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ABSTRACT

In this thesis we investigate the application of the heuristic method Simulated
Annealing (SA) in order to optimize realistic portfolios. The model is based on the
classical mean-variance approach but we improved it with the addition of many

constraints that are playing a vital role in portfolio selection.

It is shown that Simulated Annealing (SA) can optimize these portfolios effectively and
within reasonable time because the complexity of this problem makes the time of
computation very important. This approach is also flexible because it can easily cope
with extensive modifications such as the addition of complex new constraints,

discontinuous variables and changes in the objective function.

Master thesis is organized in seven chapters. Chapter 1 focuses on the introduction of
problem of portfolio optimization and it gives a general concept abut this work. Chapter 2
covers the general theories of Portfolio Optimization and its vital role in Financial
Science. Chapter 3 includes theory and applications of Mean Variance Analysis from
risky assets only and we give some extensions of the basic model. Chapter 4 covers the
important points of Heuristic Optimization and in the next chapter 5 we mention the
heuristic optimization technique of Simulated Annealing for portfolio selection. In
chapter 6 we introduce our results which are came for the algorithm of Simulate
Annealing. Final, in chapter 7 we give the synopsis of master thesis and we discuss for

future improvements in some relative topics with our master thesis.



Chapter 1

INTRODUCTION

Markowitz’ mean-variance model of portfolio selection is one of the best known
models in finance that gives the necessary economic background to determine the
composition of a portfolio of assets that minimize risk for a given level of expected
return. While the basis for portfolio optimization was established by Markowitz, it is
often difficult to incorporate real-world constraints and dilemmas into the classical
theory, which can limit its use. To be more specific, Markowitz’ model ignores practical
subjects such as transaction costs, liquidity constraints (and the resulting nonlinearities in
transaction costs which result from this), minimum lot sizes and cardinality constraints,

i.e. the restriction of a portfolio to a certain number of assets.

A fundamental reason for the “hardness” of the portfolio selection problem is the
number of possible portfolios, making solution by enumeration a very difficult task. The

horrors of enumeration can be illustrated as follows.

Suppose we have a universe of N assets and we want to select a number of K assets

(K<N) in order to create optimal portfolios. The number of possible combinations is

ng(N} N!
K) K:N-K)!

Suppose now that for each K-asset portfolio the asset weights are defined with a
resolution of r, so for example if r = 1 the asset’s weighting is 100% (or 0%), if r = 2 its

weighting is either 50% or 100% (or 0%). (The number of weighting possibilities is
given by r+1 and the percentage resolution is given by p = 19 , S0 a weighting with a
r

percentage resolution of 1% will require » = 100). Clearly, the total number of possible

portfolios with different combinations of asset weights is given by K™*'.
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But only a subset of previous combinations satisfy the budget constraint (asset weights

sum to 100%). This is known as C'(n,k) a k-composition of n, which is a partition of n
into xactly k parts, with regard to order, where each part is an integer greater than or

equal to zero. The number of compositions is given by C'(n,k)=Cy+™".

The total number of enumeration possibilities E is therefore given by

! —1!
E:CI](V-C'(r+K—1,K—1):CQ’,CI?_Il(—l: N! .(V+K 1!
KHN-K)! (K-D+(r)!

For example, searching for the optimal 30-stock portfolio selected from a universe of 50
stocks and wish weightings to be defined within 1%. Therefore N = 50, K = 30
and p = 1, giving r =100.

50! 79!
So E:C5°~C79:( )( J=1,53x1014 ortfolios
© =2 = 301201 ) | 291501 port

For example the Cray T3E supercomputer operates at 2.4 teraflops. Assume that the
evaluation of each portfolio will require around 300 floating-point operations.

Therefore to evaluate each portfolio the Cray will take

300 flop/ portfolio
2.4x10" flop/second

=1.25x107"° seconds/ portfolioor

will process 8x10° portfolios/second)

The time required to evaluate all the possible portfolios is therefore

(1.25x107"° sec/ portfolio)x1.53x10"* portfolios =19130 sec onds *( BiBay

or 5 hours and 20 minutes \ t\
-

\.x s S
o8 -*-l
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Optimization by enumeration could be tedious as the number of assets in our universe

increases on the number of 100.

Portfolio selection issues

In order to handle portfolio selection problems in a formal way, we must answer at least

three questions:

1. Data modeling, in particular the behavior of asset returns.

2. The choice of the optimization model, including
« the nature of the objective function;

» the constraints faced by the investor.

3. The choice of the optimization technique.

The first step is to understand the nature of our data and to be able to correctly represent
them. The Markowitz model assumes that the asset returns follow a multivariate normal
distribution. In particular, the first two moments of the distribution suffice to describe
completely the distribution of the asset returns and the characteristics of the different
portfolios. But in the real markets this assumption is not completely true because in the
real markets we can exhibit more intricacies, with distributions of returns depending on
moments of higher-order (skewness, kurtosis, etc.), and distribution parameters varying
over time. Analyzing and modeling such complex financial data is a whole subject in
itself, which we do not tackle in this thesis explicitly. We adopt the classical assumptions
of the Mean-Variance analysis, where the expected returns and the variance—covariance

matrix are supposed to provide a satisfactory description of the asset returns.
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When implementing an optimization model of portfolio selection, a second question
consists in identifying the objective of the investor and the constraints that he is facing.
As far as the objective goes, the quality of the portfolio could be measured using a wide
variety of utility functions. Following again Markowitz model, we assume here that the
investor is risk averse and wants to minimize the variance of the investment portfolio
subject to the expected level of final wealth. It should be noted, however, that this
assumption does not play a crucial role in our algorithmic developments, and that the
objective could be replaced by a more general utility function without much impact on

the optimization techniques that we propose.

In our model, we are interested in two types of complex constraints
e limiting the number of assets included in our portfolio (thus reflecting some
behavioral or institutional restrictions faced by the investor),
e the minimal quantities which can be traded when rebalancing an existing portfolio
(thus reflecting individual or market restrictions).
In the final question we must choose what portfolio selection method we use for the
optimization of the chosen model. Because of the complexity of our model, we have

chosen to work with a simulated annealing metaheuristic.
Objectives
The purpose of our research is to investigate the ability of the Simulated Annealing

(SA) which is a metaheuristic method to create high quality solutions for the mean-

variance model when enriched by practical constraints.

13



The Markowitz model is extended by
» floor and ceiling constraints
« cardinality constraints
o turnover (purchase) constraints
¢ turnover (sale) constraints

e trading constraints

Heuristic approaches are very attractive because they are independent of the objective
function and the structure of the models and constraints. These advantages make the

method general and robust.

14



Chapter 2

Portfolio Optimization

A common property of investment opportunities is that their actual returns might differ
from what has been expected, or in short: they are risky. This notion of financial risk,
defined by the (potential) deviation from the expected outcome, includes not only a lower
than expected outcome (downside risk) but also that the actual return is better than
initially expected (upside risk) because of positive surprises or non-occurrences of
apprehended negative events.

When all available information and expectations on future prices are contained in
current prices, then the future payoffs and returns can be regarded and treated as random

numbers. In the simplest case, the returns of an asset i can be described with the normal

distribution: the expected value (mean) of the returns, E(r,) and their variance,c’ (or its
square root, o, in the finance literature usually referred to as volatility) capture all the

information about the expected outcome and the likelihood and range of deviations from
it.

When comparing investment opportunities and combining them into portfolios, another
important aspect is how strong their returns are “linked”, i.e., whether positive deviations
in the one asset tend to come with positive or negative deviations in the other assets or
whether they are independent. If the assets are not perfectly positively correlated, then
there will be situations where one asset’s return will be above and another asset’s return
below expectance. Hence, positive and negative deviations from the respective expected
values will tend to partly offset each other. As a result, the risk of the combination of
assets, the portfolio, is lower than the weighted average of the risks of the individual
assets. This effect will be the more distinct the more diverse the assets are. The intuition
is that similar firms (and hence their stocks) do similarly poorly at the same time whereas
in heterogeneous stocks, some will do better than expected while others do worse than
expected. The positive and negative deviations from the expected values will then (to

some degree) balance, and the actual deviation from the portfolio’s expected return will

15



be smaller than would be the deviation from an asset’s expected return even when both
have the same expected return.

Technically speaking, the risk and return of a portfolio P consisting of N risky assets
can be treated as a convolution of the individual assets’ returns and co-variances when
the included assets can be described by the distributions of their returns.

Harry M. Markowitz was the first to come up with a parametric optimization model to
this problem which meanwhile has become the foundation for Modern Portfolio Theory
(MPT).

The model of Markowitz for portfolio analysis can be summarized as follows. First, the
two relevant characteristics of a portfolio are its expected return and the variance.
Second, rational investors will choose to hold efficient portfolios-those that maximize
expected returns for a given degree of risk or, alternatively and equivalently, minimize
risk for a given expected return. Third, it is possible to identify efficient portfolios by the
proper analysis of information for each security on expected return, variance of return,
and the interrelationship between the return for each security and that for every other
security as measured by the covariance. Finally, a computer program can utilize these
inputs to calculate the set of efficient portfolios. The program indicates the proportion of
an investor’s fund that should be allocated to each security in order to achieve efficiency-
that is, the maximization of return for a given degree of risk or the minimization of risk
for a given expected return.

More analytically, in his seminal paper, Markowitz (1952) considers rational investors
who want to maximize the expected utility of their terminal wealth at time 7, E(U(w;,)).
Investors are price takers and make their sole investment decision at time 0. If an investor
prefers more terminal wealth to less and is risk averse, then her utility function U with

respect to terminal wealth w, has the properties

2
a—U>0and 6({

T T

<0

At this point, we will give an analytical prove for the consistency for mean variance

analysis.

16



We say that mean-variance analysis is consistent with expected utility maximization if

there exists a derived utility function V() that depends only on x, and o} such that

V(ptp,07) = E[UR)).

Theorem 1. Mean-variance analysis is consistent with expected utility maximization, i.e.
there exists ¥ ()such thatV(u,,o2) = E[U(R)], if and only if either of the following

conditions is satisfied:

(a) R is normally distributed (or, more generally, elliptically distributed).
(b) U takes the quadratic form, i.e. U(R)=a-R-b-R*, a>0,b>0,R< %

The deep meaning of the theorem 1 is that the expected returns and (co-)variances
contain all the necessary information not only when the returns are normally distributed
(and, hence, are perfectly described with mean and variance), but also for arbitrary
distributions when the investor has a quadratic utility function. More generally, it can be
shown that the mean-variance framework is approximately exact for any utility function
that captures the aspects non-satiation and risk aversion.

The classical Markowitz model also assumes a perfect market without taxes or
transaction costs where short sales are disallowed, but securities are infinitely divisible

and can therefore be traded in any (non-negative) fraction.

At this point and before we are continued with the Markowitz problem formulation, it

very important to point out the definition of risk and volatility.

The term risk has been used to characterize a situation where the exact outcome is not
known and where the employed risk measure indicates the magnitude of deviations from
the expected value. “Risk” therefore reflects not only the “dangers” associated with an
investment, but also the chances; in this sense, a risky situation is one in which surprises
and unexpected developments might occur. A typical representative of this type of risk

measures is the volatility of returns which not only is one of the foundations of portfolio

17



theory as introduced so far, but will also be the prime measure of risk for most of the

remainder of this contribution.

The term volatility is the most widespread risk measure in financial management and is
often even used synonymously for the term risk. The reasons for this are various, most
notably among them perhaps the fact that it reflects the assumption of normally
distributed returns or of price processes with normally distributed price movements. Also,
it measures not just potential losses but the whole range of uncertain outcomes and
therefore serves the demands on a “general purpose” risk measure in finance. Not least, it
also has a number of favorable (technical and conceptual) properties. Hence, this

contribution, too, will use volatility as preferred measure of risk.

2.1 Risk-Return Trade-off

In selecting asset classes for portfolio allocation, investors need to consider both the
return potential and the riskiness of the asset class. It is clear from empirical estimates
that there is a high correlation between risk and return measured over longer periods of
time. Capital market theory posits that there should be a systematic relationship between
risk and return. This theory indicates that securities are priced in the market so that high
risk can be rewarded with high return, and conversely, low risk should be accompanied
by correspondingly lower return.

Figure | is a capital market line showing an expected relationship between risk and
return for representative asset classes arrayed over a range of risk. Note that the line is

upward-sloping, indicating that higher risk should be accompanied by higher return.

18
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Figure 1 Relationship between risk and return
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2.2 Theory and problem formulation

Unconstrained Markowitz model

If

N = the number of assets in the universe

R = the expected return of asset i (i = 1; ...; N) above the risk-free rate rf
o, = the covariance between assetsiand j (i=1; ..; N, j=1; ..; N)

R, = the expected return of the portfolio above the risk-free rate

x, = the weight in the portfolio of asset i (i = 1; ...; N), where 0 <xi < 1

then the portfolio’s expected return is given by

N
R, - Z R -x, and the risk of this portfolio is given by the variance of expected returns

i=1

N
2 - . -
01=3 30, 5,

N
i=1 j=1

The unconstrained portfolio optimization problem is therefore to

N N
- - - 2 - . .
minimize 0'p E E GU x, xj
i=1 j=1

At this point we can use the fact thato, = p, -0, -0, where p, is the correlation between

iand j assetand s,,s , Tepresents the standard deviation of the returns. Therefore,

20



N N

] 1 1 2 = . . - .
minimize o, —ZZpij 0,°0,-X, X,
i=l j=1

N
subjectto R, = Z R -x,
i=l

N

Zx,.=l

i=l

0<x <li=1..N

The portfolio's variance or risk is therefore minimized for a required rate of return Rp,
while all asset weights sum to one (budget constraint). In this model you can use the
excess return of the assets. This is a simple nonlinear (quadratic) programming problem

which is easily solved using standard techniques.

In this form the model requires items of data for an n-asset portfolio,

(n* +3n)
2

n2—n

comprising n estimates of expected returns, » estimates of variances and

estimates of correlations (since the correlation matrix’s diagonal elements are all one

and p, = p,,. Therefore a portfolio consisting of only 50 assets requires 1325 separate

items of data while a 100-asset portfolio would require 5150 data items.
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Chapter 3

Mean Variance portfolio from risky assets only

As a first step, we must determine the initial problem. Let R=(R,R,,....R, ) be the

vector of risky (random) returns of N assets that are normally distributed with mean

vector = (g, fy,..., 4y )" and variance-covariance (symmetric and strictly positive-

definite) matrix

2 2
0, O, ... O 0" P1,°0, 0, ... Py "0, Oy
2 2
s 2| O Oy | _[ P 0370, OF .. Py 0,0y
2 - - - - 2
Oy Opy - Oy | | Py17Oy 0, Pyy-0y -0, ... 0,7 |

We assume that R ~ Normal, (1, Z)

1 (3R (R}

‘e
(2-7)""? - Det(Z)"?

where f (R) =

Let also w=(w,,w,,...,w, )" be a N-vector of weights that sum to one, that is

where 1 = (1, 1, 1, ..., 1)’ is a N-vector of ones (also called the sum vector). Any
collection of individual assets is a portfolio of these assets. For simplicity, in what

follows we will denote a portfolio by the weight vector w that produces it.

A portfolio with weights w has a scalar random return x" R that is distributed as

22



R, =x'%R ~ Normal (u,, c,°)

N N N N
— ' —_ — . - . -
where Mp SX'XR=D D XX, 0, =) > X, "X, P, 0,0,

=l j=1 =1 j=1

The minimum variance portfolio with expected return 4, is the solution of the problem

.1 1
min —o, =Ex'x2xx

st. x'1=1 M
9

A portfolio w* is Mean-Variance Efficient if there exists no portfolio w that has an

equal or higher return and a lower variance, i.e., if there exists no w such that

X'p>x*'-p gnd x'-X-x<x*'-X.x*

3.1 The MV optimal solutions

The problem in (1) minimizes a quadratic function subject to linear constraints and under

the condition that the covariance matrix X, is strictly positive-definite, this minimization

problem has a unique solution that may be computed by an analytical way. To obtain this

solution we form the Lagrangian of the problem

n}}% L =%x'2x+/11 (1=-x"D)+ A, -(up —X"p)

23



where 4 and A, are Lagrange multipliers. The first-order conditions are

%zﬁx—&-l—ﬂz-p=0 2)
2—;‘1:1—;{'1:0 3)
=R =0 @

From the equation (2) we take,

X*¥ () = AL 1+ LT (5)

and substituting into (3) and (4) we get
A1+ ApE =1
AT+ LpE =y,

Solving now this system for 4, and 4, we get

C-B-u, B

and,g:—A'/‘lg_

where
A=1'T'1>0
B=1X'n>0
C=p'Z'n>0
D=AC-B*>0
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The variance of the portfolio x*(x,) in the equation (5) is:

oo (i) =X (1) - Z-X ()
=x" () -L-(4-Z'-1+4,-Z"-w
=X (pp) 1+ 4, X () -
=h+hp
_A-4p-2-B-p +C
D

(6)

where, to obtain the next to last line of the display above, we have used the constraints
that the portfolio weights sum to one and the return of the portfolio is x, . Equation (6) is
recognized as the equation of a parabola, so the set of Mean-Variance Efficient
Portfolios is a parabola in Mean-Variance space. If we take the first and second

derivatives of (6) with respect to 1, ,

2
doy () _2:(4 g » —B) that can take possitive, zero or negative

duy

2, 2

d O-P(/'ZIP):Z A >0
du, D

shows that o7(u,) is a strictly convex function of u,, with a unique minimum at

dop(tty) _ g o 241 =B)
D

B
:0(:}/1}’ = —
du, A

It is more usual to represent the frontier in Mean-Standard Deviation space instead of

Mean-Variance space. After this, we have:
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A-p?=2-B-u, +C
O-P(/'tp)z\/ :uP luP

D
so that,
dop(4p) _A-p-B
dpy D-o,
2
dap(é‘p)= 1 >0
dpp D-o,

We see from equation (8) that o is also a strictly convex function of g, and that the

Minimum-Standard Deviation portfolio is the same as the Minimum-Variance portfolio
(which is attained at i, = —g ). Equation (7) has the form of the equation of a hyperbola,

so the set of Mean-Variance Efficient Portfolios describe a hyperbola in Mean-Standard

Deviation space.

Figure 2 graphs this frontier. For any given o, there are two feasible portfolios, one of

which has a higher return. Since no rational investor would prefer the portfolio with the
low return when, with the same risk, another portfolio with a higher return is feasible, the
Efficient Portfolio Frontier is the upper part of the hyperbola. The equation for

M, as a function of o, is

®

o =2 2 [D(A-0,72T) 9)
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Figure 2 Mean-Standard Deviation Frontier: Risky Assets Only

Figure 2 also graphs the asymptotes of the Efficient Frontier which are given by

B D
/JP EziO'P' ;

The returns and standard deviations of individual assets (4, ,0;), i=1..,N belongs to

the Space of Feasible Portfolios.
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Two important things are:

1) The meaning of Diversification in portfolio assets

Nobody rational investor do not want to have only one individual asset because if he
has a collection of assets (portfolio) can obtain a better expected return for the same level
of risk, or less risk for the same level of expected return. If the expected returns for the
individual assets have covariance among them, the individuals assets are no more
Minimum Variance and they are positioning inner the Efficient Frontier. Thus, the

Diversification takes advantage from the covariance among the individual assets.

2) For diversified portfolios, there is a positive relation between risk and return.

3.2 Two interesting portfolios

Every point on the Efficient Frontier (the upper part of the hyperbola) corresponds to a
portfolio that is optimal in the sense that no other portfolio can yield a higher return for a
given risk, or a lower risk for a given return. In this section we wish to describe the
properties of the Efficient Frontier by studying two very interesting portfolios on it: the

minimum-variance portfolio and the tangency portfolio.

The minimum-variance portfolio is the portfolio that solves the equation (1) without a

mean constraint. This portfolio is given by

T1x1
X . —
" 1'xETx1

Now consider rays through the origin, like the line OS, . The slope of such a ray may be
thought as the tradeoff between return and risk. For example, the ray OS, has a small

slope and therefore the portfolios along this ray will have large risk relative to their
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return. On the other hand, a ray like OS, is much steeper and therefore the tradeoff
between risk and return is much more attractive. Continuing like this, we see that the
‘best’ such ray is the vertical axis itself, since along the vertical axis one has a positive
return with no risk at all. The vertical axis, however, is not feasible, since the only
feasible portfolios are points inside the hyperbola. This analysis leads us to choose the
portfolio that is feasible and corresponds to a line with the maximum possible slope. The

ray with the maximum possible slope that is feasible is OS, , and since this line is tangent

to the Efficient Frontier, the corresponding portfolio is called the tangency portfolio.
The tangency portfolio is given by

' xp
X i e
1I'<E" xp

b
Expected 1t P"
Return

Tangency Portfolio

Global Minimum-

/ /
/ o B
B L= - Variance Portfolio
/
A s 3 -5
s N
1,7 N e
y .=
v’ ———— '\i
- b T
Sy N
0 B Standard op
NG Deviation
~
~
~

~
~

Figure 3 The Minimum Variance and Tangency Portfolios.
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At this point is very important to define the Sharpe Ratio and to give an alternative
prospective of the tangency portfolio.

SR = Sharpe Ratio = £ where Mpis the mean return of the portfolio P for the specific
aP

time period and o, is the standard deviation of returns of the portfolio P for the specific

time period.
This measure of risk calculates the tradeoff between the return of the specific portfolio
for each unit of the total risk of the portfolio. If our portfolio has big value of Sharpe

Ratio means that it has good enough return for this specific time period.

The tangency portfolio can view as an outcome of solving the following problem:

max SR = max&
x X O'P

Any optimal portfolio can be written as

C-B-pp s A-pp=B .
A =— .Y x[+——F-F'X
x.(#p) D > 1
:A'(C—B'ﬂp)_xmin+B'(A'ﬂp-3).xm
D D
=a-X,, +t(1-a)x,,,
where azw ]_a_—_w_

b

D D
We see that any minimum-variance portfolio can be written as a linear combination (a

weighted average) of the minimum variance and the tangency portfolios. In fact, any two

distinct minimum-variance portfolios will serve in place ofx_, and x_ .
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3.3 Utility Maximization and Portfolio Choice

We consider derived utility functions of the form

V(p,0°)= u-0-(c* + 1),

where 0 is a constant.

The above derived utility function is derived from a quadratic utility function U(W),
without the returns R of our assets must be distributed normal.

For risk averse investors, this function should be increasing in p and decreasing in o, so
that

VL 01220 p> 0o P

du 2-u
and

2

Z”Z<0<:>—6<0<:>9>0.

o

: ] 1 .. . .
For 0 in the risk averse range (0 <& < E ), the indifference curves in mean-variance
M

space are lines with upward slope

du 0
do® 1-2.0-u

>0. (10)

In order to obtain this slope, we take the differential of the utility function

dV =du—-0-do’-2-0-u-duand we set it equal to zero and solve fordi‘u—2 5
c
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The steepness of the indifference curves depends on 6, with individuals that are more

risk averse possessing higher 6 and steeper indifference curves.

Expected u
Return

Direction of
Increasing
Utility

>
Standard o

Deviation

Figure 4 The indifference curves in mean-variance space

The indifference curves in mean-standard deviation space are concentric quarter-circles
with center at the point (0, 1/26) and upward slope

du 2-6-c

—_— >
do 1-2-0-u

The total differential in terms of u and o, instead of p and o, is
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dVv =du-2-0-c-do-2-0-u-du

Setting this equal to zero and solving for %‘lﬁ we obtain the above expression.

o
At this moment, consider two investors X and Y, and assume that X is more risk averse

than Y, thusé@, >6,. In Figure 5 we can see the indifference curves of these two

investors in mean-standard deviation space. These indifference curves are concentric

. . 1
quarter-circles, with X’s curves centered at(O,ﬁ), and Y’s curves centered
YUx

at(O,E%—). The optimal portfolios for these two investors are located at the point of

Y
tangency between their indifference curves and the Efficient Frontier, and are labeled

P, and P, respectively. We see that investor X, being more risk averse than investor Y,

chooses a portfolio with a lower return-risk combination than the portfolio chosen by

investor Y.
A
Expected jsup i
Retum 1 e x > Oy
20, |-

20, | —
— Y's OPTIMAL
PORTFOLIO

I3

Iy X"s OPTIMAL

X S PORTFOLIO

Y = AN o8
\\\ ..

. S, =

SN =

0 ~ o Standard op

~

~. Deviation

Figure 5 Optimal portfolios for investors X, Y
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It is clear from figure — that there is a one-to-one mapping between points (y, 6) on the
efficient frontier and the risk aversion parameter 0. To derive this mapping, we equate the

slope of the efficient frontier

du D
do’® 2.JD.(A.02_1)

with the slope of the indifference curves in the relation (10) to get
o B D
1-2:6-u(6*) 2.\/D-(4-6*-1)

Substituting (9) into the above equation and solving for o” we get

4-4-(4+2-D+C-D)-8°-4-4-B-D-6+ A4*-D

2
* 9 =
a.(6) 4-4-(4+ Dy -0’

Substituting this solution back into (9) we get

D+2-B-8
PO =
2-(4+D)-0

Note 1:
If we use the simpler derived utility function
V(p,o*)=pu-0-0° (11)

du

0_2

we have = 6, so we obtain the simpler tangency condition
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D

9:
2.D-(4-67-1)

Solving for o we obtain

ol (0)= l+——l—)—— and substituting into (9) we get .(0)= 5 i 7

. +
A 4-4.6°

|

The utility function in (11) may be derived from an exponential von-Neumann-

Morgenstern utility function under normality of the asset returns.

Note 2:

The definition of the Arrow-Pratt absolute risk aversion coefficient A(W) is:

AW) = UAUS)

u'w)

which is a measure of risk aversion. Since U(.) is concave, this coefficient is a function of
wealth level and implies that risk aversion decreases as the level of wealth increases. This
may reflect individuals’ attitude to take more risk when they are more financially secure.
The stronger the concaveness the greater the risk aversion is. The term in the
denominator is to normalize the coefficient. With this normalization A(W) is the same for
all equivalent utility functions. The absolute coefficient of risk aversion determines how

much wealth an investor will put in a risky investment in absolute terms.
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3.4 Example

Consider four risky assets, the returns of which are distributed as

0.01] [0.0016 0.0017 0.0006 0.0004
0.03| [0.0017 0.0049 0.0026 0.0021
0.07 | |0.0006 0.0026 0.0225 0.0090
0.12| |0.0004 0.0021 0.0090 0.0400

R

To be more specific, consider the situation in which the four risky assets are Treasury
Bilils, Bonds, Large Cap Shares and Small Cap Shares with expected returns 1%, 3%, 7%,
12% and Standard Deviations of 4%, 7%, 15% and 20% respectively.

Expected Standard

Asset Data Return Deviation
Thills 1,0% 4,0%
Bonds 3,0% 7,0%

LCShares 7,0% 15,0%

SCShares 12,0%  20,0%

Table 1 Expected returns and Risk for the four asset classes

In this example, I will try to give an analytical solution for the Mean-Variance optimal

portfolios.

As a first step, we must calculate the inverse matrix of Z, for this calculation we use the
MATLAB program and we take:
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1 995.4244 3542741 12.0172 5.9413

5 -354.2741 3449683 -27.0203 -8.4885
12.0172  -27.0203 51.3483 -10.2550

59413  -8.4885 -10.2550 27.6936

After we compute the qualities:
A=1'xX"x1= 6552758
B=1'xZ" xp =8.8599

C=p'xX' xp= 0.5320
D=A4-C-B*=270.1352

Therefore the equation of the Efficient Frontier in Mean-Standard Deviation space is

Bl 8] V=
tp ==+ D(4-0,* ~1)
8.8599 + 1

= -{270.1352-(655.2758- 0, —1)
655.2758  655.2758

-0.0135+— . 177013.0593-5, _270.1352
655.2758
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Efficient Frontier

0.08F

0.06 |-
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Return
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0.04
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Standard Deviation

Figure 6 Efficient Frontier for the four risky assets

The minimum standard-deviation portfolio is attained at

8.8599
655.2758

_B_
4

Hp

=0.01352 =

1.352%

which yields a minimum standard deviation of

2
o5k
A =

0.532

8.8599°

Op = D

655.2758 _ .03906

270.1352

Finally, the asymptotes of the hyperbola are

B
ﬂP::i_

t+0o \/_5
_ P' —=
A

8.8599
655.2758

to,- ’M =0.0135+0,-0.6421
655.2758
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Furthermore, we give in the diagram the portfolio weights for different values of the R

300% B 1.CShares
250% B SCShares
O Bonds

200%

B Thills

150%

100% -
50%
0%
-50%

-100%

-150%
-200% -

Figure 7 Portfolio weights for different values of R_

At this point, we will calculate the above two interesting portfolios, the minimum-

variance portfolio and the tangency portfolio.

The minimum-variance portfolio

In order to compute the minimum-variance portfolio for our four assets, we will use the

following equation:

1 995.4244 -354.2741 12.0172 5.9413 | [1
-354.2741 344.9683 -27.0203 -8.4885 | |1
120172 -27.0203 513483 -10.2550 | |1 1.0058
e ix1 _ 59413 84885 -102550 27.6936| [1| _|-0.0684
min  Jix ¥ Tx] 995.4244 -354.2741 12.0172 5.9413 | [1] |0.0398
111 1] -3542741 344.9683 -27.0203 -8.4885 | 1| |0.0227
12.0172 -27.0203 51.3483 -10.2550 | |1
59413  -8.4885 -10.2550 27.6936] |1
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The tangency portfolio

In order to compute the tangency portfolio for our four assets, we will use the following

equation:
995.4244 -3542741 12.0172 5.9413 | [0.01
-354.2741 344.9683 -27.0203 -8.4885 | |0.03
12,0172 -27.0203 51.3483 -10.2550 | | 0.07 '0.0993
. - T xp _ | 59413 -8.4885 -10.2550 27.6936| |0.12 _[0:4398
= s X 995.4244 -354.2741 12.0172 5.9413 | |0.01 0.1889
[1111]x -354.2741 344.9683 -27.0203 -8.4885 | |0.03| |0.2720

12.0172 -27.0203 51.3483 -10.2550 * 0.07
5.9413  -8.4885 -10.2550 27.6936| [0.12

The expected return of the tangency portfolio is:

[0.01
0.03
Moo = X % 42 =[0.0993 0.4398 0.1889 0.2720]x 007 I 0.0601=6.01%

0.12
and its standard deviation is:
O = X X2 XX, =0.0823

Continuing, we will find the optimal mean standard deviation combination for two values

of risk aversion parameter 6 (8 = 4 and 8 = 1) for two investors.

We use the following two equations, which consider the following derived utility

functionV(u,6%)=u—-6-(6> + 4°):
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.B. ‘A . CTN.A2 _A.4.R.D. 2
(@)= D2 B0 2y 4 A(A+2:D4C-D)-6"~4-4-B-D-0+ 4D

2-(4+D)-0 4-A-(A+ D) -6°

e For 6=4:
the optimal mean-standard deviation combination is

(u,0)=(0.0461, 0.0640)

As next step, we try to compute the portfolio that yields this optimal combination for our

investor.
The weights of this portfolio are:
x'(0.0461)= A -Z' xI+ 4, - xp

We must compute the 4, and 4,:

_C-B-u, 0.5320—8.8599-0.0461

A = =0.000457
D 270.1352

g o A#a =B _6552758:0.0461-88599
D 270.1352

x'(0.0461)= A4 - xI+4,-Z" xp
| 995.4244 -354.2741 12.0172 5.9413

.
-354.2741 344.9683 -27.0203 -8.4885 | |1
Thus = 0.000457 - x
12.0172 -27.0203 51.3483 -10.2550| |1
5.9413  -8.4885 -10.2550 27.6936 | |1
995.4244 -354.2741 12.0172 59413 | [0.01
-354.2741 344.9683 -27.0203 -8.4885 | |0.03
+0.079-

12.0172 -27.0203 51.3483 -10.2550 : 0.07
59413  -8.4885 -10.2550 27.6936 | |0.12
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03707
0.2873
0.1441

0.1972.

Finally, x"(0.0461) =

e For6=1:

The optimal mean-standard deviation combination is (u,0) = (0.1555, 0.2246)

Now, we give the process of computation of the portfolio that yields this optimal

combination between risk and return for this investor with risk aversion parameter 6=1.

The weights of this portfolio are:
x'(0.1555)= 4 -Z' xI+ 4, - xp

We must compute the 4, and 4, :

~C-B-u, 0.5320-8.8599-0.1555

& ¥ =-0.00313
D 270.1352
L& A-pp—B _6552758-0.1555-8.8599 ..,
D 270.1352
(-1.7599
Thus x"(0.1555)= 4, -E" xI+ 4, £ x 1.4821
us x - = . . l
H= 1 0.4946
0.7834

We clearly see that the investor with risk aversion parameter 6=4, being more risk

averse than the investor with risk aversion parameter 6=1, because the first one chooses a

portfolio with a lower return-risk combination than the portfolio chosen by the second

investor. This result is summarized in the next table:
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Risk aversion | Combination of return- Portfolio weights
parameter 0 standard deviation (p, o)
Investor 1 4 (0.0461, 0.0640) x1 =37.07%
x2 =28.73%
x3 =14.41%
x4 =19.72%
Investor 2 1 (0.1555, 0.2246) x1=-175.99%
x2=14821%
x3 = 49.46%
x4 = 78.34%

Table 2 Portfolio weights for different values of risk aversion parameter (6)

Now, we use the derived utility function ¥ (u,0°) = u—6-0°,and we repeat our

previous calculations.

Using the following mathematical equations:

1 D B D
20)=— , (@) ==+
o-(9) A+4-A-92 #(9) A 2-4-0

e For 6=4:

the optimal mean-standard deviation combination is (4,c) = (0.0651, 0.0893)

As next step, we try to compute the portfolio that yields this optimal combination for

this investor.

The weights of this portfolio are:
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x(0.0651) =4 -Z' xI+A4,-Z" xp

5 =CoB-ap _0:5320-88599-0.0651

= -0.000166
D 270.1352
I A ptp—B _655.2758-0.0651-8.8599 .
D 270.1352
0.0006
Thus x'(0.0651) = 4 -E xT4 4, -E xpu = 0.4945
' ) P~ 0.2048
10.2988
e For 6=1:

The optimal mean-standard deviation combination is (u,o) =(0.2196, 0.3234)

We must compute the 4, and 4, :

Am C-B-u, 0.5320-8.8599-0.2196

= -0.00523
D 270.1352
i Ay, —B _655.2758-02196-8.8599 000
D 270.1352
-3.0071
Thus x‘(02196)—/11'2-1xl+ﬂ,2'2-1)< - 2.1821
. ) E=10.7001
1.1269
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3.5 Extensions of the basic model

In spite of its theoretical interest, the basic mean—variance model is often too simplistic
to represent the complexity of real-world portfolio selection problems. In order to enrich

the model, we need to introduce more realistic constraints.

Consider the following portfolio selection problem

n n
min z Z C,x-x, objective function
i=1 j=1
n
s.t. Z R -x =R, return constraint
i=1
n
Zx,. =1 budget constraint
i=1
x,<x,<x, (1<i<n) floor and ceiling constraints

x,=xorx, 2(x”+B)
©) . . .
orx, <(x,"” =S,) (1<i<n) trading constraints

[{ie{l,...n}:x, #0}|< N  maximum number of assets

e Return and budget constraints.
The first constraint expresses the requirement placed on expected return. The
second constraint, called budget constraint, requires that 100% of the budget be
invested in the portfolio.
e Floor and ceiling constraints.
These constraints define lower and upper limits on the proportion of each asset
which can be held in the portfolio. They may model institutional restrictions on
the composition of the portfolio. They may also rule out negligible holdings of
asset in the portfolio, thus making its control easier.
Notice that the floor constraints generalize the non-negativity constraints impose Q::: -; “

in the original model. i
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e Trading constraints.
Lower limits on the variations of the holdings can also be imposed in order to
reflect the fact that, typically, an investor may not be able, or may not want, to
modify the portfolio by buying or selling tiny quantities of assets. A first reason
may be that the contracts must bear on significant volumes.

* Another reason may be the existence of relatively high fixed costs linked to the
transactions. These constraints are disjunctive in nature: for each asset i either the

holdings are not changed, or a minimal quantity B, must be bought, or a minimal
quantity S, must be sold.

¢ Maximum number of assets.
This constraint limits to N the number of assets included in the portfolio, e.g. in

order to facilitate its management.

3.6 Solution approaches

The complexity of solving portfolio selection problems is highly related to the type of
constraints that they are involved in our model.

The simplest case is obtained when the non-negativity constraints are omitted (allowed
short sales) from the basic model. In this case, a closed-form solution is easily obtained
by the classical Lagrange methods, for which we are giving a detailed description.

The problem becomes more complex when non-negativity constraints (not allowed
short sales) are added to the formulation, as in the basic Markowitz model. The resulting
is a quadratic programming problem, however, can still be solved efficiently with the use
of the Solver from the Microsoft Excel program. A very crucial point is that the problem

becomes increasingly hard to manage and to solve as the number of assets increases.
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When the model involves constraints on minimal trading quantities or on the maximum

number of assets in the portfolio, as in our model (PS), then we enter the field of mixed

integer nonlinear programming and classical algorithms are typically unable to deliver

the optimal solution of this problem.

In this thesis, our purpose is to investigate the solution of the complete model (PS)

presented in Chapter 5 by a simulated annealing algorithm. Our goal is to develop an

approach which, while giving up claims to optimality, would display some robustness

with respect to various criteria, including

quality of solutions
speed
ease of addition of new constraints

ease of modification of the objective function (e.g. when incorporating higher

moments than the variance)
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Chapter 4

Heuristic Optimization

4.1 The problems in Optimization Problems

Optimization problems are concerned with finding the values for one or several
decision variables that meet the objective(s) the best without violating the constraint(s).
The identification of an efficient portfolio in the basic Markowitz model is therefore a

typical optimization problem: the values for the decision variables x, have to be found

under the constraints that
N
(i) they must not exceed certain bounds: 0 < x, <1 and: Zx,. =1 and
i=1
(it) the portfolio return must have a given expected value, the objective is to find values

for the assets” weights that minimize the risk which is computed in a predefined way.

The basic Markowitz model is a well-defined optimization model as the relationship
between weight structure and risk and return is perfectly computable for any valid set of
(exogenously determined) parameters for the assets’ expected returns and (co-)variances
(as well as, when applicable, the trade-off factor between portfolio risk and return).

On the other hand, if in the Portfolio Selection problem we add the constraint for only

long sales ( x, > 0) there exists no general solution for this optimization problem because

of the non-negativity constraint on the asset weights.-Hence, there is no closed form
solution whereas, in the basic unconstrained Markowitz model. Though not solvable
analytically, there exist numerical procedures by which the Markowitz model can be
solved for a given set of parameters values.

Depending on the objective function, optimization problems might have multiple
solutions some of which might be local optima. In Figure 2.1, e.g., a function f(x) is

depicted, and the objective might be to find the value for x where f(x) reaches its highest
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value, i.e. max f(x) . As can easily be seen, all three points x,,x, and x. are (local)

maxima: the first order condition, f'(x) =0 is satisfied (indicated by the horizontal
tangency lines), and any slight increase or decrease of x would decrease the function’s

value: f(x) > f (x+e)|e—0. Nonetheless, only x, is a global optimum as it yields the
highest overall value for the objective function, whereas x, and x,. are just local optima.

Unlike for this simple example, however, it is often difficult to determine whether an
identified solution is a local or the global optimum as the solution space is too complex:
All of the objective functions that will be considered in the main part of this contribution
have more than one decision variable, the problem space is therefore multidimensional;
and the objective functions are mostly discontinuous (i.e., the first derivatives are not

well behaved or do not even exist).

In portfolio management, these difficulties with the objective functions are frequently
observed when market frictions have to be considered. To find solutions anyway,
common ways of dealing with them would be to either eliminate these frictions (leading
to modeis that represent the real-world in a stylized and simplified way) or to approach
them with inappropriate methods (which might lead to suboptimal and misleading resuits
without being able to recognize these errors). This contribution is mainly concerned with
the effects of market frictions on financial management which are therefore explicitly
taken into account. Hence, for reliable results, an alternative class of optimization
techniques has to be employed that are capable of dealing with these frictions, namely

heuristic optimization techniques.

4.2 Heuristic optimization techniques

The central common feature of all heuristic optimization (HO) methods is that they start
off with a more or less arbitrary initial solution, iteratively produce new solutions by
some generation rule and evaluate these new solutions, and eventually report the best

solution found during the search process. The execution of the iterated search procedure
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is usually halted when there has been no further improvement over a given number of
iterations, either when the found solution is good enough or the allowed CPU time (or
other external limit) has been reached or when some internal parameter terminates the
algorithm’s execution. Another obvious halting condition would be exhaustion of valid

candidate solutions — a case hardly ever realized in practice.

4.3 Simulated Annealing

Kirkpatrick, Gelatt, and Vecchi (1983) present one of the simplest and most general
Heuristic Optimization (HO) techniques which turned out to be one of the most efficient
ones, too: Simulated Annealing (SA). This algorithm mimics the crystallization process
during cooling or annealing: When the material is hot, the particles have high kinetic
energy and move more or less randomly regardless of their and the other particles’
positions.

The cooler the material gets, however, the more the particles are “torn™ towards the
direction that minimizes the energy balance. The SA algorithm does the same when
searching for the optimal values for the decision parameters: It repeatedly suggests
random modifications to the current solution, but progressively keeps only those that
improve the current situation.

SA applies a probabilistic rule to decide whether the new solution replaces the current
one or not. This rule considers the change in the objective function and an equivalent to

“temperature” (reflecting the progress in the iterations).

Simulated annealing is a general name for a class of optimization heuristics that
perform a stochastic neighborhood search of the solution space. The major advantage of
SA over classical local search methods is its ability to avoid getting trapped in local
minima while searching for a global minimum. The underlying idea of the heuristic is

adopted from certain thermo dynamical processes (cooling of a melted solid).

The general problem takes the form
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min F(x) st. xe X,

the basic principle of the SA heuristic can be described as follows. Starting from a current
solution x, another solution y is generated by taking a stochastic step in some
neighborhood of x. If this new proposal improves the value of the objective function, then
y replaces x as the new current solution. Otherwise, the new solution y is accepted with a
probability that decreases with the magnitude of the deterioration and in the course of
iterations. (Notice the difference with classical descent approaches, where only

improving moves are allowed and the algorithm may end up quickly in a local optimum.)
More precisely, the generic simulated annealing algorithm performs the following steps.

e Choose an initial solution x® and compute the value of the objective
function F(x'”). Initialize the best available solution, denoted by
', F"), as: (x",F") « (x9, F(x'*).

e Until a stopping criterion is fulfilled and for n starting from 0, do:

1) Draw a solution x at random in the neighborhood V' (x'™) of x'

- F(x) < F(x) then x"*" « x
: and if F(x)<F" then (x',F) « (x, F(x)).

F(x)> F(x") then draw a number p at random in [0,1]

and if p < p(n,x,x”) then x"*) « x else x"*" « x

The function p(n,x,x™)is often taken to be a Boltzmann function inspired from

thermodynamics models:

_AF,
Tﬂ

p(n,x,x'") = e

where AF, = F(x)— F(x")and T, is the temperature at step n, that is a non-increasing

function of the iteration counter n. In so-called geometric cooling schedules, the
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temperature is kept unchanged during each successive stage, where a stage consists of a
constant number L of consecutive iterations. After each stage, the temperature is

multiplied by a constant factora € (0,1) .

Due to the generality of the concepts that it involves, Simulated Annealing (SA) can be
applied to a wide range of optimization problems. In particular, no specific requirements
need to be imposed neither on the objective function (derivability, convexity ...) nor on
the solution space. Moreover, it can be shown that this metaheuristic method converges

asymptotically to a global minimum.

For the whole analysis, we give the pseudo code of the Simulated Annealing algorithm:

generate random valid solution x;
REPEAT
generate new solution x_ by randomly modifying
the current solution x;
evaluate new solution x_;
IF acceptance criterion is met THEN;
replace x with x_;
END;
adjust acceptance criterion;
UNTIL halting criterion is met;
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Chapter 5

Simulated Annealing for portfolio selection

5.1 Simulated Annealing for portfolio selection
5.1.1 Generalities: How to handle constraints . ..

In order to apply Simulated Annealing (SA) in the Portfolio Selection problem, we
must defined two important meanings, the meaning of selution and neighborhood.
We simply encode a solution of (PS) as an n-dimensional vector x, where each variable

x, represents the holdings of asset i in the portfolio. The quality of a solution is measured

by the variance of the portfolio, that isx"X-x.

After the question of how do we handle the constraints is very fundamental for our
thesis and we have to answer the question of how do we make sure that the final solution
produced by the SA algorithm satisfies all the constraints of Portfolio Selection problem.

The first and most obvious approach enforces feasibility throughout all iterations of the
SA algorithm and forbids the consideration of any solution violating the constraints. This
implies that the neighborhood of a current solution must entirely consist of feasible
solutions. A second approach, by contrast, allows the consideration of infeasible solutions
but adds a penalty term to the objective function for each violated constraint: the larger
the violation of the constraint, the larger the increase in the value of the objective
function. A portfolio which is unacceptable for the investor must be penalized enough to
be rejected by the minimization process.

The ‘“all-feasible’’ vs. ‘‘penalty’’ debate is classical in the optimization literature. Both
approaches, however, are not equally convenient in all situations and making the ‘right”’
choice is a very difficult problem because all constraints are not the same and we ought to
be very careful. Before we get to this discussion, let us first line up the respective

advantages and inconvenients of each approach.
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When the method of penalties is used, the magnitude of each penalty should depend on
the magnitude of the violation of the corresponding constraint, but must also be scaled
relatively to the variance of the portfolio. A possible expression for the penalties is

ax|violation |,
where a and p are scaling factors. For example, the violation of the return constraint can
be represented by the difference between the required portfolio return (Rex) and the
current solution return (R x).The violation of the floor constraint for asset i can be

expressed as the difference between the minimum admissible level x; and the current

holdings x, , when this difference is positive.

This method, however, has two vital disadvantages. The first is that it searches a
solution space whose size may be considerably larger than the size of the feasible region.
This process may require many iterations and takes important computation time.

The second inconvenient begins from the scaling factors: it may be difficult to define
adequate values for a and p. If these values are too small, then the penalties do not play
their expected role and the final solution may be infeasible. On the other hand, if a and p
are too large, then the term x" XZ-x becomes negligible with respect to the penalty, thus,
small variations of x can lead to large variations of the penalty term, which overlap the
effect of the variance term.

Clearly, the correct choice of a and p depends on the scale of the data. It appears very
difficult to automate this choice. In our implementations, we have selected values for a

and p as follows. We set a=10"° and p =2 in our algorithm.

Let us now discuss the alternative method, the all-feasible approach, in which the
neighborhood of the current solution may only contain solutions that satisfy the given
subset of constraints. The idea that we implemented here (following some of the
proposals made in the literature on stochastic global optimization) is to draw a direction
at random and to take a small step in this direction away from the current solution. The
important features of such a move are that both its direction and length are computed so
as to respect the constraints. Moreover, the holdings of only a few assets are changed

during the move, meaning that the feasible direction is chosen in a low-dimensional
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subspace. This simplifies computations and provides an immediate translation of the
concept of ‘‘neighbor’’.

The main advantage of this approach is that no time is lost investigating infeasible
solutions. The main disadvantage is that it is not always easy to select a neighbor in this
way, so that the resulting moves may be quite contrived, their computation may be
expensive and the search process may become inflexible. On the other hand, this
approach seems to be the only reasonable one for certain constraints, like for example the
trading constraints.

For each class of constraints, we had to point out the advantages and disadvantages of
each approach. When a constraint must be strictly satisfied or when it is possible to
enforce it efficiently without penalties in the objective function, then we do so. This is the
case for the constraints on budget, return and maximum number of assets. A mixed
approach is used for the trading, floor, ceiling constraints.

In the next sections, we successively consider each class of constraints, starting with

those that are enforced without penalties.

5.1.2 Budget and Return constraints

The budget constraint must be strictly satisfied, since its unique goal is to norm the
solution. Therefore, it is difficult to implement this constraint throughout the method of
penalties.

The same conclusion applies to the return constraint, albeit for different reasons.
Indeed, our aim is to compute the whole mean—variance frontier. To achieve this aim, we
want to let the expected portfolio return vary uniformly in its feasible range and to
determine the optimal risk associated with each return. In order to obtain meaningful
results, the optimal portfolio computed by the procedure should have the exact required
return.

As a logical flow of the above comments, we decided to restrict our algorithm to the
consideration of solutions that strictly satisfy the return and the budget constraints. More

precisely, given a portfolio x, the neighborhood of x contains all solutions x' with the
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following property: there exist three assets, labeled 1, 2 and 3 without loss of generality,

such that

(x, = x, —step,
R -
X, =x2+step-‘—R3,
< R, - R,
-R
x, =x3+step-—L,
R, - R,
x, =x,, foralli>3,

where step is a (small) number to be further specified below. It is straightforward to
check that x' satisfies the return and budget constraints when x does so. Geometrically,
all neighbors x' of the form (4) lie on a line passing through x and whose direction is
defined by the intersection of the 3-dimensional subspace associated to assets 1, 2 and 3
with the two hyper planes associated to the budget constraint and the return constraint,
respectively. Thus, the choice of three assets determines the direction of the move, while
the value of step determines its amplitude.

Observe that, in order to start the local search procedure, it is easy to compute an initial
solution which satisfies the budget and return constraints. Indeed, if x denotes an
arbitrary portfolio and min (respective max) is the subscript of the asset with minimum

(respective maximum) expected return, then a feasible solution is obtained upon

replacing x_,, and x__ by x,, andx,, , where

n

Z xi .Ri_(xmin +xmax).1emax]

Rexp = J#min, max
(R = Roar)

Xpax = Xegin + Xpax =X,

n: min *

x. =[

'min ’

The resulting solution may violate some of the additional constraints of the problem
(trading, turnover, etc.) and penalties will need to be introduced in order to cope with this

difficulty. This point will be discussed in next sections.
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5.1.3 Direction of moves

Choosing a neighbor of x, as described by (4), involves choosing the direction of the
move, i.e. choosing three assets whose holdings are to be modified. For starting, we
simply drew the indices of these assets randomly and uniformly over {1,...,n}. Many of
the corresponding moves, however, were not improved our results, thus creating slowness
convergence of the algorithm.

We have been able to improve this situation by guiding the choice of the three assets to
be modified. Observe that the assets whose return is closest to the required portfolio
return have (intuitively) a higher probability to appear in the optimal portfolio than the
remaining ones. (This is most obvious for portfolios with ‘extreme’ returns: consider for
example the case where we impose nonnegative holdings and we want to achieve the
highest possible return, i.e. Rmax.). To account for this phenomenon, we initially sort all
the assets by no decreasing return. For each required portfolio return Rexp, we determine
the asset whose return is closest to Rexp and we store its position, say q, in the sorted list.

For each iteration of the SA algorithm, we choose the first asset to be modified by
computing a random number normally distributed with mean q and with standard
deviation large enough to cover the entire list: this random number points to the position
of the first asset in the ordered list. The second and third assets are then chosen uniformly

at random.

5.1.4 Maximum number of assets constraint

This cardinality constraint is difficult in nature. A ‘natural’ penalty approach based on

measuring the extent of the violation:

violation 4 {i € {l,...,n} : x, # 0} | ~n

In our thesis we choose this approach to handle this constraint indeed, all the neighbors of
a solution are likely to yield the same penalty, except when an asset exceptionally

appears in or disappears from the portfolio.
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5.1.5 Floor, ceiling and turnover constraints

The floor, ceiling and turnover constraints are similar to each other, since each of them
simply defines a minimum or maximum bound on holdings. Therefore, our program
automatically converts all turnover purchase constraints into ceiling constraints and all
turnover sales constraints into floor constraints.

Suppose now that we know which three assets (say, 1, 2 and 3) must be modified at the
current move from solution x to solution x'. Then, it is easy to determine conditions on
the value of step such that x' satisfies the floor and ceiling constraints. As a next step we

can combine the latter constraints with Egs. (4) and we take the following conditions:

X, —X, < step <X, — X,

<X, =X <step~u3—<f -X
=2 2 = = 2°
R, - R,
-R
R, L<x, —x,.

X, —Xx; < step-

These conditions yield a feasible interval of variation for step for the move from x tox'.
Let us now consider the case where the feasibility interval [Ib; ub] is either empty or very
narrow, meaning that x is either infeasible or close to the infeasible region. In order to
handle this and other situations where infeasible solutions arise, we introduce a penalty

term of the form

ax|violation ”,

in the objective function for each ceiling or floor constraint. Notice that the penalty
approach appears to be suitable here, since limited violations of the floor, ceiling or
turnover constraints can usually be tolerated in practice.

To be more specific, the penalties for floor and ceiling constraints take the form of:

Ceiling if x, >X, then penalty=a-(x,-Xx,)"
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Floor if x, <x,, thenpenalty=a-(x,-x,)"

5.1.6 Trading constraints

The trading constraints are disjunctive: either the holdings of each asset remain at their
current value x'© or they are modified by a minimum admissible amount. These

constraints are difficult to handle, as they disconnect the solution space into 3" feasible
subregions separated by forbidden subsets.

Observe, however, that solutions which violate the trading constraints still arise in some
iterations of the algorithm. For instance, the initial solution is usually infeasible, and so
are the solutions which are generated when the portfolio contains exactly N assets. The
infeasible portfolios are penalized with the way that is described in the next paragraph
(the parameters a and p are fixed). Observe that penalties are high at the center of the
forbidden zones and decrease in the direction of admissible boundaries (associated with
no trading or with minimum sales/purchases). Therefore, starting from a forbidden

portfolio, the process tends to favor moves toward feasible regions.

To be more specific, the penalties for trading constraints take the form of:

0),
Qpurchase =% =55 if Qppinase € (0, B,), then

B

Purchase {if Qprehase <= thenpenalty =a-Q;, ..

[\

else penalty =a-(B,— Qpurepuse) }
Qsale = xi(O) = xi; if Qsale S (0’§l )’ then
Sale 4 O rchase S% then penalty = a-Q°

sale

else penalty=a-(S,-0Q.,.)"}
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5.1.7 Neighbor selection

We can summarize as follows the neighbor selection procedure.

Move direction

e Ifthe current portfolio involves N- k assets, withk >1, then
= select three assets, say 1, 2 and 3, at random as explained in above section ,
while ensuring that at most k of them are outside the current portfolio;
= go to Case a.
e Ifthe current portfolio involves N assets, then
= select three assets, say 1, 2 and 3, at random, while ensuring that at most one of
them is outside the current portfolio;
= if all three selected assets are in the current portfolio,

then go to Case a; else go to Case b.
Step length
Case a
Let d be the direction of the move as defined by Eqs. (4) (with the sign of step fixed at
random). Compute the feasible interval for the step of the move, with the use of the

equation

step = (ub-1b) * ranmar() + 1b where ub, Ib is the upper and lower bound of the step and

the function ranmar() gives a random number between [0,1].

o If x+ step - d satisfies the trading constraint
x + step - d is the selected neighbor; if necessary, compute penalties for the

violation of the floor and ceiling constraints as we discuss in above section;
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Case b

* Let assets 1 and 2 be in the current portfolio and asset 3 be outside. In Equation. (4), set

the parameter step equal to x1, set x,'=0and compute the corresponding values
ofx," andx,".
» If necessary, compute penalties for the violation of the floor, ceiling and trading

constraints as in Tables 1 and 2.

5.2 Cooling schedule and stopping criterion

In our implementation of simulated annealing, we have adopted the geometric cooling
schedule. In order to describe more completely this cooling schedule, we need to specify

the value of the parameters 7, (the initial temperature), L and a. we set the initial
temperature 7; in such a way that, during the first cooling stage (first L steps), the

probability of acceptation of a move is roughly equal to a predetermined level of 0.8.
In order to achieve this goal, we proceed as follows. In the first phase, the SA algorithm
is run for L steps without rejecting any moves.

After L moves, the temperature is decreased according to the scheme7,,, =a-T,. We

use here the standard value a = 0.85 . The fundamental trade-offs, involved in the
determination of the stage length L are well-known, but difficult to quantify precisely. A
large value of L allows exploring the solution space thoroughly, but results in long
execution times. The algorithm terminates if no moves are accepted during a given

number S of successive stages. In our experiments, we used S= 4.
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Chapter 6

Results

6.1 The Data

We have used financial data extracted from the web database of Naftemporiki. We have
retrieved the daily prices of N=307 Greek stocks covering different traditional sectors for
435 days, from 1 January 2006 to 28 September 2007, in order to estimate their mean
returns and covariance matrix.

To be more specific, we choose 20 stocks from the sector of the large Capitalization
and from the daily prices we compute the daily returns for the stocks, continuing we

calculate the expected returns for these stocks with the use of this specific time period:

R = i 21 and after with

-1

435

2R,

E(R)="—,i=1,..,20
(R)="—=1

After, we compute the variance of these 20 stocks

i R’ and o, = rforallt—l 20
t=1

As a last step, we find the co-variances among these 20 stocks, with the use of the

relationship:

12 = ZT: (R, —k )}(Rz’ —&) for the assets | and 2.
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The reader of this master thesis can find these data (expected returns, variances and co-

variances) at the Appendix B in the end of thesis.

6.2 Comments on the source code

In this section, I give in a more analytical way some important points of the
implementation of our program.
First of all, we declare in the beginning of each function the variables that it’s used.
Some important variables are:
n : number of assets in our universe (n=20)
nmax : maximum number of assets that we want to have our portfolio.
ns : the stage size
mu(n) : vector of the expected return for the twenty assets
sigma(n,n): variance-covariance matrix for these 20 assets
f : value of the objective function
muport : required expected return
wopt(n) : optimal weights of the portfolio
fopt : optimal value of the objective function

t: the value of the parameter of initial temperature

w(n): variable for the portfolio weights

wlow(n) : minimum value for each weight

wup(n) : maximum value for each weight

w0(n) : the initial weights for the initial portfolio

min#r(n): minimum value on the variations of the holdings for each weight

tradec : logical value (if tradec=1, the portfolio has trading constraint else if tradec=0, the
portfolio has not trading constraint)
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As a next step, we initialize the variables mu(n), sigma(n,n) with values that our
program was read from the file data2.txt. The initializations of ¢, wlow(n), wup(n),

wO0(n), mintr(n), tradec are become in the main body of our source code.

In a typical way, we set t = 0.10, wO(n) = 0.05 , wlow(n) = -5.0 (in the case that we
allowed short sales), wlow(n) = 0.0 (in the case that we not allowed short sales), mintr(n)

= (.10, tradec=0or 1.
The main functions of our program:

¢ init(n,w,mu,muport) : This function finds initial weights for the portfolio. Its main
operation is to make zero the weights of assets that cannot contribute in the

portfolio expected return. Here we set the restriction to invest our whole budget.

s fen(n,sigma,w,f,wup,wlow,nmax,w0,mintr,tradec) : Define the function to be

optimized (we minimize the objective function min Z ZCy XX, )
i=1 j=1

e pick(n,d,d1,d2,d3) : This function chooses which 3 weights to change at each

repeating of the algorithm of Simulated Annealing).

¢ sa(n, mu, sigma, w, f, wopt, fopt, wlow, wup, nmax, w0, mintr, tradec, t, ns)

This routine implements the continuous simulated annealing global optimization
algorithm. SA tries to find the global optimum of an N dimensional function. It
moves both up and downhill and as the optimization process proceeds, it focuses
on the most promising area. To start, it randomly chooses a trial point within the
step. The function is evaluated at this trial point and its value is compared to its
value at the initial point. In a maximization problem, all uphill moves are
accepted and the algorithm continues from that trial point. Downhill moves may
be accepted, the decision is made by the Metropolis criteria. It uses the parameter

temperature (t) and the size of the downhill move in a probabilistic manner. The
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smaller temperature and the size of the downhill move are, the more likely that
move will be accepted. If the trial is accepted, the algorithm moves on from that
point. If it is rejected, another point is chosen instead for the trial evaluation.

A fall in temperature (t) is imposed upon the system with the equation of
t(i+1)=0.85-1() where i is the i-th iteration. Thus, as t declines, downhill moves
are less likely to be accepted and the percentage of rejections rises. The Simulated

Annealing algorithm focuses upon the most promising area for optimization.

e exprep(rdum) : this function replaces exp to avoid under- and overflows. Note
that the maximum and minimum values of exprep are such that they has no effect

on the algorithm.

e subroutine rmarin(ij,kl) and function ranmar() : this is the initialization routine for
the random number generator ranmar(). Note: the seed variables can have values

between: 0<ij<31328 and 0 <A/ <30081.

The parameter temperature (t) is crucial in using Simulated Annealing successfully. It
influences the step length over which the algorithm searches for optima. For a small
initial t, the step length may be to small, thus not enough of the function might be
evaluated to find the global optima.

6.3 Computational experiments

The algorithms described above have been implemented in FORTRAN and run on a PC
Pentium 3.2 GHz under Windows XP. A graphical interface was developed with Excel
and MATLAB. All computation times mentioned in coming sections are approximate
real times, not CPU times. Unless otherwise stated, the parameter settings for the basic

SA algorithm are defined as follows:
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e Stage size: ns=70000
e Stopping criterion: terminate when no moves are accepted for S= 4 consecutive

stages

For the purpose of constructing realistic problem instances, we have used financial data
extracted from the web database of Naftemporiki. We have retrieved the daily prices of
n=307 Greek stocks covering different traditional sectors for 484 days, from 1 January
2006 to 28 September 2007, in order to estimate their mean returns and covariance
matrix. But for the needs of my thesis I used the 20 mostly major stocks with large
capitalization. (Note that our goal was not to draw any conclusions regarding the firms, or
the stock market, or even the composition of optimal portfolios, but only to test the
computational performance of our algorithm.)

These data have been used to generate several instances of model (PS) involving
different subsets of constraints.

For each instance, we have approximately computed the mean-variance frontier by

letting the expected portfolio return (Rexp) vary from -8% to 28% by steps of 1%.

Now, we must give the input parameters to our model:

Input Parameters

Parameters Units Inputs
Return constraint Fraction Depended
Budget constraint Integer 1

Floor constraint Fraction Depended
Ceiling constraint Fraction Depended
Trading constraint Fraction Depended
Number of assets in universe | Integer 20
Cardinality constraint Inféger ' Depended

Table 3 Input parameters for our model
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6.3.1 The unconstraint case

This is the case in which, we have used the simulated annealing (SA) algorithm to solve
instances of the Markowitz mean—variance model without any constraint on the weights
of the portfolio. Since these instances can easily be solved to optimality by the Lagrange
techniques, we are able to check the quality of the solutions obtained by the SA
algorithm. Our algorithm finds the exact optimal risk for all values of the expected return.

In this case the table for the input parameters takes the form:

Input Parameters

Parameters Units Inputs
Return constraint Fraction -10%-27%
Budget constraint Integer 100%
Floor constraint Fraction No
Ceiling constraint Fraction No
Trading constraint Fraction No
Number of assets in universe | Integer 20
Cardinality constraint Integer No

Table 4 Input parameters for the unconstraint case
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The mean-risk frontier for the case of no restrictions is plotted in Fig. 8.
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Figure 8 Efficient Frontier without limits
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6.3.2 The case of only long sales

This is the case in which, we have used the simulated annealing (SA) algorithm to solve

instances of the Markowitz mean—variance model with the no-negativity constraint in the

portfolio weights (x; 20).

In this case the table for the input parameters takes the form:

Input Parameters

Parameters Units Inputs

Return constraint Fraction -5%-26%

Budget constraint Integer 100%

Floor constraint Fraction Yes (the lower bound of
x,is 0)

Ceiling constraint Fraction No

Trading constraint Fraction No

Number of assets in universe | Integer 20

Cardinality constraint Integer No

Table 5 Input parameters for the only long sales case

The mean-risk frontier for the case of only long sales is plotted in Fig. 9.
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Figure 9 Efficient Frontier with short sales restriction

At this point, it is very important to compare the efficient frontier of the unconstraint

case with the only long sales frontier.
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Figure 10 Plot together the efficient frontiers
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We clearly see that the effect of short sales restriction is that the Efficient Frontier moves
inside the feasible set and it loses extreme values. For the same expected return in the
case of no short sales, we have much more risk than the risk that we take in the case of
the unconstrained optimization. Now I will give a table with the portfolio holding for the

same level of expected return and after a diagram that sum ups these differences:

Return ¢ (w) o (w/o) Return o (w) ¢ (w/o)
-0.05 1.0541 1.2752 0.09 09031 0.9458
-0.04 1.0338  1.1798 0.1 09051 0.9521
-0.03 1.0147  1.1243 0.11 09088 0.961
-0.02 0.9969 1.0829 0.12 09143 0.9723
-0.01 0.9804 1.0497 0.13 09215 0.9861

0 0.9653  1.0244 0.14 0.9305 1.0022
0.01 09518 1.0022 0.15 09411 1.0205
0.02 0.9397 0.9842 0.16 0.9534 1.0421
0.03 0.9293  0.9687 0.17 09671 1.0688
0.04 09206 0.9564 02 1.0170 1.1853
0.05 09135 0.9479 022 1.0567 1.2897
0.06 0.9082 0.9429 024 1.1010 1.4229
0.07 0.9047 09412 0.25 1.1247 1.5059
0.08 0.9030 0.9422 026 1.1493 1.6292

Table 6 Risk comparison between the unconstraint case and only long sales

We clearly see that if short sales are allowed we achieve better risk for the same

expected return.
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Figure 11 Comparison between two frontiers

6.3.3 The case of floor constraint
This is the case in which, we have used the simulated annealing (SA) algorithm to solve

instances of the Markowitz mean—variance model with the floor constraint in the

portfolio weights (x, >0.01).

In this case the table for the input parameters takes the form:

Input Parameters
Parameters Units Inputs
Return constraint Fraction -5%-26%
Budget constraint Integer 100%
Floor constraint Fraction Yes x, 20.01
Ceiling constraint Fraction No
Trading constraint Fraction No
Number of assets in universe | Integer 20
Cardinality constraint Integer No

Table 7 Input parameters for the case of floor constraint
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The mean-risk frontier for the case of only long sales is plotted in Fig. 12.

—~&—with floor constraint
xi>0.01

Figure 12 Efficient Frontier with floor constraint

This constraint defines lower limits on the proportion of each asset which can be held
in the portfolio. They may model institutional restrictions on the composition of the
portfolio. They may also rule out negligible holdings of asset in the portfolio, thus

making its control easier.
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6.3.4 The case of ceiling constraint

This is the case in which, we have used the simulated annealing (SA) algorithm to solve
instances of the Markowitz mean-variance model with the ceiling constraint in the

portfolio weights (X, <0.25).

Input Parameters
Parameters Units Inputs
Return constraint Fraction -8%-28%
Budget constraint Integer 100%
Floor constraint Fraction No
Ceiling constraint Fraction Yes X, <0.25
Trading constraint Fraction No
Number of assets in universe | Integer 20
Cardinality constraint Integer No

Table 8 Input parameters for the case of ceiling constraint

The mean-risk frontier for the case of is plotted in Fig. 13.
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Figure 13 Efficient Frontier with ceiling constraint
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6.3.5 The case of cardinality constraint (Maximum number of assets included in our

portfolio)

This is the case in which, we have used the simulated annealing (SA) algorithm to solve

instances of the Markowitz mean—variance model with the maximum number of assets

constraint.

In this case the table for the input parameters takes the form:

Input Parameters

Parameters Units Inputs

Return constraint Fraction -6%-26%

Budget constraint Integer 100%

Floor constraint Fraction No

Ceiling constraint Fraction No

Trading constraint Fraction No

Number of assets in universe | Integer 20

Cardinality constraint Integer Yes (Maximum number of

assets=5)

Table 9 Input parameters for the case of cardinality constraint

The mean-—risk frontier for the case of cardinality constraint N =5 is plotted in Fig.

14.
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Figure 14 Efficient Frontier with cardinality constraint

This constraint limits to five the number of assets included in the portfolio, e.g. in order

to facilitate its management.
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6.3.6 The case of trading constraint

When the model only involves floor, ceiling and turnover constraints, the mean—
variance frontiers are smooth curves. When we introduce trading constraints, however,
sharp discontinuities may arise.

When the number of securities increases, the optimization problem becomes extremely

difficult to solve. The trading constraints defined as follows:

eB =5 =010 (i=1,.,n)
o the initial portfolio x'® is the best portfolio of 20 stocks with an expected return of 9.26%

In this case the table for the input parameters takes the form:

Input Parameters
Parameters Units Inputs
Return constraint Fraction -4%-24%
Budget constraint Integer 100%
Floor constraint Fraction No
Ceiling constraint Fraction No
Trading constraint Fraction Yes(B =S§,=0.10 (i=1,..,n)
Number of assets in universe | Integer 20
Cardinality constraint Integer No

Table 10 Input parameters for the case of trading constraint

The mean-risk frontier for the case of trading constraint is plotted in Fig. 15.
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Figure 15 Efficient Frontier with trading constraint
However, as expected, the frontier is not as smooth as in the simpler cases. The
question is to know whether we succeeded in computing the actual frontier or whether the

SA algorithm erred in this complex case. The simplex method cannot be used anymore to

compute the optimal solutions, because of the mixed integer constraints.

6.3.7 The complete case
Investigating each class of constraint separately was important in order to understand
the behavior of the algorithm, but our final aim was to develop an approach that could

handle more realistic situations where all the constraints are simultaneously imposed.

In this case the table for the input parameters takes the form:
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Input Parameters

Parameters Units Inputs

Return constraint Fraction -5%-26%

Budget constraint Integer 100% N

Floor constraint Fraction Yes (the lower bound of x; is
0)

Ceiling constraint Fraction No

Trading constraint Fraction Yes(B =8,=0.10 (i=1,...,n)

Number of assets in universe | Integer 20

Cardinality constraint Integer Yes (Maximum number of

assets=7)

Table 11 Input parameters for the case of all constraints

The mean-risk frontier for the complete case of constraints is plotted in Fig. 16.

—eo— with all restrictions

Figure 16 Efficient Frontier with all constraints
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Figure 17 sums up all the previous results. It illustrates the effect of each class of

constraints on the problem and allows some comparison of the mean—variance frontiers

computed in each case.

Efficient Frontiers

Return

unconstraint case

no short sales (xi=0)

floor constraint (xi>0.01)
ceiling constraint (xi<0.25)
complete case

08 1 1.1 i), 7% 13 1.4 1.5 16 .78 1.8
Risk

Figure 17 The diagram for all cases

The efficient frontier without any restriction includes the biggest feasible set of
portfolios. The impact of short sales restriction and of the floor restriction is that the
Efficient Frontier goes inner and we take a smaller space of feasible sets. The impact of
ceiling constraint is to lose some extreme combinations in the lower part of Efficient

Frontier and for this reason this constraint is not very important. In the complete case, the

trading constraint creates sharp discontinuities.
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Chapter 7

CONCLUSION AND FUTURE DEVELOPMENTS

7.1 Conclusions

Portfolio selection gives rise to difficult optimization problems when realistic side-
constraints are added to the fundamental Markowitz model. Exact optimization
algorithms cannot deal efficiently with such complex models. It seems reasonable,
therefore, to investigate the performance of heuristic approaches in this framework.

Simulated annealing is a powerful tool for the solution of many optimization problems.
Its main advantages over other local search methods are its flexibility and its ability to
approach global optimality. Most applications of the SA metaheuristic, however, are to
combinatorial optimization problems. In particular, its applicability to portfolio selection
problems is not fully understood, yet. The main objective of this thesis was therefore to
investigate the adequacy of simulated annealing for the solution of a difficult portfolio
optimization model.

As Simulated Annealing (SA) is a metaheuristic, there are quite a lot of choices to
make in order to turn it into an actual algorithm. We have developed a way to generate
neighbors of a current solution. We have also proposed specific approaches to deal with
each specific class of constraint, either by explicitly restricting the portfolios to remain in
the feasible region or by penalizing infeasible portfolios.

Let us now try to draw some conclusions from this thesis. On the positive side, we can
say that the research was successful, in the sense that the resulting algorithm allowed us
to approximate the mean—variance frontier for medium-size problems within acceptable
computing times. The algorithm is able to handle more classes of constraints than most
other approaches found in the literature. Although there is a clear trade-off between the
quality of the solutions and the time required to compute them, the algorithm can be said
to be quite versatile since it does not rely on any restrictive properties of the model.

For instance, the algorithm does not assume any underlying factor model for the
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generation of the covariance matrix. Also, the objective function could conceivably be
replaced by any other measure of risk (semi-variance or functions of higher moments)
without requiring any modification of the algorithm.

On the negative side, it must be noticed that the tailoring work required to account for
different classes of constraints and to fine-tune the parameters of the algorithm was rather
delicate. The trading constraints, in particular, are especially difficult to handle because
of the discontinuities they introduce in the space of feasible portfolios. Introducing
additional classes of constraints or new features in the model (e.g. transaction costs)

would certainly prove quite difficult again.

Some of the insights gained from the research were:

* Both floor and ceiling constraints have a substantial negative impact on portfolio
performance and should be examined critically relative to their associated
administration

e The optimal portfolio with cardinality constraints often contains a large number
of stocks with very low weightings.

« The number of assets in a portfolio increases the time of computation and the
complexity of the optimization problem as a result of the complex constraints

o The implementation of cardinality constraints is essential for finding the best
performing
portfolio. The ability of the heuristic method to deal with cardinality constraints

is one of its most powerful features.
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7.2 Future work

Further work is suggested in the following areas:

Style, class or sector constraints can be added to the model. These constraints limit the
proportion of the portfolio that can be invested in shares which fall into a style definition
(e.g. value/growth, cyclical/defensive, small cap, liquid, rand-hedge etc.) or a market

sector.

Different cardinality-constrained efficient frontiers will be generated for different values
of K. Clearly, as K decreases (relative to the total number of stocks in the universe, N)
the portfolio’s potential performance (albeit with higher risk) increases and the frontier
will move further away (upwards) from the cardinality-unconstrained efficient frontier.
The magnitude of the sensitivity of this movement to different values of the ratio (K/N)

is worth investigating.

The input forecasts for return and risk are point forecasts, making the model
deterministic. A stochastic approach could be taken by attaching distributions to the
input forecasts, resulting in an objective function which is also a distribution. While it is

usually the mean which will be optimized, its variance can also be monitored.
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“‘Before you begin a thing, remind yourself that difficulties
and delays quite impossible to foresee are ahead. If you
could see them clearly, naturally you could do a
great deal to get rid of them but you can't.
You can only see one thing clearly and
that is your goal. Form a mental
vision of that and cling to it
through thick and thin.”
Kathleen Norris
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Appendix A

The source code

program portfolio

parameter (n = 20, nmax — 20,

double precision mu(n), sigma(n,n),
wup(n), wO(n), mintr(n), sumw
logical tradec

values

tradec =

£t o=

mupo

OPEN
of

.false.

ns=70000)

f, muport, wopt(n), fopt, t, w(n), wlow(n),

0.10 // Initial temperature parameter

rt = 0.10 // Definition of required return

(8, FILE = 'data2.txt')

and the values of variance-

matrix

read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read

(8,*)
(8,*)
(8, *)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(SI*)
(8’*)
(8,*)
(BI*)
(BI*)
(BI*)
(8I*)
(8,*)
(8,*)
(8l*)
(8,*)
(8,*)
(8,*)
(8,%)
(8,*)
(8,*)
(81*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)
(8,*)

// Open the source file for reading the

expected returns

covariance

mu(l), mu(2), mu(3), mu(4), mu{5)

mu(6), mu(7), ma{8), mu(9), mu(l0)

mu(l1l1l), mu(l2), mu{i3), mu(l4), mu(ls5)

mu(l6), mu(l7), mu(l8), mu(l9), mu(20)

sigma(1l,1), sigma(l,2), sigma(l,3), sigma(l,4)
sigma(l,5), sigma{l,6), sigma(l,7), sigma(l,8)
sigma(1,9), sigma(1,10), sigma(l,11), sigma(l,12)
sigma(1l,13), sigma(1l,14), sigma(1,15), sigma(l,16)
sigma(1l,17), sigma(1,18), sigma(l,19), sigma (1, 20)
sigma(2,1), sigma(2,2), sigma(2,3), sigma(2,4)
sigma(2,5), sigma(2,6), sigma(2,7), sigma(2,8)
sigma(2,9), sigma(2,10), sigma(2,11), sigma(2,12)
sigma(2,13), sigma(2,14), sigma(2,15), sigma(2,16)
sigma(2,17), sigma(2,18), sigma(2,19), sigma(2,20)
sigma(3,1), sigma(3,2), sigma(3,3), sigma(3,4)
sigma(3,5), sigma(3,6), sigma(3,7), sigma(3,8)
sigma(3,9), sigma(3,10), sigma(3,11), sigma(3,12)
sigma(3,13), sigma(3,14), sigma(3,15), sigma(3,16)
sigma(3,17), sigma(3,18), sigma(3,19), sigma(3,20)
sigma (4,1), sigma(4,2), sigma(4,3), sigma(4,4)
sigma (4,5), sigma(4,6), sigma(4,7), sigma(4,8)
sigma(4,9), sigma(4,10), Sigma(4,11), sigma(4,12)
sigma(4,13), sigma(4,14), sigma(4,15), sigma(4,16)
sigma(4,17), sigma(4,18), sigma(4,19), sigma(4,20)
sigma(5,1), sigma(5,2), sigma(5,3), sigma(5,4)
sigma (5,5), sigma(5,6), sigma(5,7), sigma(5,8)
sigma (5,9), sigma(5,10), sigma(5,11), sigma(5,12)
sigma(5,13), sigma(5,14), sigma(5,15), sigma(5,16)
sigma(5,17), sigma(5,18), sigma(5,19), sigma(5,20)
sigma (6,1), sigma(6,2), sigma(6,3), sigma(6,4)
sigma(6,5), sigma(6,6), sigma(6,7), sigma(6,8)
sigma(6,9), sigma(6,10), sigma(6,11), sigma(6,12)
sigma(6,13), sigma(6,14), sigma(6,15), sigma(6,16)
sigma(6,17), sigma(6,18), sigma(6,19), sigma(é,20)
sigma(7,1), sigma(7,2), sigma(7,3), sigma(7,4)
sigma(7,5), sigma(7,6), sigma(7,7), sigma(7,8)
sigma(7,9), sigma(7,10), sigma(7,11), sigma(7,12)
sigma(7,13), sigma(7,14), sigma(7,15), sigma(7,16)
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read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read

(Bl*)
(8,*)
(8,*)

(8,*)
(8I*)
(8,*)
(81*)
(8,*)
(8,*)
(8,*)
(81*)
(8,*)
(BI*)
(8,*)
(8,%)
(8,*)
(8,*)
(BI*)
(8,*)
(BI*)
(8,*)
(8,*)
(81*)
(8,*)
(8,*)
(8,*)
(8,*)
(81*)

sigma(7,17),
sigma(8,1),
sigma(8,5),
sigma(8,9),
sigma(8,13),
sigma(8,17),
sigma(9,1),
sigma(9,5),
sigma(9,9),
sigma(9,13),
sigma(9,17),
sigma(10,1),
sigma(10,5),
sigma (10, 9),
sigma(10,13),
sigma(10,17),
sigma(11,1),
sigma(11,5),
sigma (11, 9),
sigma(11,13),
sigma(11,17),
sigma(12,1),
sigma(l12,5),
sigma (12, 9),
sigma(12,13),
sigma(12,17),
sigma(13,1),
sigma(13,5),
sigma(13,9),
sigma (13,13},
sigma (13,17},
sigma(14,1),
sigma(14,5),
sigma(14,9),
sigma (14,13),
sigma (14, 17),
sigma (15,1),
sigma (15,5),
sigma (15, 9),
sigma (15,13),
sigma{15,17),
sigma(16,1),
sigma(16,5),
sigma(1l6,9),
sigma(1l6,13),
sigma(16,17),
sigma(17,1),
sigma (17,5),
sigma (17, 9),
sigma (17,13),
sigma(17,17),
sigma (18,1),
sigma (18,5),
sigma(18,9),
sigma(18,13),
sigma(18,17),
sigma(19,1),
sigma(19,5),
sigma (19,9),
sigma(19,13),
sigma (19,17),
sigma(20,1),
sigma(20,5),

sigma(8,2),
sigma(8,6),
sigma(8,10),

sigma(9,2),
sigma(9,6),
sigma(9,10),

sigma(7,18), sigma(7,19),
sigma (8,3), sigma(8,4)
sigma(8,7), sigma(8,8)
sigma(8,11), sigma(8,12)
sigma(8,15), sigma{8,16)
sigma(8,19), sigma(8,20)
sigma(9,3), sigma(9,4)
sigma(9,7), sigma(9,8)
sigma(9,11), sigma(9,12)
sigma(9,15), sigma(9,16)
sigma(9,19), sigma(9,20)
sigma(10,3), sigma(10,4)
sigma(10,7), sigma(10,8)
sigma(10,11), sigma(10,12)
sigma(10,15), sigma(10,16)
sigma(10,19), sigma(10,20)
sigma(1l1l,3), sigma(ll,4)
sigma(1l1l,7), sigma(11,8)
sigma(11,11), sigma(l1l,12)
sigma(11,15), sigma(l1l,16)
sigma(11,19), sigma(ll,20)
sigma(12,3), sigma(l2,4)
sigma(12,7), sigma(l2,8)
sigma(12,11), sigma(l12,12)
sigma(12,15), sigma(l2,16)
sigma(12,19), sigma(l2,20)
sigma(13,3), sigma(13,4)
sigma(13,7), sigma(13,8)
sigma(13,11), sigma{l13,12)
sigma(13,15), sigma(13,16)
sigma(13,19), sigma(13,20)
sigma(14,3), sigma(14,4)
sigma(14,7), sigma(1l4,8)
sigma(14,11), sigma(l4,12)
sigma(14,15), sigma(l4,16)
sigma(14,19), sigma(14,20)
sigma(15,3), sigma{(l5,4)
sigma (15,7), sigma{(1l5,8)
sigma(15,11), sigma(1l5,12)
sigma(15,15), sigma(l5,16)
sigma(15,19), sigma(15,20)
sigma(16,3), sigma(l6,4)
sigma(l6,7), sigma(l6,8)
sigma(16,11), sigma(le6,12)
sigma(l16,14), sigma(l16,15), sigma(l6,16)
sigma(16,18), sigma(16,19), sigma(l6,20)
sigma(1l7,2), sigma(l7,3), sigma(l7,4)
sigma(17,6), sigma(l7,7), sigma(l7,8)
sigma (17,10}, sigma(l1l7,11), sigma(1l7,12)
sigma(17,14), sigma(17,15), sigma(l7,16)
sigma(17,18), sigma(l7,19), sigma(l7,20)
sigma(18,2), sigma(18,3), sigma(18,4)
sigma(18,6), sigma(18,7), sigma (18, 8)
sigma(18,10), sigma(18,11), sigma(l8,12)
sigma(18,14), sigma(18,15), sigma(18,16)
sigma(18,18), sigma(18,19), sigma(18,20)
sigma(19,2), sigma(19,3), sigma{19,4)
sigma(19,6), sigma(l19,7), sigma(19,8)
sigma(19,10), sigma(19,11), sigma(l9,12)
sigma(19,14), sigma(19,15), sigma(l19,16)
sigma(19,18), sigma(l9,19), sigma(19,20)
sigma (20,2), sigma(20,3), sigma(20,4)
sigma(20,6), sigma(20,7), sigma{(20,8)

sigma(7,20)

sigma (8, 14),
sigma(8,18),

sigma(9,14),
sigma(9,18),
sigma (10,2},
sigma (10, 6),
sigma (10, 10),
sigma (10,14),
sigma(10,18),
sigma(11,2),
sigma (11, 6),
sigma(11,10),
sigma(11,14),
sigma(11,18),
sigma(12,2),
sigma(12,6),
sigma(12,10),
sigma (12, 14),
sigma(1l2,18),
sigma (13,2),
sigma (13,6},
sigma (13,10),
sigma (13,14),
sigma(13,18),
sigma(14,2),
sigma (14,6),
sigma(14,10),
sigma (14,14},
sigma(14,18),
sigma (15, 2),
sigma(15,6),
sigma(15,10),
sigma (15, 14),
sigma(15,18),
sigma(l6,2),
sigma(16,6),
sigma(l6,10),
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read (8,*) sigma(20,9),
read (8,%*) sigma(20,13),
read (8,*) sigma(20,17),

open (2, file=' output.txt')

the values of

sigma(20,10),

sigma (20, 14),
sigma (20,18),

weights and the standard deviation of

0.25

call init(n,w,mu,muport)

sigma(20,11),
sigma (20,15),
sigma (20,19),

sigma(20,12)

sigma (20, 16)
sigma (20, 20)

the portfolio

the portfolio.

// Open the destination file for writing

// The weights of the initial portfolio
w0 (1) = 0.05, w0 (2) = 0.05,w0(3) = 0.05,w0(4) = 0.05, wO(5) = 0.05
w0(6) = 0.05, wO(7) = 0.05, w0(8) = 0.05,w0(9) = 0.05, wO(10) = 0.05
w0(11l) = 0.05, w0(12) = 0.05, w0(13) = 0.05, wO(1l4) = 0.05, wO(1l5) = 0.05
w0(16) = 0.05, wO0(17) = 0.05, w0(18) = 0.05, w0(19) = 0.05,w0(20) = 0.05
mintr(1l) = 0.05, mintr(2) = 0.05, mintr(3) = 0.05, mintr(4) = 0.05
mintr(5) = 0.05, mintr(6) = 0.05, mintr(7) = 0.05, mintr(8) = 0.05
mintr(9) = 0.05, mintr(10) = 0.05, mintr(11l) = 0.05, mintr(12) = 0.05
mintr(13) = 0.05, mintr(14) = 0.05, mintr(15) = 0.05, mintr(16) = 0.05
mintr(17) = 0.05, mintr(18) = 0.05, mintr(19) = 0.05, mintr(20) = 0.05
// The lower value for one stock weight

wlow(l) = -5.0, wlow(2) = -5.0, wlow(3) = -5.0, wlow(4) = -5.0
wlow(5) = -5.0, wlow(6) = -5.0, wlow(7) = -5.0, wlow(8) = -5.0
wlow(9) = -5.0, wlow(1l0) = -5.0, wlow(ll) = -5.0, wlow(l2) = -5.0
wlow(1l3) = -5.0, wlow(l4) = -5.0, wlow(1l5) = -5.0, wlow(l6) = -5.,0
wlow(17) = -5.0, wlow(1l8) = -5.0, wlow(1l9) = -5.0, wlow(20) = -5.0

// The upper value for one stock weight
wup(l) = 0.25, wup(2) = 0.25, wup(3) - 0.25, wup(4) = 0.25, wup(5) = 0.25
wup(6) = 0.25, wup(7) = 0.25, wup(8) = 0.25, wup(9) = 0.25, wup(l0) =
wup(11l) = 0.25, wup(12) = 0.25, wup(13) = 0.25, wup(1l4) = 0.25,

wup (15) = 0.25, wup(l6) - 0.25, wup(l7) = 0.25, wup(l8) = 0.25

wup(19) = 0.25, wup(20)

f = 0.0 // Initialization of the variable f

= (.25

call sa(n,mu,sigma,w, f,wopt, fopt,wlow, wup, nmax,w0,mintr, tradec, t,

1 ns}

muport =
sumw = 0.
do 1=1, n

muport = muport + wopt (i)

sumw = sumw + wopt (i)

enddo
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// Write at the destination file and printing to the screen
write(*,*) , 'Portfolio Weights'
doi=1,n
write(*,900), wopt(i)
write(2,900), wopt(i)
enddo

write(*,*) , 'Objective Function'
write(*, *) fopt
write(*,*) , 'Portfolio Return’
write(*, 900) muport
write(2,*) , 'Objective Function'
write(2, *) fopt
write(2,*) , 'Portfolio Return'
write(2, 900) muport

900 format (F10.6)

stop
end

subroutine init(n,w,mu,muport) // this function find an initial weight.

integer n, k
double precision mu(n), w(n), muport

k=20

do 1= 1, n
if(mu(i) .lt. muport) k = k + 1
w{(i) = 0.0

enddo
if(k .gt. n-1) k = n = 2

if(k .eq. 0) k=1

w(k) = (muport-mu(k+1l))/(mu(k)-mu(k+1))
w(k+l) = 1.0 - w(k)

return
end

subroutine fcn(n,sigma,w, f,wup,wlow, nmax,w0,mintr, tradec) // Define the
function to be

optimized.

integer n, nmax, count

double precision sigma(n,n), w(n), f, wup(n), wlow(n), pen, ceps, wO(n),
mintr{n), trade(n)

logical tradec

f = 0.D0
do 100, i

1, n
do =

1, n
f=f+ (w(i) * w(j) * sigma(i,j))

o f

enddo
100 continue

© Set Penalties
pen = 0.0

© Floor and Ceilling Penalties

doi=1,n
if(w(i) .1lt. wlow(i)) pen = pen + 1.0D+16 * (w(i)-wlow(i))**2
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if(w(i) .gt. wup(i)) pen = pen + 1.0D+16 * (w(i)-wup{i))**2
enddo

Number of Assets Penalty
ceps = 1.0D-5

count = 0
doi=1, n

if(abs(w(i)) .gt. ceps) count = count + 1
enddo

if (count .gt. nmax) pen = pen + 1.0D+16 * (nmax-count)**2

C Trading Penalties. (Allow very small deviations due to lack of numerical
accuracy)

then

if (tradec) then
doi=1, n
trade (i) = abs{(w(i) - wO(i))
if((trade(i) .le. mintr(i)) .and. (trade(i) .ge. 1.0D-4))

if (trade(i) .le. (mintr(i)/2)) then
pen = pen + 1.0D+16 * trade(i)**2

else
pen = pen + 1.0D+16 * (mintr(i)-trade(i))**2

end if

end if
enddo
end if

f = sqrt(f+pen)
return

end

Pick which 3 weights to change.
subroutine pick(n,d,dl,d2,d3)

integer n, 4, d1, d2, d3

if(d .le. (n-2)) then

dl = d
d2 =d + 1
d3 =d + 2
else
if(d .eq. (n-1)) then
dl =d
d2 =d + 1
d3 = 1
else
dl =d
d2 =1
d3 = 2
d= 0
end if
end if
return
end

Simmulated Annealing
subroutine sa(n,mu, sigma,w, f,wopt, fopt,wlow, wup, nmax,w0,mintr,
1 tradec, t, ns)

integer n

integer d, dl1, d2, d3, nacc, nnew, nrej, ns
double precision mu(n), sigma(n,n), £, w(n), wp(n), wlow(n),
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1 wup (n), step, fp, 1bl, 1lb2, 1b3, ubl, ub2, ub3, 1lb, ub,
2 w0(n), mintr(n), wopt(n), fopt, t, p, pp

double precision exprep,num2,num3, fstar(4)

logical tradec, quit

real ranmar

C Initialize the random number generator.
call rmarin(21421,21480)

C Set initial values
nacc = 0
doi-~-1, 4
fstar(i) = -1.0D+20
enddo

[© Evaluate the objective at the initial point.
call fcn(n,sigma,w, £f,wup,wlow, nmax,w0,mintr, tradec)
fopt = £

C Begin iterations.
100 nnew = 0, nrej = 0, d =0

do 200, iter = 1, ns

d=d+ 1
doi= 1, n

wp{i) = w(i)
enddo

(& Pick 3 weights to change.
call pick(n,d,d1l,d2,d3)

© Compute lower and upper bounds for the step.
num2 = (mu(dl)-mu{d3))/ (mu(d2)-mu(d3))
num3 = (mu(d2)-mu(dl))/ (mu(d2)-mu{d3))

1bl = w(dl) - wup(dl)
ubl = w(dl) - wlow(dl)
if (num2 .gt. 0) then
1b2 = (wlow(d2)-w({d2))/num?2
ub2 = (wup(d2)-w(d2))/num2
else

1b2 (wup (d2) -w(d2) ) /num2
ub2 = (wlow(d2)-w(d2))/num2
endif
if (num3 .gt. 0) then

1b3 = (wlow(d3)-w(d3))/num3

ub3 = (wup(d3)-w(d3))/num3
else

1b3 = (wup(d3) - w(d3))/num3

ub3 = (wlow(d3)-w(d3))/num3
endif

1b = max(lbl,1b2,1b3)
ub = min(ubl, ub2, ub3)

C Take a step in these 3 weights.
step = (ub-lb) * ranmar{() + 1lb
wp(dl) = w(dl) - step
wp(d2) = w(d2) + step * num2
wp (d3) w(d3) + step * num3
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C Evaluate the obective at the new point.
call fcn(n, sigma, wp, fp, wup, wlow,nmax, w0, mintr, tradec)

C Keep the new point if it decreases the objective.
if(fp .1t. f)} then
doi= 1, n
w(i) = wp(i)
enddo
f = fp
nacc = nacc + 1
C If smaller than any other point record a new minimum.
if(fp .1t. fopt) then
do i=1, n
wopt (i) = wp(i)
enddo
fopt = fp
nnew = nnew + 1
endif
C If the point does not improve the objective use the Metropolis algorithm to
accept or reject it.

else
p = exprep(-{(fp-£f)/t)
pp = ranmar ()
if(pp .lt. p) then
do i=1, n
w(i) = wp(i)
enddo
f = fp
nacc = nacc + 1
else
nrej = nrej + 1
endif
endif
200 continue
(¢ Check termination criteria.

fstar(l) = £
if((fstar(l) - fopt) .le. 0.000001) quit = .true.
do1=1, 4
if (abs(f-fstar(i)) .gt. 0.000001) quit = .false.
enddo
C Terminate SA if appropriate
if (quit) then
doi=1,n

w(i) = wopt (i)
enddo
f = fopt
return
endif
Cc Lower the temperature and prepare for another loop.

t= 0.85 * t
do 1 = 4, 2, -1
fstar(i) = fstar(i-1)

enddo
doili1=1, n
w(i) = wopt (i)
enddo
f = fopt
goto 100
end

function exprep (rdum)
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!DEC$ ATTRIBUTES DLLEXPORT :: exprep
this function replaces exp to avoid under- and overflows and is
designed for ibm 370 type machines. it may be necessary to modify
it for other machines. note that the maximum and minimum values of
exprep are such that they has no effect on the algorithm.

double precision rdum, exprep

if (rdum .gt. 174.) then
exprep = 3.69d+75

else if (rdum .lt. -180.) then
exprep = 0.0

else
exprep = exp (rdum)

end if

return

end

subroutine rmarin(ij,kl)

I'DEC$ ATTRIBUTES DLLEXPORT :: rmarin
this subroutine and the next function generate random numbers. see
the comments for sa for more information. the only changes from the
orginal code is that (1) the test to make sure that rmarin runs first
was taken out since sa assures that this is done (this test didn't
compile under ibm's vs fortran) and (2) typing ivec as integer was
taken out since ivec isn't used. with these exceptions, all following
lines are original.

this is the initialization routine for the random number generator ranmar ()
note: the seed variables can have values between: 0 <= ij <= 31328
0 <= k1 <= 30081
real u(97), c, cd, cm
integer 197, 397
common /rasetl/ u, ¢, cd, cm, i97, 397
1 mod (ij/177, 177) + 2
] mod (1] , 177y + 2
k = mod(kl/169, 178) + 1
1 = mod(kl, 169)
do 2 ii =1, 97
= 0.0
t = 0.
d03jj_-1l 24

1]

m = mod{mod(i*j, 179)*k, 179)
i=73
J =k
k= m

1 = mod{(53*1+1, 169)
if (mod(l*m, 64) .ge. 32) then
s =s + t
endif
t= 0,5 *¢t
continue
u(ii) = s
continue
c = 362436.0 / 16777216.0
cd = 7654321.0 / 16777216.0
cm = 16777213.0 /16777216.0

i97 = 97
397 = 33
return
end

function ranmar ()
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real u(97), ¢, cd, cm
integer i97, 3j97
common /rasetl/ u, ¢, cd, cm, i97, 397
uni = u(i97) - u(j97)
if( uni .1t. 0.0 ) uni = uni + 1.0
u{i97) = uni
i97 = i97 - 1
if(i97 .eqg. 0) i97 = 97
j97 = 397 - 1
if (397 .eq. 0) 397 = 97
C+#: Cy— cd
if( c .1t. 0.0 ) c = ¢c + cm
uni = uni - ¢
if( uni .1t. 0.0 ) uni = uni + 1.0
ranmar - uni
return
end
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Appendix B

I will give for the 20 stocks that I used in my master thesis the expected returns, the
standard deviations, the variance-covariance matrix and the inverse of the variance-
covariance matrix for these twenty assets.

Furthermore, I will find the analytical solution for the unconstraint case of portfolio
optimization for the twenty assets. We suppose that these twenty assets follows a
multivariate Normal Distribution.

R [-0.0632
R, -0.0336
R, -0.0154
~ Nyl |- > Lo |-
| Ry | 10.2677

In the next table, we find the expected return and standard deviation of these twenty
assets:

Expected  Standard
Asset Data Return Deviation

EMPORIKI -6.316% 149.34%
AGROTIKI -3.362% 183.05%
INTRACOM  -1.545% 260.20%

OPAP -0.217%  162.39%
MOTOROIL  -0.018% 173.24%
ASPIS 0.517%  216.97%
COSMOTE 7.048%  162.11%
FOLLI 7.192%  185.58%

ETHNIKI 8411%  191.82%
EUROBANK  8.423%  165.29%
ALPHA 8.950%  173.15%
EGNATIA 10.736%  257.60%
DEI 11.000% 181.51%
COCACOLA 12.819% 183.62%
MINOAN 14.746%  229.20%
PIREOS 15213% 174.08%
INTRALOT 18.005%  227.24%
FORTHNET 21.712% 264.40%
KIPROU 25179% 221.19%
VIVARTIA 26.774%  208.94%
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As a first step, we must calculate the inverse matrix of  (20x20), for this calculation we
use the MATLAB program for taking this matrix (see table in Appendix B):

After we compute the qualities:

A=1'xX' x1= 1.2268
B=1'xZ' xp=0.1035
C=u'xZ"' xp= 0.0697
D=A4-C-B*>=0.0748

Therefore the equation of the Efficient Frontier in Mean-Standard Deviation space is

Dl o E=
Hp —;+Z D(A'O'Pz—l)

S01035, 1| f0.0748-(1.2268-0,7 -1)
12268 1.2268

=0.0844+ L \/0.0918 0,2 -0.0748
1.2268

Efficient Frontier for 20 stocks
0.5 . - - - -

04} I

0.3F e 3

02, (- = et

Return

02} o

03

04 i y ‘ ; i i i . .
0.8 09 1 1.1 2 1.3 1.4 185 1.6 (7 1.8

Standard Deviation

Efficient Frontier for 20 risky assets

96



The minimum standard-deviation portfolio is attained at

0.1035
1.2268

e % - - 0.0844 = 8.44%

which yields a minimum standard deviation of

2 2
c-2 Jooso7- 2183
o, = 4 _ 12268 _ 0.90283
D 0.0748

Finally, the asymptotes of the hyperbola are

Hp = 2 t0, \/E = miof, -JO'O748 =0.0844+0,-0.2469
A A 1.2268 1.2268

At this point, we will calculate the above two interesting portfolios, the minimum-
variance portfolio and the tangency portfolio.

The minimum-variance portfolio

In order to compute the minimum-variance portfolio for our four assets, we will use the
following equation:

T1x1 0.1947 0.0380 -0.0936 0.1622 0.0475 -0.0342 0.1285 0.1021 -0.1406 0.0582
x . Ty —
D A9 b | 0.0437 0.0230 0.1097 0.1102 0.034 0.0464 0.0194 0.0139 0.0096 0.1267

The tangency portfolio

In order to compute the tangency portfolio for our four assets, we will use the following
equation:

' xp I:-0.6452 -0.4333 -0.3214 -0.1189 -0.4957 -0.2514 0.1009 0.1786 -0.3482 -0.0892:‘T

e 1'<xT' xp 710.0532 0.0516 03520 0.3669 0.2496 0.7007 0.3357 0.2474 0.5007 0.5660

The expected return of the tangency portfolio is:
H =X X 1 =0.6737=67.37%

and its standard deviation is:

O = X XXX, =2.5513
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Now, we use the derived utility function V' (u,0%) = u—60-0°,and we make calculations
in order to find the optimal combinations for different values of risk aversion parameter.

We use the following mathematical equations:

D D
(@) =—+ 2 =—+
a()A4A92 #(6) 2-4-6
For 0 =1:
0'.(1)—— 2 - L + 0.078 =0.815+0.015=0.83

A 4.-4-6° 12268 4-1.2268-1°

,u.(l)—'£ D 01035+ 0,9748 =0.0844+0.03=0.1144
4 2-4-6 12268 2-1.2268-1

The optimal mean-standard deviation combination is (1,0)=(0.1144, 0.911)

As next step, we try to compute the portfolio that yields this optimal combination for this
investor.

The weights of this portfolio are:
x'(0.1144)= A4 - xI+ 4,- " xp

C-B-u, 0.0697-0.1035-0.1144

pys 2 =0.7735
D 0.0748

- A-p,-B _ 1.2268-0.1144-0.1035 ~0.4926
D 0.0748

Thus

0.1518 0.0140 -0.1052 0.1479 0.0198 -0.0452 0.1271 0.1060 -0.1512 0.0507:'T

x(0.1144)=|
0.0442 0.0244 0.1221 0.1233 0.0454 0.0797 0.0356 0.0258 0.0347 0.1491

For 6 =2

1, D 1 00748
4 446 12268 4122682

o2(2)= =0.815+0.0038 = 0.8188

p@=2, L0105, 0078 408444 0.015=0.0994

A 2-4-6 12268 2-1.2268~2

The optimal mean-standard deviation combination is (u, o) = (0.0994, 0.905)
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As next step, we try to compute the portfolio that yields this optimal combination for this
investor.

The weights of this portfolio are:
x'(0.0994)= 4 - X" xI+4,-Z" xp

1w C-B-u, 1 0.0697-0.1035-0.0994 —0.7943
D 0.0748
2 A-u,—B 1.2268-0.0994-0.1035

D 0.0748

=0.2466

*(0.0994) =
e ¢ ) [0.0440 0.0237 0.1159 0.1168 0.0399 0.0631 0.0275 0.0198 0.0222 0.1379

0.1732 0.0260 -0.0994 0.1551 0.0336 -0.0397 0.1278 0.1041 -0.1459 0.0545]T
For 6 =4

1 D 1 0.0748
—+ & +
A 4-4-0*° 12268 4.1.2268-4°

ol(4) = =0.815+0.00095 = 0.81595

B D 0.1035 0.0748
m@)==+ -

- + = 0.0844 +0.0076 = 0.092
A 2-4-6 12268 2-1.2268-4

The optimal mean-standard deviation combination is (&, 0) =(0.092, 0.9033)

As next step, we try to compute the portfolio that yields this optimal combination for this
investor.

The weights of this portfolio are:
x(0.092) =4 -Z' xI+ 4, - xp

C—B-p, _0.0697-0.1035-0.092

A= =0.8045
D 0.0748
g~ A#n =B _12268:0092-0.1035 o)
D 0.0748
(0,092 =| 01838 00319 -0.0965 0.1586 0.0404 -0.0370 0.1282 0.1031 -0.1433 0.0563 ¢
X g =
0.0439 0.0233 0.1129 0.1136 0.0372 0.0549 0.0235 0.0169 0.0160 0.1323
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001

ETHNIKI FOLLI | COSMOTE ASPIS | MOTOROIL OPAP | INTRACOM | AGROTIKI | EMPORIKI | VCV Matrix
1.13141 | 0.598354 | 0.490228 1.06131 | 0.784329 0.50892 1.25726 1.0643 2.24962 | EMPORIKI
1.69618 | 0.717928 | 0.604965 1.76652 1.21724 1.01983 2.3623 3.32763 1.0643 | AGROTIKI
1.88273 1.33779 1.01563 2.55642 1.9691 1.39226 6.87804 2.3623 1.25726 | INTRACOM

1.3935 | 0.648085 | 0.805106 1.3731 | 0.854813 2.6729 1.39226 1.01983 0.50892 OPAP

1.3099 | 0.985929 | 0.730244 1.7842 2.97506 | 0.854813 1.9691 1.21724 | 0.784329 | MOTOROIL
1.91526 1.25951 | 0.773767 4.59089 1.7842 1.3731 2.55642 1.76652 1.06131 ASPIS
1.05586 | 0.610411 262227 | 0.773767 | 0.730244 | 0.805106 1.01563 | 0.604965 | 0.490228 | COSMOTE
0.40513 3.40992 | 0.610411 1.25951 | 0.985929 | 0.648085 1.33779 | 0.717928 | 0.598354 FOLLI
3.69631 0.40513 1.05586 1.91526 1.3099 1.3935 1.88273 1.69618 1.13141 ETHNIKI
1.75354 | 0.696134 0.72963 1.36977 | 0.950604 | 0.930204 1.5982 1.1891 | 0.859663 | EUROBANK

1.89004 0.821541 0.786498 1.57234 1.18484 1.03703 2.01679 1.21461 0.840777 ALPHA
1.08899 | 0.793726 | 0.457257 1.67007 | 0.893263 | 0.608922 1.40883 1.05595 0.92772 EGNATIA
1.12184 | 0.304513 | 0.721882 | 0.943951 | 0.930581 | 0.671902 1.57639 | 0.984222 0.69657 DEI
1.20455 | 0.397557 | 0.975037 | 0.641352 | 0.845396 0.51063 | 0.763949 | 0.847077 | 0.497487 | COCACOLA
1.46336 0.54923 | 0.761089 1.84122 1.50042 | 0.579636 2.69568 1.36717 | 0.938013 MINOAN
2.01854 | 0.757284 | 0.608568 1.83045 1.36143 | 0.957101 1.75235 1.44906 1.12822 PIREOS
1.74434 | 0.852342 0.79351 1.94583 1.52304 1.00349 2.54398 1.51865 | 0.939663 | INTRALOT
1.67804 0.79764 | 0.806259 1.59812 1.55038 | 0.734183 2.18029 1.33228 0.85078 | FORTHNET
2.09007 1.0068 | 0.717333 2.2441 1.40466 1.09672 2.38056 1.62734 | 0.948791 KIPROU
1.10108 0.30?86 0.315637 | 0.633038 1 0.542421 | 0.461209 1.12441 | 0.798689 | 0.336405 VIVARTIA
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VIVARTIA KIPROU | FORTHNET | INTRALOT PIREOS MINOAN | COCACOLA DEI EGNATIA ALPHA | EUROBANK
0.336405 | 0.948791 0.85078 | 0.939663 1.12822 | 0.938013 | 0.497487 0.6965; ) 0.92772 0.840777 | 0.859663
0.798689 1.62734 1.33228 1.51865 1.44906 1.36717 | 0.847077 | 0.984222 1.05595 1.21461 1.1891

1.12441 2.38056 2.18029 2.54398 1.75235 2.69568 | 0.763949 1.57639 1.40883 2.01679 1.5982
0.461209 1.09672 | 0.734183 1.00349 | 0.957101 | 0.579636 0.51063 | 0.671902 7 0.608922 1.03703 | 0.930204
0.542421 1.40466 1.55038 1.52304 1.36143 1.50042 0.845396 0.930581 | 0.893263 1.18484 | 0.950604
0.633038 2.2441 1.59812 1.94583 1.83045 1.84122 | 0.641352 | 0.943951 1.67007 1.57234 1.36977
0.315637 | 0.717333 | 0.806259 0.79351 | 0.608568 | 0.761089 | 0.975037 | 0.721882 | 0.457257 | 0.786498 0.72963
0.430986 1.0068 0.79764 | 0.852342 | 0.757284 0.54923 0.397557 0.304513 0.7533726 0.821541 | 0.696134

1.10108 2.09007 1.67804 1.74434 2.01854 1.46336 1.20455 1.12184 1.08899 1.89004 1.75354
0.656685 1.52943 1.3436 1.14576 1.50081 1.41876 | 0.718706 | 0.921955 1.03818 1.46176 2.73395

0.660651 1.48146 1.47436 1.42578 1.54394 1.40444 0.768996 1.04657 0.915576 3.02291 1.46176

1.00721 1.34504 1.32232 1.09591 1.01825 1.11523 | 0.624079 | 0.597125 6.73692 | 0.915576 1.03818
0.358187 | 0.918738 1.08293 | 0.962833 | 0.900893 | 0.828883 | 0.595984 3.33018 | 0.597125 1.04657 | 0.921955
0.317102 | 0.693435 | 0.809498 | 0.685051 | 0.592202 | 0.900439 3.40083 | 0.595984 | 0.624079 | 0.768996 | 0.718706
0.900896 1.68261 1.76224 1.51189 1.2254 5.2769 | 0.900439 | 0.828883 1.11523 1.40444 1.41876

0.67913 2.03465 1.23026 1.35982 3.05209 1.2254 | 0.592202 | 0.900893 1.01825 1.54394 1.50081
0.819177 | 1.824414 1.95252 5.21012 1.35982 1.51189 | 0.685051 | 0.962833 1.09591 1.42578 1.14576
0.514302 1.70805 7.00959 1.95252 1.23026 1.76224 | 0.809498 1.08293 1.32232 1.47436 1.3436
0.801752 4.90889 1.70805 | 1.824414 2.03465 1.68261 | 0.693435 | 0.918738 1.34504 1.48146 1.52943

440533 | 0.801752 | 0.514302 | 0.819177 0.67913 | 0.900896 | 0.317102 | 0.358187 1.00721 | 0.660651 | 0.656685




The inverse Variance-Covariance Matrix:
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VIVARTIA KIPROU | FORTHNET INTRALOT PIREOS MINOAN | COCACOLA DEI EGNATIA ALPHA | EUROBANK
0.0222 0.0221 0.0009 -0.0154 -0.1109 -0.0252 -0.0073] -0.0347 -0.0348 0.0072 -0.0239
-0.0202 -0.0173 -0.0062 -0.0179 -0.0451 -0.0032 -0.0439 -0.0246 -0.0042 0.0212 -0.0168
-0.0153 -0.0273 -0.0097 -0.0395 6.0104 ?777—0.0597 0.0206 -0.0385 0.0015 -0.0518 0.0013
0.0013 -0.0036 0.0162 -0.0048 0.0135 0.0451 0.0123 -0.0085 0.0036 -0.0346 -0.0399
-0.0011 0.0031 -0.0379 -0.0402 -0.1014 -0.0506 -0.0550 -0.0411 0.0036 -0.0122 0.0366
0.0241 -0.0477 0.0035 -0.0285 -0.0523 -0.0387 0.0270 0.0074 -0.0384 -0.0129 0.0112
0.0052 0.0066 -0.0062 -0.0096 0.0277 -0.0147 -0.0898 -0.0434 0.0039 -0.0074 -0.0190
-0.0207 -0.0282 -0.0059 -0.0040 -0.0111 0.0336 -0.0126 0.0314 -0.0082 -0.0482 -0.0379
-0.0688 -0.0659 -0.0259 -0.0375 -0.1594 0.0100 -0.0869 -0.0087 0.0118 -0.1408 -0.1127
-0.0027 -0.0265 -0.0218 0.0086 -0.1104 -0.0624 -0.0086 -0.0377 -0.0221 -0.0963 0.6526
0.0043 0.0169 -0.0196 -0.0167 -0.0848 -0.0262”7 -0.0104 -0.0432 7 -0.0001 0.6091 -0.0963
-0.0267 -0.0113 -0.0124 -0.0015 0.00257 -0.0011 -0.0121 - 0.0000 0.1744 -0.0001 -0.0221
0.0046 0.0029 -0.0124 -0.0020 -0.0033 0.0148 -0.0680 0.3796 0.0000 -0.0432 -0.0377
0.0105 0.0054 -0.0001 0.0052 0.0565 -0.0235 0.3698” ”-0.0080 -0.0121 -0.0104 -0.0086
-0.0210 -0.0192 -0.0167 -0.0005 0.0211 03803 -0.6235 0.0148 -0.0011 -0.0262 -0.0624
0.0008 -0.1049 0.0174 0.0096 0.6989 0.7(;171 i 0".0385 -0.0033 0.0025 -0.0848 -0.1104
-0.0099 -0.0214 -0.0268 0.2766 0.0096 -0.0005 0.0652 -0.0020 -0.0015 -0.0167 0.0086
0.0102 -0.0133 0.1839 -0.0268 0071;1 -0.0167 -0.0001 -0.0124 -0.0124 -0.0196 -0.0218
0.0011 0.3405 -0.0133 -0.0214 -0.1049 -0.0192 0.0054 0.0029 -0.0113 0.0169 -0.0265
0.2576 0.0011 0.0102 -0.0099 0.0008 -0.0210 0707105 0.0046 -0.0267 7 0.0043 -0.0027




I want to say some words in order to give a complete reference for portfolio
optimization and the skewness and kurtosis are two important factors for our problem.

Consider a series {X,}_ with mean p and standard deviationo . Let 4, = E[(x— ) ]be

the r-th central moment of X, with i, = 6. The coefficient of skewness and kurtosis are
defined as:

M __Elx-w)')
o’ Blx-u'T"

kurtosis k = ,u_: - M
o E[(x-p)]

skewness T =

If X, is symmetrically distributed, £ = 0and thus T will be zero. The Gaussian
distribution has 7 = 0 and k =3 . When k>3, the distribution of X, is said to have fat

tails. Normality is often a maintained assumption in estimation and finite sample
inference. A joint test of 7 =0 and k£ —3 = O is often used as a test of normality.

In the next table, I will give the values of skewness and kurtosis for our twenty assets.

Name of asset skewness kurtosis
EMPORIKI 0.348611 3.704856
AGROTIKI -0.26157 3.046742

INTRACOM 0.03599 4218056

OPAP 0.104495 2.292909
MOTOROIL -0.1725 1.372067
ASPIS 0.296248 2.441136
COSMOTE 0.432716 0.663797
FOLLI 0.462191 1.869819
ETHNIKI 0.075708 3.1727
EUROBANK -0.09349 1.79495
ALPHA 0.171901 1.840069
EGNATIA 1.547973 8.289168
DEI 0.497616 2.373892
COCACOLA 0.081976 0.380145
MINOAN 0.173097 1.995385
PIREOS 0.710706 5.638078
INTRALOT -0.3915 5.20948
FORTHNET 1.678378 11.97687
KIPROU -0.22867 2.607486
VIVARTIA 0.497616 2.373892
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