basis for fitting and evaluating a process model.

However, sometimes, recording of process performance that impacts
variables and control actions is not sufficient because there have been no past
adjustments or the control variables are confounded with the impacting
process variables and an initial analysis is required. When observed data are
insufficient, one must introduce deliberate variation into the process by means
of a dither signal. If these perturbations are large enough so that their impact
is detected early, statistical estimation may be enhanced and that is why they
should not be so large as to distort normal process behavior.

Gustavsson et al. (1977) gave a quite general theory showing that
prediction-error variance is increased when estimation is performed within an
overparameterized model class. On the other hand, unbiased prediction may
not even be possible if model orders are underspecified. The purpose of the
identification and estimation step of the EPC procedure is to come up with a
model that captures the effects of the control and disturbance portions of the

innovations form of a process model.
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Step 4: Model fitting and evaluation

Given a model and appropriate data, one should estimate the
parameters in the model and to evaluate the adequacy of the fit. The
estimation of the time series model is done by the procedure described in
Chapter 2, while the effect of the control variable may be shown visually
from its scatter plot with the output variable and can then be estimated using
the regression technique.

Apart from the gooodness-of-fit revealed by the residuals, a good
property of the model is its ability to predict the process adequately. Because
the fit of the data used to construct the model often provides a very optimistic
evaluation, a verification of the model applied to data not used in the model
fit but coming from a subsequent period of time, is essential. This step is
finished if we are convinced that the future performance of the process is
adequately predicted from past data on process performance which impacts

variables and control actions.

Step 5: Developing a control rule

Apart from the model specified for the manufacturing process, one
should also come up with a model for the control variable. The optimal
control rule usually is obtained after changing the control variable (whenever
this is practically feasible) and then determining the magnitude of the change
to be made by minimizing the variance of the true process performance. This
leads to a simple rule when process performance for the most recent
observation is known at the time the next one is prepared. An example of a
control rule could be the following:

U = CjUyg +Cayy,

where ¢ and c; are determined directly from the previously fitted model.

If the cost of the control action is also considered, then a control rule
minimizing the total cost could be preferred over the minimization of the

process performance variance.
Step 6: Developing a monitoring procedure

Although that the feedback control scheme is often preferred over

statistical monitoring if the data is appropriate, it does not make any attempt
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to identify an assignable cause possibly effecting the process. All EPC
schemes do is react to the process upsets, but they do not make any effort to
remove the assignable causes. Consequently, in processes where feedback
control is used there may be substantial improvement if also control charts are
applied for statistical process monitoring. The systems where both an EPC
and an SPC tool for process monitoring have been implemented are often
referred to as Algorithmic Statistical Process Control (ASPC).

The control chart should be applied to either the difference between the
control variable and its target (that is, the control error) or to the sequence of
adjustments to the manipulated variable (that is, the control action). The
monitoring of the control action is often useful because process performance
already includes the impact of the control variables and, thus, fundamental
changes that may be compensated for by ever-increasing control action may
remain undetected for a long time. Points that lie outside the control limits on
these charts would identify periods when the control errors are large or when
large changes to the manipulated variable are being made. These periods
would possibly be good opportunities to search for assignable causes.

The monitoring scheme of ASPC can serve a variety of purposes (e.g.,
see Tucker et al., 1993) including those of:

(1) verifying identifications

(2) determining whether the values of process or the model parameter
values are varying

(3) assisting the search for root causes.

Once the appropriate monitoring scheme has been agreed upon (which
could be any of the SPC charts already discussed as the Shewhart type,
EWMA or CUSUM control charts), one would use past data to determine the
control limits. The ASPC implementation yields quality improvement both by
removing sources of variability and by compensating for predictable process
deviations from target. It revises the SPC dictum ‘don’t act without statistical

evidence’ to ‘act on the statistical evidence’.
Step 7: On-line implementation and assessment
Implementation of the ASPC scheme requires much planning and

should be led by the responsible process engineer. It is prudent to introducé
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ASPC in stages, so as to build confidence in the results, assure that there will

be no disasters and identify possible problems.

6-4 The MMSE and PID controlled processes

The Minimum-Mean-Squared-Error (MMSE) controller is based on
the idea of minimizing the mean square error of the process output deviations
from the target. It is equivalent to the minimum squared error procedure used
in order to specify the best forecast for a future value of the time series data
discussed in Chapter 3. According to the control action and the model applied
to the disturbance term, it takes different formulas. On the other hand, the
Proportional-Integral-Derivative (PID) controller has a specific formula no
matter what the process model is. In some cases the Minimum-Mean-Squared-
Error is given by the PID controller, so that the two techniques coincide. Both
controllers have interesting advantages as well as drawbacks and the choice

between them should be made with caution.

6-4.1 The I controller

The skeptic behind the PID controller is to find a formula that cancels
out the disturbance term of the model. This formula is fixed and the only
thing to be done is to estimate its parameters in order to find the optimal PID
scheme. The I controller is one of the simplest forms of the PID controller.
The analytical derivation of its formula is explicitly described by
Montgomery (2001) and it is the following:

Suppose that the manipulated variable, u;, has linear relationship with

the deviation of the output characteristic from its target (Y,), so that:

Y: = gue (6-2)

where g is a constant usually called the process gain. If the disturbance term

is modeled as an IMA(1,1) model of the form given by Eq(3-19), it can then
be predicted adequately using the EWMA prediction as lﬁ,-‘f),_ﬁ ND¢ -
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D) = D, + N, with e =Dy, - D, being the prediction error at time

period t and 0 < A < 1 is the weighting factor of the EWMA, where A = 1-0
and # is the moving average parameter of the IMA(1,1) model. The adjusted
process then taking into account both the disturbance term and the control

action becomes:

Yi=Dy+gu., =e + ﬁ,+ guy.1, since ¢ = D, - ﬁ,—) Di=¢e + 13, (6-3)
Eq (6-3) makes it obvious that by setting gu,.; = -ﬁ,, which is
equivalent to setting u,.; = -(1/g) 13,, the disturbance is cancelled out. Thus,

the adjustment made at the time point t+1 compared with the one made at the

previous time point is:

usr=u=-(D,-D_)g (6-4)

The difference in the two EWMA predictions is written as:
D-D,,=NDiy+ (1-ND,_,-D,, = NDiy - AD_ = NDu.1-D, ) = ey,

Therefore, Eq (6-4) becomes:

U — Uy = - Nep /g = (-Ng)ew (6-5)

The actual set point for the manipulated variable at the end of the

period t +1 is the sum of all the adjustments through time t+1, so that:

(+1 t+] 1+]

U] = .Z(uj -u, )= (-)\/g)Zej =k Zej (6-6)

Note that if the target value is 0, then the output can also be viewed as
the deviation from target (i.e., the output error or control error). In fact the
actual error at time t is the difference between the output and the target , i.e.,
e; = Y, — Target, because by subtracting the measurement error e; from the

output variable Y, in Eq(6-3), what is left is the prediction of the process.
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Thus, from now on, by referring to the output we will implicitly refer to e,
and the control error will numerically equal the prediction error The I
controller is a pure feedback control scheme that sets the level of the
manipulatable variable equal to a weighted sum of all current and previous
process deviations from target as shown in Eq(6-6).

Another way to express the control equations that define this adjusting

mechanism is given by Del Castillo (2002) as:

U= -0 /g,
where o = Ne; — bug.y) + (1- Ny, 0 <A< (6-7)

and b is an off-line estimate of the input-output gain g

Because of this recursive form of the value o, the I controller is often
called the EWMA controller.

It can be shown that if the deterministic part of the process model Y, =
gu..; is correct and if the disturbance D, is predicted perfectly apart from
random error by an EWMA, this is the optimal control rule because it
minimizes the mean-squared error of the process output deviations from
target. In other words, if the dynamic model is Y; = gu.;, the MMSE

controller is given by the I controller.

6-4.2 The PI controller

The PI controller, which is the most popular among the PID
controllers, is derived if we consider that the adjustments to the process
should take into account the two last errors instead of the last one as
previously. That is, uns; — u = (ci/glewt + [(c1t+czy/gler =kpewi1tkie.. By

summing this expression up, we get:

[

£+1

Ug+1= kpet+l +kIZej (6-8)
j=1

In the case of the I controller, k; was determined by the gain g (which

is a known constant) and the EWMA parameter A. For the PI controller, the

93




The Engineering Process Control (EPC)

constants c’s (or k’s) should be chosen so as to minimize the mean-squared
error around the target value.

In the above case, the dynamic model Y, = gu;.; has been considered, in
which it is assumed that all of the change induced by a step change in u will
occur in a single time interval. A more complicated but reasonable approach
is to consider that a unit step change in u will have an effect on the output
variable for more than one time period. Therefore, knowing that t time
periods after a unit step change is made in u, the change in Y will be g(1-8°),
where 0 < 6 <1. For this dynamic model the output change asymptotically
approaches g units. The value of & measures the inertia in the process
dynamics with 6 close to 0 corresponding to little or no inertia. For example,
the first-order dynamic model that can approximate the behavior of a number

of processes is characterized by the difference equation:

YI . 6Yt.1 + g(l'a)u[-] (6'9)

The simplified dynamic model of Eq(6-2) corresponds to setting §=0.
Supposing now that the disturbance is represented by the nonstationary
IMA(1,1) model and that the process dynamics is represented by Eq(6-9), it
has been proven by Box and Kramer (1992) that PI adjustments of the form of
Eq(6-8) produce MMSE about the target value provided that the proportional

and integral constants k, and k; are set to the values:

kp, = N6/[g(1-0)] and k; = Ng (6-10)

The control action specified from Eq(6-10) is of practical use only if 6
is fairly small. As § becomes larger and, in particular, as it approaches unity,

the MMSE scheme requires excessive control action.

6-4.3 The PID controller

The PID controller is the general form of this specific type of

controllers and it is derived in the same way as the I controller with the
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difference that the adjustments now depend on the last three random errors.

Eq(6-11) gives the general formula of the PID controller.

u = kpe + ki )_e; +kp(er-ei.1) (6-11)

Vv

Proportional Integral Derivative term

where e, s are the deviations of the output variable from its target value, and
ky, ki, kp are constants manipulated to minimize the resulting process
variation. By omitting one or more of these terms, Eq (6-11) results in several
special cases including those of the I and PI controllers described previously.
That is, if k, = kp =0, ki=(-NMg) and t+1=t, then the I (integral ) controller is
formed, though kp = O results in the PI controller, and if k; =0 the PD
controller is derived. Choosing the constants k’s or equivalently c’s is usually
called tuning the controller.

When the disturbance term follows the IMA(1,1) model and the control
action is linearly correlated with the output variable, then the MMSE is
achieved with the PID controller, that is the MMSE controller reduces to the
PID one.

6-4.4 MMSE controllers for disturbance models other than the IMA(1,1)

1) If the disturbance term D, is defined by an ARMA(1,1) process i.e.,

Dy =¢Dy + €- 8 €.,
and the control action is defined as Y, = -u;.; (which is as setting g = -1 to
Eq(6-2), the model for both the dynamic behavior of the process and the
disturbance effects becomes: Y; = D; - u,.;. The MMSE controller in this case

is defined by Box, Jenkins and Reinsel (1994) as:

U = ¢ut.] + ((b' H)Yt (6-12)

where Y, is the output variable and u, is the control action taken at the timd/

period t. If the disturbance model is known, then Y, = ¢, and oy = ¢.. Unde
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the MMSE control policy, it is not difficult to show, as it was done by Box,
Jenkins and Reinsel (1994), that the standard deviation of the control action

in this case equals:

o =279, (6-13)

J1-¢? :

2) If the disturbance term is an autoregressive process of order 1, that is:

D; = ¢D¢. + €,
then it has been proven by Box and Jenkins (1976) that the sum of the AR(1)
model of the disturbance and of the white noise term e, in the general model:
Y, = u,.;+D; +e, results in the ARMA(1,1) model. MacGregor (1990) proved
that the control action of the MMSE controller in this case has the following

form:

u = Pu - (¢- H)Y, (6-14)

6-5 Applying the feedback control scheme: an example

An application based on the EPC and APC schemes would make clear
the need for their use. Suppose that the dynamic model of the process is given
by Eq(6-9) with 6=0.1, and that the disturbance model is the IMA(1,1) model.
Then, if Eq(6-10) is used for this simulated data, then the MMSE controller in
this case is the PI controller.

Montgomery (2001) showed that in order for \ to minimize the sum of
the squared forecast errors for the process disturbance if the true optimum
value for A is Ay, a value for N in the 0.2-0.4 range does not inflate the
variance of the output much. In contrast, if A = 1 (or equivalently § = 0) in
Eq(6-1), this implies that the adjustment made is exactly equal to the current
deviation from target and this choice of A doubles the output variance. On the

other hand, when A = 0 (or 6 = 1), this means that the process is in statistical
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control and it will not drift off target, so that no adjustment is being done.
Thus, a value of 0.2 for A is a good approximation that works well in practice.

By setting 6 = 0.1, A= 0.2 and g = 1.5, the values for k, and k; are
calculated from Eq(6-10) as 0.015 and 0.13, respectively. The control actions
are then calculated from Eq(6-8) as:

u =0.015¢,+0.13) e, (6-15)

J=1

The model of the process under the dynamic model calculated by Eq(6-9)

becomes:

Y, =D, +0.1Y.; + 1.35u,, (6-16)

where the disturbance model is the IMA(1,1) of Eq(3-19) with 8 = 0.4. The
output for 493 observations of the process was derived under the model given
by Eq(6-16) and the control actions were specified by Eq(6-15). At time t =
260 a disturbance consisting of a sustained shift of magnitude 1 unit was
introduced into the process. Figure 6-1 shows the control actions made using
Eq(6-15) in which it is apparent the MMSE controller (or the PI more
precisely) compensates for this assignable cause to a large degree, since the

adjustment is larger after observation 260.

The adjustments made to the output

B Y

T T T T
Index 100 200 300 400

Figure 6-1: The control actions for the output of Eq(6-16).
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Figure 6-2 shows the Shewhart and the EWMA control charts of the
output deviations from target after the adjustments have been made. In both
charts the shift in the mean is detected at observations 412 and 414 and there
is also a downward trend after observation 260. The Shewhart control chart
for the sequence of the adjustments seems to be in statistical control, as is

shown in Figure 6-3.
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Figure 6-2: The Individuals and the EWMA charts for the output deviations from
target.
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Figure 6-3: The Individuals chart for the adjustments (control actions).

The adjustments made to the output achieved to keep it close to target,
though the application of simple SPC charts would reveal an out-of-control
state with no indications of improvement. However, the application of SPC to
the output deviations from target, after the adjustments have been made,

helped to find the shift in the mean, something which would not be detected
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with the EPC alone. This is how the combination of feedback control and

control charts outperforms the use of one of these techniques alone.

6-6 Minimum cost adjustment: some simple schemes

The process adjustment schemes so far considered had the property of
minimizing the mean squared error of the output quality characteristic about
the target value T. Some forms of the MMSE controller, as is for example the
control action of the I controller given by Eq (6-5), minimizes the output
variance and at the same time the mean overall cost of adjustment if it could
be assumed that the cost of being off target was proportional to the square of
the deviation from target and that other variable costs were negligible.

In a case like this, the manual adjustment chart described by
Montgomery (2001) could be used as in Figure 6-4. That is, an adjustment
scale is added to the plot of the output deviations, so that by observing the
current output deviation from target, the amount of adjustment to apply is
written on a vertical scale. In the application of the previous section, k; was
Ng=1/7.5, meaning that the divisions on the adjustment scale would be
arranged so that one unit of adjustment equals 7.5 units on the output scale.
Furthermore, the units on the adjustment scale that correspond to the output
values above 0 (since the target value of 5 has been subtracted) are negative,
whereas the units that correspond to output deviations from target below 0 are
positive. This is naturally happening because when the output is above its
target the manipulated variable should be reduced to drive the output toward
the target and the opposite happens when the output tends to be directed
below the target.

Adjustment
scale

» . ‘ﬁﬁf*ﬁ#ﬂ
> i A w. ¥
& e f‘mﬁjﬂﬂ‘

The output deviations after adjustment

index 100 200 3o 400

Figure 6-4: The manual adjustment chart.
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If, however, other costs, such as that of adjusting the process or of
taking an observation have also to be considered, then the minimum-cost
feedback schemes become more complicated. If this is the case, Box and
Kramer (1992) studied two possible situations: considering the sampling

interval fixed or not fixed.

6-6.1 Sampling interval fixed

When the cost of observing the process is negligible, then the only
existing costs are the cost of being off target for one time interval (Cr), which
is assumed by Box and Kramer (1992) as proportional to the square of the
deviations from target, and the cost incurred by adjusting the process (Ca),
considered to be fixed. Therefore, it is of interest to make some modifications
to the feedback adjustment procedure so that less frequent adjustments are
made. The two most popular modifications are the bounded and the rounded

adjustment charts.

1) The bounded adjustment chart

This type of adjustment chart resembles superficially to an EWMA
monitoring chart. An adjustment is made to the process only when an EWMA
forecasted value of the output variable falls outside of the control limit lines
T £ L and not at each time point. After an adjustment is made, the forecasted
value of the next observation is set to O and the following values are
computed recursively. This type of adjustment is far more economic than is
the case of continuous adjustments.

The boundary value is not determined, however, by questions of
statistical significance but rather depend on the ratio C5/ Ct of the adjustment
cost to the cost of being off target. Simple tables that allow the value of L to
be calculated for given Ca/ Cr, A and 0, (which is the amount of being off
target) and that provide corresponding average run lengths between
adjustments are given in Kramer (1989).

The appropriate choice of Cg that determines the off-target cost is
sometimes difficult. An argument used, for example, by Taguchi (1981) is

that, assuming that the cost is a quadratic function of the off-target deviation
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with a minimum at T, to determine the whole cost curve we only need to
know an additional point. To obtain such a point it is argued that as the
deviation from target increases it will reach a point T £ A, say, at which the
manufactured material must be discarded or reprocessed at a cost ¢g. Then, Cr

is calculated as: Ct = ¢g 0,,2/ AZ.

2) The rounded adjustment chart

Box and Luceno (1997) discussed the rounded adjustment chart used to
assist operating personnel in making simple adjustments. The adjustment
scale is now rounded to a fixed number of zones (usually four or five) on
either side of the target. Each zone corresponds to a specific adjustment (for
example reduce or increase the manipulatable variable by 1 unit, 2 units etc).

Usually the central zone corresponds to no adjustment at all.

6-6.2 Sampling interval not fixed

Kramer (1989) showed that when the cost of taking an observation is
included, the minimal cost scheme is still of the form of the EWMA bounded
adjustment chart but with a sampling interval of m units. To obtain minimum
cost schemes when the cost incurred each time the process is observed (Cy) is
not negligible, it is often necessary to lengthen the sampling interval in
comparison with schemes when the sampling cost is very low. Kramer (1989)
gives a formula for calculating the overall cost when the cost of adjustment,
the monitoring cost and the cost of being off target are included. By
minimizing this overall cost, it is possible to determine:

(a) when the process should be adjusted

(b) what size of adjustment should be made

(c) how often the process should be sampled and the data should be
collected

(d) the average interval between adjustments (based on the ARLSs)
associated with each scheme.

Box and Cramer (1992) presented a graph from which one can find
immediately the value for m to use when the disturbance term is modeled as

an IMA(1,1) process but this chart requires values for three quantities: the
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nonstationarity measure of the IMA disturbance process A [given by Eq(3-19)
if 8 is replaced by 1- N\] and the two ratios Ra and Ry, where:

Ra = (Ca/ C1)/ N and Ry = (Cw/ C1)/ N (6-17)

If the limit lines yielding minimum overall cost are set at T = L with L
=]\g, where A\ and o0, are the parameters of the original disturbance process
monitored at unit intervals, Box and Cramer (1992) provided also a chart for
finding the appropriate value for 1 in conjunction with A, R4 and Ry The two
charts for finding appropriate values for | and m have resulted in some special
cases when the sampling interval is not fixed. Some of these cases are:

. A =0. When this is the case, it is derived from Eq(3-19) that the
disturbance is a white-noise stationary process. The standardized limit and the
monitoring interval m are then both infinite according to the relevant chart of
Box and Cramer (1992) for finding m . Thus, the control action to be taken
for a process known to be in a perfect state of control is no action at all.

o C4 negligible. In this case, for any fixed m, | tends to 0 and the
limits T £ L converge on the target value. Adjustments must, therefore, be
made as each new value becomes available. Each adjustment is made to
cancel the deviation of the exponentially smoothed value from the target
value and the total adjustment at time t is then proved to be the I controller.
Notice that the I controller provides minimum cost of regulation only when
the cost of adjustment Cy4 is negligible.

. C4 is negligible, Cy is not and m is not fixed. In this case, a
feedback scheme is obtained in which limit lines are on the target (1=0), so
that adjustments are made after each observation, but these observations may
be made less frequently.

. C4 is not negligible, m is fixed. If this is the case, the action
limits T * 1Ao, adjustments are determined directly by Ry

o A =1. This random-walk case could theoretically occur and only

in this case could adjustment action based on z, rather than 2, be justified.

However, this degree of nonstationarity is so extreme, that it can hardly be

met in practice.
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6-7 Other factors inciting the use of ASPC

Considering the advantages of the ASPC technique discussed
extensively, Faltin et al. (1993) remarked that the use of this method has
better results if:

1) Measurement variability 1is modest relative to process
variability, that is ASPC works best when the ‘signal-to-noise’ ratio is
high, meaning that the magnitude or true process variability is large
relative to measurement error.

2) The impact of the control variables is understood because there
is a good physical understanding of the control variables and their impact
on performance.

3) Performance measurements are obtained in a timely manner.

Although the measurements of some process parameters are
obtained continuously, there is often a lengthy delay in the time required
to obtain measurements of quality. The effectiveness of process
adjustments to compensate for performance variability is comprised as the
delay time increases. To reduce such delays surrogate measurements are
sometimes used. Measurement delay is discussed in more detail in the

following chapter.
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CHAPTER 7

Automatic Statistical Process Control

(ASPC): more special issues

7-1 Introduction

In the previous chapter, the design of the EPC/ASPC technique was
discussed and the most popular controllers were described. In this chapter,
our attention is focussed on some more specialized aspects of the feedback
control adjustment, as is the on-line process control used not only to bring the
process close to target so as to differentiate between the common and special
causes, but to adjust the process between the collection of the data set. This
type of controller is called the “Run-by-Run” controller and it is discussed in
section 7-2. A design map evaluated to derive easily the unknown constants
of the PID controller is presented in section 7-3. Another issue is the fact that
often the previous measurement(s) are not available for estimating the process
output at the next time point. This is confronted in section 7-4, while the use
of an economic model applied to MMSE controllers is the subject of section
7-5. Section 7-6 is referred to some drawbacks of the ASPC approach, while
section 7-7 presents a control chart based on the PID scheme and, therefore,

called the PID chart.

7-2 The Run-by-Run controller

The Run-by-Run (RbR) controller is a group of algorithms designed
to be used for on-line process control, that is, control of a process during
production. It responds to post-process by updating models of the process

between runs (instead of during a run) and providing a new recipe for use in
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the next (or a subsequent) run of the process. The recipe itself may include
changes in set points during a run. The RbR controller does not, however,
modify the recipe during a run based on measurements made while the
process is running, as is done by the Real Time controller. Its objective is to
reject various disturbances frequently found in RbR processes, such as shifts
and trends, as well as autocorrelated disturbances.

The RbR controller has two modes of operation: optimization and
control. The distinction between the two modes is that in the optimization
mode, it is expected that the process can be significantly improved, while in
the control mode, the concern is to maintain the performance of the process in
the face of disturbances. Thus, although the optimization mode temporarily
increases the variability of the process output by exploring the process space
in order to improve it, the goal of the control mode is to reduce this
variability and keep the process on a target value.

Sachs, Hu and Ingolfsson (1995) studied the RDbR controller
thoroughly, assuming that the dynamics of the process is captured by the
relation:

Vi =t Bixe + €,
where x, is the controllable input variable, y, is the output variable, €, is the
random error term with variance ¢’ and the parameters o; and f, may be
random variables. The intercept term o, and the process sensitivity §, may

change with time. The appropriate prediction equation is then:

}'},: [0 7881 + bMXt (7‘1)

which is used to select a recipe for the next run at which the process output is
likely to be close to a target T, i.e., a recipe X, satisfying o4.; + byjxy = T. The
values o.; and b ;x; in the prediction Eq(7-1) are estimates of the parameters
oy and By Sachs, Hu and Ingolfsson (1995) assumed that the process outputs
are measured for every run and that the process sensitivities by stay constant
over time, so only the intercept term o.; is updated each time an output
measurement y, becomes available.

Concerning the disturbance term, two generic situations are studied by

the authors:
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(a) Gradual mode: The process is drifting slowly (on the order of
about 1g). For this slow drifting process, with no radical departure from
the predicted process behavior having been signaled, the disturbance is
smaller than the noise in order of magnitude in the process and the process
model is updated gradually.

(b) Rapid mode: The process is subject to occasional, large shifts on
the order of 20 or larger. If this rapid mode influences the process, then
the output measurements will be in significant disagreement with their
predicted values and will signal an alarm. The process mode has then to be
updated rapidly to allow the process to quickly adapt to the disturbance
and return the output to target.

The guidelines used is to preliminarily apply a control chart to the
difference between the prediction of the model given by Eq(7-1) and the
measured value. Since the RbR controller functions by making small changes
to the input parameters, so as to keep the process closer to target, the
adaptation of the model that takes place in the gradual mode accomodates this
slow shift. Since the gradual model adaptation does not remove the effect of a
rapid shift, a control chart can be used to distinguish between slow drifts and
rapid shifts. In the RbR controller it is expected that the gradual mode will
remove the effect of small changes and, therefore, the suggested control chart
is the Shewhart, since our interest is now on detecting large shifts in the

process.

7-2.1 The Gradual mode in the RbR controller

As has been mentioned previously, the purpose of the gradual mode is
to compensate for drift in the process by gradually updating a model for the
process and prescribing a corrective action based on that model. In order to
control the process, we use our current model of the process to predict what
the output for the next run will be as a function of the input for that run and
select an input value for which the predicted output is on target. Since the
estimates are not perfect, the recipe chosen by the controller may not be the
ideal one and the actual output value may be different from the predicted one.

But if the slope estimate, assumed to be constant, is ‘good enough’ and the
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intercept estimate is updated in an intelligent way, the input settings will
converge to the ideal recipe (i.e., control action) and the output values will

converge to target.

The algorithm

When the process is subject to noise and data from t runs are available,
it is reasonable to compute the estimate o as some weighted average of the
numbers (y;-bx;), (y2-bx2), ....,(y-bx,). The best choise is to use the
Exponentially Weighted Moving Average (EWMA) so that the weight decays
gradually with age in the geometric fashion. If A is the weight assigned to the
most recent data point, then the EWMA may be expressed in a recursive form.
The gradual mode algorithm for a single-input-single-output process is then
defined by the following two recursive relations given by Sachs, Hu and

Ingolfsson (1995):

Xt = (T' a[.])/ b and
o = Nye-bxy) + (1- N) o4y (7-2)

The first equation in (7-2) specifies how the recipe for the t" run
should be selected and the second one describes how the intercept estimate
should be estimated using the EWMA property after the output from run t has
been measured. In the case where the controller is applied after every run and
the full prescribed control action is taken, the intercept estimate and the

control action are given by:

o = )\(yt‘T) + (6788

x=-Vb) S (3, - T)+xs (7-3)

i=]

It can be easily seen that the EWMA controller of Eq(7-3) is the
Integral (I) controller given by Eq(6-6) with a measurement delay of one run.
In order to ensure that the sequence of recipes suggested by the algorithm will
eventually converge to the new ideal recipe when the process is single-input-

single-output, that it is subject to uncorrelated noise and drifts an amount 0
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between successive runs, Sachs, Hu and Ingolfsson (1995) came up with the
condition 0 < NG/b < 2 that guarantees the controlled process is stable. This
condition places a restriction on how poor the estimate of the process
sensitivity can be. The first inequality implies that the estimated sensitivity b
must have the same sign as the true sensitivity 8. The second inequality
ensures that the magnitude of b is at least N3/2.

Another matter we have to check is the performance of the controller
when the process is operating in control. It is known that if the output from a
process is not correlated, then any control action will increase the process
variability and the best action is to leave the process alone. Sachs et al.
(1995) checked that with an EWMA weight of 0.1, the application of the
EWMA controller to a non-autocorrelated process will result in a small
increase of the standard deviation of the process. However, if a slow drift is
present, the uncontrolled process will drift off target, while the controlled
process will stay close to target. As a practical matter, there is a wide range of
EWMA weights where the controller effectively compensates for drift with
minimal negative impact for the case when no drift is present.

The authors have also considered the case of multiple inputs which is

an extension of the one with a single input just described.

7-2.2 The Rapid mode in the RbR controller

After the SPC mode has signaled a large shift, or a shift has occurred
after specification changes or after maintainance operations, the rapid mode
must be able to prescribe proper control action for the process. The most
significant feature of this kind of disturbance is that it changes the process
level by a large amount in a small number of runs since gradual mode was not
able to compensate for it. According to Sachs et al. (1995) the compensation
done for large, occasional shifts is more appropriate when the RbR controller:

1) estimates the magnitude and location of the disturbance

2) assesses sequentially the probability that a step of the magnitude
and location estimated in 1) actually took place

3) uses the estimations from steps 1) and 2) to prescribe control

actions.
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1) Estimating the magnitude and location of the disturbance

The procedure of the estimation is illustrated in Figure 7-1. The data
points are the output measurements, adjusted for the effect of the input
variable. The two horizontal lines are fitted to the data so as to minimize the
sum of the squared deviations of the data from the lines. The position of the
breakpoint provides an estimate of the location of the shift disturbance and
the distance between the lines is an estimate of its magnitude.

Let z, = y; — bx, be the output measurements, adjusted for the effect of
the process parameters. In the case of approximating the change by adapting
the intercept only, if the process drift is slow enough to make the estimated
intercept term o, change little during the k runs, then z, can be approximated

by:

Zi~ a+ e, wheree, = y,- T (7-4)

If the gradual mode of the RbR controller performs its job adequately,
then, in the absence of shifts, the deviations from target e, will be iid with
mean 0 and variance ¢°. If a step of magnitude d occurred between runs t-m
and t-m+1, then:

Zy~ ot e, fori = t-k+1,...t-m
~a+d+e fori=t-m+l,.. .t
Based on these observations, the procedure to estimate the magnitude
and location of the shift is to minimize the sum of squared deviations of the
¢ 2
z,’s from estimates of the process intercept Z,, i.e., Z(zi ~2) . This rapid
i=t—k+l1
mode algorithm will give both an estimate of the shift magnitude and

location.

Shift
magnitude -
- e - o

T e - - Shint
location

Figure 7-1: The effect of a large shift in the process
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2) Assessing the probability of a shift

The general framework described by Sachs, Hu and Ingolfsson (1995)
for deciding whether the disturbance actually did occur is the use of a
sequential Bayesian statistics approach if the estimates from the previous step
for the shift magnitude and location are d and m, respectively.

If there was indeed a change in the level of the process, then with the
accumulation of supporting data the shift probability f; will tend to increase
towards 1. On the other hand, if the alarm was due to a random fluctuation,
the subsequent data would discount the probability of the shift, so that the
value of f; decreases towards 0. The authors symbolize as Z,+ the data derived
after the possible shift from runs t-m+1,..., t. According to Baye’s rule, the
probability f; at run t that a shift with magnitude d occurred between run t-m
and run t-m+1 is:
fi = P{shift with magnitude d occurred m runs ago | Zna} =

= P{ Zun+ | shift} fom / [P{ P{ Zuns | shift} fiom + P{ Zms | n0 shift}(1- fim)],
where f.p, is the shift probability before the data set Z,,+ is available.

We can assume a prior probability distribution for the shift probability,
p(f| Zn.), where Z,,. is the data available before the shift. Again using Baye’s
rule, we can obtain an expression for the sequential nature of updating the
probability distribution for F:

p(fi| Z) = hP(Zuns | Fim = ) p(fim | Zen),
where Z; is the complete set of data, p(ft-m|Zm-) is the prior probability
distribution for fi.m, p(fl|Z() is the posterior probability distribution for fi,
P(Zm+|Ft-m = f) is the likelihood function incorporating the information on
shift probability from the data and h is the normalization constant.

One advantage of the Bayesian approach is that it elicits from the user
explicitly what are the assumptions for the parameter of interest by having the
user specify the prior distribution. Another is that since the parameter of
interest is updated with each data point, the newly obtained posterior
distribution always reflects the information from the latest data. A discrete
and a non-discrete case for the prior distribution of the shift are described in

detail by Sachs, Hu and Ingolfsson (1995).
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3) Compensation strategy

The next and final task of the rapid mode is to decide how to
compensate for the change in the output. The criterion used is to minimize the
sum of expected squared deviations of the output from target on all the runs
after the application of the rapid mode algorithm. Currently, the algorithm
minimizes the expected squared deviations from the target for the next run.
The minimization of all runs is performed in order to:

minimize E[(yis1 — T)? | Z..

Assuming that only the intercept term changes, the minimization is to
be performed with respect to the amounts by which the estimated intercept
term has changed. The expected magnitude of a shift is:

E[F.d + (1 - E[F])0 = E[Fd. This is the amount by which the
intercept term is adjusted in the initial version of the RbR controller. The
adjustments in the process parameters (inputs) are determined by solving a
model where the constant term has changed by an amount E[F,]d. However,
when process noise is large in comparison to the changes in the slopes, the

compensation factor will become independent of the shift probability.

7-3 Design maps for the PID controller

Tsung and Shi (1999) worked on the estimated parameters of the PID
controller, used in an RbR control process, and they ended up with some maps
that direct us in the choice of the constants k;, k; and kp when the disturbance
model is an ARMA(1,1) and the control action has its full effect on the
process output in one run (that is, the pure dynamics model is valid). The
optimal PID controller is the minimum process variability under the constrain
that the PID control strategy has been used.

The authors derived the relationship between the PID control
parameters and the process minimum-squared-error of the ARMA(1,1) model.
Then, based on the optimization index, the design of the PID parameters k, k;
and kp was obtained by minimizing the squared-error within the stability

region:
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k, =0,
N k,+k, /12+2k, <1, -
G dakod =9 4 g <1, (7-2)

—kp(l+k, +k, )k, <1

Tsung and Shi (1999) represented the choices of kp, kj and kp in a two-
dimensional parameter space, using contour plots. The contour plots are
graphic representations with lines (as on a map) connecting the points on a
response surface that have the same elevation or response value. In this case,
the vertical axis is the disturbance parameter ¢, the horizontal axis is the
disturbance parameter § and the response value is the corresponding control
parameter, which is labeled on each contour line. The PID parameters and
their relationships, when the disturbance model is of ARMA(1,1) type and the
pure dynamics model is appropriate, are summarized in PID design maps
(Tsung and Shi, 1999).

As an example, if ¢=0.86 and 6=0.16 are the paramaters of a
disturbance model, then the PID parameters are obtained directly from the
design maps as k, = 0.24, k; = 0.58 and kp = -0.1. Some obvious remarks
concerning the design maps are:

(a) If £ 0.5 or if ¢ < 4, the value of k; is zero, that is Integral (I)
control action is not needed. Thus, in this region PID control coincides
with PD control.

(b) Near the region ¢ = 8, the choices of k,, k; and kp are close to
zero. This is because in this case the ARMA(1,1) model becomes a white

noise process, so the best control strategy is to not adjust the process.

7-4 MMSE control when measurements are delayed

If a measurement is delayed, that is the preceding measurement is not
available, then the formulas for the control action cannot be applied but it is
possible to minimize the output MSE with respect to the available data. An
example is given by Vander Wiel et al. (1992) who studied that if the model
of the process is specified by Y, = u.; + Dy, with D, following the AR(1)

113




Automatic Statistical Process Control (ASPC): more special issues

model, and, thus, the control action used is the one of Eq(6-14), then because

of the measurement delay, the model is formatted as:

~

j}t!t—i = Uy + Dl|t—i’
where j, , is the i-step MMSE forecast of Y, and D,!,_,. is the i-step MMSE

forecast of the model noise term of AR(1). By certainty equivalence the i-step

~

MMSE feedback rule is found by setting p,_, = O resulting in u.y = -D, ;.

When Y| becomes available, the update equation for ﬁ,l,_i is:

~

Dt|t-—1 =0 D:-ut-z + (¢ - 0)( Yt-l ut-2)-
When needed for two-step adjustments, qu-z can be computed from:

Dm—z =¢ Dz-u:-z .

In the absence of laboratory delays, this procedure is equivalent to
Eq(6-14). Importantly, adjusting to negate the forecast of D; minimizes the
output MSE in period d regardless of what control policy was used during the
previous periods. For example, if the process had been adjusted using a two-
step MMSE rule through period t-1, but beginning in period t laboratory
measurements are no longer delayed, then simply switching to the one-step
rule of Eq(6-14) will not minimize the output MSE in period t. The derivation
of Eq(6-14) assumes that the rule will be used in each period. Using the

A

intermediate quantity D,,_; avoids this difficulty.

7-5 An economic model for monitoring MMSE-controlled processes

Assuming that the output of the system (with the system inertia being
one-step delay) can be expressed as e; = D; — uy.;, where D, is the disturbance
and u.; the control action, Jiang and Tsui (2000) derived an economic model
when the feedback control is a Minimum Mean Square Error (MMSE) control
scheme. The authors extended the formulation of economic models for
monitoring continuous time production processes described in Montgomery
(2001), by defining a production cycle for discrete time processes.

Supposing that the production process travels between only two states,

the in-control and out-of-control states, the time interval from the beginning
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of the in-control state to the adjustment of the out-of-control state is called a
production cycle. It is assumed that the shift occurs only once in each cycle
with no other shift occurring before the previous shift is detected and
removed and that the process is not self-correcting, that is, once a transition
to an out-of-control state has occurred, the process may return to the in-
control condition only by external adjustment.

Jiang and Tsui (2000) subgrouped the costs associated with a
production cycle into four categories:

(1) the sampling and testing cost associated with the
subgroup size

(i1)  the diagnosis cost Cp associated with identifying special
causes from out-of-control signals

(ii1) the adjustment cost C, associated with correction of
special causes, and

(iv) the cost associated with production of nonconforming
items.

If the sampling size and frequency are fixed, the first category of cost
is not considered and this path was followed by the authors. For the cost of
nonconforming items, the quadratic quality loss function was used, i.e., L(y,t)
= Ag(0® + u?), where Ag is the cost coefficient and ¢ is the variance of the
white noise. It follows that the total cost of a production cycle (denoted as the
total quality cost, Lt) consists of two parts: the in-control (Li,) and the out-of-

control cost (Low), i.€.,

Lt = Lin + Louts where
Lin = (1/p)Ao0® + (1/p)aCp =
U U

quadratic loss of + expected diagnosis cost

the in-control items for false-alarms, and

Lout™ Z

T=l

o | T-1
[Z Ao + p? )} Pr(w) + Cp + Ca (7-6)

=0
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where a = 1/ARLy, T is the out-of-control run length and Pr(p) is its

probability mass function (pmf). Obviously, ZPT(,u)=1 and the in-control
T=1

and out-of-control run lengths, respectively, are: ARLy = 1/a, and ARL, =

Averaging the total quality cost over the entire production cycle, Jiang

and Tsui (2000) came up with the Average Quality Cost (AQC) as:

S P(u)> T ut ~[ARL, xa~1]C,

La= Lt/ [(1/p)+ARL,] = (¢* + aCp) +
a= Lt/ [(1/p) 1] ( D) () p)+ ARL

(7-7)

It has been mentioned that different SPC charts can be applied to
monitor the MMSE-controlled processes, and criteria are needed to choose the
appropriate charts. Traditionally, the Average Run Length (ARL) has been
commonly used for such purposes. However, when the process mean is
dynamic, the ARL may not be complete as it does not take into account the
run length variation. On the other hand, the Average Quality Cost (AQC) of
Eq(7-7) can serve as a good alternative since it considers the run length
variation together with the dynamic nature of the output mean shift pattern.
Comparisons of the AQC and the ARL values for MMSE-controlled processes
with AR(1) and ARMA(1,1) disturbances are provided in Chapter 8.

7-6 Criticisms concerning the ASPC rule

SPC practitioners have sometimes criticized feedback controllers for:
(a) overcompensating disturbances
(b) compensating disturbances rather than removing them
(c) concealing information that might be used for quality
improvement.
Box and Kramer (1992) responded adequately to these criticisms by

insisting that about issue (a) it is the occasional misapplication of ASPC that
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has resulted in overcompensation and not inherent problems with the
technique itself. If the controller is of the right design but is mistuned or if
the design is not appropriate, then the adaptation will not be very successful
but this is the case with every method in the statistical field.

In terms of (b), it is well known that disturbances may not be
eliminated in all cases and, thus, the adjustment is the only remaining
solution. With reference to (c), the authors support that the feedback
adjustment does not have to conceal important features of the process if one
does not want to. The disturbance model and the dynamic model, that together
define the common-cause system, are taken into account when designing the
controller and could be changed by management.

The superiority of the ASPC technique over robust and adaptive
approaches has been discussed by Tucker, Faltin and Vander Wiel (1993).
Naturally, from time to time, many authors initiate new methods by trying to
outperform the ASPC mode or at least reduce some of its drawbacks. Tucker,
Faltin and Vander Wiel (1993) referred to the results of some studies about
the relative performance of the ASPC compared to other elaborated rules.

Harris and MacGregor (1987) built a set of control equations in their
effort to compensate adequately for process/model mismatch, i.e., to form a
robust method. ASPC can, however, result in better process performance than
the approach of Harris-MacGregor because the last one tends to average over
the uncertainties for which ASPC can properly correct.

The application of adaptive Bayesian methods has the double
advantage of both probing the system for information and driving the outputs
to their target values. As a matter of fact, though, when reidentification or
reestimation was needed, the periods of probing were similar for the Bayesian
methods and the ASPC.

The non-adaptive rules may be either self-optimizing (that is, their
control rule achieves asymptotically the same optimum performance as when
parameters are known) or self-tuning (if their parameter estimates converge to
values that result in an optimal control rule). Even in this case, Tucker, Faltin
and Vander Wiel (1993) support that the ASPC performs better than non-

adaptive controllers in the long run.
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7-7 The Proportional Integral Derivative (PID) chart

In the same way that the MMSE predictor is closely tied to the
corresponding MMSE scheme in feedback control problems, Jiang et al.
(2002) used an analogous relationship between PID control and the
corresponding PID predictor to propose a new class of procedures for process
monitoring. As in SCC charts, they transformed the autocorrelated data to a
set of residuals by subtracting the PID predictor and monitoring the residuals.
Jiang et al. (2002) proved that the PID predictor corresponding to the PID

control is given by:

D, = D, + kie.+ kp(1-B)e; + kp(1-B)e, (7-8)

where B is the backward shift operator defined in Chapter 3 as: Be; = ¢,.; The
PID predictor, as the PID controller specified in Eq(6-11), has only three
terms since the prediction update is based on the three most recent terms.
When kp = 0 in Eq(7-8), the PI predictor is derived, which corresponds to the
Proportional Integral control scheme commonly used in industry.

The PID charts are obtained by subtracting the PID predictor specified
from Eq(7-8) from the original data to yield the PID-based residuals and
monitoring the residuals. Because the residuals are somewhat correlated, we
must take into account the correlation structure when computing the control
limits and then any of the traditional approaches such as the Shewhart,
CUSUM or EWMA can be used to monitor the residuals. When the monitored
disturbance process D is stationary, it is reasonable to require e, to be
stationary too, because otherwise the charting process e; would drift even
when the monitored process has no shift. This requirement holds if the
conditions for the PID parameters (kp, ki, kp) proposed by Tsung and Tsui
(1999) and given by Eq(7-5) are satisfied.

Because e, =D; - D,, we have ¢ - e.; = (D, ~ Duy) — (D,-D,,) and

Eq(7-8) can also be written as:

e = (1-kpewt — kp(1-B)ewt ~ kn(1-B)er+(D; - Di.1) (7-9) |
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Special cases of the PID charts arise by setting appropriate chart
parameters to 0. These coincide with some well-known control charts in the

literature:
1. The I chart has k, = kp = 0. By Eq(7-9), D, = D, - e, = Dy.; —(1-

ke = ky Dt (1-ky) D, that is, 15, is an EWMA predictor of D, Since

t-12
the I predictor is the well-known EWMA predictor, consequently, the I
chart is the same as the M-M chart.

2. The P chart has k; = kp = 0, so Eq(7-9) becomes e, = -kper.;+D:.

Hence, ¢ = (1+k,B)'D; = D¢ + (-kp)Di.1+(-kp)’Dea+...= D,/\, where \ =
1+k, and 5,=[Dt + (1- Dy + (1- )\)ZD‘_2+...] 1s an EWMA of D,. In other

words, when the Shewhart chart is applied to the P chart with -1 <k, <0,
this is equivalent to the EWMAST chart provided that A = 1+k,
3. When D is an iid process, the EWMAST chart becomes the
EWMA chart, so the P chart is then equivalent to the EWMA chart.
Note that there is no connection between the EWMA chart and the
EWMA predictor. The I control leads to the EWMA predictor, though the
EWMA prediction-based chart is the I chart (i.e., the M-M chart).

Choosing the parameters of the PID chart

Following the signal-to-noise (SN) ratios introduced by Jiang et al.
(2000) so as to choose the appropriate parameters of their ARMA chart, as
explained in detail in section 4-5, Jiang et al. (2002) also proposed to choose
the parameters of the PID chart using the transient capability Ry = p¢/0. and
the steady-state capability Rg = ps/g., where now 0. is the variance of the
charting process e; when the monitored process D, is in control. For the PID
chart with a mean shift of g at time to (that is, the process is D, for t<ty and

becomes u+D, for t > tg), the ratios take the following form:

Rt = u/o. and
Rs = p/ [0e(1+kp)] = Re/(1+ky), if k; =0,
=, if k; >0 (7-10)
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We note that the D term (kp) does not affect the values of ur and pus.
The transient capability Rt measures the chart’s capability to detect the shift
in the first few runs and is more appropriate for large shifts. If the chart fails
to signal early, then the steady-state capability, Rs, becomes important for
detecting the shift efficiently in later runs. Because Rs = 0 for k; >0, the PID
chart with k; >0 (for example, the I or M-M chart) is generally not good for
detecting small shifts. According to the heuristic rules proposed by Jiang et
al. (2000), the same algorithm may be adapted to guide us towards the
appropriate parameters for the PID chart. This is:

1. Specify the shift level 4 = kop to be detected.

2. Compute {max Rr},the maximum value of Rt for the PID chart,
by varying its parameters (kp, ki, kp).

3. If {max Rt} > 5, then choose the PID chart with the transient
capability equal to {max Rr}and stop, otherwise go to step 4.

4. Compute {max Rs}, the maximum value of Rg for the PD chart,
by varying its parameters (k;, 0, kp).

5. If {max Rs} < 3.5 or if Rr =2 1 when Rg is maximized, then
choose the PD chart with the steady-state capability equal to {max Rs},
otherwise choose a PD chart with Rge[2.5, 3.5] to balance the values of
Rt and Rs.

Practically, {max Rt} in step 2 is often obtained from a PI chart.
Furthermore, there do not exist closed-form expressions for {max Rt}and

{max Rs} and the maximization is done with numerical methods.
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CHAPTER 8

Performance of the Automatic Statistical

Process Control

8-1 Introduction

After having studied the advantages of the EPC/ASPC technique and
provided analytical discussion about this method, it would be interesting to
investigate its performance among the choice of different control charts used
to monitor the process after the adjustment has been made. Section 8-2
investigates some performance criteria additional to the ones for comparing
the control charts of Chapter 5, section 8-3 assesses the effectiveness of the
charts applied together with the EPC method and draws some conclusions
about their appropriateness. In section 8-4 the choice between monitoring the
output or the control action is investigated, while the differences between the
MMSE and the PI controllers are elucidated in section 8-5. Section 8-6 is
concerned with the robustness properties of the MMSE and the PI controllers

and section 8-7 discusses the performance of the PID chart.

8.2 Performance criteria used for the ASPC technique

Apart from the Average Run Length and some other performance
criteria discussed extensively in Chapter 5, some supplementary criteria used

exclusively in the field of feedback adjustment are:
a) The PM criterion

The PM (Performance Measurement) criterion was the performance

measurement used in Montgomery et al. (1994) to compare the SPC schemes
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applied after the ASPC method and it was named in this way because it was
the principal criterion in the authors's study. The PM is simply the average

squared deviation of the output from the target T, that is:

PM= =3 (1, ~T)’ (8-1)
n

=1

Obviously, the smaller the PM value is, the more effective the

adjustment scheme has been.

b) The criterion of Absolute Efficiency of variation reduction (AE)
This criterion is the ratio of the variance of the disturbance model 0D2
over the variance of the output error 0.’ (that is, the deviation of the quality

characteristic from target), i.e.,

AE = gp?/ 0’ (8-2)

The larger the value of AE or the smaller the standard deviation of the
output, the better is the performance.

If the MMSE control is used, then, assuming that the model as well as
its parameters are known, AE = 1 since the variance of the output error 052 1s
minimized only if it is equal to the disturbance variance gp>. On the other
hand, the PID schemes have usually AE < 1 because their goal is not the
minimization of the output variance.

Since the AE criterion compares the performance of a given control
scheme with the MMSE scheme (because AEmymse =1), an equivalent formula

for computing the AE when the PID scheme is compared to the MMSE is:

AE = MSEMMSE/MSEPID (8-3)

¢) The Relative Efficiency (RE) criterion

This is defined, per analogy to the previous definition as:

RE = MSEno-controt/ MSEpip (8:4) .
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which compares the variability of the PID control scheme with the variability
of the no-control strategy. Because the no-control strategy is a special case of
the PID scheme with k, = k; = kp = 0, it is clear that RE > 1. The values of RE
give us a measure of the improvement over the no-control strategy, i.e., the
lower bound of the control performance. It is obvious that, apart from the PID
controller, any control scheme of interest can be compared with the no-

control action.

d) The signal-to noise (SN) ratio

This performance measure introduced by Jiang, Tsui and Woodall
(2000) in order to study the average run length ARL of their ARMA chart
when a process shift occurs, can also be used to predict the performance of
any SPC monitoring charts. We remind that the transient and steady-state
signal to noise ratios for a statistic Z, are given by the formulas:

Rt = pur/o, and Rg = us/o,,
with g, being the standard deviation of the charted statistic and pt (or pug) the
transient (or steady-state) mean shift level of the charted process, i.e., the
process mean level when t =0 (or t = ).

The SN ratio works as follows: the transient ratio measures the
capability of a chart to detect shifts in the first few runs and this makes it an
important indicator in detecting large shifts. If the chart fails to signal a shift
in the early runs, then the steady-state ratio becomes critical in indicating
how efficient the monitoring chart is for detecting the shifts in the later runs.
The above general rule used from Jiang, Tsui and Woodall (2000) can also be
applied under APC controlled processes.

Generally, the chart with a higher Rt is often preferred if its Rt value
is high enough (say more than 4). It is then expected that the preferred chart
will quickly signal in the first runs after the shift. However, if all candidate
charts have a relatively small Rt value (say less than 3), then the chart with a
larger Rg is preferred even if its Ry value is somewhat smaller. It is then
expected that the preferred chart will efficiently signal in the later runs. When
all charts have moderate values for both ratios, then their performance is

considered similar.
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Note, though, that the above SN rule is somewhat ad hoc. It may not be
reliable if Ry is high but Rg is extremely small (about 0), since the shift on the
chart could drop down to zero too quickly to let the chart signal the shift in

the first few runs. In this case, a long ARL is to be expected.

e) The Average Quality Cost (AQC) criterion

The general form of the Average Quality Cost (AQC) value was given
by Eq(7-7). In order to assess the effectiveness of this measurement, it was
used by Jiang and Tsui (2000) along with the corresponding ARL values to
compare the performance of traditional SPC charts after the MMSE controller

has been applied.

8-3 Efficiency in SPC monitoring of ASPC controlled processes

The most evident confirmation about the efficiency of the ASPC
approach would be to check the ability of the standard control charts to detect
shifts in the process mean after the control action has been applied. The charts
that achieve this more quickly than the others are considered as the most

effective.

8-3.1 Comparison of control charts based on the economic model AQC

Jiang and Tsui (2000) were based on the fact that monitoring the
process output of an MMSE-controlled autocorrelated process is equivalent to
monitoring the forecast error of the same process. Various disturbance models
of AR(1) and ARMA(1,1) type in which the MMSE scheme is applied were

used in their simulation studies.

8-3.1.1 Comparisons for AR(1) processes based on the AQC model

Assuming that a step shift g occurs at time 0 and that the MMSE
control scheme is applied to an AR(1) disturbance process, the mean of the

process before and after the shift occurrence is:
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0,r<0
M= 4.t =0 (8-5)
(-@)u,t>0

The formula of the Average Quality Cost (AQC) shown in Eq(7-7) is
formatted after being applied under the AR(1) model as (Jiang and Tsui,
2000):

u—(1-) p® -1/ pA-9)* u* —(a+ p)C,) (8-6)

2 2,2
La = (0°+(1-¢)"p") + (1/ p)+ ARL,

Comparing different SPC charts with the same « and diagnosis cost
(Cp), Jiang and Tsui found that L, is a monotonically increasing function of

the out-of-control ARL (ARL,) if the following condition holds:

p* - (1-9)*p® ~ (Up)[(1-9)°s’* -~ (ar+ p)Cp<0 (8-7)

This is consistent with the traditional argument that the smaller the
out-of-control ARL, the smaller the cost (specified by the AQC value), and,
thus, the better the performance of the monitoring chart. However, when the
condition of Eq(8-7) is reversed (>0), the monitoring chart with the larger
ARL, will have a smaller AQC. This condition is not trivial and it occurs

when:

(1) ¢is very close to one.

In this case, the shift can be significantly recovered by the MMSE
control action and the process experiences an approximately zero shift, so that
(1-¢)p = 0. According to the assumption that no other shift would occur
during the out-of-control period before an adjustment is made, the Average
Quality Cost (AQC) of a chart with a longer ARL; will be smaller than that
with a shorter ARL; It is possible, however, that the longer the ARL is, the
higher chance there is that another shift might happen. Therefore, the overall

cost will be increased.
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(2) the diagnosis cost is very high.

If this is the case, then the quality cost after the shift may be lower
than the quality cost before the shift. Thus, a monitoring chart with a longer
ARL may result in a smaller AQC, though, again another shift may occur
before the shift is removed and this might increase the cost.

Jiang and Tsui (2000) compared three control charts, the Individuals
Shewhart, the EWMA and the combined EWMA- Shewhart charts to find how
the AQC criterion is different from the ARL. By keeping Cp and « constant,
they proved that when the diagnosis cost is negligible, the AQC is
proportional to ARL through the proportional constant P = (1/p+1)(1-¢)* - 1.
When the diagnosis cost cannot be neglected, the AQC 1is no longer
proportional to ARL and the performance of the chart depends on the
magnitude of the cost. In this situation, it is optimal not to do SPC monitoring
because the ASPC scheme is able to compensate for the special cause so that
the control charts are not cost effective.

The simulation study of the authors showed that when diagnosis costs
are small, the best chart in terms of AQC is consistent with that in terms of
ARL and this is the combined EWMA- Shewhart. This chart dominates for
large and median shifts, while the EWMA alone is the best chart when the
shift is small. For the cases with large diagnosis cost, the Individuals chart
has the smallest AQC, although it often has the longest ARL among the three

charts.

8-3.1.2 Comparisons for ARMA(1,1) processes based on the AQC model

The mean shift pattern of the output for an ARMA(1,1) model with a
step shift at time t, was specified by Jiang and Tsui, 2000 as:

0,t <t,
=t =t (8-8)
1_¢ 0'—(0 -1,
— 0" u,t > ¢
(1_9 1—o Mt > ¢,
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The AQC derived after substituting the mean shift pattern of Eq(8-8)
into the formula of Eq(7-7), is proven to be:

> P(u)Y (B0 —24B0' )+ 4> ~(4RL, xa-1)C,
(1/2)+ ARL,

L, = (0*+aCp) + (8-9)

Jiang and Tsui (2000) used the Markov chain method to calculate the
AQC and ARL values of the ARMA(1,1) model and they found that the AQC
values of the three charts of interest for the same mean shift are not
proportional to the ARL values when the diagnosis costs are zero, small or
large. For non-zero diagnosis costs, this happens in the same way as for the
AR(1) process explained earlier. For zero diagnosis cost, the phenomenon can
be explained by the fact that the mean shift function in Eq(8-8) is not constant
over time. The ARL does not take into account the mean shift change and
assigns an equal weight to each run length probability. On the contrary, the
AQC assigns a different weight proportional to the mean shift change to each
run length probability. As a result, the two criteria will be different when the
mean shift changes significantly over time.

Among the three charts, when the diagnosis cost is negligible the
optimal result under the AQC criterion is consistent with the ARL indicating
the EWMA as, usually, the best for detecting small shifts and the Individuals
control chart as the best for large shifts. When the integrated AQC criterion is
used, the combined EWMA-Shewhart and the Individuals charts are uniformly
the best. In general, when the two parameters ¢ and § approach to the
boundary of opposite directions, so that the variance of the underlying
process becomes large, the Individuals chart outperforms the combined
EWMA- Shewhart in terms of the integrated AQC value.

The integrated AQC measurement when the shift magnitude follows a

distribution function F(u), is defined by Jiang and Tsui (2000) as:

IAQC = [4QC(u)dF (1) (8-10)
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8-3.2 Relative efficiency of charts used in the ASPC scheme

Montgomery, Keats, Runger and Messina (1994) used two types of
assignable causes: a sustained shift and a trend, with the purpose of detecting
the most powerful SPC tools on the basis of these two kinds of causes. The
performance criteria in which their simulation studies were based are the ARL

value and the PM criterion specified by Eq(8-1).

8-3.2.1 Sustained shift

Montgomery, Keats, Runger and Messina (1994) used a simulation
study to investigate the success of four control charts, being the Shewhart
chart for Individuals with 3¢ limits, the EWMA with A = 0.1 and 0.4 and 30
limits and the CUSUM chart with parameters k = 0.5 and h = 5 in detecting
several sustained shifts of magnitudes ranging from 1 to 10 units. The model
used is the one leading to the MMSE controller of Eq(6-12).

The first thing worth mentioning is that the combined EPC/SPC
scheme had a smaller PM value than the EPC rule alone, leading to the
conclusion that, integrating an SPC rule with EPC by applying control charts
to the output deviation from target, results in reducing overall variability if
assignable causes in the form of sustained shifts occur. Some indication that
the Individuals chart performs better than the other charts for large shifts of
magnitude 7.5 and more was perceived.

By comparing the ARLs it was shown that the small shifts were
difficult to detect under all schemes since the effect of an assignable cause is
converted from a step change in a correlated process to a patterned change in
an autocorrelated change, but with the application of EPC, active control is

compensated for it.

8-3.2.2 Assignable cause resulting in a trend

A similar study was conducted with the shift interfering in the process
being continuous, so as to create a trend ranging from 0.05 to 1 units per
period. Once again, the PM criterion revealed the superiority of the EPC/SPC

rule to the EPC rule alone, but now the indices is that the three non-Shewhart
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procedures provide more reduction in the variability than does the Individuals
chart, with the EWMA (A =0.1) and CUSUM being particularly effective.

In terms of the ARL values, again the EWMA and CUSUM seem to
perform best though the choice between them is not critical because they

behave similarly when being adjusted.

8-4 Choosing between monitoring the output or the control action

We have already referred to the fact that a mean shift in the process
output (which is the same as the forecast error) changes over time due to the
ASPC compensation and, thus, it affects the performance of the SPC
monitoring chart. Therefore, in some cases it may be more efficient to
monitor the control action instead of the process output. Jiang and Tsui
(2002) performed simulation studies with the purpose of finding if monitoring
the output or the control action is more effective in detecting a mean shift. By
assuming a one unit delay, after a step mean shift has taken place, the output

takes the following form:

ey = D, — uy.; + hy, where h=0 for t<0 and hi=h fort > 0 (8-11)

Jiang and Tsui (2002) based their conclusions by using the SN ratio as
the only performance criterion and by applying both the MMSE and the PI

control shemes.

8-4.1 The SN ratios under the MMSE controller

If the disturbance model is an ARMA(1,1) model, then the MMSE
controller has the form of Eq(6-12). For simplicity, the mean shift magnitude
can be defined in terms of the standard deviation of the process output as
h=po.. Then, after mathematical calculations, the signal to noise ratios

described in section 8-2d) reduce to (Jiang and Tsui, 2002):

R =p, Rs® = pl(1-¢)/(1-8)] for the output error, and,

R = u\/l—(pz ,Rg" = p.\/l—(o2 /(1- ) for the control action (8-12)
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It is interesting to note that R1® is always at least R", since 1-¢? <1

and, according to the heuristic rule, the value of Ry is critical for detecting
large mean shifts in the early runs. As a result, if the mean shift magnitude is
large (4 or 50¢), it is expected that monitoring the output is more efficient
than monitoring the control action. On the other hand, if the shift magnitude
is small, so that both transient ratios are small, the efficiency of the charts
will depend on Rs. When ¢>0, Rs"> Rs®, so it is expected that monitoring the
control action will be more efficient. This is quite logical because when the
correlation is positive, the MMSE automatically reduces the shift level in the
output and this makes detection difficult. When ¢<0, then monitoring the
output will be the best choise, since the shift will be amplified and, thus,
easier to detect.

The simulation results confirmed these theoretical considerations by
showing that in terms of the ARL values, monitoring the output was
quicker than monitoring the control action for detecting a shift of 5¢. or
of 30. along with ¢>0, though a control chart of the control action
performs best when the shift is 30, or less and at the same time ¢ has a
negative value. The Shewhart chart was the only SPC tool used by the

authors.

8-4.2 The SN ratios under the PI controller

For the pure P controller (k; = kp = 0) the control action is the output
scaled by k;, since uc = kpe;. Therefore, the performance of the output
chart and the control action for the P controller is the same. Concerning
the PI controller, when a step mean shift h occurs at time 0, the two SN ratios

were calculated by Jiang and Tsui (2002) as:

Rt° = h/g., Rs® = 0 for the output and

R1" = (kp + ki)h/g,, Rs" =h for the control action, where:

l-x @+0x_ +0pk? —pb—-0p°k
Ue=\/ pP T, TOPK, PV R Ky and 0, = k0. (8-13)

(1+¢pr1—xf,x1—qo2) ‘
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It is important to note that the mean shift of the output converges to 0
(i.e., us® = 0) due to the I component, that is the mean shift is completely
compensated for in the steady state. However, this robustness property turns
to be a disadvantage for SPC monitoring since the mean shift often cannot be
detected, especially when it is small.

Note that the mean shift of the pure P controller does not converge to 0
because the two transient and steady-state mean shift patterns of the P scheme

are:

prt =1, us° = n/(1+kp), and
pr' = kph, ps" = kph/(1+kp) (8-14)

This further explains that the robustness property of the PI control is
coming from the I-component rather than the P-component of the controller.

The simulation approach, applied for the same ARMA(1,1) disturbance
models as in the case of the MMSE controller of section 8-4.1, revealed that
the ARL was smaller when monitoring the control action than the output
under the PI controller. This result can also be explained in terms of the SN
ratios: since the steady-state ratio of the output chart is always 0 due to the I-
component, the performance of the output chart is mainly determined by the
transient ratio. In other words, if the chart misses the shift in its transient
state, 1t is very hard to detect it in the steady-state and a longer ARL is to be
expected. On the other hand, the non-zero steady state ratio of the control
action chart can help the chart to efficiently signal the shift in the later runs,
although that its transient ratio is smaller than the one of the output.

For the P controller the ARLs were, as expected, the same no matter if
the monitoring data was the output or the control action because the latter is a
multiplier of the first one. As a result, monitoring the control action is
always more efficient than monitoring the output when the PI controller
is used.

The authors noted that it was not meaningful to compare the SPC
efficiency of the MMSE and PI controlled processes as the shift levels used

were not the same due to the difference of the output variance.
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8-5 Comparisons among the PI and MMSE schemes

Section 8-4 gave an idea on the difference between the PI and the
MMSE schemes by trying to find cases in which monitoring the control action
is superior to monitoring the output. The performance of the two controllers
when they are applied to the same set of data has been more analytically

studied.

8-5.1 Relative performance under specific disturbance models

Tsung, Wu and Nair (1998) used the stationary disturbance model
ARMAC(1,1), as well as the nonstationary model ARIMA(1,1,1), in order to
draw conclusions about the efficiency of the two most common adjustment

schemes.

8-5.1.1 Performance under ARMA(1,1) disturbance models

Tsung, Wu and Nair (1998) first proved that, under any stationary

disturbance model D, the stability region of PI schemes is:

{(kp, k) : kp >-1, k; 2 0, kp + ki/2<(1+8)/(1- 8)} (8-15)

where 6 measures the inertia for the process dynamics given by Eq(6-9). That
is, the PI schemes should be restricted to be in the region of Eq(8-15), which
as a matter of fact, gets larger as 6 increases.

Considering the pure gain model [i.e.,when 6=0 in Eq(6-9)] and the
ARMA(1,1) as the disturbance model, Tsung,Wu and Nair (1998) conducted a
simulation study using the optimal PI schemes (that is, the ones that minimize
the output variance within the class of PI schemes). They showed that when ¢
was close to 8, all the PI schemes (P, I and PI) had very high efficiency
(AE>0.99). This is because in the limiting case where ¢ = §, the ARMA(1,1)
model reduces to white noise for which the no-control strategy is optimal. It
can be proved that under the ARMA(1,1) disturbance model, the MMSE
scheme is a P scheme when ¢ = 0 (that is for MA(1) models). That is why,
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the optimal P schemes had high efficiency when ¢ was close to 0. In general,
P shemes get less efficient as the difference |d>-6’ | gets large.

The only case in which the PI controller was not very efficient was
when ¢ ~ -1 and 6 ~ 1, but the process disturbance has then large negative
correlation and this is not a situation of practical interest in industry. Thus,
there is little loss of efficiency in using the PI controller over the MMSE.

The authors presented some contour plots about the AE values
[described in section 8-2b)] of the PI controller for several values of the
parameter 6 in the process dynamics. These contour plots showed that the PI
controller has high efficiency along the diagonal line ¢ = 8 because, as has
been already said, the process disturance reduces to white noise in this case.

An important issue concerning the inertia parameter is that when 6 = 0,
the PI controller has high efficiency if ¢$=0 because the P scheme is optimal
for MA(1) models. On the other hand, the region of high efficiency when 6>0
is centered at the line ¢ = §. Tsung, Wu and Nair (1998) proved also
mathematically that for the general first-order dynamic model with process
inertia 6, the P scheme is optimal for an ARMA(1,1) process when ¢ = §. As a
consequence, the region where PI schemes perform well shifts up as 6
increases.

Tsung and Shi (1999) were concentrated on the fact that if there is an
integral control involved in the PID controlled process, a steady-state shift of
the process outputs will be eliminated immediately after a process change,
leaving a limited ‘window of opportunity’ during which the process change
must be detected. To overcome this problem they thought of jointly
monitoring both the output and input variable using bivariate SPC to improve
the efficiency of detection than plot them separately. Bonferroni’s inequality
was used to control the overall error probabilities when monitoring multiple
characteristics simultaneously. The proposed SPC chart design was directly
based on the PID controlled process model, since the standard deviations of
the output and of the manipulated input after process control were functions
of the PID control parameters.

The control limits of the joint charts (CL. and CL,) were written by
Tsung and Shi (1999) as:
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CL. =% L.o.
CL,=%*L,0, (8-16)

The joint decision rule suggests that the controlled process is out of
control when either the controlled output or the manipulated input is outside
the limits.

A simulation approach was then applied by Tsung and Shi (1999) by
using the PID controller of Eq(6-11) as the control action and an output of the
form e, = u.;+Di+p, , with p, being a step shift. The Bonferroni’s approach
was the one preferred for the SPC monitoring. The parameters of the PID
controller were derived by the design maps explained in section 7-3, proposed
by the same authors. For each disturbance model parameter set, the process
was simulated to obtain the ARL value and the simulation data showed that
the geometric assumption of the run-length was acceptable.

The authors presented the contour plots of the ARLs of joint
monitoring, which led them to the following conclusions:

(a) For large mean shifts (e.g. u = 20p), with gp being the standard
deviation of the disturbance, Bonferroni’s approach for the PID controlled
processes performs quite well with ARLs<10. Especially when ¢ < 6, most
of the ARLs were less than 3.

(b) For medium mean shifts (e.g. u = lop), Bonferroni’s approach
performs well when ¢ < 8, but it does not perform well (ARL>50) in the
remaining cases.

(c) For small mean shifts (e.g. uy = 0.50p), the performance is
satisfactory only near the region of ¢ close to —1 and 8 close to 1.

The only SPC chart used was the Shewhart but it is well known that
this chart is not sensitive to small mean shifts. The power of small-shift
detection could be improved by replacing the Bonferroni’s approach with a
more advanced multivariate SPC scheme, such as the multivariate CUSUM or
EWMA.

The use of Bonferroni’s approach is not recommended for pure P

(Proportional) processes because then, the manipulated inputs are
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proportional to the controlled outputs, so the simultaneous monitoring of both
inputs and outputs is redundant and the corresponding type I error is wrongly
designed by Bonferroni’s inequality. Thus, when ¢ is close to zero and
where the best choices of k; and kp are close to 0, the joint monitoring
approach should be avoided.

Furthermore, Tsung and Shi (1999) investigated the AE values of the
PID controller compared to the ones of the MMSE controller as described by
Eq(8-3) and the RE values using Eq(8-4). They showed that the PID
schemes perform well with AE more than 90% for most of the ARMA(1,1)
parameter space. Only for ¢ close to —1 was the AE not as good, but the RE

was still much greater than 1.

8-5.1.2 Performance under ARIMA(1,1,1) disturbance models

In order to investigate the efficiency of the PI controller under the
ARIMA(1,1,1) disturbance model, Tsung, Wu and Nair (1998) proved
initially that, for a first-order nonstationary disturbance model, the stability

region for PI schemes is:

{(kp, k1) < kp >-1, k; > 0, k, + ki/2<(1+8)/(1- )} (8-17)

Unlike the stationary case, now k; cannot be 0, so the I mode of action
is necessary when nonstationarity is present.

It has been analytically proved that the MMSE schemes coincide with I
control schemes under the ARIMA(1,1,1) disturbance model with ¢=0, that is,
the IMA(1,1). According to Tsung, Wu and Nair (1998), when 6=0, there
exists the symmetry property AE(¢, ) = AE(-¢, -8). Furthermore, there is
again high efficiency of the PI controller along the line ¢ = 8, because this
time D, reduces to a random walk for which the I control is optimal. The I
control is also optimal for IMA(1,1) models, as we have seen, and that is why
the performance near the line ¢=0 is very good.

Comparing the I with the PI control, it was shown that the AE values
increase substantially under the second scheme and, thus, there is

considerable gaining using the PI over the I control schemes. An awkward
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conclusion was that optimal I control with ARIMA(1,1,1) disturbance models
behaves the same way as optimal P control under ARMA(1,1) models.

When 6>0, the pure I scheme is no longer optimal for an IMA(1,1)
disturbance. It was proven by Tsung, Wu and Nair (1998) that the MMSE
scheme in this case is a PI scheme with k,= (1- 8)6/(1- 6) and k; = 1- 4. Thus,
the P mode of action is necessary even for IMA(1,1) models when there is
process inertia, and the magnitude of the P mode increases with 4. It has been
also proven by the same authors that under the ARIMA(1,1,1) disturbance
with ¢ = 6, the MMSE sheme is a PI scheme with k,= 6/(1- 6) and k; = (1-
6)/(1- 8). Consequently, the PI schemes have high efficiency in the regions
where ¢ is close to 0, 0, or 6. This explains why the region of high efficiency
gets bigger as 6 gets larger.

As a conclusion, the authors showed that PI controllers can have
approximately the same control performance as the MMSE controllers for

reducing process variation.

8-5.2 Relative performance under different types of shifts

In section 8-5.1 our concern was to find the controller that best attracts
the data towards their target value. The efficiency of a controller is, however,
also assessed according to its ability to detect the special causes, that is, to
not fully compensate for the deviations from target, so that if a sudden shift
takes place, there are chances to find it. Jiang and Tsui (2002) examined the
effectiveness of the MMSE and the PI controller when the special cause that
results in a mean shift in the process takes the form of two types: a step shift
and a drift. If the mean shifts affect the process, starting from example from
the 101° observation onwards, then the step shift is a constant shift of the

form:

_]0,£<101 9
M7 2101 (8-18)

while the drift is a linear trend shift of the form:
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[0, <101 o0
H Y =100y 2 101

8-5.2.1 Performance when a step change has occurred

Jiang and Tsui (2002) used an example in which a step shift was
interfered into the process, and showed that the MMSE controller was able to
compensate for most of the shift and adjusted the mean shift pattern to a small
constant both when the output and the control action were monitored. The
control chart, though, detected the shift less quickly than the output chart.
Since the controller has quickly compensated for the shift, there was a spike
at the beginning of the shift but the data quickly returned to their original
pattern in both the output and control action cases. The performance can be
explained by the SN ratios: since the transient ratio of the output chart is
higher than that of the control chart, the output chart has a higher probability
to signal the shift in the first few runs than the control action chart.

Although the MMSE and PI controllers have approximately the same
performance in terms of reducing the variation of the autocorrelated
processes, as it was proven by Tsung, Wu and Nair (1998), they behave quite
differently when a mean shift occurs. The PI controller completely
compensated for the step shift and adjusted the mean shift pattern to zero for
the output chart and to a positive constant for the control action chart. This is
the result of the robustness property of the PI controller in the process output,
which makes it difficult to detect the unanticipated shift. More explicitly,
since the steady-state ratio of the control action is higher under the PI control
than under the MMSE control, the control action chart under the PI scheme is
expected to signal earlier than under the MMSE scheme.

A more thorough study of the same authors showed that monitoring
the output gives a smaller ARL than monitoring the control action for the
MMSE controller, and vice versa for the PI controller. Furthermore,
because under the PI controller, the steady-state ratio is 0, the step shift is
harder to detect from the PI controlled output than from the MMSE output,

unless it is detected at once.
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8-5.2.2 Performance when a drift has occurred

When Jiang and Tsui (2002) introduced a drift in the process, they
found that the MMSE controller was unable to compensate for the upward
linear trend and it resulted in a linear shift pattern both in the output and the
control action with a slower upward trend in the first than in the second. This
trend consequently led to out-of-control signals in the Shewhart chart which
were triggered more quickly in the control action chart than in the output
chart. This fact is explained as follows: because the steady-state ratio of both
charts is infinity, obviously, the mean shift is easily detected in both charts,
with a small advantage for the control chart.

On the contrary, the PI controller significantly compensated for the
linear upward trend and adjusted the mean shift to a small constant above zero
for the output chart, confirming the robustness property of the PI controller.
For the control action, the mean shift pattern behaved similarly to the original
linear upward shift. In terms of the SN ratio, the small value of the steady-
state ratio for the output chart makes it difficult to detect the mean, though
the value of infinity for the same ratio of the control action implies that the
mean shift can be detected. Therefore, control actions are a better data

stream to be monitored when the PI controller is used.

8-6 Robustness of the ASPC scheme

Luceno (1998) studied the performance of the ASPC mode when the
process model is stationary (more specifically, when the disturbance follows
an ARMA(1,1) model) but it is misspecified as being the nonstationary
process IMA(1,1), as well as the inverse case. He proved that, in the context
of feedback control, if the process is affected by stationary disturbances, then
by assuming that these disturbances are nonstationary, one loses little
efficiency. In contrast, if the process is inflated by nonstationary
disturbances, then assuming stationary disturbances, the adjustments made
will be quite inefficient. That is why, it is better to apply a nonstationary
model than a stationary one whenever their ability to model the disturbance

term is not well distinguished.
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8-6.1 Controlling an ARMA disturbance with IMA forecasts

Assuming that the system is responsive, that is, the full effect of an
adjustment u, —u,.; made at time t is realized at the output within the next unit
interval, suppose that the true disturbance is generated by the ARMA(1,1)
model given by Eq(3-12), that is, D; = ¢D¢.; + €, -0¢..;. but compensation for
this disturbance is made using the IMA model shown in Eq(3-18), i.e., so that

the forecast [), is b,- AD., + @ ﬁ,_l, where 8 = 1-\ and the MMSE control

~

consistent with the IMA model is applied. If we substitute these D, and D,

values to the equation e, = Dy - D, that gives the errors of the output which

coincide with the disturbance errors, Luceno (1998) showed that we are led

to:

(1-¢B)(1-8 B)e, = (1-B)(1-6B)e, (8-20)

The errors at the output are not a white-sequence as they should be if
exact MMSE control had been used, but they are generated by a stationary
and noninvertible ARMA(2,2) model, as shown by Eq(8-20). The resulting
variance of e, is then larger than ¢% but still finite. Thus, the output error may
not be independent and identically distributed, but it continues at least to be

stationary.

8-6.2 Controlling an IMA disturbance with ARMA forecasts

If the disturbance is generated by an IMA model of the form D, = Dy,

+ €, - f¢€,.1, but compensation is made using an ARMA(1,1) model, so that the
forecast ﬁ, is computed as 15, = @D + € -56[-1 with A = ¢ - 5, and the

MMSE policy is used, then the errors of the output e, = D, - ﬁ, are derived as:

(1-B)(1-0 B)e, = (1-3 B)(1-6B) ¢, (8-21)

which is a nonstationary ARIMA(1,1,2) model. Therefore, the variance of e,

tends to infinity when t increases and this policy is, hence, untenable.
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The inadequacy of the policy based on the ARMA(1,1) model is not

immediately apparent in practice due to the starting conditions Dy = 0
and ﬁo =(0. Thus, the output errors of the process will be normally close to O at

first, but, after a number of observations has passed, they will start to be
positive or negative and this trend will be more and more evident. The trouble
in this case is not that the stationary disturbance model is wrong because no
model can be expected to be perfectly true in practice, but the trouble is that
it is not robust. Thus, it is dangerous to use a stationary disturbance model to
deal with a process that may be nonstationary, though the reverse is rather

safe.

The explanation for this is that, even though ﬁ, = oD + ¢ —5(—3-1
provides the MMSE forecast of D, under both the ARMA(1,1) and the
IMA(1,1) models, in the first case )\+§=¢7<1, but in the second )\+§=(Z=1.

Therefore, b, is an exponentially weighted moving average (EWMA) of past

data under the IMA model, but it is not an average of past data under the
ARMA model. This small difference between the IMA and ARMA models
yields essential differences in their performance as disturbance models. Note
that, despite of the similarity between the two models expressed by Eq(3-12)
and Eq(3-18), according to which the model of Eq(3-12) could be seen as a
generalization of Eq(3-18), there are profound differences in the two models,
since the first is stationary but the second is not.

A solution to the problem of the inappropriateness of the MMSE
controller when a nonstationary disturbance is considered as stationary is
given by Tsung, Wu and Nair (1998) by simply using the PI controller in the
place of the MMSE. More precisely, they proved mathematically that in the
case where D, is any first-order nonstationary disturbance model, any PI
control scheme applied to D, leads to stationary output e, provided that k; >0,
that is, the I mode of action is active. Thus, a PI scheme that is optimal for a
(wrong) stationary ARMA(1,1) model will still yield stationary output when
the true disturbance is an ARIMA(1,1,1) or an IMA(1,1) as long as k; >0. The
MMSE schemes, on the other hand do not have this robustness property

because we saw that they resulted in a nonstationary model for e, A
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simulation study conducted by the authors confirmed their theoretical
deductions.

In the opposite case in which an ARMA(1,1) disturbance model is
misidentified as an ARIMA(1,1,1) disturbance, Tsung, Wu and Nair (1998)
showed that the PI scheme, as well as the MMSE scheme discussed
previously, also leads to a stationary output e,. Although that both schemes
had comparable performances under this type of model misidentification, the
simulation approach of the authors showed that the variances of the output e,
were often smaller under the PI scheme than under the MMSE scheme.

Therefore, when one takes into account the model uncertainty, the

PI schemes can be more efficient than the corresponding MMSE schemes.

8-7 Performance of the PID chart

In the previous chapter, the PID chart was proposed by Jiang et al.
(2002). The authors did not limit themselves to the presentation of this chart,
but they also used the simulation approach in order to prove its efficiency
compared to other traditional charts. They first compared the PID chart to the
SCC chart for various step shifts in terms of their ARL values under the
ARMA(2,1) disturbance model. They showed that the SCC chart is very good
for detecting large shifts but performs poorly for small to moderate shifts.
The EWMAST (or otherwise the P chart) is better for these cases but its ARLs
are still quite large. The solution is given by the PD chart, which detects
small shifts more quickly than the EWMAST chart, though, at the same time,
the PI chart has comparable performance to the SCC chart for detecting large
shifts. Obviously, the class of PID charts is flexible because the chart
parameters can be tuned to achieve good performance for small or large
shifts. This flexibility is absent from the EWMAST and SCC charts.

Jiang et al. (2002) also conducted a simulation study for uncorrelated
processes, that is, when the disturbance is white noise (i.e., D, = €;). In this
case, it was shown that the P chart with —-1< k, < 0 performs better than the PI
chart (with k;>0). In particular, the Shewhart chart (corresponding to k, = k; =
kp = 0) is the best for detecting large mean shifts and the P chart with a value

of k, = -0.8 is the best for detecting small and moderate shifts. This latter
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observation is consistent with the results of Lucas and Saccucci (1990),
because for the i1id processes, the P chart is equivalent to the EWMA chart
with A=1 +k, = 1-0.8 = 0.2.

Jiang et al. (2002) showed that for an iid process, both capability
indices (Rt and Rs) are higher for the Shewhart chart than for the PID with
k>0, because then Rg =0. Therefore, for iid data, we must focus only to PD
charts, and since the P charts (with k, >0) do not perform well, we consider
only the PD charts with k, < 0. Finally, it was observed by the authors that the
D chart with kp = - 0.1 is the best (and better than the Shewhart) for detecting
large mean shifts, while the PD chart with k, = -0.8 and kp = 0.2 is the best
(and better than the EWMA with A = 0.2) for detecting small shifts. For
detecting both small and large shifts, the ARL of the PD chart depends mainly
on k, (-1<k, < 0), though for fixed k,, the ARL varies slightly as kp changes.
Therefore, if the data are uncorrelated, the P-component of the PID chart
is the most important, the D-component gives a small improvement and
the I-component should not be used.

Concerning autocorrelated processes with the disturbance model being
an ARMAC(1,1), the authors showed that by finding the appropriate parameters
of the PID chart according to their heuristic algorithm, one may achieve to
design both a PID chart that detects small shifts and one that detects large
shifts, with both outperforming the traditional SPC charts. The two PID charts
should be used on the data so that small and large mean shifts are detected.
The PID charts outperform EWMAST and M-M charts, indicating that the D

component is useful in the autocorrelated case.

Robustness of the PID chart to parameter misspecification

Jiang et al. (2002) tried to compare the robustness of the SCC chart
with that of the PID chart by using an ARMA(1,1) disturbance model with
various parameter estimates different from the true ones. We had presented in
Chapter 5 the simulation study of Adams and Tseng (1998), who found that
the SCC chart is not robust when the model parameters are incorrectly
estimated. The PID chart adjusted by Jiang et al. (2002) to detect large shifts
had similar performance with the SCC chart. When the process was close to

being nonstationary, however, the PID chart was proven much more robust
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and this was due to the non-zero I term, which is appropriate for processes
near nonstationarity.

On the other hand, the PID chart designed by the authors to detect
small shifts was proved to be less robust than the SCC chart. This happens
because a control chart that is sensitive to small shifts will also be sensitive to
the estimation errors and, thus, is less robust. In general, it is difficult to
design a control chart that is both sensitive to small shifts and robust to model

misspecification.
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CHAPTER 9

Other types of feedback control

9-1 Introduction

In the previous three chapters a detailed description has been made
concerning the most widely used tools of the feedback control scheme: the
MMSE and the PID controllers. A different identification technique called the
‘closed-loop identification’ is evaluated in this chapter. This technique is
based on directly modeling the closed-loop deviation from target, rather than
attempting to model the controller or the open-loop process, and it is
described in section 9-2. Apart from different methods applied to the two
popular control schemes, a big range of other similar schemes has been
developed, but their complexity or high cost have reduced their application.
Some of them, however, are effective for particular sets of data and that is
why they are mentioned in section 9-3. The final section, 9-4, gives some
information about another feedback scheme mainly used in semiconductor

processes.

9-2 Closed-loop controllers

In the discrete-part manufacturing processes, we saw that the quality
characteristic consists mainly of two parts: the process dynamics usually of
the pure gain type and a noise dynamics, which is an additive disturbance
exhibiting dynamic behavior. The identification techniques for determining
the structure of the underlying stochastic process were relied until now on
open-loop experimentation. However, open-loop identification experiments
may be too costly, particularly if the process exhibits severe drift when left

uncontrolled.
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9-2.1 Definition of the closed-loop controller

It is often desirable to have available an identification technique that
selects a disturbance model while a controller is operating, because in doing
so, cost is reduced even if the controller in use is not optimal in any sense.
With knowledge of the disturbance model affecting a process and with
estimates of model parameters, the controller can be tuned to achieve more
desirable performance. Del Castillo (2002) pursued an identification approach
based on the autocorrelation structure of the closed-loop output provided that
the algebraic form of the controller is known.

The types of disturbances considered by Del Castillo (2002) were all
the particular cases included in a possibly non-invertible IMA(1,1) with drift
process. The drift process is included if in the formula of Eq(3-19),
expressing the IMA(1,1) model with no drift, the value § of the drift is added.
Therefore, the formula of the IMA(1,1) disturbance with a drift is:

Dt=8+Dt-1+€(-0€[.], |0IS 1 (9‘1)

Obviously, when 6 =0, Eq(3-19) is derived. The special cases of the

model of Eq(9-1) are summarized in Table 9-1.

Table 9-1: Types of Disturbance included in the model of Eq(9-1)

6=0 60
=0 Random walk (RW) RW with drift (RWD)
0<]8]<1 IMA(1,1) IMA(1,1) with drift
6=1 White noise Deterministic trend+noise (DT)

9-2.2 Closed-loop output description: the PI controller

For a PI controller with the form of Eq(6-8), Del Castillo (2002)
showed that the controlled deviations from target for a process with any of the
disturbances originating from Eq(9-1) follow an ARMA(2,1) process of the

form:
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(1-¢B — ¢B?) (e —pe) = (1-6B)e, where
¢ = 1+gk, and ¢, = gk; with g, k, and k; being the parameters denoted in
Chapter 6.
The mean of the deviations from target is pe = 6/ (1- ¢1- ¢b2) (9-2)

Stability is achieved if |¢,| < 1, g(ki — kp) < 2 and g(k; + kp) <2. Del
Castillo showed that the model of Eq(9-2) reduces to an ARMA(1,1) process
if a pure integral (I) controller, such as the EWMA controller is used. He also

proved that the mean square deviation (MSD) of the output is given by:

MSD(e,) = Var(e) + pe’,
where vy = Var(e;) is obtained from the variance of an ARMA(2,1) process
(Box et al. 1994):
Yo/ 0={-$16 - P1¢0+[1- 6(r — O)](1-92)}/ {1 — b2 — B1* — D1 "¢ — D'(1- o)},
while the variance of the adjustments is:
Var(u, — ue.1) = (ko2 + ki’)yo + 2kpki 11, with
1= (110 - 0" 6) / (1- ¢2) (9-3)

Given the derived expressions for Var(u; — u.;) and MSD(e;), Del

Castillo followed the Box and Luceno (1997) approach and solved :

min J = MSD(et)/oé2 + pVar(u; — ut.l)/ae2 subject to
Igki| <1, g(ky — kp) <2 and g(k; + kp) <2 (9-4)

Del Castillo provided several solutions to the model for the cases p =0
and p = 1. When p = 0, he found that the sign of the drift parameter (6) does
not affect the solutions. If 6 = 0 and 6 = 1, the model of Eq(9-1) becomes the
Shewhart’s model for which no adjustment is necessary. In general, larger
values of (kp, ki) are required to minimize MSD for larger drifts. In the case
of p = 1, he showed that larger values of g result in better control. In addition,
the larger the drift parameter, the larger the coefficients (k,, ki) should be,
with highest values for the case of a random walk disturbance (6=0).

The study of Del Castillo (2002) proved that neglecting the drift to

determine the PI controller parameters can result in large deviations from
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optimality, with respect to both MSD(e;) and Var(u, — u,.;), particularly when
a highly constrained solution is sought (i.e., when a large value of p is used).

In conclusion, PI controllers are quite robust with respect to many
different disturbances and dynamics, as it has been discussed in Chapter 8§,
but there are limits to such robustness: a drift in the disturbance will require a
different treatment from the case when there is no drift. If there is drift, the PI
controller settings of Box and Luceno (1997) provide minimum variance
control but not minimum MSE control, due to an offset for which the PI
controller is unable to compensate. It is true, however, that if a good estimate
of the drift is available from previous open-loop experience with the process,
then feedforward control can compensate for the remaining variability and
then the Box and Luceno settings will be optimal.

Similarly to the PI controller, a closed-loop identification may also be
used in the case where the MMSE controller is judged as the appropriate

scheme.

9-3 Other control schemes

The brief presentation of other control methods is done via a
polymerization example provided by Capilla et al. (1999). The example helps
to better comprehend the need for using other control methods if the standard

ones do not give satisfactory results.

9-3.1 Process description of an application

According to the polymerization process initiated by Capilla et al.
(1999), large volumes of a polymer of a certain grade is produced and the key
quality characteristic is polymer viscosity, measured by melt index (MI). The
objective is to minimize MI variation around a target level of 0.8 viscocity
units. Adjustments to viscosity can be made by varying the temperature of the
reactor (T), which i1s a ready compensatory variable and whose changes
represent negligible cost when compared to off-target viscosity cost.

The overview of the polymerization process and the consistent cross

correlation function (CCF) of the series, which shows the dynamics of the
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relationship between MI and T, suggest a tentative model for the measured

viscosity variation VMI; at time t:

VMIt =W VT[-] + WZVTt-Z + € - 061-] (9'5)

where VT, is the temperature adjustment at t-1 and ¢, ~ independent N(O,
0.%). In other words, the model dynamics is a second-order autoregressive
moving average discrete transfer function model with IMA(1,1) disturbance.
After estimating the parameters of the model in Eq(9-5), it was deduced that
the parameter # is not significant and, thus, the term f¢,., was dropped out

from the model.

9-3.2 Developing different control schemes

1) The MMSE controller

In the petrochemical process example, the cost of being off target is
the overriding concern and it was supposed by Capilla et al. that it is a
quadratic function of the viscosity deviations from the target. Therefore,
control algorithms can be designed to minimize the mean squared deviation of
viscocity from its target value. The MMSE controller optimizes the

performance index as:

min{E[MIu; - Target]*}= min{[02 (ML) + (bias)’] (9-6)

Although such a strategy seems to be appealing, the MMSE controller
may not be ideal in practice. It may have undesirable properties, such as
requiring excessive control action or having performance and stability

characteristics that are sensitive to the accuracy of the process model.

2) The CMYV controller
Modified control schemes can sometimes be employed in which
reduced control action can be achieved at a cost of small increases in the

mean squared error (MSE) at the output. This can be accomplished by
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optimizing a quadratic performance index involving the deviation of the
output from its target and the deviation of the input from its steady state.

When the disturbance model exhibits non-stationary behavior,
however, as is our case, it is impossible to stabilize the variance of the output
from target when the manipulated variable is constrained to its steady-state
value. The temperature must be allowed to float with no steady-state value.
This is accomplished by constraining the change in control action VT, =T, -
T..1. In other words, in this modified scheme, the MSE of the output will be
minimized subject to a constraint on the variance of the temperature
adjustments VT,

This Constrained Minimum Variance (CMYV) controller optimizes

the following quadratic objective function:

min E{(Ml, — Target)* + r(V T))*} (9-7)

where the constraint parameter r is like a Lagrangian multiplier.

3) The CC controller

An alternative and much simpler approach to constraining the
variations in the manipulated variable was proposed by Clarke and Hasting-
James (1971). Instead of minimizing Eq(9-7), they treated the simpler

problem of minimizing an instantaneous performance index:

min {(MI w1/ — Target)® + r(V T,)%} (9-8)

where MI .|, is the minimum variance forecast of MI+; made at time t. This
criterion usually results in controllers that, for the same constraint on the
variance of VT, have only slightly larger variance for the output than the
CMV controllers. Added to it, this Clarke’s constrained (CC) controller is
much more easy to derive than the CMV one. It might be called a ‘short-
sighted’ or ‘one-step optimal controller’ because it does not take into
consideration the effect that the present adjustment (V T,) will have on future

outputs at lead times greater than the process time-delay.
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9-3.3 Evaluation of the control schemes on the application

Capilla et al. (1999) used closed-loop operation, so they were
concentrated to the output error after applying the control action. Under the
CC controller, which was judged as the most appropriate to use in this
example, the resulting output error (e;) of the adjusted process has been
proven by Capilla et al. to follow an autoregressive moving average

ARMA(1,1) process:

(1-¢B)e, = (1-6B)e,, where
¢ = [-wy —(t/w1)] / [w + (t/wy)] (9-9)
6 =-wa/[w+ (x/w)]

This ARMA(1,1) process is both stationary and invertible if r > w;(w,
— wj). The authors showed that, as the constraint parameter r increases, the
output-error variance increases and the variance of the temperature
adjustment decreases.

The differences between the CMV and the CC controllers were found
by the authors to be:

(1) The CMYV controller was stable for all values of the constraining
parameter r. Even if r = 0, in spite of the system being nonminimum
phase, one obtains the controller that has minimum variance among all
controllers with finite variance forV T,.

(2) For increasing values of r (r = 0), the variance of the output
increased monotonically and the variance of the adjustments decreased
moﬁotonically in the CMV controller.

If r = 0, minimizing Eq(9-8) is equivalent to minimizing the mean
squared deviation of viscosity from its target as shown in Eq(9-6). The
control action at time t that produces the MMSE of viscosity around its target
is obtained by setting T;, so the one-step-ahead minimum-variance forecast of
MI at time t, MI w1/ o equals the target value. Thus, the algorithm of the
MMSE controller is obtained as a special case of the CC controller for r = 0.

Accordingly, the two-step-ahead minimum variance forecast of MI taken at
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time t, MI .. 1s also a special case of the CC controller for r = w;w; and so

forth.

9-3.4 Performance of the control schemes

Capilla et al. (1999) used the MMSE controller, the CC with r = 0.2
and the CC with r = 0.5 for the polymerization data, and compared their
performance with the actual control done by process operators (Manual) and
the simulated situation in which no EPC would have resulted from setting T
fixed (NO EPC). The performance measurement was the MSE of the MI under
every control strategy and it is shown in Figure 9-1. Figure 9-1 implies that
operators managed to reduce viscosity deviations from target by 71% from

what would have resulted had temperature been fixed (NO EPC).

20 —

15 —

Sum of Control action

o o [ ] L
T L] L]
CGC(0.02) COC(0.05) MANUAL MMSE NO EFC

MSE

Figure 9-1: MSE of the output MI under different control strategies.

The performance of the controllers was also studied under different
types of assignable causes having interfered into the process. These were: (1)
MI measurement error in the laboratory, (ii) temperature sensor calibration
failure, (1ii) a pulse shift (outlier) in the sequence {¢,}, and (iv) a sustained
shift (permanent change). It was proven that the EPC rules gave superior
performance to no-control for every assignable cause, even when control
actions were based on wrong information. However, the controllers were
affected by the assignable causes. The combination of EPC with SPC tools

improved the ability to detect the assignable causes in all cases.
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9-3.5 Robustness of the control schemes

Capilla et al. (1999) also showed that, as the constraining parameter r
of the CC controller increases, the stability region of the controller becomes
wider and, hence, the stability robustness also increases. Even if moderate
mismatch errors in the transfer function model parameters exist, the closed-
loop systems studied were noticeable better strategies than the no-control
systems.

In conclusion, the study of Capilla et al. (1999) detected the superiority
of the CC controller compared to the MMSE for the polymerization process
both in performance and robustness. Nevertheless, although this controller
compensates for a moderate change in the transfer-function parameters to a
large degree, the MSE of the output may increase. If the change still remains
undetected, the amount of product out of specifications, and, therefore, the

associated cost, can be considerably high.

9-4 The Monitor Wafer Controller (MWC)

A Monitor Wafer Controller (MWC) is a Statistical Quality Control
based controller (that is, it takes corrective actions only after obtaining a
statistically significant indication that the current model no longer represents
the process behavior). This type of controller differentiates from the
continuous controllers that assume a drift in the process outputs between

consecutive runs and correct for such drifts using a drift model.

9-4.1 General remarks

The MWC is important in semiconductor processes. It uses periodic
measurements made on selected product wafers to control the process. The
monitor wafer measurements do not require in-situ sensors and can be used on
existing equipment without any equipment modifications. Furthermore, a
MWC does not require frequent measurements of the quality characteristic
being controlled. The goal of the monitor wafer based control strategy is to

determine whether the process state has been changed from its previous
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estimate based on the monitor wafers, and if so, determine a set of changes to
the equipment settings to generate a new recipe and bring the product quality
characteristics on target. The process state is represented by the composite
process models.

The MWC has been developped by Mozumder et al. (1994) and its
model comprises an intristic and an extrinsic part. Together they form the
composite model that represents the process state. The intristic model
represents the initial state of the process. The extrinsic model transforms the
inputs and outputs of the intrinsic model. Based on the monitor wafer
measurements and statistical quality control, it is determined whether the
state of the process is significantly different from that represented by the
composite models. If the process state is different, only the extrinsic models
are adapted to capture the new process state.

The adapted composite models are used for adjusting the process
recipe. If the adjusted recipe results in acceptable product, it is used for future
wafers, otherwise the process state is reestimated. The schematic of the
controller is shown in Figure 9-2 as it has been presented by Mozumder et al.
(1994). A more explicit description of the controller is followed, though more

details can be found in Mozumder et al. (1994).

9-4.2 Model tuning

Estimating the state of the process and updating the composite models
to adapt to the new state, based on the measurements of the product
parameters from monitor wafers, is termed model tuning. A MWC employs a
layered model and a multivariate tuning methodology [i.e., it is not a single-
input single-output (SISO) controller, but a multiple-input multiple-output
(MIMO) system] that enables independence of the intristic model form.

To achieve independence from the form of the intristic model, the
differences in the composite model predictions and the observations are
attributed to a change in the extrinsic model. The transformations of the
extrinsic model can either take the form of a gain (multiplicative factor) or

offset (additive factor) applied to each of the controllable settings.
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Figure 9-2: Schematic of monitor based controller.

1) Model tuning algorithm: Let y = [y), ..., Ym] represent the

outputs and x = [x, ...,Xx,] represent the inputs to the process. If y=1[7p,, ...,

¥, ] are the values predicted by the composite process models, the intristic
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process models are represented as y= F(x, ), where F is the functional

form of the intristic model relating x to y, and g represents the coefficients
operating on X.

Let G and o be a diagonal matrix of gains and a vector of offsets and
inputs, respectively, and 6 represent a constant ‘bias’ to the model (that is, the
offset associated with y). The tuning procedure aims to determine the values
G, o and 6 such that the aggregate difference between the actual data from the

monitor wafers and the corresponding predictions is minimized. The resulting

tuned model can then be estimated as:

J=F(Gx+o), p)+3d (9-10)

Figure 9-3 shows a schematic of the composite process and equipment
model (Mozumder et al. ,1994). The model consists of 3 layers: the center
block (F) representing the intristic component of the model, and the two outer
blocks being the extrinsic components at the input (Gx + o), and output (6),
respectively.

The tuning methodology aims at tuning the three-layered model by
only calibrating the extrinsic models (Gx + o, 6) in Figure 9-3, leaving the
intristic model unchanged. Since the tuning does not alter the functional form
(F) or the coefficients g, the tuning procedure is independent of the intristic
model form. The effectiveness of the controller will depend on the accuracy

of the intristic model itself and not on the intristic model form.

Yi ) . ' > X1
Gx+o F((Gx+0),$) +6

Y2 —p EE— —» —» X2

Yo— —— > —> X,

Figure 9-3: Schematic of model tuner.

If the measurements made on s monitor wafers are represented as y',
..., ¥* and they correspond to the input conditions x', ..., x°, then the tuning
problem can be transformed into the following weighted least square

minimization problem:
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) 1 3 N ; .
mind =35/ -3/ . where §/=F((GX +0), p), i.c..§=0, and (5-11a)

5
i=l S; j=1

rrl(s_in—lz—Z(y,:/ ~$/), where $/=F(G'X) + 0"), ) + 6 (9-11b)

1=l

with G” and o" being the optimal values of G and o, derived from Eq(9-11a).
The variables s;® represent the estimates of variances corresponding to the

prediction errors associated with p,. They serve as normalizing factors for the

optimization so that the influence of errors for different parameters are
weighted by their model prediction error variances.
The new state of the process can be presented by the tuned composite

models:

7=F(G'x+0"), p) +&* (9-12)

where 6* is the optimal value of 6 derived from Eq((9-11b).

2) Selection of tuning data: Local Experiment Design. The number
of parameters measured on the monitor wafers (which usually correspond to
the parameters to be controlled in the process) is often smaller than the
number of input parameters to be tuned. Moreover, output parameters are
often correlated, making the effective number of independent variables even
smaller. Consequently, the degrees of freedom in the output may be less than
the number of parameters to be tuned.

To avoid this problem local designed experiments are conducted to get
sufficient observations for tuning the extrinsic models. In addition to using
the measurements from the current settings, additional wafers are processed at
settings which are different from the current settings. A rule of thumb is that
the degrees of freedom from the output measurements should be twice or
more than the number of input parameters to be fitted.

More details concerning the experiment design for tuning the controller

can be found in Mozumder et al. (1994).
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9-4.3 Stepwise Optimization

Once the extrinsic models are tuned, new equipment settings need to be
determined to bring the product quality parameters to target. The new recipe
is found by minimizing the difference between the model prediction from the
tuned composite model and the target output values. Both input and output
constraints are used in the optimization: the input constraints being the region
of acceptability for the equipment settings, and the output constraints being
the specification limits on the output parameters. The optimization can be

formulated as:

min i—lz‘[% -, ]2, such that
* i=1 W,‘

Yy <F(G'x+0), p) +6* <y"
zM <H(x) < z" (9-13)

xF<x <xt

where y", y" are the low and high specification limits on the outputs §,

respectively, H is any transformation on the inputs, z“ and z" are the low and
high specification limits on the variables defined by the function H,
respectively, x- and x" are the low and high limits on the inputs x,
respectively, y;~ is the target output value corresponding to y; and w; is the
weighting corresponding to the ith output parameter y;.

It is usually desirable that the new optimal settings be close to the
current settings, since the models are tuned using local data and it may be
possible that all parameters will not have to be changed to get the process
back on target. Therefore, the starting point for the optimization can be set to
the current settings or to a predefined nominal setting (usually the optimal
point derived from the untuned process).

After the controller has been optimized, the SPC charts should be

applied to the adjusted process in order to detect special causes in the process.
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CHAPTER 10

Conclusion

The manipulation of production processes having a correlation
structure of some type was the question of interest in this dissertation. The
most common area of the Statistical Quality Control (SQC) field, called the
Statistical Process Control (SPC) area, uses control charts to assess if the
process is in statistical control or if external causes operating in the process
result in extreme values for the quality characteristic of interest.

If the process is completely random a variety of control charts is used
in practice. One type is the Shewhart chart in which the actual observations of
the characteristic are plotted and, thus, it is used to detect eventual large
shifts in the mean of the process. On the other hand, in the EWMA and
CUSUM charts, the accumulated observations are the ones plotted and that is
why these charts are more effective whenever small shifts in the process
should be found quickly. A more recent chart trying to reveal possible cycles
in the process is the Spectral chart. These three types of charts could be all
applied separately to the process, if the most common process shifts are to be
detected.

However, the above charts are not valid in the case of autocorrelated
data, because then the distinction between inherent and exterior causes is
difficult to be made. Many attempts have been tried to handle this situation.

One approach is to use traditional control charts with modified control
limits that take into account the autocorrelation structure of the data, as is the
modified-Shewhart and the EWMAST control charts. A second approach is to
apply a time series model and subtract the predicted values from the observed
ones. The error terms derived in this way are almost uncorrelated (the best the
prediction is, the more uncorrelated the errors are) and the application of the

standard control charts is, therefore, possible. A third possibility is to use the
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EWMA prediction, so that forecasted values are derived without having to
apply a model to the data.

At the same time with the SPC tools, the EPC method for
autocorrelated processes has been developed in the parts manufacturing
industry. Though the aim of the EPC method is, similarly, to reduce
variability, this 1s achieved by keeping the process close to a target value, so
that its inherent structure does not result in excessive upward or downward
trends.

More specifically, the EPC model consists of three parts: the
disturbance error term that accounts for the correlation structure of the
process and, therefore, takes the form of a time series model, a manipulated
variable having a well-known relationship with the measured characteristic,
so that adjustments of this variable bring the process close to desired values,
and, finally, the random error term.

Once the two first terms have been quantified, the deviation of the
random error term from the observed data becomes the output variable of the
process. Because the correlation structure and any input variables effecting
the process have been considered in the model, the output variable does not
fluctuate uncontrolled, but stays close to a specified value. Two popular EPC
techniques are the Proportional Integral Derivative (PID) and the Minimum
Mean Square Error (MMSE) controllers. The first ones try to cancel out the
disturbance term by adjusting the manipulated variable in terms of the output
variable, while the MMSE control scheme has the objective of minimizing the
output deviation from its target value.

After the process has been centered to a target, then standard SPC
control charts could be applied to detect any special causes interfering into
the data. This combination of the EPC/SPC techniques, known as the
Automatic  Statistical Process Control (ASPC) approach, 1is highly
recommended for even more reliable results. The drawback of the ASPC
method is its complexity from estimating many parameters. Estimation is the
only way, though, to get an idea about the inherent structure of the process.

The best solution would obviously be to avoid correlation by sampling the
observations less frequently. However, the nature of the process itself makes

sometimes the dependency inevitable.
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Table A-1: Factors for constructing Variables Control Charts

Chart for Averages Chart for Standard Deviations Chart for Ranges
Factors for Control Limits Factors for Factors for Control Limits Factors for Factors for Control Limits
CenterLine CenterLine

n A A, A, Ca B, B, B; B d, d, D, D, D, D,

2 2.121 1.880 2.659 0.7979 0 3267 |0 2.606 1.128 0.853 0 3.686 0 3.267
3 1.732 1.023 1.954 0.8862 0 2568 |0 2.276 1.693 0.888 0 4.358 0 2.575
4 1.500 0.729 1.628 09213 {0 2266 |0 2.088 2.059 0.880 0 4.698 0 2.282
5 1.342 0.577 1.427 0.9400 0 2089 |0 1.964 2.326 0.864 0 4918 0 2.115
6 1.225 0.483 1.287 0.9515 0.030 [1.970 | 0.029 1.874 2.534 0.848 0 5.078 0 2.004
7 1.134 0.419 1.182 0.9594 0.118 1.882 | 0.113 1.806 2.704 0.833 0.204 5.204 0.076 1.924
8 1.061 0.373 1.099 0.9650 0.185 1.815 [0.179 1.751 2.847 0.820 0.388 5.306 0.136 1.864
9 1.000 0.337 1.032 0.9693 0.239 1.761 | 0.232 1.707 [ 2970 | 0.808 0.547 5.393 0.184 1.816
10 0.949 0.308 0.975 09727 | 0.284 1.716 | 0.276 1.669 3.078 0.797 0.687 5.469 0.223 1.777
11 0.905 0.285 0.927 0.9754 0.321 1679 |0.313 1.637 3.173 0.787 0.811 5.535 0.256 1.744
12 0.866 0.266 0.886 0.9776 0.354 | 1.646 |0.346 1.610 3.258 0.778 0.922 5.594 0.283 1.717
13 0.832 0.249 0.850 0.9794 0.382 1.618 | 0.374 1.585 3.336 0.770 1.025 5.647 0.307 1.693
14 0.802 0.235 0.817 0.9810 0.406 1.594 | 0.399 1.563 3.407 0.763 1.118 5.696 0.328 1.672
15 0.775 0.223 0.789 0.9823 0.428 1.572 | 0.421 1.544 3.472 0.756 1203 [5741  [0347 1653
16 0.750 0.212 0.763 0.9835 0.448 1.552 | 0.440 1.526 3.532 0.750 1.282 5.782 0.363 1.637
17 0.728 0.203 0.739 0.9845 0.466 1.534 | 0.458 1.511 | 3.588 0.744 1.356 5.820 0.378 1.622
18 0.707 0.194 0.718 0.9854 0.482 1.518 | 0.475 1.496 3.640 0.739 1.424 5.856 0.391 1.608
19 0.688 0.187 0.698 0.9862 | 0.497 1.503 | 0.490 1.483 3.689 0.734 1.487 5.891 0.403 1.597
20 0.671 0.180 0.680 0.9869 0.510 | 1.490 | 0.504 1.470 3.735 0.729 1.549 5.921 0.415 1.585
21 0.655 0.173 0.663 0.9876 0.523 1477 | 0.516 1.459 3.778 0.724 1.605 5.951 0.425 1.575
22 0.640 0.167 0.647 0.9882 0.534 1.466 | 0.528 1.448 3.819 0.720 1.659 5.979 0.434 1.566
23 0.626 0.162 0.633 0.9887 0.545 1.455 | 0.539 1.438 3.858 0.716 1.710 6.006 0.443 1.557
24 0.612 0.157 0.619 0.9892 0.555 1.445 | 0.549 1.429 3.895 0.712 1.759 6.031 0.451 1.548
25 0.600 0.153 0.606 0.9896 0.565 1435 [0.559 1.420 3.391 0.708 1.806 6.056 0.459 1.541
Forn > 25:

A=3/n, A= 3can ], com 4(n-1)(40-3), By = 1- [3car/2( — 1) |, Ba = 14[3/ca J2( = 1) ], Bs = ¢4~ [3//2(1 = 1) ], Bs = c+[3/4/2(n — 1) ]
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Table A-2: ARL Performance of the CUSUM chart with k= 0.5 and h=4,5

Shift in the Mean (multiple of o) h= 4 h=35
0 168 465
0.25 74.2 139
0.50 26.6 38.0
0.75 13.3 17.0
1.00 8.38 10.4
1.50 4.75 5.75
2.00 3.34 4.01
2.50 2.62 3.11
3.00 2.19 2.57
4.00 1.71 2.01

Table A-3: Values of k and the corresponding values of h that give ARLgy = 370 for the two-sided CUSUM chart

=~

0.25

0.5

0.75

1.0

1.25

1.5

8.01

4.77

3.34

2.52

1.99

1.61
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Table A-4: Average Run Lengths for several EWMA control schemes

Shift in Mean | L =3.054 L=2998 | L=2962 | L=2814 | L=2615
(multiple of ¢) A=0.40 A=0.25 A=0.20 A=0.10 A=0.05
0 500 500 500 500 500
0.25 224 170 150 106 84.1
0.50 71.2 48.2 41.8 31.3 28.8
0.75 28.4 20.1 18.2 15.9 16.4
1.00 14.3 11.1 10.5 10.3 11.4
1.50 5.9 5.5 5.5 6.1 7.1
2.00 3.5 3.6 3.7 4.4 52
2.5 2.5 2.7 2.9 34 4.2
3.00 2.0 2.3 2.4 2.9 3.5
4.00 1.4 1.7 1.9 2.2 2.7
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Table A-5: ARL’s of EWMAST chart with various A applied to AR(1) processes

A
¢ Shift 0.05 0.1 0.2 0.3 0.4
0 1,567.42 | 994.81 664.58 579.76 477.42
0.5 56.94 61.47 74.15 88.99 103.00
0.25 1 19.37 16.78 17.47 19.05 21.85
2 7.69 6.13 5.02 4.59 4.57
3 4.96 3.79 2.93 2.56 2.35
0 1,902.41 | 1,171.41 | 829.46 703.96 586.63
0.5 110.60 123.63 147.31 160.60 164.94
0.50 1 30.74 28.78 31.94 26.23 30.32
2 10.90 8.85 7.49 10.90 9.70
3 6.65 5.13 3.93 3.36 3.06
0 2,454.73 | 1,467.07 | 1,135.18 | 957.05 845.77
0.5 296.53 330.18 333.84 321.46 308.40
0.75 1 67.39 72.88 81.97 87.25 87.42
2 19.15 16.12 14.92 15.05 14.17
3 10.41 8.19 6.32 5.48 4.97
0 4,014.82 |3,357.63 |2,653.05 |2,295.66 |2,060.27
0.5 1,846.89 | 1,664.52 |1,376.44 |1,215.05 |1,076.98
0.95 1 487.12 497.92 446.26 396.32 374.82
2 83.47 81.59 74.14 66.03 62.01
3 29.20 22.99 18.82 16.29 14.57
0 1,178.36 | 764.98 497.10 422.01 388.95
0.5 24.26 22.57 25.17 31.36 40.60
-0.25 1 10.02 7.83 7.06 7.56 8.44
2 4.52 3.57 2.90 2.66 2.59
3 3.08 2.45 1.97 1.73 1.61
0 1,031.92 | 641.37 471.58 389.41 380.35
0.5 16.00 13.86 14.85 19.19 25.44
-0.50 1 7.20 5.60 4.93 5.09 5.68
2 3.49 2.78 2.31 2.10 2.07
3 2.44 1.95 1.62 1.45 1.38
0 849.48 550.23 438.21 403.16 407.28
0.5 9.68 8.16 8.31 11.19 16.51
-0.75 1 4.79 3.75 3.35 3.49 3.86
2 2.448 2.06 1.77 1.72 1.74
3 1.81 1.53 1.28 1.20 1.18
0 1,284.28 | 727.05 760.63 834.69 900.04
0.5 5.08 4.43 5.02 7.60 18.32
-0.95 1 2.81 242 2.39 2.54 2.85
2 1.65 1.44 1.40 1.42 1.48
3 1.15 1.04 1.24 1.03 1.05
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Table A-6: Average Run Lengths for CUSUM charts in AR(1) processes using
alternative values of K

Shifi 6
é K H 0 0.5 1 2
0.050 17.75 | 739.99 | 39.62 19.44 9.73
0.125 1211 | 73997 |31.88 14.59 7.09
0 0.250 8.02 |740.02 |28.83 11.42 5.22
0.375 6.00 |739.96 |30.66 10.24 435
0.500 478 |740.03 |[35.29 9.93 3.86
0.750 334 | 740.14 | 49.97 10.88 3.39
0.050 17.75 | 739.99 | 53.36 25.82 12.60
0.125 12.11 | 739.97 | 44.96 19.75 9.16
0.25 0.250 8.02 | 740.02 | 44.50 16.12 6.76
0.375 6.00 |739.96 |51.13 15.29 5.67
0.500 478 | 74003 | 61.52 15.86 5.09
0.750 334 | 740.14 | 88.13 19.89 4.68
0.050 17.75 |739.99 | 81.76 38.99 18.51
0.125 12.11 | 739.97 | 74.95 31.21 13.61
0.5 0.250 8.02 |740.02 |83.83 28.09 10.33
0.375 600 |739.96 |102.02 |29.85 9.03
0.500 478 | 740.03 | 12350 | 34.38 8.58
0.750 334 |740.14 |167.99 | 48.85 9.16
0.050 17.75 | 73999 |167.69 | 80.86 37.31
0.125 12.11 | 739.97 |175.15 | 73.98 29.36
0.75 0.250 8.02 |740.02 | 211.05 | 8271 25.9]
0.375 6.00 |739.96 |249.59 |100.73 | 27.23
0.500 478 [740.03 [284.62 |122.01 | 3120
0.750 334 | 740.14 | 342.61 16596 | 43.89
0.050 17.75 | 739.99 |35522 | 206.18 | 99.66
0.125 12.11 | 73997 |38236 |219.94 | 9534
0.9 0.250 8.02 |740.02 43093 |262.70 | 111.25
0.375 6.00 |739.96 |468.84 |303.91 135.56
0.500 478 74003 |498.07 |33930 | 160.97
0.750 334 | 740.14 | 539.93 | 394.73 | 206.07
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Table A-7: Minimum Batch size required for UBM and WBM charts in AR(1)
processes

0] b OuBM/ 0 OwBM/ 0
0.00 1 1.0000 NA
0.10 2 0.7454 1.1111
0.20 3 0.6701 0.8839
0.30 4 0.6533 0.8248
0.40 6 0.6243 0.7454
0.50 8 0.6457 0.7559
0.60 12 0.6630 0.7538
0.70 17 0.7405 0.8333
0.80 27 0.8797 0.9806
0.90 58 1.2013 1.3245
0.95 118 1.6827 1.8490
0.99 596 3.7396 4.0996

Note: Batch size chosen to make lag-1 autocorrelation of batch means < 0.10.

Table A-8: ARMA charts compared with the corresponding optimal EWMA
chart for detecting mean shifts of 1¢ when ¢ = 0.85

EWMA ARMA chart
A=0.15 |8=-0.075 {0#=-0.05 |§=-0.03 16=003 [8=0.10 |6=0.30
pw | L=2.913 | L=2.832 [=2.843 | L=2.868 | L=2.952 | L=3.023 | L=3.080
0 499 503 498 496 501 503 508
0.5 |36.2 35.8 35.5 35.9 36.7 40.6 62.0
1 10.3 10.3 10.2 10.1 10.8 11.0 15.6
2 1397 4.25 4.11 401 3.92 3.85 4.16
3 1256 2.94 2.78 2.69 2.47 2.25 2.00
4 |2.01 2.31 2.22 2.11 1.86 1.58 1.25

167




Table A-9: Comparisons of ARL’s for EWMAST, Residual, Shewhart and M-M
charts applied to AR(1) processes

EWMAST chart
o) Shift A=0.1 A=0.2 Residual | Shewhart | M-M
0 994.81 664.58 370.40 382.65 .
0.5 61.47 74.15 206.04 156.65
0.25 1 16.78 17.47 75.42 47.53 :
2 6.13 5.02 12.24 733 .
3 3.79 2.93 2.85 2.21 .
0 1,171.74 | 829.46 370.40 389.71 390.04
0.5 123.63 147.31 258.42 170.32 378.06
0.50 1 28.78 31.94 123.82 53.48 368.20
2 8.85 7.49 24.22 8.94 298.37
3 5.13 3.93 4.14 2.53 162.14
0 1,467.07 | 1,135.18 [370.40 516.58 375.18
0.5 330.18 333.84 311.23 235.02 374.15
0.75 1 72.88 81.97 197.74 76.89 361.34
2 16.12 14.92 40.24 13.69 211.68
3 8.19 6.32 3.01 3.65 33.64
0 3357.63 |2,653.05 |370.40 1,382.22 [375.91
0.5 1,664.52 | 1,376.44 |330.96 753.16 359.23
0.95 1 497.92 446.26 138.84 286.05 170.64
2 81.59 74.14 1.08 46.80 1.54
3 22.99 18.82 1.00 9.13 1.00
0 764.98 497.10 370.40 368.82 -
0.5 22.57 25.17 106.59 156.69 :
-0.25 1 7.83 7.06 23.30 42.06 E
2 3.57 2.90 3.44 6.15 .
3 2.45 1.97 1.57 1.87 ;
0 641.37 471.58 370.40 413.32 -
0.5 13.86 14.85 61.21 165.18 .
-0.50 1 5.60 4.93 10.45 45.49 -
2 2.78 2.31 2.11 6.10
3 1.95 1.62 1.33 1.74
0 550.23 438.21 370.40 483.87 -
0.5 8.16 8.31 22.12 184.92 .
-0.75 1 3.75 3.35 3.58 51.70 .
2 2.06 1.77 1.50 6.83 -
3 1.53 1.28 1.00 1.65 ,
0 765.28 887.92 370.40 1,213.91 |-
0.5 4.46 4.96 2.67 440.88 -
-0.95 1 2.39 2.34 1.42 129.54 “
2 1.50 1.42 1.00 13.80 .
3 1.04 1.03 1.00 1.06 .
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Table A-10: Comparisons of ARL’s of the Special-Cause chart (SCC), the
Shewhart and the EWMA chart for various ARMA(1,1) parameters

(9,0) Shift SCC Shewhart EWMA

0 370.38 370.82 366.37

0.5 272.90 163.31 62.81
(0.95,0.9) 1 135.35 48.53 15.94

2 18.53 6.91 5.54

3 2.38 2.02 3.49

0 370.38 385.13 366.44

0.5 42.75 267.86 248.74
(0.95, -0.9) 1 1.00 123.08 111.62

2 1.00 25.68 29.13

3 1.00 1.00 10.28

0 370.38 394.29 377.50

0.5 10.53 166.97 7.33
(0.475,0.9) 1 4.74 4731 3.79

2 2.18 5.83 2.06

3 1.39 1.80 1.55

0 370.38 365.34 376.53

0.5 253.13 166.77 70.05
(0.475, 0) 1 117.96 51.05 20.69

2 22.64 8.69 7.16

3 4.02 2.50 428

0 370.38 382.60 362.78

0.5 265.34 190.65 85.90
(0.475, -0.9) 1 108.52 60.64 25.49

2 2.79 11.26 8.56

3 1.01 3.01 4.97

0 370.38 38131 383.02

0.5 210.64 170.85 45.67
(0, 0.450) 1 78.83 49.01 14.53

2 12.74 8.12 5.59

3 2.77 2.26 3.58

0 370.38 378.60 378.17

0.5 3.06 144.60 4.11
(-0.475, 0.9) 1 1.94 41.85 2.36

2 1.24 6.63 1.39

3 1.01 1.55 1.01

0 370.38 373.96 392.93

0.5 184.67 164.29 36.54
(-0.475, -0.9) 1 60.11 45.92 12.036

2 8.37 7.00 4.83

3 2.10 2.13 3.13

0 370.38 366.86 369.74

0.5 1.50 138.59 3.36
(-0.95, 0.9) 1 1.00 53.16 1.98

2 1.00 6.58 1.00

3 1.00 1.00 1.00

0 370.38 382.56 364.04

0.5 147.52 158.10 25.90
(-0.95, -0.9) 1 40.04 47.00 9.15

2 5.64 6.50 4.03

3 1.87 2.02 2.66
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Table A-11: Comparison of Shewhart chart (Residuals, WBM and UBM) ARL’s

for AR(1) processes

Shift: 6/0
Method b 0.5 1 2 4
0 RES 1 2823 520 34 2
RES 1 4360 1183 116 3
WBM 4 2066 320 23 4
0.25 UBM 4 1279 149 11 4
WBM 23 233 34 23 23
UBM 23 210 32 23 23
RES 1 6521 2818 506 17
WBM 8 2230 378 33 8
0.50 UBM 8 1607 225 20 8
WBM 43 397 66 43 43
UBM 43 367 63 43 43
RES 1 9801 9234 7279 1828
WBM 58 6119 2548 548 96
0.90 UBM 58 5619 2133 423 81
WBM 472 2547 823 476 472
UBM 472 2504 809 476 472
RES 1 9995 9974 9677 4508
WBM 596 9691 8868 6605 3238
0.99 UBM 596 9631 8670 6178 2847
WBM 2750 9440 8129 6605 3238
UBM 2750 9420 8074 5434 3225
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Table A-12: ARL’s and CDF’s of control charts applied to optimal EWMA
forecast residuals for an AR(1) process with parameter ¢ and desired in-control

ARL of 250
Control Number of time periods after the shift : CDF
¢ | b chart | ARL 1 2 3 4 5 6
Individuals | 250 0.3 0.7 1.1 1.4 1.7 2.3
0 | CUSUM 252 1.0 1.6 2.7 3.4 3.9 4.1
EWMA 250 0.9 1.5 1.7 2.4 2.8 3.3
Individuals | 33.8 |3.5 5.3 7.4 10.6 13.1 14.9
1 CUSUM 8.4 2.8 6.2 13.6 | 235 33.1 433
EWMA 8.7 1.7 50 |89 172 (261 354
0 Individuals | 5.1 216|353 |49.0 |588 [66.7 |72.7
2 CUSUM 33 5.8 27.1 60.7 83.5 943 97.8
EWMA 3.9 5.1 188 [404 |68.5 854 1944
Individuals | 1.8 534 795 [904 (962 |984 |99.1
3 CUSUM 2.1 14.2 76.5 97.9 99.8 100 100
EWMA 2.6 102 | 475 83.0 |98.0 |99.0 100
Individuals | 2424 | 2.2 3.0 3.4 3.8 3.9 4.0
1 CUSUM 2359 | 1.5 3.4 4.4 4.9 6.1 6.6
EWMA 2347 | 1.7 3.8 6.0 7.5 9.1 10.2
Individuals | 218.1 | 15.1 16.4 17.0 17.5 17.9 18.3
052 CUSUM 184.6 | 4.8 14.1 20.6 | 25.5 274 | 28.7
EWMA 1344 | 6.7 17.0 |25.1 30.2 | 357 |39.0
Individuals | 133.2 455 | 485 |49.8 50.1 504 | 50.6
3 CUSUM 85.1 17.6 | 42.1 538 |61.7 |655 67.2
EWMA 29.7 177 476 |63.0 |71.7 |[765 79.8
Individuals | 241.3 | 2.6 3.2 3.6 3.8 4.0 4.5
1 CUSUM 2376 | 1.4 2.5 33 3.7 49 5.4
EWMA 2202 [ 1.9 3.7 5.1 6.6 7.6 8.0
Individuals | 213.2 | 153 |158 |[16.1 |16.4 16.7 16.9
072 CUSUM 1954 |62 12.1 15.8 17.2 18.1 18.4
EWMA 194.0 | 5.7 12.1 15.6 18.1 20.5 22.4
Individuals | 129.7 [47.4 | 482 |482 484 |486 |488
3 CUSUM 142.7 | 19.5 336 [393 1425 436 (445
EWMA 106.0 | 21.5 33.7 1399 (440 [463 492
Individuals | 240.9 | 3.0 3.7 4.2 4.7 5.4 5.7
1 CUSUM 2395 | 1.5 2.6 3.5 4.4 5.0 5.2
EWMA 236.7 | 1.1 2.2 3.1 3.7 4.3 4.4
Individuals | 200.5 [ 17.9 18.0 18.3 18.7 18.9 19.2
092 CUSUM 2163 | 5.8 9.1 10.0 10.7 11.7 12.7
EWMA 193.5 |44 6.1 7.6 8.5 9.5 10.2
Individuals | 123.7 | 50.0 |50.2 |50.4 |50.6 50.8 |50.9
3 CUSUM 171.1 | 19.0 [247 267 |27.6 |[287 |29.1
EWMA 147.1 | 13.4 17.3 192 1206 (228 |[234
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Table A-13: Comparisons of ARL’s: ARMAST, EWMAST and SCC on

ARMA(1,1) processes

Process Charting
parameters parameters

Shift | u v o) 0 ARMAST | EWMAST | SCC WBM
0 370 370 370 370
0.5 2.65 4.31 2.67 3.16
1 -095 |0 0 -0.49 |1.42 2.20 1.42 2.00
2 1.00 1.29 1.00 2.00
3 1.00 1.01 1.00 2.00
0 370 370 370 370
0.5 13.2 14.7 65.5 17.1
1 -0.475 | 0 0.9 0.1 4.78 4.97 11.4 6.27
2 2.31 2.32 2.20 2.79
3 1.64 1.63 1.35 2.02
0 370 370 370 370
0.5 65.6 .83.3 253 65.6
1 0475 10 0.9 0.1 20.3 22.4 118 255
2 6.61 6.17 22.6 9.78
3 3.67 3.40 4.20 5.50
0 370 370 370 370
0.5 226 237 331 247
1 0.95 0 0.92 0.4 102 108 139 136
2 25.8 25.7 1.08 60.7
3 8.65 8.30 1.00 36.7
0 380 370 370 -
0.5 84.7 105 109 -

1 0.475 |-09 |09 0.1 25.4 29.8 22.8 -

2 7.94 7.68 2.79 -

3 4.29 4.02 1.01 -

0 378 370 370 -
0.5 224 226 350 -

1 0.95 045 | -0.9 0.1 95.4 97.5 275 -

2 23.6 21.9 43.5 -

3 5.14 7.15 1.30 -

0 370 370 370 -
0.5 42.8 240 42.8 -

1 0.95 -09 |-09 36.1 1.00 110 1.00 -

2 1.00 26.4 1.00 -

3 1.00 8.48 1.00 -
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Table A-14: ARL comparisons of control charts on process Output and Control
action (MMSE-controlled ARMA(1,1) processes)

Output Control
(¢, ) Shift (R, Rg) ARL (Rt, Rs) ARL
0 (0,0) 370 (0, 0) 370
(0.8,-0.3) 1 (1, 0.15) 325 (0.6,0.46) | 208
3 (3, 0.45) 86.1 (1.8,1.38) |334
5 (5, 0.75) 2.69 (3,2.3) 6.49
0 0,0 370 (0, 0) 371
(0.7,0.2) 1 (1,0.37) 208 (0.71,0.89) | 77.4
3 (3,1.11) 16.7 (2.13,2.67) [5.13
5 (5, 1.85) 1.15 (3.55,4.45) |1.40
0 (0,0) 370 (0, 0) 370
(-0.7,-0.2) |1 (1, 1.42) 18.1 (0.71,0.60) | 113
3 (3,4.26) 1.54 (2.13,1.80) | 7.68
5 (5,7.10) 1.02 (3.55,3) 1.32
0 (0,0) 370 (0,0) 370
(-0.8,0.3) 1 (1,2.60) 4.52 (0.60,0.86) | 61.4
3 (3, 7.80) 1.50 (1.80,2.58) {3.15
5 (5,13) 1.02 (3,4.3) 1.45

Table A-15: ARL comparisons of control charts on process Output and Control
action (PI-controlled ARMA(1,1) processes)

Output Control
(.0) (b, k) Shift | (Rr,Rs) |ARL | (Rr,Rs) | ARL_
0 (0,0) 370 (0,0) 370
(0.8,-0.3) |[(0.3,0.7) 1 (1,0) 356 (0.55,0.55) | 189
3 (3,0) 179 (1.65,1.65) |26.7
5 16,0 9.33 (2.75,2.75) 1593
0 (0,0) 370 1 (0,0) 370
(0.7, 0.2) (0.4,0.1) 1 (1, 0) 341 (0.8,1.60) |42.6
3 (3,0) 102 (2.40,4.80) |5.38
5 5,0 1.63 4, 8) 1.43
0 (0,0) 370 (0,0) 370
(-0.7,-0.2) |(-0.4,0) 1 (1,1.67) |13.2 (1, 1.67) 13.2
3 (3,5) 1.55 (3,5) 1.55
5 (5,8.33) | 1.02 (5,833) ]1.02 |
0 [ (0, 0) 370 (0,0) 370
(-0.8,0.3) |(-0.8,0) 1 (1,5 3.78 (1, 5) 3.78
3 (3, 15) 1.48 (3, 15) 1.48
5 (5, 25) 1.02 (5,25) 1.02
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Table A-16: Averages of the PM’s (and ARL’s in parenthesis) for ASPC rules.
The assignable cause is a shift in the process mean at observation 251

EPC and | EPC and
EPC and | EWMA |[EWMA | EPC+CUSUM
Shift | Priorto shit | EPC | Shewhart | (A=0.1) | (A\=0.4) | (h=5, k=0.5)
1 2.538 2.638 | 2.552 2.552 2.552 2.552
(102.1) | (112.9) |(114.7) |(105.4)
2 2.538 2679 |2.594 | 2.594 2.594 2.593
(93.3) | 100.7) | (101.8) | (94.9)
5 2.552 2929 |2.754 2.811 2.793 2.785
GL.1) | (61.6) | (48.8) |(39.7)
75 | 2.544 3298 | 2.962 3.033 2.929 2.943
(3.0) 244) | (122) | (I
10 |2.544 3.338 | 3.094 3.273 3111 3311
(1.0) (5.2) (1.8) (1.3)

Table A-17: Averages of the PM’s (and ARL’s in parenthesis) for ASPC rules.
The assignable cause is a trend that starts at observation 251

Trend EPC and | EPC and

magni EPC and | EWMA | EWMA | EPC+CUSUM

tude | Priorto trend | EPC Shewhart | (A=0.1) | (A=0.4) | (h=5, k=0.5)

0.5 2.555 3.064 2.872 2.807 2.963 2.778
(119,9) (119.8) (149.2) (111.8)

0.10 |2.534 4.398 3.519 2.594 2.594 2.593

(097 [(35) [(1092) |(683)

025 |2.543 13.963 | 4.085 2.811 3.467 2.291
(60.8) (33.9) (49.5) (31.6)

0.50 |2.557 46.842 | 4.165 2.976 3.413 2.910
(32.1) (17.4) (24.2) (15.8)

1.00 | 2.551 179.57 | 3.814 2.989 3.122 2.885
(14.3) 9.1 (10.0) (7.8)
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