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ABSTRACT

Mavridis Dimitrios

STRUCTURAL EQUATION MODELS WITH COVARIATE
EFFECTS: A COMPARISON BETWEEN THE LISREL AND

THE ITEM RESPONSE THEORY APPROACH
February 2003

This project reviews latent variable models for analyzing ordinal
observed variables. We review two different methodologies, namely the
LISREL approach and the Item Response Theory approach. We also
investigate the case where there are some covariates affecting the observed
variables and some covariates affecting the latent variables. We use two real
data sets to compare the two methodologies in terms of model estimation and

goodness-of-fit, and we investigate the potentials of each approach.
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CHAPTER 1
INTRODUCTION

Multivariate techniques are used in all fields of research. Probably the
most famous multivariate technique is factor analysis. It is very common in
every field to have numerous variables, many of which are strongly
correlated. Our aim with factor analysis is to explain the interrelationships
among the observed variables through a set of latent, unobserved variables.
The number q of latent variables is much smaller than the number of observed
variables p. It is much easier to work with fewer variables and this is a strong
reason why someone would conduct factor analysis. Furthermore many
variables measure the same thing, probably ability or some other
characteristic and their introduction in the analysis adds nothing but
complexity. Reduce dimensionality is the most important reason for
conducting factor analysis. By doing so we might be able to see relationships
among variables that were not obvious before. Another reason that is most
common in the social and psychological sciences is to reveal some constructs
or characteristics that cannot be measured directly or it is perilous to do so.
These characteristics may be unobserved and abstract such as cleverness,
sensitiveness, and aggressiveness. Some characteristic may be real like the
personal income or the political identification but for some reason we may not
consider people’s responses as reliable and it would be better to infer this
characteristic from a set of indicators of this characteristic. Actually what
factor analysis does is to infer these abilities or characteristics from some
observed variables which are indicators of these characteristics.

The foundations of factor analysis date back to the beginning of the
nineteenth century, but its popularity has increased recently with the
improvement of the personal computers, which can now meet with the
demanding calculations that factor analysis, and its related topics need. The
origins of factor analysis can be found at Spearman (1904), who made the
assumption that people who tend to score high on a mental test, also tend to
score high on other tests. He assumed that all these mental tests are indicators

of a general ability of the student. This general ability that can be represented



by a latent variable has different correlations with every item and it is one of
the aims of factor analysis to estimate how much every item contributes to
this latent variable.

By the name “factor analysis” we usually mean the occasion where all
manifest variables are continuous. Actually factor analysis can be conducted
when the manifest variables are continuous, nominal, ordinal or a mixture of
these. In this project we deal with the case where the observed variables are
on an ordinal scale. Only recently, and more specifically in the last decade,
people started to think of cases where the observed variables are not
continuous or they are a combination of continuous and discrete. When the
observed variables are ordinal we should not assign numbers to them with the
purpose to treat them as continuous. They are on an ordinal scale and we
should not assign them metric properties. The numbers that are usually
assigned to such data are in fact labels and the addition or the ratio of these
numbers has no actual meaning. Except from the latent variables there might
be some c¢ovariates that together with the latent variables account for the
interrelationships of the observed variables and in addition we might want to
investigate the effect of some other covariates on the latent variables.

There are two ways for conducting latent variable analysis for ordinal
data. One is the underlying variable approach which assumes that the
observed ordinal variables are generated by a set of underlying continuous
variables and is supported by commercial software such as LISREL (
Joreskog and Sorbom 1993), EQS (Bentler 1992) and Mplus (Muthén and
Muthén 2000). The other approach is the item response theory (IRT) approach
where the model specifies the complete p-dimensional response patterns (p
denotes the number of observed variables) and makes assumptions about the
conditional distribution of the observed variables given the latent variables
and the covariates, if there are any.

The underlying variable approach has developed much earlier from the
IRT approach and as a consequence it has expanded its potentials to many
fields. Hence, there are many programs and many articles in the literature that
conduct factor analysis with covariate effects. Joreskog and Goldberger(1975)
discussed a multiple indicators and multiple causes (MIMIC) model for

normal manifest variables with a single latent variable that allows for direct



effects on the covariates. Muthén(2002) gives an overview of statistical
analysis with latent variables and his work focuses on measurement error and
hypothetical constructs measured by multiple indicators. IRT methodology
has mainly developed theory for measurement models that do not include
covariate effects. Sammel, Ryan and Legler (1997) discussed an
unidimensional latent trait model for binary and normal outcomes that allow
for covariate effects within the IRT framework. Moustaki (2003) has
developed a general IRT framework that includes covariate effects both on
the manifest variables and the latent variables.

These two methodologies are completely separated and scientists
whose interest lies in factor analysis are occupied only with one of the
approaches and their knowledge of the other approach, its advantages and its
drawbacks, is very limited. There are not many articles in the literature that
compare the two approaches. A comparison of the two approaches for
measurement models without direct effects can be found in Moustaki(2002)
and Moustaki and Joreskog(2001). In this paper we will present two models,
one of each approach, and we will run two examples for measurement models
with direct effects to compare their results. From the underlying variable
approach we will present the LISREL model, which is probably the most
famous and it has contributed to the popularity of the latent variable models.
The LISREL program has two steps. Namely PRELIS (preprocessor of
LISREL) and LISREL. In PRELIS we compute the covariance or the
correlation matrix and in the LISREL step we fit the model to the matrix we
have computed from PRELIS. From the item response theory approach we
will show a method presented by Moustaki (2003) and we will run the
examples with the program GENLAT 1.1(Moustaki 2002).

We will focus mainly on the parameter estimates obtained and the fit
of the models. We cannot use the same goodness-of-fit measures for ordinal
data as those we use for continuous data. There are not many goodness-of-fit
measures or criteria in the literature that test the fit of the model for latent
variable models with ordinal data and in this project we present the most
widely used. When we have a measurement model with direct effects, the fit

of the model gets more difficult to be tested. Through the examples the



difficulties in testing the fit of the model will be more clear, as more clear
will be the capabilities of each of the two different methods.

In chapter 2 and 3 we will present the Item Response Theory approach
and the LISREL model respectively. In chapter 4 we will show the
equivalence between the two approaches presented in chapters 2 and 3 and in
chapter 5 we will present some tools for measuring the goodness-of-fit of the
models. In chapter 6 we will use a real data set, where there is one covariate
that affects the ordinal observed variables, to compare the two approaches. In
chapter 7 we will use another real data set, where there are some covariates
that affect the observed ordinal variables and some other covariates that affect
the latent variable, to compare the two approaches. Finally in chapter 8§ we

will present the main conclusions of our analysis.



CHAPTER 2
ITEM RESPONSE THEORY APPROACH

2.1 Introduction.

In the item response theory approach the whole response pattern is used and
as a consequence there 1s no loss of information. We have to make two major
assumptions in order to develop the model. Firstly, we have to formulate a
model for the conditional distribution of the ordinal observed variables given
the latent variables and secondly, we assume that given the latent variables,
the observed variables are independent, the latter assumption is also known as
axiom of local or conditional independence. In this chapter we will present

these two assumptions and the IRT model with covariate effects.

2.2 MODEL AND ESTIMATION

We start from the first assumption. One of our main tasks is to infer
the respondent’s ability or skill. The probability of responding a particular
response category must depend on her ability., We should assume a
probabilistic model that connects the probabilities of responding each
response category to the respondent’s ability. Thus item response theory starts
with a mathematical statement as to how response depends on level of ability.
This is achieved by the item response function. McCullagh (1980) discusses a
general class of regression models for ordinal data. In his work, there are no
latent variables but only an ordinal dependent observed variable and a set of
explanatory variables. He showed that these models are multivariate
extensions of generalized linear models. Moustaki (2000 and 2003) has
extended that regression model for latent variables. The differences are that

instead of a single dependent ordinal observed variable we have a set of p

ordinal observed variables denoted by the vector y= (yl,yz,...,yp) and instead

of a set of explanatory covariates, we have a set of latent variables, denoted

by the vector z=(zl,zz...,zq). The latent variable model considered by

Moustaki(2000) has the form :



linkly, (z)]=7, - iauz/ i=1,2,..,p (1)
J=1

where s goes through the m, response categories of item i and y_(z) is the
cumulative probability of a response in category s or lower of item y,, which

is a function of the latent variables, namely y, (z)=7,(z)+7,(z)+..+ 7, (z).

Moustaki (2003) extended this model to entail r covariates x, denoted by the

vector x =(x,,x,,...,x, ), that affect the responses to observed ordinal variables
and also k covariates w, denoted by the vector w=(w,,w,,..,w,) that affect

the latent variables. The model now takes the form
q r
link(}/ls(z)]= Tis —Zaijzj +Zﬁi1xl (2)
J=1 I=1

and the latent variables z, are related to a set of observed covariates w, in a

simple linear form

k
zZ,, ZZchjwh+5n (3)

h=1

which can also be written in the form Z=WC+A where Z is a (nxq) matrix of
latent variables, W is a (nxk) matrix of explanatory variables, C is a (kxq)
matrix of regression coefficients and A is a (nxq) matrix of error terms.

The parameters 7, of equation (1) are referred as cut-points and they

are an increasing function of s 7, =—0 <7, <..<7, =+0. The parameters

a,are in fact factor loadings since they measure the effect of the latent
variable z, on some function of the cumulative probability of responding up

to a category of the ith item controlling for the effect of the covariates x. The
negative sign in front of the slope parameter is used to indicate that as z

increases the response on the observed item y,is more likely to fall at the
high end of the scale. The coefficients S, of the covariates x affect only the

cut-points and it allows individuals with the same position on the latent
variables to have different cumulative and response probabilities, if they have

different values on the covariates.



Another issue is the choice of the response function. The link function
can be any monotonically increasing function that map (0,1) onto (—oo,+oo).
Examples of link functions are the logit, the complementary log-log function,
the inverse normal function, the inverse Cauchy, the hazard function and the
log-log function. McCullagh(1980) claims that the proportional odds model
and the proportional hazard model, which use the logit and the
complementary log-log functions respectively, are most often used in practice
because of the simplicity of their interpretation. Lord(1980) suggests using
the logit instead of the probit function and he bases his suggestion on the
grounds that individuals on high ability levels should virtually never answer
an easy item incorrectly and they won’t do many careless mistakes and, since
the logistic function approaches its asymptotes less rapidly than the probit,
such careless mistakes will do less violence to the logistic than to the normal
model. In the examples in sections 6 and 7 of this project we will use the logit

as a link function.

In generalized linear models the dependent variable has a distribution
from the exponential family, and in our case, we suppose that each of the p
ordinal observed variables, conditional on the latent variables and the set of
covariates, has a multinomial distribution, which as we will show belongs to
the exponential family. The other assumption is that of local or conditional
independence. Under this assumption the observed variables are independent
if the latent variables and the covariates are held fixed or in other words the
latent variables and the covariates account for the interrelationships among
the observed variables. In the case where we have ordinal manifest variables
the answer an individual gives to an item given the latent variables z and the
explanatory variable x is independent of the answers s/he gave to the rest of
the items. A mathematically equivalent statement of local independence is
that the probability of success on all items is equal to the product of separate
probabilities of Success.
P(yl =4, Y, =0y,5Y, =4, /z,x)= P(y, =a,/z,x)P(y, = a, /z,x)...P(yp =a, /z,x)
where @, represent response categories



or gly/z.x)=]]g(y,/z2x) (4)

=1

We assume that the latent variables are independent with standard normal
distributions. This specification identifies the scale of the latent variables,
which in turn identifies the scale of the item parameters. Bartholomew (1988)
found that any symmetric prior will predict the same first and second order
margins and so the effect of the prior is negligible. He suggested the normal
because it has rotational advantages when it comes to more than one latent
variable. Since the latent variables follow the standard normal distribution
their values range from —o0 to + .

The joint distribution of the p observed variables is:

JO)= [ [ g/ 2,00z wydz (5)
Taking into mind the axiom of conditional independence the joint distribution

of the p observed variables becomes.
3 o
fly)= L ...Lng(y,./z,xyz(z/w)dz (6)
i=]

The exponential distribution has the form

»6,(2,%)=5,6.(2,%)) (v, 9, )} @

f;(yi’gi’¢i): cXp
. ?,

Where 6,(z,x) is the canonical parameter and b5,(6,(z,x)) and c¢,(y,,p,) are
specific functions taking a different form depending on the distribution of the

response variables y,, and ¢, is a scale parameter which 1s one in the ordinal

casc.

For an observed item y, the conditional distribution of y,/z is the

multinomial.

g(yi/z’ x): H”is(z’ x)y,: = l—l(}/i,s — Vsl )y,, (8)
s=1 s=1



where y, =1 if a randomly selected individual responds into category s of the

ith item and y, = Ootherwise. The above equation can also be written in the
form
m 11‘\ .‘.l',yi—l_}'l‘)
( / )__ ‘ yi,s }/i,sH B }/[,s
g\ 12, X)= (9)
s=1 }/i,s+l 7[.5+1

If we take the logarithm of the above equation we get:

—

m,—1
logg(y,. /z,x): Z y:s log—L—— y;,m log—}/”—”——
s=] : yi~s+l = }/1,; }/i,5+l —}/1,5
m=1
= _yi,sgi,s (Z,X)— yt,sHb(Hi,s (Z,X))] (10)

In this way, each component is in the form of the general expression of the

exponential family distribution. More specifically:

0, (z,x)=log Vo u 1,..m, (11)
is+l - }/l,s
b(@u (z,x)) = log—iﬂ—— = log(l + exp(@i,s (z, x))) (12)
yi,.ﬂ-] "}/15

The canonical parameter 6, is not a linear function of the parameters and as a
result of that there is no simple linear function to summarize the information
contained in the latent variables as there 1s for continuous or nominal data for

binary cases.

2.3 MODEL IDENTIFICATION
In order for the model to be identified, a necessary condition is that the
covariates x that have direct effects on the items should be different from the
covariates w that affect the latent variables. We check what would happen to
a model with one latent variable and the same covariate (x) affecting both the
items and the latent variable. The model would be:
link[yb (z,x)] =7,—a,z+ f,x

z=cx+0



And by substituting the structural part of the model into the measurement
model with direct effects we have:

link[y“. (z,x)]z T, =a, (cx + 5)+ pux=t,-a,06 —(a,lc -0, )x

It is evident from the above equation that the parameters ¢ and f,, cannot be

estimated separately and therefore are not identified.

2.4 MODEL ESTIMATION

We aim to estimate all the parameters simultaneously. The model is
fitted to the whole response pattern, including both the responses to the p
ordinal variables and the values of the r covariates having direct effects on
the items and the k covariates affecting the latent variable. The vector y of the
observed ordinal items is affected by the latent variables z and the covariates
x, whereas the latent variables z are affected only by the covariates w. The
covariates x and w are considered fixed. So the joint distribution of the

random variables is:
f(y,z)=g(y/z,x)h(z/w) (13)

The complete log-likelihood for a random sample of size N is written as

inlogf(y", Zlogg(y/ iz, /) z(logg(y,,/z,,,x")mgh(zn/wn)) (14)

P
And by using the axiom of conditional independence g y/z x = Hg z, x
i=1

we have that

n=l| i=l

L=i[ilogg(ym/zn,xn)+logh(zn/w,,)J (15)
In the above formulation of the log-likelihood z is unknown and in order to
maximize the log-likelihood we will use an EM algorithm. EM algorithm is an
iterative technique, which carries out an expectation and a maximization step
until convergence is attained, and it has been considered appropriate for
models where there i1s missing information. The latent variables are

considered here the missing information. In the expectation step, the expected

10



score function of the model parameters is computed. The score function is the

first derivative of the log-likelihood with respect to the parameters.

2.5 ESTIMATION OF C

From the formulation of the log-likelihood (14) we see that the
estimation of the parameters in the matrix C that affects the latent variables z
does not depend on the first component of the log-likelihood. So, estimation
of C can be done separately from the rest of the parameters (7, ¢, ().
The latent variables, conditional on w are assumed to follow the normal
distribution with mean cw and variance 1 and to be independent so that

W(z/w)= ﬁh(zj /w) (16)
A

The expected score function with respect to the parameter vector ¢, is:

+ +a2

E(S (cj)): i;[S (cj)h(z/y , X )1’2 (17)

The score function with respect to the parameters c¢; is given as:

6h(zj/w ,cj)

_ 8L _ alogh(zj/w ,cj)_ oc,
§ (cj)— dc. 6cj B hIzj/w ,cj)
(18)
1 “l‘(’-"'j“')l/
0—F——e ? oc,
= ﬁ; ’ =W (ZJ—W Cj)

1
1 e ‘E(z"'j“’ )z

Var

Therefore by substituting (18) into (17) we have:

E(S(Cj)) = +T...’L]aw(zj —we, )h(z/y,x}lz (19)

—00 —00

The fact that the latent variable is unobserved poses a problem to the
calculation of the above integral. In order to overcome these difficulties we

will approximate the integral by Gauss-Hermite quadrature. We will treat the

11



latent variables as discrete with values Zyreen 2y, and their corresponding

probabilities h(Z,l /W),---, h(Z,q /W) summing to unity. In this way and by
solving ZE(S (cj))=0we get an explicit solution for the maximum
mal

likelihood estimator of %

Vi Vg

N
anz z,lh(z,l,...,z,q /yn,x,,)

P n=1 =l ;=1 (20)

J N

5w,

n=|

where

g(y /z, 2y, ,x,,)li[h(z,j /w,,,cj)

h(z,l — /yn,xn): f(y,,,JJC:l) (21)

The maximum likelihood solution for c,is updated at each step of the EM

algorithm, as we will see.

2.6 ESTIMATION OF THE MODEL PARAMETERS o AND

The estimation of the rest of the parameters, namely 7, o, 8 depends
only on the first component of the complete log-likelihood. Let’s denote by d
a vector of all the parameters left to be estimated. So d=(7, «, ).

The expected score function of the parameter vector d when the expectation is

taken with respect to h(z/y, x) is:

E(s@)= [ [s @(z/y xpz  i=1.2..p (22)
where
a1 /
s(@)= 2L oggly /z,x ) 23
od, od,
Now,
ologgly /z,x ) =a[ ., o6, . ob0,.,)
= ) s _ gy T ism? 24
ad, ;[yl,s,m ad’ yl,.\'+l,m ad, ( )

Now we replace the above equation into the expected score function in

equation (22).

12



ab(e

o vema
)= |- IZ[%W e A }"( 21 y,.%, Mz (25)

l

_w  —x 8=l
Solving ZE(Sm(d,))=Oand approximate the integrals with Gauss-Hermite
m=1

quadrature points we get non-explicit solutions for the parameter vector d.

w06, . ok,
Z' [ym m T)_yi,.s+l,m %—)‘lh(zl1 ""’Zlq /y ’x ) (26)

n=l =l s=1 i

q

The above equation can be written as:

5 z""z'[,s,, o on

Where
=3 Moz, 1205, s T2 (28)
xstl _,,1 bS] t yn’ i,s,m ad,
And
N . ob(@,; ,,)
x.\'+l R Z ( "’Zlq /yn’xn )yi,s+1,m 6d (29)
n=l i

We need to find the first derivatives of the functions 6,,,and b(d,,,)with

respect to the model parameters. These are given in the appendix.

Now we will give a brief description of the EM algorithm that is used to
compute the parameters of the model. The steps of the EM algorithm are
defined as follows.

Step 1: Choose initial values for the model parameters, namely for all
elements of the vector d and also for c.

Step 2: Compute the values r,,,  and r,, , . This is the expectation step

of the EM algorithm.

Step 3: Obtain improved estimates of the parameters by solving the non-linear
maximum likelihood equations for the parameters of the vector d and explicit
solutions for the parameters c. At this step a one-step Fisher scoring
algorithm, is used to solve the non-linear maximum likelihood equations.

Step 4: Return to step 2 and continue until convergence is attained.
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CHAPTER 3

LISREL model

3.1 INTRODUCTION

The name LISREL is an acronym for “linear structural relations” and
the LISREL model is actually a set of linear structural relations. Firstly, we
consider the simple model without direct effects on the observed variables
and without direct effects on the latent variables and then we present the
model with covariate effects on the manifest and on the latent variables. The
LISREL model conststs of two parts. The measurement model that shows how
the latent variables are related to the indicator manifest variables. And the
structural equation model, also known as SEM that specifies the causal

relationships among the latent variables.

3.2 MEASUREMENT MODEL WITHOUT DIRECT EFFECTS

We suppose that we have p observed variables, denoted by y, and q latent

variables, denoted by z. The q latent variables (z,,zz,...,zq) are divided into

two groups. The independent, denoted by £, namely (fl,fz,...,éql) and the

dependent, denoted by 7, namely (771,772,---, qu). Note that ¢, +g, =q and

z =[§J. We have that E(£)=0 and E(7)=0. The structural equation model has
n

the form
n=An+Té+¢ & (1-Ap=TE+{ ©Bn=T¢+¢ (30)
where
e 7nisa g, x1random vector of latent dependent, or endogenous,
variables
o ¢isa g, x 1 random vector of latent independent, or exogenous,

variables
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« I'isa ¢g,xq, matrix of coefficients of the £-variables in the structural
relationship

» Alisa g, x q, matrix of coefficients of the n-variables in the structural
relationship. (A has zeros in the diagonal, and B=I - A is required to be
non-singular)

e (isa g, x | vector of equation errors (random disturbances) in the

structural relationship between 7 and £

e (is assumed to be uncorrelated with £

We now go to the measurement model, which in general has the form
y=u+Az+e 31)

where z~ N, (0,1), e~ Np(O,LP) and z is independent of e.

LISREL allows us to partition the observed variables y into two groups,

namely y, and y,of dimensions p,and p, respectively, where p,+ p,=p,

such that the p observed variables of y, are indicators of the g¢,latent

variables of £ and the p,observed variables of y, are indicators of the

g,latent variables of 5. This means that the dependent variables have

different indicators from the independent and vice versa. The error term e is

also divided into two groups, namely e, and e,with variances ¥, and

‘Y, respectively. The measurement model can now be rewritten in the form

(U :[:HA(;' Aoyz J@*(ZJ (32)

 yisa p,x1 vector of observed indicators of the independent latent
variables £
e y, isa p,xl vector of observed indicators of the dependent latent

variables 7

e elisa p, x 1 vector of measurement errors in y,

e eisa p, x 1 vector of measurement errors in y,

16



e A, isa px g, matrix of coefficients of the regression of y, on £

e A, isa p,x g, matrix of coefficients of the regression of y, on 7

e ¢, is uncorrelated with £
e e, is uncorrelated with g
e (isuncorrelated with e and e,

Let’s suppose that the variance of £ and 7 are ®.and @, respectively and

that the variance of the error term {is @, .

fJ .
is given by
n

(D:( @, ®,I'B” J -

The covariance matrix of the latent variables z =[

®,I'B" B r'o,r+e,B"

The variance-covariance matrix of the observed variables, computed from the
LISREL model (equation 31) is T=ADA +¥
(34)

Now, by substituting ® into (34) we get the covariance matrix of the observed

variables.

The covariance matrix of the observed variables under these assumptions is:

A, DA+, A, ®,I'B7'A,
— 1 '1'_1 a e l'—l & 2._1 . (35)
A,®TB7A, A, (B'T®,IB"'+B'® B, +¥,

The parameters are estimated by minimizing some measure of the distance
between the covariance matrix of the observed variables L, as it is given from formula
(35), or the correlation matrix of ¥ as it is preferable to work with the standardized
variables, and the sample covariance or correlation matrix S. We should note that if
we have p observed variables then the covariance matrix of these variables contains
p(p+1)/2 non-duplicated elements, the model won’t be identified if the number of
parameters to be estimated is more than the non-duplicated elements of the covariance
matrix. If the latter happens we will have to fix some parameters of the model in order

that the model will be identifiable.
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3.3 FACTOR ANALYSIS WITH ORDINAL OBSERVED VARIABLES
LISREL assumes that underlying every ordinal observed variable y

there is a continuous variable y*. This continuous variable y* is assumed to

follow the standard normal distribution and it is this variable that is used in

the structural equation modeling. In this way we have a set of continuous

variables. Suppose we have m categories, the relationship between y and y* is

y=ier  <y*<r, ,i1=1,2,..m
where

~0=7T,<T <Ty <.<T, | <T, =+0
The probability of a response in category i is
7, =P(y=i)= Pz, <y*<z)= [ plupu=0()-2(,,) (36)

where & is the distribution function of z* and ¢ the corresponding density

ml

function. The univariate log-likelihood is lnL(r,.)zN*Zp‘(,')*lnn'L(,‘) and the

a=1

maximum likelihood estimator of z, is

7, =0 (7, + 7, +..1,),1=1,2,...,m-1. (37)
The probabilities 7, can be estimated consistently by the corresponding

percentage p, of responses in category i. So the estimates of the thresholds

A

are 7 =0 (p, +p, +..p,) (38)
There are m-1 parameters 7,and also m-1 independent sample proportions

p,. The fit is perfect since
= (D(Ti)— (D(Ti—l)= b (39)

LISREL applies a three-stage estimation method when the manifest
variables are ordinal. At the first stage, the thresholds are estimated from the
univariate marginal distribution. At the second stage, the correlations among
the underlying continuous variables, also know as polychoric correlations, are
estimated from the bivariate marginal distributions, for given thresholds. At
the third stage, the parameters of the model are estimated by a weighted least
squares method, where the weight matrix is an estimate of the asymptotic

covariance matrix of the polychoric correlations. The first two steps are done
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in PRELIS while the third is executed in LISREL. We are not obliged to use
weighted least squares at the third stage. We can as well use maximum
likelihood or some other method. But by doing so, we assume that the matrix
of the polychoric correlations is a sample correlation matrix from a
multivariate normal distribution which is not a real assumption since the
variables are in an ordinal scale and as a consequence discrete.

Now we will estimate the polychoric correlations from the bivariate

margins. Suppose we have y /and y, which follow the standard normal

distribution. This doesn’t mean that we can assume that they follow the
bivariate normal distribution. The polychoric correlation p is the correlation
in the bivariate normal distribution of the underlying variables y,and y,. The
polychoric correlation is robust to violations of the bivariate normal
distribution (Qiuroga 1992).

The polychoric correlation can be estimated by maximizing the log-likelihood

of the multinomial distribution,
InL = ZZn,j * logfrg(@)
=] j=1
where 8 is a parameter vector that contains the thresholds and the polychoric
correlations

Where

1 2
Tal -1 %a, -

Tay  Tay
”y(g):P(yl =4, ), =a2)= I J‘¢2(u,v)1'udv (40)

2 1
Once the matrix of polychoric correlations has been calculated, we
consider this matrix to be a correlation matrix from continuous data and we
proceed to compute from this matrix the parameters of the model. It is wiser
to use weighted least squares, where the weight matrix W is the inverse of the
asymptotic covariance matrix of the polychoric correlations, instead of
maximum likelihood because the latter method assumes that our data stem
from a multivariate normal distribution, which is not a real assumption in our
case. This matrix W is symmetric. Any positive definite matrix can give
consistent parameter estimates but the asymptotic covariance matrix of the

polychoric correlations gives correct standard errors and chi-squares in large
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samples. We should note that for the calculations of the asymptotic
covariance matrix a large sample is needed. There is no specific rule about
the sample size and its relation with the number of items but a rule of thumb
that we should bear in mind is that if there are many zero cells or low
frequencies in the bivariate contingency tables then our sample should be
considered small. If this is the case, it is better to use maximum likelihood or
some other technique. If this is not the case, the loadings are fitted to the
estimated polychoric correlations by weighted least squares by minimizing
the fit function

p_i-l p
)=2.2.2.
=1 g=2

i=

g-1 A

q 3 q
ij.gh
we pij_;;tﬂ)’jl pgh_g/lglﬂ’hl (41)

h=1
if.gh . . .
where w”®"is an element of the inverse of W and A, is an element of the

matrix A denoting the factor loading for the i item and the | latent variable.

3.4 LISREL MODEL FOR ORDINAL DATA WITH COVARIATES BOTH ON
THE MANIFEST AND ON THE LATENT VARIABLES

Suppose that there are r covariates x that account together with the
latent variables z for the correlations of the p ordinal observed items and
there also k covariates w, whose effect on the latent variables we want to
investigate. The covariates x have direct effects on the latent variables,
whereas the covariates w have indirect effects through the latent variables z.
So the latent variables z induce a spurious correlation between the observed
items and the covariates w.

The measurement part of the model is changed from equation (31) to
y=u+Az+Bx+e (42)
The structural part of the model is
z=Vw+w (43)

We can apply two methods in LISREL to deal with such situations. The
first method is to find either the polychoric correlations for the case where all
variables (manifests & covariates) are on an ordinal scale or the polyserial
correlation among the covariates that are continuous with the variables
(manifests & covariates) that are on an ordinal scale and the Pearson

correlation among the continuous covariates.
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Then we get a correlation matrix with dimensions (p+k+r)x(p+k+r) and we fit
the model to this matrix to get the factor loadings and the coefficients.

The other method that we can apply in LISREL to deal with situations
where we have ordinal variables with covariates is presented by K.G.J6reskog
in the article “Analysis of Ordinal Variables 5: Covariates” (2002) that can be

found in the following web address www.ssicentral.com/LISREL/corner.htm.

We will give a short outline of Joreskog’s method.

Let us denote by b all the covariates, both those that have direct effects
on the observed variables (x), and those that affect the latent variables (w). So
b=(x,w). We should formulate a model that explains the relationship between
the underlying variables y* and the covariates b. Consider the regression of

y onb. y =a,+yb+e,. e is assumed to follow the normal distribution

with mean 0 and variance . We can fit either the probit model that uses the

normal distribution or the logit model that makes use of the logistic
distribution. Let’s suppose that
v, /b~ Nla, +7b,w?) (44)
In the model without the covariates we assumed that each of the
underlying continuous variables followed the standard normal distribution.

Now we consider that y, /b~ N(a,. +y;b,|//,.2)and the probability of a response

in category k is defined as

P(y, = k/8)=, ()~ m,.,(b) = d{————— A n J—d{ - '”"J (45)

Vi

t

N m
The likelihood of the sample is L =H{H[ﬂna(bn)k"’ lu(bn)} where p(b) is the

n=l { a=1

density function of b which is unspecified and does not contain any

parameters of interest and k, =1if y, =aand k, = 0 otherwise. The parameter

vector v as well as the parameters a, 7 and ¥ are estimated by maximizing the
above likelihood.

Now suppose we have two underlying variables y; and y, with
equations y;=ag+7:gb+eg and y, =a, +7,b+e,respectively. e and e, are

assumed to follow the bivariate normal distribution with mean 0 and

21



2

covariance matrix [Wg J then the probability that an individual 1 answers
YV Wi

kon y,and lon y,is

tt.g,k f,‘h,/ ()
2
Tighht = I J'¢ (u’v’ Pen }v'udv (46)
Ti‘g,k—l f:‘h,/—l
. Ty —d, ~ 7,0 ) : .
Where 7, = and ¢ (u,v,p) is the density

18,k

Ve
function of the standardized bivariate normal distribution with correlation p.

mye

N mp
Kngh
The likelihood function is L = H H ”rzg:h,:/p(bn) where
n=1 k=1 [=1

kngh,k/ =lif the individual n responds in category k on y,and I on y,and
Ko« = 0otherwise. By maximizing the above likelthood we estimate p,, .

Now if we consider a vector y* (pxl), it is assumed that
y*/b~N(a+T'b,¥). The rows of o and I' and the diagonal estimates of ¥ are
estimated from the univariate margins as we show below, whereas the off-
diagonal estimates of ¥ are estimafed from the bivariate margins.

From the above formulation of the model it is evident that the
estimated conditional covariance matrix of y* for given b is ¥. The estimated

unconditional covariance matrix of y* is

TVAR(D)E+\P (47)
and the covariance of y* and b is: cov(y*,b) = cov(a+I'b,b) = cov(I'b,b) =
cov(b,b)I'=VAR()I".
Hence, the estimated joint unconditional covariance matrix is

. FVAR(b)FAf‘P (48)
VAR(p)T VAR(b)

The above matrix can be used for modeling in LISREL just as sample

covariance matrix for continuous variables.
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CHAPTER 4

EQUIVALENCE OF THE ITEM RESPONSE THEORY AND THE
UNDERLYING VARIABLE APPROACH

Let’s denote by y=(y,,),,..,»,)the p ordinal observed variables. As

we have seen the IRT model is given by the formula

lmk[}/u z x Za,, zZ, +Z,B,,x,

i=12,.,p
s=1,..,c,

where }/,S(z,x) is the cumulative probability of a response in category s or

lower of item Y, for given z and x  written as

}’iS(Z,X)=ﬂ'“(Z,X)+ 71'[2(Z,JC)+...+7TB(Z,X).

The Underlying variable approach model is given by the formula

y" = u+Az+Bx+é& where A is a pxq matrix of factor loadings Ajy 2 1s a gx1
matrix of the latent variables (z,,zz,...,zq), B is a px] matrix of the parameters

of the covariates b,, X is a 1x1 matrix of the covariates (x,,x,,...,x, Jand € is a

px1 vector of measurement errors that is uncorrelated with z and x.

A necessary condition for the two approaches to be equivalent is that their
joint probability distribution must be the same.

In the IRT approach because of the axiom of local or conditional

independence the joint probability distribution of the ordinal observed

variables is:

+0 40

P(é(y,=aj fjHP —a,/z,x)h(z/ whz (49)

o - =l

In the underlying variable approach, we know that the measurements errors

are independent with each other and uncorrelated with z and x. So for given z

and x the y*’s must be independent. We have that P(y,. <a,)= P(y,.‘ <, ) So
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+0 +ac

P(ﬁ(y, =a, )) = f ﬂﬂ[P(ral_, <y < T, /z,x)h(z/w}z’z (50)

e —op =1
So the two approaches lead to similar joint probability distributions. We have

that in the IRT approach
q r
P(yx Sal.r):q)(rm—zayzj+Zbille (51)
7=l 1=1
In the structural equation modeling approach we have assumed that the
measurement €rrors &, ~ N(O,t,//,.)<:> =y N(O,l).
VY,
In the SEM framework we have that
Py, <a )=P(y,7 <t, *)= P{p, +i/1,jzj +2,B,.,x, +¢, <7, *)
Jj=l =]
£

9 r q r
% * _ - =
T, =Hy _Z/’{’ljzj _Z,del T, —H, Z’lqzj Zﬁi/xl
- ] < Jj=1 =1 o R J=1 I=1

Jor o T

(52)

R is the standard normal distribution or it can be any other distribution for

i . In order for the two approaciles (51) and (52) to be equivalent we must

N2

have ® =YV, and also we must have

Tl‘ —H l’.'l' ﬂd
T, = , A, = and b, =— (53)
2R 7

We should note that we have assumed that the variance of y* in the SEM

approach is one. Hence
q r
v, = var(a) =1- le var(z;) - Zb,f var(x,) (54)
J=1 I=1

if there weren’t any covariates affecting the latent variable then the variance

of the latter would be one and as a consequence equation (52) would be:

, =var(e)=1-3 2 - 3 b} var(z,) (53)
Jj=1 1=1

Now we know the equivalence between the parameters in the two approaches

and we will see how we can standardize the parameters of the IRT in such-a
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way that we can compare them to the parameters from the underlying variable
approach. We assume that there are covariates that affect the latent variable.
The covariance between y* and z is
cov(y*,z)=cov(pu+Az+bx+e,z)=Acov(z,z)=Avar(z) and the corresponding
correlation is

cov(y*,z) A var(z) (56)

J var( y *) var(z) } \/ (/12 var(z) +b° var(x) + y/)var(z)

and by making use of the equivalence equations (53) we get

afy Jvar(z) ~ a+/c? var(w) (57)

\/(azt// var(z)+ 2y var(x)+ w) \/(1 +a’c? var(w)+ g° var(x))

Similarly, in order to standardize the regression parameters 8 we find the

correlation of y* with x. Cov(y*,x)=cov(pu+Az+bx+e,x)=bcov(x,x)=bvar(x)

and the corresponding correlation is :

cov(y*,x) 3 bvar(x)

Jvar(y *)var(x) - \/(,12 var(z) +b? var(x) + z//)var(x)
sl gl

\/(azt// var(z)+ B2y var(x)+ z//) J(l +a’c? var(w)+ B° Var(x))

Formulas (57) and (58) are referring to vectors .If we use subscripts to get the

(58)

explicit standardization for ;and f, equation (57) can be written in the

k
a. ’ ¢ var(w
if hzﬂ jh ( h) (59)
k r
\/(1 + i a;. Z cjz.,, var (w, )+ Z B var(x, ))
j=! =1 1=1
And equation (58) becomes

B var (xI) (60)
‘/(l + a,.f.}: Cjy var (Wh)"'lz; Bi var (x, )]

j=1 k=1

following form
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CHAPTER 5 | )
GOODNESS-OF-FIT

5.1 INTRODUCTION

In this chapter we will show some methods for testing the goodness-of-fit of
the models presented in chapters 2 and 3. In the subsequent chapters we will
run two examples sing both models (IRT and LISREL) and we will infer our
conclusions regarding which model fits best the data using the goodness-of-fit

measures and the model-selection criteria presented in this chapter.

5.2 OVERALL GOODNESS-OF -FIT

Suppose we have y,,y,,..y, observed ordinal variables with m,

denoting the number of response categories of variable i. There are

P
Hm,. possible response patterns. If the sample size N 1s large compared to the

=]

number of likely response patterns, it is very possible that there will be much
occurrences in every response pattern and its expected frequency will be large
enough so that we will be able to carry out a valid chi-squared or log-
likelihood ratio test to compare the observed and the expected frequencies and
to check how good the model fits. The chi-squared test statistic, also known

as the goodness-of-fit(GF) test statistic is given by the formula

)

r=1 N?Z- r=1 7z-r

r

n 2
(nr —N”r)
Xcz;F:Z

Ay

>

(61)

Where r denotes a response pattern and », the size of a response pattern r.

The likelihood ratio test statistic is given by the formula:
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X2 =2% n | 22| = 2Ny p,1n| £ | = 2NF(6’) )
rel

Ty & V4

r

Hence, the likelihood ratio test statistic is 2N times the minimum value of the

fit function

p(é’) =3 p, In| £ (63)

7.(6)

If the model holds, both statistics have the same asymptotic
B k(k -1)
distribution under H and this is X~ with Zm, —p+pk——2— degrees of

=1

freedom. Usually we compute these statistics for every response pattern to
check how much each response pattern contributes to the overall test. The LR
test statistic has some advantages over the GF. The LR can be either positive
or negative. A positive contribution means that the model underestimates the
observed proportions, whereas a negative contribution means that the model
overestimates the observed propprtions. This does not happen with the GF
where all the contributions are positive. This is obvious from its formula
where the difference between the observed and the expected frequencies is
squared. Also the GF derives most of its value from patterns with small
probabilities, whereas the LR derives most of its value from response patterns
with large probabilities. So the fit is not influenced so much by response
patterns that occur rarely. On the other hand, the LR-statistic is not defined
for a response pattern that does not occur. Generally if the model holds the
two statistics will have similar values, whereas when the model does not hold
they can be quite different. Both tests are not valid when the number N of
individuals in the sample is not large, when the expected frequencies of some
response patterns are small and when the contingency table of some pair of
items is sparse. Joreskog and Moustaki(2001) consider two alternative ways

of reducing the distorting effects of chi-square.
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Alternative 1

Suppose we calculate the sum of the LR and the GF contributions over
those response patterns whose expected frequency exceeds a value v and use
these as test statistics. The expected frequencies are multiplied by a constant
such that their sum equals the sum of observed frequencies. These are not real
chi-square statistics since the model has not been fitted on the subset of

observations.
Alternative 2

Combine categories in such a way that all retained categories have
expected frequencies exceeding a value » and proceed to calculate GF and LR
from this reduced set of categories. Although the distorting effects of chi-
square have been reduced and the response patterns that cause the most lack
of fit have been revealed, we have no clue about what should be done to
improve the fit of the model. Two ways of improving the fit are:

1) Reduce the number of categories.

2) Eliminate the most offending variables thereby obtaining more

homogeneity for the retained variables.
The fit of the latent trait model for binary response models is treated in
Bartholomew and Tzamourani(1999). The main conclusion of this work is that
the best way to make a global test of fit is to generate the empirical sampling
distribution of the statistic (either GF or LR) using the parametric bootstrap
method. This proceeds as follows:

1) Fit the desired model

2) Generate a random sample of the same size from the population in

which the parameter values are equal to those estimated from the actual
sample.

3) Fit the model in each case and compute the chosen test of fit.

4) Compare the actual value of the statistic with the bootstrap sampling

distribution.

As we have seen we need a large sample for the chi-square statistics to be

valid. In the polytomous latent trait models it is very likely that there will be
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numerous response patterns and some of them won’t happen or they would
have low occurrences. Sparseness in contingency tables distorts the chi-
square statistics. Hence, it is possible that chi-square statistics won’t give us
any information about how well the model fits the data. We should also note
that chi-square statistics always decrease as we add parameters in the model.
So a two-factor model will have smaller chi-square than a one-factor model.
By adding parameters we get a better fit. Overfitting 1s considered as a more
serious problem than underfitting. Jéreskog and Rayment (1996) claim that if
your model overfits, it means that you are “capitalizing on chance” and some
of your factor loadings may not have a real meaning. They propose a method
for understanding when nonsense parameters are considered in the model.
You start with a single model with one factor. You compute the chi-square

and the degrees of freedom d. Then you proceed in more complicated models
(for example two factors). So you have computed X/ and d, for a number of
different factors k=1,2,3... Then you start from the simplest case where k=1
and you compute the difference X}- X/, . This difference follows the chi-
square distribution with d,-d,,, degrees of freedom. If this difference is

significant we continue to compute the same difference for larger k until it is

not significant. This would be the proper value for k.
5.3 MODEL SELECTION CRITERIA

Instead of computing chi-square statistics one can use a criterion that not only
take the value of the likelihood at the maximum likelihood solution but also
the number of parameters estimated. One such criterion is AIC given by the

formula:
AIC = —2[log l(aJ:l +2m (64)

n

where [(a) is the value of the likelihood at the maximum likelihood solution

and m is the number of model parameters. The smaller the AIC the better the
model. AIC tries to prevent overfitting by assigning a cost to the introduction

of each additional parameter. This is a model-selection criterion that shows
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which model gives the best fit. It doesn’t give any information about how

well the fitted model fits the data.

5.3 RESIDUAL ANALYSIS

The computation of the GF-statistic and the LR-statistic involves the
estimation of the probability of each response pattern. Another way to check
if the model fits the data is by examining the GF-statistic or the LR-statistic

for pairs of responses. For every possible combination of categories for every

pair of items one has to compute the predicted probabilities 7z, .

Under the assumption of conditional independence, the conditional
probability of a pair of responses in two items, for given z and without any

covariates w that affect the latent variable, is

Ply, =Ky, =1/z.x)= [ [Py, =k/ 2. x)(z/ w)P(y, = 1/ 2,x )z w)dz

g r
We have that P(y, Sk/z,x)zdb(r,k —Zag.zj+z,6”x,) where h(z/w) is the
J=1 =1

density function of z, conditional on w, and ¢ is the response function, e.g.

the probit or the logit. The latent variables are assumed to be independent

9

with standard normal distributions, so that h(z)=H (zj). The above integral
j=l

is not in a closed form. The only thing we know about the z is its probability
distribution that we have assumed to be the standard normal. We can
approximate the integral using Gauss-Hermite quadrature.

So
P(y,. =kﬂyj =l/z,x)= I...J-P(y, =k/z,x)P(yj =l/z,x)1(z1 /w)..h(zq /w)dzl..dzq

= iVZqP(y, = k/z,x)P(yj =l/z,x)h(zl /w)..h(zq /w)

4 t

(65)

q

The points for the integral approximations are the Gauss-Hermite
quadrature points given in Straud and Sechrest(1966). In this way we can
compute the probability of pairs of responses for all pairs of items or even for
triplets of responses or for the whole response pattern. Since we have

computed the probabilities of every pair of items we continue to calculate the
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LR chi-square statistic or the GF chi-square statistic. The smaller they are the
better the model. If a chi-square residual or a LR residual is large, for
example bigger than 4, then probably the model does not fit well this pair of

responses.
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CHAPTER 6

FIRST EXAMPLE

6.1 INTRODUCTION

The first data set consists of five ordinal variables (y,,yz,y3,y4,y5)
given below.

On the whole do you think it should or not be the government’s responsibility
to...

e provide a job for everyone who wants one. [JobEvery]

e keep prices under control [PriCon]

e provide a decent standard of living for the unemployed [LivUnem]

e reduce income differences between the rich and the poor [IncDiff]

e provide decent housing for those who can’t afford it
The response alternatives given to the respondents are: definitely should be,
probably should be, probably not be and definitely should not be. Missing
values seems not to be a serious problem in this example. Item nonresponse
varies from 2% to 6% among the items and we proceed by doing listwise
deletion, meaning that all missing values will be excluded from the analysis.
After we excluded the missing values we were left with 822 respondents.

A covariate x that is constructed to measure left to right political identification
is used, after it has been standardized, as a continuous explanatory variable for the
manifest ordinal variables. This variable is available in the 1996 British Social
Attitudes (BSA) survey and it has been constructed from a set of five items that are
related to redistribution and equality. It is usually used for distinguishing party
identification (Heath, Jowell, Curtice and Witherspoon 1986). The covariate is a latent
variable constructed from the same sample in a different survey. So when we have a

model with one factor and the covariate, we could consider it as a two-factor model.

6.1 PRELIS STEP

We start the analysis by fitting the measurement model with no direct

effects and we investigate whether the five items measure a unidimensional

latent trait. Each item has four categories, thus there are 4° =1024 possible

response patterns. Since we have only 822 respondents it is reasonable to
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presume that not every response pattern can be present in the data. In fact we
notice that there are only 252 different response patterns. The most common
response pattern is that of answering definitely should be on all five items
occurring in 88 cases, followed by that of answering probably should be,
which occurred in 41 cases. We should note that 131 out of the 252 different
response patterns were observed only once and that 51 response patterns only
twice. Probably this is a clue that our sample is small. The 15 most common
response patterns are given in table 1 and it is interesting to observe that there
is no response ‘definitely should not be’ in any of them. It is possible that this

form of questions may deter respondents from taking a very negative stand.

Table 1:Example 1: 15 most common response patterns.

88 1 1
41
23
22
22
19
18
17
15
14
13
11
11
10

10

N = NN RN =2 N Wa N WRNNNMDND -
IO CREPE VO S O S SR
N =N 2 2 NN RNNMNRNNDDND -
N = =2 a2 a NN W = WN = o N
A = A a4 O NN NN 2NN NNN

The percentage for each category of every item are given in table 2.

34



Table 2: Example 1: Frequency distributions for the ordinal observed items.

JobEvery PriCon LivUnem IncDiff Housing
Definitely 30 433 29.3 36.4 37.6
should be
Probably should 38.8 41.7 49 31.8 50.9
be
Probably not be 19.3 10.2 15.1 21.5 9.2
Definitely 11.8 4.7 6.6 10.3 2.3
should not be

We see that the bulk of the answers are in the first two categories.
Especially for the PriCon and the Housing item. This is an indication that we
can combine the last two categories either for these two items or even for all

items and perform the analysis again.

!
With § variables there are ﬁ—z—) =10 pairs of variables. The contingency

tables for every pair of variables are given in table 3:

Table 3: Example 1: Bivariate distributions for the ordinal observed items.

PriCon LivUnem IncDiff

JobEvery AS A D DS AS A D DS AS A D DS
AS 187 48 9 3 148 72 16 11 158 67 13 9
118 175 22 4 65 201 44 9 108 123 76 12
D 30 88 29 12 18 96 35 10 21 56 56 26
DS 21 32 24 20 10 34 29 24 12 15 32 38

LivUnem IncDiff Housing
PriCon AS A D DS AS A D DS AS A D DS
AS 162 139 35 20 199 98 43 16 190 139 23 4
56 209 60 18 77 137 90 39 87 216 35 5
D 13 39 21 11 14 17 38 15 20 44 15 S
DS 10 16 8 5 9 9 6 15 12 19 3 S
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Housing

JobEvery AS A D DS
AS 159 79 7 2
101 192 22 4
D 28 100 27 4
DS 21 47 20 9
IncDiff Housing
LivUnem AS A D DS AS A D DS
AS 161 58 15 7 191 50 0 0
A 117 154 104 28 101 278 22 2
D 13 37 48 26 8 76 37 3
DS 8 12 10 24 9 14 17 14
Housing
IncDiff AS A D DS
AS 195 97 S 2
71 172 15 3
D 31 109 36 1
DS 12 40 20 13

There are two zero cells in the table of LivUnem and Housing. The fit

function is not defined if p, =0. Prelis skips such zero cells in order to

compute the matrix of the polychoric correlations but too many zero cells can
be a problem. The fact that there are some zero cells in the bivariate
contingency tables is another indication that our sample is small.

As we have seen the assumption of underlying bivariate normality is
needed for the calculation of the polychoric coefficients. LR-chi-square is
very sensitive to violations of the underlying bivariate normality and for this
reason Joreskog(2001) has developed a measure of population discrepancy for
structural equation models named Root Mean Square Error of
Approximation(RMSEA). He has found that there are no serious effects of
non-normality unless RMSEA is larger than 0.1. The last column of the table

4 is the P-Value for the test of the hypothesis that the population value of
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RMSEA is less than 0.1. None of the pairs of variables has RMSEA less than

0.1, hence there are no distortions due to non-normality.

Table 4: Examplel: Correlations and test statistics.

Test of Model Test of Close
Fit
Variable vs. Variable Correlation Chi-Squ. D.F. P-Value RMSEA P-Value

PriCon vs. JobEvery 0.558 (PC) 35.670 8 0.000 0.065 0.996
LivUnem vs. JobEvery 0.505 (PC) 51.062 8 0.000 0.081 0.923
LivUnem vs. PriCon 0.314 (PC) 40.389 8 0.000 0.070 0.988
IncDiff vs. JobEvery 0.573 (PC) 23.943 8 0.002 0.049 1.000
IncDiff vs. PriCon 0.451 (PC) 30.638 8 0.000 0.059% 0.999
IncDiff vs. LivUnem 0.552 (PC) 22.298 8 0.004 0.047 1.000
Housing vs. JobEvery 0.462 (PC) 20.539 8 0.008 0.044 1.000
Housing vs. PriCon 0.328 (PC) 27.854 8 0.001 0.055 1.000
Housing vs. LivUnem 0.712 (PC) 51.742 8 0.000 0.082 0.916
Housing vs. IncDiff 0.566 (PC) 28.798 8 0.000 0.056 0.999

The matrix of polychoric correlation that is going to be used for further modeling in

LISREL is given in table 5. All the correlations are highly significant.

Table 5:Example 1: Matrix of polychoric correlations.

JobEvery PriCon LivUnem IncDiff Housing
JobEvery 1.000
PriCon 0.558 1.000
LivUnem 0.505 0.314 1.000
IncDiff 0.573 0.451 0.552 1.000
Housing 0.462 0.328 0.712 0.566 1.000

All the results of the first five tables, as well as the thresholds for the LISREL
model (table 6) were computed from PRELIS using input 1.
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PRELIS/LISREL input 1: Example 1:

Computing Polychoric Correlations and Asymptotic Covariance Matrix
Data Ninputvars = 5

Labels

JobEvery PriCon LivUnem IncDiff Housing Pollden

Rawdata = goverst.dat

Clabels JobEvery- Housing 1=AS 2=A 3=D 4=DS

Output BT MA=PM PM=goverst.PM AC=goverst. ACP

The estimated thresholds for the one-factor model with no direct effects under

the LISREL & IRT are given in table 6.

Table 6: Example 1: Estimated thresholds for the one-factor model from the
IRT and the LISREL model.

IRT PRELIS
Item Category A A
thresholds (tis ) thresholds (tis j
JobEvery 1 -1.26 -0.523
2 1.24 0.492
3 2.95 1.185
PriCon ! -0.32 -0.169
2 2.16 1.038
3 3.57 1.67
LivUnem ! -1.49 -0.544
2 2.26 0.784
3 4.28 1.509
IneDiff ) -0.9 -0.348
2 1.3 0.471
3 3.44 1.262
Housing 1 -0.89 -0.316
2 3.41 1.197
3 5.81 1.993
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6.3 FITTING THE MODEL TO THE MATRIX OF POLYCHORIC
CORRELATIONS

We cannot directly compare the factor loadings of the IRT model with
those of LISREL because they are measured on a different scale. In order to
make them comparable we have to standardize those of IRT. In order to
standardize the loadings of IRT we find the correlation of the underlying
continuous variable with the latent variable and we use the equivalence
equations from equation (53). If we consider that there are no direct effects x
and there are no covariates w that affect the latent variable and as a
consequence the variance of the latent variable is unity, then equation (56)

cov(y*,z) = 2/1 . So equation (59) becomes T
Jvar(y *)var(z) 22 +y \/l+ia,§
J=1

and we use this equation to standardize the loadings. This equation gives the

changes to

correlation between y* and z under the equivalence of IRT and SEM. The
standard errors are not comparable too and we cannot make them comparable
by using the same way as for the coefficients.

In the structural equation modeling approach we estimate the loadings
by using two different methods. Namely weighted least squares and maximum
likelihood. Although the loadings in the second way are computed by
maximum likelihood, the standard errors and the chi-squares are computed by
weighted least squares using the asymptotic covariance matrix, hence, we get
the correct chi-squares and standard errors in large samples. The LISREL
input 2 is used to fit the model to the matrix of polychoric correlation

estimated in PRELIS input 1.
PRELIS/LISREL input 2: Example 1:

Testing Measurement Model

Observed Variables: JobEvery PriCon LivUnem IncDiff Housing
Correlation Matrix from File goverst.PM

Asymptotic Covariance Matrix from File goverst. ACP

Sample Size: 822

Latent Variable: z
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Relationships:
JobEvery PriCon LivUnem IncDiff Housing = z

Path Diagram
End of Problem

The loadings of LISREL, IRT and the standardized loadings of IRT as well as

their standard errors are given in table 7.

Table 7: example 1: Estimated loadings for the one-factor model from the IRT

and the LISREL model.

IRT LISREL
WLS ML
ftem unstandardized s.e standardized loadin s.e loading s.e
loadings « loadings st gs A s A
JobEvery 1.78 0.13 0.87 0.79 0.024 0.69 0.029
PriCon 1.18 0.11 0.76 0.62 0.034 0.52 0.039
LivUnem 2.24 0.16 0.91 0.81 0.025 0.79 0.027
IncDiff 2.1 0.16 0.9 0.77 0.024 0.75 0.027
Housing 2.31 0.21 0.92 0.82 0.024 0.78 0.026

We see from table 7 that the loadings estimated from the item response
theory approach using a logit function, as a link function, are in all cases
larger that those of the underlying response variable approach. The two
approaches use different distributional assumptions. In the IRT case we make
use of the logistic distribution. If we accept that the results for the IRT model
using a logit function are 1.79 times the results of the IRT model using a
probit function, and as a result of this assumption divide all IRT loadings with
1.79 and then standardize them using equation (59), we will see that the new
loadings are smaller than the corresponding LISREL models. In the LISREL
model there are larger differences among the loadings that in the IRT case. It
is interesting to see that in LISREL, the results we get when we use weighted
least square are different from the results of maximum likelihood. The path

diagram for the LISREL model with weighted least squares is given in figure

1:
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Figure 1: Example 1: Path diagram for the LISREL model with one latent

variable when we use weighted least squares.

6.3.1 GOODNESS-OF-FIT OF THE MODEL
One way to check the fit of the model is by looking at the chi-squared

residuals for the two-way margins. The GF cell contributions in row i and

(o,.j —€ )Z

column j also known as  chi-squared residual is ————— where o, is the

€

observed frequency for a pair of items which are given in Table 3 and e, is

the expected frequency for a pair of items and is estimated using equation
(64). The sum of all these contributions is the GF-statistic. We will use
mainly the GF-statistic instead of the LR-statistic because the latter is not
defined if the observed frequency for a bivariate margin is zero, something
that occurs in our data and especially for different values of the covariate
there are many zero observed bivariate frequencies that make the calculation
of the LR chi-square statistic not possible. We could assume that every chi-
squared residual follows the chi-square distribution with one degree of
freedom and as a consequence any chi-Squared residual greater than four is an
indication of poor fit. For the first pair of variables, namely JobEvery and
PriCon the expected frequencies under the two approaches are given in tables
8 and 9 respectively. The expected frequencies come out if we multiply
equation (65) by the sample size N. We can get the corresponding observed

frequencies from Table 3.
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Table 8: Example 1: Expected frequencies for the first pair of items for the

one-factor LISREL(WLS) model

PriCon
JobEvery 1 2 3 4
1 164.94 72.59 7.72 1.60
2 136.43 145.13 28.60 9.19
3 41.40 80.77 25.2 11.6
4 13.04 44.79 22.42 16.59

Table 9: Examplel : Expected frequencies for the first pair of items for the

one-factor IRT model

PriCon
JobEvery 1 2 3 4
1 158.75 76.77 10.88 3.99
2 137.07 139.95 28.76 11.7
3 44.99 76.89 23.22 10.98
4 18.76 45.93 20.61 12.76

The residuals for the first pair of variables for the LISREL and the IRT model

are given in tables 10 and 11 respectively.

Table 10 : Example 1: Residuals for the first pair of items for the one-factor

LISREL(WLS) model

PriCon
JobEvery 1 2 3 4
1 2.95 8.33 0.21 1.21
2 2.49 6.15 1.52 2.93
3 3.14 0.65 0.57 0.02
4 4.85 3.65 0.11 0.7

Table 11 : Example 1: Residuals for the first pair of items for the one-factor

IRT model

PriCon
JobEvery 1 2 3 4
1 5.03 10.78 0.32 0.25
2 2.65 8.78 1.59 5.06
3 4.99 1.60 1.44 0.09
4 0.27 4.22 0.56 4.11

|
‘.
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As we see using the LISREL approach there are 3 Chi-Squared
residuals greater than four, namely the residuals for pairs (1,2),(2,2) and
(4,1). The sum of the GF cell contributions is 39.48. For the IRT approach
there are 7 Chi-Squared residuals greater than four, namely the residuals for
pairs (1,2), (1,2), (2,2), (2,4), (3,1), (4,2) and (4,4). The sum of the GF cell
contributions is 51.75. We extend this analysis to the rest of the pairs and we
see that there are chi-squared residuals exceeding four in all pairs of items
and in most cases there are many. These are indications that the model does
not fit. With the exception of the first pair of variables the GF is much larger
for the LISREL model. Based on these findings it is obvious that none of the
models give a good fit. In the case of the LISREL model we see that the
model does not give a good fit for response categories 1 and 4 for all pairs of
items. Although, using both approaches the results are not satisfactory, we see
that the total GF contribution of the IRT model is less than half of that of the
LISREL model. Every pair of variables has 16 possible combinations of
response categories and if the GF contribution for a pair of items is larger
than 16*4=64 then the fit is bad. We see from tables (12), (13) and (14) that
in the IRT case this does not happen for any pair of variables, whereas, it
happens for some pairs in the LISREL model. The average GF-contribution is
less than four in the IRT model and if we had used this as' a measure of
goodness-of-fit we would have accepted the model. Table 12 shows the chi-
squared residuals that exceed four for the one-factor IRT model, whereas
tables 13 and 14 show the chi-squared residuals that exceed four for the one-

factor LISREL model using weighted least squares and maximum likelihood

respectively.
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Table 12: Example 1: Chi-squared residuals greater than four, for two-way

margins, from the IRT model with one latent variable and four response

categories

item 2 3 4 5
/ (1.2), (2.1), (2.2), (1.2), (1.4) 2.4) (4.1)
(2.4).(3,1).(4.2).(4.4)
SUM(GF) 50.75 56.24 18.71 29.52
SUM(LR) 54.92 42 .46 19.7 22.68
2 (1,4), (4.1) (3.3) (1.3), (4,1)
SUM(GF) 50.69 24.28 31.83
SUM(LR) 41 .47 24.27 29.17
3 (4.1), (1.2), (1.4), (2,2),
(4.3) (3.3), (4.1), (4.2)
SUM(GF) 21.19 59.06
SUM(LR) 17.7
4 (3.4), (4.1)
SUM(GF) 24.45
SUM(LR) 23.65
TOTAL(GF)=367.72
TOTAL(LR)5276

Table 13: Example 1: Chi-squared residuals greater than four, for two-way

margins, from the LISREL model(WLS) with one latent variable and four

response categories)

item 2 3 4 5

1 (1,2), (2,2), 4,1)  (L,2). (1.3), (1.4). (4,1) (1.4) (1.3), (1.4). (4,1)
SUM(GF) 39.48 200.14 36.06 144.59
SUM(LR) 40.79 78.45 25.69 65.68

2 (1.4). (4.1) (4,1) (1.3). (1.4), (3.1), (4.1).

(4.3)

SUM(GF) 119.36 36.53 81.08
SUM(LR) 71.18 31.3 54.86

3 (1.4, (1.2),(2.1), (22) (4.1)

(4.1))

SUM(GF) 49.62 89.58
SUM(LR) 25.83

4 (1.4), (4.1)
SUM(GF) 51.87
SUM(LR) 34.67

TOTAL(GF)=848.32
TOTAL(LR)=432.46




Table 14: Example 1: Chi-squared residuals greater than four, for two-way
margins, from the LISREL model(ML) with one latent variable and four

response categories)

item 2 3 4 5
i (1,1), (1,2), (1.1). (1.3). (1.4), (1.4), (2.4), (1.3), (1.4), (2,1). (4.1}
(2,1), 3.1), (2.1). (4.1) (4.1). (4.4)
(4,1), (4,3), (4,4)
SUM(GF) 94 64 157.75 55.75 125.36
SUM(LR) 87.17 86.41 17.83 66.21
2 (1,2), (1,4). (2,1), (2,1), (3.3). (1,3), (1.4). (3.1). (4.1)
(4,1) (4.1), (4,4)
SUM(GF) 95.25 45.17 72.06
SUM(LR) 59.78 38.95 49.21
3 (L4). (4.1)) (1.1),(L2), (2,1), (2.2),
(3.3). (4.1). (4,2), (4.4)
SUM(GF) 49 98.27
SUM(LR) 29.62
4 (1.4). (3.3), (4.1), (4.4)
SUM(GF) 61.34
SUM(LR) 38.99

TOTAL(GF)=854.60695
TOTAL(LR)=504.16495

Although in Table 12 there are some large chi-squared residuals none
of the GF contributions for any pair of items is larger than 64. Tables 13 and
14 show that Lisrel does not give such a good fit. We have less large chi-
squared residuals when we use weighted least squares but the total GF almost

the same as when we use maximum likelihood.

6.4 LATENT VARIABLE MODEL WITH ONE FACTOR, FOUR
RESPONSE CATEGORIES AND ONE COVARIATE

Now we consider the one-factor model allowing for the political
identification of the individuals to affect directly the 5 items. When we fit the
model we consider that the covariate together with the latent variable
accounts for the interrelationships among the items. In LISREL we can think
of two ways to fit the model. The first way is to construct the correlation
matrix among all 6 variables including the covariate. Since the observed
variables are ordinal and the one covariate continuous, the polychoric
correlation is estimated among the manifest ordinal variables and the

polyserial correlation is estimated between the continuous covariate and each
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observed ordinal variable. This way doesn’t allow us to use the asymptotic
covariance matrix and we will fit the model by using maximum likelihood. If
we try to use the asymptotic covariance matrix we will get the following
warning “The number of variables in the matrix to be analyzed exceeds the
number of variables used to compute the Asymtotic Covariance Matrix”. The
other way is to compute the joint unconditional covariance matrix and its’
asymptotic covariance matrix as it is shown in the presentation of the LISREL
model in section (3.3) and to fit the model using this covariance matrix.

The covariate takes numerous values, to check the fit of the model we
take three of its values with many occurrences and we check how good the
model predicts the observed frequencies of the bivariate margins for these
values. We select the values such that the first one comes from the left tail of
the distribution, the second from the middle and the third from the right tail.
We select the values —1.239,-0.126 and 0.987 with frequencies 44,103 and 53
respectively.

6.4.1 IRT MODEL WITH DIRECT EFFECTS
Tables 15 and 16 give the thresholds and the factor loadings respectively of

the one-factor IRT model with one covariate affecting the five indicators.

Table 15: Example 1: Estimated thresholds from the IRT model.

IRT
Item Category A s.e.
thresholds (tis )

JobEvery 1 -1.24 0.22
2 1.18 0.12

3 2.88 0.18

PriCon 1 -0.33 0.16
2 2.11 0.11

3 3.53 0.2

LivUnem 1 -1.64 0.3
2 2.47 0.17

3 4.65 0.29

IneDiff 1 -0.93 0.18
2 1.26 0.14

3 3.45 021
Housing ) -0.99 0.28
2 3.83 0.3
3 6.51 0.62
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Table 16: Example 1: Estimated loadings and coefficients for the IRT model.

IRT
Item o S.€. B8 s.e.
JobEvery 1.11 0.1 -1.27 0.1
PriCon 0.68 0.09 -0.86 0.08
LivUnem 2.21 0.18 -1.26 0.12
IncDiff 1.34 0.12 -1.58 0.11
Housing 2.39 0.27 -1.34 0.17

The standardized loadings and the regression coefficients of the model using

equations (59) and (60) respectively are given in Table 17.

Table 17: Example 1: Standardized loadings and coefficients from the IRT

model.
item
standardized standardized
o g8

JobEvery 0.57 0.65

PriCon 0.46 0.58
LivUnem 0.81 0.46

IncDiff 0.58 0.69 '
Housing 0.82 0.46

It is evident from Table 17 that the covariate has a bigger effect on the items

1, 2 and 4 where (8 is large and the corresponding loadings have decreased by

34%, 26% and 35% respectively.

Tables 18,19 and 20 give the chi-squared residuals for the three values of the

covariate we have chosen a-priori.
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Table 18: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor IRT model with covariates, when the covariate

takes the value —1.239

item 2 3 4 5
1 (1.4) (1.4)
sum(GF) 10.53 41.28 13.12 6.96
2 (1,4)
sum(GF) 19.43 7.07 116
. (4.2) (4,2)
sum(GF) 34.3 14.15
! (4.1)
sum(GF) 12.41
TOTAL(GF)=162.42

Table 19: Example 1: Chi-squared residuals greater than four, for two-way
margins, for the one-factor IRT model with covariates, when the covariate

takes the value —0.126

item 2 3 4 5

1 (2,1). (2,2), (3.4). (4.4)  (1,2), (1,3) (1,3). (1.4)
sum(GF) 29.48 21.64 8.72 26.59

2 (4,1) (2,2), (4,1) (4.1)
sum(GF) 57.29 30.6 33.95

3 (4.1)
sum(GF) 18.74 11.2

4 (1,4)
sum(GF) 28.67

TOTAL (GF) =266 .88
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Table 20: Example 1: Chi-squared residuals greater than four, for two-way
margins, for the one-factor IRT model with covariates, when the covariate

takes the value 0.987

item 2 3 4 5

1 4,1) (4,1)
sum(GF) 15.38 12.55 13.16 26.54
2 G.n (1,1 G.1
sum(GF) 19.38 18.78 14.53
3 “4,1)
sum(GF) 11.92 11.82
4 3,1
sum(GF) 10.76

TOTAL(GF)=154.84

It 1s evident from Tables 18,19 and 20 that the fit in the IRT model has
improved in the three cases we examined. The covariate together with the
latent variable gives a very good fit. The “problematic” chi-square residuals
are only a few and the total GF has decreased in comparison with the one-
factor model without the covariate in all three cases. The reduction in the
total GF for the values -1.239,0.126 and 0.789 is 56%,27% and 58%
respectively. We should note that although we give the chi-squared residuals
and the total GF for three values of the covariate we have checkéd the fit for
many other values of the covariate and they all give similar results. Also we
should note that most of the “problematic” chi-squared residual involve the

response categories 1 and 4.

6.4.2 LISREL MODEL WITH DIRECT EFFECTS WITH THE USE OF
THE MATRIX OF POLYSERIAL AND POLYCHORIC

CORRELATIONS
The PRELIS input 3 is used for the estimation of the matrix of polychoric and

polyserial correlations.
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PRELIS/LISREL input 3: Example 1:

Computing Correlation Matrix
Data Ninputvars = 6

Labels

JobEvery PriCon LivUnem IncDiff Housing Pollden
Rawdata = goverst.1s8

Clabels JobEvery-Housing 1=AS 2=A 3=D 4=DS
Output MA=PM PM=goverst.PM AC=goverst ACC WP

Table 21 gives the correlation matrix that is going to be used for
finding the parameters of the model with the covariate. This is a matrix of
polychoric correlations with the exception of the last row where it gives the
polyserial correlations of the covariate with the rest of the items. We will use
this as a correlation matrix to fit the model by considering that the covariate

Pollden together with the latent variable accounts for the interrelationships

among the items.

Table 21: Example 1: Matrix of Polychoric and Polyserial correlations

JobEvery PriCon LivUnem IncDiff Housing PolIden
JobEvery 1.000
PriCon 0.558 1.000
LivUnem 0.505 0.314 1.000
IncDiff 0.573 0.451 0.552 1.000
Housing 0.462 0.328 0.712 0.566 1.000
PolIden 0.531 0.412 0.399 0.582 0.411 1.000

As we see from Table 21 the covariate has significant correlations with all
items and it is more correlated with items 1 and 4. So the introduction of the
covariate in the model is expected to decrease the magnitude of all loadings

and especially of the loadings of the items 1 and 4.
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LISREL input 4 gives the code used in LISREL to fit the one-factor model

with the covariate.
PRELIS/LISREL input 4: Example 1:

MIMIC Model
Observed Variables: JobEvery PriCon LivUnem IncDiff Housing Pollden

Covariance Matrix from File goverst.PM

!Asymptotic Covariance Matrix from File goverst. ACC
Sample Size: 822

Latent Variables: JOBEVERY PRICON LIVUNEM INCDIFF HOUSING
POLIDEN ETA

Relationships:

JobEvery=1*JOBEVERY

PriCon=1*PRICON

LivUnem=1*LIVUNEM

IncDiff=1*INCDIFF

Housing=1*HOUSING

Pollden=1*POLIDEN

Set the error variances of JobEvery-Pollden to 0
JOBEVERY=0.5*ETA POLIDEN

PRICON LIVUNEM INCDIFF HOUSING= ETA POLIDEN
Path Diagram

Set the correlations of POLIDEN-ETA to 0

Method: Maximum Likelihood

End of Problem

The path diagram for the LISREL model is shown in figure 2. For the
calculation of the model we had to construct six latent variables, identical to
the observed variables, and we also had to set a value for a loading in order to
identify the scale for the latent variable, which in turn identifies the scale for
the item parameters, in our case we chose 0.5 for the first loading. Once we

have found our estimates we standardize the latent variable and find the new
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estimates in order to make them comparable with the estimates from the IRT

approach. All loadings and coefficients are significant.

Figure 2: Example 1: Path diagram for the LISREL model with covariate

effects, using the matrix of polyserial and polychoric correlations.

Table 22 gives the standardized loadings and coefficients of the IRT method
and that of the LISREL method.

Table 22 : Example 1: Estimated loadings and coefficients of the one-factor

model with covariates

item Loadings Coefficients
IRT « LISREL A IRT B8 LISREL b
JobEvery 0.57 0.42 0.65 0.53
PriCon 0.46 0.29 0.58 0.41
LivUnem 0.81 0.73 0.46 0.4
IncDiff 0.58 0.47 0.69 0.58
Housing 0.82 0.71 0.46 0.41

Both the loadings and the coefficients are larger in the IRT model. The

different signs for the coefficients in Table 22 are caused by the different

model assumptions and it is not he sign that we compare but the magnitude of

the coefficients. Now we test the fit of the model for the same values of the

covariate as in the IRT case.
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Table 23: Example 1: Chi-squared residuals greater than four for two-way

margins for the one-factor LISREL model with covariates, when the covariate

takes the value —1.239

item 2 3 5
1 (L,1), (2,1), (2.2), 3,2), (4,1), (1,2), (1.1), (1,3), (L1), (1,3),
3.3), 4. (1,4) (2,2), (1,4), (2,2), (2,1), (2,2),
(2.4), 3,1), 2.3), 3,2), (3.2), (4,1)
3,3), 4.2 4,1)
sum(GF) 179.82 208.72 472.66 127.11
2 (1.4), (2,2), (1,1), (1,2), (L1), (1,3),
(3,3) (1,3), (1,4), (2.2), (3,2)
(2,2), (2,3),
3.2)
sum(GF) 115.61 306.37 21.67
3 1,1), (1,2), (1,1), (4,2),
(1,3), (2,2), 4,3)
(2,3), (2,4),
(4,2)
sum(GF} 518.11 95.84
4 (1,1), .0,
2,2), 2.3),
3.0, (3,2,
4,1)
sum(GF) 736.59

TOTAL(GF)=2782.49

Table 24: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor LISREL model with covariates, when the

covariate takes the value -0.126

item 2 3 4 5

1 2,1), (2,2), (1,3) (1,3), (1,4), (3,3)
(3.4

sum(GF) 38.41 14.19 9.54 28.89

2 4,1) 2,2), (4,1) (1,2), (2,2), (4,1)

sum(GF) 75.25 36.98 44.03

3 (2,2), 4,1) 4.1)

sum(GF) 21.04 17.94

4 (1,4), (2,2), (3,3)

sum(GF) 36.06

TOTAL(GF)=322.32
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Table 25: Example 1: Chi-squared residuals greater than four, for two-way
margins, for the one-factor LISREL model with covariates, when the

covariate takes the value 0.987

item 3 3 4 5
I (1,1), (2,2), (4,2) (1,1), (2,2), (1,1), (2,1), (1), (2,1),
(3,2), (4,4) (3,3) 4,1), 4,3)
sum(GF) 45.46 34.36 119.58 39.08
2 (1,1), (2,2), (1,1), (2,2), (1,1), (2,1), (3,1)
3.1 (2,3), (2.,4)
sum(GF) 38.2 137.52 34.8
3 (LD, (2,1),  (1,1),(2,1), (4,1)
(2,3), 4,4)
sum(GF) 69.23 40.53
4 (L, 1), (1,2),
(3,1), (4,2), (4,3)
sum(GF) 60.35
TOTAL(GF)=619.11

With the exception of the value —0.126, where the fit has improved , in all
other cases the fit has deteriorated considerably. For the value —0.126 as we
see in table 24 there are only a few chi-squared residuals exceeding four and
the total GF has decreased by 62%. For the value 0.987, although there are
more chi-square residuals exceeding four than in the latent variable model

with no covariates, the average GF-contribution has decreased by 27%.

6.4.3 LISREL MODEL WITH DIRECT EFFECTS WITH THE USE OF
THE JOINT UNCONDITIONAL COVARIANCE MATRIX

Now we will fit the model using the joint unconditional covariance matrix
as it was presented in section 3. PRELIS input 6 gives the conditional
covariance matrix of the 5 items on the covariate and it also gives the joint

unconditional covariance matrix.
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PRELIS/LISREL input 6: Example 1:

Computing Covariance Matrix

Data Ninputvars = 6

Labels

JobEvery PriCon LivUnem IncDiff Housing Pollden
Rawdata = goverst.dat

Clabels JobEvery-Housing 1=AS 2=A 3=D 4=DS
Fixedvariables: Pollden

Output MA=CM CM=goverst.CM AC=goverst. ACC WP

Although, we have taken the covariate into account, we see that all correlations
remain highly significant, as we see from the conditional covariance matrix (table 28),
meaning that the covariate alone does not account for the correlations of the variables
underlying the ordinal variables. Probably the introduction of a latent variable along
with the covariate will account for the correlations among the observed ordinal

variables.

Table 26 : Example 1 : Conditional Covariance Matrix of the items on the

covariate Pollden

JobEvery PriCon LivUnem IncDiff Housing
JobEvery 1.000
PriCon 0.434 1.000
(0.037)
11.857
LivUnem 0.375 0.169 1.000
(0.037) (0.043)
10.012 3.964
IncDiff 0.376 0.278 0.428 1.000
(0.038) (0.041) (0.036)
10.023 6.763 11.799
Housing 0.314 0.184 0.657 0.441 1.000
(0.040) (0.044) (0.028) (0.037)
7.776 4.189 23.190 11.839
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The joint unconditional covariance matrix that is going to be used for finding

the loadings and the coefficients in the second way is given in Table 27.

Table 27:Example 1: Unconditional covariance matrix

JobEvery PriCon LivUnem IncDiff Housing PolIden
JobEvery 1.388
PriCon 0.714 1.202
LivUnem 0.645 0.364 1.188
IncDiff 0.818 0.598 0.736 1.504
Housing 0.593 0.386 0.851 0.760 1.201
PolIden 0.623 0.450 0.434 0.710 0.449 1.001

We see from table 27 that as in the matrix of polychoric and polyserial
correlations (table 10) the covariate is more related to items 1 and 4

Now we will present the LISREL results that come out from using the
joint unconditional covariance matrix as we showed in part 3. LISREL input 6
fits the model to the covariance matrix estimated in PRELIS (input 5)

!

PRELIS/LISREL input 6: Example 1:

MIMIC Model

Observed Variables: JobEvery PriCon LivUnem IncDiff Housing Pollden
Covariance Matrix from File goverst.CM

Asymptotic Covariance Matrix from File goverst. ACC

Sample Size: 822

Latent Variables: JOBEVERY PRICON LIVUNEM INCDIFF HOUSING
POLIDEN ETA

Relationships:

JobEvery=1*JOBEVERY

PriCon=1*PRICON

LivUnem=1*LIVUNEM

IncDiff=1*INCDIFF

Housing=1*HOUSING

Pollden=1*POLIDEN

Set the error variances of JobEvery-Pollden to 0
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JOBEVERY=0.5*ETA POLIDEN

PRICON LIVUNEM INCDIFF HOUSING= ETA POLIDEN
Path Diagram

Set the correlations of POLIDEN-ETA to 0

End of Problem

Using the joint unconditional covariance matrix and weighted least squares

the results we get are shown in the path diagram in figure 3.

Figure 3: Example 1: Path diagram for the one-factor LISREL (WLS) model

with covariates.
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All the loadings and the coefficients are significant. We will find the
“problematic” chi-squared residuals for the same values of the covariate as in
section 6.3.2. Tables 28,-29 and 30 give these chi-squared residuals for the
values —1.239, -0.126 and 0.987 respectively.
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Table 28: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor LISREL model with covariates, when the

covariate takes the value —1.239

item 2 3 4 5
! (1,0, (2,1), (2,2), | (1,1), (1,4), (1,1),(1,3), (1,1),(1,3),
(3.2), (3.3), (4. (2,2), (2,4),(3.1), (1,4, (2.1), (2,2),
(3,3, (4.2) (2.2),(2,3), (3.1).3,2),
(3,2), (4,1) 4,1)
sum{GF) 157.56 265.71 539.85 214.3
2 (1,1), (2,4), (1,1), (1,2), (1,1), (1,3),
(3.3) (1.3, (14, (3.2
(2,2), (2,3),
(3.2)
sum(GF) 117.97 335.57 24.82
3 1,1), (1,2), (1,3), (1,1), (4,2),
(2,2), 2,3), (4,3)
(2.4), (4,2),
sum(GF) 518.42 96 .82
4 (0, 2.1),
2,2), 2.3),
3.1, (3.2),
(4.1)
sum(GF) 870.34

TOTAL(GF)=3141.36

Table 29: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor LISREL model with covariates, when the

covariate takes the value —0.126

item 2 3 4 5

1 2,1), (2,2), (3,4), (1,3), (1,3), (1,4)
(4,4) (1,4)

sum(GF) 29.33 27.62 11.16 68.7

2 4,1 (2,2), (4,1), (1,4), (4,1)

(4,2)

sum(GF) 141.9 49.23 69.52

3 (2,2), (4,1) 4,1)

sum(GF) 22.22 18.34

4 (1,4), (2,2), (3,3)

sum(GF) 40.5

TOTAL(GF)=377.55
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Table 30: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor LISREL model with covariates, when the
covariate takes the value 0.987
item 4 5
I (1,1, (2,2) (1,1), (1,3), (1,1), (2,1), (3,3), (4,1), (4,3)
(2,2), (4.1) (4.4)
sum(GF) 36,37 37 %7 95.73 48.79
2 (1,1), (2,2), (1,1), (2,2), (2,4) (LD, @,
(3,1), (4,4) (3.1
sum(GF) 39.22 111.47 37.44
3 (L), (2,1), (2,3) (LD, 2.1,
(4,2), (4,4) (4,1)
sum(GF) 67.02 42.86
4 (1,1), (1,2),
(3,1), (4,2),
(4.3)
sum(GF) 60.64
TOTAL(GF)=377

From Tables 28, 29 and 30 we see that the results are similar to those
obtained from section 6.3.2 where we fit the model to the matrix of
polychoric and polyserial correlation. Table 28 shows that the fit has
deteriorated considerably for the value —1.239. Table 29 shows a considerable
increase in the fit since there are only a few chi-squared residuals exceeding
four and the total GF has decreased by 65%. In table 30 we see that although
there are more “problematic” chi-squared residuals than in the one-factor

model without the covariate(table 13) the total GF has decreased by 32%.

Now we consider the LISREL model, where we use the joint
unconditional covariance matrix but with maximum likelihood instead of
weighted least squares. The coefficients and the loadings are identical to
those of the LISREL model we fitted to the matrix of polychoric and
polyserial correlations, and as a consequence the fit is similar as in section

6.3.2. Figure 4 gives the corresponding path diagram.
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Figure 4: Example 1: Path diagram for the one-factor LISREL model (ML)

with covariates.
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6.4.4 CONCLUSIONS REGARDING THE INTRODUCTION OF THE
COVARIATE

In the LISREL model, for values of the covariate near the mean value 0
the fit has improved, whereas for values at the tails of its distribution the fit
has deteriorated. The two different methods of fitting the model in LISREL
give similar fit, though they have big differences in the loadings as we see in
table 34. When we use maximum likelihood using both ways the results are
exactly the same. This is not a general rule since in other examples different
results have come out, but the results are not very different and our data
happen to give exactly the same results. So we have actually two different
types of results, one from maximum likelihood and one from weighted least
squares. From the two methods we infer similar results regarding the fit of the
model. Although the fit from Tables (28) and (30) seem to have deteriorated
in comparison with the model without the covariate, the AIC of the model
with the covariates has decreased to 119.48 from 434.18, which is the AIC for
the model with no covariates. There is some evidence that the model with four

response categories, one factor and the covariate might fit well if we increase
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our sample. For the value —0.126 where we had 103 observations the fit is
very good. This happens also for the value 0.156 with 87 observations as we
see from Table 31 where there are almost no “problematic” chi-squared
residuals at all and the total GF has decreased by 82%. Perhaps if we had a

larger sample we would have been able to infer more reliable results.

Table 31: Example 1: Chi-squared residuals greater than four, for two-way
margins, for the one-factor LISREL model(WLS) with covariates, when the

covariate takes the value 0.156

item 2 1 4 5

1

sum(GF) 16.93 20.78 9.39 12.96

2 3,3)

sum(GF) 17.0165 13.87561 9.92
6

3 2,0 “4,1)

sum(GF) 15.69 16

4 “4,1)

sum(GF) 21.46

TOTAL(GF)= 154.02

In general, the results from the LISREL model with the covariate are

contradictory and it is difficult to infer conclusions.

Table 32: Example 1: Estimated factor loadings for the LISREL model with

direct effects

ML WLS

JobEvery 0.42 0.54
PriCon 0.29 0.41
LivUnem 0.73 0.73
IncDiff 0.47 0.5
Housing 0.71 0.71

6.5 LATENT VARIABLE MODEL WITH TWO FACTORS

Now we consider the model without covariates and with two factors. We
investigate the chi-square residuals of the model to check if they give good

predictions of the frequencies of the observed bivariate margins. In order for
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the LISREL model to be identified, we had to fix the values of some
parameters. We chose to fix the dependence between the latent variables to 0
and also to fix the loadings of item 3 and 5 to 0. In all LISREL models we
consider the same assumptions. Tables 33 and 34 give the chi-squared

residuals exceeding four for the two-factor LISREL model and the two-factor

IRT model respectively.

Table 33: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the two-factor LISREL model

item 2 3 4 5
1 (1,3), (1,4), 4, 1) (1,2), (1,3), (1,1), (1,2), (1,3), (1,3), (1,4),
(1,4), (4,1) (1,4), (2.2), (2.3), 4,1), (4,3)
(2,4). 3.1, (3,3),
(4,1), (4,2), (4,4)
sum(GF) 250.65 162.17 1607.1 102.54
sum(LR) 91.15 72.81 233.82 56 .56
2 (1,2), (2,1), (1,4), (3,1), (4,1) 2,1, (2,2),
(2,2), (4,1) (4,1), (4.3)
sum(GF) 48.99 91.02 32.59
sum(LR} 43.74 53.17 31.21
3 b (1,3), (1,4), (3,1), (2,3), (2,4),
(4,1), (4,2), (4.3) 3.1), (4,1),
(4.3)
sum{GF) 415.71 2865.7
sum(LR) 102.43
4 (1,3), (1,4),
(2,4), 3,1),
(4,1), (4,3)
sum(GF) 370.57
sum(LR) 108.09
TOTAL(GF)=5947.04
TOTAL{LR)=792.96

Table 33 shows that the fit has not improved. We should note that the
big GF-contributions that occur in some pairs of variables are mainly caused
by some combinations of some response categories, mainly the combination
of (1,4) and (4,1). For example, when we investigate the case of items 1 and 4
where the GF is 1607.097, the chi-squared residual for response categories
(1,4) is 1064.53, and the corresponding residual for response categories (4,1)
is 409.78. So 2 out of 16 combinations of response categories account for the

92% of the total GF. This happens with all pairs of variables that have a large
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GF. This is a bad property of the GF statistic. One way to overcome this
problem 1s by collapsing categories. It is also interesting to see the big
differences between GF-statistic and the LR-statistic. It is true that when the

model does not hold the LR-statistic may be much smaller than the GF-

statistic.

Table 34: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the two-factor IRT model

item F] 3 4 3
1 (1,1), (1.2), (2,2), 1,2), 2,4) 4,1)
(2,4), (3.1), (4,2), (1,4)
(4,4)
sum(GF) 51.76 56.25 18.71 29.53
2 (1,4), (4,1) (3,3) (1,3), (4,1), (4,3)
sun GF) 50.69 24.28 31.83

3 (4.1), (4,3) (1,2), (2,1), (2,2),
(3.3).4.1),  (4.2)

sum(GF) 21.2 359.03
4 (3.4), (4.1)
sum(GF) 24.45

TOTAL(GF)=367.74

In the IRT case (table 34) the results are almost identical to those of
the one-factor model. Hence the second factor has not contributed anything
to the fit of the model but complexity and on these grounds we should reject
the second factor. One of the most widely used model selection criteria is the
AIC (equation 64). Table 35, which gives the AIC of the one-factor and two-
factor IRT & LISREL models show some contradictory results. In LISREL, in
contrast with the IRT model, the model with two factors gives a better fit
than the model with one factor. This doesn’t seem to be in agreement with the
average GF-contribution and the examination of the chi-square residuals that
suggest using the model with one factor. We should note that we cannot
compare the AIC of the LISREL model with that of the IRT model because
the latter uses the whole response pattern and therefore the likelihood is

larger than the likelihood in the LISREL model which use only the bivariate

frequencies.
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Table 35: Example 1: Model selection criteria (AIC)

1-FACTOR 2-FACTORS
LISREL 84.11 28.7
IRT 8636.19 8646.09

6.6 LATENT VARIABLE MODEL WITH THREE RESPONSE
CATEGORIES(ONE-FACTOR AND TWO FACTOR)

Most of the “problematic” chi-squared residuals, as we see from tables
12 and 13, involve either the first or the last response categories. Also from
tables 1 and 2 we see that the last response category is rarely answered. By
collapsing the last two response categories into one we might get a better fit.
By doing so we lose information that might be valuable and since the fit of
the one-factor model is not very bad it is perilous to combine response
categories. Probably the collapsing of categories should have been done
before allocating the questionnaire to the individuals. Grier (1975)
investigated the problem of the optimal number of choices per item and found
that th;ee-choice items are best when the total number of alternatives is fixed.
Two-choice items are next best. We will fit the model with two response
categories in section 6.6.
Table 36 gives the loadings and their standard errors for the LISREL and the
IRT model as well as the standardized IRT loadings.

Table 36: Example 1: Estimated loadings and coefficients for the one-factor

model with three response categories.

IRT LISREL(WLS)
item loadings s.e. standardized loadings s.e.
loadings
JobEvery 1.817 0.152 0.876 0.79 0.053
PriCon 1.195 0.108 0.7669 0.63 0.055
LivUnem 2.263 0.17 0.9147 0.82 0.051
IncDiff 2.102 0.19 0.903 0.78 0.051
Housing 2.287 0.209 0.9163 0.84 0.051
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As in the one-factor model with four response categories Table 36

shows that the loadings from the IRT approach are larger. Tables 37 and 38

give the chi-squared residuals exceeding four for the one-factor LISREL

model with three response categories and the one-factor IRT model with three

response categories.

Table 37: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor LISREL model with three response categories

item 2 3 4 5
1 (1,1), (1,3), (2,1), (2,2), | (1,1), (1,3), (2,2), (1,2) (1,3), (1,2), (1,3),
3.1}, (3,3) 3,1). 3,3) (2,2), 3,1), (2.1), (2,2),
(3.3) (2,3), (3,1), (3,3)
sum(GF) 116.16 471.96 93.19 657.95
sum(LR) 35.28 200.12 203.03 203.03
2 (L1),(1,2), (1L3), (L,D, (1,2), (1,3), 2,2),
2,2), 3,1), (3,2), (1,3), (2,2), (2,3), (3.1), (3,3)
3.3 G.1, (3.3)
sum(GF) 353.57 118.68 418.92
sum(LR) 182.01 86.16 186.61
3 (1,1), (1,3), (1,1), (2,1),
2.2), G.h, 2.2), (2,3),
3.2), (3.3) G.1),(3,3)
sum(GF) 164.91 184.05
sum(LR) 122.29
4 (1,1), (1,3),
(2.1), (2,2),
(2,3), (3,1), 3,3)
sum(GF) 234.11
sum(LR) 135.23

TOTAL(GF)=2813.51
TOTAL(LR)=1413.76
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Table 38: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor IRT model with three response categories

item 2 3 4 5
I (1,1, (1,2), (2,2), (1,2), (1,3) 3,10
(2,3)

sum(GF) 38.49 31.66 1.33 12.76

2 (1,3), 3,1) (1,3), 3.1)

sum(GF) 33.22 1.2 25.44

3 (1,2), (2,1),
(2,2)

sun(GF) 4.29 29.92

4

sum(GF) .11

TOTAL(GF)=197.4

The results we get from the IRT approach (Table 38) are satisfactory,
though the fit is not as good as in the case with four response categories and
the covariates. The GF as a criterion of goodness of fit has the drawback that
is highly influenced by the bivariate frequencies that are not large and this
may have inflated the average GF in this case. The LISREL results (Table 37)
show a very bad fit. We will now fit the LISREL model with two factors and
three response categories. Tables 39 and 40 give the chi-squared residuals
exceeding four for the two-factor LISREL model with three response

categories and the two-factor IRT model with three response categories

respectively.
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Table 39: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the two-factor LISREL model with three response categories

item 3 5
I (2,2), (2,3) (1,2), (1,3), (1,2), (1,3)
2,1), (2,2)
sum(GF) 34.7 31.63 16.25 8.7
sum(LR) 36.58 31.59 16.71 8.4
2 (1,2), (2,1), (1,3), (2,2), 2,1)
2,2 G.n, 32

sum(GF) 27.12 31.47 18.9
sum(LR) 27.54 31.86 18.58
3 (1,3), (3,2), 3.1

3.3)
sum(GF) 43.74 25.96
sum(LR) 37.93
4
sum(GF) 10.76
sum(LR) 10.81

TOTAL(GF)=249.21
TOTAL(LR)=219.99

The fit (Table 39) is satisfactory, though some improvement seems feasible.

Table 40: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the two-factor IRT model with three response categories

item 2 3 4 5
1 22 1,2), (1.3),
2,1), 2,2)
sum(GF) 16.11 29.26 0.9 7.14
2 (1,2), (2,1), 3.1 (2,1), (2,2)
(2,2)
sum({GF) 25.88 11.57 17.18
3 3,1)
sum(GF) 2.88 16.87
4
sum(GF) 8.88

TOTAL(GF)=136.7

67



The introduction of the second factor improves the fit when we have three

response categories (Table 40). In the case with four response categories we

saw that the introduction of the second factor added nothing to the overall fit

(Table 34).

Table 41: Example 1: Model selection criteria (AIC)

[-FACTOR 2-FACTORS
LISREL §3.45 27.19
[RT 7550.5126 7459.331

The results from the AIC (table 43) are similar to the case with four response

categories. We should note that we cannot compare the AIC between models

with different number of response categories.

6.7 LATENT VARIABLE MODEL WITH TWO RESPONSE
CATEGORIES(ONE-FACTOR AND TWO FACTOR)

Now we consider the model with two response categories. The loadings

of the IRT and the LISREL model as well as their standard errors are given

in table 42.

Table 42:Example 1: Estimated factor loadings for the model with two

response categories.

IRT LISREL(WLS)
item loadings s.e. standardize loadings s.e.
d loadings
JobEvery 1.761 0.199 0.8696 0.79 0.065
PriCon 1.197 0.158 0.7675 0.63 0.073
LivUnem 1.84 0.193 0.8787 0.78 0.068
IncDiff 2.127 0.238 0.9049 0.79 0.064
Housing 2.398 0.284 0.923 0.89 0.077
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Tables 43 and 44 give the chi-squared residuals exceeding four for the one-
factor LISREL model with two response categories and one-factor IRT model

with two response categories respectively.

Table 43: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor LISREL model with two response categories

item ) 3 4 5
! (1,1), (2,2) (1,1, (1,2), (1,1), (2,2) (1,1), (1,2),
(2,0, (2,2) (2,2)
sum(GF) 41.02 52.72 19.25 169.76
sum(LR) 34.16 46 .61 18.64 92.42
2 (1,1), (1,2), (1,1), (2,1), (1L,1), (1,2),
(2,1), (2,2) (2,2) 2.0,
2.2)
sum(GF) 66.26 38.26 119.41
sum(LR) 58.3 33.81 88.86
3 (1,1, 2,1), (1,1, (1,2),
(2,2) (2,2)
sum(GF) 40.2 83.45
sum(LR) 36.39 62.24
4 . (1L,1),(1,2),
2,2)
sum(GF) 107.68
sumn(LR) 69.78
TOTAL(GF)=738.01
TOTAL(LR)=541.2

Table 44: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the one-factor IRT model with two response categories

item 2 3 4 5
1 (1,2),(2,2)
sum(GF) 11.43 1.93 0.89 3.12
2
sum(GF) 308 0.18 3.79
3 (1,2)
sum(GF) 0.6 11.75
4
sum(GF) 0.15

TOTAL(GF)=36.93

It is obvious that the fit in the LISREL model (Table 43) has
deteriorated in contrast with the IRT method (Table 44) where big
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improvement has been made from the model with one factor and three
response categories, which, in addition was a good model. In the LISREL
case we see that the models with one factor are not satisfactory. If we try to
put the covariate in the case with three or two response factors we will get
insignificant coefficients on the probit regressions of the underlying
continuous variables on Pollden suggesting that we should not add the
covariate in the model. Adding a second factor in the model improved the fit
for the model with three response categories. We should do the same for the
model with two response categories. Table 45 give the chi-squared residuals
exceeding four for the two-factor LISREL model with two response
categories.

Table 45: Example 1: Chi-squared residuals greater than four, for two-way

margins, for the two-factor LISREL model with two response categories

item 2 3 4 5

1

sum(GF) 0.000742272 0.06 0.001146644 0.31
sum(L.R) 0.0007427274 0.06 0.001147111 0.31
2

sum(GF) 2 0.02 0.001818066 0.04
sum(LR) 0.02 0.001818793 0.04
3

sum{GF) 0.03 1.41
sum(LR) 0.03 1.35
4

sum(GF) 0.22
sum(LR) 0.22
TOTAL(GF)=2.1

The fit from Table 45 is perfect. It gives an excellent fit for all pairs of items

and the total GF is negligible.

6.8 CONCLUSION
For the IRT model, one can get a good fit in all cases with the

exception of the models with one factor and four response categories and the
model with two factors and four response categories, though, even in these
cases the fit isn’t very bad. By collapsing categories we lose some
information that might be valuable. The model with the covariate gives a very

satisfactory fit. In the LISREL case, we see that in order to get a good model,
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we have to reduce the response categories and to add a second factor. If we
consider the GF-statistic as a measure of fit, it is interesting to see in Table

46 the differences between the two approaches for the same model.

Table 46 : Example 1: Total GF per model

MODELS TOTAL GF CONTRIBUTION
IRT LISREL
1 FACTOR-4 RESPONSE 367.72 848.32
CATEGORIES
2 FACTORS-4 367.74 5947.04
RESPONSE
CATEGORIES
1 FACTOR-3 197.4 2813.5
RESPONSE
CATEGORIES
2 FACTORS-3 136.7 249.21
RESPONSE
CATEGORIES
1 FACTOR-2 RESPONSE 36.93 738.01
CATEGORIES '
2 FACTORS-2 41.32 2,1
RESPONSE
CATEGORIES

From the Table (46), and if we take as a measure of goodness of fit the
total GF, we see that the IRT models fit considerably well in all cases,
whereas only two of the LISREL models fit well the data. The one-factor
model with the covariate improves the fit in the IRT model but in the LISREL
model things are more obscure. Probably if we increased the sample, we
would get a better fit. We should note that no matter which model we choose
the loadings are always positive and of similar magnitude. For example the
second item (PriCon) has always the lowest loading. The introduction of the
covariate brought a considerable decrease in the loadings of item one and four
in all cases. It is also evident that the measures of goodness-of-fit such as the
total GF or the chi-square residuals that exceed four, and the model selection

criteria give sometimes different results.
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CHAPTER 7

SECOND EXAMPLE

7.1 INTRODUCTION
The second application is also from the 1996 British Social

Attitudes(BSA) Survey. Five ordinal manifest variables were selected for the
analysis. The items measure satisfaction with the National Health Service in
respondent’s area. The items asked are whether the National Health Service in
your area is, on the whole, satisfactory or in need of improvement.

e GP’s appointment systems [Appointment]

e Amount of time GP gives to each patient [AmountTime]

e Being able to choose which GP to see [ChooseGP]

e Quality of medical treatment by GPs [Quality]

e Waiting areas at GP’s surgeries [WaitingArea]

The response alternatives given to the respondents are: in need of a lot
of improvement, in need of some improvement, satisfactory, and very good.
Item nonresponse varies between 1.5%-2.5%. After we excluded the missing
values we were left with 841 respondents. First we fit the measurement model
with no direct effects to see if the five ordinal manifest variables measure one
unidimensional latent trait. Next we consider several models of different
combinations of factors and response categories and by letting the covariate
political identification having direct effects on the five ordinal manifest

variables and the covariates age and gender having direct effects in the latent

variable.

7.2 PRELIS STEP

Each item has four categories, thus there are 4°=1024 possible
response patterns. Since we have only 841 respondents it is reasonable to
presume that not every response pattern can be present in the data. In fact we
notice that there are only 205 different response patterns. The most common

response pattern is that of answering satisfactory on all five items occurring
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in 149 cases. We should note that 99 out of the 205 different response
patterns were observed only once and that 37 response patterns only twice.
Probably this is a clue that our sample is small. The 20 most common
response patterns are given in Table 47 and it is interesting to observe that

there is no response ‘in need of a lot of improvement’ in any of them.

Table 47: Example 2: The 20 most common response patterns

cases

149 3 3 3 3 3
41 2 33 3 3
30 4 4 4 4 4
23 2 23 3 3
22 333 43
18 33332
16 3 3 3 3 4
15 2 32 3 3
14 22222
13 323 3 3
13 2 22 3 3
12 33233
12 33323
11 4 4 4 4 3
11 3 43 4 4
10 23 3 43
10 32233

9 34 4 4 4
9 2 2 3 23
9 33 443

The percentages for each category for each item are shown in table 48.
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Table 48: Example 2: Frequency distribution for the observed ordinal items

Appointment AmountTime ChooseGP Quality WaitingArea
in need of a lot 11.4 6.5 6.7 3.8 3.6
of improvement
in need of some 29.4 22.8 20.9 19 16.1
improvement
satisfactory 47.2 57.9 58.3 53.9 63.3
very good 12 12.7 14.1 23.3 17.1

We see that the majority of the responses fall in the two middle categories.

For the first category, with the exception of the first item and especially for

the last two items the percentages are negligible.

1
With 5 variables there are —5——
2145 -2)

)

tables for every pair of variables are given in table 49:

=10 pairs of variables. The contingency

Table 49: Example 2: Bivariate distributions for the observed ordinal items.

Appointm

LI
SI

VR

Appointm

LI
SI

VR

AmountTi

LI
SI

VR

AmountTi
SI S
31 27

100 128
56 296

E) 36

WaitingA
SI S
30 45
60 158
43 284

2 45

ChooseGP
SI S
20 11
77 92
77 347

2 40

ChooseGP
ST S VR
34 30 3
80 140 13
59 283 42
3 37 61
Quality
SI s VR
27 8 1
69 98 15
59 333 92
5 14 88
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Quality
SI ] VR
‘
30 35 12
74 133 32
50 260 82
& 25 70
WaitingA
SI S VR
15 24 3
55 118 11
60 353 66
5 37 64



Quality WaitingA

ChooseGP LI SI S VR LI SI S VR
LI 15 22 18 1 13 11 27 5
SI 12 72 80 12 6 47 112 11

S 5 60 327 98 10 69 340 71
VR 0 6 28 85 1 8 53 57

WaitingA

Quality LI  SI S VR

LI 9 11 12 0

SI 12 52 82 14

S 6 60 342 45

VR 3 12 96 85

We can see that it is not very common that an individual will answer
“in need of a lot of improvement” in an item and “very good” on another item
and there are many zero cells in the contingency tables for this combination
of responses. Too many zero cells can be problematic and give estimates that
are imprecise and unreliable.

From Table 50 we see that there are no serious distortions due to non

normality.

Table 50: Example 2: Correlations and test statistics

Test of Model Test of Close Fit
Variable vs. Variable Correlation Chi-Squ. D.F. P-Value RMSEA P-Value
AuountTime vs. Appointment 0.632 (PC) 44.376 8 0.000 0.074 0.978
ChooseGP vs. Appointment 0.581 (PC) 31.757 8 0.000 0.059 0.999
ChooseGP vs. AmountTime 0.669 (PC) 14.377 8 0.072 0.031 1.000
Quality vs. Appointment 0.490 (PC) 43.737 8 0.000 0.073 0.981
Quality vs. AmountTime 0.676 (PC) 46.219 8 0.000 0.075 0.970
Quality vs. ChooseGP 0.632 (PC) 23.957 8 0.002 0.049 1.000
WaitingArea vs. Appointment 0.493 (PC) 14.068 8 0.080 0.030 1.000
WaitingArea vs. AmountTime 0.513 (PC) 30.755 8 0.000 0.058 0.999
WaitingArea vs. ChooseGP 0.420 (PC) 25.974 8 0.001 0.052 1.000
WaitingArea vs. Quality 0.507 (PC) 33.386 8 0.000 0.061 0.998
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The matrix of polychoric correlation that is going to be used for further

modeling in LISREL 1s given in Table 51. All the correlations are highly

significant.

Table 51: Example 2: Matrix of polychoric correlations.

Appointment AmountTime
WaitingArea
Appointment 1.000
AmountTime 0.632 1.000
ChooseGP 0.581 0.669
Quality 0.490 0.676
WaitingArea 0.493 0.513

ChooseGP Quality

1.000

0.632 1.000

0.420 0.507 1.000

Table 52 gives the estimated thresholds for the IRT model and those
estimated from PRELIS.

Table 52: Example 2: Estimated thresholds for the IRT and for the LISREL

model.
IRT PRELIS
Item Category A A
thresholds (tis ) thresholds (ti; )

Appointment 1 -3.058 -1.205

2 -0.636 -0.233

3 3.024 1.175

AmountTime 1 -5.392 -1.511

2 -1.949 -0.543

3 4.189 1.140

ChooseGP 1 -4.268 -1.502

2 -1.691 -0.595

3 3.095 1.074

Quality 1 -5.142 -1.774

2 -2.078 -0.744

3 2.042 0.729

WaitingArea 1 -4.125 -1.803
-1.873 -0.855

2.116 0.949
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All the results in Tables 47,48,49,50,51 and the thresholds for the LISREL
model in Table 52 came out by the PRELIS input 7.

PRELIS/LISREL input 7: Example 2:

Computing Polychoric Correlations and Asymptotic Covariance Matrix

Data Ninputvars = 5
Labels
Appointment AmountTime ChooseGP Quality WaitingArea

Rawdata = GP.dat
Clabels Appointment-WaitingArea 1=LI 2=SI 3=S 4=VR
Output BT MA=PM PM=GP.PM AC=GP.ACP

7.3 FITTING THE LATENT VARIABLE MODEL WITH ONE FACTOR
TO THE MATRIX OF POLYCHORIC CORRELATIONS ESTIMATED

IN 7.2

LISREL input 8 will fit the model to the matrix of polychoric
correlations (Table 53) estimated by PRELIS input 7.

PRELIS/LISREL input 8: Example 2:

Testing Measurement Model
Observed Variables: Appointment AmountTime ChooseGP Quality
WaitingArea
Correlation Matrix from File GP.PM
Asymptotic Covariance Matrix from File GP.ACP
Sample Size: 841
Latent Variable: z
Relationships:
Appointment AmountTime ChooseGP Quality WaitingArea =z
Path Diagram
End of Problem
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The results we get from fitting a one-factor model with the two approaches

are shown 1n table 53.

Table 53: Example 2: Estimated factor loadings for the one-factor IRT model
and for the one-factor LISREL model

IRT LISREL
WLS ML
Item unstandardized  s.e standardized loadings  s.e loadings  s.e
loadings o loadings sta A A
Appointment 1.913 0.155 0.8863 0.75 0.052 0.72 0.053
AmountTime 3.224 0.229 0.9551 0.87 0.052 0.86 0.053
ChooseGP 2.293 0.163 0.9167 0.8 0.051 0.78 0.053
Quality 2.310 0.149 0.9177 0.79 0.055 0.78 0.055
WaitingArea 1.443 0.104 0.8219 0.64 0.055 0.61 0.055

LISREL loadings from every different method are always smaller that
those of the IRT approach. The two different methods of estimating the
parameters in LISREL give similar results. The path diagram for the LISREL

model with weighted least squares is shown in Figure 5:

Figure 5: Example 2: Path diagram for the LISREL model with one latent

factor and the use of weighted least squares.

We will check the models by computing the chi-squared. Tables 54 and
55 give the chi-squared residuals greater than four for the two-way margins

for the one-factor IRT model and for the one-factor LISREL model

respectively.
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Table 54: Example 2: Chi-squared residuals greater than four for the two-way

margins of the one-factor IRT model with four response categories

item 2 3 4 5
! (1,4). (3.4), (4.3) (3.4), (4.3), (1,2),
(4.4) (1.4),
(2,4), (3,4)
SUM(GF) 41.18 279 54.67 13.94
2 (2.4), (1,2), (1.9
(3.4),
(4.2), (4,3)
SUM(GF) 12.24 42.7 26.36
3 (1,2), (1,4)
SUM(GF) 19.28 28.45
4 (2,4), (3,3),
(3.4)
SUM(GF) 28.45

TOTAL(GF)=295.18

Table 55: Example 2: Chi-squared residuals greater than four for the two-way

margins of the ong-factor LISREL model with four response categories

item 2 3 4 5
1 (1.4). (3,4).(4.2), (4.3) (1.4), (1,4), (1.4)
(3.1), (2,4),

(3.9). (3.4). (4.2)
(4.3). (4,9
SUM(GF) 93.96655 37.15153 91.22707 15.47415
2 (1.4) (2.4), (1.4),
(3.4), (3.4), (4.1),
(4.2), (4.3) (4.2), (4.3)

SUM(GF) 39.71579 61.16554 48.06529

3 (4.2), (4,3) (1,2), (1,4),
(4.2)

SUM(GF) 27.22329 49.73762

4 (2,4). (3.4),
(4.1)

SUM(GF) 40.51032

TOTAL(GF)=504.23715 | AVERAGE(GF)=3.15

There are some chi-squared residuals that exceed four in Table 54 but

all pairs of items have a GF contribution less than 64. Almost the same holds
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for Table 55. The LISREL model has almost double GF-statistic in
comparison with IRT. We will fit various models with different combinations
of number of factors and response categories to check how they fit the data.

We start with the IRT case.

7.4 FIT OF VARIOUS IRT MODELS
In all possible models we will check the chi-squared residuals that
exceed four and the total GF. We start with the IRT model with four response

categories and two factors (Table 56).

Table 56: Example 2: Chi-squared residuals greater than four for the two-way

margins of the two-factor IRT model with four response categories

item 2 3 4 5
1 (1,1), (1,2), (2,2) ,(2,4), (1,2), (1,4) (4,.1)
(3.1), (4.2), (4.4)

SUM(GF) 51.76 56.25 18.71 29.53
2 (1.4), (4.1) (3.3) (1,3), (4.1).

(4.3)

SUM(GF) 50.69 24.28 31.83
3 (4,1), (1,2), (2,1),
(4,3) (2,2), (3,3),
(4.1), (4,2)

SUM(GF) 21.2 59.03
4 (3.4). 4.1)

SUM(GF) 24.45

TOTAL(GF)=367.74

The fit of the model (Table 56) has deteriorated, hence there is no reason
to add a second factor. We stay in the IRT model and we check if we can get
a better fit by collapsing the first two categories of each question into one

(Table 57).
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Table 57: Example 2: Chi-squared residuals greater than four for the two-way

margins of the one-factor IRT model with three response categories

item 2 3 4 5
] (3.2) (3.2),(3.3)  (1,3),(2.3)
SUM(GF) 17.43 217 34.19 9.98
2 (1.3). (2.3). (3.2)
(3.1). (3.2)
SUM(GF) 7.48 35.81 17.99
3 (3,2)
SUM(GF) 15.77 14.02
4 (2,3)
SUM(GF) 21.82

TOTAL(GF)=196.19

Most pairs of items in Table 57 give a satisfactory fit. We add a second latent

variable to see if there is any considerable improvement in the fit (Table 58).

Table 58: Example 2: Chi-squared residuals greater than four for the two-way

margins of the two-factor IRT model with three response categories

item 2 3 4 5

I (2,3), (3.2) (32,33 (1.3).(2.3) o
SUM(GF) 17.43 21.7 34 .19 9.98

2 (1.3), (2,3), (3,2)

(3.1), (3,2)

SUM(GF) 7.48 35.81 17.99

3 (3,2)
SUM(GF) 15.77 14.02

4 (2,2), (2.3)
SUM(GF) 21.82

TOTAL(GF)=196.18

As we see from Table 58 the fit has not improved and it is nearly the same

as with the case with three response categories and one factor. So we have

added nothing but complexity. Now we collapse the last two categories of

each item and we calculate the chi-squared residuals for the new model (Table

59).
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Table 59: Example 2: Chi-squared residuals greater than four for the two-way

margins of the one-factor IRT model with two response categories

item 2 3 4 b
I
SUM(GF) 0.35 0.2 2.84 1.16
2
SUM(GF) 0.05 0.27 0.4
3
SUM(GF) 0.71 3.09
4 —— e,
SUM(GF) 11520852, 0%
TOTAL(GF)=10.22 ( ‘i‘?
( E

The fit in Table 59 is perfect.

7.5 FIT OF VARIOUS LISREL MODELS

Now we will try to find the LISREL model that gives the best fit to the
data by examining the chi-squared residuals that exceed four and the total GF.
We try the model with all response categories and two factors (Table 60). In
order for our model to be identified we set the correlation between the latent

variables to 0 and the values of the loadings of items 1 and 5 to 0 also.

Table 60: Example 2: Chi-squared residuals greater than four for the two-way

margins of the two-factor LISREL model with four response categories

item 2 3 4 5
1 (1.4). (3.4), (4.3), (1,4). 3.4),  (1.4),(3.3), (3.4). (1.4)
(4.4) (4.3), (4,4) (4,3)

SUM(GF) 78.49 34 60.53 18.47

2 (1,4) (1.4). (2,4). (4.2), (1,4), (4.1), (4.3),

(4.3) (4.4)

SUM(GF) 32.45 64.61 41.53

3 (2.4), (4.2) (1.2), (1,4), (4.2)
SUM(GF) 34.27 39.47

4 (2,4). (3.3), (3.4),

(4,1), (4,4)
SUM(GF) 38.91
TOTAL(GF)=442.73
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We see from Table 60 that the fit is not satisfactory, though only one GF
contribution for the pairs of items 2 and 4 barely exceeds the value 64. We
continue by checking the chi-square residuals for every combination of
response categories and number of factors and we see that the best model is

that with two response categories and two factors.

Table 61: Example 2: Chi-squared residuals greater than four for the two-way

margins of the one-factor LISREL model with three response categories

item 2z 3 4 5
] (1.1), (1.3). (1.1).(1.3). (1.1, (1.2),  (1.1).(13),
(2,1), (2,2), (2,1). (2,2), (1,3), (2,1), (2,1), (2,2,
(3.1), (3,3) (3.1), (3,3) (2,2), (3.1), (3.2). (3,3)
(3.3)
SUM(GF) 329.07 243.32 362.17 142.68
SUM(LR) 152.02 148.69 177.68 111.34
2 (1,1), (1,2), (1,1), (1,3), (1,1), (1,3),
(1.3), (2,1). (2,2), (3,1), (2,1), (2,2),
(2,2), (3,1). (3.3) (3.1). (3.3)
(3.2) (3.3)
SUM(GF) : 280.95 706.85 308.47
SUM(LR) 149.63 190.13 159.47
3 (1.1), (1,3), (1,1), (1,2),
(2,2), (3,1), (1,3), (2,1),
(3.3) (2,2), (3,1).
(3.2) (3.3)
SUM(GF) 335.7 288.54
SUM(LR) 154.03 159.85
4 (1,1), (1,3),
(2,2), (3,1),
(3.3
SUM(GF) 230.74
SUM(LR) 145.68

TOTAL(GF)=3228.49
TOTAL(LR)=1548.53

The fit in Table 61 is very bad. Now we consider the model with three

response categories and two factors (Table 62).
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Table 62: Example 2: Chi-squared residuals greater than four for the two-way

margins of the two-factor LISREL model with three response categories

item 2 3 4 5
! (2.3) (2.2). (2.3) (1.2). (2.2,
(2.3)
SUM(GE) 24.67 35.1 64.78 8.96
SUM(LR) 26.3 32.37 68.55 9.16
o (2,3 (1.3).(2,2), (2,3). (3.1).
(2.3). (3.1) (3.2)
SUMGE) 23.63 54.72 22.99
SUM(LR) 26.21 63.55 21.65
3 (2,2), (2.3). (3.1)
(3.1)
SUMGE) 41.96 15.06
SUMLR) 35.09 13.88
4 (2.2), (2.3)
SUM(GF) 28.78
SUM(LR) 29

TOTAL(GF)=320.04
TOTAL(LR)=332.77

The fit as we see from Table 62 has improved.
We consider the model where the first two categories have collapsed into one

and the last two categories have collapsed into another (Table 63).

4

Table 63: Example 2: Chi-squared residuals greater than four for the two-way

margins of the one-factor LISREL model with two response categories

item d 3 4 5
1 (1,1). (2.1) (1.1), (2,1). (2.2) (1.1). (2.1). (1.1). (2.1)
(2,2)

SUM(GF) 18.98 20.27 45.4 24 .8

SUM(LR) 17.93 18.98 37.93 22.35
2 (1.1). (2.2) (1.1), (2,1), (1.1). (1.2),
(2.2) (2.1), (2,2)

SUM(GF) 27.06 39.07 35.58

SUM(LR) 25.61 35.96 33.2
3 (1,1). (2.1). (1.1), (1.2),
(2.2) (2,1). (2,2)

SUM(GF) 37.97 40.83

SUM(LR) 34.17 38.06
4 (1.1). (1.2).

(2,2)

SUM(GF) 44 .56

SUM(LR) 39.47

TOTAL(GF)=334.52
TOTAL(LR)=303.65
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The fit as we see from Table 63 is not satisfactory and we add a second latent
variable. We see from Table 64 that this model gives a perfect fit. We also see

that GF and LR have sitmilar values when the model holds.

Table 64: Example 2: Chi-squared residuals greater than four for the two-way

margins of the two-factor LISREL model with two response categories

item Z 3 4 5
- e S
SUM(GHF) O0.a?l 9 0.26 2.14 0.18
SUM(LR) 0.19 0.26 2.09 0i718
2
SUM(GF) 0.09 0.17 0.91
SUM(LR) 0.09 0.17 0.91
3
SUM(GF) 0.37 1.48
SUM(LR) 0.37 1.47
4
SUM(GF) 1.19
SUM(LR) 1.19
TOTAL(GF)=6.97

7.6 LATENT VARIABLE MODEL WITH ONE FACTOR AND
COVARIATES

Now we assume that in the analysis we are interested in measuring
overall satisfaction with GP’s controlling for respondents political
identification (measured by an observed covariate with four categories:
conservative, labour, liberal democrat and other). We also want to measure
the effect of gender and age on the latent variable satisfaction (Age is given
in four categories: 18-25, 26-44, 45-64, 65+). The AIC of the IRT model
without covariates is 7966.5, whereas for the model with the covariates it has
decreased t07890.5. So the AIC proposes the introduction of the covariates in

the IRT case.
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PRELIS input 9 estimates the covariance matrix of the observed items and the

covariates.
PRELIS/LISREL input 9: Example 2:

Computing Covariance Matrix

Data Ninputvars = 13

Labels

Appointment AmountTime ChooseGP Quality WaitingArea Labour Liberal

Other Female FirstAgeGroup SecondAgeGroup ThirdAgeGroup
FourthAgeGroup

Rawdata = GP.dat

Clabels Appointment-WaitingArea 1=AS 2=A 3=D 4=DS

Continuous Labour Liberal Other Female FirstAgeGroup SecondAgeGroup
ThirdAgeGroup FourthAgeGroup

Output MA=CM CM=GP.CM AC=GP.ACC WP

LISREL input 10 fits the model to the covariance matrix estimated from

PRELIS input 9.

PRELIS/LISREL input 10: Example 2:

MIMIC Model

Observed Variables: Appointment AmountTime ChooseGP Quality
WaitingArea Labour Liberal Other Female FirstAgeGroup SecondAgeGroup
ThirdAgeGroup FourthAgeGroup

Covariance Matrix from File GP.CM

'Asymptotic Covariance Matrix from File GP.ACC

Sample Size: 841

Latent Variable: Eta APPOINTMENT AMOUNTTIME CHOOSEGP
QUALITY WAITINGAREA

LABOUR LIBERAL OTHER FEMALE FIRSTAGEGROUP
SECONDAGEGROUP THIRDAGEGROUP FOURTHAGEGROUP

Relationships:
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Appointment=1*APPOINTMENT
AmountTime=1*AMOUNTTIME
ChooseGP=1*CHOOSEGP

Quality=1*QUALITY

WaitingArea=1*WAITINGAREA

Labour=1* LABOUR

Liberal=1*LIBERAL

Other=1*OTHER

Female=1*FEMALE
FirstAgeGroup=1*FIRSTAGEGROUP
SecondAgeGroup=1*SECONDAGEGROUP
ThirdAgeGroup=1*THIRDAGEGROUP
FourthAgeGroup=1*FOURTHAGEGROUP

Let the error variances of Appointment-FourthAgeGroup to 0
APPOINTMENT=LABOUR LIBERAL OTHER 0.7*Eta
AMOUNTTIME CHOOSEGP QUALITY WAITINGAREA=LABOUR
LIBERAL OTHER Eta

Eta=FEMALE FIRSTAGEGROUP SECONDAGEGROUP
THIRDAGEGROUP FOURTHAGEGROUP

Path Diagram

Set the correlations of LABOUR-Eta to 0

Set the correlations of LIBERAL-Eta to 0

Set the correlations of OTHER-Eta to 0

LISREL Output: AD=0OFF

End of Problem
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The conceptual path diagram is shown in Figure 6.

Figure 6: Example 2: Conceptual path diagram for the One-factor LISREL

model with covariates

Labour

Liberal

Other

Female

Fir stage

Becondag

“»ﬂvaidige'

FourthAg

Table 65 gives the standardized (using equations 59 and 60) loadings and

regression coefficients for the IRT model and the loadings and regression

coefficients for the LISREL model.

Table 65 Example 2: Estimated factor loadings and regression parameters for

the measurement LISREL model with direct effects and standardized loadings

and regression coefficients for the IRT model.

Trem 21,1 ,[AS'“ (labour) b.-z (liberal ,2?,.3 (other)
democrat)
IRT LISREL IRT LISREL IRT LISREL IRT LISREL

Appointment | (.86 0.7 0.39 0.33 0.31 0.27 0.2 0.18
AmountTime 0.93 0.84 0.38 0.35 0.17 0.14 0.19 0.14
ChooseGP 0.91 0.83 0.2 0.18 -0.11 -0.1 0.07 0.07
Quality 0.89 0.72 0.34 0.27 0.22 0.18 0.39 0.34
WaitingArea |0.8 0.61 0.28 0.23 0.01 0.03 0.35 0.26

Tables 66 and 67 give the estimated structural parameters for the IRT model

and the LISREL model respectively.
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Table 66: Example 2:Estimated structural parameters for the IRT model

IRT

2 s.e.

A
constant 1.06 0.14
Female -0.06 0.04
26-44 0.19 0.1
45-64 0.49 0.11
65+ 0.7 0.11

Table 67: Example 2:Estimated structural parameters for the LISREL model

LISREL

& s.e.

A
Female -0.06 0.08
18-25 1.89 1.4
26-44 2.08 1.4
45-64 2.39 1.4
65+ 2.6 1.4

We cannot compare the estimates of the structural parameters of the
IRT model (Table 66) with those of the LISREL model (Table 67) because the
latent variable has a different distribution in each case. Though the AIC
criterion shows that the model with the covariates in the IRT model is better
than the model that does not contain any covariates we see that most of the
coefficients are insignificant. In the LISREL model we observe the same
phenomenon for the coefficients. The estimated coefficient for the covariate
Female is the same in both cases. In the IRT case we used a constant and
three variables for the covariate age, whereas in LISREL, instead of a
constant we used four variables for the covariate age. Also we should note
that we get a warning in LISREL that the covariance matrix used is not

positive definite and this might have some implications in the results.

7.7 CONCLUSION

As we see from the following table (Table 68) we can get an extremely good
fit for the IRT model if we consider one latent variable and two response
categories. Whereas, in the LISREL model we can get an extremely

satisfactory model if we consider two latent variables and two response
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categories. The fact that the one factor IRT model with two response
categories and the two-factor LISREL model with two response categories
give an excellent fit does not necessarily make them desirable because they
are very complex and we also lose much information by combining
categories. Table 54 shows that none of the pair of items has a larger than 64
GF contribution Also we see from Table 55 there are only two combinations
of pair of items that have a GF contribution larger than 64. So we should

probably prefer the one factor model both for IRT and for LISREL.

Table 68: Example 2: Total GF for various models.

MODELS TOTAL GF CONTRIBUTION

- IRT LISREL

1 FACTOR-4 RESPONSE 295.18 504.24
CATEGORIES

2 FACTORS-4 RESPONSE 367.74 442.73
CATEGORIES

1 FACTOR-3 RESPONSE 196.19 3228.49
CATEGORIES

2 FACTORS-3 RESPONSE 196.19 320.64
CATEGORIES

| FACTOR-2 RESPONSE 10.22 334.52
CATEGORIES

2 FACTORS-2 RESPONSE 10.22 6.97

CATEGORIES

It is very difficult to test the fit of the model when there are many covariates because
we have to test the fit of the model for combinations of the values of the covariates.
Also we need a large sample to do that. The LISREL results may not be correct

because the covariance matrix 1s not positive definite.
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CHAPTER 8
GENERAL CONCLUSIONS

The results from the two examples are similar and they also agree with
the results from other examples in the literature (Jéreskog and Moustaki
2000) Political Efficacy example). In both examples the interrelationships
among the items can be explained by a LISREL model with two factors and
two response categories. An IRT model with one factor and two response
categories gives a very good fit and it has also the advantage that is less
complex. It 1s interesting to see in both examples how better the model with
three response categories and one factor fits in the IRT case. For the first
example, the IRT model with the covariate improves the fit and the best
model is the one with all response categories, one latent variable and the
covariate. From the second example it is difficult to check the chi-squared
residuals but the AIC of the IRT model suggests the introduction of the
explanatory variables. In the second example in section 7.5 we show that

LISREL had problems in handling so many covariates.

Both approaches have their advantages and their disadvantages. It was
expected that the IRT method would give a better fit since it uses the whole
response pattern and no loss of information occurs, whereas LISREL uses
only the univariate and the bivariate margins. LISREL requires a large sample
for the estimation of the asymptotic covariance matrix and also we do not
know the effects of the violation of the bivariate normality on the estimation
of the polychoric correlations. On the other hand, IRT models have been
developed recently and they are not so easy to use. Especially the model with
the covariates is a very recent development. If one wants to fit more than two
latent variables he will probably have to use a LISREL model or Mplus or
EQS. LISREL is a very easy to use program that gives much potential to the
user. LISREL also allows the user to make the latent variables dependent, or
even to fix the dependence among them or to fix any other parameter in the
model. Also the computational burden in the IRT models is huge as the

number of factors increases. If one wants to save time he may decrease the
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number of quadrature points but the estimates may not be precise. Also in
LISREL the same covariate might have direct effects both on the manifest and
the latent variables, whereas, in the IRT approach, we saw in section 2.2 that
in order for the model to be identified any covariate should affect either the
manifest or the latent variables but not both of them. We should note that
there are not many goodness-of-fit measures or model selection criteria in the
literature for latent variable model with ordinal data and especially for the
case where we have covariates affecting either the manifest or the latent
variables. Among the available goodness-of-fit measures and model selection

criteria we might get contradictory results.

94



APPENDIX

)

As we have seen 6, (z,x)=log—"—
}/1,.s‘+l =3 }/1,\’

and

y:,s+l

= log(l +exp(6,‘j(z,x))). We should take the partial
7i,s+l - }/1,5

b(0,,(2))=log

derivatives of 6, (z,x) and b(@w (z,x)) with respect to 7, and a, for the

proportional odds model.

g r
Tis ~Z aUzJ +Z ﬁtlxl
=l I=1

e
)/i,s - q r .
We have that T/’A'_Z aUZJJrZ B,%, and if we set
l+e & 7
q r
Tis _Zaijzj +Zﬂl’1xl
- = I=1
g=¢€ ! we have that y, = £ and dg_ = g. Hence,
o l+g ot;,
dvi.. gllvg)-g° g g 1 po 8 dep (lay, )
7 2 = 2 = =Y isn PR _yi,s,n _71,3
o7, , (1+g) (1+g) l+gl+g 1+ g

We should also note that y, ., does not depend on 7, and as a result of that

d}/l,ﬁ»l,m
or,

i5

=0

}/i,s,n

So we take the first derivative of 6, (z,x)= log with respect to

is+l,n 7i,s,n

T.

is

dgi,s,n - }/i,sﬂ,n 3 }/i,:,n yi,s,n (1 Ex 7[,:,!1 xyi,S-HJI 2= },i,s,n)—'_ }/i,s,n (1 2 }/i,:,n )}/i,s,n

2
ari,f }/i,S." (}/i,s+l,n = }/i,s,n)
_ (1 - }/i,s,n )}/i,ﬁl,n
}/i,.\‘+l,n = }/i,s,n
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b(49 (z x)): log Viset log(l +exp(¢9[‘s_"(z, x)))
T
b0, (z,x)) I db,,,(2,%) s G
= L
ot 1+ exp (men (z,x)) or,,
- }/[,S+l,n - yi,s,n (l - yi,s,n );/i,s+l,n }/i,s,n = yt,s,n (1 - }/i,s,n)

}/i,x+l,n }/i,x+1,n = }/i,s,n }/i,s+1,n - }/i,s,n 7:,s+l,n - yi,s,n

Now we find the derivatives of 8, (z) and b(&,)s (z)) with respect to a,

d.
We have that ~& - -z,g and

a!/

&y, -zgl+g)+vze’ -zg g |

da, - (1+g)2 _(l+g)2—ﬂ2j1+gl+g
g - If we set
=—z v ]l=—=|=—z7 |l=v
Z]}/z,s,n( 1+gj Z]}/z,s,n( }/I,S,n)

q r
Ti g4l —Zaijzj +Zby-x,
— J=1 /=1
y=e and using the same logic we have that

dy

ab;} = _iji,:ﬂ,n (1 - }/i,S+l,n ) So

dgi,s,n (Z) _ il
aaij Visn
—Z,¥ism (1 ~Visn X}’i,m,n AT )+ (Zj}/i,.wl,n (l A )— Z;Visn (1 T or ))7/i,s,n
o)
(}/i,s+l,n AT )
=z (1 =Visn }7;,”1," T ZY sain (1 = 7i,s+1,n)
Visetn ~Visn
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= - —Zj}/i,s+l,n
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96
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> > -
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