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Abstract

Value at Risk (VaR) approach has received a great attention from both regulatory and
academic fronts. Numerous papers have studied various aspects of VaR methodology.
However, different methodologies of computing VaR generate widely varying results,
suggesting that the choice of VaR model is very important. I use daily equity index
returns from twenty two developed markets and from twenty six emerging markets over
the past twelve years in order to examine the exposure to market risk of nine hypothetical
global portfolios and to evaluate the relative predictive performance of alternative
multivariate Value at Risk models. Performance evaluation is based on a three-step
testing procedure for correct conditional coverage of the interval forecasts and a
regulatory loss function that compares two alternative models. I present empirical
evidence that the filtered historical simulation and the extreme value theory models are

more accurate especially at higher quantiles than other well-known modeling approaches.
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A comparative analysis of multivariate value at risk models:
Evidence from Developed and Emerging markets

1. Introduction

Modeling market risk, as precisely as possible, is perhaps the most challenging goal
of an international financial organization, investing in developed and emerging capital
markets. Risk is defined as the degree of uncertainty of future net returns. This
uncertainty takes many forms, which is why most participants in the financial markets are
subject to a variety of risks. Market risk arises from movements in the level or volatility
of market prices. The most widely used approach for quantifying market risk is Value at
Risk (VaR) methodology. VaR tools allow financial organizations to quantify market risk
in a systematic fashion. A large body of literature exists describing and examining
various VaR models, either in each developed market or in each emerging market
separately. However, in practice, institutional investors and financial institutions manage
large portfolios, which consist of a combination of different markets. In this paper, I use
daily equity index returns from twenty two developed markets and from twenty six
emerging markets over the past twelve years in order to examine the exposure to market
risk of nine hypothetical global portfolios and to evaluate the relative predictive
performance of alternative multivariate Value at Risk models. I present empirical
evidence that multivariate GARCH models, which perform well in developed markets in
95% confidence level, are inefficient when applied in emerging markets and that the
filtered historical simulation and the extreme value theory models are more accurate
especially at higher quantiles than other well-known modeling approaches.

Over the past decade the growth of trading activity in global capital markets have
resulted in a re-analysis of the market risks faced by financial institutions and how it is
measured. Developed markets, which are less risky, with high degree of information
efficiency and higher market liquidity, have always been an attractive choice for global
investors. On the other hand, emerging markets in Europe, Latin America, Asia, the

Mideast and Africa provide a new menu of opportunities for investors. A stock market is
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classified as "emerging" if it is located in a low or middle income economy as defined by
the World Bank or its investable market capitalization is low relative to its most recent
gross domestic product. The growth of emerging markets has received much attention in
the past few years. Investors have been attracted to the potentials for high returns along
with diversification benefits of such markets. Even managers and trustees of pension
funds have begun to commit a portion of their pension assets to emerging markets equity
securities.

Recently, developed and emerging markets have experienced several extreme
market events. Examples include the U.S. stock market crash of October 1987, when
prices at the New York Stock Exchange fell by one third over five trading days. The
Japanese stock price bubble finally deflated at the end of 1989, sending the Nikkei index
from 39,000 to 17,000 three years later. A total of $2.7 trillion in capital was lost, leading
to an unprecedented financial crisis in Japan. The Latin American crisis of 1994
involving Argentina, Brazil and Mexico created substantial financial losses. The Asian
turmoil of 1997 wiped off about three fourth of the dollar capitalization of equities in
Indonesia, Korea, Malaysia and Thailand. The Russian defauit in August 1998 sparked a
global financial crisis that culminated in the near failure of a big hedge fund. Before the
1990s, financial crises were $een as events only affecting the country in which they had
originally occurred. After the 1990s financial crises started to spread rapidly beyond the
countries where they had originated to others with different economic structures and
institutions. Consequently, effective use of Value at Risk methodology has emerged as a
response to the increased volatility in global financial markets. However, different
methodologies of computing VaR have generated widely varying results because of the
different characteristics of developed and emerging markets, suggesting that the choice of

VaR model is very significant.
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2. Literature review

Emerging markets are commonly associated with extraordinary high average
returns compared to developed markets, high volatility, a degree of return predictability,
and low correlation with developed markets, offering diversification benefits to global
investors. Literature review indicates the different characteristics of emerging equity
markets. Errunza (1977), Errunza and Rosenberg (1982) and Errunza (1983) are among
the earlier studies on emerging markets, pointing out the potential benefits of investing in
emerging markets. Bailey and Stulz (1990) and Bailey et al. (1990) have shown that the
potential benefits through diversification from the Pacific Basin stock markets are
substantial. An effective diversification through investing in emerging markets may also
result in reducing risk significantly (see Divecha, Drach and Stefek 1992, Wilcox 1992,
Speidell and Sappenfield 1992, Mullin 1993, Errunza 1994). In a study of twenty new
equity markets in emerging economies, Harvey (1995) found that the inclusion of
emerging securities significantly reduces portfolio risk and increase expected returns. He
also explained the high volatility of emerging markets due to the lack of diversification in
the country index, high risk exposures to volatile economic factors and time-variation’ in
the risk exposures or incomplete integration into world capital market. Moreover, he
concluded that the amount of predictability found in the emerging markets is greater than
that found in developed markets.

It has been documented that when markets are individually volatile, the correlation
between the returns of the various different markets increases. Karolyi and Stulz (1996)
use data from American Depository Receipts of Japanese stocks traded on the New York
Stock Exchange and a matched sample of US stocks, and find that comovements are high
when contemporaneous absolute returns of the national markets indices are high. Bekaert
and Harvey (1997) investigate the emerging market time-varying volatility and explored
the forces that determine the difference of volatility in various emerging markets. They
argue that those forces are asset concentration, market capitalization, size of the trade
sector, cross-sectional volatility of individual securities, turnover and foreign exchange
variability. Bekaert, Erb, Campbell and Viskanta (1998) detailed the distributional

characteristics of emerging markets and explore how these characteristics change over
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time. They argued that emerging markets are highly non-normal. Masters (1998)
investigated the emerging market indexes and found them inherently inefficient and
concluded that building a portfolio around a particular index may be less desirable in
emerging markets than in other asset classes. Erb, Harvey and Viskanta (1998) pointed
out that correlation varies depending on both the state of economy and the state of the
equity markets in each country. Aggarwal, Inclan, and Leal, (1999) examined the events
which cause major shifts in emerging markets’ volatility. They found that, unlike
developed markets, large changes in volatility seem to be related to country-specific
events. Ang and Bekaert (1999) go further to suggest that equity markets correlations
increase more in volatile bull than volatile bear markets. Recently, several authors have
investigated the volatility of Central and Eastern European stock markets. Kasch-
Haroutounian and Price (2001), Poshakwale and Murinde (2001) found that significant
autocorrelation, high volatility persistence, significant asymmetry, lack of relationship
between stock market volatility and expected return and non-normality of the return
distribution are basic characteristics of stock market volatility in transition countries.

Taking into account all the above characteristics of emerging markets, it could be
argued that a number of Value at Risk models that perform well in developed markets
may be inefficient, when appliled in emerging markets. There is a huge number of studies
concentrated on different VaR method. However, most of these studies have been tested
on developed markets such as those in the US and Europe without taking into account the
idiosyncratic nature and the volatility peculiarities of emerging markets. For instance,
Guermat and Harris (2002) use representative equity portfolios for the US, UK and
Japan. They show that exponentially weighted maximum likelihood based VaR forecasts
are generally more accurate than those generated by both the EWMA and GARCH
models, particularly at high VaR confidence levels. Cotter (2004) argues that extreme
value theory models, applied in five equity indexes from Ireland, UK, France, Germany
and Spain, dominates alternative approaches in tail estimation as it avoids model risk.

The most recent studies in emerging markets are concentrated to Extreme Value
Theory models for computing VaR. Jondeau and Rockinger (1999) studied the tail
behavior of stock returns in five mature markets, nine Asian, six Eastern European, and

seven Latin American emerging markets using extreme value theory. De Melo Mendes
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(2000) found that in Latin American markets the combinations of robust estimation of
GARCH models and an extreme value theory model results in more precise conditional
risk estimates than those obtained using classic estimation procedures. Ho, Burridge,
Cadle, and Theobald, (2000) used extreme value theory to model the tails of the return
distributions of six Asian financial markets during the recent volatile market conditions.
They found that the value at risk measures generated by an extreme value framework are
different to those generated by variance covariance and historical methods, particularly
for markets characterized by high degrees of leptokurtosis such as Malaysia and
Indonesia. Seymour and Polakow (2003) argue that both extreme value theory and
volatility updating (via GARCH-type modeling) on a representative portfolio of South
African stocks, provide significantly better results than established methods such as the
historical simulation. Da Silvaa and de Melo Mendes (2003) use the extreme value theory
to analyze ten Asian stock markets, identifying which type of extreme value asymptotic
distribution better fits historical extreme market events. Their results suggest that the
extreme value method of estimating VaR is a more conservative approach to determine
capital requirements than traditional methods. Gencay and Selcuk (2004) investigate the
relative performance of VaR models using daily stock returns of nine different emerging
markets. Their results indicate that extreme value theory based VaR estimates are more
accurate at higher quantiles than well-known modeling approaches, such as variance
covariance method and historical simulation. Bao, Lee and Saltoglu (2006) investigate
the predictive performance of various classes of VaR models for the stock markets of five
Asian economies that suffered from the 1997-1998 financial crises. They argue that
extreme value theory models behave reasonably well in the crisis period and that filtering
often appears to be useful for some models, particularly for the extreme value theory

models.
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3. Defining Value at Risk

Value-at-Risk is a measure of the worst expected loss of a portfolio of financial
instruments over a target horizon under normal market conditions with a given
probability (Jorion 2002). In other words, VaR describes the quantile of the projected

distribution of gains and losses over the target horizon. If (1-a) is the selected

confidence level, VaR corresponds to a lower tail of the distribution and represents a%

chance that the actual loss in the portfolio’s value is greater than the VaR estimate.
[3.11 Prob(AP(At,As)<VaR)=a

where AP(At,As) is the change in the market value of the portfolio, expressed as a

function of the forecast horizon At and the change in the underlying asset price As. In
this paper, Value at Risk of equity portfolios is computed over a one day horizon for both
95% and 99% confidence levels.

The concept and use of value at risk is recent. Value at risk was first used by major
financial firms in the late 198Q’s to measure the risks of their trading portfolios. The term
found its way through the Group of Thirty report published in July 1993. Apparently, this
was the first widely publicized appearance of the term value at risk. Since that time
period, the use of value at risk has exploded and it is increasingly being used by smaller
financial institutions, non-financial corporations and institutional investors. In the last
few years Value at Risk has become a very popular methodology for quantifying market
risk. It has been adopted by many different types of financial organizations. An important
reason for this is J.P. Morgan's decision in 1994 to make their RiskMetrics database
freely available to all market participants providing a tremendous impetus to the growth
in the use of Value at Risk. Another reason is the climate created by derivatives disasters
such as Procter and Gamble, Metallgesellschaft, Orange County, and Barings. A third
reason is the fact that Regulators have also become interested in Value at Risk. In April
1995, the Basle Committee on Banking Supervision proposed allowing banks to calculate
their capital requirements for market risk with their own Value at Risk models, using

certain parameters provided by the committee. In January 1996, the Basel Committee on
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Banking Supervision of the Bank of International Settlement issued a revised consultative
proposal on an “Internal Model-Based Approach to Market Risk Capital Requirements™
that represents a big step forward in recognizing the new quantitative risk estimation
techniques used by the banking industry. These proposals recognize that current practice
among many financial institutions has superseded the original guidelines in terms of
sophistication, and that financial institutions should be given the flexibility to use more
advanced methodologies.

At the time Value-at-Risk burst on the scene, it was devised initially as a method to
report financial market risk. However, VaR is not only useful for reporting purposes but
also as a risk control tool. VaR limits can be used to control the risk of traders, as a
supplement to traditional limits on notional amounts. Such limits can also be used at the
level of the overall financial institution. Another application of VaR can be found in
investment management. Institutional investors can monitor their portfolio risk and
compare the market risk arising from different financial instruments. Moreover, VaR can
be used to evaluate the performance of risk takers on a return/risk basis and to estimate
capital levels required to support risk taking.

More than one VaR model is currently being used and most practitioners have
selected an approach based on their specific needs, the types of positions they hold, their
willingness to trade off accuracy for speed (or vice versa) and other considerations. There
are four widely used methods for computing VaR, the variance covariance approach,
historical simulation, Monte Carlo simulation and the extreme value theory. The variance
covariance approaches are based on the assumption that market returns have a joint
normal distribution. The variance covariance matrix is forecasted using several volatility
models and VaR of a portfolio is estimated using the properties of normal distribution.
Historical simulation, which is usually applied under a full valuation model, makes no
explicit assumptions about the distribution of asset returns. This approach involves using
historical changes in market prices to construct a distribution of potential future portfolio
profits and losses. Monte Carlo simulation methods attempt to generate paths of market
returns using a defined stochastic process. The extreme value theory models only the tails
of the distribution rather than the entire one. Therefore, it focuses on the parts of the

distribution that are essential for the VaR.
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4. Value at Risk models

Methods to Value at Risk basically can be classified into two groups. The first
group includes the parametric approach, which attempts to fit a parametric distribution
such as normal to the data. VaR is then measured directly from the standard deviation.
The second group includes the non-parametric approach, which is based on the empirical
distribution or a simulated stochastic distribution and its sample quantile. Parametric
methods include the variance covariance approach. Non-parametric methods include the
historical simulation models and the Monte Carlo simulation models. The extreme value
theory models are assumed to be semi-parametric.

The parametric methods that are used in this paper are the fixed weight approach,
the exponentially weighted moving average, the constant correlation GARCH, the
dynamic conditional correlation GARCH, the orthogonal GARCH and the exponential
GARCH. All models assume that returns are normally distributed and their main
difference is how the variance covariance matrix is estimated. The non-parametric
methods that are used in this paper are the historical simulation, the weighted historical
simulation, the filtered historical simulation, the Monde Carlo simulation using normally
distributed random variables, 2the mixed of normal distributions Monde Carlo and the
extreme value theory. The following section provides a detailed description of each of
these models.

All the above models calculate Value at Risk using daily continuously compound

returns. Let 7, denote the continuously compound rate of return and define P, to be the

closing price of each asset at time t, then

b

[4.1] r =In( )

11

Financial returns often exhibit particularly fat tails and excess kurtosis (see Appendix I).
This means that extreme price movements occur more frequently than implied by a
normal distribution. Duffie and Pan (1997) identify jumps and stochastic volatility -as

possible causes of kurtosis. The peak of the return distribution is higher and narrower
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than that predicted by the normal distribution. Note that this characteristic, often referred
to as the “thin waist”, along with fat tails is a characteristic of a leptokurtotic distribution.
Moreover, it is often found that financial daily returns are autocorrelated but the
magnitude of the autocorrelation is too small to be economically significant. For longer
return horizons (beyond a year), however, there is evidence of significant negative
autocorrelation (Fama and French, 1988). Furthermore, financial squared returns often

have significant autocorrelations.

4.1. Fixed weight approach

The equally weighted moving average assumes that market returns are normally
distributed, the return variance covariance matrix X, is constant over the period of

estimation and that all observations carry the same weight in the volatility estimate. The
principal reason for preferring to work with volatility is the strong evidence that the
volatility of financial returns is predictable. Therefore, if volatility is predictable, it makes

sense to make forecasts of it to predict future values of the return distribution. The

elements of variance covariance matrix X, can be estimated by:

1 & j
42) 6’=——Y(r, ), F==—>r
[42) oi% 0> 6, ) R= D

1 & _ _
[43] 6, =——>.(r, F)r, —F)

N'—lt=l

where o is the variance of the i risk factor and o, is the covariance between the i

and the j™ risk factor. N is the length of the window of observations. For this approach a
moving window of 200 observations is used for better calibration of the model. The next
step is to compute the volatility of the portfolio of the risk factors, which is less than the

sum of volatilities as Markowitz (1952) had shown and is given by:
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(44] o, =wZw

p
where w is a one by number of assets vector of weights and w' represents the transpose
of vector w. Ultimately, the portfolio variance can be translated into a VaR measure for
one monetary unit. If all individual security returns are assumed normally distributed, the
portfolio return, a linear combination of normal random variables, is also normally
distributed, so the VaR estimate is obtained using percentile points on the normal

distribution. For 95% confidence level VaR can be estimated by:

[4.5] VaR>* =1.65,/c2
I4 P

and for 99% confidence level
[4.6] VaRf,"" = 2.33110',2,

The strong side of the equally weighted moving average is that it is flexible, simple
and widely used. It also enables the addition of specific scenarios and enables the
analysis of the sensitivity of the results with respect to the parameters. However, it relies

heavily on the important assumption that all of the major market parameters are normally

distributed. The issue is whether the normal approximation is reglistic. Moreover Z, is
assumed to be time invariant. Empirical work (Engel and Gizycki (1999)) indicates that

the X, does vary through time.

4.2. Exponentially weighted moving average

In order to capture the dynamic features of volatility an exponential moving average
of historical observations is used, where the latest observations carry the highest weight
in the volatility estimate. Although the exponentially weighted moving average

estimation ranks a level above the fixed weight approach in terms of sophistication, it is
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not complex to implement. This approach was proposed by J.P. Morgan and Reuters
(1996) in their RiskMetrics. According to a survey of Deloitte & Touche (2002) the most
widely used approach is this parametric, popularized by the JP Morgan. The
exponentially weighted moving average has two important advantages over the fixed
weight approach. First, volatility reacts faster to shocks in the market as recent data carry
more weight than data in the distant past. Second, following a shock (a large return) the
volatility declines exponentially as the weight of the shock observation falls. For a
window of N observation, the exponentially weighted volatility is computed by the

formulas:

[4.7] o} =(- A)ZN: A, T)

1=l

48] o, =(1-HS A, FXr, ~F)

=1

The exponentially weighted moving average can be written in recursive form and can be
used to make a one day volatility forecasts. In order to derive the recursive form, it is

assumed that infinite amount of data are available and that the sample mean is zero.

[49] o], =il +(1-A)r!

ir+]

[4.10] o, =40, +(1-A)r,r,

G+
The parameter A is often referred to as the decay factor. This parameter, which is
between zero and one, determines the relative weights that are applied to the observations
and the effective amount of data used in estimating volatility. The optimal decay factor
minimizes the root mean squared error of volatility forecasts. In this paper, 4 =0,94 is
used and a windows of 200 observations.

It is obvious that volatilities and covariances vary with time. Implicitly, what we are

assuming in modeling the variances and covariances as exponentially weighted moving
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averages is that the variance process is nonstationary. RiskMetrics model is a private case
of an integrated generalized autoregressive conditional heteroscedastic process (Nelson

1990, Lumsdaine 1995) without a drift and with constant parameters. Using the above

equations we compute the elements of variance covariance matrix ,,. Assuming that

market returns are normally distributed, the one day forecast of X, is used to obtain the

VaR estimate, for different confidence levels using equations [4.4] and [4.5].

4.3. Constant Correlation GARCH

A common feature of financial time series returns is volatility clustering (volatility
may be higher for certain time periods and low for other periods). A second characteristic
is that volatility evolves over time in a continuous manner and it is often stationary
(volatility varies within some fixed range). A variety of econometric models are available
in the literature for modeling volatility. These models are referred to as conditional
heteroscedastic models and can be used to estimate the variance covariance matrix. The
constant correlation GARCH of Bollerslev (1990) assumes that the risk factors

correlation is time invaridnt. This model estimates each diagonal element of the variance

covariance matrix X, using a univariate GARCH model (Bollerslev 1986). The

autocorrelation function of the squared individual return series indicates a statistically
significant lag-1 and lag-2 autocorrelation in most emerging markets. However, the
magnitude of the autocorrelation in developed markets is less significant. In a daily
AR(r)-GARCH (p,q) model the conditional volatility today depends on the previous days’
conditional volatility and on the previous days’ squared forecast error. For choosing the
appropriate order of the model, the required coverage probability is considered. The
AR(2)-GARCH (1,1) model, which most successfully captures the required coverage

probability a in the (1-a)% confidence level, is given by:

[41 1] r, = ¢0 + ¢1 Vi + ¢2 V-2 +e, €, = 0§,
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2 2 2
[4.12] o, =w,+a-e,  +B-0;,,

Let N to be the number of risk factors. Define R to be the N by N correlation matrix,
which is time invariant, and D, = diag{,/oyf} (diagonal matrix of GARCH volatilities),

the variance covariance matrix X, is given by:

[4.13] =, =D,-R-D,

There are three parameters to be estimated for each variance using maximum likelihood
techniques. By assuming that correlation between risk factors is constant, this model
reduces the total number of parameters to be estimated to (3N + N(N —1)/2). However,
as the number of risk factors increases, the model became too computationally time
consuming for practical applications. For all multivariate GARCH models a moving
window of 700 observations is used in order to compute the elements of the variance

covariance matrix X, . Once the matrix =, has been estimated, the standard variance

covariance approach described above is used to estimate the VaR.

4.4. Dynamic Conditional Correlation GARCH

The assumption of constant conditional correlation is arguably too restrictive over
long time periods. Engle and Sheppard (2001) and Engle (2002) generalized Bollerslev’s
constant correlation model to obtain a dynamic conditional correlation GARCH. This

model differs only in allowing the correlation matrix R, to be time varying. DCC

GARCH, which parameterizes the conditional correlations directly, is naturally estimated
in two steps. The first is a series of univariate GARCH estimates for each asset and the
second is to use transformed residuals resulting from the first step to estimate a
conditional correlation estimator. This method has clear computational advantages over
other multivariate GARCH models in that the number of parameters to be estimated in

the correlation process is independent of the number of series to be correlated. Thus
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potentially very large correlation matrices can be computed. The conditional variance

covariance matrix is given by:

[4.14] Z,=D,-R,-D,

where R, is the correlation matrix, which is time varying and D, = diaghjo) } The
elements in D, follow the univariate GARCH(1,1) processes as described in equation
[4.12]. Engle’s particular DCC(m,n) structure, where m is the lag length of the

innovation term in the DCC estimator and »n is the lag length of the lagged correlation

matrices, can be written as:

[4.15]1 R, =0,7'0,0""

[4.16] O, =(1-Ya,~Y. B0+ 6, (¢ ntr-n) *+ 2. B8.0.0
3

where ¢, is a vector containing the residuals standardized by their conditional standard

deviation, O is the unconditional variance covariance matrix of the standardized
residuals resulting from the first stage estimation and Q* is a diagonal matrix containing
the square root of the diagonal elements of Q, . For choosing the appropriate DCC(m,n)
structure, the required coverage probability is considered. The DCC(L,1) structure, which

most successfully captures the required coverage probability, is used in all cases. The
dynamic conditional correlation GARCH framework can be estimated using the

maximum likelihood method. Value at Risk is computed using a one day forecast of

matrix Z,, assuming that the return series is conditionally normally distributed.
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4.5. Orthogonal GARCH

The multivariate GARCH models described so far are too computationally time
consuming for large portfolios. A solution proposed by Engle, Ng and Rothschild (1990),
which exploits factor analysis to enable a small number of factors to describe a high
proportion of the structure of the variance covariance matrix. Later, Alexander and
Chibumba (1998) propose an ‘orthogonal’ GARCH model that utilized principal
component analysis in order to orthogonalize the original returns. These orthogonal
returns are known as the ‘principle components’. Since these are, by definition.
orthogonal to each other, the number of parameters need to be estimated is reduced
substantially because we no longer need to measure the covariances.

Define T to be the length of the window of observations and N the number of risk
factors. Then the 7 by N matrix R contains the full set of historical returns. Let W be a

N by N matrix of eigenvectors of R'R. The orthogonal principle components are then

the columns [P,...P, ] of:
[4.17) P=[P..P.]=RW
Solving for matrix R and using the property of matrix W that its inverse is equal to its

transpose. it is possible to write the change in risk factor i/ as a linear combination of the

principle components where the weights are given by the elements of the i eigenvector:
[4.18] R=PW'

=2rn=w,p WD, WDy

h

where r, is the return of the i" risk factor, p, is the j™ zero mean principal component

and w, are the weights. The variance covariance matrix Z, is given by:

[4.19] = =W .V-W'
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where and V, = diag{var(P)} (diagonal matrix of variances of principal components). It
should be noted that in order to obtain the variance covariance matrix Z,, only the

eigenvectors of R'R and the diagonal elements of V' need to be estimated and each of
the principal component variances is modeled independently, in a univariate setting,

using a GARCH(1,1) framework.

4.6. Exponential GARCH

An alternative approach, which has great computational advantages, is to use an
asymmetric univariate GARCH. Instead of estimating the variance covariance matrix of
all the portfolio components, it is possible to estimate only the variance of the portfolio
returns. Brooks and Persand (2003) compare the forecasting performance of univariate
and multivariate forecasting models for financial asset return volatility. They argue that
the gain from using a multivariate GARCH model for forecasting volatility is minimal.
This result is true both under standard statistical and risk management evaluation
measures. Given the complexity, estimation difficulties, and computer-intensive nature of
multivariate GARCH m(;deling, they conjecture that unless the conditional covariances
are required, the estimation of multivariate GARCH models is not worth while. In the
context of portfolio volatility, more accurate results can be obtained by aggregating the
portfolio constituents into a single series, and forecasting that, rather than modeling the
individual component volatilities and the correlations between the returns.

Define T -to be the length of the window of past returns and N the number of risk
factors. Then the N by T matrix R contains the full set of historical returns. Let w to

be a one by N vector of portfolio weights. Then the sample of historical returns of the

portfolio is given by:
[420] R, =w-R

The Nelson’s (1991) exponential GARCH (1,1) model is a specification for modeling

asymmetric dependence of volatility on past returns, and it is given by:
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BRI In?)=a, + /(2 )+ Af(ee )=+ pinca?)

-1 O-/ 1

Variance is asymmetric if A # 0. Impact of the most recent residual is exponential rather

than quadratic. There is evidence that this specification is too strong for large shocks.

4.7. Historical Simulation

Historical simulation is perhaps the most simple to implement non parametric
method. It does not require any statistical assumption about the distribution of portfolio
returns. This technique uses past price movements to calculate a hypothetical future
distribution of profit and loss on the current portfolio. This provides a series of changes in
portfolio value that would have been realized had the current portfolio been held over the
period in question. The Value at Risk is then set equal to a percentile of the empirical
distribution of historical returns given a required level of confidence. At least one year of
recent daily returns must be used in historical simulation. A longer period is more
appropriate when available. In this paper, a moving window of 600 daily returns is used
for each risk factor for better calibration of the model.

Historical simulation assumes that past and present moments of the density function
of returns of each risk factor are constant and equal. Given the data set of historical
portfolio returns, which is computed using equation [4.20], a distribution of potential
future portfolio profits (positive returns) and losses (negative returns) is constructed and

the VaR number is derived for a specific confidence interval (1—a)% as the
corresponding quantile of this distribution.

1+

[4.22] VaR?, = Quantile{fr,},,100a}
Historical simulation is powerful because of its simplicity and its relative lack of
distributional assumptions. This method accommodates non-normal distributions and

therefore it accounts for fat tails and excess skewness. This simple approach does not

come without a cost, as the choice of the sample length 7' affects the estimates. If 7 is

25



A comparative analysis of multivariate Value at Risk models: Evidence from developed and emerging markets

too large, the most recent observations, that probably are describing better the future
distribution, carry the same weight with the earliest returns which are not equally
important as the new ones. On the other hand, if T is too small, then either too few or
insufficient extreme events will be observed. In both cases, the sample size is a hinter
factor, as the VaR is either underestimated or overestimated. This remark was confirmed
by Van den Goorbergh and Vlaar (1999) as they argued that the VaR estimates for Dutch
equity index were extremely sensitive to the sample length. Historical simulation’s ability
to predict future losses may be however undermined if the distribution of any risk factors
is not independent and identically distributed. Stationarity implies that the probability of
occurrence of a specified loss is the same for each day. Independence implies that the size

of price movement in one period will not influence the movement of any successive

prices.
4.8. Weighted Historical Simulation

Weighted historical simulation is a hybrid approach proposed by Boudoukh,
Richardson and Whitelaw (1998). It exploits the non parametric nature of historical
simulation while imposing an exponential weighting scheme on the historical returns.
While the historical simulation attributes equal weights to each observation in building
the conditional empirical distribution, the hybrid approach attributes exponentially
declining weights to historical returns. Most recent observations are assigned a bigger
weight.

The approach starts with calculating the historical returns of the portfolio using

equation [4.20]. The next step is to assign a weight &, to each return according to how far
in the past the observation is. All the weights sum to unity.
_A-2)

4.23] k =———, =1..T
[ ] 1—-n+} (1 _/1,,) n

The returns are then arranged in ascending order. To obtain Value at Risk of the portfolio

for a given confidence level (1-a)%, we start from the lowest return and we keep
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accumulating the weights until a% is reached. Linear interpolation is used between
adjacent points in order to achieve exactly a% of the distribution. In this paper, a moving
window of 600 observations is used and the value of A equals to 0,99.

The two main shortcomings of weighted historical simulation are that it depends on
a particular historical data set and that it can not accommodate changes in market
structure. Pritsker (2000) reviews the assumptions and limitations of historical and
weighted historical simulation. He points out that both methods associate risk with only
the lower tail of the distribution. In an example, he showed that after the crash of 1987
the estimated VaR of a short equity portfolio, as computed by historical simulation or
weighted historical simulation, did not increase. The reason is that the portfolio recorded
a huge profit during the day of the crash. Pritsker goes further by formulating some

interesting properties of the historical and weighted historical simulation.

4.9. Filtered Historical Simulation

Filtered historical simulation, which was presented by Hull and White (1998) and
by Barone-Adesi, Giannopoulos and Vosper (1999), takes into account the changes in
past and current volatilities of historical returns and make the least number of
assumptions about the statistical properties of future price changes. It consists of drawing
random standardised returns from the portfolio’s historical sample and after rescaling
these standardised historical returns with the current volatility, they are used as
innovations for generating scenarios for future portfolio returns. This method not only
generates scenarios that conform to the past history of the current portfolio’s profits and
losses, but also overcomes an additional limitation of the variance-covariance model. It
allows both past and future volatility to vary over time. Filtered historical simulation
retains the nonparametric nature of historical simulation by bootstrapping (sampling with
replacement) from the standardized residuals. One of the appealing features of the filtered
historical simulation is its ability to generate relatively large deviations (losses and gains)
not found in the original portfolio return series.

The bootstrapped filtered historical simulation method requires the observations to

be approximately independent and identically distributed. However, most financial return
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series exhibit some degree of autocorrelation and, more importantly, heteroskedasticity.
To produce a series of independent and identically distributed observations, a first order
autoregressive moving average model ARMA(1,1) is fitted to the conditional mean of the
portfolio returns and a GARCH(!,1) model (Bollerslev, 1986) is fitted to the conditional
variance. For choosing the appropriate order of the ARMA(r,m)-GARCH (p,q) model, the
required coverage probability, which most successfully approximates the true coverage
probability, is considered. The first order autoregressive moving average model
compensates for autocorrelation, while the GARCH(I,1) model compensates for
heteroskedasticity. The portfolio return series is computed using equation [4.20]. The

residuals and conditional volatilities are given by:
[4.24] r =¢,+dr_ +6e,_ +e, e, ~ N(,5’)

[4.25] o] =w, +ae’, +a,0],

1

Having filtered the modet residuals from the portfolio return series, each residual is

standardized by the corresponding conditional standard deviation.

el

:'
VGI

[4.26] z, =

These standardized residuals represent the underlying zero-mean, unit-variance,
independent and identically distributed series. The independent and identically distributed
property is important for bootstrapping and allows the sampling procedure to safely avoid
the pitfalls of sampling from a population in which successive observations are serially
dependent. The filtered historical simulation bootstraps standardized residuals to generate
paths of future asset returns and, therefore, makes no parametric assumptions about the
probability distribution of those returns. To do this, each bootstrapped standardized

residual is scaled by the deterministic volatility forecast one day ahead:
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2

[4'27] £1+l = zl ) O-;H

Forecasts of volatility for one day ahead &, are simulated by the recursive substitution

of scaled residuals into the variance equation (GARCH). Using the bootstrapped
standardized residuals as the independent and identically distributed input noise process,
future portfolio returns are generated using forecast from the autoregressive moving

average model:
[428] rl+] = ¢0 + ¢Ir1 + glgl + gl+l

Value at Risk is calculated as a quantile of the future portfolio return distribution for a

given confidence level.

4.10. Monde Carlo Simulation

Monte Carlo simulation is an alternative to traditional historical simulation
approaches. The main difference is that Monte Carlo, using a defined stochastic process
and a statistical distribution, attempts to generate a large number of correlated returns for
each risk factor that were not, in fact, observed over the historical period, but they are just
as probable to occur in the future. Individual returns are then used to construct a
distribution of hypothetical portfolio profits and losses. Finally, the value at risk is
determined as the corresponding quantile of this distribution.

The first and most crucial, step in the simulation process consists of choosing an
appropriate theoretical distribution that will conform to the empirical distribution of each
asset. This implementation of the Monte Carlo simulation employs the assumption that
returns are normally distributed. In a multivariate case we should also take into account
that returns are correlated. To account for this correlation, Cholesky decomposition is
used. Let R to be the correlation matrix computed from historical returns. Define C to be

a unique lower triangular matrix, produced by Cholesky decomposition, such that:
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[426] C-C'=R
The population of correlated random variable used in the simulation process is given by:
[427] z=C-U

where U is a vector of uncorrelated random variables that are normally distributed with
zero mean and unit variance.

The next step is to choose a particular stochastic model for the behavior of equity
prices. A commonly used model is the geometric Brownian motion. Small movements in

asset prices can by described by:
[425] dS=u-S-dt+o-S-dz

where S is the asset price, and the parameters 2 and o represent the expected drift and

volatility, which are estimatéd from historical data using exponential smoothing method.

Finally 20.000 possible returns for each individual risk factor, over an interval of length

dt , are given by:

[4.28] %:p-dt+a-dz=,u-dt+a-g-«/z

where & represents a random drawing from a standardized normal distribution.
Hypothetical portfolio returns are computed using equation [4.20] and from the
distribution of portfolio returns, the appropriate percentile is determined to provide the
VaR estimate for a given confidence level.

The main drawback of Monte Carlo methods is their computational time
requirements. Moreover, the generation of the scenarios is based on random numbers
drawn from a theoretical distribution, often normal, which not only does not conform to
the empirical distribution of most asset returns, but also limits the losses to around three

or four standard deviations when a very large number of simulation runs is carried out.
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Finally, another potential weakness is model risk. Monde Carlo simulation relies on a

specific stochastic model and therefore, it is subjected to the risk that the model is wrong.

4.11. Mixed of Normal Distributions Monde Carlo

Mixture of normal distributions is used to model situations where the data can be
viewed as arising from two or more distinct populations. Zangari (1996) has proposed a
practical application of mixture of normal distributions to incorporate fat tails in the VaR
calculation. The mixture of normal distributions can accommodate the observed
skewness and kurtosis of the financial time series and hence can describe them better than
the standard normal distribution.

Under a mixture model, the probability p that a given day is quiet and the
probability 1—p that a given day is hectic are specified. Conditionally, returns are
normally distributed, but with low volatility on quiet days and with high volatility on
hectic days. The resulting unconditional distribution, the mixture normal distribution,
exhibits heavy tails due to the random nature of the volatility. In order to fit a mixture of
normal distribution, we need to estimate five parameters: two means, two standard
deviations, and the probability of having a quiet day. Mathematically, the standardized

return distribution is generated according to the following probability density function:
[429] PDF = p-N,(,,02)+ (1~ p): N y(1,.5%)
The parameters of the mixture of normal distributions can be estimated by maximum

likelihood techniques, under the assumption that both distributions have zero mean. The

likelihood function is given by:

" V& 7 A=p 7
[4.30] l(p,aa,aﬂ)—mZ[o_ﬂ exp( 0_2)+ = exp( 20_2)

il 20, B ]
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where r, is the historical returns of each risk factor. Unfortunately, as pointed out by

Hamilton (1991), a global maximum does not exist for this function. Consequently,
attempting to use this approach in order to estimate the parameter may lead to instability,
local solutions, and non convergence problems. Venkataraman (1997) used the quasi-
Bayesian maximum likelihood estimation approach (first suggested by Hamilton) in order
to estimate the parameters of the mixture of normal distributions, which is
computationally simpler than the techniques suggested by Zangari. The method is to

maximize the following variant to the likelihood function:

a, aﬂ ba bﬁ Cﬂ,m;
4301 Hp.eu.2,)- TIOg(a‘i s —2—log(a,§ )~ ol o} 207

where I(p,0,,0,) is the likelihood function defined in equation [4.29] and {«,, a,,
b,, by, c,,m,} are (nonnegative) constants that reflect one’s prior beliefs about the
parameters that are being esgimated. The calibration in the multivariate case is more
difficult, as we must estimate two variance covariance matrices corresponding to the
quiet and hectic days and the probability p . For simplicity, the parameters of the mixture
of distributions for each risk factor are computed separately as in univariate case.
Random numbers are drawn from each mixture of distributions with probability p from
the first distribution and with probability 1— p from the second distribution and using
Cholesky decomposition we create correlated random numbers. Once the random
numbers have been obtained, the standard Monte Carlo approach described above is used

to estimate VaR.
4.12. Extreme Value Theory

Extreme Value Theory, which has recently received much attention in the risk
management literature, provides a formal framework to study the tail behavior of the fat-
tailed distributions. It has, therefore, the potential to perform better than other approaches

in terms of predicting unexpected extreme changes. Instead of forcing a single
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distribution for the entire sample, it is possible to investigate only the tails of the sample
distribution, because only the tails are important for estimating Value at Risk

The oldest group of extreme value theory models is the Block Maxima models, in
which one divides the data into consecutive blocks and focuses on the series of maxima
in these blocks (see Longin 1996, 2000). As an alternative, a more modern group of
models is the Peaks over Threshold models, in which one looks at those events in the data
that exceed a high threshold and model these separately from the rest of the observations
(see Danielsson and de Vries (1997), Embrechts et al (1999), McNeil and Frey (2000),
Bali (2003)). The Peaks over Threshold models are generally considered to be the most
useful for practical applications, due to their more efficient use of the (often limited) data
on extreme values. This paper will concentrate on the Peaks over Threshold (POT)
method, which is based on the Generalized Pareto Distribution.

Modeling the tails of each risk factor’s distribution with a Generalized Pareto
Distribution, which can describe the behavior of the extreme observations, requires the
observations to be approximately independent and identically distributed. If the returns
are not independent and identically distributed, the estimated parameters of the
Generalized Pareto Distribution will be biased. Following McNeil and Frey (2000), the

return series of each risk factor is filtered via a GARCH(1,1) process:

[4.31] r =p+e, e, ~N(0,07?)

2 2 2
[432] o] =o,+aje_, +a,0,,

Having filtered the model residuals from each return series, the residuals are standardized

by the corresponding conditional standard deviation:
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The next step in the overall modeling process is to fix a high threshold u, assuming that
excess residuals over this threshold have a Generalized Pareto Distribution (GPD). The

GPD is a two parameter distribution with distribution function:

1_(“%)4,; if £#0
[430] G_-ﬁﬁ(,"):
l—exp(—%) if £=0

where >0 is a scale factorand y >0 when £2>0 and 0<y<-£/£ when £<0.
This distribution is generalized in the sense that it subsumes certain other distributions

under a common parametric form. £ is the important shape parameter of the distribution.
The case £ >0 corresponds to the heavy-tailed distributions whose tails decay like
power functions such as the Pareto. The case £ =0 corresponds to distributions like the

normal, exponential, gamma and lognormal, whose tails decay exponentially and the case

& <0 corresponds to short-tailed distributions with a finite right endpoint like the
uniform and beta distributions. The distribution of excesses losses over a high threshold u

is defined to be:
[428] F,()=PX-u<y|X >u}

for 0<y<x,—u where x, is the finite right endpoint of F. The excess distribution

represents the probability that a loss exceeds the threshold # by at most an amount y,
given the information that it exceeds the threshold. It is very useful to observe that it can

be written in terms of the underlying F as

F(y+u)-F(u)
1- F(u)

[4.29] F,(»)=
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Balkema and de Haan (1974) and Pickands (1975) showed for a large class of

distributions F that it is possible to find a positive measurable function S(u) such that

[4.30] lim sup |F,(y)~G; 4., (M| =0

X 0<y<xy—u

That is, for a large class of underlying distributions F, as the threshold u is

progressively raised, the excess distribution F, converges to a generalized Pareto. Since
F,(y) converges to the generalized Pareto distribution for sufficiently large » and since

x=u+y for x> u, using equation [4.29] we have
[431] F(x)=(-F@)G,;z(x—u)+ F(u)

After determining a high threshold u, the last term on the right hand side can be

estimated by (n—N_)/n, where N, is the number of exceedances and » is the sample

size. As a result, we have the following tail estimator

[432] F(X)=]_N" (l+é?x—.u)°”’2
n B

where £ is the estimated shape parameter and 3 is the estimated scale parameter of the
Generalized Pareto Distribution using the maximum likelihood estimation. Notice that

the tail estimator is valid only forx >« . For a given confidence level a > F(u), the VaR

estimate is calculated by inverting the tail estimator in Equation [4.32] to obtain

[433] VaR, =u+?2 ((Ni(l ~a)? -1

-
=
=

u

Following Longin (2000), after having estimated Value at Risk using Peaks over

Threshold method for each individual risk factor, the portfolio VaR is given by:
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[4.34] VaR, =+v-R-V

where R is the correlation matrix and v is a one by number of risk factors vector with

individual VaR estimates.
A key to the abbreviated model names that appear in the following sections is

provided in Table 1. The number in brackets indicates the length of the moving window

of observations for each model.

Table 1: The Value at Risk Models

Abbreviation Description

FWA(200) Fixed weight approach

EWMA(200) Exponentially weighted moving average
CC-GARCH(700) Constant c?rrelation GARCH
DCC-GARCH(700) | Dynamic conditional correlation GARCH
OGARCH(700) Orthogonal GARCH

EGARCH(700) Exponential GARCH

HS(600) Historical simulation

WHS(600) Weighted historical simulation

FHS(600) Filtered historical simulation

MC(200) Monde Carlo simulation

MNMC(200) Mixed of Normal Distributions Monde Carlo
EVT(700) Extreme Value Theory

This table provides the abbreviated model names. The number in brackets indicates the
length of the moving window of observations, which is used to estimate Value at Risk.
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5. Model Evaluation

Backtesting is a formal statistical framework that consists of verifying whether a
Value at Risk model is adequate. It is very important to evaluate the relative predictive
performance of alternative VaR models prior to adoption, because different VaR
implementations are known to yield fairly different VaR forecasts for the same portfolio,
sometimes leading to significant errors in risk measurement. It will be expensive in terms
of both time and money for a financial organization to change, once any one model has
been adopted. The choice of an inadequate VaR model is called ‘model risk’, and is
recognized as an important issue in risk management.

The first stage of the evaluation process involves testing all VaR models for
statistical accuracy. Christoffersen (1998) has designed a three step procedure for the
evaluation of interval forecasts: a test for “unconditional coverage”, a test for
“independence” and a test for “conditional coverage”. All three tests are performed using
the likelihood ratio framework. In the second stage of the evaluation process, a regulatory
loss function, which expresses the goals of a financial regulator, is used in order to
compare the VaR models that are not rejected in the first stage and to select the best

model, which minimizes the total loss in a statistically meaningful way.
5.1. Unconditional Coverage Test

A Value at Risk measure, estimated at a significant level 1 - p, achieves the correct
unconditional coverage if the actual portfolio's losses exceed the VaR measures p

percent of the time in very large samples. If the loss of the portfolio on a particular day is
larger than the VaR number predicted in advance for that day, we have a violation or
failure. Kupiec (1995) developed a framework for unconditional coverage that tests a null

hypothesis that the probability of failure 7 is equal to p against an alternative that the
probability differs from p assuming the failure process is independently distributed. The

likelihood ratio statistic for unconditional coverage is given by:
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1— L 4
[5.1] LR, =-2 1n(§]_;_’%) e

where: T is the number of times in the sample when the VaR forecast is not exceeded,

T, is the number of violations in the sample,

T is the number of observation in the sample,

T=

~ |

The likelihood ratio statistic is asymptotically distributed chi-square with one degree of
freedom. Thus we would reject the null hypothesis (H, : 7 = p) at 95% confidence level
if LR,  >3.8416. It should be noted that the choice of confidence region for the test is
not related to the confidence level p selected for VaR. This quantitative level refers to

the decision rule to accept or reject the model.

Alternatively, we can calculate the P-value associated with our test statistic for 95%
confidence level. The P-value is defined as the probability of getting a sample which
conforms even less to‘the null hypothesis than the sample we actually got, given that the

null hypothesis is true. In this case the P-value is calculated as:

[5.2] P-value=1-F,,(LR,)

where F,,(LR,) denotes the cumulative density function of a X ? variable with one

degree of freedom. If the P-value is below 5%, we reject the null hypothesis.

5.2. Independence Test

The Value at Risk forecasts should be small in periods exhibiting low volatility and
larger in more volatile periods. Occasions when the loss actually exceeds the VaR
forecast, known as a failure or violation, should therefore be spread across the sample and

not appear in clusters. A VaR model, which does not capture the volatility dynamics of
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the underlying portfolio return distribution, will exhibit a clustering of violations but may
still exhibit correct unconditional coverage. If the VaR forecasts are used in order to
estimate capital levels required to support risk taking, the clustering of violations is
connected to solvency risk. A financial organization will be unable to cover a series of
consecutive losses that exceed VaR estimates. An independence test has been developed

by Christofferson (1998), who extends the LR, statistic to specify that the violations

must be serially independent. In the test for independence, the hypothesis of an
independently distributed failure process is tested against the alternative hypothesis of a

first-order Markov failure process. The likelihood ratio statistic for this test is given by:

(l -7 )(Tw*"l'lo)ﬁ’(z)l*nl)
= —2 ]n( 2 = - ) ~ X]Z

(1"77'01)700 7?01%] a _,;”)T.o Ty

[53] LR

ind

where: T, is the number of times in the sample when a non violation is followed by an
other non violation, T, is the number of times in the sample when a non violation is
followed by a violation, 7;, is the number of times in the sample when a violation is
followed by a non violation, 7;, is the number of times in the sample when a violation is

followed by an other violation. The probabilities 7,,, 7,, and 7, are given by:

7'21 = TO1+Tll
2
Too + Ty, + T +1,,

In large samples, the distribution of the LR, test statistic is also chi-square with one
degree of freedom. Thus we would reject the null hypothesis (H, : 7, = 7,,) at 95%

confidence level if LR, , >3.8416. The P-value is also calculated for this test.
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5.3. Conditional Coverage Test

Ultimately, we care about simultaneously testing if the VaR violations are
independent and the average number of violations is correct. We can test jointly for
independénce and correct coverage using the conditional coverage test (Christoffersen
1998). This test is done by testing the null hypothesis of an independent failure process
with failure probability p against the alternative hypothesis of a first-order Markov
failure process with a different transition probability matrix. The likelihood ratio statistic

for conditional coverage test is given by:

1-p)°p"
e F )~ X}

[54] LR, =-2In(
(1- ”on)roo 7"01%| (l_”u)rm ”nT"

Note that the LR, test takes the likelihood from the null hypothesis in the LR, test and
combines it with the likelihood from the alternative hypothesis in the LR, , test. We

therefore have that:
[55] LR.=LR,_+LR, . ~X>

So that the joint test of conditional coverage can be calculated by simply summing the

two individual tests for unconditional coverage and independence. The LR, test statistic

is distributed chi-square with two degrees of freedom. Thus we would reject the null

hypothesis (H, : 7,, = 7,, = p) at 95% confidence level if LR >5.9915. The P-value

is also calculated for this test.

It is probably unrealistic to expect that a VaR measure will provide exactly correct
conditional coverage. However, we would at least hope that the VaR estimate would
increase when risk appears to increase. Christoffersen’s basic framework is limited in that
it only deals with first-order dependence. Christoffersen and Diebold (2000) suggest a
regression-based approach that can be used to test for the existence of various forms of

dependence structures.
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5.4. Regulatory loss function

The accuracy of the Value at Risk estimates can also be evaluated using the general
loss function approach of Lopez (1998, 1999). VaR models are assessed by comparing
the values of the loss function. A VaR model which minimizes the total loss is preferred
to other models. Lopez proposed three loss functions which might reflect the utility
function of a regulator: the binomial loss function, the magnitude loss function and the
zone loss function. The latter two penalize failures more severely as compared with the
binomial loss function. In this paper, a regulatory loss function, which pays attention to
the magnitude of the losses that exceed the VaR estimate, is used to reflect the regulator’s

utility function. The regulatory loss function is defined as:

(AP, ~VaR)* if AP, <VaR,
[5.6] 1 =
0 if AP >VaR,

where AP, is the change in the market value of the portfolio at time ¢. The quadratic term

in the above loss function ensures that large failures are penalized more than the small
failures. Diebold and Mariano (1995) propose and evaluate explicit tests of the null
hypothesis of no difference in the accuracy of two competing forecasts. Sarma, Thomas
and Shah (2003) use such a non-parametric sign test to evaluate the superiority of a VaR
model from another in terms of the loss function values. The superiority of model i over

model ; with respect to the regulatory loss function can be tested by performing a one-
sided sign test. The null hypothesis is (H,:0 =0) against the one-side alternative
hypothesis (H, : @ <0). & is the median of the distribution of z,, defined as z, =/, -/ ,
where [, and [, are the values of the regulatory loss function generated by model i and
model ; respectively, for the day ¢. Here, z, is known as the loss differential between
model i and model j at time . Negative values of z, indicate a superiority of model i

over j.
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Define T to be the total number of z,’s and S to be the number of non-negative
z,’s. If z, is independent and identically distributed then the exact distribution of S, is

binomial with parameters (T,O.S) under the null hypothesis. For large samples, the

standardized version of the sign statistic S, is asymptotically standard normal:

-0.5T
[5.7] S¢=-—"2——— ~ N(0,1) asymptotically

7 J0.25T

The null hypothesis is rejected at the 5% level of significance if S <—1.66. Rejection of

the null hypothesis would imply that model / is significantly better than model ; in
terms of the particular loss function under consideration. Otherwise model i is not

significantly better than model ;.
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6. Portfolio composition

Global institutional investors and financial institutions have become popular
investment vehicles that combine individual securities, with specific characteristics, into
portfolios with a specific investment objective. These portfolios are created to reflect a
particular appetite for risk. In this paper, I examine the exposure to market risk of global
hypothetical equity portfolios, with securities from developed or emerging markets.

The data consist of daily equity index returns for twenty two developed markets and
for twenty six emerging markets between 2/1/1995 and 31/8/2006 (source: DataStream).
Descriptive statistics for each market are presented in Appendix I (Table 1 and Table 2).
All indices are derived from Morgan Stanley Capital International (MSCI). The MSCI
Standard Equity Index Series captures 85% of the total market capitalization while it
accurately reflects the economic diversity of the market. The MSCI Equity Indices
measure the performance of a set of equity securities over time. They are calculated using
the Laspeyres’ concept of a weighted arithmetic average together with the concept of
chain-linking. The MSCI Equity Indices are calculated in “local currency”. While the
local currency series of country indices cannot be replicated in the real world, it
represents the theoretical performance of an index without any impact from foreign
exchange fluctuations, a continuously hedged portfolio.

The MSCI Indices are constructed with a view to being fully investable from the
perspective of international institutional investors. This includes representing in each
index securities of reasonable size and liquidity at weights that can easily and cost
effectively be reflected in global institutional portfolios. Moreover, MSCI indices
reflected investable opportunities for global investors by taking into account local market
restrictions on share ownership by foreigners. These restrictions may have assumed
several forms. Specific classes of shares excluded from foreign investment. Specific
securities or classes of shares for an individual company may have had limits for foreign
investors. The combination of regulations governing qualifications for investment,
repatriation of capital and income, and low foreign ownership limits may have created a
difficult investment environment for the foreign investor. Finally, specific industries, or

classes of shares within a specific industry, may have been restricted to foreign investors.
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Using MSCI Standard Equity Indices, four hypothetical global portfolios with
developed markets and five with emerging markets are created in order to reflect
different risk preferences. Descriptive statistics for each portfolio are presented in
Appendix | (Table 3). The main reason that global investors include in their portfolios
markets with high volatility is that those markets on average offer high expected returns.
The hypothetical global portfolios that invest in emerging markets are created according
to the following approach. Emerging markets are sorted form highest volatility market to
lowest volatility market. Assuming that portfolios’ weights are fixed throughout the risk
horizon (no rebalancing) and that any transaction cost is ignored, the first five to six
emerging markets with highest volatility are chosen and a combination of them
constitutes the first portfolio with emerging markets. The next five to six markets
constitute the second portfolio and so on. The correlation between two different emerging
markets is also taken into account. All hypothetical portfolios are efficient portfolios
according to the Modern Portfolio Theory. It should be noted that these hypothetical
portfolios are a close approximation of actual portfolios managed by global institutional
investors. Despite the fact that most global portfolios consist of a large number of
different markets, seventy to eighty percent of the total market value of these portfolios is
composed of only five to si)§ markets. The same approach is also used for developed
markets. A more detailed description of each portfolio’s elements is provided in Table 2

and Table 3.

Table 2: Developed markets portfolios

Abbreviation Description

Portfolio (I) DM Australia, Austria, Switzerland, United Kingdom, USA
Portfolio (1I) DM Belgium, Canada, Denmark, Ireland, Japan, Portugal
Portfolio (11I) DM Hong Kong, Netherlands, New Zealand, Norway, Singapore

Portfolio (IV) DM Finland, France, Germany, ltaly, Spain, Sweden

This table provides the constituents of the hypothetical developed markets portfolios. All
portfolios are efficient and represent different risk preferences. Portfolio (I) is less risky
because it has the lowest volatility, while Portfolio (IV) has the highest volatility. These
portfolios are a close approximation of actual portfolios managed by global institutional
investors.
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Table 3: Emerging markets portfolios

Abbreviation

Description

Portfolio (I) EM
Portfolio (II) EM
Portfolio (II1) EM
Portfolio (IV) EM
Portfolio (V) EM

Chile, Colombia, India, Israel, South Africa, Taiwan
Czech republic, Egypt, Hungary, Morocco, Sri Lanka
Brazil, Mexico, Peru, Philippines, Poland

China, Indonesia, Malaysia, Pakistan, Thailand

Argentina, Korea, Russia, Turkey, Venezuela

This table provides the constituents of the hypothetical emerging markets portfolios. All
portfolios are efficient and represent different risk preferences. Portfolio (I) is less risky
because it has the lowest volatility, while Portfolio (V) has the highest volatility. These

portfolios are a close approximation of actual portfolios managed by global institutional

investors.
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7. Empirical application in developed markets

In the following sections, the backtesting methodology described above is applied
in order to evaluate the performance of alternative VaR models for the hypothetical
global portfolios with developed markets. The backtesting period consist of roughly 2400
daily observations and it is the same for all VaR models. In the first stage of the
evaluation process the VaR estimates are tested for correct conditional coverage and in
the second stage, the best model for each of the four different portfolios is selected
according to the regulatory loss function for both 95% and 99% confidence intervals. A
detailed presentation of the results from Christoffersen (1998) tests for correct
conditional coverage corresponding to various VaR models in developed markets
portfolios and the average values of the regulatory loss function, can be found in

Appendix II (Table 1 to 4).
7.1. Model selection for 95% confidence interval

An important finding is that five out of twelve VaR models are always rejected in
developed markets portfolios at 95% confidence level for lacking the property of
independence, despite the fact that they exhibit correct unconditional coverage. These
models are the fixed weight approach, the orthogonal GARCH, the historical and the
weighted historical simulation and the mixed of normal distributions Monde Carlo. The
clustering of violations created by these models indicates that they are unable to capture
the dynamic time-varying volatility in daily equity returns or if risk dependent on higher
order moments, these models may be efficient in forecasting conditional variance but
they are unable to capture the true risk. The risk forecasting performance of exponentially
weighted moving average turns out to be much worse than that of GARCH models,
which often exhibit correct conditional ‘coverage, indicating that such conditional
heteroscedastic models are appropriate for modeling volatility in developed markets. This
finding is in line with West and Cho (1995), who found that GARCH models outperform
the exponentially weighted standard deviation estimates only in short time horizons.

Another important finding is that the difference between the forecasting performance of
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the univariate exponential GARCH model, which is estimated by aggregating the
portfolio constituents into a single series and the multivariate GARCH models, is
minimal. These results are in line with Brooks and Persand (2003), who highlight that
accurate results can be obtained using univariate GARCH models in the portfolio return
series. The filtered historical simulation and the extreme value theory models have shown
the most satisfactory performance in terms of accuracy and efficiency. An explanation
may be that these models allow both past and future volatility to vary over time and that
they are able to generate relatively large deviations (losses and gains) not found in the
original portfolio return series. According to the regulatory loss function, the best model,
which minimizes the loss, is the extreme value theory in three out of four developed
markets portfolio. The exponential GARCH and the filtered historical simulation
approaches are selected only in the third portfolio. Neither model is superior to the other

according to the sign test statistic.
7.2. Model selection for 99% confidence interval

Interestingly, results obtained for 99% confidence interval suggest that the
predictive power of all the parametric approaches used in this paper and the predictive
power of Monde Carlo simulation are not satisfactory, because these models are always
rejected for lacking the property of correct unconditional coverage, despite the fact that
they satisfy the backtesting property of independence. An explanation may be that in
contrast with those models’ assumption that portfolio returns are normally distributed, the
empirical distributions of all the portfolios’ returns exhibit particularly fat tails and excess
kurtosis (see Appendix I, Table 3). This means that extreme price movements occur more
frequently than implied by a normal distribution. Note that the normality assumption
seems to work well in 95% confidence level. However, at higher quantiles, the empirical
distribution of portfolio returns exhibit particular fat tails that differ significantly from the
tails of the normal distribution. Furthermore, the historical simulation does not produce
superior risk forecasts than that in 95% confidence level as it is not rejected only in the
fourth developed markets portfolio. One reason is the strong assumption of historical

simulation that the future distribution of portfolio returns depends on the past
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distribution. However, developed markets portfolios often exhibit extreme returns not
having been observed in the past. Moreover, if the window omits important events, the
tails will not be well represented. The models, which have shown the most satisfactory
performance, are the weighted and the filtered historical simulation, the mixed of normal
distributions Monde Carlo and the extreme value theory. These models do not depend on
a particular statistical distribution. Consequently, they produce more accurate risk
forecast of the future potential loss. In the first and the second portfolios the VaR models
that minimize the loss are the weighted and the filtered historical simulation. According
to the regulatory loss function neither of these two models is superior to the other. In the
case of the third portfolio the best models are the filtered historical simulation and the
extreme value theory. Finally, in the fourth portfolio the best models are the weighted
historical simulation and the mixed of normal distributions Monde Carlo. Again both

models are assumed to be equal according to the sign test statistic.
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8. Empirical application in emerging markets

The empirical evidence in emerging markets portfolios highlights the difficulties in
risk modeling in markets with non-normality of the return distribution, high volatility
persistence, significant asymmetry and lack of relationship between stock market
volatility and expected return. The backtesting period match with the period used in the
developed markets portfolios and consists of roughly 2400 daily observations between
16/9/1997 and 31/8/2006. A detailed presentation of the results from Christoffersen
(1998) tests for correct conditional coverage corresponding to various VaR models in
emerging markets portfolios and the average values of the regulatory loss function, can

be found in Appendix II (Table 5 to 9).
8.1. Model selection for 95% confidence interval

One of the most important findings is that parametric VaR models such as the
constant correlation GARCH, the dynamic conditional correlation GARCH and the
exponential GARCH, which perform well in 95% confidence interval in developed
markets portfolios, are now rejected for lacking the property of independence, despite the
fact that they exhibit correct unconditional coverage. The results differ significantly
among portfolios with different excess kurtosis and great asymmetry. Emerging markets
exhibit more often critical events which cause major shifts in volatility. As a result,
GARCH based models are rejected because they exhibit clusters of violations, when such
a critical event takes place. It should be noted that in the case of the third portfolio neither
model produces satisfactory conditional coverage probabilities because this portfolio has
very strong characteristics of a leptokurtotic distribution with significantly fat tails. In
this case, the limitations of Value at Risk methodology are observed and the need to
supplement Value at Risk methods with stress testing process. Normal distribution based
Monde Carlo simulation is found to satisfy both the unconditional and independence
property in three portfolios, though unconditional coverage test rejects the mixed of
normal distributions Monde Carlo, because it overestimates market risk offering a

coverage probability much lower than five percent. Moreover, the filtered historical
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simulation and the extreme value theory models work relatively well in emerging markets
too. They are rejected only in one out of five portfolios. These models possess the ability
to predict unexpected extreme changes in the market value of the portfolios, which often
occur in emerging markets. The model selected with the regulatory loss function is the
filtered historical simulation for the first and fourth emerging markets portfolio and the
extreme value theory for the second and fifth portfolio. In the case of the third portfolio,

the results are striking, because all models are rejected. None of them is found to satisfy

the independence property.
8.2. Model selection for 99% confidence interval

The weighted historical simulation model, which has been proved to be successful
in Y9% confidence level in the developed markets, is now rejected in four out of five
emerging markets portfolios for not offering the property of independence while it is
found to possess the property of unconditional coverage. An explanation may be that the
distributional characteristics of emerging markets change more often over time. As a
result, the weighted historical simulation is unable to accommodate for future extreme
returns that are not found in the estimation sample. Furthermore, the variance covariance
models, the historical simulation and the Monde Carlo simulation underestimate market
risk as they do not produce satisfactory coverage probabilities. The reason is that market
risk arising from emerging markets contains significant time variation. These models
usually miss situations with temporarily elevated volatility or they are very slow to
incorporate ‘structural breaks’. The mixed of normal distributions Monde Carlo works
relatively well in 99% confidence interval. In most cases, it accommodates the observed
skewness and kurtosis of the portfolio return series and produces correct conditional
coverage. The filtered historical simulation and the extreme value theory modeling
approaches provides VaR estimates that have greater accuracy and constitute an efficient
risk measure especially at higher quantiles for all the emerging markets portfolios. Both
models minimize the total loss in the first and third portfolio according to the regulatory
loss function. Neither of these two models is superior to the other. Finally, for the rest of

the portfolios, extreme value theory stands alone as the best model.
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9. Conclusion

In this paper, a comprehensive predictive assessment of twelve different VaR
models is studied for nine global equity portfolios, which reflect a particular appetite for
risk. The data consist of daily equity index returns for twenty two developed markets and
for twenty six emerging markets between 2/1/1995 and 31/8/2006. Performance
evaluation is based on a three-step testing procedure for correct conditional coverage of
the interval forecasts. Among the VaR models that exhibit correct conditional coverage,
the best model, which minimizes the total loss for each portfolio, is selected using a
regulatory loss function, which is assumed to reflect the regulator’s utility function.

As a general conclusion drawn from this analysis is that the filtered historical
simulation and the extreme value theory models produce superior risk forecasts
especially at higher quantiles than that of other well-known modeling approaches for both
developed and emerging markets portfolios. Normal distribution based models perform
well in 95% confidence interval. However, at higher quantiles, these models are rejected
for lacking the property of correct unconditional coverage, despite the fact that they
exhibit independence. The constant correlation GARCH, the dynamic conditional
correlation GARCH and the exponential GARCH models, which produce accurate risk
forecasts in developed markets at 95% confidence level, are inefficient when applied in
emerging markets. Furthermore, the weighted historical simulation, which generate
reasonable well VaR forecast in developed markets at 99% confidence level, fails to
possess the independence property in emerging markets portfolios. Finally, it should be
noted that widely used models such as the fixed weight approach, the exponentially
weighted moving average and the historical simulation, should be used by institutional
investors and financial institutions with caution because they exhibit very poor predictive

power and most often clustering of violations.
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APPENDIX I: Descriptive statistics

Table 1: Descriptive statistics for Developed Markets

Mean Median gtar_ld?rd Skewness Kurtosis Min Max
eviation
USA 0,030% 0,014% 0,993% -0,1139 4,3343 6,967%  5,610%
United kingdom 0,023% 0,019% 1,000% -0,1534 3,5459 6,011%  5,810%
France 0,032% 0,015% 1,258% -0,1326 2,8956 -7.227%  6,571%
Germany 0,027%  0,052% 1,364% -0,2421 3,7585 -8,667%  7,450%
Switzerland 0,043% 0,053% 1,081% -0,2425 4,7561 -7,390%  7,120%
Italy 0,035% 0,015% 1,325% -0,1070 2,3825 -7,416%  7,045%
Spain 0,044% 0,031% 1,291% -0,1502 3,1449 -7,582%  6,534%
Netherlands 0,032%  0,045% 1,248% -0,2175 4,8809 -7,696%  7,839%
Japan 0,001% 0,000% 1,236% 0,1336 2,9731 -6,512%  7,409%
Canada 0,035% 0,028% 0,975% -0,5541 7,2495 -9,261%  5,315%
Australia 0,028% 0,014% 0,826% -0,2943 3,1775 -6,755%  5,222%
Sweden 0,051% 0,018% 1,515% 0,1141 3,9490 -8,690% 11,536%
Hong Kong 0,028% 0,000% 1,598% 0,0166 9,2320 -13,792% 15,980%
Finland 0,068% 0,054% 2,226% -0,4395 7,3987  -20,931% 16,863%
Belgium 0,031% 0,033% 1,055% 0,1753 7,2124 -5609%  9,999%
Norway 0,037% 0,001% 1.271% -0,1089 52727 -7,301% 10,648%
Ireland 0,032% 0,020% 1,124% -0,4563 6,4366 -9,015%  8,033%
Denmark 0,036% 0,022% 1,069% -0,3344 2,8090 -6,422% 4,917%
Austria ¢ 0,028% 0,010% 0,975% -0,5442 4,5196 -7,457%  5,905%
Portugal 0,030%  0,000% 0,960% -0,3789 5,9724 -7,823% 6,087%
Singapore 0,016%  0,000% 1,219% 0,1305 7,4669 -8,999% 10,974%
New Zealand 0,013%  0,000% 1,101% -0,6581 17,6457 -16,338% 11,143%
Average values 0,032% 0,020% 1,214% -0,2072 5,5006 -8,812%  8,364%

This table provides descriptive statistics of the daily log returns of twenty two developed
markets, used in the construction of the portfolios, between 2/1/1995 and 31/8/2006. The
number of observation used in calculations for each market is roughly 3100.
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Table 2: Descriptive statistics for Emerging Markets

Mean Median S(te?r'i‘:t?;g Skewness Kurtosis Min Max
Korea 0,032% 0,001% 2,074% 0,1231 3,7655 -13,097% 11,445%
Taiwan 0,011% 0,000% 1,659% 0,0930 2,4705 -10,309% 9,172%
Brazil 0,278% 0,116% 2,337% 0,4749 7,1393  -13,627% 24,656%
South Africa 0,048% 0,006% 1.211% -0,5380 6,7084 -12,208% 6,750%
Russia 0,084% 0,088% 3,237% -0,3648 8,8455 -28,097% 24,220%
Mexico 0,070% 0,020% 1,522% 0,0477 4,8761 -12,689% 12,137%
China -0,028% 0,000% 1,927% 0,0769 5,1698 -14,457% 12,725%
India 0,044% 0,000% 1,547% -0,3095 3,9362  -12,050% 8,099%
Israel 0,028% 0,033% 1,458% -0,2303 4,3174 -8,868%  8,428%
Malaysia 0,016% 0,000% 1,597% 0,8400 42,3921 -24,159% 23,263%
Turkey 0,174% 0,069% 2,833% -0,0443 42040 -19,715% 17.816%
Thailand 0,004% 0,000% 1,934% 1,0650 10,7825 -10,374% 21,430%
Indonesia 0,042% 0,002% 1,926% -0,1046 12,3636 -19,145% 16,829%
Poland 0,084% 0,000% 2,136% -0,0852 47378 -10,446% 12,443%
Chile 0,036% 0,004% 1,015% 0,2129 48138 -6,047%  8,595%
Hungary 0,091% 0,019% 1,858% -0,5524 9,7610 -19,402% 12,357%
Czech republic 0,043% 0,019% 1,410% -0,1632 2,9856 -7,815%  8,620%
Argentina 0,040% 0,000% 2.221% 0,1383 52897 -14740% 16,341%
Egypt 0,082% 0,001% 1,533% 0,3169 4,6662 -9,045%  9,285%
Peru 0,068% 0,000% 1,582% 0,0204 4,7460 -9,035% 10,441%
Philippines 0,014% 0,003% 1,510% 0,6743 10,4707 -9.796% 16,287%
Colombia 0,077% 0,000% 1,380% 0,3657 14,1080 -11,993% 16,703%
Pakistan 0,034% 0,000% 1.911% -0,3927 6,4690 -15733% 14,199%
Morocco 0,039% 0,000% 0,724% 0,3049 8,3410 -5,465%  5,681%
Venezuela 0,112% 0,006% 2,170% 0,6651 11,5708 -16,061% 20,787%
Sri Lanka 0,033% 0,000% 1,544% 1,2012 40,0980 -16,050% 27,560%
Average values 0,060% 0,014% 1,779% 0,1475 9,4242  13,478% 14,472%

This table provides descriptive statistics of the daily log returns of twenty six emerging
markets, used in the construction of the portfolios, between 2/1/1995 and 31/8/2006. The
number of observation used in calculations for each market is roughly 3100.
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Table 3: Descriptive statistics for the nine Portfolios

Mean Median [s)g?:t?;: Skewness Kurtosis Min Max
Portfolio (I) DM 0,027% 0,059% 0,693% -0,2835 6,7794 -4,543% 4,220%
Portfolio {I) DM 0,032% 0,063% 0,729% -0,5177 7.6793 -5,298% 3,872%
Portfolio (JII) DM 0,034% 0,064% 0,928% -0,3395 8,7707 -8,134% 7,938%
Portfolio (IV) DM 0,052%  0,083% 1,415% -0,1512 6,8399 -9,529% 9,923%
Portfolio (I) EM 0,026% 0,053% 0,756% -0,5310 9,5260 -6,037% 6,338%
Portfolio (II) EM 0,048% 0,057% 0,838% -0,3936 7,2431 -6,286% 4.147%
Portfolio (III) EM  0,068% 0,078% 1,144% -0,0107 9,3105 -9,363% 12,431%
Portfolio IV)EM 0,102% 0,124% 1,357% -0,2896 9,7771 -8,953% 8,614%
Portfolio (V) EM 0,141% 0,154% 1,515% -0,4505 8,5597 -12,020% 7,915%

This table provides descriptive statistics of the

daily log returns of four developed
markets and five emerging markets portfolios between 2/1/1995 and 31/8/2006. The
number of observation used in calculations for each portfolio is roughly 3100.
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APPENDIX II: Decomposition of the test of conditional coverage

Table 1: Portfolio (I) Developed Markets

Tests for 95% Confidence Level

Tests for 99% Canfidence Level

Model LR,, LR;nq LRcc ™ RLF LRy, LR;q LRcc m RLF
FWA 00078 311146 31,1224 , ooe 31,8487  7.9823 308310 (1o
[92,95%] [0,00%]  [0,00%] [0,00%] [0,47%] [0,00%]
EWMA 16946 109228 126174 5 po00 120856 19029 139884 o,
[19,30%] [0,09%]  [0.18%] [0,05%] [16,78%] [0,09%]
cc 06537 3,1305  3,7842 0,0688 135465 0,0075 13,5540
GARCH o, o, 0 5.322% o, o o, 1.730%
[41,88%] [7.68%] [15,08%] 10.02%]  [93,10%] [0,11%]
pcc 04169 23636  2,7805 0,0662 114014 0,0261 114276
d d ’ 5256% : " : 1.665%
GARCH [51,85%] [12,42%] [24,90%] 3,44  [0.07%] [87,15%)] [0.33%]
OGARCH 04169 46763 50932 . 182921 0689 189817 4 goro
[51,85%] [3.06%] [7,83%] [0,00%] [40,63%] [0,01%]
EGARCH 09424 05236 14660 ..., 00701 236102 24800 260903 g0
[33,16%] [46,93%] [48,05%] [0,00%] [11,53%] [0,00%]
. 15614 41,1330 426953 . o0 50622 44691 104312 | 40
[21,15%] [0.00%]  [0,00%] [1,46%]  [3,45%] [0,54%]
T 00979 116373 117362 5 1,0 16149 04399 20548 ... 00178
[75.44%] [0,06%] [0,28%] [20,38%] [50,72%] [35,79%] 0,83
- 32294 02866 35160 . 00677 2005 10438 30484 ., 00149
[7,.23%] [59,24%] [17,24%] [15,67%] [30,69%] [21,77%] -0,83
MC 04557 26664 31221 .., 00781 348707 81210 575269 , oqp
[49,96%] [10,25%] [20,99%)] [0,00%]  [0,44%]  [0,00%]
T 119630 56241 17,5870 5 a0 18480 11007 29487 .. 00187
[0,05%] [1,77%]  [0,02%] [17,40%] [29,41%] [22,89%]
e 00008 36360 36368 .. .. 00650 32661  1,1849 44510 0, 00185
[97.77%] [5,65%] [16,23%] 344  [7,07%] [27,64%] [10,80%]

This table provides the components of Christoffersen’s test applied to all VaR models,
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The model selected for 95% confidence level is Extreme Value
Theory and for the 99% Weighted and Filtered Historical Simulation are equal.
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Table 2: Portfolio (II) Developed Markets

Tests for 95% Confidence Level Tests for 99% Confidence Level
Model LRy, LRma  LRcc w RLF LRun LRing LRcc m RLF
FWA 0,0004 30,3671 30,3675 4.993% 40,6808 16,0737 56,7545 2.232%
[98,47%] [0,00%] [0,00%] [0,00%] [0,01%] [0,00%)]
EWMA 0,1922 27,4692 27,6614 5.160% 18,1049 7,5324 25,6374 1,785%
[66,11%] [0,00%] [0,00%] [0,00%] [0.61%]  [0,00%]
CcC 0,0513 218173 21,8686 5 089% 30,4945 12,2396 42,7340 2 139%
GARCH 185 08%] [0,00%] [0,00%] [0,00%] [0.05%] [0.00%]
gﬁg cH 0,0952 21,3740 21,4692 5122% 23,17005 4,26531 27,43?7 1.977%
[75,76%] [0.00%] [0,00%] [0,00%] [3.88%] [0.00%]
OGARCH 0,0726 30,3179 30,3905 4,895% 14,3394 92,1872 23,5266 1.750%
[78,76%] [0,00%] [0,00%)] [0,02%] [0,24%] [0,00%]
EGARCH 0,0513 2,9819 3,0333 5.089% 0,0657 11,1075 0,0284 11,1359 1.653%
[82,08%)] [8,42%] [21,94%) -0,85  [0,09%] [86,61%] [0.38%]
HS 1,7960 38,0858 39,8818 5 506% 2,9698 9,5163 12,4861 1.319%
[18,02%] [0,00%] [0,00%] [8,48%)] [0,20%)] [0,19%)]
WHS 0,3911 26,0994 26,4905 5.243% 1,1297 2,9725 4,1022 1.193% 0,0201
[563,17%] [0.00%] [0,00%] [28,78%] [8,47%] [12,86%)] 0,12
EHS 1,7120 3,3777 5,0897 5.502% 0,0760 1,6940 0,3875 2,0815 1.233% 0,0174
[19,07%] [6,61%] [7,85%] 0,85  [19,31%] [53,36%] [35,32%] 0,12
MC 1,2806 : 99743 11,2549 5.423% 33,5917 0,1125 33,7042 2.123%
[25,78%) [0.16%] [0,36%] [0,00%] [73,74%] [0,00%]
MNMC 10,2763 15,3590 25,6354 3.877% 3,7600 0,1748 3,9348 1,339% 0,0253
[0,13%] [0,01%] [0,00%] [5,25%] [67,59%) [13,98%]
EVT 0,0318 18,3117 19,3436 5.067% 3,1220 0,2566 3,3786 1,319% 0,0238
[85,84%)] [0,00%] [0,01%] [7.72%] [61,24%] [18,46%)]

This table provides the components of Christoffersen’s test applied to all VaR models,
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The models selected for 95% confidence level are Exponential
GARCH and Filtered Historical Simulation according to the loss function. Neither model
is superior to the other. For the 99% confidence level Weighted and Filtered Historical
Simulation are equal.
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Table 3: Portfolio (III) Developed Markets

Tests for 95% Confidence Level

Tests for 99% Confidence Level

Model LRy, LRinq LRcc ™ RLF LRy, LR LRcc ™ RLF
= 02619 272520 27,5139 o0 44,4920 18,8549 63,3469 , 000
[60,88%] [0.00%] [0.00%] [0,00%]  [0,00%] [0,00%]
= 25551 28313 53863 ..., 01339 196110 143383 339493 , o o0
[10,99%] [9,24%] [6,77%] [0,00%]  [0.02%] [0,00%]
cc 07694 34737  4,2431 01205 14,6307 57523 20,3829
’ ’ ’ 5349% : ' : 1,761%
GARCH 138 04%] [6,24%] [11,98%] [0,01%] [1,65%] [0.00%]
DCC 07694  2,0737  2,8431 0,1167 146307 57523 20,3829
e g . | 5349% ; : - 1.761%
[38,04%] [35,46%] [24,13%] 2,16  [0,01%] [1.65%] [0,00%]
OGARCH 01281 129740 131021, o0 18,2398 11,8292 30,0690 4 geoo
[72,04%] [0.03%] [0.14%] [0.00%]  [0.06%]  [0.00%]
EGARCH 43135 95940 1309075 .00 203957  1,5070 30,9027 4500
[3.78%]  [0,20%]  [0.10%] [0,00%] [21,96%] [0,00%]
. 17958 326055 344013 o0 16008 62886  7.8894 | ,oo0
[18,02%] [0,00%] [0,00%] [20,58%) [1.22%] [1.94%]
WHS 00006 129136 129142 , g0 00037 09332 09369 .., 00419
[98,05%]  [0.03%]  [0,16%] [95,17%] [33,40%] [62,60%]
s 11583  1,8557 30140 .., 01211 21416 24752 46169 ..,  0,0309
[28,18%] [17.31%] [22,16%] [14,34%] [11,57%] [9.94%] -1,03
e 16456 79939 96395 4000 404043 00341 404389 o0
[19,96%] [0.47%]  [0.81%] [0,00%] [85,36%] [0,00%]
MNMC 65476 87364 152840 , 00 33116 02028 35144 ..., 00455
[1,05%]  [0,31%]  [0,05%] 6,88%)]  [65,25%] [17,25%]
= 00003 29461 29464 ., 01122  3,3987 06657 40644 .. 0,0361
[98,71%] [8,61%] [22,92%] 2,16 [6,52%] [41,45%] [13,10%] 1,03

This table provides the components of Christoffersen’s test applied to all VaR models
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The model selected for 95% confidence level is Extreme Value
Theory and for the 99% confidence level Filtered Historical Simulation and Extreme
Value Theory are selected according to the loss function. Neither model is superior to the
other.
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Table 4: Portfolio (IV) Developed Markets

Tests for 95% Confidence Level

Tests for 99% Confidence Level

Model LRy, LRny  LRcc w RLF LRun LRina  LRcc ™ RLF

FWA 05389 87978 93367 ;4 16,3581 24007 187588 ...
[46,29%)] [0,30%]  [0,94%) [0,01%] [12,13%] [0,01%]

EWMA 01218 14407 15625 .., 02849 131155 08474 139628 oo
[72,71%] [23,00%] [45,78%] [0,03%] [35,73%] [0,09%]

cc 02103 09783  1,1886 ..., 02967 172869 00008 172878 ...,

GARCH [64,65%] [32,26%] [55,19%] [0,00%] [97.68%] [0.02%]

pCce 03876  1,5383 19259 .., 02785 126535 00143 126678 ...

GARCH 153 369,] [21,49%] [38,18%] 272 [0,04%] [90,49%] [0.18%]

OGARCH 00021 96293 96314 ... 105688 36190 141878 00
[96,36%]  [0,19%]  [0.81%] [0.12%]  [5,71%]  [0,08%]

EGaRcH 16184 23883 40067 ... 02040 225029 00804 225334 oo
[20,33%)] [12,22%] [13,49%] [0,00%] [86,15%] [0,00%]

HS 11933 22,8683 240616 1o 22029 25313 47383 .., 00777
[27,47%] [0,00%]  [0,00%] [13,77%] [11,16%] [9,37%]

WHS 06027 95247 101274 o000 22029 25313 47343 .. 00688
[43,75%] [0,20%]  [0,63%] [13,77%] [11,16%] [9,37%)] 0,59

FHS 08457 07951 1,6408 ... 02832 08951 05270 14221 ... 00681
[35,78%)] 437,26%] [44,03%) [34,41%)] [46,79%] [49,11%] -0,59

Me 01809 07175 08984 ... 03278 306763 01564 308348 ,
[67,06%] [39,70%] [63,81%] [0,00%] [69,25%] [0.00%]

MNMC 13,3958 17838 151796 .00 00074 07676 07750 ... = 00840
[0,03%] [18,17%] [0,05%] [93,16%] [38,10%] [67,88%)

EVT 0589 10748 16644 ... 02756 25741 03173 28914 0., 00832
[44,26%] [29,99%] [43,51%) 2,72 [10,86%] [57,32%] [23,56%]

This table provides the components of Christoffersen’s test applied to all VaR models
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The model selected for 95% confidence level is Extreme Value
Theory and for the 99% confidence level Weighted and Filtered Historical Simulation are
selected according to the loss function. Neither model is superior to the other.
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Table 5: Portfolio (I) Emerging Markets

Tests for 95% Confidence Level

Tests for 99% Confidence Level

Model LRwa LRmg  LRcc m RLF LR., LRing LRcc ™ RLF
N 0,5026 49,0351 49,5377 , ,acy 16,1852 30,2356 46,4208 ;o0
[47,83%] [0,00%] [0,00%] [0.01%] [0.00%] [0.00%]
T 0,3947 448718 452665 ,.cco 18,5642 19,4165 37.9806 , goco
[52,98%] [0.00%] [0,00%] [0,00%] [0,00%] [0.00%]
CCGARCH 00002 20,1438 291440 . 0c0 211749 153730 36,5479 4 oo
[98,97%] [0,00%]  [0,00%) [0,00%]  [0,01%] _ [0,00%]
gﬁgm 00002 262220 262222 0 198134 158419 356563 | 00
[98,97%] [0,00%] [0,00%] [0,00%]  [0,01%] _ [0,00%]
ST 0,2573 57,8242 58,0816 040 159542 27,0202 429744 4 oooe
[61,20%] [0,00%] [0.00%] [0,01%] [0,00%] [0,00%]
T 01765 17,8016 17.9781 , goo0 83584 42828 126411 | oo
[67,44%] [0,00%] [0,01%] [0,38%]  [3,85%]  [0,18%]
22745 613760 636505 g giqo 00897 258100 258997 ;oo
[13,15%] [0,00%] [0,00%] [76,45%] [0,00%]  [0,00%]
10316 451286 46,1602 4 4440 07017  7,3891 80908 ;a0
[30,98%] [0,00%] [0.00%] [40,22%] [0.66%]  [1.75%]
10316 32320 42645 .., 00771 02312 37588 40809 o, 00149
[30,98%] [7.22%] [11,86%] [63,07%] [5.25%] [12,93%] 0,32
00083 247398 247481 (a0 98961 65434 16439 | gaqo
[92,73%] [0,00%] [0,00%] [0,17%]  [1,05%]  [0,03%]
12,6668 287261 413929 4,00 03558 47500 51149 g0,
[0,04%] [0,00%] [0,00%] [65,08%] [2.91%] [7.75%]
35748 253476 28,9224 000 00413 83394 83807 o, 00310
[5,87%]  [0,00%] [0,00%] [83,90%] [0,39%] _[1.51%] 0,32

This table provides the components of Christoffersen’s test applied to all VaR models
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The model selected for 95% confidence level is Filtered Historical
Simulation and for the 99% confidence level Filtered Historical Simulation and Extreme
Value Theory are selected according to the loss function. Neither model is superior to the
other.
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Table 6: Portfolio (II) Emerging Markets

Tests for 95% Confidence Level Tests for 99% Confidence Level
Model LR,n LRing LRcc ™ RLF LR, LRing LRcc n RLF
FWA 1319 276331 289527 oo 162001 17.2565 334656 ;g0
[25,07%)] [0,00%]  [0,00%] [0,01%] [0,00%] [0,00%]
EWMA 25499 109224 134723, oc00 105175 38431 143606 oo
[11,03%] [0,10%] [0,12%] [0,12%]  [5,00%]  [0.08%]
cc 04862 120102 124763 .04 148759 14,6467 295226 ooy
GARCH 149 48%] [0.05%] [0.20%] [0.01%]  [0.01%]  [0.00%]
Dccc 09515 131667 14,1182 ,ocy 148759 146467 29526 4 goce
GARCH 132 93%] [0,03%] [0,09%] [0,01%]  [0.01%] [0,00%]
OGARCH 21582 126016 147598 , .00 79707 87662 167369 4 gao
[14,18%] [0.04%]  [0.06%] [048%]  [0,31%]  [0,02%]
EGARCH 05541 08644 14185 .. 01092 204220 27969 232189 , jeon
[45,67%] [35,25%] [49,20%] 3,99  [0,00%] [9,44%]  [0,00%]
- 54745 186874 241619 ¢ ocoo 35443 157204 192737 4 00
[1.93%] [0,00%] [0,00%] [598%] [0,01%] [0,01%]
S 14003 173976 187979 ;oo 35443 28259 63702 4,000
[23,67%] [0,00%] [0,01%] [5.98%] [9,28%]  [4,14%]
. 7.8909 26297 105206 4,00 36616 02699 39316 .o 00301
[0,50%] [40,49%] [0,52%] [5,57%] [60,34%] [14,00%] 3,33
MC 00001 21316 21317 .., 01139 20,1008 24582 225590 o0
[99,31%] [14.43%)] [34,44%) [0,00%] [11,69%] [0,00%]
T 178257 102430 28,0688 5 5oc0 25133 27635 52767 .., 00389
[0,00%]  [0.14%]  [0,00%] [11,29%]  [9,64%] [7.15%]
EVT 24536 22383 46920 ..., 00972 03139 17127 20266 oo 0,0291
[11,73%] [13,46%] [9,58%]) -3,99  [57.53%] [19,06%] [36,30%] -3,33

This table provides the components of Christoffersen’s test applied to all VaR models
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth -column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The model selected according to the loss function for both 95% and
99% confidence level is Extreme Value Theory.
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Table 7: Portfolio (I1I) Emerging Markets

Tests for 95% Confidence Level

Tests for 99% Confidence Level

Model LR,, LR  LRcc m RLF LR, LR nq LRcc w RLF

= 0,0133 59,8659 59,8792 . (40 22,8701 26,8588 497289  gan
[90,81%] [0,00%] [0,00%] [0,00%] [0,00%] [0,00%]

= 0,6809 496036 502846 . 132380 91462 223843 ,oono
[40,93%] [0,00%] [0.00%] [0,03%] [0,25%] [0,00%]

cc 0,5583 453055 45,8638 12,8353 64816 19,3169

GARCH . . T 4696% i i o0 1743%
[45,49%] [0,00%] [0,00%) [0,03%] [1,09%] [0,01%]

DCC 0,3262 40,2670 40,5931 96467  7,3471 16,9938

GARCH R . S T X o o B
[56,79%] [0,00%] [0,00%] [0.19%]  [0,67%]  [0.02%]

OGARCH 33206 636922 67,0128 , ,eo0 60192 231038 29,1230 , 4040
[6,84%] [0,00%] [0,00%] [1,42%] [0,00%] [0,00%]

EGARCH 00181 305131 305312 , o 00 52304 21233 73538 . .00
[89,31%] [0,00%] [0.00%] [2.22%] [14,51%] [2.53%]

. 01512 753594 755106 , 440, 1,307 16,8659 17,9966 500
[69,74%] [0,00%] [0,00%] [28,76%] [0.00%] [0.01%]

e 00022 445121 445143 , oo 06156 109037 115193 oro0
[96,27%)] [0,00%] [0,00%] [43,27%] [0,10%]  [0,32%]

s 00279 106273 106551  ago 01963 08824  1,0787 ., 0,0430
[86,74%] [0,11%] [0,49%] [65,77%] [34,76%) [58,31%] -1,62

. 0,6809 20,9623 216433 ... 165939 00027 165965 4 000,
[40,93%] [0,00%] [0,00%] [0,00%] [95,88%] [0.02%]

T 12,5891 32,4688 450580 5 ..c 0,070 07514 08584 .,  0,0899
[0,04%]  [0,00%] [0.00%] [74,36%)] [38,60%)] [65,10%]

EVT 48322 315398 36,3719 , .0 0,0004  1,0461  1,0465 o6y, 00653
[2.79%] _[0,00%] [0.00%] [98,39%)] [30,64%] [59,26%] ° 1,62

This table provides the components of Christoffersen’s test applied to all VaR models
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. In the 95% confidence level all models are rejected. In the 99%
confidence level Filtered Historical Simulation and Extreme Value Theory are selected
according to the loss function. Neither model is superior to the other.
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Table 8: Portfolio (IV) Emerging Markets

Tests for 95% Confidence Level

Tests for 99% Confidence Level

Model LRyn LRina LRcc w RLF LRy, LRind LRcc o RLF
FWA 31841 533524 56,5365 oo 419793 240663 66,045 oo
[7.44%]  [0.00%]  [0,00%)] [0,00%]  [0,00%]  [0,00%]
EWMA 34617 118065 152681 .. 184971 22928 207899 | oo
[6,28%]  [0,06%] _ [0.05%] [0,00%] [13,00%] [0,00%)]
cc 06135 33423 39618 ... 02110 74020 1,3849 87869 0.
GARCH 143 12%] [6,75%] [13.79%] 3,05  [0.65%] [23,93%] [1.24%]
DCC 13004 40208 53211 ., 83110 14491 97600 . o0
GARCH 55 41%] [4.49%] [6,.99%] [039%] [22,87%] [0.76%]
OGARCH 15109 116681 131790 . 146805 31283 178088 o
[21,90%] [0,06%] [0,14%] [0,01%]  [7,69%]  [0,01%]
EGARCH 02589 47064 49653 ... 135143 17922 153085 4 000
[61,08%] [3,01%] [8,35%] [0,02%] [18,07%] [0.05%]
hs 27347 307504 424851 oo 41007 53891 94988 4 4o,
[9,82%]  [0.00%]  [0.00%] [426%]  [2,03%]  [0.87%]
WHS 01736 152435 154171 00 04258 07517 14775 ..., 00642
[67,70%] [0,01%]  [0,04%] [51,40%] [38,59%)] [55,50%] 2,46
EHS 13820 08494 22314 ., 01907 36138 11575 47713 .., 00735
[23,98%] [35867%] [32,77%] -3,05  [573%] [28,20%] [9,20%)
Me 10379 28829 39208 .o, 02180 312234 31183 343417 oo
[30,83%] [8,95%] [14,08%)] [0,00%] [7.74%]  [0.00%]
MNMC 138632 15572 154204 ... 16710 10000 26710 ... 00680
[0,02%] [21,21%] _[0.04%)] [19,61%] [31.73%)] [26,30%]
s 00292 29051 29343 ... 02120 01982 05206 07188 5 00622
[86,43%] [8,83%] [23,06%] [65,62%)] [47,06%] [69,81%] -2,46

This table provides the components of Christoffersen’s test applied to all VaR models
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelihood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The model selected for 95% confidence level is Filtered Historical
Simulation and for the 99% confidence Extreme Value Theory.
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Table 9: Portfolio (V) Emerging Markets

Tests for 95% Confidence Level

Tests for 99% Confidence Level

Model LR,, LRinq LRcc L RLF LR, LRing LRcc w RLF
FWA 57872 19,5387 25,3259 4.044% 11,6154 3,6420 15,2574 1.703%
[1.61%]  [0.00%]  [0,00%] [0,07%]  [5,63%]  [0,05%]
EWMA 2,2035 15,0835 17,2870 4.405% 3,5946 2,4520 6,0466 1.374%
[3,77%] [0,01%]  [0,02%] [5,80%] [11,74%] [4,86%]
g(; RCH 2,7383 19,0462 21,7845 4.269% 13,6546 6,9975 20,6522 1.854%
[9,80%] [0.00%)] [0.00%)] [0,02%]  [0,82%] [0,00%]
ggSRZCH 3,8284 14,6231 18,4516 4.140% 12,4262 7,3247 19,7509 1.811%
[5,04%]) [0,01%] [0,01%)] [0,04%] [0,68%] [0,01%]
OGARCH 3,4436 17,0379 20,4815 4.183% 11,2463 21,2746 32,5209 1.768%
[6,35%)] [0,00%] [0,00%] [0,08%)] [0,00%] [0,00%]
EGARCH 2,7383 19,0462 21,7845 4.269% 6,1171 5,5453 11,6623 1.552%
[9,80%] [0,00%]  [0,00%] [1,34%] [1,85%] [0,29%)]
HS 0,2191 36,1461 36,3652 5.209% 0,0601 10,8593 10,9194 0.951%
[63,97%] [0,00%]  [0,00%] [80,63%] [0,10%] [0,43%]
WHS 0,0070 13,1950 13,2020 4,963% 0,2748 14,4261 14,7009 1.107%
[93,33%] [0,03%]  [0,14%] [60,01%] [0.01%]  [0.06%]
FHS 0,3014 0,6422 0,9436 5.240% 0,3330 0,8743 0,7235 1,5978 1.191% 0,1132
[58,30%) [42,29%] [62,39%] 4,98  [34,98%] [39,50%] [44,98%] 2,12
MC 1,0963 0,7415 1,8378 4.576% 0,3360 13,8565 0,0143 13,8708 1.774%
[29,51%] [38,92%] [39,90%]} [0,02%] [90,48%] [0,10%]
MNMC 23,0624 1,4952 24,5576 3.157% 0,2741 0,8624 1,1364 1.100% 0,1291
[0,00%] [22,14%] [0,00%] [60,06%] [35,31%] [56,65%]
EVT 2,2350 3,4653 5,7003 4.497% 0,2962 0,0283 0,5022 0,5304 1.035% 0,0901
[13,49%] [6,27%] [5,78%] 4,98  [86,65%] [47,85%] [76,70%) -2,12

This table provides the components of Christoffersen’s test applied to all VaR models
and the best performing model according to the regulatory loss function. The first column
gives the name of each model, the next three columns give the values of the estimated
likelihood ratio statistics of the test for unconditional coverage, the test of independence
and the test for conditional coverage .The estimated likelihood ratio statistics are rejected
if they are larger than the critical value of the chi-square distribution with one degree of
freedom for the first two tests and with two degrees of freedom for the third test, or if the
p-value is smaller that 5%. The likelithood ratio statistics which are significant are
boldfaced. The fifth column gives the estimated coverage probability under the
hypothesis of an independently distributed failure process and the sixth column reports
the average value of the regulatory loss function only for the models that are not rejected.
The best performing model minimizes the total loss and its standardized sign statistic is
smaller than -1.66. The model selected according to the loss function for both 95% and
99% confidence level is Extreme Value Theory.
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Table 10: How Value at Risk estimates could be used by a practitioner

Total Market Total Market Actual 95% VaR 99% VaR
Available Portfolios Value at Value at Profit/Loss forecast at forecast at
22/8/2006 23/8/2006 22/8/2006 22/8/2006
Portfolio (I) DM 100.000.000 € 100.435.157 € 435.157 € -839.753 € -1.304.591 €
Portfolio (1I) DM 100.000.000 € 99.596.468 € -403.532 € -729.182 € -1.046.240 €
Portfolio (111} DM 100.000.000 € 99.239.440 € -760.560 € -933.832 € -1.496.664 €
Portfolio (IV) DM 100.000.000 € 100.659.966 € 659.966 € -1.329.373€  -2.194.383 €
Portfolio (I) EM 100.000.000 € 98.938.457 € -1.061.543 € -1.153.036 € -1.804.463 €
Portfolio (II) EM 100.000.000 € 101.837.572 € 1.837.572 € -1.573.398 €  -2.663.089 €
Portfolio (II1) EM 100.000.000 € 98.363.657 € -1.636.342,79 -1.681.941€  -2.478.317 €
Portfolio (IV) EM 100.000.000 € 98.299.787 € -355.548 € -1.415158 €  -2.023.590 €
Portfolio (V) EM 100.000.000 €  100.355.548 € -1.700.213 € -1.706.291 € -2.271.765 €

This table presents an example of how Value at Risk estimates could be used in practice.
Assume that at 22/8/2006 there are nine different mutual funds with total market value of
100.000.000 €. Each of the mutual funds has invested in one of the developed and
emerging markets portfolios described in the previous sections. The manager of each
mutual fund uses the best VaR model, which correspond to each portfolio, in order to
make one day forecasts of the maximum potential loss of his portfolio’s market value
with probability 5% and 1% that the actual loss will be greater than the estimated. The
first column gives the name of each portfolio, the next two columns give the market value
of each portfolio at 22/8/2006 and at 23/8/2006 respectively. The fourth column gives the
actual profit or loss between these two days. Finally the next two columns give the VaR
forecast of the maximum potential loss made at 22/8/2006 for the next day for the 95%
and the 99% confidence level. For example, assume that one of the mutual funds has
invested in the fifth emerging markets portfolio (V). The best model selected with the
regulatory loss function for this portfolio is extreme value theory for both 95% and 99%
confidence levels. The total market value of the portfolio at 22/8/2006 is 100.000.000 €.
The 95% and the 99% extreme value theory forecasts of the maximum potential loss for
the next day are 1.706.291 € and 2.271.765 € respectively. The actual loss is 1.700.213 €,
which indicates that the extreme value theory model has correctly forecasted the
magnitude of the loss.
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APPENDIX III: Time series plots of daily equity portfolio returns
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