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ABSTRACT
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Spyridon Mexas

AN OVERVIEW OF ENGINEERING PROCESS CONTROL IN THE
UNIVARIATE AND MULTIVARIATE CASE

July 2003

In a modern manufacturing environment traditional control charts
present limited usefulness due to the data which are often autocorrelated.
Process adjustments techniques based on Engineering Process Control have
become particularly popular the last years among the quality control engineers
due to the recent interest on combination of Statistical Process Control
techniques with the Engineering Process Control techniques.

The aim of this dissertation is to present process adjustment techniques
in order to improve a production process and the combination of Statistical
Process Control with the Engineering Process Control in the univariate and

multivariate case respectively.
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Chapter 1

Introduction

1.1 Statistical Process Control

Statistical Quality Control has its roots in the decade of 1920 (Bell

laboratories) where two major areas were developed:
1.1.1 Acceptance sampling

Acceptance sampling methods are used in industry to make decisions
regarding the disposition of "lots" of manufactured items including the
acceptance or rejection of individual lots. Harold Dodge and Harry Romig
(1959) developed control sampling plans using a random sample of units from
a lot. The decision of accepting or rejecting the lot depends on the number of

units that don't meet on or more of specific quality characteristics.
1.1.2  Statistical Process Control

Statistical Process Control (SPC) also known as statistical process
monitoring consists of techniques to monitor a production process over time
in order to detect changes in process performance. The main purpose of SPC
is to look for assignable causes (variability) in the process data. If assignable
causes are present the production engineer stops the production, eliminates
the assignable cause and restarts the production cycle. Walter Shewart was
the first who introduced control charts to monitor a production process for
assignable causes. Since that time many other techniques were developed in
the frame of control charts such as CUSUM and EWMA charts. In SPC, the
production process is thought to lie in either of two states: an in-control state

and an out-of-control state. Control charts are used to distinguish between



these two states. As long as, the chart does not signal the existence of an out-
of-control state, the process is thought to be in statistical control. SPC control
has been proven to be effective, in the form of control chart use, for the parts
industries by over 60 years of successful applications. However, the SPC
techniques in the process industries have had limited successes due to the

nature of the process data which are often autocorrelated.
1.2 Engineering Process Control

One fundamental assumption behind the use of traditional control
charts is that successive values of the quality characteristic through time are
not correlated with each other. However, in a modern manufacturing
environment the quality data are serially correlated (autocorrelated). The
performance of SPC schemes is badly affected in the presence of
autocorrelation and an alternative method is necessary in order to compensate
for process dynamics. Therefore, engineering process control (EPC) methods
are used to monitor the process output, compare it with target value, and make
continuous compensatory adjustments to the process input to keep the output
on target. The compensation is applied in the form of feedback, feedforward,
or a combination of both. However, it is well-known that when a process is in

statistical control frequent adjustments will inflate the process variance and

thus increase the process output off target.

k32 Combining SPC with EPC

Statistical process control (SPC) and engineering process control are
two different but complementary approaches with common goal the reduction
of variation of the process. SPC attempts to remove disturbances using
process monitoring, while EPC attempts to compensate them using process
adjustment. Therefore, a substantial number of researchers proposed various
methods that combine SPC and EPC in an integrated form. The idea of the
SPC and EPC combination is simple. EPC schemes should be able to produce
uncorrelated data as the output deviation from the target. However, EPC

schemes do not seek to isolate and eliminate the assignable causes. These



causes can be detected by applying an appropriate SPC scheme along with the
EPC adjustment rules.

The aim of this dissertation is to present an overview of the most
recent approaches concerning the modern manufacturing environment
including SPC, EPC schemes, as well as a combination of them in the
univariate and the multivariate case with emphasis to engineering process
control.

In the next chapter, a literature review of process monitoring using
the most known SPC charts is given. Chapter 3 is referred to ARIMA and
transfer functions models. Furthermore, the state space modeling is briefly
discussed. Next, in chapter 4, the most known feedback and feedforward
controllers as well as a combination of them are presented. In chapter 5, the
MMSE, PID and EWMA controllers in the sense of optimization are
discussed. In chapter 6, we present the integration of feedback and
feedforward control schemes using statistical process control charts. Chapter
7, is concerned with SPC, EPC and SPC/EPC schemes of an industrial process
where multiple inputs and multiple outputs (MIMO) define the quality of a
product. Finally, in chapter 8, we present some conclusions and further

research topics for the SPC and EPC approaches.






Chapter 2

Literature Overview
2.1.Introduction

Monitoring and improving quality is a part from an industrial process.
Much engineering effort was put into action to reach a situation where the
quality characteristics of a product conform to the predetermined demands.
Statistical Process Control (SPC) is a tool to achieve this objective through the
reduction of variability. A brief description of process monitoring is given in
section 2.2. In section 2.3 the most common charts for independent data are
presented while section 2.4 is concerned with control charts for autocorrelated

data.

2.2 Process Monitoring

Statistical Process Control (SPC) is a set of techniques such as Shewart
control charts, exponentially moving average (EWMA) and cumulative sum
(CUSUM) control charts which are widely used in industries to improve the
quality giving us the feasibility to monitor the output of a production process.
In industries a usual phenomenon is that, independently how well a process
designed or maintained, it has an amount of unavoidable variability. Two
sources of variability are considered in SPC; common cause that is, inherent
variability which is caused by chance where we cannot eliminate it without a
deep modification in the process and assignable or special cause due to
particular problems variability which disturbs the normal functioning of the
process. The latter usually arises from improperly machines, human errors and
raw material. If a process runs in the first case we say that it is in statistical
control or else is out of control. So, with the term "process monitoring" we try

to detect the occurrence of an assignable cause in order to correct it.



2.3 SPC charts for IID data.

A key assumption underlying the use of the traditional control charts in the
univariate case is that the observations are independent through time. In the
next paragraphs the most usual charts are presented when quality characteristics
are measured in numerical scale and when is not convenient to represent this
characteristic numerically so to classify it as conforming and nonconforming,
named as attribute. These charts are classified into two general types: 1)
variable control charts when the quality characteristic can be measured in
numerical scale where both the mean value and variability are accounted; and
ii) attributes control charts which are not measured numerically and we classify
each item as conforming and non - conforming. However, in modern
manufacturing processes data are serially correlated in time (autocorrelated)
violating this assumption. Autocorrelation results in a number of problems
affecting the performance of control charts as increasing the false alarm rate
Alwan (1992). The same problem extends in the multivariate case Lowry and
Montgomery (1995). In the next paragraphs we briefly present the basic SPC

charts for IID and autocorrelated data.
2.3.1 Rational Subgroups

The way the observations are sampled and grouped may have a large
effect on the behaviour of a control chart. Shewart (1931) introduced the
concept of "rational subgroup". Under this principle rational subgroup is a
sample where only common causes are responsible of the observed variation. In
other words, the within sample variability is due to common cause variability
while the between samples variability is due to special causes. In general, two
approaches are considered. In the first approach the sample units are produced
as close together in time as possible so the chance to observe a special cause is
the minimum. This approach provides us with a better estimation of standard
estimation when we use variables control charts. In the second approach, each
sample consists of units which are representative of all units that have been

produced since the last sample was taken. This approach is preferable when we



want to decide to accept or not all the units of the product that have been

produced since the last sample.

2.3.2 Shewart Control Charts

Shewart charts first introduced by W.A Shewart (1924) plot either the
individual process measure or the average value of a small sample (usually 5)
depending the sampling frequency along with the target level and control limits.
The assumed in control model, known as Shewart’s model, is

Y=p+e, for t=1,2,...

where Y, is the value of the quality characteristic from t-th sample, g is the

mean value of this characteristic and ¢, is the random error where
g,~N(0,0%), Cov(g,¢g,;)=0 for i#0.

Assuming that the quality characteristic is normally distributed with
mean x4 and standard deviation o the probability that any sample mean X will

fall between

M+ — and u-—
z z T
l1-a/2 l-a/2
¢ n ¢ n

is 1-a. Thus, if 4 and o are known they could be applied to determine the
lower and upper control limits for the sample means. Furthermore, we usually
replace z,_,,, with 3, so that "three sigma" limits are applied. The three sigma
limits correspond to @=0.0027, that is, only 27 of 10,000 observations may fall
out of the control limits generating an incorrect out of control signal (false
alarm rate).

In designing a control chart we must specify both the sample size and
the frequency of sampling. One way to weigh up the choice of the sample size
and sampling frequency is through the average run length (ARL) of the control
chart. The ARL is the average number of points that must be plotted before a
point indicates an out-of-control condition. If the observations are uncorrelated
then the ARL is,

ARL=1
P



where p is the probability that any point exceeds the control limits. Therefore,

a good control chart should own the property that when the process is in control

the ARL is large and when the process is out of control the ARL is small.

2.3.2.1 The X and R Control chart

Assuming that previous model is correct and x,,x,,..,x, is sample

n

with size n the average of the sample is

X +x,+...+x _ 2
x="1-—"2_""_"n where x~N(u,O'A)
n

Usually x# and o are unknown and we estimate them from
preliminary samples when the process is in control. Suppose that m samples are

available with n observations each of them and Xx,%,,...,x, the average of each

sample the best estimator for u is

3

and R, ,i=1,2,...,m is the range of each sample given by the formulae

R=x_, —x

and if R,R,,...,R, are the ranges of m samples the average range is

gfitR+. 4R,
m

' . L WmEER .
An unbiased estimator for o is a=d— where d, is the mean of the fractionﬁ‘
2 o)

The center lines and control limits for Xand R charts are:

Control limits for ¥ Chart
UCL=%+A4,R
Centerline=x
LCL=%-4,R
Control limits for R Chart (2-1)

UCL=D,R

Centerline=R
LCL=D,R




where 4,=d,Nn , D,=3d,/d, , and D,=1+3d,/d,.
The values of d,,d,;,4,,D,,D, are easily can be found in most books of SPC

(e.g Montgomery 2001) tabulated in tables according to the sample size n.
Furthermore, Montgomery (2001) suggests treating the initial control limits as
"trial" control limits, subject to subsequent revision. When the R chart is out of

control, we often eliminate the out—of—control points and a "revised" value of

R is recomputed. This value is used to determine the new limits and centerline

of the R chart and new limits on the x chart.

2.3.2.2 The Xand S Control chart

Sometimes is preferable to estimate the process standard deviation
directly. This leads to Xx and § control chart which we choose when the
following practical rules are applied:

a. The sample size n is moderately large (e.g n > 10 ) and,

b. The sample size is variable.

Despite the fact that we know that an unbiased estimator of o is the sample

S (5 -%)

i=1

variance where S§°= , S 1s not an unbiased estimator of o. Because

n —
the underlying distribution is normal, S estimates the quantity c,o, where ¢,
constant depends on sample size n. Furthermore, the standard deviation of S is
oyJ1-c,’ .Assuming that m preliminary samples are available, each of size n,

and S, is the standard deviation of the ith sample. The average of m standard

g R : o -
deviations is S=— E S.. The centerlines and control limits for ¥ and S charts
m iz

arc:

Control limits for X Chart
UCL=%+A4,S
Center line=% (2-2)
LCL=%- A4S




Control limits for S Chart

UcL=5+35 1-¢?
¢

Centerline=S

LCr=5-35 J1-¢

C4

(2-3)

As an example of the previous charts we have 15 samples with sample size n =

10 and the quality characteristic is the fill volume of beverage bottles. We set

¥ and R as well as x and S charts on this process where are presented in

Figure 2.1and 2.2 respectively.

Xbar - R Chart

|

o
|
’

Sample Mean

-

Subgroup 6 5 10

15

Sample Range
O = N W s D
111

Figure 2.1 XandR control chart
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Xbar - S Chart
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Figure 2.2 XandS control chart

As we see from the graphs, the process is in statistical control and the limits in
S control chart are tighter than limits in the R chart indicating us that S chart in

this case, is preferable than R chart provided that sample size n is moderately
large. Another one point is that control limits of X chart based on S are

slightly different to the X chart based on R. This is in general a presumable

result although there are cases where these limits are almost the same.
2.3.2.3 Shewart Control Chart for individuals

There are cases in industrial processing, such as differ repeated
measurements on the process, were the sample size which we use for

monitoring is rn=1. In these cases we use a control chart for individuals based
in the moving range of two successive observations that is, MR =|x,~x_,|. The

control limits are given by the following formula:

Control limits for MR Chart
UCL=3€+3ﬂ
d2
Centerline=x (2-4)
e L

2
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2.3.3 Control Charts for Attributes

If we cannot represent a quality characteristic in numerical scale we
classify each item as "conforming" or "nonconforming". In this case quality
characteristics are called attributes such as the production of malfunctioned
parts of an industrial product. The most widely known and used control charts

which are presented further are:

1. Control chart for fraction nonconforming or p - chart
ii. Control chart for nonconformities or ¢ - chart
1. Control chart for nonconformities per unit or u - chart

2.3.3.1 Control chart for fraction / number nonconforming (p — chart)

Fraction nonconforming (p) 1is the ratio of the number of

nonconforming items in a population to the total number of items in this

population. Furthermore sample fraction nonconforming (p) is the ratio of the
number of nonconforming units D in the sample with size n where p=D/n.

Because of the distribution which generated the data (nonconforming) assumed
to be binomial, the estimated fraction nonconforming from observed data given

that we have selected m preliminary samples (m usually is 20 or 25) for the i-th

sample is: p,=D,/n and the average of nonconforming is ;—7=Zﬁi/m where p
i=1

is the estimator of the unknown fraction nonconforming p. The center line and

control limits for p chart are:

Control limits for p—chart

UCL=ﬁ+3\/——p(l—p)
n
Centerline=p (2-5)

rcL=p-3,/24=P)
h

In the figure 2.3 is presented a usual p — chart where we have nonconforming

parts from an industrial process in samples of size 100. As we observe only the
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12" sample exceeds the control limits (UCL). Assuming that assignable causes
can be found we determine the revised control limits in figure 2.4 where there

are not any points out of control.

p - Chart
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Figure 2.4 p-chart with revised control limits

Sometimes is more desirable to construct a control chart on the number of

nonconforming. This is called np chart. The interpretation of this chart is

similar as that of p chart. The center line and control limits of this chart are:

Control limits for np chart

UCL=np+3.np(1- p)

Centerline=np (2-6)

LCL=np-3\/np(1- p)




2.3.3.2 Control chart for nonconformities(c — chart)

In the sense, that a nonconforming item of a product does not satisfy
one or more of predetermined specifications of this product results in a defect
or nonconformity. Suitable control charts to detect nonconformities is the
c chart where the number of defects (c¢) is the parameter of the Poisson
distribution (Montgomery, 2001). Therefore the control limits and center line

for ¢ chart are:

Control limits for ¢ chart
UCL=c+3c
Centerline=c (2-7)
LCL=c-3/c

When no standard is given we substitute in the previous formulae ¢ by ¢ that

is the observed average number of nonconformities in a preliminary sample.

2.3.3.3 Control chart for nonconformities per unit (u — chart)

When the sample size is exactly equal to one inspection unit (u) where
u is the average number of nonconformities per inspection units the parameters

of control chart are as follows.

Control llmﬂs for u chart
UCL=u+3 iZ/n
Center line=u (2-8)
LCL=u-3\/u/n

In the next figures (2.5 and 2.6) we have 22 samples with sample size 25 where
the number of nonconformities varying between 1 and 20. We observe that
clearly the points do not fall within the bounds of the 3s control limits, because
the 10", 11" and 22" sample have unusual number of nonconformities and we

conclude that the process is not in statistical control
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2.3.4

named

observation or sample to monitor the process that means they do not have
memory. This is a serious drawback, because it ignores any information given
by the entire sequence of points. Other criteria like warning limits and tests of
runs can be used to include information (some memory) from previous
observation but decrease the simplicity of Shewart control chart. Here, we
present two very effective control charts that take account for previous
observations and essentially used when small shifts from the mean is of

interest: The cumulative sum (CUSUM) control chart and the exponentially
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Figure 2.6 u chart

Alternative Control Charts

weighted moving average (EWMA) control chart.
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2.3.4.1 The cumulative sum (CUSUM) control chart

The CUSUM control chart was introduced by Page (1954) and uses
an unweighted sum of all previous observations. This chart has a long memory.

The author proposed that if we have collected samples we can plot the quantity

C, —Z(’_Cj —,uo) where X, is the average of jth sample and 4, is the target mean
j=1

of the process. If the mean of the process is 4, > 4, then a positive drift will
build up in cumulative sum C,. On the contrary if x4 <y, then a negative drift
will build up in C,. Hence, if we observe trend in the plotting points this

indicate us that the process mean has shifted and we search for an assignable
cause. There are two approaches to represent CUSUMs, the tabular (or
algorithmic) CUSUM and the V — mask CUSUM. Some reasons not to use the
latter approach are described in Montgomery (2001). These reasons will be

discussed later.

(i) The Tabular (CUSUM)

If x, is an observation of a sample where the process is in control then
o N(,uo,az). When there is a shift in the mean,"target" value, we observe that
the CUSUM will signal and an adjustment must be made. If we consider C;,

C; the statistics which compute the accumulating derivations above and below

the target value respectively, we have:

Tabular Cusum
G =max[0,x,. (o +K)+ C,."_l]

C =max[0,(y0—K)—x,.+C,.'_l:| @2

where K is called reference value and is computed as K=—é0' =|,u1—,u0| and
' 2

5—-M represents the shift in standard deviation units and starting values
o

C,=C;=0. If C/ or C, exceeds the decision interval H the process is

considered out of control. Some general recommendations, based in studies
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about CUSUM ARL performance, for selecting H and K are as follows.
Consider H=ho and K=ko where o is the standard deviation of the sample
variable which we use to form the CUSUM. If we use h=4o0r 5 and k=1/2, we
will have a CUSUM with good ARL properties against a shift 1o in the mean
of the process (Montgomery (2001)).

Sometimes is better to standardize the variable x, before any calculation

because if we use many CUSUM charts we have the advantage of the same

value for h and k that means they are independent of the scale.

(ii) The V-Mask CUSUM)
An alternative approach using CUSUM is the V-mask procedure. The V
— mask procedure is applied to successive values of the CUSUM statistic
C,=Zy,. where y, is the standardized observation y,=(x,~s,)/c. A V-mask is
j=1
shown in figure 2.7. If any of the cumulative sums lie within the two "arms" the

process is in control otherwise is out of control.

aut-of-control
/ mgn

smple
nutiber

Figure 2.7 V — mask control scheme

As we mentioned before, Montgomery (2001) proposed to not use the V —
mask procedure for the following reasons:

i. As the V — mask is a two sided scheme is not useful for one — sided
process monitoring.

ii. It is difficult to determine how far backwards would extend the arms of

V — mask in so doing interpretation difficult for the practitioner.
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(iii) The Fast Initial Response or Headstart Feature
This procedure was devised by Lucas and Crosier (1982) to improve the

sensitivity of a CUSUM at process start up. The Fast Initial Response (FIR) just

sets the starting values C; and C, equally to a nonzero value, usually H/2. If

the process is in control the values of C; and C, are soon unaffected by the

headstart because the consecutive observations near the target value set the
cusums rapidly to zero. However, if the process is out of control, the headstart
will allow the CUSUM to detect the out of control points more quickly,

resulting in shorter out of control values.

(iv) Detecting small shifts — An example

As we claimed above, in section 2.3.4, CUSUM control charts are
essentially used when small shifts of the mean are of interest. In the following
example we have 25 samples with sample size n = 5. In figure 2.8 we present

the x and R and the CUSUM control chart. It is easy to see that CUSUM for

samples from 4 through 10 lie outside the upper sigma limit indicating that
process is out of control. On the other hand x chart failed to detect assignable

cause for other samples except 5 sample
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Figure 2.8 X and R control chart vs CUSUM control chart
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2.3.4.2 The exponentially weighted moving average (EWMA) control

chart

Another control chart is the exponentially weighted moving average
(EWMA) control chart which is also effective when our aim is to detect small
shifts of the target value. This chart first introduced by Roberts (1959) and is

defined as follows:

EWMA statistic

z,=Ax;+(1-A)z,, where 0<A<1 or

i-1 .
z,=2) (1-AYx_; +(1-A)'z, (2-10)
Jj=0

When A increases, that means, approaches to unity more weight is given to
recent data whereas when A decreases more weight is given to older data.
EWMA is very insensitive to the normality assumption so we can use it as
control chart for individuals in a variety of applications. The control limits and

center line are calculated as:

EWMA control chart

UCL=/¢O+L0\/(2fl)[1—(1—/1)2‘]

Centerline=y, (2-11)

[1-(1-2)2']

LCL=p,— LO’\/

A
(2-2)

As a rule of thumb smaller values of A can detect smaller shifts and larger
values of A can detect larger shifts. Values of A in the interval [.05,.25] have
been found that work practically well, (see, e.g., Montgomery (2001)). EWMA
is better than CUSUM for large shifts, in particular when A4>0.1. Alternative

control procedures such as the combined Shewart - EWMA are effective both
in large and small shifts. In the next figure an EWMA chart is represented for
the data which we used from the previous example. The EWMA chart signals at

the 5™ sample.

)




2 - Y b5 — UCL=2.051

Mean=0.4417

EWMA
g
<

LCL=-1.168

0 5 10 15 20 25
Sample Number

Figure 2.9 EWMA control chart with n=5, % =0.25, L=3

2.4 Control Charts for Autocorrelated Data

A key assumption underlying the use of the traditional control charts in
the univariate case is that the observations are independent through time. The
assumption of wuncorrelated observations is no longer valid in many
manufacturing processes in the modern industries. Autocorrelation maybe the
result of dynamics that is intrinsic of an industrial process. Usually,
autocorrelation is observed in processes when observations are closely spaced
in time. A rule of thumb is to sample from the process data stream less
frequently considering the drawbacks. However, we make inefficient use of the
available data and it takes longer to detect a process shift when it really exists
(Montgomery, 2001). Control charts that have been designed under the
assumption of independence of observations will be deeply affected with the
existence of autocorrelation; e.g positive autocorrelation can produce negative
bias in estimators of the process standard deviation with consequence much
tighter control limits than desired. Tighter control limits can produce more
often false alarms that is, non existent assignable causes with economic
consequences in the industrial process.

Two general approaches have developed and studied in recent years. The
first forecasts each observation from previous observations and calculates the
forecast error (residual), after each observation is obtained. Next, these
residuals are plotted with standard control charts. The second approach uses

standard control charts that are based in original observations, but adjusts
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(widen) the control limits trying to reduce the false alarm rate. Furthermore,
model free approaches developed and are working reasonably well in some

cases.
2.4.1 Standard control charts based on residuals

As we stated above, the first approach for dealing with autocorrelated
data applies an appropriate time series model assuming that this model will
remove the autocorrelation from data and then apply traditional control charts
to the residuals. Some techniques have been proposed in the literature and will

be discussed in the next paragraphs.
2.4.1.1 The Moving center line EWMA control chart

An approximate procedure based on EWMA was proposed by
Montgomery and Mastrangelo (1991). Assuming that we can model a process
using an integrated moving average model IMA (1,1) which has the form
x,-x,,=€,—0¢,_, and a nonstationary behavior, that means the variable x, drifts
because there is not a fixed value of the process mean. Box et al. (1994) proved

that the EWMA statistic with A=1-8 is the optimal one — step ahead prediction
error for this process. Thus if x,,, is the forecast for the observation in period

t+1 then x

. =2,, where, z is the EWMA statistic. So, the sequence of
e, =x,—x,_, is independently and identically distributed (iid) with mean zero.

Therefore, usual control charts could be applied to these one step ahead
prediction errors. As a result we can approximate an appropriate time series
model with EWMA.

Subsequently the usual three — sigma control limits using these errors

satisfy the statement P[—BO' <e < 30]:0.9973. Therefore, the control limits with

centerline z, for period ¢+1 are:

S t_\'

Z| 8IBAIOBHKH =)

fpl! N

\
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Moving center line EWMA control chart
UCL=z,+30

centerline=z, (2-12)
UCL=z,~30

where o? is estimated as dividing the sum of squared prediction errors for the
optimal A by n (number of observations).

Furthermore, Montgomery and Mastrangelo (1991) pointed out that it is
possible to combine information about the state of statistical control and

process dynamics on a single control chart.
2.4.1.2 CUSUM control chart for monitoring autocorrelated processes

Lu and Reynolds (2001) introduced CUSUM control charts based on
the residuals or on observations in the case of processes which can be modeled
as an AR(1) process plus an additional random error. The AR(1) process with

an additional error is equivalent to an ARMA(1,1) process, (Box et al., 1994)
that can be written as (1-¢)X, =(1-¢)& +(1-6B)y, where y,'s are independent

random variables with mean 0 and variance 0',2. Here we present the residuals
case. Assuming that we have a simple model X,=g +¢, where u, is the
random process mean at sampling time k. It is assumed that g can be modeled
as an AR(1) process, where y =(1-¢)¢+du,  +a, and & is the process mean, ¢,
is a random shift and |¢|<1. The authors, also assumed that o, ~ N(0,0?’) and
are independent from g, .When the process follows the previous equations with
¢£=¢, where & 1s the target value the process is in — control. When an

assignable cause occur, this causes a shift £ away from &,. For this model the
residual at observation k from the minimum square error forecast at
observation k-1 1is ¢=X,~& (X, ~&)+0e,_ where ¢ and 6 are parameters
of ARMA (1,1) model, (Box et al., 1994). Suppose that there is a step change in

the process mean from & to & between the time k=7-1 and 7, it can be

proved that the asymptotic mean of residuals is %(4‘, —&,).These residuals are
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independent and normally distributed with variance 0',2. A two sided CUSUM

chart based on the residuals has the following statistics:

CUSUM for autocorrelated data

CR,j:max{O,CR,f+(€k 7‘0;/)}
2-13
CR; =min{0,CR; +(¢, ~ro, )} o

It is necessary to choose the value of r and therefore to determine the

sensitivity of the chart in various shifts. When observations are independent a

good choice of r is approximately the half of the standardized distance

between the target and the shift when that is detected. When there is
autocorrelation in the process the value of » will not be necessarily the same as
with this when observations are independent. In the CUSUM of residuals, the
residuals are independent but their mean is not constant after the shift in the
process mean. Lu and Reynolds also proposed that the optimal value of » will
depend primarily from the asymptotic mean of residuals (given in the previous
paragraph) and the performance of the control chart for a range of shifts.
Furthermore, they suggested that for relatively low levels of autocorrelation
0.4<¢<0.8 a value of » around 0.5 would give a reasonable good performance
for a large range of shifts. In the case when autocorrelation gets higher, the
behavior of the process gets closer to a random walk. With a random walk there
is no tendency to return the process to the target, so the usual meaning of an in-
control process is not valid. In this case, an adjustment mechanism could
provide valuable results in reducing overall process variation. Process control
methods based on adjustment mechanisms are labeled as Engineering Process

Control (EPC) methods and will be presented in the next chapters.

2.4.1.3 Cuscore charts for process monitoring

The Cuscore statistic O is a cumulative sum of Fisher's score statistic

and is a function of the product of the residuals that is, how the residuals

change with the parameter of the model. Considering that we have a time series
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model  y,=@x,+a, where the residuals @ can be written as
a,=f(y,,x,,9) t=1,2,..,n where y, are the observed variable of a response, x, 18

an independent variable and 6 is some unknown parameter. If 6, is the true

value of the parameter it can be shown that Qz(é—&o)det: where

d,=-0a,/00 a, and 6 is the maximum likelihood estimator of &. The
approximation is exact when the model is linear.
Ramirez (1998) introduced the Cuscore statistic in process monitoring.

In this context the Shewart's model can be written as y,=0@+a, where @ is the
mean and ¢,'s is some random noise. This model transforms the data into noise
according to a,=y,—6 which has derivative with respect to € constant and

equal to 1. We can observe, that Cuscore for monitoring changes in the mean, is
exactly the Cusum statistic that is, the sum of deviations from the mean value
0:

QzZ(y{—Q)
Ramirez (1998) proposed that Cuscore statistic can be used to check the
assumption that the time series model which we applied to our data will also fit
future observations reasonably well and its parameters will remain fairly
constant. So, in the previous "Shewart” model after a suitable time series model
has been fitted to our data the residuals would conform to the "Shewart" model

with #=0. If this is not happen the time series model is no longer adequate for

our data or an assignable cause is affecting the process.

2.4.2 Modified control charts

Due to the existence of autocorrelation in many industrial processes,
control charts where designed under the assumption of independence of the
successive observations suffer because of the high frequency of false alarms. In
order to overcome these problems control charts based on the residuals have
been proposed but they face the fact that behave worse when there are processes
where the residuals are not independent and if the parameters, of the applied

time series model, are unknown and must be estimated. In the next paragraphs
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other approaches will be presented that are based in the adjustment of control

limits trying to decrease the false alarm rate.
2.4.2.1 A model free approach (The Batch means control chart)

Runger and Willemain (1995) proposed a control chart which is based
on unweighted batch means (UBM) for monitoring an autocorrelated process.
This approach derived from computer simulation models where high correlated
data frequently occurs. This chart, gives equal weights to every point in the

batch (every batch is composed of sequential observations). Using the subscript

) . . . o1
j symbolize the j batch, the mean of this batch ls>xj=;2x(j-x)“‘j=1’2""‘
i=1

Although the UBM approach is a model free approach, there is not the necessity
of an ARMA model, one has to determine an appropriate batch with size b
which is harder than if he had selected an appropriate time series model.

Runger and Willemain suggested that the unweighted batch means
could be plotted using a usual individuals control chart. Another one difference
with residuals chart is that, it is as simple as a usual control chart. The same
authors advocated that the batch size must be selected so as to reduce the lag
autocorrelation of the batch means to approximately 0.1. They proposed to start
with b=1 and to double & until the lag 1 autocorrelation is small enough
accordingly the value 0.1.

In the figures 2.10, 2.11 we present an individual chart plot for 75
observations and a x plot of the batch means where b=3 respectively. As we
see an assignable cause in the batch means plot was detected more quickly than

in individuals plot.
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Figure 2.10 Plot of batch means using b =3
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Figure 2.11 Xbar chart of residuals
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Chapter 3

ARIMA and Transfer Function Models

3.1Introduction

In this chapter ARIMA and transfer function models are discussed. ARIMA
models are extensively used in industrial processes when autocorrelation exists.
ARIMA models are appropriate for autocorrelated processes whose input stream
is closely related. On the other hand, there are quality applications (e.g.
chemical process industries, semiconductor manufacturing) which we refer to as
"dynamic input processes" where the dynamic nature of an input creates an
additional source of variability. For these applications it is imperative to model
the dynamic relationship between process input and output. These models are
called Transfer function models. A brief description why we need ARIMA
models is given in 3.2 section. In 3.3 section a comparison of stationarity
versus non stationarity is discussed while in 3.4 section basic properties of time
series are presented. In 3.5 section we discuss the most known stationary
ARMA models while 3.6 section is concerned with the modeling of these
models. Furthermore, in 3.7 section transfer function models are stated under
the view of industrial the processes. Finally in section 3.8 a basic presentation

of state space models is discussed.
3.2 The necessity of ARIMA models

In the previous chapter (section 2.4) we analyzed the situations where the
data are not independent but are presenting an autocorrelation structure. In this
case Shewart control charts are not appropriate and an effort is made to model
this dependency trying to find a time series model that fits the data. Therefore
we use that model to remove autocorrelation and apply control charts to

residuals. Some of these models are AR(p), MA(q), ARMA(p,q) , IMA(p,q),
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etc. All of these are belonging to a wider class of models, stationary and non —

stationary, which are called ARIMA models.

3.3 Stationary and Non - Stationary Time Series Models.

An important class of stochastic models which we use for describing time
series, consists of the stationary models. Stationarity of a process means that
the process remains in equilibrium about a constant mean level (Box et al,
1994). More formally a time series is said to be strictly stationary if the joint

distribution of X,,X,,..,X, is the same with the joint distribution of
XinsXgups-s X, for all integers £ and n>0. A less restrictive requirement

called weakly stationarity of order f if the moments up to order f depend

only on time differences, that is, if the following conditions are valid:

Weakly stationarity
E(X,)=p,(2) is independent of ¢

— 3-1
Cov(X,,,,X,)=r,(h) is independent of ¢ for each ¢ (3-1)

where  E(X,) and Cov(X,,,,X,) are the mean and autocovariance function

(ACVF) of (X,) respectively and y,(h) is the value of the autocovariance
function at lag &.

In the previous paragraph we defined the stationarity of a time series
model. However, is a usual phenomenon in industry that many processes are
better represented as non - stationary that is, as no having a constant mean level

over time. In the figure 3.1 and 3.2 are given examples of a non stationary and a

stationary process respectively:
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Figure 3.1 Plot of a non stationary time series
data
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Figure 3.2 Plot of a stationary time series

data

3.4 Basic Properties of Time series

Let (X,) be a stationary time series. The autocorrelation function (ACF) of

(X,) 1s:

h =}/X(h) 3_2
px(h) 7.(0) (3-2)

where 7, (0)=Var(X,).
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The partial autocorrelation function (PACF) of this time series (X,) is the

function a(.) which is defined by the equations:

a(0)=1

a(h)=4¢,,, h=1 (3-3)

where ¢,, is the component of ¢,=I;'y,[, and T, is the covariance matrix.

3.5 Stationary ARMA (p,q) models

In a stationary process the ARMA(p,q) models are extensively used where
we try to eliminate autocorrelation and to apply control charts to residuals. In
the next paragraphs, briefly, ARMA(p,q) will be discussed, as well as special
cases of them as AR(p) and MA(q) models.

3.5.1 Autoregressive Models

A very useful model which we usually use trying to remove
autocorrelation from a process is the autoregressive model. In this model the
current value of the process is expressed as a finite linear aggregate of previous

values and a random "shock" g,. These random shocks usually assumed to be
Normal with mean zero and variance o.. A sequence of g is called white

noise. The stationary time series (X,) is called autoregressive process of order

p, AR(p), if it satisfies the equation:

X=X  +.+9,X_,+2,
where Z,~N(0,0%) and Z, are uncorrelated with X, s<¢ and ..., are

constants (3-4)

Autoregressive models can be stationary or non stationary. Stationarity

exists when all the roots of the autoregressive operator, (D(B)=1—¢lB—...—¢pB”,

is considered as polynomial in B of degree p (B is the backward shift operator),

lie outside the unit circle. Some basic properties of the AR(p) models are:
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» The ACVF of an AR(p) process (y,(%)) can take any value until
p . When A > p, it declines geometrically.
o The ACF (p,(h)) will die down, sometimes with an oscillatory

manner. When it is close to a stationarity boundary, the rate at which the ACF
decays, may be very slow (e.g., an AR(1) model with ¢ =.999). This may be an
indication that the process generating the data is nonstationary.

e The PACF value of an AR(p) process is zero after p .

3.5.2 Moving average models

In this model the current value of the process is expressed as a finite

linear aggregate of past innovations Z,. Thus the stationary time series (X,) is

called moving average process of order q, MA(q), if satisfies the equations:

X =2,+0Z_+.+6,Z_,

where Z, ~WN(0,0°) and §,,...,6, are constants (3-5)

Some basic properties of the MA(q) models are:
o The ACVF of a MA(q) process (7)( (h)) is zero for h>gq.

e The ACF (px(h)) can take any value up to ¢ . When A >gq, then
px(h):O-

e The PACF value of a MA(q) process declines geometrically up to

g, sometimes with an oscillatory manner.

3.5.3 Mixed Autoregressive - Moving average models

When we want to achieve a greater flexibility and accuracy of a time
series model, sometimes, is better to include both autoregressive and moving

average terms in the model. This leads to the mixed autoregressive — moving

average ARMA (p,q) model where,
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X, - 83X, =~ X, ,=Z,+8Z  +.+0,Z

where Z, ~WN(0,0%) and the polynomials

l-¢z~..—¢,2” and 1+ 6z +..+0,z' have no common factors (3-6)

The ACVF , ACF and PACF of ARMA(p,q) processes is a mixture of all
aforementioned for AR(p) and MA(q) processes.

3.5.3.1 Order selection

It is not beneficial from a forecasting point of view to choose the

parameters of the model (p and ¢g) subjectively large. If we fit a very high

order model this lead us to a small white noise variance but if forecasting is our
major concern the mean squared error of the forecast will depend from the
white noise variance and from the errors arising from estimation of the
parameters of the model.

The most common criteria which are used in order to achieve a

reasonable choice of p and g are the final prediction error (FPE) criterion and

the Akaike (AIC) criterion for AR processes and the AICC criterion for ARMA

processes which are described as follows:
3.5.3.2 The FPE and AIC and AICC criteria

The FPE criterion was developed by Akaike(1969) in order to select the

appropriate order of an AR process to fit to a time series {X,,...,X,,}. The idea is
to choose the model (X,) in such a way that minimizes the one step mean
square error when the model fitted to X, is used to predict an independent

realization (¥,) of the same process that generated X,. So a good choice of p is

. o, W . & + Ao
this, that minimizes the quantity FPE, = 2P where 6% is the maximum
n—p

likelihood estimator of o?. Correspondingly, the AIC criterion consists of

minimizing the quantity ln(a;)+?p which is asymptotically equivalent with
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the FPE criterion (Brockwell and Davis, 1996). Similarly with the previous
criteria the bias - corrected Akaike criterion (AICC) for fixed p,q and ¢,,0,

minimizes the quantity:

2Ly (4,.6,5(¢,.6,)/ n+2(p+q+1)n/(n- p—q-2))
3.5.3.3 Estimating the coefficients of an ARMA(p,q) model

The determination of an appropriate ARMA(p,q) model involves a

number of interrelated problems. One of them is the estimation of the
coefficients (¢i=1,..,p),(6i=1,.,q) and the white noise variance o”.

Assuming that the data are "mean - corrected” that is, the sample mean have

been subtracted a zero mean ARMA model is,
#(B)X,=6(B)Z, Z,~WN(0,67).
When p and g are known, good estimators of ¢ and & can be found
maximizing the likelihood with respect to p+g+1  parameters
(¢1,...,¢p),(91,...,¢9q) and ¢?. The maximum likelihood estimation is not linear;

therefore, good initial values are required so as, the algorithm to converge as
fast as possible.
For pure autoregressive models Yule — Walker and Burg's algorithm are

provided while for models with ¢>0 innovations algorithm and Hannan

Rissannen algorithm are more preferable (Brockwell and Davis, 1996).
3.5.3.4 Forecasting ARMA processes

Forecasting at time ¢, using the available observations from a time
series, for a future time ¢+1 can increase considerably the control and
optimization of an industrial process. A forecast is characterized by its origin
and lead time. The origin is the time from which the forecast is made (usually
the last observation in a realization) and the lead time is the number of steps
ahead that the series is forecast. The most common criterion for computing

forecasts is the mean square error (MSE) and our aim is to minimize it.
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Assuming that (X,) is a stationary time series model with known mean
and autocovariance function in terms of X,,..,X, observed values. Our aim is
to find the best linear predictor P, which forecasts X,,, with minimum mean
squared error (MMSE). This predictor is,

PX,,=a,+a X, +..+a, X, _,
The best ag,4a,,...,a, are depending from the y(0),7(1),...,y(n) assumed known.
The MMSE is given by the following equation:
E(Xru =P Xra) =7 =)',y (h)
Since y(h) >0 for h— o then MMSE ~ y(0) that means when "past" is so far

that correlations are negligible the prediction is as bad as if "past" was

unknown.
3.6.Modelling non stationary models (ARIMA) models

The ARIMA models are appropriate for autocorrelated processes whose
input streams are closely related, in other words the autocovariance function is
decreased very slowly (West et al., 2002). The definition of the ARIMA model

1s:

X, is an ARIMA(p,d,q) model if Y,=(1—B)d X, where d is a non negative

integer and Y, is a causal ARMA(p,q) process (3-7)

The previous definition equivalently means that X, satisfies the next difference
equation:

¢(B)(1- B)* X,=6(B)Z,
where ¢(B) is a stationary autoregressive operator and Z, ~ VWV(O,O’Z).

The last definition implies that the process can be obtained by summing

("integrating") the stationary process d times (Box et al., 1994).

34




3.6.1 Special cases of the ARIMA model

The most frequently ARIMA models are the following:

(i) The (0,1,1) process:  (1-B)X,=8(B)Z, where 6(B)=(1-6,B)
(ii) The (0,2,2) process:  (1-B)*X,=6(B)Z, where 9(B)=(1—€1B B,Bz)
(ii)) The (1,1,1) process: #(B)(1- B)X,=0(B)Z, where $(B)=(1-¢B) and

0(3):(1-9,3 -6,8%).

3.6.2 Variance stationarity and transformations

When the time series data exhibit a degree of variability which changes
especially, when this variability is increased, it is an indication that these series
must be transformed to achieve stabilization of the variance before model these
data. A usual transformation is taking the natural logarithms of the series. This
transformation is appropriate in case where the variance of the series is
proportional to the mean. Another one transformation widely used is the family

of Box - Cox transformation proposed by Box and Cox (1964) which is:

Xi=1
V=

{

,A#0 (3-8)

InA ,1=0

where Y, is the transformed time series and A is the transformation parameter.

As an example we have 144 observations of international airline passengers
from 1949 to 1960 (monthly). The dataset adapted from Box et al., (1994). In
figure 3.3 we can see the time series plot of the original time series data as well
as the plots of ACF and PACF. In figure 3.4 the plots show how the increased

variability is reduced taking natural logarithms of the original series.
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Figure 3.3 Plot of the original series of airlines passengers with the ACF and PACF plots
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Figure 3.4 Plot of transformed series of airlines passengers with the ACF and PACF plots

If we inspect a plot of the time series and we detect trend and seasonality
then there are two methods to confront with this problem:
(i) Classical Decomposition

A common method is to decompose the series into three components: a
trend, a seasonal component and a random noise. This method extensively
discussed by Brockwell and Davis (1996) and criticised by Box et al. (1994)
because there are cases where it produces misleading results. This method
proposes to estimate and extract the deterministic components (trend and
seasonality) hoping that the noise component will turn out to be a stationary
time series. After that, we have to find a satisfactory model in order to analyze

its properties and use it in conjunction with the trend and seasonal component

for prediction and simulation purposes.

(ii) Differencing

This approach, developed by Box and Jenkins (1976), based on applying
repeatedly appropriate differences to the original series until the differenced
observations resemble with a stationary time series. Then we can model,

analyze and predict this stationary series and hence the original process.
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Continuing the previous example we can observe from plot (figure 3.4) that

transformed data reveals trend and stationarity. Figure 3.5 gives the plot of

these transformed data and figure 3.6 shows the plot when we applied first

differencing to eliminate trend and first differencing with period 12 to eliminate

seasonality. As we can see from the plot the process appears to be stationary.
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Figure 3.5 Plot of the transformed series of airlines passengers with the

ACF and PACF plots exhibits trend and seasonality
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3.7 Transfer function models

There are industries including chemical processes, semiconductor
manufacturing, where ARIMA models are not appropriate to monitor the
autocorrelation of observations. The input of these processes namely "dynamic
input processes" (West et al., 2002) are highly affected by an additional source
of variability. For these processes, other models are suitable to model the
relationship between input and output. We assume that X measures the level of
an input to a system (e.g the concentration of some ingredient in the feed of a
chemical process). Furthermore, we also assume that the level of X, influences
the level of a system output Y. Because of the inertia of the system, a change in
the level of X will not immediately affect the output, but will produce a delay
response to Y until coming in balance with the new level. We call this change
dynamic response and the model that describes it transfer function model.
However, in all the conditions of an industrial process, independently how well
these conditions are controlled, there are influences other than X that will

affect Y. All of these uncontrollable effects we call it noise or disturbance.

3.7.1 The importance of transfer function models in industrial processes
Statistical methods are used widely for estimating transfer function

models that taking account of the noise in the system as we described it before.

In the next paragraph some basic meanings of the terminology related to

transfer function models will be given.

3.7.2 Basic terminology in transfer functions

In the previous paragraph we presented a dynamic system of an

industrial process. Now we illustrate it in a scheme as this in figure 3.7.
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Steady state level: We refer to a steady state level of the output when from
time to time the input is held at some fixed value. That is, we mean that the

value Y _(X), discrete output, from a stable system comes in balance when the
input is held at the fixed level X .

Steady state gain: Many times the relationship between Y (X) and X is

approximately linear. Hence, we can write the steady — state relationship as
Y. =gX where g is called steady — state gain.

Transfer function of the filter: Suppose that the input is being varied and X,
and Y, represent deviations at time ¢ the inertia of the system can be
represented by a linear filter as Y, =u(B)X,. The operator u(B) is called transfer
function of the filter.

Impulse response function: The weights u,,u,,... are called the impulse response
function of the system. That is, u; can be regarded as the response (output) at

times ;>0 to a unit pulse input at time O such that X,=1 if t=0 and X,=0

otherwise. Suppose that the deviations are in balance initially and at times

t=1,t=2,...produce impulse response patterns of the deviations in the output

where add together to produce the overall output response.
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Stability:  If the infinite series u,+u,(B)+u,(B)* +... converges for |B|<1 or in

other words u; are absolutely summable, so that Zluj\<oo then the system is
J=0

said to be stable. It can be proved that Z‘ujlzg (Box et al., 1994).
j=0

Parsimony: Unrestrained use of the parameters u,, at the estimation stage,

could lead to inaccurate and unstable estimation of the transfer function.

Forcing function: In general, the function that is responsible for driving the
dynamic system is called forcing function.

Step (unit) function: Suppose that there is a forcing function which was at a
steady state level of zero and changed instantaneously to a steady level of
unity; this function is called step function.

Step response: The response of a system after applied a step function is called
step response.

Pure unit delay or responsive model: In any transfer function model the
dynamic behaviour of Y, is due only to disturbance dynamics (noise) and not to
process dynamics (there is not dynamical relationship between X and Y) then,

this model is called pure unit delay or responsive model.

3.7.3 Continuous and discrete Dynamic models

Supposing that we have a pair of observations (X,,Y;) at equispaced

intervals of time, of an input X and an output ¥ from a dynamic system as this
presented in figure 3.7. There are cases where both X and Y are continuous
but are observed only at discrete times. We consider that a discrete model can
be fitted in these data. Where we have continuous and discrete systems it is

used the basic sampling interval as the unit of time.
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3.7.3.1 Continuous dynamic models

Suppose that we have a continuous dynamic system with a steady —
state relationship that is, Y =g X . To relate output and input we use the

following differential equation

%z%[g,X(t)—Y(t)] or (1+TD)Y,(t)=g X (¢) (3-9)

where, T, is constant (called time constant) and D=d/dt. The solution of the
differential equation (3-9) is, %, (r)= Iu(v)X(t— v)du and u(v)=g T 'e™'".
0

Suppose that X(#)=0 and abruptly raised to a level X(¢)=1. The step response
of the system solving the differential equation with a unit step input is

Y(t)=g (1—e’”T'). Sometimes there is an initial period of pure delay or dead

time before the response of a system after a given input change begins to take

effect. In these cases the differential equation (3-9) is modified as

(1+T.D)Y, () =g X (t~7) (3-10)

3.7.3.2 Discrete dynamic models

In the case of a discrete dynamic system we usually represent it as

(1-6,8-6,8’~..—-6,B")=(0,~@B-w,B* ~..—0,B") X,_

b

or as

S(B)Y, =a(B) X, (3-11)

where the transfer function is w(B)=6"'(B)Q(B) where Q(B)=w(B)’ and b

represents the delay in periods. Thus the transfer function is the ratio of two

polynomials in B.
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Recalling from paragraph 3.6, ARIMA models where #(B)X,=6(B)Z,,

can be written as X,=¢'(B)9(B)Z,. Therefore a time series model can be
represented as an output from a dynamic system to which the input is white
noise and the transfer function is the ratio of two polynomials in B .

Stability for a discrete transfer function model is the same as
stationarity for ARMA time series models. Thus, for stability we require that

the roots of §(B)=0 lie outside the unit circle, that is,

for first order model we require that -1 <6, <1 and

dero)<l
for second order model we require that ¢, -9, <1
-1<9, <1

3.7.4 Transfer function models with added noise

In reality transfer function models, as we stated in 3.7.1, will not follow
the pattern as aforementioned. A disturbance might be originate at any point in
the system but usually we consider it on the output Y. Assuming that the noise

N, is independent the level of X and is additive with respect to the influence
of X then, ¥ =6"'(B)w(B)X,,+N, and if we represent it as ARIMA(p,d,q)

model then, N,=¢"'(B)8(B)Z, where Z, ~ VV]\/(O,O’Z) and finally as:

Y, =67 (B)w(B)X, , +¢ ' (B)O(B)Z, (3-12)

In the next paragraphs will be discussed methods for identifying fitting and

checking transfer function models of the form (3-12).
3.7.5 Determination of the Transfer Function Models

In order one to determine a transfer function model has to follow the

following steps:
a) Estimation of the cross correlation function r, (k) between the input

and the output of a discrete dynamic system,
b) Identification of a transfer function model,

c) Fitting and checking the model.
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(a) Cross correlation function

Assuming that a bivariate time series X, is a series of two dimensional

vectors (X,,X,,) observed at times ¢ where 7=1,2,3,... with mean vector
EX,
n=FEX, = and
EX,
covariance matrices

cov (X, pnti)  cov(X,,0t)

T h =C X X, )=
(t+ ,t) Ov( 1+h? ’) I:cov(X”,,'z,tl) COV(XH;,.z’tz)

this series is said to be stationary if the moments p, and I'(¢+4,t) are both

independent of ¢.

Suppose that we want to describe an input time series X, and the

corresponding output time series Y, from a dynamic system. We assume that

data are a pair of discrete time series generated by discrete bivariate process
and at times 7+h,t+2h,...,t+ Nk are represented by (X,Y,),(X,.1,),.(Xy.Yy)-
In general this bivariate process is not stationary. Therefore, appropriate

differences (x,,y,) could be applied, where x,=(1-B)’X, and y,=(1- B)"Y, are

transformed to be stationary. The cross covariance coefficients between x and

y atlag k>0 is:

}/Xy(k)=E[(xl—/'lx)(yl+k ﬂ,)] k=0,1,2...

The cross covariance function describes the relationship between future values

of y and current values of x and the cross correlation coefficient at lag & is,

Cross correlation coefficient

7 (k)

0,0,

Py (k)= (3-13)

The cross correlation function (CCF) gives the correlation between x, and y,,,
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(b) Identification of a transfer function model

Suppose that a transfer model can be written as Y,=5""(B)w(B)X, ,+N,
where  §(B)=1-6,(B)~..~6,(B) and w(B)=w,-,(B)-..—o(B)’. The
identification includes the following

1) Estimate #, (impulse response weights) using cross correlation

function.
2) Use these estimates to guess the orders of r and s and the delay

parameterb.

3) Substitute the estimates U, in the equation

1-6,(B) ...~ 8,(BY (uy +u,(B)+..)=(w, + & (B) +..+@,(B))B* to obtain initial
estimates of 6 andw.

The identification process would be simplified if the input to the system is
white noise. When the original input is not white noise, simplification is

possible by "prewhitening". This technique is described extensively in Box et
al. (1994).

(c) Fitting and checking the model

Generally the same comments should be made as with ARIMA(p,d,q)
models. An additional point is that a transfer function models includes, at least
one, input variable. This variable could be correlated with the noise component
N,. Therefore, it is essential to prewhiten the input to avoid the correlation
between the input and the noise component.
As an example (Box et al., 1994) we have 296 successive pairs of continuous
observations, measured at 9 second intervals, from a gas furnace where air and

methane combined to form a mixture of gases containing CO,. The air feed was
held constant but the methane feed rate could be varied. The resulting CO,

concentration was measured to provide information about the dynamics of the
system. In the figures 3.8 and 3.9 we see the plots of cross correlation before

and after prewhitening (an AR(5) model applied to the input) respectively.
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the input input

Furthermore, serious model inadequacy can usually be detected by examining:

1) The autocorrelation function of the residuals from the fitted model. If the
autocorrelation function shows correlation pattern this indicates model
inadequacy.

2) Certain cross correlation functions involving input and residuals. In
particular, cross correlation function between prewhitened input and the

residuals.
3.7.6 Forecasting using leading indicators

Prediction of a time series, say Y,, can be substantially improved by
using information from an associated series X,. This is valid if changes in Y

tend to be expected by changes in X. In this case X 1is called "leading

indicator". We build a transfer function noise model as stated in (3.7.3) by

Y =6 (B)w(B)X,_, +¢ " (B)I(B)Z,. Also, we assume that an adequate model for
the leading series X, is X,=¢"'(B)(1-B)' 6(B)W, were W,~WN(0,02). Our aim

is to find the linear combination of X, and Y, that predicts Y,, with minimum

squared error.
We rewrite Y, =67 (B)w(B)X,_, +¢ ' (B)O(B)Z, as Y, =v(B)W, +w(B)Z,

where  v(B)=6"(B)w(B)B’¢ (BY1-B)*6(B) and w(B)=¢"(B)4(B). The
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prediction )A’,(h) of Y, can be written as ):;(h)=2v2+jW,_j +Z'/’l?+/'zt—/ . It can be

Jj=0 j=0

proved that the minimum squared error is given by the following equation:

Minimum Squared Error (MMSE) prediction

. 2 A=l b1
E[Y,~Tm] = oY vi+on D> v (3-14)
Jj=0 j=0

3.7.7 A Detailed example in Transfer Function Modelling

As an example (adapted from Brockwell and Davis, 1996) we consider
the leading indicator (U,, t=1,2,..149) and sales (V,, t=1,2,...149) time series
data, given by Box and Jenkins (1994) where the first one is the input and the

second the output series respectively. The graphs of the two series and their

sample ACF suggest that both series are non stationary (figure 3.10 and 3.11).
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Figure 3.10 The leading indicator and sales data time serie graphs
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(i) Outline
Before we set up a transfer function model relating to the previous series

we start with differencing and mean correction to generate transformed X, and
Y, input and output series respectively, which can be modeled as stationary

time series. Our goal is to fit an appropriate transfer function model of the

form:
K= X (e= 1)+ N (1)
=0
where N(¢) is an ARMA process uncorrelated with X (¢),
bu (B)N (1)=8y (B)W (1), W (t)~WN (0,05 )
and the transfer function T(B) has the form,

B’ (w0 +w,B +...+quq)

= T VB .=y BP

and the input process X, is described as an ARMA process

I

b, (B) X (1)=8, (B)Z(t), Z(t)~WN(0,03)

(ii) Modelling X,
The parameters in the last three equations will be estimated from the given

observations from X, and Y,. Furthermore, cross correlations can be computed
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for model checking. Moreover the AIC value is computed for model
comparisons and forecasts are computed from the fitted model. Examining the
plot of the sample ACF and PACF (figure 3.12) suggests that an appropriate

time series model for the X, is a MA(1) model,
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Figure 3.12 Sample ACF of the X, time series

and using maximum likelihood estimation is formulated as follows:

X(t)=Z(t)-0.4744Z(t-1), Z(1)~WN(0,0.7794)

(iii) Preliminary coefficient estimates

The sample cross correlations graph is the following:
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Figure 3.13 Sample cross correlations graph from X, and Y, time series

The upper right and lower left graphs suggest that the Y residuals at time t+h

are correlated with X residuals at time t for A=3,..,9 but not otherwise. Thus an
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appropriate transfer function model is this with 7, non zero for j=3,..,9 and
zero otherwise. The estimated values of 7,=p(j)o,/0, (Brockwell and Davis,
1996), where p(j) is the correlation between Y residuals at time t+h and X
residuals at time t. Since 7,=p(j)o,/o, is decreasing approximately
geometrically for ;>3 we take T(B) which has the form,

T(B)=w,(1-vB)" B’
Thus the preliminary coefficient estimates are given from the functions,

w,=7, and v,=7,/7,

and in this example w,=4.86 and v,=0.698.

(iv) Final estimates
Using the preliminary coefficients as starting values we can use least
squares estimation to estimate more efficiently the parameters of our model.
Thus,
(B)= B**4.717
1-0.7248B
X(t)=2z(1)-0.474Z (1 -1), Z(t)~WN(0,779)
N(t)=W(t)-0.5825W (t—1), W(t)~WN(0,04864)
AICC=27.664
(v) Residuals checking
In the next figure (3.14) the plot of the cross correlations residuals is
presented indicating that there are no significant correlations between the input
and noise residuals. Furthermore, to test the goodness of fit, the plot in the
figure 3.15 shows that the assumption of uncorrelated residuals of the fitted

transfer model is also valid.
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3.8.Fundamentals of State space modelling.

The transfer function model, was presented in section 3.7, characterizes the
relationship between input and output in a dynamic process. A different
description of this process is based on internal models which describe the
internal couplings between input and output using a number of variables not
directly observable, called state variables and the corresponding model is called
state - space model. State variables are internal variables that determine the
future behaviour of the process given the input and the current state of the
process. We note that when we model an industrial process, using state space

form, it is not necessary the state to have a physical meaning. Assuming that we

have a dynamic process with input X and output Y.
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The state space form consists of the following two equations:
a) The state or system or transition equation which describes the dynamics of

the state variables using differential or difference equations and,

b) The observation equation which expresses Y, as a linear function of a state

variable Z, plus noise at time ¢. A general form of a state space model is:

Z,=0_Z_ +a,

-1

3-15
Y,=HZ,+N, (3-13)

where Z, is the unobservable vector (#x1) of state variables, ¥, is the number

of observations, ®,(rxr) is a transition matrix and H,(lxr) is a vector that
varies with time ¢, a, is the white noise, called process noise and N, is called

t

measurement noise.

3.8.1 DModelling a continuous process

A state space formulation of a deterministic continuous process can be

modelled using differential equations in state and observation equation as:

9Z o7 irx
dt
Y =CZ,

where Z(rx1) vector of r unobservable state variables, X(rx1) vector of
inputs and Y(px1l) vector of outputs. If the process sampled periodically at
times ¢, =kAt it can be proved (DelCastillo, 2002) that the state of the process
at discrete points ¢, is given using Laplace transforms as,

Z,,=AZ,+BX,

v=CZ,

At
assuming, that A, =¢,,, —¢, is constant and 4A=¢e®, B= Iea”dsl“.
0
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3.8.2 Modelling a discrete process

In the case where we have a discrete process, this can be generally
modelled solving a first order of linear equations. Assuming that a state space
form of a discrete process is described as:

Z,=AZ +BX, +aq,
Y,=CZ,+N,

where, g, and N, are model disturbances. We can solve the state equation by
repeated substitution. If time ¢ =0 is the initial time after k repeated steps we

have:

k-1
Z,=A4'Zy+) A'B(X, +a;)

Jj=0
3.8.3 Obtaining the transfer function from state space form

At any time we need to obtain a transfer function from a state space
formulation we need to eliminate the state variables. Thus, considering the state

equation of a deterministic model as
Z..=FZ,=4Z + BX,
where F is the forward shift operator, a state space form is given by the
following equations:
(FI—-A)Z,=BX,
Y,=C(FI-4)" BX,
where, the transfer function in terms of forward shift operator ( F) is
H'(F)=C(FI-A)"'B

and the transfer function in terms of backward shift operatorB is,

H(B)=C(I-BA)"'BB
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Chapter 4

R
Engineering Process Control™_""

4.1 Introduction

As we stated in Chapter 2 the process control and variability reduction are
of major concern in the modern industrial policy. There are two basic statistical
approaches to deal with this problem. The first one is the statistical process
monitoring which uses control charts or the widely known statistical process
control (SPC). The main concern of this approach is to quickly detect
assignable causes so that an action will be taken to correct them. The second
approach is based on adjusting the process, using information from the previous
observations about the deviation of the target level. This approach is called
Engineering Process Control (EPC) or feedback adjustment (Montgomery,
2001). When this control is implemented by measuring devices, sensors and
actuators is called Automatic Process Control (APC). In section 4.2 the process
adjustment which is applicable through Deming's funnel experiment is
presented. In section 4.3, the most widely known discrete feedback controllers
including EWMA controllers in Run-to-Run (R2R) control are discussed and is
also a brief description of feedforward controllers is given. In section 4.4 the
Grubb's adjustment rule which is applied when the process is initially off the

target is presented. Finally in section 4.5 adaptive controllers are discussed.
4.2 Process Adjustment

Statistical process control is developed mainly for parts manufacturing,
while engineering process control is applied for continuous processes in
chemical and semiconductor manufacturing. The latter approach is based on the
assumption of compensation and regulation of a manipulated variable that is

adjusted in order to keep the process output on target. There are situations
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where, despite our best efforts, the process has a tendency to "drift" or
"wander" away from target. This may due to raw materials, temperature effects
or any others unknown causes which impact the process. Thus, a process
regulation assumes that there is another variable that can be adjusted in order to
compensate for this drift in the process output and after a series of regulation
the process output will be close to the target. But when someone will use
engineering process control instead of statistical process control? Also could we
use both of them? In the next paragraphs examples are given where SPC, or
EPC, or both of them should be used.

In section 3.7 we presented the transfer function models. In a transfer
function process there is a manipulated (controllable) variable X, which we
consider that has an effect on the output Y,. In this dissertation we focus on
single input single output (SISO) systems. Therefore, the output is determined
by a manipulated variable and our major concern is to find the relationship
between the input and the output with the presence of inevitable noise

(disturbance). Furthermore, in section 3.7.3 was presented an additive model

with noise which has a simpler structure of this form

Y=S§,+N,
where S, is a signal, that is a transfer function of X, and the disturbance term
N, is a possibly correlated noise process that is determined by a white noise

sequence ‘¢,. We can think the relationship between N, and ¢, as a time series

where ¢, is the input and the correlated noise N, is the output.
4.2.1 Deming's Funnel experiment

There are cases where an adjustment could never be applied. Here, we
illustrate an extreme case through the Deming's funnel experiment (Del
Castillo, 2002). The original version is described by Deming (1986) and it is a
classic example of quality improvement. The experiment was carried out by
putting a funnel over a target bull's eye, on a flat surface. Marbles were dropped

into the funnel and their position with respect to the target can be adjusted from
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drop to drop. The aim of this experiment is to minimize the deviations of the
marbles positions to the target. In this experiment it is assumed that:

1) The process is in statistical control and

11) The process is initially on target.

One hundred (100) marbles are dropped into the funnel and four adjustments

are proposed:

1. Leave the funnel fixed; no adjustment.

2. Atdrop k (k = 1,2,...) the marble will come at point ¥, from the
target. Move the funnel at —Y, from its last position; one adjustment.
3. Move the funnel -Y, from the target; one adjustment.

4. Set the funnel for the next drop (k +1) right over where the marble

came to rest at the preceding drop; some adjustments.

We can think that the position of the funnel is the manipulated variable
in a feedback mechanism and the distance from the target is the deviation of a
quality characteristic from the target value. Rules 2 to 4 contain a feedback
action given that we have information from previous measurements to set the
current position of the funnel. Rule 1, is the same with SPC and finally, rule 4
imitates the operator's actions when try to make each part of the manufacturing
process the same with the previous one to achieve consistency. Figures 4.1 and
4.2 illustrate the simulation of the four adjustment rules and a time series

simulation of these rules when the process is in statistical control respectively.
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In figure 4.1a, where there is not adjustment, the dropped marbles will
be in a small region around the initially position (process is on target; minimum
variance). In figure 4.1b, is the result after one adjustment according to the first
observation (process is on target; twice the variance of rule 1). In figure 4.1c,
the process is non - stable and explodes an oscillatory pattern which is being
wider over time. In figure 4.1d, as the time passes, process explodes and the
marbles are moving away from the target which is analogous to random walk in
time series modeling.

It is obvious that when a process is on target and in statistical control
state, is not adjusted. Grubbs (1954) proposed an adjusting mechanism in the
case where the process is initially off target. This mechanism will be discussed

in section 4.4 in details.
4.2.2 When SPC and EPC should be applied in a process
Hunter (1994) gave an example where he tried to define when someone

can use SPC or EPC techniques. We assume that there is the following

stochastic model (here a state space model):

Y,=Z,+q,

(4-1)
Zr =¢Zr—1 U,

where u, and a, are white noise sequences uncorrelated each other and 7, is the

deviation of the target of a quality characteristic. The variable Z, models the

dynamic behavior of the deviation of the target that is, how the process mean
changes over time, and is directly unobservable. The dynamic behavior of this
process is observable under the presence of the measurement error a,. The
parameter ¢ determines how fast the process is relative to the time. Thus, this

stochastic model is a state space model as we have seen in previous chapter

. . —-At
(3.8). If we solve the state space equation with respect to¢,¢=exp(7j,

[4

where A, is the time between samples assumed constant. The variable T,

denotes the time constant of the dynamical system. We conclude that the shorter

T. the faster the process dynamics are. In particular:
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a) If A,>>T, then §—0 and Y=y, +a,=¢ (Shewart’s model). That means if
the sampling interval is slow relative to process dynamics the observed process
will be uncorrelated and SPC chart will work satisfactorily.

b) If A,<<T, then ¢—1 andZ,=Z,_ +u,. In this case the observation equation
Y =Z +a, is a random walk plus noise. That means that a rapid sampling,
results in a nonstationary process where SPC charts are not appropriate.
Therefore an EPC method based on predictions Y,,, is more appropriate.
Summing up in a few words, if in the aforementioned state space model the
measurement error g, is much larger than Z, then, an SPC chart works much
better than an EPC strategy.

In figure 4.3(adapted from Hunter, 1994) we present when SPC and EPC apply
better.

Measurement eror
@l\ Adjustment Cost N
- /SP(;_/ Adjustment Eor —*1SPC
o) —
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— @

[{i'ui-.'_ll

S

Figure 4.3 When SPC and EPC should be applied to a process
On the other hand there are cases where is not clear when to use SPC or

EPC techniques. What this figure implies, is that EPC may be needed or not but

SPC is always necessary.

4.3 Controllers

EPC is a set of feedback or feedforward adjustments, or even, a

combination of them. Our aim is to find a control rule known also as controller
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in order to adjust the input of a process in order to achieve a desired
performance of the output as close as possible to a target value. In this section
the most common feedback controllers including EWMA controllers in R2R

situation and a brief description of feedforward controllers are discussed.

4.3.1 Basic terminology of controllers

The most usual terms concerning controllers are illustrated as follows:

Qutput: Quality characteristic to be controlled.

Input: Compensating variable that can change the level of the output.
Adjustment: Change in input level required to compensate for output deviation.
Disturbance: The time period followed by output if no compensatory
adjustments are made.

Feedback control: Using the past output deviations from target to determine a
process adjustment.

Feedforward control: Present and past values of some other predictive input
variable to determine process adjustment.

Open Loop: An open-loop system is a system with no feedback. In an open-loop
system, there is no 'control loop' connecting the output of the system to the
input to the system.

Closed loop: A closed-loop system includes feedback. The output from the
system is fed back through a controller into the input to the system.

Offset: Output deviation from target if no process adjustment is applied.

4.3.2 Controllers definition

Controller is a function or rule or algorithm that depicts how a
manipulated (controllable) variable X, can be adjusted from observation to
observation. In cases where the data are available, controllers are implemented
automatically (sensors, electronic controllers) or manually. The magnitude of
the adjustments depends on the nature of process. There are processes where

adjustments are made even though the output is close the target and others
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where adjustments are expensive and this practice is not preferable. In the
situation where frequent adjustments are expensive or not feasible, a common
strategy is to wait until there is a significant deviation from the target in order
to adjust them. These strategies, known as deadband policies, are proved to be
optimal (Box and Kramer, 1992) wherever there is a considerable cost or

adjustment error.

Block diagrams
Block diagrams are graphical representations of information flows and
transformations that affect these flows of the process. Block diagrams are very
common in engineering but are uncommon in statistics. In a discrete process the
information flows (variables) are represented by arrows and transformation that
affects these variables by boxes or blocks. In figure 4.4 is illustrated a simple
w(B) w(B)

transfer function model as Y =——=X  where

TN is the transfer function as a
ratio of two polynomials.

In figure 4.5 a block diagram is presented. This is a case of a transfer
function model where two variables are needed to be added (S,+N,=Y,). The
signs near the end of the incoming arrows indicate if a variable must be added

or subtracted.

N,
Xt Yt
S @(B)/ 5B) (o A
Process 51_",.,-{ )_L
o 4

Figure 4.4 Block diagram of a transfer function Figure 4.5 Block diagram of a sum

of variables

4.3.3 A simple feedback adjustment scheme

Consider a process where a quality characteristic is out of control.

Suppose that there is a disturbance N, from its target value T when no

adjustment is made. Suppose also that there is a manipulated variable X which

can be used to adjust the process and that a unit change in X will produce °g
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units of change in the output variable Y in one time interval. At time ¢, X is
equal to X, and at time ¢+1 the deviation from the target is ¢,,=Y, -7 and
after adjustment,

€t+1 =ng +Nt+l (4'2)

Suppose that we can compute an estimate N,(I) at time ¢ of N,,, with error

e, (1) so,

N, =N, +e(l) (4-3)
then using (4-2) and (4-3)

£,,=gX,+N (1) +e,() (4-4)

and if an adjustment of X at time ¢ is X,:——l—]\A/,(l) then
g

IR (1) (4'5)
So, the deviation from target ¢, at time ¢+1 for the adjusted process is equal

with the error in forecasting N,,, and the actual adjustment to the manipulated

1+1

variable X at time ¢ is

X, =X, =N, ~ &) (4-6)

A simple feedback controller is illustrated with a block diagram in the

following figure:

v

Disturbance

Manipulated
Varable Fesdbick Cutput
—p SR — Process -

= Controller

Figure 4.6 A feedback control
The controller takes the deviations from the target as input and adjusts the

manipulated variable the next period of time. The value of output variable is fed

back to the controller from period to period.
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4.3.4 Discrete PID Controllers

The most common type of controller in industrial processes is the
proportional integral derivative controller (PID). This is a feedback controller
which implies that a feedback adjustment occurs when compensatory changes
are made in an adjustment variable X in reaction to output deviations from the
target. In this dissertation the controllers that will be discussed are the feedback
controllers, although will be also mentioned other types of controllers in the

end of the chapter.
4.3.4.1 Parameterization of PID controllers
There are several ways in which PID controllers parameterized. Here

two ways are presented. The first is called incremental form and the second

parallel form:

Incremental form of PID controller
VX,=K,Ve +K,e, +KDV2e, (4-7)

Parallel form of PID controller

!
X,=K,,e,+K,Zej+KDVe, (4-8)

j=

where K,,K,,K, are the tuning parameters, correspond to proportional (P),

integral (I) and derivative (D) term respectively, manipulated to minimize the

process variation, e, 1s the output deviation from the target and X, is the

manipulated variable. In the case where one or more of these parameters is

omitted results in several special cases such as PI and I controllers.
4.3.4.2  The Proportional (P) controller

This type of controller has the generic form,

X,=K,e, (4-9)“

Furthermore, the process output deviation e, from target T can be described by

e, =T —Y where ¥, is the output quality characteristic. It can be proved (Castillo
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2002) that Y =a+ gBX,_l where under the actions of the controller
-8

X,=K,e,=K,(T-Y,). In the figure 4.7, as an example, a proportional controller

applied where target value is T=12, offset say, a=3 and different increasing
values of K, are tried in order to study its behavior. We can see that as X,

increases, the offset decreases; but before the process achieves the target value,

T'=12, oscillations are making the system unstable. Thus, proportional

controller reduces offset without never to eliminate it.
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Figure 4.7 Effect of increasing K, in a proportional controller
4.3.4.3 The Proportional Integral (PI) controller

As mentioned before, the proportional controller has not the ability

to eliminate the offset. Thus, the integral term is added so that the PI controller

form is
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{
X,=K,e,+K,> ¢, (4-10)

J=1

1
where the pure integral controller is X,=K,Zej:>VX,=K,e,. An interesting
=1

property of the integral term is that after a long time ¢, — 0. It can be proved
(Astrom and Haglund, 1995)) that always the offset will be eliminated. This is
an essential property in SPC if we think that sudden shifts are the most common
types of assignable causes in industrial processes. Continuing the previous
example of section 4.3.3.2 with the same values of target value, offset and

K, =3 we increased gradually the value of K, from 0 to 2. As a result, the
offset reduced rapidly and eliminated although when large values of K, are

applied the process turns into unstable due to extreme oscillation.
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Figure 4.8 Effect of increasing K, in an integral controller
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4.3.4.4 The Proportional Integral Derivative (PID) controller

In the previous section we saw that a PI controller acts better than
the proportional controller. Nevertheless, there are processes where a tighter
control is required. In these cases the derivative term is added in a PI
controller. The idea behind the derivative term is to predict where the output
will be and anticipate it, given that the PI controller will be late to correct the
process. Therefore, the derivative action is like a control action proportional to
a predicted deviation from the target. A general form of a PID controller is the
same with this which was given in section 4.3.3.1. It is worthwhile to observe
that the adjustment in a PID controller is a function on the last three observed
errors (deviations from the target) while in PI, PD controllers and P, I
controllers is a function of the last two and one errors respectively.

As an empirical rule how to design a PID controller to obtain a

desired response one could follow the steps shown below:

1. Set your design criteria.

2. Obtain an open loop response and determine what needs to be improved.

3. Add a proportional control to improve the rise time (the time it takes for the
output to reach 90% of its final value).

4. Add a derivative control to improve the overshoot (Overcompensating
response).

5. Add an integral control to eliminate the steady state (offset) error.

6. Adjust each of K, K, and K4 until you obtain a desired overall response.

There is no need to implement all three controllers if is not necessary.

4.3.5 EWMA Controllers

Early applications of the exponentially weighted moving average
(EWMA) appear in quality and process control (Box and Kramer, 1992).
Recently, the EWMA controller has received a special attention in
semiconductor industries where EWMA feedback controllers are used for
compensating against disturbances that affect the run—to-run (R2R) variability

in the quality characteristics of silicon wafers at a certain manufacturing step
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Castillo and Hurwitz (1997), Moyne et al., (2000). Because semiconductor
industry usually involves more than 200 process steps, variation in a certain
step will impact subsequent processes and finally the quality of integrated
chips. Moreover EWMA controllers have a wide application not only in the
semiconductor industry but in any batch process where adjustments are
necessary with every batch and there is a substantial drift in the quality

characteristic.
4.3.5.1 Relationship of Integral control and EWMA statistic

Consider the simple feedback adjustment scheme which we discussed
in section 4.3.3. It is reasonable to use for estimating the 1\7,(1) (4-4) the
EWMA statistic in order to give a weight in past values of N,,N,_,..... Thus
1\7,(1)=/1(N, +6N,, +02N,_2) where 0 <6 <1 the smoothing constant and A1=1-6.
Using equation (4-6) the adjustment at time ¢ is given by

X, - X, =—~(R,0-F,,0)
g
Thus the formula for a EWMA forecast can be written
N,()-N,_,()=2e,, (1) where e,_,(1)=N, - N, ,

Therefore in any feedback scheme the required adjustment to cancel out a

EWMA of the noise N, when a compensatory variable was set is,

A A
Xr_Xr-l—_—_': ' 1(1)=—E‘9{ (4'11)

&

Thus, the pure integral controller is equivalent to set the level of the
manipulated variable and to cancel the one step ahead forecast error which

made with the EWMA statistic.
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4.3.5.2  The single EWMA controller

In the area of semiconductor manufacturing an EWMA controller
proposed by Sachs et al (1995), which recommends process adjustment at each
run of silicon wafers. The authors assumed that the value of the quality
characteristic y, for run number n is described by the relation:

Y =a+bX,  +¢, (4-12)

o4 = W]V(O,O'Z) , X, 1s the input of the process that denotes the control action of

the manipulated variable at the end of run n—1, Y, is the output variable that is,
the deviation from target and a,b are parameters estimated from the data.
Assuming that X is a scalar, although can be extended to the multiple input

case, the relationship between the controllable variable and the target value T

is,

X,= (4-13)

where the estimated b of the process gain is available prior to the beginning of
the control action and an estimate a of a can be provided recursively using the

EWMA equation. At run » the estimate of a is denoted by a, is described by
the equation

&, =AY, =bX,.)+(1-2)4,., (4-14)
where 1 gives more weight to the most recently observations of the quality
characteristic. The equation (4-13) is the single EWMA controller. It can be

shown that the single EWMA controller is a pure I controller, using (4-13) in

conjunction with (4-12), where the estimate @, and the controllable variable are

given by the equations:

a,=A(Y,-T)+a,,

S (¥, -T)+ X, (4-15)

n=l

X, =-

SN

where X, is the initial control factor and the integration constant is K,,z—%.
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When the process does not obey in equation (4-12) but instead obeys the
equation

Y, =a+bX,, +D,+&, (4-16)

where D term is a deterministic drift disturbance common in many

n

manufacturing processes, the EWMA controller is not optimal that is, will not

achieve the minimum possible variance of .
4.3.5.3 The double EWMA (DEWMA) controller

Given that a single EWMA controller is not appropriate in cases
where there is a severe drift of the quality characteristic, in other words in cases
where can be exhibit considerable offset, Butler and Stefani (1994) proposed to
extend the single EWMA controller. More specifically, they proposed to add a
second EWMA equation to single EWMA controller that would compensate for

the offset. Butler and Stefani assumed a model with linear deterministic drift

(4-16) and also assumed that a prior estimate bof b exists, so, they proposed to
use a double EWMA controller (also called predictor — corrector controller)

where the controllable variable is given by

T—4 —
e, =, (4-17)

and

a,=A (Yn —BXn—I)-i-(l_il)aAn-l

D,=4(Y,=bX, -4, )+(1-2)D,., (4-18)

where 0< 4,4, <1.

In order to use the double EWMA controller, process engineers must select the
weights 4, ,4,. The selection of controller's weights does not addressed by

Butler and Stefani where arbitrarily values were used. The weight selection

problem is studied by DelCastillo (1999) and it will be discussed later.
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4.3.5.4 Age — Based Double EWMA controller

In the case of a tool wearing in semiconductor processes the EWMA
statistic 1s not adequate; therefore a DEWMA controller was proposed as we
discussed earlier by Butler and Stefani (1994). However, this controller does
not take into consideration the process "age". An adjusted DEWMA formula
was proposed by Chen and Guo (2001) in cases where the sampling time is not

equally spaced. Thus the DEWMA equations are modified as

&n :/’i’(Yn BXn-l)+(l = ll)[&n—l +(tn —tn I)Dn—l] (4'19)
D, --A{Y"_fX"jt“’""J+(1—A)Dn-. (4-20)

where ¢, denotes the process age at n run. The authors applied this controller

in a chemical mechanical polishing (CMP) process where the results showed

that the proposed controller improves the control efficiency significantly.
4.3.5.5 EWMA controller with step change disturbance

So far, EWMA controllers are discussed taking into consideration the
assumption that EWMA estimator is optimal when the process mean follows an
IMA(0,1,1) model (Box et al., 1994). This estimator performs well for various
processes and especially in semiconductor fabrication processes. Chen and
Elsayed (2002) are proposed an EWMA estimator whose mean follows another
kind of disturbance process which is called as step — change model. This model
was derived from realistic situations were the process mean is subject to
occasionally step changes caused by variations in the physical conditions.

Chen and Elsayed assumed that:
a) The disturbance D, is normally distributed with mean g, and variance o’
at time ¢ that is,

D=y, +¢

M, with probability 1-p

~ r(&.7?) and u =
where 4, f(G»T ) and f, {~f(§,z'2) with probability p

69




The probability p represents the frequency of changes to the process assuming

that the step change occurrence is independent of the prior history of the
process.

b) The EWMA estimator here is used to estimate g is,
p=AD_ +(1-A)f1_,

where f,=D, is an estimate of the overall mean & from the historic data. This
estimator is beneficial because of simple PID controller implementation. In
order to choose appropriate values for A the authors are proved that A is given
by:

—p(1+r2)+rm

(1-p)

where r=r/0' that is, the standard deviation ratio. The authors also presented

A=

some contours plots for several values of A. These plots showed that as A
increases the step change increases too or occurs more frequently. Furthermore,
the effect of the step change occurrence frequency on A, decreases, when the

step change size gets smaller.

4.3.6 Feedback adjustment charts

The feedback adjustments schemes which described in previous
sections can be implemented with the combination of sensors and other devices
automatically. However there are processes where feedback adjustments are

made manually. In these cases the process operators are using manual

adjustments charts.
4.3.6.1 The Bounded adjustment chart

There are cases where the cost of making an adjustment is a concern. In
these cases some modifications are made to the feedback adjustment procedure
so that less frequent adjustments are necessary. A very simple way to do this is
using the bounded adjustment chart. This chart is based on the idea that an

adjustment will be made not after every observation but when the absolute
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value of a forecasted deviation from target is larger than a threshold value (Box
and Kramer 1992, Box and Luceno 1997); that is, some pre - specified bounds

given by + L. This boundary value is determined from process operators after

comparison of the off target cost and the adjustment cost.

As an example in figure 4.9 we have a bounded adjustment chart of 50

observations where the relationship between the input and output in this process

1s given by
Y -T=09X,

where the process gain is g=0.9, 4=0.3, =0 andL=110.That means that
adjustments are made when EWMA exceeds L=+10. Note that adjustments are

made at points 3, 5, 8, 14, 29.

Bounded Adjustment Chart of 50 obs
A=0.3 g=0.9 L=10 T=0

'
N

50
1 -1
& -10
40 . = /\\ 1
¢ K | h 18
30 e — A : I
: I-‘ - '__,.. ¥ Ak Ill 6
i | " ol ] I . 1l
20 —_—— T ] -
R ¥ " (R v V \/\ | \ |I i » .-'II 4
i L] - [ i 1 |
L=+10 £ AP Py ] 5 L4 L [%4& o i f s #-3 @
0T \ - R U B By Wi RS N b N2 g
U ¥ | 1 j/’\ﬁ. /\ N .“f/\ . 4| JV15e
0 ! - | \"-.1-'2‘5_ PP ¥ S = 3 -1' 1\‘_\_ —arf 1B B SO Y ¢E,
— e FrebrarE T Sy ! ek 2
.\;\ f \' 4\-__.\".-; 3 \ /‘\'.l—'."“{ ‘“‘\-"'/ﬁ\"_.' -__ ’ 1 w
s i i | el A Frckatin il B
L=--10 -10 = A - = T
y \E ® = 3 «
5 N (3 4
-20 1 ¥ 5
||I y 16
.30 - 7
18
9
-49 10
1
-50 12
1 6 11 16 21 26 31 36 41 46
Obs

[—~—Orig_out =—Ad outt —Oo—EWMAL ——Ad) Obs t+1 ]

Figure 4.9 Bounded adjustment chart showing the original and adjusted output the

EWMA and the real adjustments. The circled EWMA indicate where adjustments are

made
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4.3.7 Other types of controllers

Until now, the adjustments schemes that presented in this chapter are
feedback adjustment schemes. These controllers are most widely used in many
industrial areas. However there are situations where is preferable to reduce
variation in the input of a process with or without conjunction of a feedback

adjustment. This form of controller is called feedforward controller.

4.3.7.1 Feedforward controllers

EPC schemes depend on the information of the process dynamics in
order to determine the adjustments. In feedback control, one must know (or
assume) a dynamic model linking the manipulated variable to the output. In
feedforward control one must additionally know the relationship between the
input variable and the output. So, if we can measure fluctuations in an input
variable that can be observed but not changed, it may be possible to compensate
some other variables. This is a disadvantage of feedforward control with
comparison to feedback control where we don’t need to know accurately the
source or the magnitude of the disturbance. However, there are processes where
the feedforward control is applicable, such as in lithography.

A simple feedforward control scheme is illustrated in figure 4.10

v

Feedforward
Controller i

Disturbance

Manipulated
Vartable L Output

___..:' b—’ Process ——»

Figurc 4.10 A feedforward scheme
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4.3.7.2 Feedforward as a supplement to feedback controllers

Box and Luceno (2002) proposed the complementary use of
feedforward and feedback adjustments to compensate for expected level shifts
in the process mean where this is necessary in an industrial process when a new
batch of feedstock material is set up. Authors are studied and compared five
alternative control schemes:

(1) Only feedforward adjustment (FF).

(i1) Only feedback adjustment (FB).

(ii1) Feedback — Feedforward adjustment (FB+FF).

(iv) Feedback in conjunction with indirect forward to increase the
sensitivity of feedback (FB+FES).

(v) Feedback with both direct and indirect feedforward (FB+FF+FFS).

Box and Luceno assumed, for all the above five control schemes, that the

deviation from target Y, at time ¢ is represented by an IMA time series model

as,

Y -7,

t -1

=a,—6a,, (4-21)
where a, is a white noise sequence. They also assumed that a batch of feedstock

lasts for T intervals and that an event occurring in the i interval of the A"
batch is indexed by t=i+hT .

Comparison of the various schemes results in

(a) FD adjustments are not suitable to eliminate non stationary disturbances
and any FB scheme is possible to do much better.

(b) Some improvement can be feasible by the use of feedback scheme with

direct and/or indirect feedforward supplement.
4.4 Grubb’s adjustment rules
In section 4.2.1 Deming’s funnel experiment was presented under the

assumption that the funnel was initially on target. However, when the process is

initially off target Grubbs (1954, 1983) proposed some process adjustment
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rules. These rules could be applied in any manufacturing process where an
incorrect setup operation can result in drastic consequences in the quality of the
output. According to Grubbs, assume initially that the setup offset d (units) is
an unknown constant not necessarily equal to zero. For the first part the mean
deviation from target is

H=d+U,
where U, is the initial setting of the machine setpoint (controllable factor).
Grubbs assumed that U,=0 that is, before start up the machine was on target. If
d is known we could set U,==d for all ¢+ and completely eliminate the offset;
this trivial case is seldom possible.
The first observed deviation from target is given by

Y=pu+u=d+U,+u
where u~N(O,0:) and models part to part variability and the measurement

error. In contrast with some previous EPC adjustment methods where the
adjustments affect the deviations from target, now it is assumed that the
adjustments affect the mean of the process (DelCastillo, 1998). That is, the
adjustment VU, will result in a new process mean of
=+ VU,
and the second deviation from target will be
h=u+u,
Continuing in this form, a general expression for the mean and the deviations
from the target is,
=ty VU
Y =p +u, (4-22)
respectively. Grubbs(1954,1983) proposed to find the adjustment weights
{K;}", thatis, VU_ =—KY, solving the following problem:

minVar(u,,,)

4-2
subject to: E[p,,, =0 )
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That means that we want to have a process that on average is on target after n
parts have been processed with a minimum variance around the target. We also
point out that 4 becomes a random variable since it’s a function of adjustments

based on random observations. Therefore Grubbs showed that the weights that

solve the problem satisfy the following equation:

K=1/t t=12,.. (4-24)

so the adjustments are
Y
VU,=U,-U, lz—T’

That means that the adjustment weights follow the harmonic series {1,1/2,1/3,...}.

For this reason some authors calls this adjustment scheme as "harmonic rule".
4.4.1 Grubbs extended rule

A second adjustment rule was also proposed by Grubbs (1954). Now the

setup offset d is described as a random variable. Grubbs assumed that the
distribution of d has a known mean equal to zero and a known variance o . He
claimed that the variance of setup (o) is due to changes in the machine.

Furthermore, he showed that the optimal weights to solve the problem (4-23)

are given by,

K, = > (4-25)

This rule is called "Grubbs extended rule".
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4.5 Self tuning (adaptive) controllers

Self tuning controllers are based on the recursive estimation of the
controller’s parameters as if they were the true parameters. That is, the
uncertainty associated with the estimates is ignored. Adaptive controllers
assume, in general, that the parameters of a process change with time so that the
controller must vary (adapt) its own parameters accordingly. This type of
controllers are particularly important in manufacturing since they can avoid the
production of scrap (nonconforming products) associated with industrial
estimation experiments (DelCastillo, 2002). Furthermore, the estimation
procedure can be performed online. Thus, each observation that is obtained
should be utilized by the controller allowing controlling the process after

startup (Astrom and Wittenmark, 1997).
4.5.1 Direct and Indirect controllers

In general two types of self tuning controllers exist; the indirect and
the direct self tuning controllers. Indirect self tuning (ST) controllers have a
recursive estimator that estimates the parameters of the process. Then these
parameters are used by the controller. On the contrary, in the direct (ST)
controllers the parameters of the controller are estimated directly by the
recursive function. The objective is to find an equivalent model for the process
so that, its parameters are directly correspond with the controllers parameters.
A practical recommendation, before someone utilizes any type of a self tuning
controller, is the extensive simulation of a wide variety of possible model

processes and disturbances before implementation.
4.5.2 An example of indirect ST controller.

Assuming that a process is described as a first order transfer function

process with ARMA (1,1) noise,
Y,=gY,, +gX,_, +(1-6B)s,

and suppose that we seek an MMSE controller
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X‘=_¢iy;
g
and the corresponding MMSE ST controller is:

%
where ;13, 6 are the parameters estimates of the ARMA(1,1) model and g is the

process gain at time ¢. The figures 4.11, 4.12 and 4.13 show the parameters
estimates outputs and inputs respectively of a simulation of an indirect ST

controller were

g=12, $=03,0=-0.6 and ¢ ~N(0,3).

Output MV ST controller

SFES

Figure 4.11 Output values of the quality characteristic using indirect ST controller

Input MV ST controller

.
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—
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Figure 4.12 Values of the manipulated variable suggested by the indirect ST controller

77



Parameter estimates. ST MV
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Figure 4.13 Parameter estimates used by the indirect ST controller

It is worthwhile to point out that:

e The estimates of g and ¢ converge rapidly to their true values but the
estimate of @ is varying much more than the others.

e There is short transient in all three graphs. This occurs because the
controller needs to probe the process making drastic changes in the manipulated
variable. That is, the controller tries to probe the process in order to "learn"
(e.g., get better parameter estimates) and then bring the process back to the
target. These two features of the behavior of a ST controller, namely, probing

and control are referred to the control literature as the "dual control effect”

(Feld'baum, 1965).
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Chapter 5

Optimal Feedback Controllers

5.1 Introduction

In chapter 4 our major concern was to present the most widely used
feedback controllers in the modern industry. In this chapter, we are interested in
finding how to adjust a process so that our adjustments to be "optimal", in the
sense that the output of a process is close to the desired target value. In section
5.2 the MMSE controllers are presented and compared with the PI ones. In
section 5.3 the optimal designs of the most widely used EWMA controllers are
discussed and some examples are illustrated. Furthermore, in section 5.4 a

variance constrained self tuning controller is presented.
5.2  Optimal feedback controllers

In this section certain types of controllers like MMSE controllers are
discussed in the sense of optimization. These controllers are rather impractical
in industrial processes (Box and Luceno 1995, DelCastillo 2002). Furthermore,
PID controllers are by far the most common controllers and many process
control devices in modern industries are only equipped with PID controllers
rather than MMSE controllers (Tsung and Shi, 1999). However, these types of
controllers are optimal under certain criteria and in this rationale these
controllers are presented in the following sections. In addition, the MMSE
schemes are still useful as benchmarks in evaluating the performance of other
schemes so that, minimum variance control strategies provides a great deal of

insight into the type of adjustments problems we are concerned with.
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5.2.1 Minimum Variance (MMSE) Controllers

Minimum variance or minimum squared error controllers (MMSE) are
seek to minimize the variability of the quality characteristic that is, the mean
squared error of the process output deviation from the target. These controllers
ignore any cost in doing so, that is, there are situations where a MMSE control
requires inappropriately large manipulations of the compensating variable and
from this side are impractical. However, it is easy to be modified to achieve the

variability of the adjustments below a certain level.

(i) Process with no Dynamics

Assume that a process can be described as

Q=u+bX, +¢, (5-1)

that means that there is not a dynamic relationship between Y, and X,, where

O, is the quality characteristic. Y, is the deviation from target value (¥,=T-Q)
where T is the target value. The value x is the mean quality characteristic
assumed known. Our concern, is to minimize the MSE of the quality

characteristic adjusting the manipulated variable X,. If we set E(Q,)=T that is,
the MSE is equal to the minimum possible variance of o, the controller is

X, =£;—” (5 -2)

The equation (5-2) denotes that all the time the adjustments(l-B)X,=0. If

T- ! .
X, # only one adjustment is necessary[(1-B)X,]. If u=T, there is no

need for adjustments. This is the same like in Deming’s funnel experiment (rule
2).

(i)  Process with Dynamics

Assuming now that a process can be described as

Yj=—aY_ +bX _ +ce_ +e¢ (5-3)
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where |c|<l (invertibility) and Y, denotes the deviation from target. If Y, is
the next deviation from target depends on X, the minimum squared error is
given by

MSE(Y,,,)=Var (X,,,) + E(¥,,,)’ (5-4)
This quantity is minimized when E(Y,,)°=0. Thus, the MMSE equals the

minimum possible variance where

MSE(Y,,,)=Var(Y,,)2 E(&,,) =0’ (5-5)
The one step ahead forecast error is
Y, =—a¥ +bX, +ce, (5-6)
and
X=""F (5-7)

since we choose E(Y,)=7%, =0 in order minimize the MSE and e, is an
estimate of & where e,=Y,—f’,_, =Y,. If we substitute (5-7) into (5-3) we get

Y. =-cY +ce +¢,, and using backshift operators can be written as

1+1 1+1

(1+cB)Y,,=(1+cB)¢

+ T 1+1

=Y =¢ (5-8)

The (5-8) equation implies that the minimum variance of o is realized.

(iii)  Impractical use of a MMSE controller
In the previous chapter the Proportional Integral (PI) feedback

adjustment scheme was presented in the form of

!
X, =K,e, +K,Zej where X, is the manipulated variable of a process.
Jj=1

If we use this feedback scheme and we want to model the relationship between
the input and the output of a process allowing inertia characteristics, a useful
way to do this is through the following first order dynamic model:
Y,=constant+6Y,, +g(1-6)X,, 0<d<1 (5-9)
where the inertial properties can be understood as at ¢ time periods after a unit

step is made in X the change in Y is g(1-J') where 6 and g are parameters

of the model and g is the system gain. It can be shown (Box and
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Kramer(1992)) that if the disturbance of the process say N, can be predicted

perfectly apart from random error by an IMA (0,1,1) model that is,
N,—N,,=¢, - 6¢,, then the PI adjustment scheme can produce MMSE about the

target value,

= 2 and k,=i where 1=1-6 (5-10)
g1-9) g

That means that this is an optimal control rule in the sense that it minimizes the
MSE of the process output deviation from the target value. This control
equation is practical only if § is fairly small. As § becomes larger and in
particular as it approaches unity the MMSE scheme requires excessive control

action (Box et al., 1994).
5.2.2 The Generalized Minimum Variance (GMYV) Controller

There are circumstances where the manipulated variable exhibits a large
variability under MMSE control and the control action is not practical or
feasible. This occurs because the MMSE controller transfers the variability
from the quality characteristic to the manipulated variable.

Consider the process which is described as
(1-¢B)Y,=gX,_, +(l- 6’B)a, (5-11)
where the MMSE controller is (5 -7)

=ty (5-12)

In Figure 5.1 we simulated from this process where¢=0.2,0=-0.6, g=1. In
the first case an open loop simulation X, is limited to a range of values (—1,1)

due to scaling. In the second simulation the closed loop MMSE is achieved

using the controller X, =-0.8Y,. We can see that the MMSE controller compared

to the open loop performance transfers the variability from the output to the

input (manipulated variable).
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Figure 5.1 Effects on input and output a) White noise input b) Output of white noise input ¢) MMSE control
input d) output when X, is an MMSE control

The problem is that an extreme adjustment of the manipulated variable is not
practical in many processes due to a high cost or limitations in the range of
values of the manipulated variable. A method that proposed by Clarke and
Gawthrop (1975) 1s the generalized minimum variance controller (GMV) where
the GMV control minimises the squared weighted difference between the
desired value and the predicted output while penalising excessive control effort.
Assuming that we have a Box — Jenkins transfer function (3.7.4) with IMA (1,1)

noise:

g X, +1—9B :
1-6B 1-B

It can be shown that the GMV controller can be given by the equation:
X (1-6B)(1-6B)
“g(1-B)+(A/g)(1-86B)(1-6B) "

The effect of increasing A is that we take large reductions in Var(X,) for small

Y{:

(5-13)

increments of Var(Y,).
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5.2.3 The Constrained MMSE (CMMSE) control

Box et al., (1994) proposed that when the adjustments are described from
a stationary time series (a constrained scheme), we can find an unconstrained

minimum scheme such as,
X, =0’ +acy (5-14)
where a is an undetermined multiplier that assigns the relative quadratic costs

of variations of ¢ and X,. This scheme is called constrained MMSE scheme

(CMMSE). The same authors also proved, that a process with first order
dynamics and IMA (0,1,1) is an unconstrained MMSE scheme which can be
formulated as:

_ /1(1-63)6

"ogl-9)
For this unconstrained scheme the corresponding CMMSE is given by the

function:

_A-kB)1-6B)
g(l-9) i

where k, and k, are complicated functions of g, 4,5 and are given by a table

X =k +1-Dk, | X, -1~ Dk X,_, (5-15)

of optimal values for the constrained scheme provided by them.
We can use a PI controller to balance the input and output variances of a
process with a technique similar with the generalized minimum variance

controller (5.2.2). Box and Luceno (1995) introduced a PI controller as
(1-B)X,=-G(, +P(1-B)Y,)=c Y, +c,Y, (5-16)

k :
where -G=k, , P=—% and ¢ ,c, are constants which control a first order
1

system with IMA (1,1) noise. The authors showed that the variance of the

adjustments is given by
Var[(1-B) X, |=(c} +¢} )Var(¥,) + 2¢,c,Cov(¥,.Y,.,)

Box and Luceno (1995) made available tables, where someone could choose

appropriate values of G and P so that to minimize the expression:

min{Var(Y,) +aVar((1—B)X,)}

G.P O~: o (5-17)
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More recently, DelCastillo (2001b) proved that someone can solve (5 -17) for
different values of a and for a more complicated disturbance instead of
IMA(0,1,1). This disturbance can be modelled as

N,=w+N,_ ~6b¢_ +¢, 161 (5-18)
where @ is a drift parameter, very common in industrial processes, were tool -
wearing phenomena exist in discrete part manufacturing. DelCastillo, deduced
that for constrained PI controllers the results varying and depending on whether
the IMA(0,1,1) process has or not a drift. Therefore, in the case were the
process has a drift but a no-drift IMA(0,1,1) is implemented the resulting
controller cannot compensate for an offset. If the drift is known (i.e previous
open loop occurrence) then Box and Luceno (1995) settings (tables of G and

P) are optimal.

5.2.4 Optimal PI controllers

Optimal PI schemes are schemes that minimize the output variance. In
section 4.3.4.3 we presented the proportional integral (PI) controller as a
member of a more general category of PID controllers. The PI controllers are
very popular primarily, due to their simple structure and ease of
implementation. Furthermore, are quite efficient when process disturbance is
described as an ARMA (1,1) or ARIMA (1,1,1) model and process dynamics is
a simple first order model (Tsung et al., 1998). Under this framework PI
controllers are discussed and their efficiency is compared with MMSE
controllers. In the next paragraphs Tsung et al., (1998) assumed that:

a) The process output deviation from target under a discrete feedback
control is given by

e,=Y +D,
where Y, is the process output from the process dynamics and D, is the process

disturbance. They also assumed that the target value is equal to zero that is, the
output is viewed as the deviation from target
b) The first order dynamic scheme is described as in (5-9)

Y=c+8Y_+g(1-6)X,, 0<£6<1
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where c, g are constants and § measures the process inertia.

c) The proportional integral (PI) scheme is formulated using the

incremental form (4.3.3.1) as

{ 4

1
X, =ky—k,—k,——e
0 P Il_B

d) The efficiency of the PI controllers is measured using the absolute

2

. A dle o .
efficiency criterion (AE) where AE=—% and o’ and o’ denote the variances of

e

the white noise g, and output e, respectively.

e) The efficiency results are based on the assumption that the disturbance
model parameters are known. However, the authors proved that when we
substitute these parameters with estimates, the conclusions about the efficiency
of PI schemes are still valid.

When a process disturbance D, is described as an ARMA (1,1) model
that is,

1-6B
P22 (5-19)
1-¢B
where a, ~WN(0,02) and |¢|<1, |f|<1 and and §=0 the MMSE is given by

.
" 1-¢B

€ (5-20)

Furthermore, k, >0 that is, P and PI schemes are considered. In this special
case not only PI controllers but P and I controllers, as these described in section
4.3.3, are very high efficient when ¢ is close to & where AE>.99. This is

explained because the ARMA(1,1) model reduces to white noise so, no control

strategy is optimal. On the other hand when ¢ is close to -1 and @ is close to 1
the PI controllers are loosing their efficiency. In the case where ¢=0 the
MMSE scheme coincides with a P scheme which is very efficient. When the
absolute difference between ¢ and 4 (|¢—6|) gets large the P schemes are
loosing their efficiency.

In the general case, where 6>0, the PI schemes have high efficiency
when ¢=6. This follows from the earlier observation, that process disturbance

reduces to white noise for which no control strategy is optimal. When & was
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equally to zero PI schemes had high efficiency when ¢=0. Now the same result
holds when ¢=6.
There is the case where the MMSE scheme for the ARIMA (1,1,1) model
(Box et al.,1994) is given by
6-¢-1+¢B
t :——e!
(1-¢B)(1- B)

Furthermore, always k, >0 so we cannot consider pure P schemes anymore.

(5-21)

The authors studied the case in which one could misidentify a nonstationary
ARIMA(1,1,1) with stationary ARMA(1,1) model. They concluded, that PI
schemes were optimal, although anyone could misidentify the disturbance
model. On the other hand they proved that MMSE schemes have not this
robustness property.

In this paragraph PI and MMSE schemes are discussed under the
common situation where the disturbance model is described as ARMA (1,1) or
as ARIMA(1,1,1) model. Tsung et al., (1998) investigated the efficiency and
robustness property of PI controllers in comparison with MMSE controllers.
Moreover they also investigated that PI controllers are more robust in the

presence of model misspecification than MMSE controllers.
5.3  Tuning for optimization the EWMA controllers

Process adjustment schemes based on EWMA statistic are very popular
in the manufacturing of semiconductors. The analysis of this adjustment
concentrated on a single EWMA controller and a double EWMA controller
applied to a system that exhibits a deterministic trend disturbance. Other types
of drift models can provide a better description of this disturbance such as, drift

disturbances including a random walk with drift. In these cases the value of

smoothing parameters (A,.) is arbitrarily chosen by the operators in the

manufacturing processes. In the next paragraphs optimal values of these
parameters that is, optimal weights for single EWMA and double EWMA

controllers are derived from the case of particular drift disturbance.
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5.3.1 Tuning a single EWMA controller

T—-a
b

Recall that the single EWMA controller (4.3.4.2) is given by X, =

and c?z,,=/1(Y,l —ZSX,,_,)+(1—/1)&,,_, where X, is the manipulated variable and a, is

an estimate of a at run n. Ingolfsson and Sachs (1993) showed that if the

disturbance is a deterministic trend the asymptotic mean square deviation from

target (AMSD,; ) is,

Jier 5°
i 242

2-A& €74

AMSD,, <tmE| (Y -T)" |=

lim ! (5-22)
where £=//b is a measure of the bias in the estimate of the gain. Furthermore,
they showed that as long as ll—/1§| <1 the quality characteristic is
asymptotically stable. Lately, Smith and Boning (1997) investigated the value
of A that minimizes AMSD,, and satisfies the stability condition which is
given by the following equation:

GPEN ~5E A +48%EL-467 =0 (5-23)
Assuming now that the drift disturbance is described as random walk with drift
(RWD), that is, D,=D, , + 6 +¢,, the AMSD,,, is,

2 52

ag
AMSD,,, =
RWD /15(2‘—/16)-’-622'2

(5-24)

DelCastillo (2001a) proved that the minimization of AMSD,,, with respect to

A is given by:

45* — ot — o8  + 0
2(52—02)§

DelCastillo compared the quantities AMSD,,./c” and AMSDRWD/O'2 as a

A=

(5-25)

function of A for various combinations of the relative drift l&/azl and various

values of the gain bias £=4/5. The author concluded, that for large relative
drift both AMSDs behave almost identically indicating that a large value of A
is appropriate. If the relative drift is small, then a process with a deterministic

trend (DT) requires a considerably smaller A than a process with RWD
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disturbance. The reason for this behavior is that when & -0 the DT model
tends to Shewart's model, which implies that there is no drift and a little or no
control effort is necessary. On the contrary as § -0 the RWD model tends to a
random walk which drifts considerably and a tight control is required to reduce
AMSD. In the latter case the optimal weights using the AMSD criterion are

such that A,,, > A,..

In addition, DelCastillo (2001), studied the performance of a single
EWMA in the presence of a variety of disturbances considering a more general
model that is,

D,=6+D,,—0¢_ +¢, |6|<1 (5-26)

where 8, & are parameters. This model includes the following particular cases:

- Random walk (RW) process when =0 and §=0. T
- Random walk with drift (RWD) when =0 and 6 #0, -.
- IMA(1,1) when =0 and §=0. {k 3’84/09.‘«% >:l
- IMA(1,1) with drift when 8 #0 and 6 #0. *

- White noise when =1 and §=0.

4N

For this process model he proved that the variance of the adjustments is,

A1+6* -2(1-2£)6 ]
b*E(2- &)

Var(VX,) = (5-27)

If the cost of adjustments is not negligible the combination of the equations (5 -
24), (5 -27) leads to the following optimization model as proposed by Box and
Luceno (1997). The objective function can be solved trading off the variability

of the adjustments with the output mean square error:

Var(VX
rninJ=AMS€(e')+p ar(2 )
: 0! ! (5-28)

subject to:[1- 1£| <1

where p is the relative cost that needs to be defined by the process engineer.
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As an example we assume that the disturbance is described by (5 -26). Suppose
that the estimated process gain is b=1.3, the estimated drift is 6 =20 and the
IMA(1,1) parameter is @ =.3. The following table shows the consequent EWMA

designs for various values of p from 0 to 100.

P A AMSD Var(VX,)
0 1 5.09 0.644
5 0.98 582 0.616
10 0.865 6.36 0.456
25 0.718 8.75 0.305
50 0.615 11.55 0.226
100 0.523 15.63 0.168

Table 5.1 EWMA Designs

It is obvious that if a design ignores the variability of the adjustments large

values of A are necessary.

5.3.2 Tuning a double EWMA (DEWMA) controller

In the case where a DEWMA controller is more appropriate than a single
EWMA controller and the disturbance is modeled as a deterministic trend
DelCastillo (1999) proved that the quality characteristic is stable if and only if

the following two conditions are satisfied:

[1=.5&(2 +4,)+.52 <1

‘1—.55(1‘ +/lz)—.52|<1 where zz\/érz(/’(_‘ +]‘2)2—4ﬂ1}?§ (5_29)

In addition the same author proved that equations (5 -29) are also required for a
more general system where the disturbance D, follows a possibly nonstationary
ARMA(1,q) model with drift,

D,=¢D,_, +5+8(B)e,
where |¢| <1 is the autoregressive parameter and &(B) is a q-order moving

average polynomial.
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If the variability of the adjustments (Var(VX,)) can be ignored an

optimization approach for tuning the DEWMA controllers proposed by
DelCastillo (1999, 2001a). This approach is based on the concept that there is a
"trade off" between the magnitude of the transient effect and the asymptotic
(long run) variance. The term asymptotic or "long-run" is used because in this
type of controller there are transient effects due to initialization of the EWMA
equations (5 -18) that are accounted separately. In the long run the DEWMA
controller eliminates the offset and the process approximately will be on target.

A measure of the expected transient up to a specified run with number n is

given by the average mean square deviation ( MSD):

MSD=—YE(Y,) (5-30)

nig
Small values of weights (4, , 4,), close to zero, make MSD very large but they
tend to minimize the asymptotic mean square deviation (5 -24). On the other

hand large values of the weights, close to one, make AMSD very large but

minimize the MSD. For the deterministic trend drift some complicated
expressions are provided by DelCastillo (1999). Using these expressions

someone can solve the following equations:

?E(W,AMSD(x)erZMSD)

subject to:0< 4, , 4, <1 (5-31)

The parameters (w, , w,) are set by the process engineer according to the nature
of the process. Specifically if w, =0 and w,=1, an "all bias" solution is
obtained that is, a solution that gives all the weight to transient effect; if w, =1

and w, =0 we get the "all variance" solution and if w, =w, =1, the "trade-off"

solution is obtained which provides adequate performance in a variety of cases.

As an example suppose that in a deterministic trend case the a =2, the drift rate

is §=0.1 and o’=1. Using appropriate software (DelCastillo, 1999) the
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following table illustrates the "all-bias", "all-variance” and "trade-off"

controller designs for n =20, 50,100

n w,, W, AMSD MSD 4 A
11 2.629 0.255 0.001 0.668
20 01 3.164 0.2 0.05 1
10 2.622 0.271 0.001 0.619
Ll 2.625 0.117 0.001 0.647
50 01 3.164 0.08 0.05 1
10 2.622 0.122 0.001 0.619
W1 2.624 0.069 0.001 0.639
100 01 3.164 0.04 0.05 1
10 2.622 0.072 0.001 0.619

Table 5.2 DEWMA Designs

We can see that for all three cases (n =20, 50,100) the "all variance" solution is
the same (AMSD) because it does not depend on n. Furthermore, the "all bias"

solution is also giving the same AMSD, because always o’ =1. It is interesting

to observe that the "trade off" solution is giving small values (close to zero) to
A, and large values to A,. This is an indication that unless the drift rate () is

very strong a single EWMA controller is enough.
5.4 The variance constrained PI self tuning controller

Box and Luceno (1995) proposed an optimal PI controller when the
variance of the adjustments is constrained below a certain upper limit (section
5.2.3). The same authors noted that for certain values of the PI controller

parameters (c,,cz), the variance of the adjustments of a quality characteristic

has drastically decreased at the expense of a small increase in output variance.
Box and Luceno approach requires that the process engineer must specify the
relative weight, taking into consideration the adjustment and output variances

or the selection of a particular design from a table of input and output variances
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(obtained by varying the relative weight). In some cases it is desirable for the
process engineer to achieve particular maximum adjustment variability (e.g.,
safety considerations). In these cases a variance constrained self tuning (ST)
controller is more appropriate.

Variance constrained self tuning (ST) PID controllers have been
proposed by many authors such as Cameron and Seborg (1983), Katende and
Jutan (1993). However, these controllers require that the user have to specify
the value of the Lagrance multiplier of the adjustment variance constraint. In
addition, their controllers are based on recursive least squares estimation and
the convergence analysis of these types of controllers is complex. DelCastillo
(2000) proposed a variance constrained ST-PI controller where the engineer
needs only to specify the maximum desired variance for the adjustments, based

on the machine's limitations.

5.4.1 Derivation of the variance constrained ST PI controller

Assuming that a process is described by a first order dynamic system as,

g(1—5)X +(1-93)8

)/I=Sl+NI= 1—5B -k 1—B t

where X, denotes the level of a manipulated variable and Y, the deviation from
the target of the quality characteristic at time ¢, S, is a dynamic signal and N,
an added noise that follows an IMA(1,1) noise. The sequence of random errors
{€,}, is a white noise process and g,é are constants.

Furthermore, the corresponding PI controller is derived by the following
equation (Box and Luceno, 1995):

VX, =cY, +c,Y,_ =—G(Y, + PVY)
where the relationship between the parameters (G,P) and (c,,c,) is
¢ =—(1+P)G and ¢,=GP
and (G, P)are tuning constants (5 -16).

The proposed controller is based on the Clarke and Gawthrop (1975) approach
that were among the first to notice that a minimum output variance requires a

large input adjustments. The rationale behind Clarke and Gawthrop approach is
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to find the adjustment VX, which attempts at each instant time ¢ to bring the

‘
k-step ahead forecast of the quality characteristic to target, subject to a
constraint on the magnitude of the present control action (MacGregor and
Tidwell (1977)).

The proposed ST PI controller is given by the equation:

VX,=v,(cY, +c,Y,) (5 -27)

where v, is an additional tuning parameter and ¢,,c, are the recommended Box
and Luceno parameters that can be taken as initial tuning parameters. Thus,
what is proposed is to tune the parameters ¢,,c, by multiplying them by v, at
each sample. The values of v, will provide the minimum output variance that a

PI controller can provide. This method requires minimum process information
with the exception of the system input output delay. The ST controller can be

used continuously or when the parameters have converged to their new settings

(v'cl ] v‘cz) can be used in a conventional controller and the self tuning method

can be terminated.
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Chapter 6

Integration of SPC - EPC

6.1 Introduction

So far, we presented SPC and EPC control separately. This is not strange
as SPC and EPC control were developed in a relatively separate way each other.
Both of them have scored significant successes in the context of quality
improvement. Several authors have attempted to delineate both approaches into
the environment in which each one is best suited. However, the experience
suggests that considerable improvement to product quality is often best
attainable through an integration of techniques of both methods. This strategy is
called integrated process control (IPC). In section 6.2 is discussed the
comparison of SPC and EPC control. In section 6.3 is presented the algorithmic
statistical process control (ASPC) while in section 6.4 is discussed the SPC
monitoring of MMSE and PI controllers. In section 6.5 different approaches of
SPC/EPC schemes are presented when a transient disturbance exists. Finally, in
section 6.6 a SPC/EPC scheme is presented where the EPC component is a
feedforward control and in 6.7 section is discussed an integrated adaptive

controller.
6.2 Comparison of SPC and EPC control

Although SPC and EPC have as common goal the reduction of
variability, they achieve their aim in different ways. EPC is based on control
theory and concerns the yields in products, attempting to keep the process’
output close to the target making compensatory adjustments to the process’
input. SPC is trying to produce items with the smallest possible variability
looking for assignable causes in the process data. EPC has the following

drawbacks comparing with SPC (Kramer, 1989):
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e Overcompensating disturbances resulting in increased variation.

e Does not remove the root of assignable causes but it uses continuous

adjustments to keep process output on target.

e Concealing assignable causes rather than revealing them

On the other hand, SPC alone has limitations. It does not control the

system and has a limited success in process industries, due to the nature of the

data which are often autocorrelated. There have been disagreements between

control engineers and statisticians regarding the effectiveness of EPC versus

SPC. This is primarily due to the lack of knowledge about control systems on

the part of statisticians and the lack of knowledge of SPC on the part of

engineers (Janakiram and Keats, 1998). However, lately there has been a major

interest integrating the SPC and EPC so as to improve the quality through

further reduction of variability.

Messina (1992) has presented the most known differences between SPC

and EPC in a tabular form as follows

SpPC

EPC

Philosophy

Application

Deployment
1. Level
o LAl
3. Function
4. Cost

5. Focus

Correlation

Results

Minimize variability by detection

and removal of process upsets

Expectation of process stationarity

Strategic

Quality characteristics
Detecting disturbances
Large

People and methods
None

Process improvement

Minimize variability by
adjustment of process to
counteract process
upsets

Expectation of

continuous drift

Tactical

Process parameters
Monitoring set points
Negligible
Equipment

Low to high

Process optimization

Table 6.1 SPC and EPC comparison (Messina (1992))
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It is obvious that Table 6.1 indicates that SPC and EPC have nothing in
common. However, MacGregor (1988) suggested that stochastic control theory

connects these two fields.

6.3  The Algorithmic Statistical Process Control

Algorithmic statistical process control (ASPC) is an integrated approach
proposed by Vander Wiel et al., (1992). With this approach we improve the
quality through the appropriate process adjustments (i.e., using a controller)

and through the elimination of assignable causes of variability.

6.3.1 The concept of ASPC

Vander Wiel et al., (1992) mentioned, that autocorrelation which is
common in continuous process industries is not necessarily bad. They meant
that the process is predictable and so there is the possibility of compensation.
For example, in a chemical process the raw material mixing is used to make the
incoming stock homogeneous. In this case the autocorrelation cannot be
eliminated. In this frame, ASPC reduces predictable quality variation using
feedback and feedforward procedures and then monitors the complete system to
remove inevitable assignable causes of variability. MacGregor (1988) was the
first who suggested that SPC charts can be used to monitor the performance of a
controlled system. Another researcher (Barnard, 1959) that was among the first
to suggest that is preferable to make process adjustment at the signals of control

charts.

6.3.2 The batch polymerization example

Vander Wiel et al., (1992) advocated their proposal through an
application of a typical chemical process. This chemical process produces a
polymer resin where the polymerization occurs in five batch reaction lines. The
quality characteristic is the intrinsic viscosity of the polymer which is measured
after completing each batch. The objective is to minimize the viscosity

variation about a target level T. The level of viscosity depends on the amount
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of catalyst added in any batch. Process measurements from previous batches are
used by experienced operators to adjust the amount of catalyst in future batches
based on general guidelines and Shewart’s chart approach. The authors
suggested modeling the measurement viscosity of batch ¢ using a simple
autoregressive moving average transfer function (ARMAX) model as

(1-68)
i

where Y, is the observed viscosity deviation from target, X _

(6-1)

, 1s the catalyst
deviation from nominal and @, p are the parameters of the ARMAX model.
Furthermore, they used alternatively to Shewart’s chart, the MMSE criterion in
order to specify the amount of catalyst minimizing the MSE(Y,). The authors
studied the following two cases:

In the situation where no delays exist a MMSE controller for the model
(6-1) will be optimal producing Y, with the smallest MSE. This controller is

described as

-0
X, l=pX!—2 _Iip_b—JYr-l (6-2)

If we substitute (6-2) in (6-1) reveals that the control action results in the
process is ¥,=e,. There are two advantages of this control action compared with
Shewart’s chart. Firstly, it is simple and secondly it can reduce viscosity
variation even further.

If a measurement is delayed (6-2) is not appropriate. However, it is

possible to minimize the MSE as follows

Y Y_,=bX,_ +]\7_,.
_(1-68B)
" (1-pB) "

—e=Y_,=bX, , (6-3)

where Y, is the i-step minimum MSE forecast of Y,, N,_ is i-step minimum
MSE forecast of the noise term. By setting f’,_,.=0 results in X, 1=“1\7( ./b
. Lo l2)5

Up to this point, our major concern was the algorithmic part of ASPC as
applied to the process using transfer function models and stochastic control.

Nevertheless, in ASPC the statistical monitoring plays a significant role with
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the purpose of detection and signaling when the closed loop process is not
consistent with the estimated model and the control algorithm. In the
polymerization application an abrupt change of the nominal amount of catalyst
required to produce the target viscosity has changed (i.e. due to resuppling in
the tanks of raw material feeding the reactors). In this situation where after a
"shift" there is short transient period until the output mean stabilizes in a new
level, the authors applied a CUSUM chart. The main purpose of CUSUM chart
was to detect such shifts as quickly as possible when they occurred in order to
determine if any of the devices was really responsible.

The authors proposed a general four step procedure as follows:

. Develop a time series transfer function model for the process

output including the effect of past performance.

. Design a control rule for the estimated model taking into account
the cost.

J Use SPC charts to monitor the closed loop process.

. When a monitoring signal occurs and an assignable cause really

exists remove it. If there is not an assignable cause, estimate again system

parameters or even identify again the process and return to second step.

6.4 SPC monitoring of MMSE and PI controllers

The performance of SPC monitoring an APC controlled process depends
on the monitoring data stream (the output of the control action), the APC
control scheme and the underlying autocorrelated process. Jiang and Tsui
(2002) studied and compared the performance of MMSE and PI controlled
process, monitoring the output and the control action of them. Their study is
based on the signal to noise (SN) ratio.

This ratio was introduced by Jiang et al., (2000) in order to study the
average run length (ARL) of a control chart when a process shift occurs. The
authors introduced the transient and the steady state signal to noise (SN) ratio

as follows

z z
RE=H gng RE=FS (6-4)
Og Oy
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where o, is the standard deviation of the charted statistic and 4 and yz are

the transient (when the process begins, t=0) and steady (asymptotic =)
mean shift level of the charted process respectively. The transient SN ratio
measures the ability of the chart to detect a shift in the first few runs (transient
state) while the steady SN ratio measures the efficiency of the chart to detect
the shift in the later runs.

The appropriate monitoring chart is selected among several candidates
using the two SN ratios with an ad hoc manner. The chart with the higher R,
value is often preferable if its R, value is high enough (usually more than 4).
When all the candidates have a relatively small chart (say less than 3) the chart

with the larger R; value is preferred even if its R, may be smaller. When all

the charts have moderate values of the two ratios their levels are comparable.
6.4.1 SPC monitoring of MMSE controlled process

Suppose that the model which describes the dynamic behavior of the

quality characteristic and noise disturbance effects is

Y =D +c(B)X,, (6-5)
where Y, is the output, X, is the manipulated variable employed with a transfer
function ¢(B) and the disturbance term D, is a stationary ARMA(1,1) process
which formulated as

D,=¢D,_ +a, -0, (6-6)
where a, ~ WN(0,0’:).

For an ARMA(1,1) disturbance model the MMSE controller is defined as

6 —
,=1 ¢‘Z e, (4-20) and the standard deviation of the control action is
6-¢
Ox= I Iz O, (6'7)
1-¢

Consider the case where the step mean shift 7 takes place at time ¢ =0

that is,
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0t<0

Y=D -X =
=D, - X, +n, where 7, {nzzo

It can be proved that the transient and steady state mean shifts are,

L _
‘= #‘;zl—g” and 47 =(¢-6)7 #?“(f 6"

respectively.
Applying a Shewart's chart to study the performance of these two data

streams and assuming for simplicity that 7=uo, the SN ratios (6-4) reduce to

1-¢°
1-6

1_
Ri=n R s~

and R} =u\1-¢* Rl=u (6-8)

It is obvious that R} > R} since W <1. According to the rule which
described above, the value of a large value of R, is important to detect large
shifts; otherwise the efficiency of the charts will depend on the values of R;. In
this case the values of R are appropriate. When ¢>0 the steady state ratio

becomes larger than that of the output chart and it is expected that monitoring
the control action will be more efficient than the process output. That is, a
process with a positive value of ¢ will drive the MMSE controller to reduce the
output shift level which makes detection difficult. In the same way a negative

value of ¢ will increase the output shift level.

6.4.2 SPC monitoring of PI controlled process

Assuming that a PI controller (4.3.3.3) is described as
{
X,=K,e,+K, Y e;.
j=1
For this type of controller when a mean shift occurs, monitoring the
output and monitoring the control action results in very different outcomes at
time ¢=0. The transient and steady state mean shifts of the process output and

the control action are given by

=1, 45 =0 and py' =(k,+k)n, 5 =n (6-9)
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respectively. It is essential to see that the output converges to zero due to the J
component. That implies that the mean shift is completely compensated for the
steady state. This is a disadvantage for SPC monitoring since the mean cannot
be detected. Using simulation the authors showed that when P and [
components are used, monitoring the control action is more efficient than
monitoring the output. On the other hand, if the / component equals to zero the

output chart is preferable than the control action chart.
6.5 Combining SPC and EPC control when a transient disturbance exists

It is common in many industrial processes to detect a disturbance due to
the unforeseen incidents and the intentional adjustments. Changes in product
design (short production runs), fluctuations in material properties (such as
chemical impurities) and power or equipment failure results in a large portion
to out of specification product. More generally transient disturbances typically
fall into two categories:

e Step change disturbances (e.g., from adjustments in the process),
e Linear change disturbances or ramps (e.g., from a tool wearing) Shao

(1998).

In a combined SPC/EPC control, the SPC approach is more than a
process monitor. The SPC method is incorporated into the EPC control
algorithm so that it can trigger the controller to make adjustments in the input

(Nembhard and Mastrangelo, 1998).

6.5.1 Effective integrated process control in a transient period using

simulation and an ARMA (p,q) disturbance model

Nembhard (1998) used simulation models in order to study the
performance of a system when a combination of SPC and EPC control is
employed. She called this combination integrated process control (IPC). The
author used two simulation models, where the first one represents a noisy
dynamic system and the second one represents the designs that integrate EPC

and SPC control. She also used three different policies; Policy A and B use an
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integrated process control while Policy C involves only EPC control. In more
specific words these policies are described as:

e Policy A: PI/Shewart-AE(activate  and  evaluate). © When an
observation exceeds the limits the PI controller is activated to take over
and make adjustments to the process.

e Policy B: PI/Shewart-AR(activate and regulate). In addition to the
policy A the Shewart policy ceases to allow PI adjustments after s
observations are within the control limits of the new target level.

e Policy C: PI only.

The control policies are evaluated, based on four performance measures:
Average squared error of the output from target, number of adjustments,
average magnitude of adjustments and number of alarms.

Furthermore, the author supposed that the noise process can be modeled by a

stationary and invertible ARMA(p,q) process

y4 q
Y,=E+) Y, +X, - > 6.X, (6-10)
i=1 J=

where ¢ is constant, Y , X, is the output and the manipulated variable
respectively and ¢,6 are appropriate AR and MA coefficients. The dynamic

process is described by a first or second order linear ordinary differential

equations as

Y(s) K/t Y(s) KK,/rz,
= and ==
X(s) s+t X(s) s*+(z+7,/170,)s+(Y77,)

(6-11)

respectively where K is the steady state process gain and ¢ is the process time
constant (the speed of the response).

Some conclusions of the author's proposal are the following:

e When a first order process models the noise process the PI controller is
sufficient to maintain the process output at the target level minimizing the
MSE.

¢ When the adjustment cost is of a primary concern and a first order
process is used policy B gives the best performance.

¢ When a second order process is appropriate to model the noise process

neither PI controller nor Shewart chart produces minimum variance. However,
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an integrated policy either A or B is recommended, where the minimum
variance and/or the number of adjustments is of our concern.

e Since a PI controller is not optimal for a second order process it is
possible that the Shewart limits will be exceeded in this system. Therefore

policy A is preferable.

6.5.2 IPC design for startup operations with ARIMA (0,1,1) disturbance

model.

In the previous paragraph an effective IPC policy using simulation was
discussed, assuming that the noise process is described by a stationary ARMA
(p,q) model. Nembhard et al., (2001) studied the case where the noise process is
represented by an ARIMA model and in particular an IMA (1,1) model.
Furthermore, they proposed an IPC mechanism which combines a PID
controller and a moving centerline exponentially weighted moving average
(MCEWMA) chart for individual observations (section 2.4.1.1). The
MCEWMA chart adapts the EWMA for the autocorrelated data given by an
IMA(1,1) disturbance model (Montgomery and Mastrangelo, 1991). The main
measure of improvement is to reduce the sum of squared errors (SSE) from
target, where the target changes when the transition begins.

Consider that the system is described by a discrete first order process as

Y,=a¥,_ +bX,
where Y, , X, is the process output and input respectively a measures the

degree of inertia for the process dynamics and & is a constant. Additionally, the

noise process is described as
(1-B)Y,=(1-6B)
where @ is the moving average operator and ¢, ~ N(O,of).

The EPC policy is a PID controller (4.3.3.1) which is formulated as follows
{
X =Ky +K, > e +K,Ve,
j=l

and the SPC policy involves the MCEWMA (2.4.1.1) chart.
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The author studied three control policies; the IPC, the EPC and the SPC
policies and compared them using three metrics:

e The sum of squared errors (SSE)

e The number of adjustments

¢ The magnitude of adjustments
According to the SSE criterion the sum of squared errors is smaller when EPC
policy is used compared with IPC and SPC policies. This is an expected result
because EPC is designed to minimize the sum of squared errors. If SSE is the
only criterion the EPC policy always gives the best performance.
According to the second criterion, the SPC policy does not make any
adjustment, EPC policy makes an adjustment in every period and IPC policy
makes an adjustment only when the observation is outside the limits of the
MCEWMA. Therefore, when the cost is not negligible the IPC policy is
preferable.
Finally, in relation with the third criterion when the number of adjustments is
small for the IPC policy, the size of adjustments is small as well.
Generally, the EPC approach minimizes the error but the number and the
magnitude of adjustments can be reduced using the integrated monitoring and

control approach.

6.5.3 Transient disturbances with Cuscore control charts

So far we discussed the integrated process control schemes when a
transient disturbance is present, where the SPC component is a usual Shewart
chart. Nevertheless, Shewart’s charts are not sensitive in minor shifts and
CUSUM charts respond slowly to large process shifts (Montgomery 2001).
Shao (1993) showed that the Cuscore control chart (2.4.1.3) is effective not
only in detecting process shifts but also in identifying transient disturbances. In
the next subparagraphs the effective integration of SPC and EPC, when a
transient disturbance exists, is discussed through the use of Cuscore control as
the SPC component (Shao, 1998).

The integral and PI controllers are typical in industry. Furthermore, the

MMSE controller is equivalent to the integral and PI controllers for a zero and
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first order noise system which follow an IMA(1,1) model. Shao (1998)
proposed in his study the MMSE controller instead of integral and PI controller
for feedback control action (EPC) in a closed loop system. When a step change

disturbance enters the process the author proved that the output deviation is

Y,

l+i=l)€l_I +at
where Y, is the output of the process, D is the magnitude of the level of the

step change and @ is the moving average operator. It can be shown that the

Cuscore statistic (2.4.1.3) can be written as

0,=3., 06" (6-12)

t=]

In the case where a linear change transient disturbance exists the author

proved that the output deviation from the target is derived by

Y;+i=b(9 _1j+a!+i
g

where a is the magnitude of the level and b is the slope when the linear

disturbance is reformed as D,=a+bi while i stands for the time when the

transient disturbance started affecting the process. Thus, the cuscore statistic

would be

s aflgis

Shao (1998) used as a performance metric (PM) the average squared

deviation from target (T), that is, PM=1/n> (¥,-T)". Additionally, using

1=}
simulation, he compared the cuscore control chart with three different control

charts:
e Shewart chart for individuals
e Cusum chart
e EPC only (no chart)

The simulated results recommended that the combined EPC/SPC scheme has

smaller PM than EPC alone. In addition, the PM for the EPC/Cuscore scheme
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seems to be smaller than EPC/Shewart and EPC/CUSUM when a negligible
trend magnitude 0.1 exists. However, the results of the simulation indicated that
the cuscore control chart had the shortest average time for detecting the linear

change disturbances.

6.5.4 An EWMA Bounded adjustment scheme with adaptive noise

variation

One of the basic assumptions, when an integrated EPC/SPC is applied in

a process, is that the standard deviation of the WN(O,of) component of the

measurement is known and remains constant. However, some processes can
operate on a short run basis and previous measurements are not available to
adequately determine the variance of the disturbances. To facilitate the control
of this kind of process, Nembhard and Mastrangelo (1998) and Nembhard et al.,
(2001) were based in a MCEWMA chart in which control limits of varying
magnitude are established about a moving centerline. EPC was added in the
form of a PID controller in order to adjust the process when a measurement
exceeds one of the control limits. In that case, the control limits were based on
the magnitude of the standard deviation of the EWMA values as it was

previously estimated using an estimate of o,. O’Shaugenessy and Haugh

(2002) proposed a recursive estimation method of the process standard
deviation where the ERC/SPC scheme is combined by an MCEWMA chart
(Montgomery and Mastrangelo, 1991) as SPC component and an integral

control action as EPC component. The advantage of this method is based on
little or no even previous data in order to estimate o, .

Consider as usual that a process measurement Y can be affected by a
stochastic component D and a component driven by a manipulated variable X .
Thus, assuming that the disturbance term is described by an IMA(1,1) model,

D,=D,_, +a,-0a,,
where a, is white noise series and @ is the MA operator and the feedback

controller is a pure integral controller as
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t
X1=Xo+kIZ(Y;—T)

i=1
where X is determined to offset the error between the Y and the target T .
Furthermore the optimal predictor Y of Y is given by
?=4Y,+(1-4)%,,

where A is the "smoothing constant" of the EWMA statistic. Additionally the

~

standard deviation o, of the prediction error ¢,=Y,—-Y,, will be equivalent to

ag,.

a

O’Shaugenessy and Haugh (2002) proved that the upper and lower
control limits of the MCEWMA are:

UCL, =7, +(1.25K)M,
. (6-14)
Yt -

LCL =Y -(125K)M,

respectively, where K defines the number of standard deviations used to set the
width of control limits and A;[l the estimated mean absolute deviation (M) of
the forecast error from the mean of errors.

The iterative procedure is based on the following steps

e Starting values of Y and M
e Estimation of o, using 1.25M,

e Evaluation of UCL and LCL
e If the process measurement exceeds the limits a control action takes
over.
Generally, there are two conditions that require an adjustment of the process.
The first, when the process drifts and is inevitable if the process is
nonstationary; and the second, when a large disturbance or assignable cause
perturb the system.

The authors used simulation and showed that their proposal not only is
best suited when a noise term is represented as a nonstationary time series but it
can effectively reduce the variance of measurements associated with stationary
disturbances. Furthermore, as the algorithm is based on recursively estimating

the process standard deviation, the process control approach is appropriate
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during startup conditions as well as during processes that exhibit noise
variances that change over time. However, appropriate values of a, 4, and K
can dramatically influence the performance of the MCEWMA chart. Thus, a
value of A=0.5 will minimize the possibility of overestimating the noise
standard deviation. Any value of a greater than 0.1 will exhibit increasingly
larger variation. Small increases in the K value will result in a large reduction
of the number of adjustments without a corresponding large increase in the

output variance.
6.6 An Integrated SPC/EPC scheme with feedforward control

Feedforward controller (4.3.7.1) is a particular type of controller in EPC.

If a known input variable, say Z,, can be measured and proper relationships are

made among the input variable, the compensating (manipulated) variable X,

and the desired output Y, then a feedforward control can be developed. For
example, consider again the case of the polymerization process (6.3.2) where

the input feed stream (Z,) can be measured and its effect to polymerization

resin (Y,) at some future time is predicted. After that, an adjustment in catalyst

feed rate (X,) results in offsetting the potential effect to the polymerization

output. Montgomery et al., (2000) studied this case in a chemical process,
where the output was an intermediate product used for the production of a
synthetic resin, through two different scenarios. A chemical mixture of varying
concentration was the input of the system and the compensating variable was
the pressure, that is, the feeforward control. Furthermore, they applied as an
SPC scheme a CUSUM and a EWMA chart without disqualifying other
monitoring schemes such as Cuscore control charts. In addition, they supposed
that the input feed concentration was described by an IMA (1,1) model.
Therefore, it could be reasonably forecasted by a EWMA statistic. Both of these
scenarios were studied through simulation and the average run length (ARL)

performance of the combined procedures observed.
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6.6.1 The shift scenario

The input feed concentration varies over time. A shift in the
concentration is characterized by a sudden change (i.e., a freezing valve) that is
beyond the process usual variability at a specific period of time ¢. Thus, an

unshifted and shifted disturbance process can be described as,

Z = (Z,_I +e, —Qe,_,)

(6-15)
Zh =(Z,_l +e,—0Oe_)+k

respectively, where 6 is the moving average operator and k£ a constant term

which represents the shift. At time ¢=¢,,,, the shift of & units is introduced into

the process and after several runs the disturbance variable Z, was recorded. The

controller takes over and the process comes back in its previous state but at the

expense of increased compensations actions.

6.6.2 The trend scenario

A trend in the concentration is represented by a gradual every - time -
unit change in concentration (i.e., a constant valve wearing) that is well beyond
the usual variability of the process. The trend can be introduced into the process
in changing e, of the equation (6-15) to N(u,1) at time t=¢ The larger the

trend *
value of u, the greater the slope of the trend. Unlike with the shift scenario, the
controller cannot completely compensate the trend and the controlled output

comes at the expense of increasingly larger and probably more costly

compensations actions.
6.6.3 Integrating SPC and feedforward control

As we saw, in the presence of an assignable cause in the first case (shift
scenario) the feedforward controller achieved to come back the process in its

previous state but at the expense of increased compensation actions and in the

second case (trend scenario) the controller never fully compensates the
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disturbance. The authors used EWMA and CUSUM charts, because of their
effectiveness in detecting small shifts, as an SPC scheme and the performance
of one was evaluated. They concluded that generally CUSUM performs better
than EWMA in the sense that (ARLs) are smaller for a wide range of shift/trend

magnitudes.

6.7 Integration of SPC/EPC using adaptive controllers

Considerable research has been devoted to the advantages of integrated
SPC and EPC schemes. However, little research focused on ways to identify
and compensate for the source of process disturbance. The majority of the
research assumed that assignable causes may be eliminated immediately after
an out of control signal is triggered by the SPC scheme (Montgomery et al.,
1994). In fact, the immediate elimination of assignable causes is impossible.
Shao et. al., (1999) proposed an adaptive EPC/SPC scheme to counteract the
effects of the disturbance during the interim period between the initial
appearance of a disturbance and the eventual elimination of its assignable
causes.

Shao's proposal extends in the case where the underlying disturbance is a
step —change or a linear change disturbance. Furthermore, the author assumed
that the process is described by a usual first order process with IMA (1,1) noise

process that is,

q
Y. = X, +d
t+1 (].—pB) t t+1
(1-08) (6-16)
dt+l= a1+1
(1-B)

where Y., is the output deviation from target at time ¢+1, X, is the

+]
manipulated variable at time ¢ , p,q are fixed parameters where p+g=1 (Box
and Luceno, 1997), d,,, is an IMA(1,1) process, ¢ is the parameter of the
IMA(1,1) process and a,,, is a white noise sequence. For the model in equation

(6-16) minimizing the variance of the output deviations can be achieved by the

MMSE controller where,




Y,+(1_P)2YI} (6-17)

In this case the MMSE control is an optimal PI control because the
process output deviations can be shown to follow a white noise sequence.
Shao (1993) proved that the results when a step change or a linear change

disturbance occurs are:

Y(+l =L9H i a1+l

~1+6 6-18)
Y, =5[ ;+¢9 J+a,+, (

t+]

respectively where L is the level of the step change disturbance, & is the trend
rate of the linear disturbance and i stands for the elapsed time since the

introduction of the disturbance into the process.
6.7.1 Guidelines of detection and identification

In addition to EPC component (MMSE controller) the author introduced
a control chart for individuals as SPC component. When the process exhibits
the control limits and the out of control alarm is triggered the identification

mechanism is activated to examine the pattern of the output deviations.

(i) Step change disturbance case
The first equation of (6-15) suggests that when a step change disturbance

occurs the output deviation values would return to g, at rate €. The return rate

0 has a negligible effect on the subsequent output deviations at time i+5 and
later. Once the out of control signal is triggered by SPC we start to collect six
observations. If 4 or more of 6 observations are within the values of 0t o then
we conclude that the underlying disturbance is a step change disturbance;
otherwise is a white noise sequence. If it is a step change disturbance Shao

(1993) showed that the optimal controller is,
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X,=X,_l—(Y’_—5Y"') (6-19)

(ii)  Linear change disturbance case
The second equation of (6-18) indicates that the occurrence of a linear

disturbance results in a jump of the output deviation and the subsequent output

values approach an approximately constant value 5/(1—6?). Consequently, the

differences between &/(1-8) and the output deviations at time i+5 and later

should behave as a white noise sequence. The same technique as above could be
used to detect a linear disturbance. If a linear disturbance really exists, Shao

(1993) proved that the optimal controller is,

[2r-(+2p)Y + Y, ]
q

X1:2Xt—l _XI-Z

(6-20)

6.7.2 Conclusions

What Shao proposed in his study could be considered as a sequence of
the following steps:

e The process is tuned by a MMSE controller and monitored by an
individual control chart.

e The underlying disturbances are detected and are identified accordingly
to the above guidelines.

e The adaptive control is activated to compensate for the effects of the
disturbance during the short-term period between the initial detection of the
disturbance and its elimination.

e The same controller (MMSE controller) is used to compensate for noise

after the assignable causes have been eradicated.
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Chapter 7

Multivariate SPC - EPC

7.1 Introduction

In the previous chapters we analyzed the univariate process in which
there 1s only one process output variable or quality characteristic. In reality,
however, many industrial processes involve several related variables. In this
chapter we present SPC and EPC techniques for multivariate processes. In case
where SPC is employed, we assume that two or more quality characteristics are
of our concern and when EPC is applied we assume that exist multiple
controllable factors (inputs). The general case deals with a process where
multiple inputs and multiple outputs (MIMO) define the quality of a product. In
section 7.2 are presented the most usual multivariate control charts. In section
7.3 the EPC for multivariate process is discussed, while in section 7.3 the

integration of EPC using joint monitoring SPC techniques is presented.
7.2  The multivariate SPC

Most industrial processes are described by several quality characteristics
that require monitoring. These quality characteristics are obviously correlated
and control charts for monitoring individual quality characteristics may be
misleading for detecting changes in the overall quality of the product
(Mastrangelo et al., 1996; Liu, 1995). Furthermore, the overall "Type I error"
decreases, as the number of variables increases (Montgomery, 2001). Thus, it is
desirable to have control charts that can monitor multivariate measurements

simultaneously (Lowry and Montgomery, 1995).
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7.2.1 The Hotelling T? control chart

The most widely known multivariate control chart is the Hotelling T?
control chart for monitoring the mean vector of a process. This type of chart
was introduced by Hotelling (1947) who applied his procedures to bombsight
data during World War II. This chart could be applied in processes with
individual or subgrouped data and it is analogous to t-statistic in the univariate
case.

We assume that p related quality characteristics are jointly monitored.

Furthermore, it is assumed that the joint probability of these quality

characteristics is p- variate normal distribution and a set of the quality
characteristic means is represented by the px1 vector iTu[fl,Ez,...,Ep].

The Hotelling T? control chart is given by the formula:

T

T?=n(x-X) 8"(X-X) (7-1)

where X,S are the estimates of the vector of in-control means
n’ =|:,u,,,uz,.‘.,;zp] and the covariance matrix X respectively and #n is the sample

size.

Alt (1985) proposed two different phases to select the control limits of a
Hotelling T? statistic, known as Phase I and Phase II. The first phase utilizes a
large sample of data so that the parameters and control limits are well estimated
for Phase II. Therefore, in Phase II the control chart is used for monitoring the
process (Mason et al., 1997; Montgomery, 2001). The control limits of Phase I

and II are given by the following equations.

Phase I Phase II

UCsz(m—l)(n—l) UCL=p(m+1)(n—1)F A
mn_m_p+1 mn_m_p+1 a,p,mn—~m-p+

UCL=0 UCL=0

a,p,mn-m—p+]

where p is the number of variables, m is the number of preliminary samples

and »n is the sample size.
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When the subgroup size is, n=1 the Hotelling T? statistic becomes

T*=n(x-%)' S*(x-X) (7-2)

The T? chart is obtained by plotting successive T? values versus time. On
this chart there is only an upper control limit (UCL). In figure 7.1, as an
example, a T2 chart is presented with upper control limit 13.207 and 14.579 for
Phase I and II respectively and the significance level is, a =0.001. Data (Mitra,

1998) correspond to a process with two quality characteristics (p=2), 20

sample means (m=20) with sample size n=4. A point outside the control
region exists in the 9" sample.

——T squared?
8 [ 1A f\ = Phase|
/ T I |.-"l , Phase li

T squared
& ]

'u-'ll i _'A
¢ i B G ..

1 3 5 7 9 11 {8 1&; W7 19

Sample number

Figure 7.1: A T? control chart with Phase I and II control limits

By using the Hotelling T? statistic we have a single control limit which

produces a Type I error and uses the available information with respect to

means, variances and correlation between the variables.
7.2.2 The Multivariate CUSUM and EWMA control charts

The Hotelling T? control chart, which was described above, uses

information only from the current sample and so it is insensitive to small and

moderate shifts in the mean vector. Therefore, multivariate CUSUM

(MCUSUM) and EWMA (MEWMA) charts are developed when the detection of
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small changes in the mean of the process is important. The multivariate
schemes of CUSUM and EWMA are either directionally invariant or direction
specific (Lowry and Montgomery, (1995)). The average run length (ARL) of a
directionally invariant chart is established by the distance of the off target mean
and the on target mean, while the direction specific chart's ARL is derived by
this distance and the direction that the off target mean is relative to on target
mean. Generally, MCUSUM and MEWMA charts are direction specific charts.

The most widely used ones, are presented in the following paragraphs.
7.2.2.1 The Multiple Univariate Cusum chart

Woodall and Ncube (1985) proposed the simultaneous use of
several CUSUM procedures so that a single multivariate CUSUM procedure is
considered. Assuming that independent p-variate random variables
X, =(X,", 2",...,Xpn)r, n=1,2,... observed successively, with known variance -
covariance matrix X, a one- sided or two — sided CUSUM procedure can be
applied to each sequence of random variables {X;}, i=12,..,p. The " two-

sided CUSUM procedure is derived by the following cumulative sums:

S, =max(0,S
T,,=min(0,T;

in—

in-1 +Xi,,. —Ki) ,0< Si,o < hi

7-3
I+Xi,n+Ki)’—hi'<—7;,0<hi N

where K, is the reference value of the i* variable and % is the decision
interval. This chart signals when either of the p CUSUM procedures signals,
that is, determining the minimum run length N(i) where for a two - sided

procedure is,

N(i):min{n (S, 2k or L. s—h } (7-4)

i

Healy (1987) extended the results of Woodall and Ncube by introducing
an MCUSUM chart based on a linear combination of the univariate variables.
This is a CUSUM of T? chart that may have a better ARL performance when the

goal is to detect a shift in the covariance matrix.
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o2 75805 The Grosier's MCUSUM charts

The ARL of Woodall and Ncube(1985) procedure depends on the
direction that the mean vector shifts. In contrast, the ARL of the multivariate T?
chart depends on the mean vector p and the covariance matrix X only through
the non centrality parameter d. Based on this result, Grosier (1988) proposed
two multivariate CUSUM charts. The first one, is called multivariate CUSUM
of T (COT) and is based on the squared root of T? statistic, while the second
can be derived by replacing the scalar quantities of the univariate CUSUM chart
with vectors (CUSUM vector scheme).

Assuming that x_ is a p-variate observation with known variance — covariance

matrix X and mean vector p. The CUSUM (COT), which is proposed by

Grosier is given by:

S,=max(0,S,,+7T, - K) (7-5)

where T, n=12,... the scalars of CUSUM and §,,K 20

The COT chart signals when S, 2 A . The decision interval 2 is computed using

the Markov chain approach. Furthermore the COT chart is a directionless chart.
The second procedure, the CUSUM vector chart, is produced directly from the

observations, that is,

Y, =/STZ'S, (7-6)

where,
S, =0 ifC . <K
Sn =(Sn-l +xn -l‘lO)T (l—K/Cn) l.an 2 K

and
T o 112
Cn =|:(Sn-1 +xn -"lo) Z0 (Sn-l + Xn - p’O):I
This chart signals when Y >#h. Both of these charts give faster detection of

small shifts in the mean vector than multivariate T? charts. The CUSUM vector
chart is more preferable than COT chart, because of faster detection in shifts of

mean vector its direction specific property.
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7.2.2.3 The MC1 and MC2 charts

Pigniatello and Runger (1990) introduced two multivariate
CUSUM charting procedures. Both of these procedures are based on quadratic
forms of the mean vector. Their difference, focuses on the point at which the
accumulation is made. That is, MCUSUM#1(MC1) accumulates the X vectors
before producing the quadratic forms, while MCUSUM#2(MC2) calculates a
quadratic form for each X and then accumulates those quadratic forms.

The MC1 chart can be constructed as follows:

MC1,=max{||C,||—Kn,.,O} (7-7)

where a usual choice of K =0.5xA’p,, p, is the out of control mean vector , 7,

is the number of subgroups since the most recent renewal and

leJ-JcEC,

where

C.= Z (Xi'llo)
i=t-n +1

This chart signals when MC], >A. The value of % is determined using the

Markov chain approach.
The MC2 chart is based on the one - sided univariate CUSUM and can be

formed as

MC2,=max{0,MC2, , + X} - K} (7-8)

where MC2,=0 , K=0.5xA’p, +p ,and X’ is formulated as

th“_‘(Xt ’po)T x (X( 'l‘o)

As before, the process is out of control if MC2, > h.
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7.2.2.4 An MCUSUM which is based on sequential probability ratio
(SPRT)

CUSUM procedures are a set of sequential procedures based on
likelihood ratios for detecting a shift in a process. Healy (1987) based on this
fact he developed a multivariate CUSUM in order to detect a shift in a process.
Assuming that x, may come from a p - variate normal distribution with in
control mean vector p, and an out of control mean vector p, and known

common covariance matrix X,. Healy, proved that a CUSUM for detecting a

shift in the mean for the p - variate normal distribution is

S,=max(S,, +a"x, - K,0) (7-9)
where
al = (mo-p,) &7
[ m ) = o)
and
PRI (53 IRl C

-2
[(Bo-m) 27 (o= 1y) ]
This CUSUM can be written as
S, =max (Sn_, +a' (x, —py)— .5D,0)

where D is the non centrality parameter which is given by

- -2

Dz[(p’o'l‘ll) Zl(”o'”;)}
This CUSUM signals when S, >#A. Furthermore, the quantity a'(x, -p,)
follows a univariate N(0,1) if x,=p, and a univariate N(D,1) if x =p,.

Therefore, the multivariate CUSUM procedure reduces to a univariate normal

CUSUM procedure. The main advantage of this CUSUM procedure is that
depends on p,,p, and X only through Dj that is, the ARL's do not change as

the number of variables increases.
Analyzing the same set of data as in paragraph 7.2.1 a multivariate

CUSUM which is based on Healy's approach is presented in figure 7.2. The
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control limits in this case, just as happened in the univariate case, are expected
to lie three times the standard deviation of the variable that we are analyzing,

that is, the upper and lower control limits are 16.034 and -16.034 respectively.

20
1B

10 1 {
y M - Cf+
0 o e A w5 G-

1 UcL
LCL

Cumulative Sum

-10
-15

o —— . : : IV DS e e AT
1 3 5 7 9 11 13 15 17 19 21

Number of Samples

Figure 7.2: An MCUSUM based on SPRT

TS Multivariate EWMA charts

Lowry et al., (1992) developed a multivariate version of EWMA
control chart. The MEWMA equations are:

Z,=2x,+(1-1)Z,,
T =1L, Z,

(7-10)

where x, is a p - variate observation that follows a p - variate Normal
distribution with known mean vector p, and a known covariance matrix
£,,0<A<1, Z,=0

and

2 2
= =2—_;[1—(1—x) I=

which is analogous to the variance of the univariate EWMA. The decision of
selecting appropriate values of A is not an easy one. Prabhu and Runger (1997)

showed that in - control run length is not strongly affected by the value of A.

On the other hand, the optimal value of A depends on the number of variables
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and the size of the shift. The same authors deduced that values of A between
0.1 and 0.5 illustrate very similar shift detection properties. Furthermore,
Lowry et al., (1992) proved that the MEWMA is more sensitive in detecting
mean shifts from Hotelling's T? chart.

Analyzing the same set of data as before a MEWMA control chart
which is based on Lowry's et al. approach is illustrated in figure 7.3. The value

of A2=0.1 and the correspond upper control limit according to Runger and

Prabhu (1997) recommendations is UCL=8.64.

— T2 statistic
|\ — ucL

T? statistic

O~ N Wh OO N OO
1
e

1 3 5 7 9 11 13 15 17 19

number of samples

Figure 7.3: An MEWMA control
7.2.3 Monitoring multivariate processes using regression adjustment

Various researchers have developed methods to monitor multivariate
processes that do not depend on the Hotelling T? statistic. Hawkins (1991)
proposed a regression - based control technique, (regression adjustment) which
is based on plotting univariate control charts of the residuals from each variable
when that variable is regressed on all the others. Furthermore, if the proper set
of variables is included in the regression model, the residuals are uncorrelated
even though the original variable exhibits correlation. Hawkins showed that the
ARL performance of this scheme is very competitive with other methods, but
depends on the types of control charts applied to residuals. This approach is
very important when the process has a distinct hierarchy of variables, that is, a

set of input variables and a set of output variables. Sometimes, this process is
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called cascade process (Hawkins, 1993b). Cascade process has many possible
applications in chemical manufacturing when exist several inputs and outputs

or/and there are autocorrelated variables.
7.2.4 Interpretation of Qut— of — Control Signals

The objective of performing a multivariate statistical process control is
to monitor the process in order to detect any assignable causes. It is crucial to
find which of the variables or a subset of them is responsible for the out of
control signal. However, it is difficult to analyze the cause of an out of control
signal because of the complexity of multivariate control charts and the cross
correlation between variables.

Alt (1985) proposed the use of a univariate x chart on the individual
variables with Bonferroni - type control limits. This approach reduces the
number of false alarms associated with simultaneous univariate control charts.

Jackson (1980) recommended the use of control charts of principal
components instead of the original variables. The disadvantage of this approach
is the difficulty of interpreting principal components with respect to the original

variables.

Mason et al., (1995, 1997) proposed to decompose the T? statistic into
orthogonal components when correlation exists. This approach is called MYT
decomposition and can be very beneficial, in interpreting control chart signals,
whether the T? statistic is chosen as the primary charting statistic or another
multivariate charting procedure is used (like MCUSUM or MEWMA).
Furthermore, graphical techniques were developed for interpretation of out of
control signals such as the multivariate profile (MP) charts (Fuchs and

Benjamini, 1994) and Dynamic Biplots (Sparks et al., 1997).

7.3 The multivariate EPC

Many manufacturing processes have by nature, multiple input and
multiple output (MIMO) variables. However, MIMO process feedback control

has not been fully investigated in the literature. In the next subparagraphs, are
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presented a multivariate EWMA and a multivariate double EWMA controller

that can be applied in semiconductor industries.
7.3.1 A multivariate EWMA controller

The MIMO process feedback control problem is often encountered in the
semiconductor industry. Tseng et al., (2002) proposed a multivariate EWMA
(MEWMA) controller, using a linear MIMO model, which could be applied in
the above industries under the following two processes:

e A chemical mechanical polishing process.

e A silicon epitaxy process.

A linear (mxn) MIMO process can be described as:
y.=a+k(t-1)+Bu,_ +¢,
where, u,,; denotes the vector of m input variables, y, denotes the vector of n

output variables, & denotes the process disturbance and @,k and B are

unknown vectors and a matrix to be estimated. For simplicity the authors

assumed the case where k=0.

Similar to the single EWMA controller (Ingolfsson and Sachs, 1993) the
proposed MEWMA controller is,

&,=o(y,-Bu,_ )+(1-0)d,, (7-11)

where, &,,ﬁ denote the least squares estimate (LSE) of a,B respectively, and
@ is a discount factor (0O <w <1).

The authors advocated that an optimal discount factor for the above
controller is given minimizing the mean square error (MSE). The MSE at run ¢
is:

E(y,—r)(y, T)T
where t denotes the desired target.
Moreover, they proved that within a finite number of production runs, say N,

the optimal discount factor satisfies the following equation:
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S(a))=trace(iZ::E(y, -7)(y, —T)T) (7-12)

7.3.2 A multivariate double EWMA controller

Recent work in the area of semiconductor manufacturing, concentrated in
the application of the EWMA statistic for process adjustment purposes (Sachs
et. al., 1995; Del Castillo and Hurwitz, 1997). DelCastillo (1999) presented a
controller based on two coupled EWMA equations, the double EWMA
(DEWMA) feedback controller. The robustness and stability conditions of
DEWMA controllers as well as the case of random walk with drift and
IMAC(1,1) disturbances, were analyzed by DelCastillo (1999, 2001). However,
all of these analyses were restricted to single input single output (SISO)
processes, although, some of these processes fall into the category of
multivariate case. Del Castillo and Rajagopal (2002) extended the DEWMA
feedback controller to the multivariate (MIMO) case.

The authors assumed that there are p outputs and m inputs (manipulated
variables) and the process is modeled as:

y,=a+pu,_ +N,
where,
N,=0t+¢g,
In the above equations, N, is assumed to be a multivariate deterministic trend
(DT) noise model and the MIMO DEWMA controller is derived for this type of

disturbance. Furthermore, & is a2 px p diagonal matrix of the average drift rate
per time unit, t is a px1 vector and ¢, is a multivariate white noise sequence.
Furthermore, the px1 vector y, contains the quality characteristics (outputs),
a is a px1 vector containing the offset parameter of each of the outputs, B is a
pxm process gain matrix and u,_, is the mx1 vector of the inputs. Such a

model is applicable not only in semiconductor manufacturing but in many other
batch processes (i.e. a drift in the process is due to wear out phenomena).

At the end of each run ¢, a corrective action u, is chosen, which gives a

prescribed set of inputs (recipe) to the process engineer for use in the next run.
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This action minimizes the one step a head predicted deviation from target, that
18,
. 2

man:||y1+l = T”
where,

SIH-I =A1 +Dl +Bul
where T is the desired target px1 vector and (A, +D,) estimates the
(a+8(t+1)). Furthermore, A,,D, can be expressed as functions of EWMA
weight matrices (A,,A,), similarly to the univariate case (4,,4,). It can be

proved that the corrective action is described as,

u,=(B"B) BT(T-A,-D,) (7-13)

In the particular case where m=p the last equation reduces to:
u,=B"(T-A,-D,)

Usually, the industrial practice with MIMO processes consists in
applying several SISO feedback controllers acting in parallel. Therefore, the
authors compared their proposed controller with a "parallel SISO" policy using
a simulation study.

Their conclusions can be summarized as follows:

e TFor both the parallel SISO and MIMO DEWMA schemes, there is an

optimal weight combination (4,4,). This combination of weights performed

well, irrespectively of the correlation between the outputs.

e For both the parallel SISO and MIMO DEWMA schemes, high values of
weights result in large values of the MSE. For the parallel SISO case, the
average MSE can diverge when there is a strong correlation between the
outputs. On the contrary, the MIMO DEWMA controller provided a stable
performance.

e In the parallel SISO case, when very small values of the EWMA weights
are chosen, the behavior is very strange while such behavior was not observed

for the MIMO case.
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7.4  Integrating the EPC processes with joint monitoring SPC schemes

In the previous chapter were presented and discussed various techniques
of combined EPC and SPC schemes in order to improve the product quality.
The usual practice is the monitoring of the controlled output using various SPC
charts. However, monitoring the controlled outputs alone is usually not
effective because feedback control action causes the input of the process to
adapt to process changes. Alternatively, someone could apply SPC techniques
to the control action of the controlled process (Faltin and Tucker, 1991;
Messina et al., 1996). Since the control action compensates for process changes,
monitoring the control action it is possible to be more effective to detect these
changes (MacGregor, 1991). Nevertheless, joint monitoring of both the control
action and the process output using bivariate charts may outperform than

conventional SPC approaches.
7.4.1 Joint monitoring of a PID controlled process

Generally, data from a PID controlled process are autocorrelated.
Furthermore, various researchers studied the topic of autocorrelated SPC
(Alwan and Roberts, 1988; Montgomery and Mastrangelo, 1991; Wardell et al.,
1994). It is worth noting that monitoring the controlled output focuses on the
"transient” period, while monitoring the manipulated input focuses on the
"static" period. Once a mean shift in the input is added to the system, the output
will experience a time period with larger dynamic output ("transient" period).
After the transient period, the system's output will remain in a small static

range ("static" period). However, it is known from the control theory, that when

the integral (/) control mode takes action the mean shift of the process output

will be eliminated immediately after the transient time period. Thus, there is
only a limited "window of opportunity" (Van der Wiel, 1996) during which the
process change must be detected. All conventional SPC techniques suffer from
this problem. Therefore, a possible solution is a joint monitoring SPC strategy

that involves both the input and the output of a process using bivariate SPC

schemes.
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Tsung et al., (1999), proposed a bivariate SPC scheme using the
Bonferroni's approach. This approach was recommended by Alt (1985) because
of its simplicity in determining the variables which are responsible for an out of
control condition. The most important advantage of this approach is that there
is no need to assume that the covariance matrix among the process variables is
known. Moreover, the EPC scheme is a PID controlled process where the
process disturbance follows an ARMA (1,1) model. As a criterion for
optimizing this process the authors used the mean squared error (MSE) of the
process outputs. Tsung (1998) derived the relationship between the PID control
parameters and the process MSE for an ARMA (1,1) model which is described

as:

MSE(k, ke, k;,$,6) = (1+2p, (I + ) o7 ) (7-14)
where, k,.k,,k, are the parameters of the PID controlled process, ¢,6 are the
parameters of the ARMA(1,1) model, 7,I7,III are functions of the PID and the
disturbance parameters and p,,0; are the first order autocorrelation and the
variance of the disturbance {D,} of an ARMA(1,1) process respectively.

Furthermore, the standard deviation of the process output after the PID control

is,

o, =\1+2p,(Il +1I)o, (7-15)

and the standard deviation of the manipulated input is,

o =1+ 2p,(I'+ 1o, (7-16)
where, I'II',JII' are also functions of the PID and the disturbance parameters.

Based on (7-15), (7-16) and assuming that the process data are normally
distributed the control limits of the joint charts are given by the following

equations:

C[’e:iz(l—aM)O-e (7-17)
CLy=%2 440

The joint decision rule suggests that the controlled process is out of

control when either the manipulated input or the controlled output is outside the
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control limits. As a conclusion, the authors proposed that their approach can be

used using other disturbance models instead of ARMA (1,1) model.

Another joint monitoring scheme, which is based on Hotelling's T’
statistic, was proposed by Tsung et al., (1999). For this scheme the EPC
component is a PID controlled process, as before, where the process disturbance
follows an ARMA (1,1) model. Now, the SPC scheme is the Hotelling's

multivariate control chart that gives an out of control signal when
2P =X{2"'X, > CL,
where, the monitored characteristics are the vector of the controlled output and

the manipulated input (X(=(y,,u,)r), and I is the covariance matrix of X, .

Thus, the control limit for Hotelling’s approach is:

CLTZZ;,Z (7-18)

where «a is the desired false alarm rate. The joint decision rule suggests that
the controlled process is out of control when »’ exceeds the control limit.
Although Hotelling’s approach requires the knowledge of the covariance
matrix, it is superior to Bonferoni’s approach in the sense that it gives exact
type I errors, and not conservative ones. On the other hand, if the estimated
covariance matrix from the model is "bad" the Hotelling's approach may
perform worse than the Bonferroni's approach. In general, for small correlations
Bonferroni's approach performs better than Hotelling's approach, while for

large correlations the opposite holds (Tsung et al., 1999).

7.4.2 The dynamic 7° chart for monitoring feedback controlled processes

Tsung et al., (2002) they proposed to improve the detect - ability of joint
monitoring schemes using dynamic T statistics that take into consideration the
effects of dynamics and autocorrelation due to feedback control. Thus, the EPC

scheme is based on a PID controller and the SPC scheme on a similar to the

usual T? control chart but the data vector is composed of time shifted
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observations of both the input and the output. Therefore, the dynamic T

statistic is described as,
DT'=XTE'X,
where, X, is the wvector of the controlled output and input

(X, :(y,,u,,y,_,,u,_l,...,y,_L,u,_L)T) respectively, X 1s the covariance matrix and
L is a user specified time shift factor.

It is crucial to select an appropriate time lag parameter L for the
dynamic monitoring scheme. A smaller value of L, than necessary, may lead to

ineffective monitoring, while a larger one may lead to redundant computing.

The authors recommended selecting a L value by fitting an AR(w) model to

the output (y,). Thus, the "best" value of L would be such that |(0—¢)9f"l <&

for j>L. Using extensive simulations the authors showed that a satisfactory

value of £=0.1.
The authors compared their proposed scheme (L=1,2) with the "static”

(L=0) T? scheme. They found that the overall performance of the dynamic T’

monitoring scheme 1is better than the "static" joint monitoring scheme.

However, for a process with large correlation the two schemes have similar
performance. More specifically, DT' is consistently better than the other

schemes for large mean shifts, while DT? is consistently better than the other

schemes for small mean shifts.
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Conclusions and Furthér-Research

8.1 Introduction

This chapter presents some comments on this dissertation as well as
possible extensions for further research. In the next section some conclusions
and further research topics of SPC and EPC approaches are presented in the

univariate and multivariate case respectively.
8.2 Conclusions and Further Research

Usually, two different technical groups have been concerned for developing
process controls in modern industries. Quality engineers and applied
statisticians focus on monitoring quality characteristics through statistical
control charts, while control (process) engineers mostly concentrate on on-line
process adjustments using engineering process control (EPC) techniques.
Several research ideas about SPC arose from the Journal of Quality Technology
(JQT) panel discussion edited by Montgomery and Woodall (1997). However,
this dissertation focus on engineering process control methods as well as the
combination of SPC and EPC for the same process in an integrated form and

with this rationale some conclusions and research ideas are discussed.

(i) Some of the conclusions are:

e When a process exhibits autocorrelation various remedial actions can be
taken in order to monitor it. The effect of autocorrelation on a control chart
scheme depends primarily on (1) The actual model that the process really
follows, (2) the model that we consider to describe the in-control operation, (3)
the way we estimate the in-control model and (4) the type of disturbance that
the chart is supposed to detect. The first three considerations are very important

because the estimated model will affect the chart scheme.

133



e Quality engineers very often need to adjust a process. Feedback
adjustments using PI or PID control action are no more difficult than the usual
control charts. Moreover, when frequent adjustments are not feasible or making
an adjustment is expensive, "deadband policies" can be shown to be optimal if
there is a fixed adjustment cost.

e "Optimal" controllers minimize the variability of the quality
characteristic ignoring any cost associated with this action. Furthermore,
proportional integral derivative (PID) controllers are by far the common
adjustment policy in industrial processes. Hence, minimum mean squared error
(MMSE) controllers are rather impractical in industrial processes. On the other
hand, this type of controller is still useful as benchmark in evaluating the
performance of other adjustment schemes.

e The common goal of SPC and EPC approaches is the reduction of
variability using different ways. A significant amount of work has appeared in
the 1990s about methods that combine EPC and SPC schemes for the same
process in an integrated form. Simulation as well as case studies showed that:

0 SPC/EPC schemes result in significant improvement in adjustment
variance at the expense of slight increase in output variance,
0 SPC/EPC schemes reduce the frequency and magnitude of

adjustment when compared to EPC schemes.

(ii) Some topics for further research are:

e The most SPC methods have been developed and customized over the
years to maximize the information obtained from relatively limited data. Now,
in the most industrial process there is often a large amount of data. Thus, SPC
methods are needed for massive datasets (Runger et al., 1997)

* Most of the research on SPC methods has been focused on monitoring
the process mean. There has been a trend on monitoring process variability, but
more work is needed on this topic.

o There are many difficulties associated with interpreting signals from
multivariate control charts. Therefore, more work is needed on graphical
methods for data visualization. Furthermore, data reduction methods are also

important,
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e There are industrial processes were multiple input and/or multiple output
(MIMO) are more appropriate to define the quality of the product. In this case
many authors are developed multivariate schemes which are generalizations of
the corresponding schemes in the univariate case. However, the complexity of
these schemes discourages the quality practitioners to apply them in real life
situations. Hence, simple tools of sophisticated methods are topics of major

priority.
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