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ABSTRACT

Eystathia Giannopoulou

A Bayesian approach in determining the optimal sample size for
phase I data

January 2006

In this thesis our interest is concentrated on determining the optimal sample
size of observations, for phase I data that needs to be taken each time during a
process control in order to estimate the unknown parameters of interest, taking into
account the fixed cost of every observation along with available prior information.
For this we have assumed that the sampling interval and the length of the phase I
samples are fixed. The sampling distributions that we referred to are members of a
more general family of distributions functions, the regular exponential family and
in each separate case an extended analysis has been performed. In defining the
optimal sample size for every different sampling distribution we have used basic
statistical decision theory properties which are considered to be the major tool of

this work.
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INEPIAHYH

Evotafia Navvoroviov

Mia Manebliaviy znpocéyyion yw Tov kabopispd tov PBéhtioTov
neyéOovg dsiyparog yia dsdopéva oe @aon 1

Iavovaprog 2006

v epyacia auth to evila@Eépov Lag emkevipdveTtar otov kabopiopd tov
Bélnictov Beiyiatog peyébovg maparmpiocswyv ya dedopéva ¢aong I 1o omoio
npémel va mapovpe kabe @opd katd tn Sdpkela piag Sadikaciog wOLOTIKOD
gLEYYOV pHE OKOTWG vO EKTIUNOOVHE TIG GYVOCTEG TAPAUETPOVG TOV  HOG
svdiapépovv, LapPfavoviag v’ dyv 1o kabBopicuévo kd6otog Yo xaBe Tapartnpnon
pafi pe  6wabéoun whnpogopio mov mapéyerar and 115 maparnpnoeg. [a to
AOY0 avtd £ovue vrobiéoet 611 to SdoTnua derypatoinyiag kol to windog TV
Sderyparov pag dev petafarioviar. Ot xatavopéc derynatoinyiag yuo TiC OToieg
yivetar A0y etval PEAM H10G EVPVTEPTG OLKOYEVELRG KATAVOUMV. TTG KAVOVIKTG
exfeTikng owoyévelag kxar oe kdbe Eeyoprotn nepintoon pia ektetapévn avéivon
éxer mpaypartonombBei. Zrov kabopiond Tov Béhtioton peyébovg delypatog yio kabe
Eexoplotn MEPIMI®GT KATAVOufg £Xx0LHE xpMolpororiost Paoikés apyéc g

Bewpiag arogacecwv kGl TOV aroTeAel KHpPLo epyakeio ovTng T Sovisiac.
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Chapter 1

Introduction

In an industrial type setting, products coming out of a process are subject to
quality control. In other words each item produced has a measurable quality
characteristic (univariate or multivariate) that needs to meet some specification
criteria. This characteristic will have an ideal (target) value and some
Specification Limits (Lower and/or Higher) that needs to meet or otherwise it will
be considered as non-conformable. For example we might consider a process that
produces light bulbs. These will have an ideal base-diameter of 1.2cm and will
have as Lower Specification Limit (LSL) 1.15 cm and Upper Specification Limit
(USL) 1.25cm. If the base-diameter of a light bulb is less than LSL then it will be
loose and on the other hand if it is more than USL it will not fit. Ideally (in a
dream world) we would produce all items with base-diameter equal to the target
value. However, regardless of how well a suitable environment has been designed,
it is natural a variability to exist as a result the quality of the raw material and of
unavoidable causes during the operation of the process.

In the early stages of the Quality Science the quality characteristic of a
| product was measured with respect to its specification limits. Thus each product
was of acceptable quality if its quality characteristic was in the [LSL, USL] and
unacceptable otherwise.

A completely different paradigm arose by Shewhart (1931). He was the first
to recognize the role of variability in the quality characteristic and he partitioned
the variability in two terms:

a. Variation due to chance causes

b. Variation due to assignable causes



Chance causes are inherent in the process, while assignable causes (if they
exist) can be traced to machine, material, worker etc. Operationally a system
running under chance causes looks like a realization of a statistical model.

Based on the above, a process is considered to be under the In Control (1C)
state if it runs only with chance causes of variation present. On the other hand a
process running in the presence of assignable causes of variation 1s considered to
be Out of Control (OOC).

The goal in quality control is to identify when our process moves from the
In Control to the Out of Control state. Then corrective actions can be taken and/or
quality improvement techniques can be applied. The control charts, originally
developed by Shewhart (1931), is the standard approach towards the control of a
process characteristic. Constructing a control chart involves a calculation of the
Center Line and the (Lower and/or Upper) Control Limits (it is clear that the
[LCL, UCL] will be inclusive to the [USL, LSL] indicating that we might have
processes within specification but Out of Control). These control limits are chosen
so that if the process is In Control, nearly all of the sample points will fall between
them. The center line and control limits will be calculated from the early process
observations. In other words we split our process in Phase 1 and Phase 1l. During
Phase I (or so called start-up phase) we are sampling from our process to construct
the “historic” data of the process which will be used to derive the center line and
control limits, against which samples from phase 1I of the process will be tested
for being In or Out of Control.

During the collection of Phase 1 data the original approach calls for
sampling a fixed number of items with a fixed sampling interval until we have a
reliable large number of historic data (samples) to robustly estimate the control
chart lines. So in the light bulbs example we might decide to take a sample of 50
light bulbs (for which we will record the average —or some other statistic-) every
10 minutes and the samples drawn the first 3 hours (18 samples of size 50 each)
will constitute the Phase I data.

In an attempt to improve the procedures for statistical process control,
dynamic programming models have been developed which has led to what is called
adaptive or dynamic control charts, introduced by Tagaras and Nikolaidis (2001).
Their approach is based on the common characteristic of those charts which allows

all three parameters, namely sample size, sampling interval and control limit



location, to change during the production, as the sample information becomes
available and the state of the process is updated using Bayesian methods. Based on
their economic performance, conclusions are being derived relative to the
effectiveness of those charts.

A similar work in this area has been done by Tagaras (1994, 1996) where
the one-sided control charts for variables is examined first and a theoretical
formulation for the two sided adaptive control charts is provided. More recent
publications of Calabrese (1995) where we consider a process control procedure
with fixed sample sizes and sampling intervals and the fraction defective is the
quality variable of interest and an optimal structure is given. Porteus and Angelus
(1997) focus on describing how dynamic process control rules can improve static
ones by canceling some of the inspections called for by an economically static rule
when starting in control. Important early theoretical contributions can be found in
Bather (1963), Taylor (1965), Girshik and Rubin (1952) and Carter (1972).

More recent papers are generally more practical. Parkhideh and Case (1989)
propose an economic model where the decision parameters of a control chart
(sample size, sampling interval and control limits) may change over time but a
certain pattern is prespecified. Reynold (1989) studies the statistical properties of
one-sided and two-sided Shewhart charts, when the sampling interval after each
sample depends on the latest observation, but sample sizes and control limits are
kept constant. Daudin (1992) proposes a chart where two samples are taken only
from the process at fixed intervals but the second is analyzed only if the first does
not suffice to decide if the process is in control. Pradhu, Runger and Keats (1993)
and Costa (1994) independently examine the properties of X charts with two
possible sample sizes, depending on the previous sample statistic. An extended
work by considering for a particular cost structure but no prior information of how
to choose the sample size which is economically most desirable is developed in
V.Barnett (1974).

In this thesis we will assume that the sampling interval and the length of the
Phase I is fixed and we will try to determine how many items must be sampled
each time, in order to estimate the unknown parameters of interest and at the same
time take into account the sampling cost for every observation (i.e. tie this to the

economics of the problem). So in this thesis we will work towards determining the



optimal sample size for phase 1 samples, using the current sample information for
estimating the unknown parameters along with available prior information in a
Bayesian setting. Our approach will be based on properties of Statistical Decision
theory.

Decision theory is concerned with the making of decisions in the presence
of statistical knowledge which sheds light on some uncertainties involved in the
decision problem. We assume that these uncertainties are unknown numerical
quantities (parameters) that will commonly be noted by & which will either be
univariate or multivariate random variables. In our statistical procedures we assign
to any parameter a density function (prior distribution) and an attempt is made to
combine sample and prior information in order to make the best decision
(estimation) about the unknown value of the parameter 8.

In order to specify the optimal sample size to be taken in every different
sample of Phase 1, we define a loss that would be incurred for each possible
decision and for the various possible values of the unknown parameter @. In all
cases studied here we decided to use the square error loss function. We selected
this loss function since it is well known to have some nice properties. Important
role in the selection of the size of a random sample that needs to be taken has the
sampling cost for a single observation as well. In this work the cost per
observation is assumed to be constant and as a result the total sampling cost of a
single sample will be a function of the size of the sample which is not affected by
the value of the parameter  or by other magnitudes of the observed values.

The sampling distributions considered in this work are members of a
general class, namely the regular exponential family of distributions. More
specifically exponential family includes as special cases: Poisson, Bernoulli,
Binomial, Gamma, Exponential and Normal sampling distribution functions for the
univariate case and Multivariate Normal for the multivariate case analogously. For
cach one of these models we will derive the optimal (desirable) number of
observations that we suggest to be taken, sharing a number of decision theory
properties.

This thesis is organized into 6 chapters. The first chapter is the introduction
where a basic profile of our work is given. The second chapter provides a

theoretical background of the decision theory approach, including definitions,



theorems, basic properties and some examples. The third chapter provides a
technique for the calculation of the optimal sample size for the case of the general
k -parameter exponential distribution family where a conjugate prior has been
assigned to the unknown parameters. In the fourth chapter optimal sample size is
calculated for specific univariate sampling distributions functions that belong to
the class of the #k-parameter exponential family. Furthermore, besides the
mathematical part in each case, conclusions about the behavior of the suggested
sample quantity accordingly to other specified parameters are derived. In the fifth
chapter we derive optimal sample size in the case of Multivariate Normal
distribution, with unknown mean vector and a special case for the Bivariate
Normal distribution is distinguished. At the end a chapter of some basic

conclusions and future research summarizes this work.






Chapter 2

Decision theory

2.1 A Statistical decision problem

Decision theory as the name implies, is concerned with the problem of making
decisions. In statistics, the decision theory framework has a very important role, if
we think of the consequences that we might have in the outcome of an experiment
from taking a wrong decision. All of the known forms of inference (point
estimation, hypothesis testing and interval estimation) can be seen as making of
decisions. In this chapter we shall consider problems where decision theory
provides a method of analyzing inference problems. The parameter & is the true
but unknown quantity about which we wish to make an inference. Bayesian
analysis is considered to be the most sensible approach to statistical decision
analysis where a parameter € is a random quantity with a prior distribution
function z(#). In order to draw conclusions about @ we construct some criteria
which are used to compare different decisions and finally lead to the optimal
choice. It has been proved that if for a certain problem an optimal decision exists,
then this can surly be given through the Bayesian approach.

In general we shall consider decision problems where the statistician has the
opportunity to choose a decision after having observed the value of a random
variable or vector which is related to the unknown parameter §. All the elements
of a decision problem can be formally defined as follows:

1. The set of all possible values for the unknown parameter 8 for which we wish

to obtain information for, is called the parameter space @ .



2. The set of all possible actions under consideration, is the action space denoted

by 4.
3. A function of the form L(6,a):®x 21— Rwhich expresses the loss that we have

if the true value of the unknown parameter is @ and an action « is taken, is

called loss function

4. The data (outcome of an experiment) are described by a random

vector ¥ = (%;,....,X,) . The set of all possible outcomes is the sample space X .
5. The sampling model with likelihood function conditioned on 8: {f(x10):0¢ @} s
where { j'(.\'lﬁ):ﬁe@} is the probability density function on every observation

X.

We have to mention here that parameter space & and action space A4 may be

continuous or discrete, finite or infinite. Instead of a loss function L(6,&) one may

speak of the utility function (De-Groot (1970), Berger (1985)) which is defined as

the negative of the loss function i.e.U(8.@)=- L(6,a). Utility function expresses
gain rather than loss and is usually used in theory of economics and in some

branches of Bayesian analysis.

2.2 Decision rules

Definition 2.1: A decision rule also known as strategy is a function of the type

d(x): X— A4 which specifies what action @ € 2 should be taken when xe X is
observed. The set of all possible decision rules is denoted by @, i.e (D={5(.§): X
-1 } Decision rules of this form are also called nonrandomized decision rules

(Ferguson (1967), De Groot (1970), Berger (1985)).

Example 2.1: Consider the two hypotheses testing problem:

H,:0€®, and the alternative H;: e ®,°. The action space consists of only two

actions ,'4={a,,,al} where @, denotes the action to “accept H,” while a, the



action “accept H,” (or equivalently here “reject H,”). Here the decision rule
5(x): X >4
takes only two possible values:

» S(x)=a, Vxe {x:6(y)= a,,} =acceptance region of the test

= dx)=q, Vxe {.‘, 6(x)= a,} =rejection region of the test
So the set of all allowable decision rules © consists of only two possible strategies,
one that leads to action @, and one that leads to action «,.
Usually the class © of all possible decision rules is quite large (uncountable in
most of the cases) and the question of interest becomes which & ® should we
choose as the “best” strategy. Given that the decision rules will be judged through
their loss function which is a random quantity (function of 8 €®) we need to
define some deterministic ordering of all possible decision rules to be able to find
the optimal.
In the following section we will refer to some criteria which will help us to

compare different decision rules and will introduce certain ordering criteria.

2.3 Risk functions and admissibility

Definition 2.2: For every decision rule §(x)e © and for a given value of 8€® we

define the risk function of 8(x) as the function R(8,6): @ > R

R(8.8)= £, (L(6.6))= [L(6,8)dF (x10)=[L(8.6) r(x|0)ax (2.1)
X X

(If our problem has no data then R(6,6)=L(8.8)) which is a function of €. This
definition comes from a frequentist point of view .
Since @ is unknown we prefer a decision rule with risk function small for all
Ge®, so if two decision rules are to be compared this could be done only through
their risk functions.
Let &,,6, two decision rules then if

* R(6.6)<R(.5,) ,VOe® = §, is as good as &,

"= R(6.6)<R(6.5,) . V8c® and R(E.5))<R(8,5,) for some fe® —



&, is better than &, . or &, is preferred to &,.

= R(0.6))=R(0,6,) . YOe® o § is equivalent to &,

Definition 2.3: Given a decision rule (x)e © and #(0),0€® to be the prior
distribution for the unknown random vector & and we can derive the posterior
distribution of @ aftery =(x......x,) has been observed p(@|x). We define the
posterior risk, or the Bayesian expected loss (Berger (1985)) of the decision rule
&(x) as a function of the form: p(#,8(x)): X =R

Pr,8(x) = £y (L(6,8(x)) = [ L(8,8(x) p(8] )46 (2.2)

e
If we refereed to a no-data problem

p(7.8) = E,(L(6,8)) = [ L(6.5)m(8)I0 2.3)

e
Posterior risk is a single number for a given x regardless of the dimension of 8.
Obviously a desirable decision rule is the one that minimizes the posterior risk for
a given prior 7(8).
Thus if we have to compare two given decision rules Jd,(x) and &,(x) it is
allowable to use one of the two risk functions defined above, conditioning on
fe® if we use the frequentist risk function or conditioning on data xe X if the

posterior risk function is used. Of course both risk functions are random quantities
and in order to be able to compare the decision rules we need to have one the two
to have uniformly smaller risk function (over all@e@® if frequentist risk is used or

over allxe X if posterior risk is used). Otherwise we can not compare them using

risk functions.

Definition 2.4: A decision rule §(x)e @ is called admissible if there does not
exist any other decision rule 5'(.5)6 D better than S(x)eD i.e. vs e:‘D—{é'}
R(8,6)<R(6,6) VOe® and R(0,6)<R(H,6) for some Oe® .

A decision rule &(x)e®D is called inadmissible if there exists & (x) e O that is better

than 8(x).

10



it is obvious that inadmissible decision rules should not be used when a decision
rule with smaller risk function exists. On the other hand in many problems there
might be a large class of admissible rules and then we are faced with the problem

which one to select.

Example 2.2: Assume x|8 ~ N(8.1), and that it is desired to estimate & under the
loss function L(8.@)=(8-a). We will consider decision rules of the form
d.(x)=x+c where ¢>0. Clearly we can compute the_risk function as
R(0.8)=E ,LO-8)=E ,(0-8) =E4(0—x~c)
= E£,5(8-c) =2(0—¢)Ego(v)+ £ (x°)
=(0—c)2—2(0—¢‘)9+(1+02)
=6 -20c+c> -26" +20c+1+ 6°

=(‘3 +1

If we want to compare two different decision rules that belong in this classd,, &
all we have to do is to compare their risk functions. Note that if c¢<c¢ then
cHl<c?+l = R(6,6.)<R(8,6.)for all values of 6. Hence, & is a better
estimator than &.. For ¢=0 the minimum value of ¢’+1 is achieved. So the
estimator 8, =x is the best estimator in this class or else we can say that in this

class of estimators J, = x is the admissible one.

Definition 2.5: Let C be a class of decision rules that it is a subclass of the set of

all allowable decision rules ®. ¢ will be called a complete class if for every

decision rule § ¢ ¢ there exists & € ¢ which is better than &'.

Theorem 2.1: If Cis a complete class then all the admissible decision rules will
be contained in C.

Proof:

Assume that 35 admissible and & ¢ C , then because of the fact that ¢ is a
complete class 38" € C such that 6  will be better than &'. This contradicts the fact

that & is admissible so no better rule than & exists. Therefore & € C.

11



2.4 Bayes rules

Sometimes it is not easy for us to compare decision rules only through their risk
functions or equivalently through their posterior risk functions because both of
them are random quantities. Thus the only case where two decision rules can be
compared is when one is uniformly better than the other (for all #e® in the first
and VxeX in the second). In practice though we are interested in being able
“order” all available decision rules and pick the “best” decision rule. in the
bibliography one of the ways of ordering the decision rules is done through their
expected risk.

More precisely for the frequentist risk function let us consider the prior
distribution function #z(@). then the risk function of a decision rule & is
summarized by the average risk function called Bayes risk with respect to the prior

7(0). A more formal definition is as follows:

Definition 2.6:  For every decision rule §(x)e® we can define its Bayes risk

r{r,0) as the expected risk function with respect to the prior distribution 7(8)

r(x,8)=E,[R(6.5)] (2.4)

For the discrete case r(z.0) =ZR(6’,,5)7I(0,.) (2.5)

For the continuous case #(7.8)= ’-R(ﬁ,ﬁ)ﬂ(ﬁ)dé? (2.6)
(-]

Suppose that we are given:
r(z.8)=E,[R(6.6)]= [R(6,6)m(6)d0= | [ jLe.ofl B)d.\'-lw(ﬂ)de
e eL.y -

Under suitable regularity conditions we can apply Fubini’s theorem (see for

example Chang (1974)) and reverse the order of integration to obtain:

rz.8)= [ [Le.0) 11 e)d.\-Jﬂwme =[ [ L(6.6)1(5|0)(6)dxat
ey

RY

[2]
= [ L(8.6)p(8| )1 (x)Mdxd8 = [ [ L(8.6)p(8) ) £ (x)d 0
] e

X R

12



= {I L(6.5)p(6 I-x)d@]/'(-.\‘)d-" = [ px(O).8Nf ()
® EAY

A

= E,[ p(m(6),6(x))] 2.7
From the above expression it has been proved that Bayes risk can be expressed as
the expected posterior risk p(#.8(x)) with respect to the marginal distribution of
the data f(x). This is the expected posterior loss before even having observed the

data and it may also be called preposterior risk (Carlin and T. A. Louis (1996)).

2.5 Bayes risk principle

Since Bayes risk is a scalar quantity we can order the decision rules and prefer a
decision rule &, instead of a decision rule &, if r(p,8)) <r(p,d,).

Definition 2.7: Among all possible decision rules in @, the “best” one according
to the Bayes risk principle with respect to the prior #(0), is the one that minimizes
the Bayes risk; is called Bayes rule and is denoted 5‘(.35) i.e. it is a decision rule
that satisfies:

H7.8 )= min;_, 1(7.5) (2.8)

Theorem 2.2: Under very broad conditions Bayes rule can be simply described as
the decision function 5‘(.3): X — A which minimizes the corresponding posterior

risk p(#(8),6(X)).

Proof:

We have already seen from the relation (2.7) that Bayes risk is equivalent to the
expected posterior risk p(#(6),6(X)) with respect to the marginal distribution of
the data f(x). From (2.8) we have:
r(z,8") = min ., #(7£,8) = min, E p(7(60).6(x))
=min,,, f P7(0),6(x)) f(x)dx = I.f'(-x) min_, P(7(0).6(x))dx
X

X

= ff(.g)'imin‘,e,, IL(G,(S)p(_B | ,_\_')dﬁ}lx
2]

X

13



Therefore a risk function that minimizes Bayes risk can be found by minimizing

the inner integral (posterior risk) for every ye X .

2.6 An Example

As an illustration of the results that have been developed so far let us consider the
statistical decision problem where®=1{6,,6,}, A={¢,.a,,@,} with the loss function

given by the following table:

Q, a, a,
6 0 10 3
6, 10 0 3

Table 2.6.1: The loss function for every couple (G,,aj)
Suppose that an observation x is available from the sample space X= {O,l} and the

conditional probabilities of the random variable x are given by:

Plx=1{6=6)= P(x=0]6=6)=

P(x=16=6,)= P(x=0|0=8,)=

S~ W
Sl &=

We consider as a prior distribution function for8 € {6,.6,}

n@=6)=n,7(0=0,)=1-n. 0<zx<]

We wish to derive a Bayes decision function against each value of z,(0<z<l)

and sketch the Bayes risk as a function of 7.

Case 1
At first we assume that no observation x is made (no-data problem). We derive the
Bayesian expected loss (Bayes risk) for all the possible decisions strategies

d=a,d,=a..d=a V0e{6,6,}:
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P(0),d,) = E, (L6.d)) =S L(6..d,(6,)=10(1-7)
=1

pa0).dy) = E,(L(0.d))=Y L(6.d, (8,1 =10z
i=l

PA(O).d) = Eg(L(0.d)) =D L(Gd Je(6) = 3m +3(1- 1) =3

» If0<x <ﬁ:> d, is the Bayes decision rule

3 . .
= |If n:T: d,, d, are both Bayes decision rules

7
= If i<7[ <w:> d, is the Bayes decision rule

7 ..
= If ”=I6:> dy,d, are both Bayes decision rules

» If %<7z5 1= d, is the Bayes decision rule

Hence, all the above results can be summarized into the following diagram

p(mr(8) d)

3.5

3.0

235

20

70 1.00

L

Figure 2.6.1: Bayes risk function against the prior in the no-data case

Figure 2.6.] reveals the Bayes risk function p(m(8),d) as it has already

been defined against the prior probability #. It can be easily seen that p(#(0),d)

. . 7 .
increases and decreases linearly for 0$7r<% and for -l-(-)-<7t$1 equivalently,

7
except for %Sﬂ'sl—o- where p(m(6).d) remains stable.



Case 11
We proceed now to the case where an observation x is made before choosing the

optimal decision. Let p(@|x) denote the posterior probability (an updated version
of the priorz) that 8 =46, if the value xe {O,l} has been observed i.e.
P(@=6|X=x)and |-P(0=6,|X=x)=P(@=86,| X =x)

We derive the posterior probabilities for every possible value of x:

F 4
P(9=91|«\'=0)= EP(.\'=0|€=0R)P(0|) =7[ 34 =_2”+3
D P(x=0]6=6)r(6) 2770-7) 7
i=1
:’:ﬁ
P(g_el\'_l)— P(-\‘:‘lle'_el)[)(gl) - 4 _ 3z
SR T3z (-7 27+l
Y P(x=1|6=6)P6) ——+——
=1 4 4
—27+3 2m+3
. |-z

P(O=0,|x=1)=1-P@=0 |x=1)=1——T
6=6,]x=1 (=6 |x=h=l-c =

Calculation of the posterior risks for each possible value of xe {0,1} yields

PO),d,(0) = L(6,d,)P(0=6,| X =0)=0P(6=6,| X =0)+10(1- P(§ = 6,| X =0))

i=]

=10(1-P(@=6,| X =0))

p(x(0),d,(1) =" L(6,,d,)PO@=6,| X =1)=0P(0=6,| X =1)+10(1-P(§=6,| X =1))

i=1

=10(1—-P(0=6,| X =1))

p(yz(a),dl(())):iuq,dz)l)w:e, | X =0)=10P(8=6,| X =0)+0(1- P(6=6,| X =0))
=1(l)_1|°(0=0, | X =0)

p(7(6).d,(1)) =iL(6§,d2_)P(8=¢9, [X=1)=10P(@=6,| X =1)+0(-P(O=6,| X =1))
=10;(0=9, |X=1)

PT(0).dy(0) =Y L(Gdy)P(O =6, X =0)=37(6=6,| X =0)+3(1- P(@=6,]| X =0))=3

i=|

PO dy(1)=Y L(8.d)PO=6| X =1)=3P(0=6,| X =1)+3(1-P(O=6,| X =1))=3
=l
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So in the end we summarize regardless of the value of the observation x the
following:

P d(x)=101-P@=6|X =x)=10P(0=6,| X =x)
Pz d(x)=10P(@ =6 | X =x)
| p(m,d;(x))=3

It has been proved that Bayes risk minimizes the posterior risk function for every

X€E {O,l}. According to this we will have:

If OSP(6?=0||X=J:)<—1% :0S7z<-l?g when x=0 is observed and 0S7r<%

when x=1. Then d, is the Bayes decision function.

9 1
If P(9=6?,]X=.\')=% = 7Z=F when x=0 is observed and 7t=§ when
0

x=1 so both d,,d, are Bayes decision rules.

If -3—<P(0=01 |X=.\')<l- :—9—<7r<1 when value x=0 is observed and
10 10 16 S

%<7z <1—7(— when x=1. Then d, is the Bayes rule.
0

It P(é?—é?,l)(=.\')=ll = n—% when value v=0 is observed and ﬂ'=%

when

x=1. Then both d,,d; are Bayes decision rules.

7 7 )
"I —<P(@=6|X=x)<] :>§<7[SI when value x=0 is observed and

7 . e .
-1—6—<7le when v=1 = d, is the Bayes decision function.

We shall know compute Bayes risk for any given prior probability x:

®= For0sx S% d, is the Bayes rule regardless of x and
r(m,d,)=p(n(8).d,)=10x is the Bayes risk.
= For %Sﬂ'sl d, is the Bayes rule regardless of x

and r(z.d)) = p(7(8).d,)=10(1 - 7)

is the Bayes risk

17



* For l<7r<l d, is the Bayes rule when v=0 and d, is the Bayes rule when
r=1 d)=n(10 1 +33)+(l—7r)(0£+3£)-—47r+-?i 1s the Baves risk
x=1, riz.d)=x 27 2772 A ves risk .

* For —7—<7z<-l-9g d, is the Bayes rule when x=0 and d, is the Bayes rule when

y=1
5

r(n‘.d)=7z(10i+0%)+(1—7r)(0%+10%)=E is the Baves risk.

= For i<7z’<—7— d, is the Bayes rule when =0 and d, is the Bayes rule when

when y=1

1 3 3 1 19 | .
(2, d)=72(3—+0=)+(1-723—-+10—)=—4x+— is the Bayes risk.
r(r,d)=7( 2 4) ( X 2 7 1 y

As it has already been done for the no-data case we present all the above

conclusions into the following diagram.

3.0

r(m.d)

2.54 /,_.\

2.04
d b
1.0 { \
5 / \\
0>O T T T
00 13 19 25 31 38 44 56 63 69 75 81 88 1.00

w

Figure 2.6.2: The Bayes risk function against the prior when some data have been
collected

In Figure 2.6.2 Bayes risk function is sketched against the prior probability
7z in the case where we have the opportunity to observe a random variable x.

Again we can clearly see that the Bayes risk function r(z.d) has a linear behavior

against z. From Figures 2.6.1, 2.6.2 it can be seen that for any prior probability

18



. . ‘ ] . .
7z in either of these intervals 0<z<— or =<7z <1 one can do just as well without

2]
fole ]l IEN|

. . .7 B
any observation as he can by observing x ( p(#(8).d)=r(x.d)). If —lgsﬁsl—)(u then
D

riz.d) < pr(8),d) (2.5<3).
The method which has been described here for the construction of a
Bayes decision function is called the extensive form of analysis ( by Raiffa and

Schlaifer 1961) .

2.7 Admissibility of Bayes rules

In the following theorem we are going to prove that under specific assumptions on

the prior distribution, the Bayes rule is an admissible rule.

Theorem 2.3: Suppose that we have a statistical decision problem with parameter

space @ c R and sample space X . Given any decision rule § € D, assume that the
frequentist risk R(8,8) is a continuous function of & with respect to the likelihood

f(x]6). Furthermore, if #(8) retlects our prior belief for & and assume that for
every 8 €® and for every £>0 the interval (0—£,6+¢) has a positive
probability under the prior distributionz(8). If &  is a Bayes rule (or Bayes
estimator) and —~oo<r(7.8 )< with respect to the prior #(€), then 5

admissible.

Proof:

Let us assume that & is inadmissible, then according to the earlier definitions,
there exists a decision rule & € © which is better than 6 € @ i.e.
R(6.6)<R(8.6°) VOe® and  R(6.5)<R6,6) for 6 e®@. Let
R(6,.6")~R(6,.,6')=u>0 . since R(8,5) is a continuous function of @ for every

SeD => R(O.5)—-R(6,5) is also continuous, then I £> 0 such that
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R(6.5")-R(6,5)> 12‘- VOe(6,-¢.6,+¢)

= r(x,6")-r(7.8)= [ R(6.5")m(6)d6~ J’ R(8.8' w(60)d O = j [#(6.6")-R(6.6") Jr(6)d0

Then:
gk‘ . a»‘ﬂ #oh-l ll
J [R(6.5")- R(6.6) [w(6)d0 > q_[‘ Sm0)d6> 34_‘; PO)IF>=>0

= 17,8 ) -rH7.8)>0 r(x,8)<r(z,6")

This last inequality contradicts the definition that Bayes rule minimizes Bayes risk
and so&" is admissible.

Wald (1950) proved the converse result, where every admissible decision rule is
also a Bayes rule with respect to some prior distribution under certain conditions.
In general Bayes rules can not be admissible if their Bayes risks
r(m,0)= Eg[R(B,J)] are infinite. If we choose a proper prior #(8) then r(x,8)<w®
and r(z.0) is surly the Bayes risk. If prior #(8) is improper then r(x,d)=c and
Bayes rules are inadmissible. As it has already been defined all admissible
decision rules are contained in a complete clasd Since under general conditions
every Bayes rule is also admissible, then Bayes rules are usually contained in a
complete class. It would be desirable the set of all Bayes rules to form a complete

class.

2.8 Point estimation problem

A point estimation problem is a statistical decision problem where the decision to

be made is the estimator of the unknown parameter fe® . So all the possible
decisions J € D are possible values of #e® and decision space @ coincides with
® and for reasons of simplicity we shall assume that ® = @, In case that the
unknown parameter & is univariate we have @ ==

The most common form of the loss functions used in the univariate case are of the
form L(6.6)= a|9—6|ﬂ where >0, >0

For a=1,8=2= L(8.6)=(8-5)", which is known as a square error loss function
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For @=1,8=1= L(6.5)=|6-5|, which is known as an absolute error loss function

Square error loss and absolute error loss are the most popular loss functions in a
point estimation problem. In both, the loss occurred, increases (quadratic and
linearly) as the discrépancy of & from @ increases. Furthermore both are

symmetric, penalizing under and over estimation similarly. The absolute error loss
penalizes more than the square error loss in (—l.l) while the opposite holds in
(—oo,—l)u(l,+oo). The risk function R(8.6) if we will use square error loss then
takes the form:
& 2
R(8.8) = £, [L(6.8)) = Ey (0—8) = vary, (§—6)+[ £y (0-5)]
= vary, & +(8- Ey(8)) = var, & +(Bias ,(6)) = MSE(6)
So the risk function under square error loss is simply the known mean squared
error. From this last expression of the risk function a good estimator 6 of & must
have small variance combined with a small (usually nonzero) bias. If we were
restricted to the class of all unbiased estimators the optimal estimator for this class
would be found by minimizing only the variance. Because of the fact that variance

and bias are contained in this expression of risk function an ideal estimator has to

minimize simultaneously this quantities.

Theorem 2.4: In a point estimation problem where #€R is the unknown real
valued parameter and square error loss function is used L(8.8)=(8-5)*. then
Bayes rule is proved to be the posterior mean i.e. 8§ = E(8]x) and

Bayes risk for 8 e R will be given by the expected posterior variance with
respect to the marginal distribution of the data i.e. r(lr.é")zE_x [var(0|._\;)]

Proof:

Bayes rule is found by mintmizing the posterior risk

1

7] 0 2 _ !
=5 P70 'a‘a{ ! L(6,8)p(8] x _)(10)— ! -6-5-(0—5) p(0|x)d8= i -2(6-8)p(8/ 5128

= [-2(6-6)p(0]x)d6 =0= 5[ p(8] x)d6 = [0p(6 | x)d8
@ ] (]

=8 =E@|x)
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In order to show that in & = E(@|x) we have minimum we need to take the second
derivative in & as well and show that it is positive. For every possible decision

rule 8 € ® we will have

o of o 0 0 2
o =2 [ 10.6)0| x)d8 | = ==| [-Z(68-5) p(8|x)db
652’0(‘”'5) 65(65!;“05”)( | X)e J 66(,_-[65( ) p(O] 1) ]

= 'aa_s( l -2(6-6)p8| .x)d@] = i %(—2(9—5) R

= [21)(9| x)dé= 2_[ pe|x)dg=2>0
e e

i.e. 8" =E(@|x) is the Bayes rule for the square error loss and the corresponding

Bayes risk is given by

rm,6")= E,[ p(x,8')]=E, [E,,b, (6-6") ] = £,[ Eq, (0~ EO11) |
=E¥[var(0|4_\,')]

Theorem 2.5:  In a point estimation problem where € €R is the unknown real
valued parameter and the absolute error loss function is used L(0,5)=|9—5|, then
Bayes rule is the median of the posterior distribution

Proof:

Let m denotes the median of the posterior p(@|x) and 6 >m is another decision
rule. Then

m-98, @<m
L(B.m)—L(0,6)=<28—(m+5). m<8B <75 from which it follows that
S—-m., @28

L(G,m)—L(8,8) <(m-56) () + (0 ~ni)l, (€Y. Since m is the median of the

{—co.n1}
. 1
posterior we have p(ﬁSm/g)ZE. so that p(9>m/.5)$%. Then,

Ey, (L(0, m)—L(0,5)) S(m=8)p(@<m|x)+(6—m)p(@>m|x)>
= Ey, (L(Q.m)—L(H,é'_))S (m—é'}_)%+(5—m)%:
= £y (L(O.m)— L(8.5))<0=> Ep 1(0.m)< E, L(0.8) = p(m,m) < p(n,5)

we end up to the conclusion that m has posterior risk at least as small as

any decision rule 6 >m . A similar proof holds if § <m. So in general for every
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decision rule &, median m of p(@|x) has the smaller posterior risk if absolute
crror loss function is used therefore the posterior medianm is the Bayes rule in
this case.

We described before the case where the unknown parameter §e® is real -valued.
If @ is a random vector i.e. §=(6,.....,0,) then @ will be a subset of R” and the
estimator of & in a statistical decision problem is a decision e ® of the form

§=(4,.....6,) where ® c © . Again for reasons of simplicity we shall assume that

®= D=[". In this case the loss function is often assumed to have the following
form:
L(8.6) = B(O)A(G- )

Where A is a nonnegative function of the vector §—4 such that A(0)=0 and B(8)
is a nonnegative weighting function of 4. |

There may be problems where not all components of the random vector §
neced to be estimated. Let us assume that the first k components from
g=(6.....0)) are to be estimated but it is not required the
remaining # —k components of & to be estimated. In this situation the last n—i
components are called nuisance parameters and L(8,9)= f()A(@~3) can still be
used with the difference that the function A will take into account only the first &
components of the vector §—4, while the weighting function # may involve any
number of the components of @. If we still retain the assumption that ©=R", then
it is required that all n components of & are to be estimated but the estimates
8,,,,..-0, of the nuisance parameters are irrelevant.

We return to the arbitrary estimation problem where we are interested for

all coordinates of @ so ® = D=R". The Bayes risk is given by:

r7.8)= [ [ L8.8)/ (x| @)(@)dxdd

ex
and according to a previous theorem Bayes rule minimizes the posterior risk

The most popular used loss function for this statistical problem is the quadratic

loss function; L(8,8)=(8-8)Q(&-9)
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where Q is a nxn symmetric nonnegative definite matrix. If Q is diagonal then

L(8.5) =iqi(49, -6
=
Theorem 2.6: For the quadratic loss function L(4,8) =(8-8) Q(§—) we have:
a) The Bayes estimator of the unknown random vector & € R"is the posterior
mean:
g =E@|xeR
b) Bayes risk ford” e R" will be given by the relation:
rm,8")=u{QE [Cov@l 1]}

Proof:

Assume that no data are being observed, then Bayes rule § € D=R" minimizes

the expected loss with respect to the prior distribution of &, #(@) with

E(Q):;f. Cov(@y=%. where g €R" is the prior mean vector and Z is the nxn

covariance matrix of the prior distribution
(1.8 £,[0-0Y0@-0)]- £, { (6~ 1) +(u-2) |o[(6- )+ (u-2))

=z, (0-1) (0~ 1)+ (u-2) 0(-2)
E,[L(8.6)] is analyzed into two terms. In the first term no decision rule & is

contained so a Bayes rule must minimize the second term(y—é’) Q(,u—(?) . Since

Q is a nonnegative definite matrix (g—é) O(y—é) is a nonnegative quantity for

all decision rules de€®. The minimum value of (,u—é) Q(,u—é') is zero

ie. (g—é)‘Q(/f—é')=O:>c§° =p =8 =E(@)eR" is the Bayes
estimator for 8eR". If ( is a positive definite matrix thend” = £(@)= u is the

only Bayes estimator for 8 and

8= £,[L0.8)]= £, (- 1) 0(8- )|~ (02).
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If x=(x,..x;) is the observation vector with likelihood density function
conditioned on &: f(x|@) then all the conclusions about @ are based on the
posterior information p(@|y) with corresponding priorz(€). then the Bayes

estimator for € after y=(x,..x,) is observed will be given from the posterior
meand = E(@|x).

and #(p,8 ) =1 {QES [cov (0 | 5)]} .

2.9 Optimal sample size

In many statistical decision problems there is a sampling cost of receiving
an observation before taking a decision. This cost reflects on our decision of how
many random observations should be taken, or if it is better to draw a decision
without even seeing any observations at all. More specifically, in many problems
the statistician needs to decide on the size of the sample which is to be taken. The
sampling cost depends on the size of the sample and we will-denote it by c(n)
which will be a non-decreasing function of the sample size n. This cost must be
definitely considered when we are interested in evaluating the risk of any decision
function which makes use of a number of random observations.

Let us consider the sampling model of the form {_/'(x[@):@e":ﬁl} where x is
a random observation with probability density function conditioned on . & is the
unknown parameter that we want to estimate. Suppose now that for a given prior
distribution 7(8)of the parameter € and for a specified loss function L(8,@)it is
desired to draw a decision about @ using the set 4. We have the opportunity
either to choose a decision function without any observation, or to observe a
random vector x =(x,,....,x,) that is related to . In case that no observations are
made, a Bayes decision function against the prior z(8) would be optimal with
Bayes risk

.6,

ey

)=ming, H(x.8) =L, [L(H. [ )] (2.9)
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If x=(x,.....%,)is to be observed before a decision is chosen the decision problem
is basically the same as it was in the first case. The only difference is that the
distribution 7z(@) has been updated to the posterior p(@|x). Hence. a Bayes
decision against the posterior p(@|x) of # would know be the optimal one with
Bayes risk

I B gy ) = Wi s, 1(,8) = E, [ pUE(0), 85 () ] (2.10)

e
Because of the fact that in general r(#,8) is a decreasing function of #, we can
derive the conclusion from(2.9) that since #»=0, the quantity £, [L(B.b'ﬂmm.)] will

take larger values than the quantity £, [p(ft(O).JUd.\,‘,A\.(._\_'))] which depends on .
However if x=(x,....,x,) is made we have to take up in mind the total sampling
cost c(n) in the calculation of the risk function when a Bayes decision rule is

chosen.

Definition 2.9; The total risk of observing x=(x,,....,x,) using a Bayes decision

function &, (x) can be expressed as the sum of the Bayes risk 1'(_7[.51,”"“(_5)) and
the sampling cost of the given sample c(n).
Fonat (OB (XN = H(7(O). 5, (X)) + () (2.1

Clearly in a statistical decision problem we desire to choose the best decision
while we attain small sampling cost. The question is how many observations
should be taken in order to accomplish the optimal procedure and pay as less as
possible?

As it has already been mentioned r(7.8,,..(x))and c(n) are a decreasing and a

ey
non-decreasing function of n correspondently. In determining the optimal number

of observations, noted by n,_..,, it is rather useful for us to use a sample size that

balances the Bayes risk function and the sampling cost. So the optimal sample size

(7, it } 18 clearly that n which minimizes the total risk function 1,,,,(p(0),6;,,..(x)

and can be easily found by minimizing (2.11) with respect ton.
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Chapter 3

Optimal sample size on general exponential family

parametric models

3.1 A general Form of the exponential family

Definition 3.1: A probability density function f(x|#). x € X which is labeled by
fec®c R*, is said to belong to the k -parameter exponential family if it is of the

form:
‘.
f(x|8)=h(x)e() exp{z \1',.(49)1,(.\")} (3.1
i=l
where #{x)=(r(x)......7,(x)) is a sufficient statistic, w(@)=(w(9)...... w,(6)) and
given the functions /(x) . w(8) , #(x)

A
[c‘(e)]_l = [h(_\')exp{z wf,.(e)t,(.\')} dy <oo

X

=
is the normalizing constant

~ Let x=(x,.-,x,) to be a random sample from the k-parameter exponential family

then the likelihood function has the form:

n " k "
falo=I1r«, 0= [H h(x; )][cw)]” exp {Z w,(6 >[Z (x; J} 32
=t J=l

i=l J=1

= =

where T =(T,......., 7}.)=(ZI,(.\'}),.....,Zrk(.\'_i)J is a sufficient statistic.
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3.1.1 Conjugate families for exponential families

Proposition 3.1: Assume that we have a random sample x=(x,...,x,) from the k-
parameter exponential family with likelihood density function f(x|&) given
from (3.1.3). Then there exists a conjugate prior density function for the unknown

parameter 8 € ® (Bernardo and Smith (1994)) which has the form
A
7(8|7)=[k(@)] c(8)" exp{z w,(e)r,} (33)
' i=l

where 7=(1,.7,.....7,) is the k+1-vector of the specified parameters of the prior

(hyperparameters) and

%
k()= [ c(@)® exp{z H',.(_B)'t',}de <o (3.4

fe®

i=]
is the normalizing constant .

We can also recognize (3.3) as a member of a (k£ +1)-parameter exponential family
for & (O’Hagan and Forster (2003)). A family & that is closed under sampling is
easily identified with members density functions defined by (3.3) which lead to

proper posterior distributions as it can be seen in the following proposition.

Proposition 3.2: For the &k-parameter exponential family likelihood model
(defined by(3.2)) and the conjugate prior density function for 8e€® (defined in
proposition 3.1) the posterior density function for #e® after a random sample
X=(x,...;x,) has been observed is

: , &
p(@|x,7) =[k(1")]_l c(8)" exp{z w,(e)r,'} =p@|7) (3.5)

=1

! ’ ! 4 <
wherez' = (r(, S0 Cocenn ):(n+‘r",‘r, +Ztl(xj),....., 7, +Ztk(,\'j )J , and
=t

J=t

’ A ’
[k(z"h]= [c(B)"’ exp{z w(9)7, }dﬁ <o is the normalizing constant
e

i=l
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Proof:
From Bayes’ theorem,

pO)x,7)cm(@|7)f(x|0)

<[] exp{zu (9)[210 )]}c(@)’o exp{ZM (0)1}

j=t i=l

a«[c(e)]"” e\p{zw (6)[1 +Zr(\ )]}

o (@ |7')
With ¢ =7,+) t(x;) for i=L...k and dividing by ,/'(-E)=[7r(9|1')f(-,_\'ll9)d0 we
1= e

obtain (3.5).

3.1.2 Moments of the conjugate prior

As we will see in the next chapter all the parameters under estimation are real
valued. Hence the parameter space ® is considered to be a subset of R i.e.
#® c R. For this case we prove the following Lemma:

Lemma 3.1: Consider the (k+1)- parameter exponential family for 8e®@c R

which has already been defined from(3.3). The first and second moments of 6 are

given by:

k(7,1 0 k(1,2)
E[B]= k() ’ E[&]: k(1)

Proof:
£[6]= [9;;(0(1749

[9[1\(1)] o™ exp{z w, (07, }dﬁ

fe) i1

[ /\(r) c(l9)" exp{Zu )z, +]n9}d9
) =]

L33
= [Ic(‘r)]_I [0(0)"’ exp {Z w, (9)1,}(10
[} i=l

where: w,,,(6)=1n8 and 7,,, =1 .so E[f] becomes
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E[6]=[k@)]"

[ [k"(r,l)]-| (g™ exp{% \»1‘,-(9)1',}(10

[/\’G('l',l):l—l ) =

k(@D
k()

k(7.1

E[9]= k(1)

(3.6)

Following the same argument we obtain that

E[0°]={6'n(8]7)a0

e

&
= f o’ [/\'(z')]_l c(@)” exp{Zu;(B)ri}dG
i=l

6e®

k
L [[k(t)]-' (" exp {Z w7, +2In 9}:10
[ =l

k41
= [k(z’)]—l [c(a)"a- exp {Z wi(B)z',}dO
=1

e

Where, w,,,(8)=In@ andz,, =2. Then

0 A+l
E[63]=[k(r)r—l—_‘ f [k‘(‘r,Z):fl (@)™ exp{z w,(H)r,}dH
[/\'”(T.2)J Hc®@ i=l
_k(1,2)
k(7)
1 k(1.2) .
El@ |=—"= (3.7)
[ ] k(1) '
From (3.6) and (3.7) we calculate the prior variance
var(0)=E[6“:|—El [6]
_K@y (K@)
k(r) k(z)
K(z,2) K (z.1)
k(1) k(z)y

_k(@k(z.2)-k(z,1)
k(zy*

(.8)

We have to mention here that all the results summarized in the above relations can
take different forms if there exists an i, i=1.....,k such that w,(8)=w,,,(€). Then
k(r,1)=k(z,,7,,..7,') . with ¢ =7,+1] for the same i and 7, =7, Vj=i. Similarly

under the same circumstances & (7.2) =k(,,7,...7,') where 7/ =7, +2 and 7 =7,

30



Vj#i, j=l...k. If we are interested in the posterior mean and variance of & the
formulas will be given by (3.6) and (3.8) equivalently, but with different

parameters.

More precisely:

k(1)
E[8)x]= 3.9
[61x] s e
ww,_x);m W@ 2-K @D

k(T’)2
Where, again for an i, i=1,...,k such that w;(8)=w, (), k‘(r',l)=k(z'(_,',z',",...‘q”).
with 7' =7, +1 for the same i and rj" =1',' Vj#i. For the samei./=1....k.

K(r2)=kzy 7"z, ) and ¢/ =7/ +2 , ¢ =1 Vj=i.

3.1.3 Derivation of the optimal sample size

Proposition 3.3: Let us consider a random sample x=(x,...,x,) from the k-

parameter exponential family for which the value of the parameter 6 is unknown.

The conjugate prior distribution of @ is defined from (3.1.1.1) . We are interested
in estimating the value off#, under squared error loss function i.e.
L(H.d)=(0—a)z. If the sampling cost per observation isc,(¢>0). Then the

optimal number of observations that must be drawn is specified by the following:

Proof:
The likelihood function of the data is specified by (3.2) and the posterior

distribution of 8 by (3.5) . Bayes estimator for & will be given by the posterior
mean, from (3.9) where

5 (et i)
k(th

(3.11)

The Bayes risk will be

Kz (2.2 - k(7)) }

FH(m(6).8"(x)) = E, [var6| 1)) = E[ k(7Y
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In order to obtain the optimal sample we have to minimize with respect to n the

total risk function:

ot (7(0),8° (X)) = nc + E [ var(6 x)]
= ne+ var(@) - var, [ E(0] y)]
=ne+va@) - E [ E*(0| )|+ EZ[E©6] 0]
= ne+var(@) + EX(0)— E,[ 6| 1))

ey KOK @K @) (k) | E@OY n
k(z)’ k(z) k(z')

For the marginal distribution of x we have:

ft= [ 1|68 7)d6

—[I\(r)]_ H/I(\ ) [ (G)y*® cxp{Zw(ﬂ)(r +Zh(\ ))}a’ﬁ

i=1 =1

—[A(r)] Hh(,f) |' [/\(r )] c(g)"*e CXP{ZM (0)[7 +Zh(\ )J}dﬁ:

=1 )]
1 k(z')
=[k ; =——TTh 3.13
flx)= [(1.’)]_1_[1(1 )[ pres k(r)g'(") (3.13)

Minimizing (3.12) we take the following result

Foj Kok (£,2)-k"(z,1)y [ k'(z.1) ’ K@ )Y k(') £
2 - h(x))dy | =
6:1{140 k(z)* ( k(z) j !.( k(7 ) A(r)H & ‘}

o ¢ k(1)
_ x)dx=0 3.14
" on fL(z )A(T)EI hlx; (3.19)

i=} =l

In order to obtain (3.14) we have considered that

0| kok (1.2,)—11\' (z‘,l)'+ k(z.1) =0 because this term contains only
on k(zy k(z)

parameters of the prior so it does not depend on n at all. Furthermore we will have

~

0 . ] .
to check that %>0 for the estimated n which will be the solution of the
n-

equation (3.14) in order to verify that achieves the minimum total risk.

From (3.14) we need to have the exact form of the functions k(). £°(-) and Ah(-) in

order to derive the optimal sample size. Therefore we are not able to have a closed
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form solution for the general case. However in the next chapter we will explore
and derive the exact formulas for several well known members of the exponential

family.
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Chapter 4

Determination of the optimal sample size for specified

sample distributions of the exponential family

4.1 Introduction

In this chapter we will restrict our focus to specific univariate sampling

distributions from the general exponential family f(x|8). Our goal is to estimate

the parameter & of the exponential family under square error loss function. We
will determine the optimal sample size needed, as a function of the rest of the
parameters of the sampling distribution and the prior. The specific members of the
exponential family that will be examined are:

Normal, Poisson, Binomial (Bernoulli), Gamma (Exponential).

4.2 Optimal sample for Gamma distribution

Proposition 4.1 Suppose x,....,x, is a random sample from a Gamma distribution
with & known and @ unknown (£,6>0) ie. f(x;|8)~Ga(k.6). The conjugate
prior for @ is

again a gamma distribution with specified values of the parameters a.f
wherea >0.8>0 i.e. #(0)~ Ga(a.pf). If we are interested in estimating 6 under
squared error loss function i.e. L(#,d)=(8~-d)’ and the sampling cost per

observation isc,(c >0), then the optimal sample size is defined by the equation:
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(4.1

Proof:
For every random observation x the conditional density function will be

fx l0)—1_%\—)- ! exp{—ﬁ.\'}

This relation can also be written as

A

Lh-l
f(x|@)= 0A)XH exp{—ﬁx}=i_‘|m0" exp{-@x} and from (3.1) it is amember of the

exponential family distribution with:

.‘_k—l !
hx)=——, c(@)=6". Hx)=x and w(H)=—-0
X) T @) .
The calculation of the likelihood from (3.2) will give:

f(g|o>-[ﬁr'(‘“}e"*exp{_oz } (1;[(;)) ”p{ oL }

i-l i=]

From (3.3) the conjugate prior density foré :

7[(0' (nr|)—[l\( 0T ]_lekq' exp{—afl} (42)
n(l|a, ﬂ)—%ﬂ"h' exp {-65} (4.3)

Because of the equality 7(8|7,.7,) = Ga(a. B) =n(8| @, B) we may derive from (4.2).

(4.3) the following conditions
[z o] - kr,=a=1.,=p
The posterior distribution of @ can be determined from proposition (3.5)as

PO\ x,7,.7) =787, .1 ) =7(O|7, +n.7, +Zx,)

i=1

”n - n
= [k(z-,, +n.17,+ Z X, )] @'l exp {—0(1} + z x; ]}
i=l i=|
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Where,

kn+r)=a' —-loa =kn+r)+leoa =k+kr,+loa =kn+a-1+1<a =ki+a and
" . . "
L+ =4 @ =p+>
i=1 =1
So the posterior distribution of & is derived to be gamma with parameters
. i n
a =nk+a and B =ﬁ+z.\',
i=t

Then the Bayes rule under square error loss is given by theorem 2.4 as:

a  a+nk

5 (x)=Ef]x)=

ﬂ‘ B+Q.x

and the Bayes risk defined also from 2.4:
H{(7(6),8"(x) = E[var(@| x)] = var(§)— var[ £(8 | 1]

a a+nk

ﬂ —vdar P
b+ Z.\'l
%, i=1 '

-

@ —(a+nk_)1 var —l— (4.4)

2 I
3

=l

We must now define the probability density function of the random variable Z =}—
where

n
Y=ﬂ+z.rl.. We have to mention here that because of the fact that

=l

"

x, |0 ~ gamma(k,0) = x,>0 for all i=1.,n.So Z,\',. >0 B+ x,>B=>Y>pB
i=1

1
First we derive the marginal probability density function forz.\’i:
=1

I
X, |6 ~ gumma(k,0)= 2.\',. | @ ~ gamma(nk,6) so for the marginal distribution
=1

we will have:
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f(i.\-,J= l‘_/'(i.\; IH}I(Q)(IQ
a:.-.i ” ) ni=| ~ . . ﬂa . :
[r(nk)(z'\‘) “-"P{ 9( "’)}r(mm exp{-p6}do

Iy i=) i=l

L(E)_; cof-o{p5s o

"T(a) Tk 5 e

n nk-}
_ B (Z\') Ta+nk)

i=l

_l. ) Yink " a+nk
(@) 1'(nk) (/MZ_\_J

=l

Next we shall derive the density function for the random variable Y
Y “ﬂ“‘z-"f Qz.x,. =Y-g=hn'(¥)>
i=1 =l

L (.v)‘
dy

L»m=1. (»
Z\

~ ﬁa (.‘_-_ﬂ)nlu-l C(a+nk) LI_( V—ﬂ)

D(a) Tk) (B+y-p)Y™|av
L4 A s k=]

_ pB® Ta+nk) (y-p5) (4.5)

" T(a) Tky =™

Following the same strategy for the random variable Z we have:

zZ =;l’-c> Y :%= h™'(Z) where Z takes values in the interval (0,%}

fz<:)=.f;»(11"<:))|;-ilr"(:)|
l 2h—|
_F r(a+nk)(§_ﬁ) | 1]
C(a) @(nk) (1)'""" | :2|

- B° Dla+nk) ,'_'a“'k(l_ﬂ:)nk-l I
T'(a) I'(nk) k1 e

_ ﬂa e+ nk) l_ﬂ:)nk—lzal
Na) I(nk)

1" t
ﬂ+z.\'i
=l

So we have derived the density function of the random variable Z= 0

have the following formula:
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B* D(a+nk)

T =R Tom)

I
(=B =" 0<Z <=
B

First and second moment of the random variable Z

p° I'(a+nk) Wk _a-1
—_— (11— Rt s
;Ta) T(nk) (1-42)

ﬂ I'(a +nk) .-
F(a) I'(nk)

ﬂ" T(a+nk)
F(a) [(nk)

_ p° Da+nk) T(a+DhI(nk) '-ﬂ"+‘r(a+1+n@,

E(z)=[

ﬂﬁ)nl—l :ad:

4

" m+lp—l(l_ﬂ__)nl.—ldz
Z

" @) Tnk) B*'T(a+1+nk)} T(a+LT(nk)
_ B° T(a+nk) I(a+)'(nk)
" Na) T(nk) B*'T(a+1+nk)
_ a
_ﬂ(a+nk)
E(_.’Zz) = f—ﬂ;—w(l—ﬂz)m"l:"—‘z:dz

JT(a) T(nk)
_ B F(a+tIA)l-
F(a) I'(nk) |

I‘(a+nl\)
F(a) I'(nk)
_ B° T(a+nk) T(a+2)I(nk) '-,B‘”‘l"(a+2+nl\)

ﬂz )ul-l - a+ld:

[ m+._»—l(l ﬂ-_'M ' dz
£

T(a) T(nky B °T(a+2+nk)), T(a+2)[(nk)
B¢ Tla+nk) T'(a+2)(nk)
“T(@) T(nk) P~ T(a+2+nk)
_ a(a+1)
T B(a+nk)a+nk+1)

So the relation (4.4) takes the following form
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(4.6)

\l —_ﬂZ)""_‘ :(a+l )—ld:

ﬂ )nl—l (a+_\—|d_,




I‘(ﬂ'(ﬁ),f(.\_')) = %—-(a+nk)l var(:)

=?a,-—-(a+nk P[EGE)-E)]

:—a;—(a+l'lk)2|: a(a+1) a :|
ﬂ-

Bla+nk)a+nk+1) _ﬂz(a+nl\'):

a ala+)) (a+nk)

= 3 + 2 3 (4.7)
B B B (a+nk+]) ’
The total risk function from (2.11) is specified from relation
ko ((0).8" (1)) _x ala+l) (a+nk) en 438)

g5 B (a+nk+])

Minimization of (4.8) with respect ton gives

P

'l+ e i

B p B~ (a+nk+])
_a(a:i-l)l_k(a+nl\'+l)—(aq+nk)k =0
B I_ (@ +nk+1y

cBa+nk+1) =ak(a+1)

ak(a+1) Jak{a+1)

(a+nl\'+l)3 =—-2—C>(a+l'll\’ +1)=

f pe

e ,/ak(a+l) _a+l ,/a(a+l) _a+l
kpe k Bke &

Taking the second derivative we get:

62,,/‘””,12 _a(a+)| K(a+nk+1)—(a+nk)k te
on®  om B (a+nk+1)*

_0 ] ala+]) k te
on B (a+nk+1)

_a(a+l) 2k°
B (a+nk+1)

a[a a ala+l) (a+nk) +C"]:0

>0 Va>0

- ,/a(a+l) 3 a+l
optinl ﬂ '\/A? k

Hence, we end up to the conclusion that n
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A discussion on the behaviour of the optimal sample as a function of its

parameters

N.uma @t the first step is considered to be a positive integer. As it has already been
done for other distributions we comsider n_,. , as a function g of the hyper

parameters i.e.

,/a a+l 1
Rpyima = 8(Q Bk, C) = . ) _at - In order to study the dependence of n,,,,

Bck &

on the parametersa . f.k. ¢ we calculate the partial derivatives of g(a,8,k.c):

dg(a.f.c.k) _ 0 |[Jala+) a+l| 1 Ja(@+))
op B| Bk k B ek

al(a+1)
= == 0
\J Bck (59

6g(a,ﬂ,c.k)=i{,/a(a+1) _a+l}=_w/a(a+l) !

ac a| gk  k Ak 2ee

=[R2 (<o
4kp ¢

og(a,p.c.k) 0 J,/a(a+l) _a+1}_ 8 Ja(@+l) 1

da  da| pJck k | da pNck  k
a4l 1 Qa+ink =28 cala+])
2B Jkeata+1) k 2Bk Jeala +1)

Ok Ok

_- kJa(a+1)+28Vc(a+])
28k e

Summarizing the above we can have the following:

dgla.f.c.k) O |Ja(a+l) a+l ,/a(a+l) 1 a+l
B - =— + -
Bk k Be  2Jkk K

M, 18 a decreasing function of B. For f—+w the variance of the prior

distribution of 8, —=—>0 and # —&“4—“1‘—”& so if our prior distribution

opinuil

is very informative and no observations needs to be taken i.e. # 0.1f -0

opiimal
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a . . C .
then — —>+00 and n —£2¢ 4. So if our prior distribution is non-

optimal

informative a large number of observations must be taken to estimate the unknown
value of the parameter 8.

Y¢>0 n,,. ., is a decreasing function of c. As ¢ increases the optimal sample

sizen_, , decreases. In other words if the cost for every observation is very large

then we cannot afford to take many observations because the total sampling cost

) a+l .
;"’5—>-—T<0 i.e.n

opinl

becomes too high. If ¢ — 400 thenn =0. For ¢—>0,

il

" — 540

optimul

Va >0 we derive the critical points of the expression

a+ink-2pJcala+l) Qa+1Wk -2Bcal@+1) =0
2ﬁk\/ca(a+l)

Qa+1Wk =28 Jca(a+1) © Qa+1Yk =4f ca(a+1)

dka’ +dha+k—Acfla’ —4cfla=0

(dk —4cf)a” +(4k—4cf)a+k=0

A=16(k—cBy —16k(k —cB*)=16(k —c BNk —c B ~k)=—16¢f (k- )

We have three different cases for A

. k . . . .
1. For A>O:>k—.cﬂ‘<()<:>c>? we will have to possible critical points , .

—A(k =) +-16c Bk —cf*)

S(k—cﬂz) <0 but as we have

a, with g #a, ie. o=

already mentioned @ >0 so ¢, is rejected and

g - —Mk=cp’ V——16cf2 (k—cf°) _ Mk —cB)+-16cf(k—cf) o

~

- 8(k—cp™) 8(cp’ —k)

Indeed the numerator is always a positive quantity because if we assume that:
Mk —cp )+\/—160ﬂ2(k Y>>0 ,/mcﬁz(cﬂ: —k)y>Mch -k)
16cf% (e —k)>16(cB* — k) ©16(cB —kNef —cfB +k)>0
= 16k(cf’ —k)>0

(4.9)

This last expression is always true so the initial quantity

4(k—cﬁ'z)+\/—l6cﬂ2(/\'--cﬁ2) is positive hence, a,>0. In the interval (0,a,)

g(a,B.k,c) is an increasing function of @ and in the interval (a@,.+o), g(a.B.k.c)
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is a decreasing function of a@. For a=a, # takes its maximum value(due to

aoptimal

the complexity of the type (4.9) we are not going 1o proceed to further

replacements ).

s k
2. For A=0> k—-cff” =0 = ¢ =—, then from the expression
Mk —cf)a’ +4(k —cf)a+k=0= k=0 which can not be true.
3. For A<0>k-cf >0:c<%. then for every «>0 the function

g(a,ﬂ,c,k)
is an increasing function of a.

Vk >0 we derive the critical points also for the expression

—ﬁ\/a(a;;zr“j_ﬂﬁ(““) =0 —JkJata+ ) +28Jc(a+1)=0
2Bk~

28 Jc(a+1)= \/L/a(aﬂ) o 4fc(a+1) =ka(a+1)
(a+l)[4ﬂ3¢ra+4ﬁ3c—ka]=0

4B%c(a+1) S
a

(a+1) is always a positive quantity sodfca+4fc—ka=0=>k= 0.

In the interval ( E gla,B.k.c) is an increasing function of £ and in

» 4B c(a+])
a

the interval (M,m] g(a,B.k,c)is a decreasing function ofk. For
a
k =4_,B‘_c(_(_z+_l) function g(a.B.k,c) takes its maximum value i.e.
a
1/(;z(ar+l) a+l
”n/.#inmllmx(a’ﬂ‘k" ck \/;+1 B a+l
c———\lﬁ (——)4,326
Be 7o VP >
_a a a
20°c 4B 4Apfc
N +1 +1 . ... .
In case that n,,,,, = alat]) @ is a non-positive quantity then,
Bck k
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< 1/oz(a+1) a+l<0 \/a(a+l)<a+l
"n,,qinml _OQ 1 e U 1 - .
Bk k Pk k

a(cf+1_)s(a4:l)' ‘f Sa+l®c2 ’ak
Pek k pc k B la+])
. . ak
When the cost per observation ¢ becomes greater or equal to the ratio Fatl)
(a+

then » becomes negative. Ratio increases as a. k increases and f

optimal

ak
Ba+D
. . a .
decreases. In that case the prior variance — becomes very large, so the prior

distribution of @ is not informative at all and it is preferable that no observations

should be taken because the sampling cost ¢ is very high for us to pay.

Corollary 4.1 Suppose x,...,x, is a random sample from an exponential
distribution i.e. f(x|@)~Exp(€) with unknown the value of the parameter 6,
(8>0). If 8 is desired to be estimated under the same prior and error loss function

as they defined in Proposition 4.1 then, when the sampling cost per observation is

c.(c>0) :

Ja(a+l)
A imal = ——(a+1 41())
o inia ﬂ‘/(_’ ( ) (

The case of the exponential distribution may be considered as a special case of the
Gamma distribution i.e. f(x]|)~Ga(1,8). So from (4.1) and for A=1 we can

obtain relation (4.10).

4.3 Optimal sample size from normal distribution

Proposition 4.2 Suppose that X0 X, 1S a random sample from a normal

distribution with an unknown value of the mean & and a specified value of the
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precision r,(r>0). f(x,]0)~ N(O, -—). The prior distribution for @ is selected from
-

I AT e
the conjugate family, i.e. #(8)~ N(,u, —) with 4, 7 both known. If the value of 8
T
is to be estimated under the squared error loss, i.e. L(f8.d)=(8-d)* and the

sampling cost per observation is ¢, (¢>0) then the optimal number of

observations n is specified by the equation:

2
”n_/n/inml = (.—l—j o1 1 (4'1 l)

¢
Proof:
For any random observation x the density function is
1 1
f(x|8)=02x) *r exp{—%(f—O)’} from proposition (3.1) we can write it in the

form of an exponential family:

: -3 [ r g [ ro, »
f(x|8)=0@2x) r? exp{—E(xz —20x+02)}=[(27z) 'r]- exp{—;xl}exp{—zﬂ }exp {x(r6)}
i . .
where:h(.\')=[(27z_)"r]E exp{—’zx:}, c(0)=exp{—_’502}, w(@y=r0, t{x)=x

The likelihood function from (3.2) becomes

f(x|O= [(27[)" r]: exp {_’EZH: xf}exp {—%Hz}exp {( I'H)ix,}
i=l i=1

_ From (3.3) the conjugate prior density foré :

7(8)7,.7,)=[k(z,, )] exp{—izrlaz}exp {(r0)z,} (4.12)

i
0| u.1t)= [(27[)‘I T:F exp{—%yl}exp{—gez}exp {zu6} (4.13)

From these two last expressions (4.2),(4.3) which are equivalent we have:

4 T . T, T T 7
[k(r,,,rl)]'l =|:(27r) 'r:|3 exp{—;y' '(x 3 ——2— = —5c>r(,=7, o =tUeT = —;u'= Wl
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The posterior distribution of the unknown value of the mean @ after having
observed x=(x,,...,x,)is available from proposition (3.5)

pB|x,7,,7) =781, .7 )= 78| n+7,.7, +Z.\-,._)

i={
- = r(t,+n) & ]
_[/\'(n+r,,.rl+z.\‘,.)j‘ exp{—-_“z__e-‘}exp%(,-e)(rl+Z,\‘,jj
i=l i=f
Accordingly to the previous relations that hold for the prior the following

conditions must be satisfied for the posterior as well:

3 « . T «
N+7,=— T =mr+r7, ST =wr+r—97 =wr+7,
r

)
N L T
n Tl +in T"“l+z-‘." #T+Z'\‘i
» + P & = .
r,+z.vi=,u(n+r(,)c>;z = _ou = = ==
i=] n+ Ty n+7,
. TUA I
oy = HETI
Hr+7T
So we have derived that the posterior distribution of 8 will be normal with mean
U+ nrx . . . . .
e e . and precisiont’ =7+m . We can easily observe that the posterior
T+nr
mean can be expressed as the weighted average of the sample mean ¥ and the

prior mean 4.

. TU+ WYX T nro _ _ nr
- = H+ ¥=(l-k)u+kikx, where k= 1
T+nr T+nr T+hnr T+nr

Then the Bayes rule under square error loss will be:
S (x)=E@|x)= p =(1-k)p+k¥

For the above estimator of &, Bayes and total risk are specified by the equations:

r(7(6),8"(x)= E(vai(@ | x)) = E(z +rn)™' = E( l ) - (4.14)
T+ru T+TIH
Fona (F(0).87(2)) = r(7(0),6" (x) + c(n) = +nc (4.15)
T+rn

We will derive the optimal sample size by minimizing (4.15) with respectto n :
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M =0 "a_(/‘(”(e)..6°(_'}:))+(‘(n)) =0
on

on
L
e - -z
———,—+C=O<:>(‘r+rn)'=—<3(r+rn)=(—)
(T+"”)- g ¢
L L)
(Zf -renn(z) -2
Mm=|—| - t1OOR=f{—1| ——
c re r
PO N _OF " 1o 2050 wn>0
on- on\ (t+wm) (T+rny

So in order to have the minimum total risk the optimal sample size choice will be

given by:

1
12 =
L——— -
re r

A discussion on the behaviour of the optimal sample size as a function of its

parameters

We have proved that the optimal sample size in the case of normal distribution

. . . . 12 ¢ . :
with unknown mean will be given by the equation n,_,,., =(;) = This quantity

needs to be a positive integer i.e. n,,. , >0. Next, we consider n,, , as a function

of r,7,c te. n,,...=f(r.7,c). We are interested in studying the dependence of the

optimal sample size on each parameter separately considering all the others

constant. For this reason we calculate the partial derivatives of f(r.7.c)




or ori\rc r
1
90 (L)’ _07_,- 1L
or|\re orr 1
=—= (<0
L (<o)
.- X
Firre) DLy z| 0|1y | o7
Vo el re ] oc|\re Oc 1
1oy 4 1 1 1 1
r dc Je Vroede  raede
1 1
=—— <0
2 e ( )

Based on the partial derivatives we conclude the following:

oima Will be a decreasing function of 7. As 7 increases the variance of the prior

1 .
decreases too. Hence. as 7—>+w0 ——0, which

1
of w, ;_— gets small and L— v

means that we have a complete apriori knowledge about the value of the

parameter @, (point mass) and thus no observation should be taken in order to

estimate & i.e. n

optinnd

=0. If conversely 7—»0 l—>+cx> So when the prior
T

distribution of @ becomes flat thenn,,,,, increases to take the asymptotic value

i
e (1Y
n = —
ol
\JC
: . . . S
n, o is a decreasing function of ¢.Ve>0. If ¢ =+ then, n,, , ———>——<0.

-
In other words if the cost for every observation is very large then we cannot afford
to take many observations because the total sampling cost becomes too high.

For the derivative with respect to r we had:

of(r,1,c) Il T . .. . . .
A = - +—. We derive the critical points of this expression

or 2 \/E r

48



of(r.z,c)
(a

For the values of r which satisfy the relation r<r =r<dcr’, >0and

in the interval (O.4crz) M. 18 an increasing function of r.

* 'I‘.T.C . . 2 .
For r>r" r>4der’, ?'LL—'l<O. So in the 1nterva](4cz".+oo) Popima 1S 2
-

decreasing function ofr. For r=r =4cz’ the function f(r.r,e)=n_ . takes its
e J * aptimal

maximum value:

1y 1 T
”n_/!llllhlllni\.\ = 4 = f L 2
e Id 4 4 cT e 4(—1

1 1 2 1

2¢t 4et det der
1

- 4ctT

All the above analysis was done in the case that n_, , is a positive integer. But

under what scenario we have n,,.., to be a negative quantity?

n,v,m,,so:(ij ZSOQ[LJ P
) re I c r

A} 5y

P
o |—

I 7 1 7
o—<o-—<cr’2r
rc - C r
p
C>CZ—;
7

: : : .o .
If the cost per observation ¢ is greater or equal to the ratlor—z, then n,,,., 15 a

negative number and so we may consider that it is better for us not to pay the price

of any observationi.e. n, .., =0
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1 l . oo
As rT=—landzd =>—7 the ratio —= increases. In other words. when the
I T 7"

sample distribution is very informative and the prior distribution is non-
informative the sampling cost of an observation becomes too high and we choose

the strategy of not taking any observations at all.

Proposition 4.3 Suppose that x,...,x, is a random sample from a normal

distribution for which both the mean & and the precision r are unknown. The

likelihood will be given by:f(x,]ﬁ.r)~N(0.l) and we are interested in
-

estimating @ using squared error loss i.e. L(#.d)=(#—-d)’. The unknown precision
r will be a nuisance parameter. So the conjugate choice for the joint prior
distribution of (@,r) is the Normal-gamma distribution where: The conditional

distribution of @ given r is a normal distribution with mean x and precision

r(r>0), ie. 7r(0|r)~N(/1. L) and the marginal distribution of r is a gamma
tr

distribution with parameters ¢ and 8, @ >0,8>0 i.e. z(r) ~ Gamma(a, ﬂ) So the
joint prior distribution of (&.r) will be 7z(6’.r)=7z(0|r)7z(r)=N(y.i)6(a.ﬂ). 1f
ir

the sampling cost per observation is c¢.(c>0) then the optimal number

observations n to be sampled is:

B

—1 4.16
_(‘(a—l)_ ( )

H

optiaal

Proof:

If x is a random observation from the sample then,
11

F(x|8,r)=2x) *: exp{—g-(.\'—ﬂ)z} from proposition (3.1.1) this relation can be

formed as follows:
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r

fx|8.r)y=2m) % exp{—'—'.\'2 +x6r ——02}
2 2
-l r I3

=(2xz) ? [rl exp{—;@z}:' exp{xﬂr —E.\'l}

1 1

h(x)=(27) °. c(e,,-)fr?exp{—%e:. WO =0r, 1(x)=x, wy(lr)=-=,

11
2.2

Then:

(x) ="

and the likelihood function from (3.1.3) is written as

f(x|8.r)= Qr) * |:r-T exp {—%I-O‘}] exp {Grix, S ,Ei x,.z}
i=t

i=

From (3.1.1.1) the conjugate prior density for@:

71'(9- r l T“_,TI.TQ) =[k(rmrl’1.2 )]_l |il'._% exp{_rzi ’}]exp{eﬂl —-%-I’Tz} (4 17)

[P

1 a
20, | mt, @ B)=(12x) 2(tr)’ cxp{-—%(ﬁ—y)z}x g r* exp{-pr}
a

—(27:)_-% £ tr ex {—K(e— )’ —ﬁr}
=4 @ Xp > #

.
INa)
Because of the fact that:

7(0.r|7,.7,,7,) =70, | pt.@. B) =70 |r, u,t)xx(r |@.B) = Ng(u.1,a. B)

=(27)

From (4.17) and (4.18) we can obtain the following:

1 a 1
- [k(r(nrl!t2)]_l=(2”) Z—LIZ 1-"

N 1=t,,7,=tu,
C(a) 5 he &y H

1
29

T, =r,zf+.7_ﬂ=r(,1-¢,+2,B:>r2 =4 0p
y

0
The posterior distribution of the unknown value of the mean @ and the precision r

is defined from proposition (3.5)



1 n
’ ’ t 2
p6.r|x,1,.1,.0.)=70.r |z, .7, .7, ) =n(0.r |n+7,,7,+ z X, Ty + E x7)

Horgoge e 25
i=] g i
el S o)
= =

Where, based on the relations that hold for the prior we derive equivalent

conditions for the posterior. Thus,

+ 1 .« n+r7,+1 n+2a—-1+1 - n
7 g tog 2Tt T g el
2 2 2 2 2
)il
T+ Ay =
Y & g s - # =1 ! & tl[l+”‘¥
f=n+r, 1 =n+t, q+y x,=(n+)p Sp=—"—p ="—7
= n+t n+t

(r,+ E X, )'
0 (T, +nx)
T, + E Nome—t= 32 <:>—+2 + E X, —\)‘+n\ =l 42
= n+t, 4 T, A = % n+t, 4

c>('—-'u)—-+2,8+2(xi -¥) + nx” =M+2ﬂ‘
t = n+t

=2
<:>ﬂ‘=ﬂ+;{nx +i10 -}-Z(r ) _(I;H-—n\’)_}

pen (n+1)

I , HXC 1t (tu+nx)
=f+=) (x,~X)Y + =
B 2; X, —X

2 (n+1)
WX T s -0 - g =2
=B+— —-Xr+
s ;(A 2n+1)
— nt(X-p)
=f+=) (x -T)V 4+ ——
P 2;( ! ) 2(n+1)

- So the posterior joint distribution will be normal-gamma i.e.

p@.r|x)=Ng(0.r|p' 1 @ f).
We derive from this last expression that the posterior conditional distribution of 8

. . . nx +t
given r will be normal as well with meany = £
fr+n

and precision

L3 5 o . . . 5 o B

k"=rt" =r(t+n). The posterior marginal distribution of r will be gamma with
p g g

parameters @ -a+ L B =B+ Z(‘f xy +m (X —py’
= 2 t+n

Posterior marginal distribution of @ will be given by:
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11

Pe(@]x)= fp(ﬁ, rlx)dr = I(r +n)r? exp{—([-;#)r(e—/f )2}1'“"' exp{—rﬂ‘}dl

R R

Loy
_"(I+H):l‘ 2 exp{—z [-H—"(H uY+p ]}
R

| | o’ . 1 ™

o < ﬂ a +—I| rT+n s on “
=(27x) *(t+n)- —r = exp<—r|——(6- d
(27) = (t+n) Ta [1 exp<—/ 5 (G—u) +B_ r

—(27:) (r+n)-

If we use the proportionality symbol and drop all the factors that they do not

involve 6 we take can take as a result

= g _\ o+
17.5<0i.x>oc1 " /ff] Iﬁ +3(0 p)}
) _;'a_+l la +1
1+n e a’ (1+n) E
O-u l+———~(0-u
“[ 25 } “[ Py }
2a’+l
: 1‘+)1} 2
a =
o 1+—ﬂ_(6'—;[)"

2a

Thus the posterior marginal distribution of @ is a ¢ distribution with 2  degrees

nx +1 a (t+n
mre and scale parameter &~ ——)

of freedom location parameter g = 7
t+n Jij

Similarly we can derive for the prior marginal distribution of@:
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1

7(0.r) o 2y exp{—%(@—#)—’ ‘ﬂ'}
. L " ,
= (= [7[(9. rdr o« J‘I"I' 62{}’{—?(6—/1)‘ —ﬂl}dr
R R

F[a+ij
2
}droc

/ -
6-u?
[2( ) +,B_

o ‘-/'M?_l exp{ I'[%(G’—‘u): + 4

R -

1
a+=
Y

_;a_—e—l _ _ la+l
ocu(&’—,u)‘#ﬂ} i oc‘ 12 G-y +1
2 2a
_ _ Ja+l
%) |
o —L(ﬁ—,u):H
2a

So the prior marginal distribution of 6 is a r distribution with 2a degrees of

. . 1304
freedom location parameter g and scale parameter —.

First and second moment of 7 distribution:
Let a random variable »» follows student distribution with a degrees of freedom,

1

mean parameter g and scale parameter . Then = r-T(A\f ) follows a
standardized ¢
distribution with «a  degrees of freedom. For a>2 we have
a
E(z)y=0, var(z)=——.
a—2

Then for the posterior of 8|x we have:

1o | —

(60— )| x~1 with 2@ degrees of freedom so:

l;aé(r+n)
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r a(r_+u)~-(9_/[)u —o:{“(’f”)}‘ﬁ((e—m\_x):o
g
:>E(«9|.3‘):,u'-—”’\.+[#
I+n
=5 I - .
var M CERIRIE sz :>a(,-_!-”)var(9|.x)= :
Y/ 20 -2 g a -1
= var(@|y) = g

(¢ —D(t+m

1

equivalently for the prior distribution of 8 we have that (%) (86— )~ with

2a degrees of freedom so:

E (%j (@) |=0=> E@)=u

var a1 -(9—;1) & 22 Da—,\'ar(ﬁ):L:var(O)ﬁ
p -2 a—1 Ha=1

Under squared error loss function we end up to the conclusion from theorem
2.7.1 that the Bayes rule will be given by:
; S
S()=L(mix)=pu St
r+n
From 2.7.1 Bayes risk is defined by the equation

/'(7!(6’).50(:\_‘)) = E[\‘ur(9l,§)] =var(@) - \‘ar[E(é” .5)]

B vm_(n_\' +r;1)
Ha-1) t+n

= A e —var(Xx)
Ha=1) (t+n)

a P oo ! {var[E(T16.r)]+ E[var(F]6.]} (4.19)

=

) Ha-1) (t+n)

. = 1 .
Given that Y |6, ~ N (9—) we obtain

rn
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E[\far(f\—'l 5,1‘)]= E(-l—) =—1-E('l-) =—l‘[ : plr)dr

npr

m) n \r
1el ﬂa a—| 1 ﬂa (a—irl
=—|}— 3 — dr=— i
n’[r——r( ) exp{—rB}ds . )_’[r exp{-rp}

_1 i I‘(a—l)___l Alla-1)
nTa) B~ ala-Da-1)

_1 B

n(a-1)
var[E(X|6;r)]= var(§) = 4
S e -1

Replacing in (4.19) we take
B W B+n) _ B (l— n )
Ha-1) (t+n) n(@-1) Ha-1) t+n

. B 2 B

_r(a D(r+n) - (ax-1)Xt+n)

r(m(0),6"(x)) =

The total risk function from (2.8.2) will be:
rm,(ﬂ(e).ﬁ'(.\'))=—’B————+/1c‘ (4.20)
T T (@ =1+ n)
For the calculation of the optimal sample size we minimize (4.20) with respect
ton
a"Iulu/(ﬂ-(e)‘é' (“S)) = 0 = i IB +cnS= O
on on |(ax-D(r+n)

c-i l =0©c(a—l)(r+n)3—ﬂ=0

N

a—1{r+ny
{
(1+n)y = s S (1+n)= £t
cla—1) cla—-1)
-
n= B et
_c(a—l)_

a_w_wi{i ! [

on’ On a—1{t+n)
bl
=L Z >0 Va>0
a—=1+n)
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The optimal solution for the minimum total risk is given by cquation

I

”up(m'u/ = ﬂ ) =1
i cla-1

A study of the function of the optimal sample size

n. . il ﬂ
optina C(a— l)

as a function of a. B.,c.r ie. n .., =g(@ f,cr). In order to investigate how

tu]—

—1 is expected to be a positive integer and it can be considered

these
parameters affect separately =n,,..,.,

we calculate the partial derivatives

of g(a. B,t,c)

tapre)_ o) B T_, =(_ L2 .
o da ) BaJa-1

de(a—1)
ag(a.ﬂ.r,c-)_i[ B }F_r _ I B3 1 |
op o || cka-1) [c<a—1)]% BY; [c(a 1)]? 2B
I I T (>0)
AfBcla—1)
Zlafne) 0)_B I ulwom isly (<0)
ot ot | cla—1) | ot
1 : I !
6g(a,ﬂ,r,c)__a_ B f_r ___3 p B ol
dc éc || eta=-1) oc| cta-1) (@a=1) ] dc+fc

g

{a—1)

(N

Summarizing all the above results we conclude:
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Va>1 n,,.., is a decreasing function of @. As a increases it can be easily seen

_B

that var(8)=
Ha—1)

which is the prior variance of @, decreases so our prior

becomes very informative and eventually we do not need many observations to be

B

Ha-1)

0. In this

taken. So if @—+w, —>0and n,,,, —=>-1<0 ie.n

optimal ~

case @ is directly estimated from the prior.

Numa V8 an increasing function of B,VB>0. More specifically if § — +co then,

uplima

A —> 400 and n

——— 300 .. . . ) . )
Ha-1) ..,.-',-...(,:*‘L‘)m which means that it § becomes very big then

variance of the prior of@ becomes non-informative and a very big number of

observations

is need to be taken in order to have a good decision ford. If §—0 Ll—ao
Ha=1)

and

By —222>~1<0. So as the value of B gets very small Nyma decreases also to

take

the minimum value-r = n 0 so @ is estimated from the prior i.c.

optimed

& (x)= E(m)=u is now the Bayes rule for 8.

Vt>0n,,,, 1s a decreasing function of f. If f —+oo then the variance of the prior

B

Ha-1)

1->+0

var(@) = —0, and »n —==——0. So in this case we have a fully prior

aptinud

* knowledge for the mean @ and eventually we need no observations i.e. n 0.

optimal =
Otherwise asz —>0 var(@) — +wo and the optimal sample size will increase to take

the maximum value

= =
I 1>} L ﬂ
/ optinsed =

cla=1)_

As we should expect N, .ma 18 @ decreasing function of ¢. More precisely:
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If ¢ —>+400 then. n — =" 31 <0. In other words if an observation is very

o]
expensive then we can not afford to take too many observations because the total
sampling cost becomes too high and it is better to make a decision about € without
taking any observations.

If the optimal sample size turns out to be a non-positive number hence, #,,,, <0

then it can be proved that

1o —

g S0 P icse|L_[<
i cla=1) cla-1)
—'B——Sr <:>,Hsc(a—l)t:
cla-—-1)
C)(‘ZL‘
(-1

B

Thus. if the cost per observation ¢ is greater or equal to the ratio-Tz—I—
r{a-1)

the

optimal sample size is a negative quantity which means that we should not proceed

into a sampling strategy. The ratio % increases as BT, r{ anda . In that
t(a—

1T and the

case the prior distribution of m becomes vague:var(m):( l
Ha—1)

sampling cost ¢ increases very much that force us not to pay for further

observations in order to gain some information about m.

Proposition 4.4 Suppose that x,...,x, is a random sample from a normal

distribution with unknown precision @, &>0 and specified the value of the mean
M. he fix|0)~N (;1. é) The prior distribution for @ is selected from the

conjugate family, i.e. #(8) ~ Ga(a, B) with a, #>0 both known. If the value of 8

is to be estimated under the squared error loss, i.e. L(@.d)=(8—d) and the
sampling cost per observation is c¢. (¢>0) then the optimal number of

observations n is specified by the equation:
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Hoime = ﬂij—‘\/a(a+l)—2(a+l) (421)
1<

Proof

For every observation x the density function is

1 o ,
f(x|8)=Q2rx) *6* exp{—;(.r—,u)'} from proposition (3.1) we can write it in the
form of an exponential family:

S} S _t o
f(x]|@)=(2x) 2 6* exp{--gi(x—,u)'}where: h(x)= (27[) 2.0(60)=6° . w(f)=-6,

7(x) = %(.\-— "

The likelihood function from (3.2) becomes

f(x10)= (27[)_% 0§ exp{—gﬁ:(.\'i —/I)J}

=l

From (3.3) the conjugate prior density for@ :

(0] 7,,7,) =[k(z,,7)]" 6 exp{-6r,} (422)

B e
Gla,p)= g xp -6 423
w(@le. f)=q — exp{-p6} (4.23)

From these two last expressions (4.22), (4.23) we obtain:

k(z,,7T "='B—. Lhegroa=ti 7=
[ ] l)] r(a) 2 2 ] ﬂ

The posterior distribution of the unknown value of the precision & after having

observed x=(x,...,x,)is calculated directly from proposition (3.5)
POy, t)=n67, .7/)= 7[(0]"+z",,1'l +%Z("'i__u)2)
i=l %

-1 T, " "
- ‘VI\ [n + Ty T, + %Z(\, _#)2 ):l 8 exp {—Q(rl +%Z(.\'i -H)y )}
s e i=1

i . n+T, n+2a=2+2 . n
=q -l a = " +1= Sa =a+-.

]
< P4

HH+T
where: ——2

-~ —
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1 & 2 " . & 2
nea(n-) =F o B == (5-4)
i~ i-1
So it is proved that the posterior distribution of @ will be gamma with parameters

. . l "

174 =a+—'2'- and g =8+ 52(" - /z)z. Then the Bayes rule under square error loss
=l

is given by theorem 2.4 as:
a+Z

5'(x)=E(Bx)= S =——72

P g (n-nf

=l

and the Bayes risk also from 2.4 is defined to be

r(7(6).8 (x)) = E(va8| x)) = var(@)—var[E(H’l 5)]

n
a+—
2

ﬂ+%§(-“, _/‘)2

a
=——var

"

a } 1
=—_T—(a+-5) var 1< :
g 'B+EZ(~‘3_”)—

i=|

(4.24)

. . . . . i
Our next step is to define the density function of the random variable Z = = where

Y =ﬂ+—;—i(.\', —,u)2 . It is well known that:

i=1

VB (3~ )16~ N(0.0)= (s~ 1) 10~ X = 6Y (- ) |6~ X, - G(’_?jéj "
=t

set know A|0=Z(x, —,u)2 |@ and we are going to obtain the density function of
=t

A|@ when A=$K with K|#~ X,* and A>0 since K>0.
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A—éK®K=9A—-/1"(A)2

. -1 d _y
2
2

-_u & expt ‘iA}:A|0~Ga(§,—§)

o3

(0A)g—l exp {—-;— HA} 6

We know define the marginal probability density function of A=Z(.\', —y)2

i=l

T(W)=[r(rl6y61d0

LY e
——Ap—0""cxp{—-p0}d
}T( ) c.xp{ ,80} 6

(SRR

. Next we proceed to obtain the distribution of the random variable

Y—-,B+%A<:>A=2Y-2ﬂ=h"()’)_ where Y >/f and following the same well

known strategy we have:
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. - d  _
fir= 1 """’)IH" '(.v>|

G - rlart) (2-28) 2
2 ol
(ﬂ+—2"’;2ﬂ) !

o n ;—I
R G

r(’z—’Jna) "2

As it has been shown in the proof of proposition 4.1, if a random variable Y has

1 .
density function given by the form(4.5), then the random variable Z=7 with

ZE(O,%) has density function defined by (4.6). The Bayes risk function also

when @~ Ga(a.ﬂ) is given by (4.7). If we conceder our case as a special case of

Z T% when & = %, then the Bayes risk defined in (4.24) is transformed using (4.7)

into the form

e ((6), 8" (1)) =~ + T a(afl) 2 (4.25)
. £ £ (a+£+1)
2
and the corresponding total risk
c (a+'2_')
’;vl«l(”(e)? 5.({)) = l"—'a_ = a(a R ) + cn (4‘26)

FEF (aka)
2

Equivalently by minimizing (4.26) with respect to n and taking the second
derivative we obtain that the optimal sample size is:

Heimmal = ,Bi\i: la (a+1)-2(a+1)

This type is derived as a special case of (4.1) for & =%.
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Comments on the behavior of the optimal sample size as a function of its
parameters

Based on the discussion on n,,,, defined in proposition 4.1 we have the following
2 .
conclusions about 1, ., = ﬂ%},/a(aﬂ) -2(a+1)=f(a.B.c)

My Will be a decreasing function of B. For f—>+oo the variance of the prior

24

distribution of @, ——0 and »n —L22 5 2(a+1)<0 so if our prior

optinel
distribution is very informative and no observations needs to be taken i.e.

n —£> 5iw0. So if our prior

optimal

0. If f—0 then —’;—ZE-—>+00 and n

eptimal

distribution is non-informative a large number of observations must be taken to
estimate the unknown value of the parameteré.

Ve>0 n is a decreasing function of c¢. As ¢ increases the optimal sample

optimal

sizen_, , decreases. In other words if the cost for every observation is very large

then we cannot afford to take many observations because the total sampling cost

. q 1 =y LS 1 -
becomes too high. If ¢—+e0 thenn,,,  —>-2(a+1)<0 ien,,  =0. For
. =)
c—> O - ’nplimu/ +00
Va >0 we can distinguish two different cases
1. For C>ZB?’ [f(a.B,c) in the interval (0,a,) is an increasing function of @

and in the interval (a,.+©). f(a.B.c) is a decreasing function of «. For a=a,

n takes its maximum value. We have to mention here that @, is defined by

4(%—cﬂz)+J—l6cﬂ2 G-cﬁlj

optima

the quantity a, =

>0. Which may be found by

(4.9) if we replace the value of £ with ;—

i . . . . . .
2. For ¢ <-27. then for every >0 f(a,B.c) is an increasing function of .
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[04

In case that n,,,..., =ﬂ7\/-2-;,/a(a+l)—2(a+l)30 then, (‘Zz—ﬁ:(a—ﬂ)

. . a
When the cost per observation ¢ becomes greater or equal to the ratio 2ﬂ—
{a+1)

. . a . .
i DECOMES negative. Ratio ———— increases as «a increases and f
TR Zﬂ-(a+l)

then »n

. . a .
decreases. In that case the prior variance —; becomes very large, so the prior

distribution of @ is not informative at all and it is preferable that no observations

should be taken because the sampling cost ¢ is very high for us to pay.

4.4 Optimal sample for Poisson sample distribution

Proposition 4.5: Suppose that x,...,x, is a random sample from a Poisson

distribution for which the value of the mean & s unknown(6>0). where

[(x;16)=exp{-0}6" L‘ The prior distribution of the mean @ is selected from the
x,!

conjugate family and is a gamma distribution with parameters a,f>0.
7{0) ~ Gamma(a, B). The value of @ is desired to be estimated under the squared
error loss, i.e. L(8.d)=(0—d)*. If the sampling cost per

observation is c¢.(c>0) then the optimal number observations n is specified by

_ the equation:

1
a E
nnpllmul = [J:l -ﬂ (4'27)

Proof:

For every observation x the density function is defined by
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,/’(x[ﬂ):i‘&"' exp{-6}, from proposition (3.1) this could be written in the form
X.
. 1
f(x|@)= TT—!exp {—0} exp {.\' In 9}

where: lz(x)=i'. c(ﬁ)zexp{—e}, w(@)=1Inéd, t(x)=x
X e

The corresponding likelihood from (3.2) is formed as

Fx|6)=— I exp {—nﬂ}exp{(]nﬁ)i,\‘i}
| EE =t

-l

From (3.3) the conjugate prior density foré :

7(07,.7)=[k(z,.7, 7)]_l exp{-7,8}exp{(In6)7, } (4.28)

z8|a,p)= I‘fa) ' exp{-p6}= r’fa)exp {(a -1 InB}exp{-p6)} (4.29)

under the following condition
”(9'1"(1*71 )= Ga(d,ﬂ)= z(ala,ﬂ)

We derive from expressions (4.28)and (4.29)

g

g _] —
el -

=87 =a-1
The posterior distribution of & is specified from proposition (3.5)

pO\x,t) =707, 7)=n(0|7,+n.7, +Zx,)
i=l

= [k( T, +H,T + i X )J_ [exp {—0}]t"+" exp {(]n 0) [r, + i X, j}
i=[ =

where: 7, =< B = f+n and
4 & & ! * L3 o
T =a -loa =t/+lead =a+) y-l+lea =a+) x
=1 i=l

It is then proved that the posterior distribution of & after having observed x,......x

n

i
is a gamma distribution with parameters a = Z.\',. +a, B =n+p
e

Accordingly to the theorem 2.4 we derive that the Bayes estimator is given by the

expression
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o Sy +a
S (W) =LE@|x)=—="=—v—xn
(x)=L£(8]x) B py

and the corresponding Bayes risk function:

. a+y x
H{7(6).8" (x) = E[var(8| x)]= E[;,‘ J= E| —=—

1 "
= TEla+ ) x,
(n+ By ( ; )

s[@+nEx)) (4.30)

We know that £(x;,) = E[E(x; |0)] = £(8) = —, s0(4.30) becomes

r(7(0),8'(x) = . +l,3)2 [a +n%:|

_ 1 I-aﬂ+na]
n+p’| B
~a(f+n)
Bn+ By’
=%
Bln+p)
From(2.11) the total risk function will be:
B 0.5° .'):L.*_ 4.31
’mml(”( ) (,.\.) ﬂ(ﬂ.‘.ﬁ) nc ( )

In order to obtain the optimal sample size we minimize (4.31) with respect to n

arlnm/(n.(e)’ 53«1_\‘('\' (‘,-\-)) — 0 <:> 2 a + c= 0
On On| B(n+ f)

a ,
-———tc=0-a+ =0
ﬂ(n+ﬁ)2 +¢ a+cfin+ )
c,B(n+,B)2 =@ &+ py = L

cp

a ¥ a )?
‘"*’3’{5) ‘”":(7/5] 3

D
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For the second derivative with respect to n we will have:
az'.mml(”'(o)-‘ 5”“.“-:" (x)) _ _Q_ — @ +c
on’ on|l Pn+py
2
B+ By

Therefore the value of n found above will correspond to 2 minimum and the

>0 Vn>0

optimal sample size in this case will be given by the formula:

1
a 2
nu[.-linml = (5) - ﬂ

We will refer first to the case wheres,,,,, is a positive integer i.e. n,,.., >0. For

this we consider a function f such that n, . = f(a,fB,c). The behaviour of this

function with respect toa ., ¢ can be studied through the partial derivatives of

S

Fapo _olfay . (1V2
Oa _6a(jﬂ ()60:‘/;

282
F@pe)_ 8 1%_/; _ofaY
a  oc|lep A

Tol—

a : 01 (a : . 1) a
Gz )] o
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We end up to the following conclusions

. . . . . a
n, ... 1§ an increasing function of «. Hence, as a —> -+, var(0)=’—37—>+oo and

optinet

—Z=2% y»400. So when the prior distribution of & is vague then the optimal

n, il

sample size becomes extremely large and as a result we need more observations

for valid inference

opima.

a
On the other hand as ¢ —0, ;2——)0 and n, . —22*>-B<0. We see that when

the prior distribution of & is very informative n,_, , is negative so no observations

are taken i.e. n,,,., =0 and the value of the parameter @ is estimated directly from

the prior.

. . . . a
n, .. 18 & decreasing function of 8. For S —0, 7 —> 400 and n — B0 540,

aim a optime!

When the prior distribution of 6 is vague then the optimal sample size becomes

[0

very large. For £ — 4o, %—)0 and » —22 3 w<0. le. if the prior

aptinal

distribution of & is very informative no observations are taken (n",m.”m,<0=>)

n =0 and the value of the parameter 8 is estimated from the prior.

optimal

n,,a 18 @ decreasing function of ¢. As ¢—>0 then n -+, so if the cost per

optinsl
observation ¢ is very small, then the optimal sample size increases very much.

Otherwise asc —+oo then #,,., —> -8 <0 which means that it is better not to take

any observations in order to derive further information for € from the posterior

distribution because the total sampling cost will be too high.

If the optimal sample is negative then we end up to the following assumption:

a
"npfillhl/ 0= ( J
cp

Yo | —
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. .a
When the cost per observation ¢ becomes greater or equal to the ratio—, then

. .oa L .
M. DECOMes negative. Ratio — increases as a(T) and ﬂ(i«). In this situation

. . a . T .
prior variance —- becomes very large. so the prior distribution of & is not

informative at all and it is preferable no observations to be taken because sampling

cost ¢ is way too expensive.

4.5 Optimal sample for Binomial distribution

Proposition 4.6: Suppose that x,...,x, is a random sample from Binomial
distribution with parameters; k>0 specified and @ unknown. 0<@<l1, i.e.
f(x,]0)~ B(k.6).

For the prior distribution of the parameter & we choose from the conjugate family
the beta distribution with parametersa, f>0 #(8)~ Be(a, f) . We are interested in
estimating the value of @ under squared error loss i.e. L(6.d)=(8-d) . If the
sampling cost per observation is ¢,(c >0) then the optimal number observations #n

is specified by the equation:

o

o af a+p (4.32)
optimal Ck(a+ﬁ)(a+ﬂ+l) A

Proof:

For every random observation x the density function is defined
k

raior=({ea-or
X

The above expression can also be written according to the proposition (3.1) as:
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f(x|6)= (ijg‘(l -
_(l:)(l -)' (l—f—ejx
, (’\ ](1 -6) e"l’{"’ n (T—%)}

k
Where: h(.\’):[ ) (@ =(1-6). t(x)=x and w(@) =In (%)
X x

Calculating the likelihood from (3.2) provides:

f(x10)= []:[ [l: J] (1-6)" exp {(ln (&D; \

From (3.3) the conjugate prior density foré:

6
Qlz,.7,)=|k(z,, "(1-8)" exp<| ]
7(07,.1,)=[k(zyt)] (1-6) exp{[ n(l _9))2’]} e

=[k(z,.7, )]_I & (-4~ "

T'(a+ f) T@+p) gai
C(a)'(/)

Where #(@|71,.7,)=Be(a.B)=n(0)a.f) and so from expressions (4.33),(4.34)

nl|a )= (1-6y" (4.34)

which are equivalent we will have

Ta+p)
k(t =a-1, 1=
(Kol = 50 (A poi=to-

The posterior distribution of @ from proposition (3.5) will be:

p(O1x,7,.7) =70 |7, + .7, + D, x,)
A i=1

=[k(r,,+n,1’,+§.\',)]_l(l @) exp{( ( )](1’,+z ]}

" ,,+Z.§]0,.+§x,

” -1 whk+1, [
=[k(q,+n,r, +Yx, )] (1-8) -
=
where, 7, +Z.\',. =a -1 a—l+2x,. =a -load =“+Z~‘} and
= =1

i=|

B =l=nk+t,—1 —Z_\‘,. <:>,B‘—l=nk+ﬂ—l~z_\',. =i =nk+ﬂ—z.x‘i
i=| =l =1
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so the posterior distribution of @ after having observed x,,....,x, is also a Beta

il "
distribution with parameters a’ = Zx,- +a and B =nk +ﬁ—z.\'i .

=1 i=l

The Bayes rule under square error loss function is defined from theorem 2.4 to be
. a+y x a+) x
a — =t e i=1
A a+y x,+kn+f-) x, a+pthn
=t

=1

5 (x)=E(B]x)=

and the Bayes risk function also from 2.4

H2(8),8" (1) = E[var(0 | ._\;)] = var(@) - var[ £(6 | .g)]
i=]

= var(@)— var
var(®) a+f+kn

1 1l
= var(f) - —— v: 4.35
var() @i BiRy var(;\,) (4.35)

The conditional distribution of Zx, |@ will be also Binomial i.e.z,r,. |8~ B(nk.9)

=l =

with E(Z.\'l IQJ =nk@ and var(z.\',. | 6)=nk0(1—0_). Hence,

=]

g (g |l

= E[nkB(l —0)]+ var(nk@) = nk [E(e) -E(& )]+nlk" var(@)

i=|

=nk rE(H) - var(H)-(E(G))z]+ n°k* var(@)

= —nk var(8) + nk’ var(@) + nkE(Q)—nk (E(l9))2
= nk var(@)nk —1)+ nkE(O)[1 - £(6)]

Replacing in (4.35) we will get:
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r(7(8),6°(x) = var(@)—m{nl\ var(@)(nk —1)+ nl\E(H)[l E(@)]}

= var(0)—(—£—f%n—k)):—var(9) #E(G)[l E(0)]

B Vaﬂe)[l - (:i(,gll—n;)f ]_ (a+ /'31]; nk)? E@1-£@)]

- var(@)[l_ (a"+ Aﬂ::ﬁ)] (a”;’i o EO-£)] (4.36)
From (2.11) the total risk is specified as
Tt 70(0).8°(x)) = var(B)[l— (a"fﬂ:ill:) ] R ;’; e s E@)[1-E(8)]+cn (4.37)

The mean and the variance of the prior distribution are given by the formulas
var(f) = ,aﬂ

(a+B)y(a+p+])

a
a+pf

Minimizing (4.26) with respect to n we have:

E)=

1] 'k —nk nk
—<var(@)| 1— o ~E(O){1-E@ =0 4.38
an{v‘“( )[ (a+ﬂ+nk)‘} @By CON-EC ﬂ}“ (.58

ai{var(a)[l— n k™ —nk :| nk E(B)[l E(B)]}
7]

(a+B+nk) | (a+p+nk)
= var(8) Qnk” —kXa+ B+ nk)? —2k(n‘l:" —nkYa+ B+ nk)
(a+ f+nk)
—E(e)[l4(49)]““*’3*”""-2"k<<ﬁ+ﬂ+nk)k
(a+ B+nk)
[‘2"1"—/\)(a+ﬂ+nl\) —2k(n*k* —rzk)]
=—var(f
(a+ B+nky
(ka+kB+nk® —=2nk?)
-E@)|1-E@
]-£0)] (a+ B +nky
2 :° 23 g L B—pk? =22k 2
=—var(@) 2ank™ +28nk” +20k” —ka I\/? nk* =2k’ + 2nk
(a+fB+nk)
ka+kpB—nk’
—E@)|1- E@0)|——————
(O)1-£0)] (a+ B+nky
=~ var(g) 2ok 2Pk KPR gy gy et iR
(ax+ B+nk) (a+ B +nk)
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We replace now the mean and the variance of the prior and so we obtain

__ apf 2ank"+2ﬂnk2—-ka-—kﬂ+nkl_ a (1_ o )ka+kﬂ—nkl
(a@+BY(a+p+1) (@+ B+nky a+B\ a+pB)(a+B+nky
_ af 2ank’ +2pnk” —ka— kB +nk’ aff  ka+kB-nk’
T @+ Pa+ D) (a+ B+nk) (a+ B (a+B+nky
_ aff 2ank® +2nk> —ka—kB+nk® +(a+ f+ 1) ka+kB—nk?)
~—(a+ﬂ)1(a+ﬂ+nk)3[ a+pf+1 ]
. ap (2ank’ +28nk* —ka—k B+ nk’ + ka* + kaf—ank’
B (a+ﬂ)’(a+,8+nk)"k a+f+1 '
+ka,3+k,33—,Bnl.-3+ka+kﬂ—nk3J
a+pf+1
_ ap ank® + puk® + ka* +2kef+ kB’
T (a+pB)Y(a+ ftnk) a+p+1
_ ap (a+ BYnk> +ka+kp)
(a+pBY(a+pB+nk) a+p+1
kap

(a+ B+ a+Ba+f+nk)
Replacing in relation (4.38) we prove that 7., will be the solution of the

following equation

- kap —+c=0
(@+B+1)a+pYa+ B+nk)y

cla+f+1)a+ B)a+ B+nk) —kaf=0

5 3 2

(@+ B+nk) = L/ S(a+ f+nk)= kap .

cla+ B+ a+f) cla+ f+)a+f)

L L
nk = kap -—(a+,3)<3n= ap T_axp
cla+f+1)a+ B) ck(a+ f+1Na+p) k
Taking the second derivative of the total risk function we obtain:
ﬂ‘.’.’"L = ._a. = kaﬂ + ¢
on®  on| (a+pB+1)a+Ba+f+nk)
2k°ap >0 Vn>90

- (a+p+)a+pXa+B+nk)

Thus, the optimal sample size is defined by:

" ;[ af :l _a+p
aptimal

T3]

ckia+ g+ INa+ p) k
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if we consider n to be a positive integer, then:

optimal

b | —

ano/).'imul _E l: aﬂ ]

B ck(a+f+1a+p)

_a+p ) af :1_6_1
d @ -

A K(a+ 1) a+pB) | Oc e

L=

S| ap
2| keMa+ B+1)a+ )

It is proved then, that Ve >0 n,,., is a decreasing function of the sampling cost

=(.

optimal

and more specifically n —=" st and n . ,—22 5 <0 i.e.n
optimal

aptimol

e a+pf
k

Due to the complexity of the partials first derivatives with respect to the

parameters a. B8,k it is rather difficult for us to derive some exact conclusions

about the behavior of 7, function corresponding to these parameters.
In the case that n,,, <0 we derive the following:
il
ap _a+p <0 aff =
ck(a+p+Da+ ) k ck{a+B+1a+ )

- ap g(a+,BJ' e apk i
ckia+ B+ a+ B) k (a+ B+1)a+B)

o=

A
]
+

=

We observe from this last inequality that as the cost per sampling unit becomes

. afk .
greater or equal than the ratio B T Howing DECOMes negative and we
(a+ B+ )a+ B

decide that the observations are way too expensive, so we do not draw a sample.

Corollary 4.2 Suppose that our random observations x,,....,x, come from a
" Bernoulli distribution i.e. f(x]@)~B(1,8). If we are interested to make an
inference about @ using as a prior the Beta distribution and the square error loss
function as they have been defined in Proposition 4.6 then it is proved that if the

sampling cost per observation is ¢.(c>0) the optimal number observations n is

specified by the equation:

1
aof 2
il = = 4.39
"n/.rl/nml [c(a+ﬂ)(a+ﬂ+l)I (a+ﬂ) ( 3 )
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The formula (4.39) can be derived if we replace in relation (4.32) k=1, since we

ihay consider the Bernoulli distribution as a special case of the Binomial when the

value of k is specified to be 1.
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Summary of

Basic Formulae

In this section the following table is provided for reference. This records the
sampling distribution for each one of the statistical models which are studied in
Chapter 4, the conjugate prior and the corresponding optimal sample size which is
suggested to be taken through the Bayesian approach, at each separate case, when

square error loss function is used.

Table of optimal sample sizes

Discrete sampling distributions

Bernoulli model

X = (e, ). v, € {O.l}
ply,16)=60"1-6)", 0<8<I
Conjugate prior  : p(6)y=Be(@la.p). a>0.8>0
o
2
Optimal sample 5 Reimal = iz —(a+p)
cla+pPla+pf+1)

Binomial model

Y= (X0 X,) \,E{O.L...,k}
k : h-x

plx, @)= g (1-6y—". 0<f<l
X

‘
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Conjugate prior

Optimal sample

p@)=Be(@|a.p), a>0,8>0

]
B af T a+p
optinl ckla +ﬂ‘)(a+ﬂ+ D k

Poisson model

= (~\.|~~-~9-“,,)§

X,

Al

p(x,18)=exp{-6} if——'-

1

Conjugate prior

Optimal sample

?

6=0

p(B)=Ga@la,B), a>0,>0

1
a 2
nuplimul = l::E] - ﬁ

Continuous sampling distributions

Normal model (Specified precision r)

X=(X0n X))

1
o2

1
=

v, € (—o0,+00)

pix;|0)=Q2x) %+ exp{-g(x,.—e)l}, 8 € (—0,+w)

Conjugate prior

Optimal sample

[)(9)=N(9|/I.l). 7> 0. 1t € (—00,+wm)
T

i
1y 7
* nu]ninml - . =
e T

Normal model (specified mean )

¥ = (e, )

1

¥; € {—00,+0)

1
p(x;|0)=(2x) 2 6° exp{—%(x,.—,u):}, HE(—o,+0), >0

Conjugate prior

Optimal sample

: p@)=Gaa,f) a>0,>0

2 it =%Ja (a+1)-2(a+1)
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Normal model (Both parameters unknown)

X =(N 00X, ) X, € (—00,400) *

1
2

plx; |m,r)y=2x) *r

ol

P

7 s
exp —:(_\‘,—m)‘}. me (—o,+), r>0

LY

1
Conjugate prior  : p(m,r)=Ng{m.r|gt,a,B)=N (m | ,u.;—)Ga(r |a, B)
r

1>0, ye(-w,+0) . a>1.4>0

1

Optimal sample M = A l ~1
N c(a—1)
Gamma model
X = (.\'l ..... X, ). X, E[O,‘f‘w)
9/.
p(x;|0)= S exp{—ﬁxi} k>0,0>0
F(/\
Conjugate prior  : p@)y=Gafla,.p), a>0,>0
) ,/a(a+l) a+l
Optimal sample g no = -
D D optimal ﬁJCT k
Exponential model
¥ =30, ), x, €[0,+o)
p(x,|0)=0exp {—Hxl.} ., >0
. Conjugate prior : pO)=Ga(Bla.p). a>0,>0
. ' . _Aala+])
Optimal sumple . - —W— (a+1)
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Chapter 5

Sampling from a multivariate

normal distribution

We shall know consider the problem where samples are taken from a non-singular,

k (k=21) dimensional multivariate normal distribution. The mean vector of the

distribution is a k - dimensional vector and the precision matrix of the distribution

must be a symmetric positive definite kxk matrix. Any observation x will have

the form of a random vector in R* : 1 =(x,...., ;).

5.1 Determination of the optimal sample size

Let x=(x,..,x,) to be a random sample from a multivariate normal distribution
with unknown mean vector #eR* and a specified precision matrix reM, (R)
with properties as they were defined above. The prior distribution of & is a
multivariate normal distribution too with known mean vector z € R* and precision
matrix reM,(R)

Symmetric and positive definite in order to find the Bayes estimator for & we use

the quadratic error loss functionl(8,d)=(0~dYA(6-d). We consider here for
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1 ... 0
reasons of simplicity thatA=1eM,(R)=|: . i| . Also the cost per
0 W 1

observation x =(x;,....x;) is ¢, ¢>0.

Proof:

For every random variable xeR!
ko . N
fx|0)=Qm) | exp{—-;—(.\' -0) r(x-0)

Ao |
=(2x) * |r|3 exp {—l.\"l‘.\' + -l-x'r9 + i«9'/'.\' — 9'1'9}
2 2 7 7

LI
=(27) * |:F exp {-—%x’rx} exp{—%ﬁ' 1-9} exp{%(&’rx + .\"/’9)}
L 1 1 1 '
=(2x) * |r|2 exp{——x’rx}exp {-——6” :'O}exp {—(0’:'x+(0'r.\') )}
2 2 2
ko 1 1
=(27) * [ exp {—E-x'rx} exp {—-2—0'1-0} exp{@'rx}
So the density function of x conditioned on M , from relation (3.1.1) will have
ko 1 1
x)y=Q2rm) * |1'|2 exp{—;.\"r,\} . c(@)= exp{—zﬁ’ré’} , w(B)=0'r and 1(x)=x

From (3.1.3) the data likelihood is proved to be:

n _k i i "
f(x)8)= [H (2z) 2 |;-|5 exp{——;-x,.'rx,}:'(exp{—%6'/'49}] exp< &'r x,}
i=t =1
ok, 1 <& n A I
=(2x) ? IIF exp{—iz.\','rx,}exp {——2—6?' 1‘0} exp {9’/'2 \',}
i=1

=|

From (3.1.1.1) the conjugate prior density for@:

7(8|z,,7)=MN(u1")=m(6| u.1)
7(0|7,.7,) =[k(z,.7, )]_I (exp {—%0’:‘0}) exp{6'rr,}
=[k(z,,7, )]_I exp {—-z;—'e'ra}exp {6'rr,}

=[k(z,.7, )]_l exp {—%0’( T )(9} exp{d'rr, }
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Lt 1 '
7(@| p.t)=(27)* [ exp {—3(6—/1) 1(0—;1)}
1

K-} 1 1 1
=(27) [t exp{——O'10+—0"tu+—u'10 —— it
( )llexp{2 SO+ n 2##}

k
=(27)* lrlé exp {-—% Mt ,u} exp {—%0’ 16} exp {61y}

£
Where:[k(r,,,rl)]_‘ =) |7 exp{——;—y'w}, tr=t and rr, =ty 5.
Posterior distribution of €@ from proposition (3.1.1.2) is defined to be

polx,,.7)= 7[(0'” +7,.7, +Z.\’,J

i=}

-1 n+z, "
=k [n +7,.7, + Z-‘?J (exp {—%9’[‘0}] exp {G'r (Tl + Z X; ]}
=1 =1
. "
=k (n +7,.7,+ Zx,) exp{—%ﬂ'[(n +1, )r]e}exp{ﬂ'r(r, +Z-\',)}
=1 i=|

Where according to the relations on (5.1) we obtain the following

(n+t)r=F St =nr+rpr <1 =nr+t and

r(z‘, +ix,) =ty o r(r"r,u+ nf) =(t+ur)p S tptnX =(+nr)y
i=!

ou =(t+n)’ (rp+nrX)

Thus. the posterior distribution of € is a k - dimensional multivariate normal with
mean vector u =(r+nr)'l (r,u+nr.i") and precision matrix 1 =(z+nr), where ¢ is
_ a symmetric positive definite Axk matrix. Using the quadratic error loss function
L(6.d)=(0—-dYI(@—-d) it has been proved from theorem 2.7.3 that the Bayes
estimator will be given by the posterior mean

8 (x)=E@|x)=p" =(r+nr) (tu+nX)

The corresponding Bayes risk function and total risk equivalently will be

H(8),8" (x) =1 [IE(covw] %)] = [(, - nr)_l]

1 (O, (XN =1r [(r + nr)—l ] +e(n)=1tr [(r + m')q ] +cn (5.2)
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We minimize (5.1.2) with respect ton in order to derive the optimal sample size

Y

Py {I/ L(I + n/) J+(‘n} =0 %Ir[(f +nr)_]]+(‘ =()
Ta_; [l | 4 —_—tr [LI(/](Y+III)]J+( =
on t+ur

LT on

Cldj(f+lll) +c=0 —

ll +m]

[ o_! }/ | adj (I + )J+ —lf/ [cz(/j'(7+/1/'):l+c' =0

on |f+llll lr +nr | on

|r + nrlrr [(1 + /1/')_] r}

[’ +III'[:

I/ [U(IJ (l +nr ):| - I/']:a([/'(r + m')] +c=0

’r +nr l On

! —-n [a(// (I + )] —L—;)—lj—rr[(/dj (I + 11/')] +c=0

|f + m‘ On II +nr I

%rr[u((/(f + n/')] - n'[(r + /11')AI /']I/'[az{j(t + /1/‘)] + (‘It + /1/'| =0 (5.3)

From this last expression (5.3) we can derive n,,., as the positive integer

solution of this equation for a specific decision problem.
Due to the complexity we shall concentrate to the case of the bivariate normal

distribution (k£ =2) where the symmetric precision matrices for the data and the

prior have general forms:

(n 6, 1 ty,+nr, fatnn. ) ‘
= . o= =7 =t+mr= : ~ | i1s also a symmetric
VT T A [ J IV

precision matrix of the posterior density function of feR’.

Under these conditions equation (5.3) becomes
_é_,,- [(r + nr)] —1r [(r + nr)_l 1']1/' [(r + nr)] +elr+nr|=0
on
tr {—?—(r + nr).J —r [(r + m-)_) 1'}(71‘(1‘ y+atr(r))+cli+nr|=0
on
w{ry—tr [(I + nr)_] r](lr(r)+ lm'(l'))+ c |r + nrl =0 (5.4)

The analytical form of this equation when all the appropriate replacements have

been done on (5.4) leads to a polynomial of forth degree i.e.
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14 2 202, 3 2 2 3 >
H(Cy =213y Ty +CF TF ) AT (=208, " Foly + 200,158 A0k 1, —ACK Fahol = 208, 15T,
k) 9 ki k] 3
4208, Faal ) (i =0 Py Ty = ™ € " = ATl 1 + 608, 1" = 20,10
=207,y HACK Figtyatan + 5 0,7V H 205y = 205ty — 2emt 1, + eyl + 20, 1
2 2 2 ) 2
=25 Pyl F 2CT 0 1y = ACHl oty = 2000137l + 20081007 ) = Py + 288 1y — 1o
2 4 2 2 2 2
—lyy F €l + 28ty =201 s = Tl Ol =0 (5.5)
It can be clearly seen that the optimal sample size in this case cannot be given in a
closed form but it can always be found as the positive integer solution of (54) or

more analytically of (5.5) for a specified sampling- model and a specified prior

distribution cach time.
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Chapter 6

Discussion

In this thesis we worked towards determining what is the optimal number of
observations to be drawn for each sample during Phase I data subject to constant
sampling interval and constant cost of observations. The sampling distributions
considered here were from the regular exponential family, where a conjugate prior
always exist. More precisely in the univariate case we derived the optimal sample
size when the sampling distribution was Gamma, Normal, Poisson and Binomial
while in the multivariate setting of a Multivariate Normal we showed that the
optimal sample size is not given by a closed form but as the positive integer
solution of a rather complicated equation.

The theoretic development was on a conjugate-based Bayesian approach of
decision theory techniques with squared error loss. Using basic decision theory
properties we have derived the corresponding Bayes rules, Bayes risk and total
risk functions for every given sample distribution. The optimal sample choice has
been given then as the solution that minimizes the total risk function which
balances the Bayes risk and the total sampling cost.

This method of defining optimal sample size for phase I samples in a
production process can also be extended to other distribution functions using
various error loss functions and/or sampling cost functions. It may also be
expanded to several other multivariate cases. All these can develop a subject of

future research.
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