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Abstract

This study goes through a range of methods for option pricing. We begin with
the celebrated Black-Scholes formula, and then we begin examining methods that do
not provide closed-form solutions, namely the finite-difference method, binomial tree
and simulations. We examine the accuracy of Least Squares Monte Carlo method, and
we also examine how simulation can be used for options with stochastic volatilities.

We used GAUSS v3.2.32 to develop the routines of the algorithms we had to
examine. The routines were compiled on a single desktop with a 2.6 GHz Intel
Pentium Processor and 1GB RAM. Analytic results of al the methods are cited, and

extra weight is given to simulations.



Chapter 1

Introduction

Due to their nature, it is very difficult to value American options, especially in
more than one underlying asset, and more than one stochastic factor, other than the
price of the underlying asset. Valuation of American options is critical not only for
traders but for corporate practitioners too. These types of derivatives are very popular
in markets around the world, most important being CBOE, and include equity,
commodity, foreign exchange, energy, credit, mortgage and emerging markets. That
is why effective option pricing is crucial.

Unfortunately, closed-form solutions, like the celebrated Black-Scholes-
Merton (B-S) formula, do not exist for the majority of options. The above formula can
well price at-the-money European options, on one underlying asset, assuming
lognormal distribution for the asset’s price and constant, pre-determined volatility for
the changes of the asset’s price, during the life of the option. The purpose of this study
is to cover numerical methods for option pricing, methods that don’t provide a closed-
form analytical solution for the price of an option derivative. These methods have
been developed to mainly value American options, and further, ones that have more
than one underlying asset, and regard volatility as a stochastic variable. The first
methods to be mentioned are the lattice methods, the most famous being the binomial
tree, numerical integration methods and the finite difference method. As it will
extensively explained later, those methods cannot handle options with more than two
or three underlying assets and additively ones with stochastic volatility. A more
effective method for dealing with this kind of options is simulation, which allows for
effective option pricing, in the expense of computational time, especially when we
cannot use a network of workstations.

This study describes the assumptions used for option pricing, and then
provides a comprehensive citation of the methods mentioned above, giving special
attention to simulation as being more effective and more adaptive than the other
methods.

Chapter 2 is an introduction to some basic definitions regarding options.
Chapter 3, provides a thorough literature review, concerning option pricing theory.

Chapter 4, introduces basic assumptions made for the pricing of options namely the



risk-neutral assumption, the arbitrage free theory and the assumption for the
lognormal distribution of the changes in the price of the underlying asset’s price.
Chapter 5 provides a description of the B-S method, finite difference method, and a
binomial approach of the lattices. Chapter 6 cites Monte Carlo simulation as it was
first introduced for option pricing, by Boyle (1976), and the Least Squares Monte
Carlo simulation algorithm as it was introduced by Longstaff and Schwartz (2001).
So far, this study will be covering options with one underlying asset and constant
volatility, both American and European. In Chapter 7, we will also cover options with
stochastic volatility being a second underlying asset, using the Least Squares

approach to value them.



Chapter 2

Basic definitions

An option is a tradable security that provides its owner with the right to
exercise a claim at the expense of the counterparty that issued the option (the writer of
the option). The latter charges a fee for the risk of incurring possible loss.

There are numerous types of options like energy options, weather options,
some simple options like vanilla options on one stock, index options, and real options.
The main characteristics of an option are its strike price, the variance of the changes
in the price of its underlying asset, its time to expiration, and its payoff function.

Options are categorized as being call or put options, and European or
American. A call option, i.e. on a stock, gives the holder of the option the possibility
to buy the stock for the contractually agreed strike price, while the put option gives
him the right to sell it. The European option can be exercised only at the specified
date that the option expires, while the American option can be exercised at any time
till the expiration date. If we buy a 3-months European call option on i.e. 100 IBM
stocks, we will exercise it only after 3 months and only if the price of the IBM shares
that time is greater than the strike price we had agreed when we bought the option. If
we on the other hand possessed an American put option with the same time to
expiration and the same strike price, we would exercise our option to sell IBM shares
at any time till the expiration of the option, and only in the case where the strike price
of our option had been greater than the price of IBM stocks, at any given time less
than, or equal to 3 months.

Apart from the strike price, and the time to expiration, another major
parameter of an option contract is the volatility in the changes in the price of its
underlying asset. The simplest case is to assume a constant volatility rate, like Black-
Scholes and Merton have done to derive their celebrated closed-form solution for the
pricing of European options. Clearly this assumption doesn’t hold so we will provide
other methods to deal with non constant, stochastic volatility, later in this study. It
suffices to say that the first derivative between volatility rates and option price is
positive. That happens because a greater volatility makes the expected value of the

option after its assumption more uncertain, that is, the probabilities that the price of



the underlying asset does pretty good or pretty bad are greater when its volatility rate
is increased. So the holder of a call option can have great earnings if the price of the
underlying asset goes unexpectedly high, and the maximum loses he can suffer is the
option value, if the course of the price of the asset underlying her option moves very
low. The opposite happens for the holder of a put option. So it would be intuitive to
say that the buyer of the option has to pay a greater price, for the possible gains he can
have, while keeping the possible losses stable.

Finally options are characterized from their payoff function, elements of
which were cited with the example of the option on the IBM shares. The payoff
function for a European call option, at expiry T, strike price K, and the price of its

underlying asset (i.e. a stock) at expiry, namely Sr, is:

CE(ST,T) = max{ST-K,O}

and the corresponding payoff function for a put option is:

Pg(S1,K) = max {K-St,0}

What the above equations are telling us is that the holder of a European call option on
a stock, with a strike price of $50, will only exercise her option if the price of the
stock at the time of expiry, say 1 year, is greater than the strike price of the option, i.e.
if that price reaches $55, then the option will be exercised, giving its holder a payoff
of 55-50=8%5 and a gain of $5 minus the value of the option. If the price at the time of
expiry is $45, then the option will not be exercised, its payoff will be $0, and the
holder will suffer losses equal to the value of the option. In the same way, if we were
to have a put option, with the same characteristics, we would only exercise it if the
price of the stock at expiry was less than the strike price of the option, say $45. Then
the payoff would be 50-45=$%5 and the net gain would be our payoff minus the option
value. In any other way, the option would not be exercised, giving a zero payoff, and
losses equal with its value. More generally when the underlying asset’s price at the
expiration of the option equals the strike price, then the option is said to be at-the-
money. When the asset’s price at expiration is such that we have zero payoff the
option is out-of-the-money, and when a positive payoff occurs, the option is in-the-

money.



As far as American options are concerned, their payoff function cannot be
written in two lines, with two little equations, and it will be cited in great detail in the

following chapters.
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Chapter 3

Literature review

Before proceeding with the description of the methods we will cover, it would
be useful to review what the evolution has been, in terms of literature, of the option
pricing theory. We will see when certain methods were introduced, what
improvements have been made to them, and in the sequel we will provide the reader
with a detailed description of the methods that this study covers.

We will begin with the celebrated Black-Scholes-Merton framework, which
provides a closed-form solution, published in 1973, in the well famous paper titled:
“Black, F., M. Scholes. 1973. The pricing of options and corporate liabilities. Journal
of Political Economy. 81 637-654”. That was a paper providing us with an analytical
solution for the pricing of European options, based on some pretty strong assumptions
to which we will refer in the next chapters. An important assumption was to regard
volatility as a constant term through the life of the option. By empirical observation of
the data provided by the markets, this assumption was impossible to hold, even
though the B-S framework worked pretty well for at-the-money options for relatively
small expirations like less than 2 or even one year.

Another category of models which this study will not cover is the jump-
diffusion models, which were first introduced by Merton (1976). In this model, the
volatility is also regarded as constant, and we assume a Poisson distribution for the

returns of the stock. The model is:

as
S

L= (u—8)dt + odW, + d(i (e” — 1))

t n=1

where N; is the Poisson process, with intensity A and Zn~(us,052) is the distribution of
the jumps in returns, which are independent of the Brownian motion W;. A actually
determines the arrival rate of jumps in the stock’s returns, while ps and o constitute
the mean and volatility of the returns. While this model produces some good results
when compared with the empirical asset price data, it still suffers from the assumption

of constant volatility. Other models that enable jumps in returns are the ones



published by Bates (1996), Scott (1997), Madal et al. (1998), Carr et al. (2002), Kou
in the same year and Carr and Wu (2003).

In order to address the problem of the volatility not being constant, option
pricing theory evolved by producing models that regarded volatility as a stochastic
process, just like the process followed by a stock underlying an option to be valued.
The first models to mention is the ones of Hull and White (1987), Stein and Stein
(1991), and Heston’s model published in 1993. The most famous model among them
is the Heston model for pricing options with stochastic volatility, and that’s the model
we will mainly cover, among others. What made this model so famous is that it
assumes a degree of correlation between the returns of the stock underlying the option
and the volatility itself, while for example Hull and White assume zero correlation.
Heston also provided a closed-form analytical solution for the pricing of European
options, which worked pretty well not only for at-the-money options, with short
expirations like B-S framework did, but it also provided us with an efficient way to
deal with out-of-the-money and in-the-money options, with larger expirations.

We will proceed with the part of the option pricing theory concerning
Numerical Methods. The main reason that made the development of these methods
necessary is the fact that B-S model and all the models that assumed constant
volatility had by nature certain disadvantages. As far as the B-S formula was
concerned it only gave us reliable results for at-the-money European options based on
the assumptions of perfect, frictionless markets, and the assumption of constant
volatility, among other assumptions we will cite at the next chapters. So we could not
get a price for American options, not to mention more complicated options like the
ones with multiple underlying assets, with stochastic volatility and options that had
big expirations like 15 years. But even for the options that this formula could manage,
we needed numerical computations, in order to calculate the integrals of the
probability that option ends up in the money area. Furthermore we couldn’t handle
options with stochastic volatilities as already mentioned, which leaded to the creation
of Stochastic Volatility models, which in turn could not also provide a solid solution
for American style options with more than one underlying assets.

The major categories of Numerical Methods are: a) formulas and
approximations which we will not cover, b) lattice methods, which are covered, c)

finite difference methods and d) Monte Carlo Simulation which are both covered.



In the first category, the most important method to be mentioned is the
application of transform methods, asymptotic expansion techniques, and also Fourier
and Laplace transformations. These techniques were used by many authors for the
pricing of options with stochastic volatility, as mentioned above, namely Heston
(1993), Stein and Stein (1991), and Duffie et al. (2000), Hull and White (1987),
Hagan and Woodward (1999), Fouque et al. (2000) and Leif Andersen et al. (2001).
They were also used for the pricing of more complicated options like Asian options
(Reiner (1990), Geman and Yor (1993)).

The first publication on the lattice methods is due to Parkinson (1977). But the
most famous form of lattices is the one introduced by Cox, Ross and Rubinstein in
1979. The latter is a binomial tree which is easy to implement and gives pretty
accurate results but is used mainly for pricing “easy” options, with constant volatility
and no more than 3 underlying assets, a drawback named “the curse of
dimensionality” We will explain later why that is so. Lattices can be used for
relatively complex derivatives, as shown by Heston and Zoo (2000) and Alford and
Webber (2001). The major drawback is that these advanced algorithms require a lot of
computational time, more than is needed for other methods to give accurate results.
This was shown among others to some specialized papers like the one of Broadie and
Detemple (1996). Other publications on lattices include the ones of Coval, J. E. and t.
Shumway (2001), Rendleman, R., and B. Bartter (1979), Figlewski, S., and B. Gao
(1999), Hull, J. C., and A. White (1988).

_ The use of finite difference method for option pricing was first introduced by
Brennan and Schwartz (1977, 1978). Finite difference methods value a derivative by
solving the stochastic differential equation (SDE) that the latter satisfies. Again as we
will explain in great detail, the major drawback of this approach is its inability to
value options with more than three underlying assets, as solutions for this types of
SDEs are not yet available. They can incorporate though options with stochastic
volatilities and jump diffusions. More publications on the finite difference approach
include those of Hull, J. C., and A. White (1990), and Wilmott, P., (1998).

As shown in Glasserman (2004), a complete reference on Monte Carlo
simulation approach would require over 350 references. So we will include the most
important among them leaving the description of this method for later chapters. It
suffices here to say that in Monte Carlo simulations we produce a large number of

paths that the price of the underlying asset could follow in subsequent timesteps using



the solution of the SDE that characterizes it. Then we average the discounted at the
risk-free rate option values observed at expiration, in every single path, obtaining the
option price. We will cover this method in a very great extend as it can handle every
kind of option, from the simple plain vanilla options to exotic options, and every
option one can come with.

Monte Carlo simulation was first introduced to value options by Boyle (1976).
As long as this simulation was traditionally presented as a forward-looking technique,
it had been impossible to value American, and in general path-dependent options,
where we had to check at a continuous time basis whether it would be optimal to
exercise the option or not. In recent years, a lot of authors have developed new
approaches that enabled Monte Carlo simulation to implement backward-looking
algorithms. These publications include those of Tilley (1993), Barraquand and
Martineau (1995), Carriere (1996, 2001), Rayman and Zwecher (1997), Broadie and
Glasserman (1997), Tsitsiklis and Van Roy (1999, 2001), Garcia (2002), Rogers in
the same year, Ibanez and Zapatero (2004), Haugh and Kogan (2004), Anderson and
Broadie (2004) and others. It is of great importance to mention in this point a great
evolution that took place in Monte Carlo simulation techniques, which was the
introduction of the Least Squares Method (LSM), by Longstaff and Schwartz in 2001,
which due to its effectiveness and simplicity, was given a great deal of attention.
Some authors that tested or tried to ameliorate the LSM, are Clement, Laberton and
Protter (2002), Stentoft (2004), Rasmussen (2002), Pizzi and Pellizzari (2002) and
Moreno and Navas (2003). This study will cover in extend the work done by
Longstaff and Schwartz, and Stentoft.

10



Chapter 4

Basic assumptions of the options pricing theory

4.1 The price of the underlying asset

The first assumption made for the pricing of options, is the process followed
by the underlying asset’s price, and from now on we assume that the underlying asset
of our options is a stock. We begin with the premise that the stock price S follows a

geometric Brownian motion process

Be— -5yt + oaw, M)

t

where p is the total expected (above the risk-free rate) return on the stock, 6 is the
dividend rate, o is the volatility of the changes of the stock’s price, that is the
volatility of its returns, and W; is a Wiener process. For the time being we assume p, 6
and ¢ as being constants. Later we will assume non-constant volatility, but later. If V

is a function of S and time t, using Ito’s lemma we derive the process followed by V

2
& =| VM (u-8)s+ L MOV a2 g+ N osaw, (2
as a 2| as a8

This is a fundamental equation that any derivative whose price depends on a dividend
paying stock must follow. In option pricing it is convenient to transform the stock’s
price to its logarithmic form, so we set G = InS, and by computing the derivatives of

equation (2), we have the process of the changes in the asset’s price, written

2
o)

dG =| p—5-
e

)dt +odW,  (3)

2
InS follows a generalized Wiener process, with constant drift rate lu—z -0 and

constant volatility rate ¢. From (3), we see that changes in S are lognormally

11



distributed with a standard deviation o'+/T . These conclusions will prove to be crucial

for the derivation of option pricing algorithms covered by this study.

4.2 Arbitrage-free pricing

A very important concept in the option pricing theory is the assumption of
arbitrage-free pricing. This assumption states that the total expected return of all the
traded assets must equal the risk-free rate. We examine this statement in more detail.

To begin, we state that the presence of arbitrage opportunities in the market,
allows for certain players to make riskless profit by buying and selling securities. This
assumption leads to the derivation of the fair price of the option. Any price below or
above this price, will provide the opportunity for riskless profit and will be vanished
by the powers of supply and demand. To see why this happens, we first assume the
existence of a risk-free security, a security that has a zero probability of default and
that returns a continuously compounded rate of return r, the risk-free rate of return.
We also assume that investors can borrow and lend at this rate, suffering no costs.
Imagine two riskless portfolios A and B, each one consisting of one traded security
and the risk-free asset, with yields a and b, where a>b, and current prices Ay and By,
where Ag = By. Portfolio C can be constructed with a long position in A and a short
one in B, and equal amount of money invested in both securities. The present value of

the portfolio is
Co=Ao—Bp=0 C)]
and its value after time T is
Cr=Ar—Br=Age™ —Be" = A’ (e“'-1)>0  (5)
as Ag = By and Ag = Bg>1. Portfolio C cost nothing to construct and it also has a
positive payoff. Same think could happen if we had the opposite positions in the two
securities and if b>a. So the player possessing this portfolio would make riskless

gains, above the risk-free rate, if she for the first case bought, all the time, security A

and sold B. The power of demand for security A would cause its price to rise and its

12



yield to decline. The opposite would happen for security B by the power of supply.
Eventually the two yields become equal, so we conclude that the return of each
riskless portfolio must be the risk-free rate of return r in order to achieve the

necessary equilibrium in the market. Thatisr=a=b.

4.3 Risk-neutral valuation

The natural sequel after the description of the arbitrage-free theory is the next
strong assumption made in option pricing theory, the risk-neutral valuation. As far as
all asset returns have to be equal to the risk-free interest rate, one can say that the
expected return p of the investors doesn’t play any role to option pricing. That is
exactly the essence of risk-neutral valuation theory, first introduced by Cox and Ross
in 1976. More sophisticated forms of this theory can be found in Harrison and Kreps
(1979) and Harrison and Pliska (1981). The description of the theory goes as follows:

Suppose that the stock price follows the process cited by equation (1). The
risk-neutral valuation theory implies that the expected total return on the stock equals
the risk-free rate, that is

E, [i;— + &1:] ~rdt (6)

t

where E; is the conditional expectation at time t with respect to the Brownian motion
W, Using the last assumption, we examine whether using the results of (6) in
equation (5), the last one holds, which evidently does. The following argument is
structural for the composition and implementation of the option pricing methods
analyzed later in this study. So, if one would use the Feynman — Kac formula
(similarly as in Karatzas and Shreve in 1988), he would end up that the derivatives
price is simply the expected payoff discounted at the risk-free rate of return.

The next conclusion is that we can substitute investors total expected rate of
return on the stock, namely p in (1) with r, and thus use the externally determined and

in this study concerned as constant, risk-free interest rate for option valuation.

13



/
BBy ate HIN .
23 T i et )
:
. i s 4. .0
' i il
N I e ey

r 7 B
‘.r-:. S i _ J

= L
SRR &
s Eng cune o el o ,

F o : W s

it
el

8&'“@5‘??‘{ it =4} : —
lﬂw"@* WRRL Bemtreny wuly sacolisr Ll dio
B it s o, Lo sy i) et i |

-t

RN mitrszorE] udt o jonnegy His
W B Yo aloen sdy wulon i

& Worugts walwol ol Jd

B

mlangad w3 Tiattewn']

ket ok % 0 o= s _ ‘

LA W i o
o5 o




Chapter 5

Methods for simple option pricing

5.1 The Black-Scholes-Merton framework

Although the purpose of this study is to cover numerical methods on options

pricing, that is methods that don’t provide a closed-form analytical solution for the

price of an option derivative, it is however meaningful to describe the Black-Scholes-

Merton (B-S) framework, for reasons of consistency, as it will help us to better

understand the next methods and of course because we will be mentioning B-S

framework a lot of times in the next chapters.

O

O

First we cite the assumptions underlying the B-S world:

The underlying asset’s price (here a stock’s price) follows the process in (1)
The short selling of securities with full use of proceeds is permitted

There are no transaction costs or taxes and all securities are perfectly divisible
There are no dividends during the life of the derivative. (8=0 in (1) ).

We are in an arbitrage free world

We are in a risk-neutral world

Security trading is continuous

We have assumed that the changes in the value of a derivative, dependent on a stock

and on time t, follow the process

2
av = a—v,uS+g/-+1 aI;azS2 dt+a—VoSdW,
oS o 2\a88 oS

and that the process followed by the changes of the price of a share is

d
%S = (u—8)dt+cdW, —=— ?S = pdt+cdW;

t !

or dS = uS dt +oSaw,

where we have to notice that dW, is the uncertainty factor, same for the two equations.

We can construct a portfolio with a short position on one derivative and a long one on

15



a number of shares. We then construct an equation for the changes in the value of this
portfolio. So let IT be the value of the portfolio, V be the derivative and S the share.
The weights of the portfolio are

-1 derivative

shares
oS

The value of the portfolio is

I1= —V+§KS
oS

and the changes in its value would be the sum of the changes of the value of its

components, that is

dll '-—dV+~a~KdS
oS

and by substitution we get

ov . ov 1(aW av av
dil= —| == 4S + —+— 28? | |dt —=— oSdW, + ——(uSdt + oSdW,
(as"s or 2(6S20 D o5 I+ g WS+ W)

dv

The uncertainty factor dW; has been simplified, and that’s why the portfolio is
riskless, returning the risk-free rate of return. So

dll = rIldt

16



and substituting for dIT and IT we get the partial differential equation (PDE) of Back

and Scholes:

2
LU .
2 oS oS ot

which solved under the restrictions of the payoff functions and two simple
transformations of them gives the famous Black-Scholes formula for the pricing of

European options. The restrictions and their transformations are:

for call options : V(S,T) = max(St — K,0)
v(@©0,T)=0
and for put options : V(S,T) = max(K- St,0)
vV, T)=K

where T is the expiration time. The B-S pricing formulas are:

¢ =S,N(d,)— Ke""N(d,)

for call options and
p=Ke"N(-d,)-S,N(-d,)

for put options. Sy is the share price at the time the option contract is signed and
function N(.) is the cumulative probability distribution function for a standardized
normal distribution, of the probability that the option expires at the in-the-money

region. d;, d; and N(x) are

In(S,/K)+(r+02/2)T

d
1 o T

_In(S,/K)+(r—o’/2)T =

o T

d, d, —oT
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N(x)=(2x) ? xje_?z ds

So the only think one has to do is to calculate d; and d;, and then by using a
software package, or simply Microsoft’s Excel, calculate the integrals of N(.). B-S
model can be modified to adapt expected dividends from the share underlying the
option. We just have to subtract the present value of the expected dividends from the
current price of the share, and then implement the formulas.

The simplicity of this formula and the fact that it was the first, to our
knowledge, closed-form solution in the option pricing theory, made it very popular.
But this method has some important drawbacks, conveyed by its strong assumptions:

o We assume perfect structured markets, with no transaction costs and no taxes,
which one doesn’t have to be Warren Buffett to deny it.

o We assume a constant volatility through the life of the option, which of course
is not the true, shown by basic analysis of the market data. In this study we
will try to break this assumption, and assume a stochastic volatility for the
underlying asset.

o We also assume a stable risk-free rate, which doesn’t hold, but this topic will
not be covered in this study.

o We finally assume perfectly divisible securities and continuous trading, which
is not the case.

We also observe that the price of the option does not in any way depend on the risk
preferences of the investors, which are part of their total expected return p. This
observation agrees with the assumption of risk-neutral valuation. Usage has also been
done of the arbitrage free pricing assumption in order to reach the PDE of Black and
Scholes. Finally the assumption of continuous lognormal distribution of the changes
in stocks price, enabled us to select a distribution, with known and easy to compute
probability distribution function (pdf).

Due to the above strong assumptions, the B-S formula only works well in a
few categories of European options. It cannot price options with American
characteristics, or options with multiple underlying assets. As Heston (1993) shows,
B-S model, effectively prices at-the-money options, with relative small maturities, up

to 3 years maximum.
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Results for option pricing with the B-S formula will be cited along with other

numerical methods’ results at the end of the chapter.

5.2 Finite difference approach

Finite difference methods value a derivative by providing numerical results for
the fundamental PDE that the derivative satisfies, using a discrete-time, discrete-state
approximation. We will soon make clear what this means. The fact that these methods
rely on solving differential equations, makes them more adaptive than other methods,
in the sense that we can price more complicated derivatives, like ones with stochastic
volatility, jump-diffusion processes and more than one underlying asset. Their major
drawback is that we cannot price options with more than 3 underlying assets, as
solutions for these types of differential equations are not yet available. This drawback
was also pointed out by Barraquand and Martineau (1995). There are two approaches
in finite difference approach: a) implicit finite difference method and b) explicit finite

difference method.

5.2.1 Implicit finite difference method

Suppose that we divide life T of an option in N equal intervals of length
At = T/N, having N+1 times varying 0, At, 2At,...,T. Suppose we do the same with
the asset’s (i.e. a stock) price S. The only difference is that in this case we first
consider a price level Spax , such that the value of a put option at this level is 0, and
that of a call option is the strike price. So we have M+1 equal stock spaces, each one
with a length of AS = Sp/M. Imagine a grid, defined by the time and the stock
points, having (N+1)(M+1) dimensions, with time at the horizontal axis and stock
price at the vertical. The (i,j) point of the grid, corresponds to time iAt and stock price
jAS, and the variable f;; is the option’s value at the (i,j) point. The analysis made so
far is also applicable to the explicit finite difference method. We also assume
arbitrage-free pricing, risk-neutral world, and that the stock price follows the same
process as in the B-S framework. Finally, the stock is paying a dividend rate 9.

A forward difference approximation for the interior point (i,j) is

z _ j;,j+l _fi,j

as  AS &
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and a backward approximation for the same point would be

12 f,, s fi,j—l

as  AS i

and for the point (i,j+1), the backward approximation is

e 3)
We can also use a symmetrical formula, written

1 = fi,j+1 _.fi,j—l
oS 2AS

4
As far as 9f /ot is concerned, we use a forward difference approximation for the point

(i) so that

z -4 f;'+l,j _f;',j (5)
ot AS

If we wanted to make a finite approximation for the changes in the option value,

between two points, at the same timestep, we would need an approximation for

8% f/8S? at the point (i,j), that is

azf = fi,j+1 _.fi,j 2 .f;] _fi,j—l AS
0S? AS AS

or

82_f . fi,j+1 el e _zfi,j
oS> AS?

(6)
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Substituting (4), (5), (6) in the B-S differential equation (assuming a dividend rate is

paid) we get
f'lj'fj Sia=tija 1 Jim S0 =21,
i+l, i, +(r—38)iAS ij+ i,j +_o_2 .ZASZ i,j+1 i,j-1 Yo 7
a0 285 1% % AS? T D

with j=1,2,....M-1 and i=0,1,2,...,N-1. Rearranging terms, we get
a;Jiia +bjfi,j +cjfi,j+l= fi+1,j (3)
with
a —l(r-a) At L2 j2Ar
173 S Noh
= 2 .2
b, =1+0"j At +rAt
c —-1(r—5) Ar - Lo 2ar
LA =5/

(8) constitutes a system of N+1 linear equations, with N+1 unknowns, which can be
solved with the Gaussian method of elimination, that is by constructing a triagonal
matrix with the coefficients of the unknowns, multiplying it with its inverse, and get
the vector of the solutions. But before doing the above calculations, we must first cite
some arguments that will help us solve this system. First of all a;, b; and ¢; are (1xM)
vectors that can be calculated straight away. Secondly we know that the last column
of the grid, that is fx, equals the payoff of the option and by transforming the payoff
function we can get the same boundaries with those used for the calculation of the

B-S PDE. Namely for call options
fnj= max(GAS - K,0)

fi,o =0 and
fim=K
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and for put options

fnj - max(K - jAS,0)
fi’() =K and
fim=0

where j = 0,..,.M and i = 0,...,N, and when j = M we get Spa. Now we have a N-1
system with the same number of unknowns, for each timestep. We start by calculating
the unknowns of T-At, that is the elements of the penultimate column of the grid, with
the use of the known elements of the last column. We use (8), which for each element

of the penultimate column gives

aij—l,j—l +bij—1,j +cij—l,j+I= fN,j

After calculating all elements of the penultimate column, we can proceed to the
calculation of the elements corresponding to time T-2At, a timestep prior from T-At.
As one can realize, we use the elements of the column right to the one we want to
cover, that is the now known elements of the penultimate column. We apply this
backward looking technique until T=0 is reached, and the option price is the element
that corresponds to Sy. Three important observations must be made. First of all, if the
option is American, we compare the solutions of the system corresponding to each
timestep, with the value of early exercise, the value of the corresponding elements of
the last column. We use the results of the comparison as the known elements with
which we proceed to the solution of the next system. Secondly, we choose Syax and
M, such that jAS passes through S,. Finally we have used the dividend rate 6 in the
formulas, because finite difference methods do not require zero dividends, as we had
assumed for the derivation of the B-S formula. These observations also apply for

explicit finite difference method.
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5.2.2 Explicit finite difference method

An easier way to deal with the finite difference approach for option pricing is
to regard the values of 9f/dS and &> f /6S > for the point (i,j) as being equal with
those for the point (i+1,j). Equations (4) and (6) and (7) then become

of _ fi+1,j+1 _fi+1,j—1

oS 2AS

of = S * finja =2, "._I'r'."',,

oS? AS?
and
flj_fj fl']+fl'—1
I+, I, + r— .AS 1+ ,j+ i+, 7
Ao ) 2AS
1 ) fi+1,j+1 + i+l -1 2fi+1, J
+§0-2.]2ASZ ASZ = "'/;»J

Equation (8) now becomes

* * L
fi,j =a;Jia,j +bjfi+l,j +iji+1,j+1

and a; bj, and c; are written

o WAl 1 putoill B )
a = ——(r—6)jAt+=0c>j’ At
J 1+rAt( o)A+ 5 o
g bl (i)
T 1+ rAr

. 1 1 : 1 5,
c,= —(r=0)jAt+—0c"j At

) 1+rAt(2( AL+ o) )
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This is a much easier approximation as the only think one has to do is, under
the boundaries developed earlier, to calculate each element of the penultimate column
of the grid, by the known elements of the final grid corresponding to a distance of one
AS, above and beneath the unknown element, and the element of the same jAS. Then
by using the two first observations made for the implicit approximation, one
calculates the option price of consideration. Though easier in its use, explicit finite

difference approximation has a stability issue as cited by Jouni Kerman (2002). For a
given step in the stock price, of size AS, At cannot be larger than%AS 2. Especially,

changing AS by a factor of ¢, one has to multiply the number of timesteps by ¢*.
Instead of this, we assumed in our compiling the same ratio of timesteps and stock
steps as Longstaff and Schwartz (2004, p.126) did, and the method gave accurate
results.

Results from the implementation of implicit and explicit finite difference methods
will be cited in the sequel, along with results obtained from Black-Scholes pricing
framework and binomial tree option pricing.

5.3 Lattices — The binomial tree approach

Lattice approaches were first introduced in Parkinson (1977) and Cox, Ross
and Rubinstein (1979). They actually use the same discrete-time, discrete-state
approximation with finite difference approach. The easiest lattice to handle is the
binomial tree introduced by Cox et al. (1979), which can value simple European and
American options. By simple options, we mean options with maximum three
underlying assets, and assuming the underlying asset’s price being the only stochastic
parameter for the valuation of the option. Computational time and the necessary
computer memory grow exponentially with the number of the underlying assets, an
effect that is named as the curse of dimensionality. We will explain later in the

chapter why this happens.

24



5.3.1 The one timestep approach
Suppose we have an option, with a share as the underlying asset, whose price

follows the same stochastic process, that is

dS = uS dt + cSdW,

and we take Sy as the current stock price. Instead of directly solving the above
stochastic differential equation, lattices assume the existence of a random variable X,
with X = xi, i = 1,2,...,m and probabilities pi for each xi. Taking a discrete-time
approximation for the stock price, this method gives a distribution of asset prices for
different values of m. If m=2, then we have a binomial distribution and for example
So can take values equal to Spu and Sod. The percentage increase in the tock price
when there is an up movement is -1, and the percentage decrease when there is a

down movement is 1-d. u and d can either be given constants, where d=1-u, or they

can be matched with the volatility parameter, in which case u = e’ and d=1/u.
From each price, from each node, we get two different prices, when moving from one
timestep to another. If m=3, we get a trinomial distribution, with three different
prices rising from each “node” and so on. This study will cover the case of m=2, the
case of the binomial tree. To continue with our description of the method, u and d are
the rate of returns that the stock can provide after each node. If for instance Sp= $20
and u=0.1, then the price of the stock can move to either $22 or $18. We assume u
and d to be constant so at the next timestep it can either move to $24.2, $19.8 or
$16.2. The price of $19.8 is a downward movement from $22 and also an upward
movement of the same percentage from $18.

Suppose that we want the same riskless portfolio we structured in the B-S
framework, based on the assumptions of zero dividend rate, arbitrage free pricing and
the risk neutral pricing hypothesis. We take a long position in a number of A shares
underlying the option and a short position in the option. After an upward movement
from the first timestep, we assume that the intrinsic value of the option is f, and after a
downward one, the value of the option is assumed to be f3. In order for the portfolio to
be riskless, its value after an upward movement must equal its value after a downward

movement, and the correspondent values are written
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SouA— f, =SydA— £,
We calculate A, in order for the portfolio to be riskless, that is

A fu_fd

= 1
Sou—S,d M

Now we use the formula of the cost for setting up the portfolio, in order to derive the

value of the option, at present. The cost is
SoA-f

and it must be equal to the present value of the portfolio after for example an upward

movement of the share’s price, that is
SeA~f=(SouA~ f)e™"

Then we solve for £ we substitute for A from (1), and with simple transformations, we

end up writing the value of the option as

f=e"lpof,+0-pfi] @

where

€))

is the probability of an upward movement for the stock price, and 1-p is the
probability for a downward one. Equation (2) gives the value of the option when we
use only one timestep for the stock price movements, which is not the usual case. In
order for the binomial tree approach to converge to the options’ values given by B-S,
the number of timesteps must tend to infinity, or reach a number like ten or fifty
thousands, depending on the compilation time we want to dispose. Next we will show
a time approximation of two steps, and then cite the approach for the construction of a

multiperiod tree.
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5.3.2 Two timesteps approach
Instead of using one timestep equal to the maturity of the option, we now use a

time step equal to At, and equations (2) and (3) become

f=e™pf, +0-p)f;] @

and

)
At the upper and down nodes, the corresponding option values are

fo=e™[pf, + Q- D) fi] (6)

and

fi=e™[pfy +A—p)ful (7)
Substituting (6) and (7) into (4), we get the option value
f=e?|p?fun +2p(= p) fug + (- D) fur

where p’, 2p(1-p), and (1-p)” are the probabilities of two upward moves in the stock
price, one upward and one downward move and two downward moves accordingly.

Figure 1 shows a binomial tree with one timestep and two timesteps to expiration.
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Figure 1. Stock price process for 3 subsequent timesteps

An important observation is that due to the risk neutral pricing assumption, the
option value, as affected by p, is not affected by the risk preferences of the investors,
namely p. The stock prices have already absorbed the risk preferences when we
simulate their movements by this tree, so there is no need for the probabilities p and
(1-p) and so on, to take into account those risk preferences.

If we want to use more than 2 timesteps, we only have to make two nodes
leaving each node, as we move forward regarding timesteps, until we reach the final
timestep, and the corresponding final nodes. Then we calculate the intrinsic value of
the option at each of the final nodes, and we begin moving backwards, one timestep at
a time. For each timestep, we use (4) to calculate the option value at each node, and
we proceed the same way until we reach the initial node. If the option is American,
after the calculation of the option’s value from (4), we compare the results with the
corresponding intrinsic value of the option, and we use the outcome of the comparison
in order to calculate the option prices one node backwards. This comparison is done
for the same reason that we did it in the finite difference method, and that is because
we want in each timestep, and each node, to find if the early exercise of the option is
optimal or not. Results of the binomial tree approach are presented at table 1, along
with results of the B-S framework and finite difference methods.

To conclude let us say a little words for the curse of dimensionality, and its
effects on the usage on lattices. For the simplest case of the binomial tree we see that
each node is “separated” into two nodes, when we are talking of course for an option
with one underlying asset. Anyone could imagine, simply by looking at figure 1, what
the tree would like if we had two underlying assets, that is four nodes leaving each
node. In general, the nodes leaving each node on a lattice are m", L being the number
of stochastic factors. Needless to describe what the situation would be if we had a tree

of m = 4, three underlying assets and 10.000 timesteps. We see that the nodes are
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increasing exponentially with the number of the underlying assets, and that costs a lot
in terms of computational time and of the means required to estimate the value of the
option. That’s the essence of the curse of dimensionality and that’s why lattices are
avoided in the valuation of multi-factor options. Also, as Barraquand and Martineau
(1995) have shown, simply by using the binomial tree of Cox, Ross and Rubinstein,
or the finite difference approximation, we cannot valuate options with more than three
underlying assets. That’s where simulation methods come in and help us deal with
this problem, as we will thoroughly discuss in the next chapter.

Now we shall cite table 1 with the results obtained from the methods we
covered so far. We value a European put option giving two different current stock
prices, Sp = $40 and Sy=$36, two times to expiration, T = 1 and T=1/2, and two
volatility rates, o = 0.4 and 6=0.2. The strike price is K = $40, and the risk-free rate
of return is r = 0.06. We assume 2000 timesteps for the binomial trees. For the
implicit finite difference method, we have assumed 2000 steps for the stock price and
50 timesteps that the American option can be exercised. For the explicit approach we
assumed 200 steps for the stock price and 8000 timesteps, due to the instable nature of
this method. We have also used the control vanate technique in the results obtained
by the explicit approach, using the price of a similar European option obtained by the
use of explicit finite difference approach as control variate, and Black-Scholes
framework as an analytic solution. A detailed description of the control variate

technique will be given in the next chapter.
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Table 1

Black-Scholes, Finite difference approaches and binomial tree pricing

Black- Binomial Binomial Finite Diffrence Finite Diffrence
Scholes European American Implicit Approach Explicit Approach
European American European American
Price Price Price Price Price Price Price
s0=40 5.05962 5.05885 5.31792 5.04698 5.29048 5.10884 5.32085
=1
0=0.4
s0=36 6.71140 6.71118 7.10897 6.70245 7.08102 6.75919 7.11119
=1
0=0.4
s0=40 5.05962 5.05885 5.31792 5.04698 5.29048 5.10884 5.32085
=1
0=0.4
s0=40 3.86569 3.86513 3.97775 3.85803 3.96196 3.90376 3.97910
T=1/2
0=0.4
s0=40 5.05962 5.05885 5.31792 5.04698 5.29048 5.10884 5.32085
=1
0=0.4
s0=40 2.06640 2.06600 231943 2.06137 2.30280 2.08613 2.32199
=1
0=0.2
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Chapter 6

Monte Carlo simulation in option pricing

Simulation has been a promising alternative in the last decade to value
American options and more generally options with multiple state variables and under
general stochastic processes. Simulation techniques were first introduced in option
pricing by Boyle (1976). This paper simulated a European option, with asset price as
the only stochastic factor. There has been a great deal of research since then, and
today we can accurately value, most of multifactor, path-dependent options, with
general stochastic processes, say stock price together with volatility. The
breakthrough was in our opinion the introduction of the least-squares method (LSM)
by Longstaff and Schwartz in 2001. This method introduced a simple backward-
looking simulation algorithm to value options with American characteristics. In this
study, we will cover the simulation techniques, as they were seen in the papers of
Boyle and Longstaff and Schwartz, for plain vanilla options, both European and
American. We will also examine the contribution of Stentoft (2004a), in the
application of LSM.

6.1 The Monte Carlo Simulation method
To begin with, we assume an arbitrary function g(y) and its probability density

function (pdf) f(y) with I f(»dy=1, A being the range of integration. For the
A

A

calculation of an estimate g, of g, we peak in random, a number 7 of sample values

(i), from the pdf, which is the same as calculating the definite integral

I 2(») f(»)dy = g . That’s actually what Monte Carlo simulation does; it simulates n
A

number of paths for a function g(y), using values from its pdf. The final calculation is
to average the values g(yi) obtained, written

g=13e0n. O
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In option pricing g(y) is the process followed by the stock price. So we generate
sample paths for the stock price, using an arbitrary number of time intervals, or the
definite number of time intervals that the option can be contractually exercised. We
end up with a number of possible outcomes for the stock price at the expiration. Then
we calculate the intrinsic value of the option and we average the values obtained,
using an equation like (1). The option price will be the outcome of (1), discounted at

the risk-free rate. So we end up using a more dense formula, written
) 1 c -rT -
g=-2.¢"gti). @
i=1

That formula works for European options, but what about American ones? We will
see what happens with them in a later stage. We will first examine the basic aspects of
the simulation techniques. The most important aspect of this technique is its

advantages, which we cite.

6.1.1 Advantages and disadvantages

a) Simulation techniques can adopt any desired assumption, i.e. on the
process followed by a stochastic factor, like the stock price, or the arbitrage free and
the risk neutral assumption, which are actually implemented in (2).

b) We can price options with multiple underlying assets and more than one
stochastic factor, i.e. the volatility.

c) Since a Monte Carlo estimator is an average of » individual draws of a
random variable, then according to the central limit theorem, this estimator has
normal distribution for a large number of draws. So we can use the standard deviation
as a statistical measure of the uncertainty of the estimator. This is done with the

square root of the variance of the estimator, written

- J(;g;@»z)-gg;@o)

from which we can derivate the standard error as another measure of uncertainty,

written

32



A

Ex =

ox
Jn

which tells us that we can calculate the accuracy of the results for each simulation
done, and that, accuracy only depends on the number of paths simulated. As far as a
number of 100.000 paths can be easily applied by modern computers, we can be
rather certain that we have very accurate results.

An alternative measure of the accuracy of our simulated estimators is the Root

Mean Square Error (RMSRE), which equals

2

A lZLJ g -g,(»
LiE &)

where L is the number of estimators whose performance we want to investigate,

n

g,(y) is the j-th estimator and g(y) is an option value we use as a benchmark,

acquired from an other method, i.e. a binomial tree with 10.000 timesteps.

d) Another advantage of simulation techniques is the possibility of using two
global techniques, namely i) the control variate method, and ii) the
antithetic variate, as an alternative to the increase of the number of paths
(\/; ), in decreasing standard error. These methods are described as
follows:

i.  The control variate method. In this method, apart from using
simulation to price the option in consideration, we also run the
same simulation, (same number of paths, and same range of
timesteps) in order to price a similar option that has an analytic
solution. Let A be the option that we want to price, B be the similar

option we have in mind, f, be the amended estimation of the price
of the option, f, be the known analytic solution of B, and f,, f,
be the values obtained by simulating the two options. Then f, is

written
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fa=fa-fatfs

The known analytic solution is usually regarded as the one obtained by
the B-S formula, and in simulations, we can use this technique in order
to improve the accuracy of American options pricing, by simulating
the option in consideration as being a European one. In this study the
usage of this technique didn’t prove to be necessary, mainly because
we made use of the antithetic variate technique.

i1) The antithetic variate technique. A Wiener process
dW; has two components, the random term &, and +/Ar . This technique
consists of running two similar simulations, and obtaining two
different option values. In the first simulation we sample a number of

g, values from the distribution of €, and in the second simulation we

sample the same values, but in their antithetic form —¢&,. Then we
average the two option prices obtained and we end up with a price f
of the option, written

it

i

f, and f, being the two prices obtained by the two similar

simulations. If @ is the standard deviation of f, then the standard error

of the estimate can be written

which is much less than the standard error calculated by running two
simulations with a sum of 2n paths. In all the simulations of this study,

the use of this technique has taken place, and provided us with very
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accurate results. Instead of running two simulations, and calculating
two prices of the option, we just run one simulation, where we sampled
g, values from the distribution of €, and the same number of —g,
values.

As far as the disadvantages of Monte Carlo simulation are concerned, the only
major disadvantage of the Monte Carlo simulation is the computational time entailed
in having a large number of estimators; that is, running a significant number of
simulations with different parameters (like the number of paths), used in each one of
them. This problem is tackled with the usage of networks of workstations, and with
the evolution in the technology of home desktops. Unfortunately we couldn’t use such
a network for the purposes of our study.

6.2 Implementation of the Monte Carlo Simulation
The first think we do is to solve the SDE describing the known process the

stock price follows. An explicit Euler scheme, as cited in Barraquand and Martineau
(1995) is given by

S (+A0)=S5, (t{(r d, 1k, )(X(t),t)At +3, (X Atz;.]

J=1

where i is the number of paths we simulate , k; and v; are the variance and the
volatility of the asset price. zj is the random term of the Wiener process of the SDE,
what we cited as ¢, and all z; follow independent standard normal distributions for all

j and . d=T/At, is the number of timesteps in [0,T]. One has to draw M x d (M stands

for the number of paths) standard normal variates in order to generate M x d-
dimensional sample paths X'(¢),...,X™ (¢) for al t>0. A more simple form of this

equation which we use in all our simulations is

St +48)= S, exp[(r : %2 = 5) JAL + oJAL f z[i: j]] 3)
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where i stands for the number of paths simulated, which from now on will declared as
runs. j=T/At is the number of steps of the simulation. Sy is the price of the share, the
day the option is signed, exp stands for exponential, r as always, is the risk-free rate of
return, o” is the square of the volatility, the variance of the changes on the prices of the
share, 6 is the dividend rate, which in our simulations is assumed to be zero, and o is
the volatility in interest. Given the parameters of the option, we generate the matrix,
from which to pick the random, independent standard normal values &i, using the
same number of &is and —¢i;. Barraquand and Martineau (1995) cite that when the joint
process X(?), that is the natural logarithm InS of the price of the share, is assumed
lognormal, 10 timesteps are sufficient for security pricing with lognormal underlying
assets price processes. The last sentence stands both for European and American
options. In our simulations, we have used a number of timesteps equal to 50. As long
as runs are concerned, we have used a range of (M) 10.000 to 100.000 runs, with
increments of 10.000. Table 2 gives the results obtained, from the valuation of a
European put option with: So = $40, K = $40, T = 1, 6 = 0.4, r = 0.06. The price
obtained by a binomial tree with 2.000 timesteps, is used to calculate the bias, and
then examine if the latter is statistically significant for two critical regions, that is two
different a’s, namely 0.05 and 0.01. We use 1-a as a measure of goodness of the
estimates. The price of the tree is $ 5.0588458. Table 3 gives the prices obtained by
simulation with the use of 100,000 paths, and the prices of the other methods as well,

for a comparison to be feasible and straight.

Table 2
Boyle’s simulation
Stat. Stat.
Sig. Sig.
M price s.e. bias 95% 99%
10000 5.16258 0.028 0.104 Yes Yes
20000 5.08958 0.027 0.031 No No
30000 5.07106 0.027 0.012 No No
40000 5.07376 0.027 0.015 No No
50000 5.06873 0.027 0.010 No No
60000 5.06882 0.027 0.010 No No
70000 5.06787 0.027 0.009 No No
80000 5.06808 0.027 0.009 No No
90000 5.06855 0.027 0.010 No No
100000 5.06568 0.027 0.007 No No
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Table 3

Boyle’s simulation and other methods for option pricing

Boyle Black-Scholes Binomial Binomial Finite Diffrence Finite Diffrence
European American Implicit Approach Explicit Approach
European American European American
Standard
Price Error Price Price Price Price Price Price Price
50=40 5.06568 0.027 5.05962 5.05885 5.31792 5.04698 5.29048 5.10884 5.32085
=1
=04
50=36 6.71500 0.033 6.71140 6.71118 7.10897 6.70245 7.08102 6.75919 7.11119
T=1
0=0.4
$0=40 5.06568 0.027 5.05962 5.05885 5.31792 5.04698 5.29048 5.10884 5.32085
=1
0=0.4
s0=40 3.87017 0.017 3.86569 3.86513 3.97775 3.85803 3.96196 3.90376 3.97910
T=1/2
0=0.4
s0=40 5.06568 0.027 5.05962 5.05885 5.31792 5.04698 5.29048 5.10884 5.32085
T=1
=04
s0=40 2.06959 0.007 2.06640 2.06600 2.31943 2.06137 2.30280 2.08613 2.32199
T=1
10=0.2

We note that all the methods described so far, converge to the Black-Scholes solution,

as far as European options are concerned. For American options, the results from the

binomial tree, and both finite difference approaches are quite close to each other and

to the results obtained by simulation, as we will discover shortly.

37



6.3 The Least Squares Monte Carlo Method

The Least Squares Monte Carlo Method (LSM) was introduced by Longstaff
and Schwartz (2001) and was a major breakthrough in the use of simulation for option
pricing. Most of the simulation methods till that time could not value options with
American characteristics, since they incorporated a forward-looking technique. Each
path was followed by a single path after each timestep. That worked for European
options, as we discounted the average value of the option at expiration. But we could
not value options with discrete exercise dates before expiration, because there was not
an easy to apply method in order to check in each timestep whether the early exercise
of the option would be optimal or not, and obtain the optimal early exercise strategy.
As Stentoft (2004) states, “this exercise strategy would have to be calculated
recursively, but when simulation techniques are used at any time along any of the
paths there is only one future path, and using these values would lead to biased
results”. Tilley (1993), Barraquand and Martineau (1994) and Broadie and
Glasserman (1997) have proposed some techniques to tackle this problem. The
greatest evolution took place with the introduction of the LSM, which due to its
simplicity and its ease to price options with complicated payoff functions, gained a lot
of ground in the option pricing theory.

The basic idea behind the LSM method lies on the fact that the holder of an
American option compares the payoff from immediate exercise with the expected
payoff from continuation, at each one of discrete number of times the option can be
exercised. The payoff from immediate exercise is known to the holder and it is the
option’s intrinsic value. What is not known is the expected payoff if she doesn’t
exercise her option, and keeps it in life. This payoff is determined as the conditional
expectation function and LSM is the way to determine it. We regress the ex post
realized payoffs from continuation, on a constant and a set of functions of the values
of the state variables, using the least-squares method of regression. Ex post realized
payoffs are not determined as a simple discount of the next period’s payoffs. Using
actual realized payoffs means that the maximum is taken over each path, over each
and all exercise times. The fitted value from this regression gives us an estimate of the
conditional expectation function for each exercise date we apply the regression. This
way we obtain a complete specification of the optimal exercise strategy along each

path. Then we are able to set up the optimal stopping rule, which tells us when the
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option must be exercised for each path of the simulation. According to the stopping
rule, we discount the option values of each path, and by averaging the discounted
value, we finally obtain the value of the option in interest.

We will cite the description of Rodrigues and Armada (2006), for a
mathematical exposure of the LSM. We value an American option, whose only
stochastic factor is the stock price, which in turn follows the known process,

described by the SDE
dS =(u-96)S dt+oSdw,
which with the assumptions of zero dividend rate, and risk-neutral pricing, becomes

dS =rS di + oSaw,

The value of an American option that can be exercised in a discrete number of periods

in the interval [0, T}, or [t,T], and whose payoff function is I1(t,S;), can be expressed as
F(t,S,) = max{E; |e " "11(r,S,)} (4)

where 1 is the optimal stopping time (zr€[t,T7]) and E[] is the risk-neutral
expectation, conditional on the information available at t. Longstaff and Schwartz

stated that the optimal stopping time can be obtained using the following Bellman

equation
Flt,.S, )=max{ni,.s, ek, [Fl.08, f ©
deriving the continuation value as
of,.s,)= e g [Fls, ) ©

When expiration is reached, option is no longer in life, so its continuation value is

Zero, written
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®(T,S,)=0 )

Beginning from T, and moving backwards, one timestep at a time, we examine
whether early exercise of the option is optimal; this occurs when the conditional on
information available in time t, continuation value is less than or equal to the ex post
realized payoff from the option, which as already stated, can be calculated at any path,

of any timestep. This rule can be written as follows

if of¢, S, (0))<11,,5,) then  r(w)=1, (®)

where 7(w) stands for optimal stopping time. When condition (8) holds, r(w) is

updated, because the option can be exercised only once. The value of the option is

calculated by averaging the values of all (K) paths

F (0, x) = %i e_"(‘”)H(r(a)), S ,(w)(a))) €)}

w=1

What is missing for the calculation of the option’s price is to figure out how the
expectation value in each path can be found, and that’s what the major contribution of
Longstaff and Schwartz has been.

We will first state the formula we use to express the expectation, or continuation
value that we are looking for and we will explain the ingenious thought of Longstaff
and Schwartz, supporting the LSM method. So, let H(t,s,z‘,a)) be the cash flow we
get from the w-path, if we exercise the option in an optimal manner at the
timestep s(t < s < T), with the intuitive assumption that it hasn’t been exercised at or

before time t. The expectation or continuation value is written

o(t,.S, )= E; [ 3 )H(t,,,t,-,r,')] (10)

i=n+1
with:

Mlsr.0)= L5y

otherwise
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Longstaff and Schwartz state that ® belongs to a Hilbert space L, which gives
tremendous potentials for its calculation. Due to this ability, @ can be represented by

a countable orthonormal basis and the conditional expectation can be expressed by a
linear combination of the elements of the basis, CD(t,S,)zZé e"("""‘)l'[(t ,t.,z',-)
j=1 noti
The continuation value can be calculated using the first J <o basis:
@’ (t,8,)= ijl #(e)L,(1.S,), with ¢(2) estimated by a least squares regression. The

continuation value estimated by the regression is then used to compute the optimal

stopping time

aAJ J

® (,.5,)=360L,(.5) a2

J=1

We will now state some significant characteristics of the LSM algorithm, and some
implementation issues.

o First of all, the least squares method of regression is simple, very efficient and
consumes logical amounts of computational time.

o Only the paths of the in-the-money area are included in the calculation of the
option price. As Longstaff and Schwartz state, this significantly increases the
efficiency of the algorithm and decreases the computational time.

o The elements constituting the orthonormal basis, are called the basis functions,
which in turn are sets of polynomials. Such polynomials include the Laguerre,
Chebyshev, Legendre and Shifted Legendre polynomials, the Hermite,
Gegenbauer and Jacobi polynomials. We will discuss further on polynomials
when we examine the work of Stentoft (2004) on the LSM.

o In our simulations, we value an at-the-money American put option, with one
underlying factor, i.e. the stock’s price. We also use five different seeds for the
generation of the stock’s price matrix. The latter is an Mxd dimensional
matrix, M being the number of runs, or paths, and d=maturity/dt being the
number of timesteps.

o Extra attention should be given to the use of polynomials like Laguerre ones,
which include exponential terms of the state variable. Imagine an exponential

of a stock’s price which equals 40. This is 2.354", and a use of such numbers
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will lead to underflows of the mathematical processor. To avoid this problem,
we use the technique of normalization, in which we divide all cash flows and
prices by the strike price. In the end of the algorithm, we multiply the matrix
of the cash flows, with the strike price, and only then we discount them,

leaving this way the price of the option unaffected.

6.4 Stentoft’s work on LSM
Stentoft (2004), has stated that there are two kinds of biases in the use of the
LSM algorithm:
o an approximation bias as the conditional expectation function is estimated.
This leads to a low bias, which should be vanished when the number of

regressors tends to infinity. This bias can be written as

AJ
o(t,S, )~ (t.S,)

o The stochastic error as a result of the Monte Carlo Simulation, written

1 & —rr\w
F(0,x)~ Ez_le ( )H(‘r(a)), S,(m)(a)))

This type of bias occurs because we use the same paths to calculate the
conditional expectation function and the value of the option. This leads to a high
bias of the estimation and should be vanished as the number of paths increases.

o For reasons of complicity we will also mention a third type of bias, found in
Rodrigues and Armada (2006), which is the discretization bias, as a result of
restricting the exercise opportunities of an American option to a finite set of M
dates.

Stentoft worked on the first two types of biases. Especially he tested n
argument made by Longstaff and Schwartz, saying that we should increase the
number of regressors, until we get the most accurate results possible, or in the same
manner, until the price estimated stops increasing. He conducted simulations with an
increasing number of regressors and paths, and using alternative families of
polynomials, others than the Laguerre polynomials used by Longstaff and Schwartz.
These families include (weighted) Laguerre, General Chebyshev, and Shifted
Legendre polynomials (the characteristics of these polynomials are cited in the

appendix of the chapter). The reason why he tested polynomials like General
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Chebyshev, and shifted Legendre is that these polynomials are orthonormal in the
space [0,1] and (0,1) accordingly, instead of the space [0,), that Laguerre
polynomials satisfy. Except from the polynomials Stentoft used, we also used
monomials, in order to show that simple powers of the state variables can give pretty
accurate results, compared with other, more complicated polynomials. He also made
simulations with a range of paths from 10.000 to 100.000 paths, with increments of
10.000, using K=1,2,3,4,5 regressors.

We value the same option with Boyle’s simulations: an American put option
with: Sp= $40, K = $40, T = 1, 6 = 0.4, r = 0.06, where as usual S is the current price
of the stock, which is considered the only underlying factor, K is the strike price, T is
the time to expiration of the option, ¢ is the volatility, and r is the risk-free interest
rate. We also used the same number of paths and regressors as Stentoft did. Tables
45,6 and 7, show the results from simulations done using Laguerre, General
Chebyshev, Shifted Legendre polynomials, and monomials. In the tables, M stands
for the number of runs, and k for the number of regressors. As a benchmark we use
the price given by a binomial tree with 10.000 timesteps, which is 5.3182198. We also
show the standard error of the estimate, for each simulation, and indicate whether this
is statistically significant for two sizes of critical regions, that is two different a’s,
namely 0.05 and 0.01. We use 1-a as a measure of goodness of the estimates. In the

appendix we cite a step-by-step approach to the simulation of the LSM algorithm.
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Table 4

Price estimates from the LSM algorithm using various numbers of Laguerre Polynomials

Stat.  Stat. Stat.  Stat. Stat.  Stat. Stat.  Stat. Stat.  Stat.

k=1 Sig.  Sig. k=2 Sig.  Sig. k=3 Sig.  Sig. k= Sig.  Sig. =5 Sig.  Sig.

M price s.e. bias 95% 99% price s.e. bias 95% 99% price s.e. bias 95% 99% price s.e. bias 95% 99% price s.e. bias 95% 99%
10000 526933 0.021 -0.049 Yes No 529672 0.020 -0.022 No No 531818 0.020 0.000 No No 529817 0.019 -0.020 No No 529017 0.021 -0.028 No No
20000 5.27383 0.021 -0.044 Yes No 5.28940 0.020 -0.029 No No 531185 0.021 -0.006 Yes No 5.34768 0.019  0.029 No No 530228 0.021 -0.016 No No
30000 527654 0.021 -0.042 Yes No 5.29462 0.020 -0.024 No No 531142 0.020 -0.007 Yes No 531467 0.020 -0.004 No No 631326 0.003 -0.005 No No
40000 5.27710 0.021 -0.041 Yes No 529292 0.020 -0.025 No No 530853 0020 -0.010 Yes No 5.29874 0.019 -0.019 No No 531536 0.003 -0.003 No No
50000 5.27978 0.021 -0.038 No No 530353 0.020 -0.015 No No 531225 0020 -0.006 Yes No 531486 0.020 -0.003 No No 528467 0.021 -0.034 No No
60000 5.28343 0.021 -0.035 No No 529636 0.020 -0.022 No No 530862 0.020 -0.010 Yes No 5.32020 0.021 0.002 No No 528343 0.021 -0.035 No No
70000 528894 0.021 -0.029 No No 5.29632 0.020 -0.022 No No 530778 0020 -0.010 Yes No 531150 0.020 -0.007 No No 528011 0.021 -0.038 No No
80000 528429 0.021 -0.034 No No 529455 0.020 -0024 No No 530834 0020 -0012 Yes No 532342 0017 0.005 No No 631759 0.002 -0.001 No No
90000 5.28656 0.021 -0.032 No No 529224 0.020 -0.026 No No 530510 0.020 -0.013 Yes No 531449 0.017 -0.004 No No 531745 0.002 -0.001 No No
100000 §5.29049 0.021 -0.028 No No 5.29382 0.020 -0.024 No No 530794 0020 -0.010 Yes No 532013 0.020 0.002 No No 5.31477 0.002 -0.003 No No
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Table 5

Price estimates from the LSM algorithm using various numbers of General Chebyshev Polynomials

Stat.  Stat. Stat.  Stat. Stat.  Stat. Stat.  Stat. Stat.  Stat.
k=1 Sig. Sig. k=2 Sig. Sig. k=3 Sig.  Sig. k= Sig. Sig. k=5 Sig.  Sig.
M price s.e. bias 95% 99% _price s.e. bias 95% 99% price s.e. bias 95% 99% price s.e. bias 95% 99% price s.e. bias 95% 99%

10000 459830 0012 -0.720 Yes Yes 4.69133 0.017 -0.627 Yes Yes 6517465 0019 -0.144 Yes Yes 532876 0.020 0.011 No No 532505 0.021 0.007 No No
20000 463611 0011 -0682 Yes Yes 470755 0.017 -0.611 Yes Yes 517799 0.019 -0.140 Yes Yes 534822 0.019 0.030 No No 534036 0.020 0.022 No No
30000 4.65415 0.011 -0.664 Yes Yes 472257 0017 -0596 Yes Yes 518487 0018 -0133 Yes Yes 531117 0019 -0.007 No No 531231 0021 -00068 No No
40000 466199 0011 -0656 Yes Yes 471410 0017 -0604 Yes Yes 516784 0019 -0151 Yes Yes 529644 0.019 -0.022 No No 530387 0021 -0014 No No
50000 467363 0.012 -0.645 Yes Yes 475285 0017 -0.565 Yes Yes 516670 0019 -0152 Yes Yes 529915 0.019 -0019 No No 529960 0.021 -0.019 No No
60000 467719 0.012 -0.641 Yes Yes 476009 0.017 -0.558 Yes Yes 516101 0.019 -0.157 Yes Yes 529107 0.019 -0.027 No No 5.30536 0.020 -0.013 No No
70000 468417 0.012 -0.634 Yes Yes 475911 0.017 -0.559 Yes Yes 516691 0.019 -0.151 Yes Yes 529515 0.019 -0.023 No No 530226 0.020 -0.016 No No
80000 469216 0.012 -0.626 Yes Yes 474130 0.017 -0.577 Yes Yes 517017 0.019 -0.148 Yes Yes 529539 0.019 -0.023 No No 530404 0.020 -0.014 No No
90000 470259 0.012 -0.616 Yes Yes 476757 0.017 -0.551 Yes Yes 6516965 0.019 -0.149 Yes Yes 529437 0.019 -0.024 No No 530852 0.021 -0.013 No No

100000 4.70584 0012 -0612 Yes Yes 477280 0.017 -0545 Yes Yes 517205 0019 -0146 Yes Yes 528573 0.019 -0.022 No No 530747 0.020 -0.011 No No
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Table 6

Price estimates from the LSM algorithm using various numbers of Shifted Legendre Polynomials

Stat.  Stat. Stat.  Stat. Stat.  Stat. Stat.  Stat. Stat.  Stat.
k=1 Sig.  Sig. k=2 Sig.  Sig. k=3 Sig.  Sig. k=4 Sig.  Sig. k=5 Sig.  Sig.
M price s.e bias 95%  99% price s.e. bias 95%  99% price s.e. bias 95%  99% price s.e bias 95%  99% price s.€. bias 95%  99%
10000 481191  0.011 -0.506 Yes Yes 524605 0.022 -0.072 Yes Yes 528432 0.020 -0.034 No No 533884 0020 0.021 No No 533908 0.021 0.021 No No
20000 480573 0.011 -0.612 Yes Yes 525103 0022 -0.067 Yes Yes 527234 0.020 -0.046 Yes No 532943 0.020 0.011 No No 532652 0.020 0.008 No No
30000 481346 0011 -0.505 Yes Yes 525073 0022 -0.067 Yes Yes 527704 0.020 -0.041 Yes No 5.32304 0.020 0.005 No No 532680 0.021 0.009 No No
40000 480890 0.011 -0.509 Yes Yes 525236 0022 -0.066 Yes Yes 527678 0.020 -0.041 Yes No 531069 0020 -0.008 No No 531435 0.020 -0.004 No No
50000 482624 0.011 -0.492 Yes Yes 525658 0022 -0.062 Yes Yes 530061 0020 -0.018 No No 531619 0020 -0.002 No No 531722 0.020 -0.001 No No
60000 4.82842 0.011 -0490 Yes Yes 526017 0.022 -0.058 Yes Yes 530268 0.020 -0.016 No No 531409 0020 -0.004 No No 531317 0.020 -0.005 No No
70000 482686 0011 -0.491 Yes Yes 525529 0.022 -0.063 Yes Yes 5.30006 0.020 -0.018 No No 531005 0020 -0.008 No No 531198 0.020 -0.006 No No
80000 4.82561 0.011 -0.493 Yes Yes 525320 0.022 -0.065 Yes Yes 529797 0.020 -0.020 No No 530734 0020 -0.011 No No 5.30882 0.020 -0.009 No No
90000 482212 0.011 -0.496 Yes Yes 525441 0.022 -0.064 Yes Yes 529832 0.020 -0.020 No No 530625 0.020 -0.012 No No 530740 0.020 -0.011 No No
100000 4.82402 0011 -0494 Yes Yes 525494 0022 -0063 Yes Yes 530059 0.020 -0.018 No No 530848 0020 -0.010 No No 530905 0020 -0.009 No No
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Table 7

Price estimates from the LSM algorithm using various numbers of Monomials

Stat.  Stat. Stat.  Stat. Stat.  Stat. Stat.  Stat. S{at. Stat.
k=1 Sig.  Sig. k=2 Sig.  Sig. k=3 Sig.  Sig. k= Sig.  Sig. k=5 Sig.  Sig.
M price s.e. bias 95%  99% price s.e bias 95% 99% price s.e. bias 95% 99% price s.e. bias 95% 99% price s.e. bias 95% 99%

10000 6525026 0022 -0068 Yes Yes 531080 0.020 -0.007 No No 531819 0020 0.001 No No  5.32408 0021 0.006 No No 533002 0.021 0.012 No No
20000 524970 0.022 -0.069 Yes Yes 529468 0.020 -0.024 No No 5631366 0.021 -0.005 No No 531328 0021 -0.005 No No 631644 0.021 -0.002 No No
30000 524717 0.022 -007t Yes Yes 529540 0.020 -0.023 No No 5314256 0.021 -0.004 No No 531644 0.021 -0.002 No No 531630 0.021 -0.002 No No
40000 524722 0022 -0071 Yes Yes 529646 0020 -0.022 No No 6530801 0.020 -0.010 No No 530837 0021 -0.009 No No 531206 0.021 -0.006 No No
50000 525101 0.022 -0.067 Yes Yes 529656 0020 -0.022 No No 531280 0.021 -0.005 No No 531382 0021 -0.004 No No 531540 0.021 -0.003 No No
60000 6525244 0022 -0.066 Yes Yes 529754 0.020 -0.021 No No 531285 0020 -0.005 No No 531301 0.021 -0.005 No No 531484 0.021 -0.003 No No
70000 526529 0022 -0.063 Yes Yes 529653 0.020 -0.023 No No 530919 0.020 -0.009 No No 531168 0020 -0.007 No No 5631223 0.020 -0.006 No No
80000 6526320 0022 -0.065 Yes Yes 529653 0.020 -0.022 No No 530692 0.020 -0.011 No No 530791 0.020 -0.010 No No 530780 0.020 -0.010 No No
90000 525024 0022 -0.068 Yes Yes 529624 0020 -0.022 No No 530625 0.020 -0.012 No No 530663 0021 -0.012 No No 530711 0.021 -0.011 No No

100000 525213 0.022 -0.066 Yes Yes 528726 0020 -0.021 No No 531476 0.021  -0.003 No No 530959 0.021 -0.009 No No 530465 0.020 -0.014 No No




6.5 Comparison of the results

In table 4, we note that increasing the number of regressors, does not
necessarily mean that we get a more accurate estimation. We see that for a low
number of regressors, that is k-1 or k=2, the simulation seems to underprice the
option. While we get more accurate results with three regressors, when we increase
their number to four and five, we don’t get more accurate results and we don’t have
over pricings either. This corresponds to the approximation bias mentioned above. In
our results for the Laguerre polynomials, the proposition of Longstaff and Schwartz
we mentioned above, does not seem to hold, meaning that by increasing the number
of regressors from three to four and five, actually provided us with the same degree of
accuracy as having only three regressors used. This means that a number of three
regressors is enough to price the option in interest. Stentoft in the other hand, found
that a use of 4 or five regressors, seemed to overprice the option, making the
proposition of Longstaff and Schwartz meaningless. This difference in results may be
due to the fact that we value an at-the-money option, while Stentoft values a deep in
the money option, with s0=$36, leaving the rest of the other characteristics, the same.
Another point to make is the existence of pretty few estimations, with statistically
significant biases, and those are found only on the region of k=1 regressor, with a
relatively poor number of paths, and within the critical region of 5%.

In table 5, we agree with the conclusions made by Stentoft, on his simulations
with General Chebyshev polynomials. We have to increase the number of paths and
regressors used in order to have accurate results. Same goes for table 6, where our
conclusions from using Shifted Legendre polynomials are again similar with those of
Stentoft. An increasing number of both paths and regressors must be used in order to
avoid any under pricings and over pricings. In table 7, we note that monomials act
surprisingly well, comparing with other, more complicated polynomials. When a
number of three regressors is reached, the results obtained do not lack of accuracy,
from the ones obtained by other polynomials families or by monomials with greater k,
namely k=4 or k=5.
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APPENDIX 6.6

6.6.1. Characteristics of polynomials
Table 8, gives the weights, the interval of orthogonallity, and the definition of

the polynomials families, we used in our regressions, as taken by Stentoft (2004a).

Table 8
Characteristics and formulas for the simulated polynomials.
Polynomial Weight Interval Definition
family
v ex dk k_-x
[ At ik [0,c0) L(x)= 'E?(x e )
General
Chebyshev (1 ~(2x -1 )4)'5 [o1] T, (x)= cos(k cos™ (2x - 1))
Shifted (1) a* (
1 0,1 P(x)=-—\1-(2x-1) )
Legendre ©.1) :(x) 2%k dx* ( =) Y

Three observations must be made.

X

o Instead of e, we used e ? as weight function for the Laguerre polynomials,
like Longstaff and Schwartz did in their simulations.

o Due to their intervals of orthogonallity, General Chebyshev and Shifted
Legendre polynomials, cannot be used for the valuation of call options. That is
more clear in the weight function of the General Chebyshev polynomials. The
in-the-money, normalized values of the stock’s price are greater than 1, so
substituting them for x, we get a negative value raised on a decimal power.

o The definition given by Stentoft for the Shifted Legendre polynomial has
proved to be incorrect, with the use of Mathematica v5.2. We propose an other

representation of the formula, written

A=) Lo o]

' This alternative formula was found in
http://en.wikipedia.org/wiki/Legendre polynomials#Shifted Legendre polynomials

49



6.6.2 LSM Simulation guide

1)

Here is our proposed simulation of the LSM algorithm, in a step-by-step form.
Using a random seed, or multiple seeds, simulate the stock’s price paths, making

an MxT/Dt — dimensional matrix, and normalize the stock price.

2) Next steps must conclude the in-the-money paths, and only them. Discount the

3)

4)
5)

payoffs of the option, given in the last timestep, one timestep back, and regress
them on a constant, and a set of values of the underlying factor of the penultimate
timestep, (i.e. the stock’s price), that you choose ( that is, you are choosing the
polynomial family and the number of regressors).

Compare the fitted value of the regression (which is the continuation value), with
the payoff of the penultimate timestep, and make a matrix with the results of the
comparison. Discount this matrix one period back, and do the same regression,
using the set of values of your choice, for the values that are one timestep before
the penultimate timestep. Do the same comparison, and make all the subsequent
regressions, moving one timestep back, at a time. It is important to say that we
don’t use the discounted matrix of comparison as regressand, as this leads to
upward biases in the option’s price. (Longstaff and Schwartz , 2001). We use the
maximum value realized for each path.

Construct the optimal stopping rule, and discount the proper unormalised values.

Finally we average the discounted values and get the value of the option.

We notice that simply by constructing the matrix of the stock’s price paths, and

average the discounted (to present) values of the last timestep, we actually value a

European option, the way Boyle (1976) instructed to.
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Chapter 7

Monte Carlo Simulation of stochastic volatility models

7.1 Heston’s stochastic volatility model

The most famous stochastic volatility model is that of Heston (1993). The
reason is that Heston assumes a degree of correlation between the returns of the stock
underlying the option and the volatility itself, while other models do not. (see
literature review). In this study we will not examine the closed-from solution given in
Heston (1993), because our purpose is to use the basics of this model and valuate
options via simulation. So, to begin with, Heston assumes that the asset price follows

the usual stochastic process, written

dSy = pSdt + \W(t)Sdz,(¢) 1)

where v stands for the variance of the changes of the asset’s price. Then he assumes

an Ornstein-Uhlenbeck process for the volatility, which is

d\[v(t) = —B ()t + 5z, (1) @

and by using Ito’s lemma, ends up in the following process

av(t)=[5" - 2pv()t + o (dz, (1) (3)

which can be written as the square-root process of Cox, Ingersoll, Ross (1985)

dv()) =0 (i + o )z, () (@)

Equations (1) and (2) constitute the fundamental functions that characterize Heston’s
model of stochastic volatility. «,6,06 stand for mean reversion speed, long-run
volatility and volatility of the volatility and are strictly positive constants. We also
assume thatdz, (t)- dz, (t) = pdt , where p is the correlation constant in [-1,1]. There

are two thinks we have to do to simulate this model:
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o Sample from correlated Brownian motions, and

o Express the process followed by volatility, in its discrete form.

7.1.1 Sampling from correlated processes
We build two matrices of random normal variables, i.e. randoml and
random2. A third matrix random3, will be a combination of the randoml and

random?2, written
Random, = p - Random, ++/1- p* - Random,

where Randomj;and Random, are correlated with a degree p of correlation,

exogenously defined. As in the other simulation schemes of this study, all the three

matrices use the same number of positive and antithetic variables.

7.1.2 Discretization of the variance process
In order to have a discrete solution of (4), we must first define what is known
as the price of volatility risk, namely A. A will depend on the stock’s price, its variance

and time t. We give Breeden’s (1979) consumption-based model

AS,v,1)dt = yCovlav,dC/C]  (5)

where v stands for the degree of risk aversion of the consumer. (5) can be written as a

Cox, Ingersoll, and Ross mean-reverting model

dC(t)= uve)Cdt + o W )Cz, () (6)

where consumption growth has constant correlation with the asset return. This
generates a risk premium proportional to variance, that is A(S,v,t)dt = Av. We finally

derive the discrete form of (4), assuming a risk-neutral pricing framework, written

vie+1)=[k'6" - V(O + e, %

where
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K'=k+A and 6 =x6/(x+A)

and { is the volatility of stochastic volatility. To conclude, the two SDEs of the

Heston’s stochastic volatility model, are
dS, = piSdt + [v(t)Sdz (t) (8)

vie+1)=[k'0" kv + & 0z, )

Remember matrices random;, random; and random; from 6.1.1. We sample from
random; for the simulation of the variance rate, and from random; to simulate the
stock’s price. We will use the LSM algorithm, so stock’s price and stochastic
volatility will be included in the regressors of the algorithm. As Longstaff and
Schwartz state for the valuation of multifactor options, one has to include the cross-
products, and the product of all the stochastic factors in the regression. We will

include the product of volatility and stock’s price.

7.2 Simulation issues and solutions

While (4) is guaranteed to be nonnegative, this is not the case for its discrete
form. That makes an accurate valuation impossible. A lot of alternative discretizations
have been proposed for (4). We will use the one introduced by Robel (2001). He starts

with the introduction of an exponential Mean-Reverting Ornstein-Uhlenbeck process

X, =e" (10),

t

where

dy, = ﬂ()—’—Y, Jdt+odB, (11)

where A stands for mean-reversion speed and dB, is a Brownian process. He then uses
Ito’s lemma to see how X; is distributed, and if it reverts to a mean. We get the

formula
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dX, = ,1[(}‘4 iaz ] ~log(X, ):IX, dt+cX,dB,  (12)

We see that X, is lognormally distributed, with probability density function

e—(lnx—,u)z/h'r2 (13).

flouo)=

XoN2T

The first two moments of the lognormal distribution are

E(X)=e*" (14)
and
Var(X)= (e — 1) (15)
where p and o are the mean and the standard deviation of the variable’s logarithm. We

see from its probability density function in Figure 2, that the lognormal distribution

cannot take negative values.
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Figure 2. The probability density function of the lognormal distribution.
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So, (12) is a suitable process to use for the simulation of the variance. The only think

we have to do now is to find its discrete solution. An exact Euler discretization is

X’+Az = Xrel(?_log(xt))m+ag'\/—&

(16)

That’s the process we adopt for the simulation of variance in this study.

Due to lack of computational means, we only used monomials on our simulation and
we reached a number of three regressors. We have assumed a kappa=1, to make the
process more volatile, 6=0.16 (it is the square of the volatility used in Black-Scholes
framework), an initial variance v0=0.01, positive correlation p=0.5, and a volatility ¢
={=0.1 for the volatility parameter. Table 9 cites the valuation of a European option
by using Boyle’s (1976) simulation algorithm on our processes for the stochastic
factors, and table 10 cites the results of a simulation done with LSM algorithm, on an
American option. The options have the same parameters with the options evaluated

using the methods cited earlier in this study.

Table 9

Simulation of a European option with stochastic volatility
M Price s.e.
10000 2.57897 0.009
20000 261583 0.010
30000 2.58286 0.010
40000 2.58129 0.010
50000 2.58453 0.010
60000 2.60632 0.010
70000 2.59685 0.010
80000 2.59943 0.010
90000 2.59687 0.010
100000 2.60348 0.010
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Table 10

Simulation of an American option with stochastic volatility

k=1 k=2 k=3

M price s.e. price s.e. price s.e.

10000 2.56649 0.009 2.56945 0.009 2.57110 0.009
20000 2.61796 0.010 2.61872 0.010 261824 0.010
30000 2.60618 0.010 2.60626 0.010 2.60605 0.010
40000 2.61037 0.010 261133 0.010 2.61078 0.010
50000 2.61855 0.010 2.61875 0.010 2.61879 0.010
60000 2.60896 0.010 2.60902 0.010 2.60842 0.010
70000 261732 0.010 261736 0.010 261673 0.010
80000 2.61077 0.010 2.61094 0.010 2.61043 0.010
90000 2.61418 0.010 261419 0.010 261385 0.010
100000 2.59642 0.010 2.59642 0.010 2.59615 0.010

We note that the prices obtained by the process we adopted for the variance are

significantly lower than the prices of options with constant volatility, valued with each

of the methods proposed on this study. The two groups of prices are not comparable,

because we assumed a process for the variance, different from the one proposed in

Heston (who values European options only, and has results very close to the ones

obtained by B-S pricing), in order to avoid negative prices.
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8. Conclusion

This paper has covered a wide range of methods for option pricing. Beginning
from the first analytical closed-form solution, the easiest to implement Black-Scholes
method, we cover a part of lattices, both finite difference approaches and Monte Carlo
simulations. What comes from this study is that we can avoid using simulation
schemes when we have simple options in mind. Simulations come to cover the
computational gap for multiple state options, like average options and options with
stochastic volatility. The golden section haw to be found when using simulations,
because we don’t get more accurate results simply by increasing the domain space of
the simulation. The use of more and more paths and most important of more and more
complicated and numbered regressors should be sought. Future students can use this
study as a base for implementing more complicated algorithms, i.e. add alternative
discretizations for the process followed by the variance, or adapt stochastic interest
rates. Time and will, shall be their outfits.
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