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ABSTRACT

Georgios M. Kalamidas

Statistical Modelling for football data:
A Robust Approach based on
Weighted Maximum Likelihood
January 2005

Generalized linear models are an extension of classical linear models and can
be used in a wide range of applications for the estimation of the unknown parameters.
Maximum Likelihood Estimation (MLE) is explicitly model-dependent. Thus, a fine
alternative and robust method is the Weighted Maximum Likelihood Estimation
(WMLE). WMLE can be used in many areas of scientific research, but here we shall
see an application to soccer data. Since different distributions could fit soccer data
sets well, for many years there had been a long discussion on which one we should
use and the most known debate is that of the Poisson versus the Negative Binomial
distribution. For some reasons, we prefer to fit the Poisson distribution, although we
have the suspicion that the underlying distribution is not exactly this one, but a
(probably small) deviation of it. We shall apply robust methods, because Robust
Theory can deal with both data contamination and model deviation. Our soccer data
refer to the season 2003-2004 of the Greek National A Division (GNA). At the end,

we give a small comparison between the bookmakers’ and our results.
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NNEPIAHYH

T'edpyrog M. Kahopidog

Xratwotikn Movrelomoinon
Yio T0d00@aIpIKa dedopéva:
Mua AvOBektikn [Ipocéyyion Paciopévy ot
XtaBpiopévy Méyietn IBavopavera
Iavovépioc 2005

Ta Tevikevpéva Tpappikaé Movtéda (ITM) amotehodv pa enékract tov
KAQGLIKAV YPOULUKAV HOVIELDV KAl UTOopodv va xproonomBoiv ot éva evpv paoua
EQUPLOYDOV Y TNV EXTIUNOT TV ayvdotev Tapapétpav. H Extiunon Méynotng
IMBavopavewng (EME) givar andivta eEapmpévn and 10 povtého. Etor, po moAd
KoA1] evailaktikr kou avlektikh) pébodog eivan n Extipnon Zrabpiopévng Méyiomg
[hBavogpdavewag (EEME). H EEME propei va ypnoyonombei oe moAhoig topueic g
EMOTNUOVIKNG €peuvag, oAAd €dd Oa dodpe Mo €QOPUOYT] O TOSOCEAIPIKA
dedopéva. Kabig SapopeTikéc KaTavVOREG PTOPOVV VO TPOCAPLOCTOUV G GUVOAQ
T0000PAPIKAOV dedopévav, Yia TOAAG Ypdvia vanpye e paxpd ocvlftnon yw 10
o Ba Empene va YPTCUOTON|COVUE KAl 1] O YVOOT dwpdaym eivar avty PeToED
g Poisson katavourg évavn g Apvnuiknig Awwvopiktg katavouns. I'a karowovg
AGYOUG TpOTIOdpE VA TPosappocovpe TNV Poisson Katavopr, av Kol £XOVRE TNV
vroyia, 6Tt M KoTovour, OV VEApYEL oto Pabog dev eivar avt akpPdg aArd o
(mBavag pkpf) amdkion e Ba epappocovpe avBektikés pebodovg, emedn n
Beopic AvOexTKOTITOC UTOPEL Vo XEPLOTEL TOGO TNV TOPATOINOCT] TOV dedOpéEvV
660 kat v andxhon Tev povtédmv. Ta modoocpapikd pog dedopéva avapépovral
ot nepiodo 2003-2004 yio Tv EAAnvic) A” E6vii Katnyopia (EAEK). Zto télog,
divoupe i pikpt| GOYKPIOT] OVOUESO GTA ATOTEAECUATA TOV YPUYEI®Y CTOYMHATOV

KOt TOV SOV o,
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CHAPTER 1

Introduction

1.1 Short biography of soccer

The name “soccer” appeared, when the Europeans emigrated in the United
States in order to distinguish this sport with the football already being played there.
Actually the birth name was “Association Football”, but after while it was shortened
to “Assoc. Football” and some people just called it “assoc.” or “soc.”. At that time, it
was very common to add an “er” to words, especially from the students of the 1880s,
so the name took its final form.

Various Egyptian tombs, as old as 2500 BC, provide evidence that football-
like games existed in that region and time period. The Greeks, for whom ball games
were an essential part of life, developed a kicking/throwing game, called Phaininda or
Episcyros around 2000 BC (see also Appendix II). The Greek game of Episcyros was
later adopted by the Romans and renamed it into Harpastum (meaning "the small ball
game"). It is also believed that the Romans took Harpastum to the British Isles at the
time of their expansion. Another one of the first soccer-like games was Tsu Chu
(literally “kick ball”) played in China. Its use was dual; firstly it was a part of the
soldiers’ training during the Ts’ and Han Dynasties (255 BC-260 AD) and secondly it
was played as a part of the emperor’s birthday celebration. In Japan, records show that
around the 5™ century AD there existed a similar game called Kemari. The French
medieval Soule and the Italian Calcio are also among the historical antecedents of
soccer. In Mexico and Central America, between 600 and 1600 AD, the Mayans and
Aztecs played a game akin to soccer. North American folklore tells of 17" century
indigenous Americans playing “Pasuckquakkohwog” (which means “they gather to
play ball with the foot”). Finally, the Eskimos in Canada and Alaska are reputed to
have played Agsatuk on ice.

After this travel in time, the game arrived in England with a fairly bad
reputation among British royalty. The government passed laws against soccer and

throughout the centuries, English monarchs tried to ban this version of the game. The



game became so popular by 1800 that, in certain contests in northern and middle
England, huge masses of people were gathered and demonstrated against such
prohibitions. In 8 December 1863, the “Football Association” (FA) was created in
London and a group representing various clubs adopted a code of rules. Marples
(1954) quoted two decisive rules:

1. “No player shall run with the ball” and

2. “Neither tripping nor hacking [kicking an opponent on the shin] shall be

allowed and no player shall use his hands to hold or push his adversary”.

Of course, the goalkeeper is the exception to that rule and the other players can use
their hands only in the case when they have to bring the ball back to the field from the
sidelong lines.

These rules regarding handling and running with the ball defined the essential
difference between the soccer and the rugby or the American Football. In just over
140 years, the rules of the game have remained essentially unchanged. There have
been minor changes, such as those allowing for substitutes, the determination of a
result in some games by several forms of extra-time or penalty shoot-outs and
developments in the offside rule. Nowadays, a soccer game lasts 90 minutes totally
(two half times of 45 minutes), played between 2 teams of 11 players each and in a
rectangular shaped playing ground with fixed dimensions. This football ground is
separated into two mirror image semi-grounds, which are possessed by each team. In
the second half time the two teams change sides, so as to ensure as far as possible
equal terms for both of them. Finally, there is a referee with the help of two linesmen,
who is the objective judge of the debatable phases.

There is an indication in a Chinese text at Munich Ethnological Museum in
Germany that the first international game was played by Japan and China in the year
of 50 BC. However, it is known for sure that a game was played in 611 in the ancient
Japanese’s capital of Kyoto. After the foundation of FA, the first international game
was played between England and Scotland in 1872 and on 1 May 1904 Belgium faced
France in Brussels. The first official football (or soccer) club worldwide was an
English one named Sheffield Club (1855) and in 1862 England’s oldest professional
club, Notts County, formed. In 1871, the English Cup was established followed by the
international championship in 1884. In July 1885, professional football was legalised
by the F.A. in England in response to the increasing number of working class players
in the game and the revenue gained from rising attendances. In 1888 the first
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professional Football League was created and a second division was added in 1892;
modern football was well and truly born. The first steps of soccer in Greece peeped
out around 1895 and the primacies belong to Thessalonica’s “Omilos Filomouson”
(meaning the “Club of Music Lovers”), which is the predecessor of Iraklis. Iraklis and
Panathinaikos were the two first official Greek clubs founded in 1908.

By May of 1904 the “Fédération Internationale de Football Association™
(FIFA) was established in Paris in order to govern and control the sport worldwide.
The 7 founding members were France, Belgium, Denmark, Spain, the Netherlands,
Sweden and Switzerland. Today, FIFA counts 204 member nations. The European
part of the FIFA, the “Union des Associations Européennes de Football” (UEFA),
celebrated its Jubilee on 15 June 1954 in Basel of Switzerland. UEFA became the
guiding hand and governing body of European football, on and off the field.
Initiatives to found continent-wide competitions were soon acted upon. Nowadays,
there are 6 continental confederations, which (except for the national championships)
take care of continental and international tournaments and of course, the big event of
the World Cup (or the “Mundial”) every 4 years. Uruguay was the first World Cup
winner in 1930.

Men’s Football was introduced as a demonstration sport in the 1896 Olympic
games of Athens. It became an official Olympic sport in the 1908 Games in London.
FIFA launched the Olympic Football title in 1924 and the World Cup in 1930. Nearly
a century passed before the first ever FIFA World Cup for women was held in China
in 1991 and women’s Football was included in the Olympic competition program in
the 1996 Games of Atlanta. Until the 1984 Olympic games, participation was
restricted to amateur players and eastern European countries dominated Olympic
Football. After the inclusion of professional athletes at the Olympic games,
participation rules have been a subject of debate between the International Olympic
Committee and FIFA. As a result, new regulations were established specifying the age
of participant athletes. The new regulations have enabled many African countries to
display a rich pool of Football talents. Among the web sites listed in the Appendix,
more details can be found in the URL address http://www.fifa.com or alternatively in

http://www.soccerway.com.



1.2 The appearance of statistics in soccer

Soccer is the most popular sport in the world, played by nearly 250 million
people, including 40 million women. The numbers of spectators in the stadiums and
of television viewers amounts to billions. Since the reputation and the acceptance for
this sport was of universal interest, it was very logical for money to be implicated. On
one hand, relative sport industries and companies made increasing investments on this
area. On the other hand, the populace became impatient either just simply to predict or
even to bet on the outcome of a match event.

Many sports in general and soccer in particular are a fertile land for applying
statistical methodologies and developing methods for dealing with athletic data. Many
times scientific search provide fundamental help in taking several crucial decisions. In
the middle of the twenty first century, statisticians started creating statistical models in
order to predict the outcome of soccer games. The United Kingdom and countries
mainly from Central Europe, the United States of America and Canada have long
tradition in betting on the outcome of soccer or other games. Lately, several variants
of betting have occurred. So, someone can now bet for example on the half time
outcome, the exact final scores, who will be the first player to score, if the first goal
will be scored by a header, a penalty or a foul, which team will come first in specific
(small) group of teams in a competition, which team will be the winner of the
tournament and many more. The basic aim was to perform better predictions than the
bookmakers.

The challenge in making bets was, and still is, to find those in which the
considered probability of occurrence is higher than the corresponding probability
determined by the bookmakers’ odds and thus the expected gain is high. Statistical
models can be very helpful tools for such purposes. Usually, the odds in soccer are
fixed some days before the matches are played. This fact gives the right to the
researcher estimate the probabilities under his theory and to compare them with those
of various bookmakers. So, he can exploit any weakness in the bookmakers’
specification and possibly take advantage of it.

The core of our work will be Maher’s (1982) model (see Section 2).
According to Dixon and Coles (1997) a statistical model for soccer games should first
of all take into account the different abilities of both teams in a match and it should

allow a “home effect”, which means that generally most of the teams perform better



when they play at home. Because of the nature of soccer, it is probably better to
divide each team’s ability into two parts; the ability to attack and score (i.e. the
“offensive ability”) and the ability to defend and not concede goals (i.e. the “defensive
ability”). Also, it is reasonable to measure each team’s ability based on more recent
results and to take into account the ability of the teams that they have played against.
Of course, many more requirements could be opposed, but it is far from clear that it is
not practical to obtain empirical estimates of probabilities of matches’ outcomes that
account for all these constraints. Since we process count data, we shall use a
generalized linear model under the Poisson family following the assumption made by
Maher (1982) and other authors, that the number of goals scored by the two teams are
independent Poisson variables, whose means are determined by the respective attack
and defence qualities of each side. The novel idea is to apply a soccer modelling
technique (after taking advantage of all the available literature) from another point of
view, which is based on robust theory.

Since different distributions could fit soccer data sets well, for many years
there had been a long discussion on which one we should use. The known debate of
the Poisson versus the Negative Binomial distribution detained the statisticians long.
At the end, Karlis and Ntzoufras (1998) and Baxter and Stevenson (1998) found that
these two distributions were very close to each other and that in practice there was not
much difference. For the above reason (described more analytically in Section 2), we
prefer to fit the Poisson distribution for our soccer data, although we have the
suspicion that the underlying distribution is not exactly this one, but a (probably
small) deviation of it. We should not forget to refer to the remark of Douglas (1994),
that short-tailed observed frequency distributions are often well fitted by a number of
different theoretical discrete distributions, with little discriminatory power. Under this
thought, we will try to apply robust methods.

The need for a different approach, such as robust theory and methods, issued
from the fact that parametric models were only approximations to reality. In our case,
as we just said, the choice of the Poisson distribution may not be the right one. In
conformity to common belief, Statistics is the science of extracting useful information
from empirical data. An effective way for conveying the information is to use
parametric stochastic models. Nevertheless, there are some reasons described in
Section 3 that do not allow in each case complete freedom of action and a pressing
need of using nonparametric methods arises. Robust statistics combines the virtues of
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both approaches. Parametric models are used as vehicles of information, and
procedures that do not depend critically on the assumptions made in these models are
implemented.

We shall later see, that there are four types of deviations from strict parameters
models and according to Grunert and Fieller (1995) there are two main types of
distortion; data contamination and model deviation. Finally, the main aims of robust
statistics are: (i) to describe the structure best fitting the majority of the data, (ii) to
identify outliers or deviating substructures, (iii) to identify leverage points and (iv) to
deal with unsuspected serial correlations and deviations from the assumed correlation
structures. If the data are high quality or they do not have any outliers, robust methods
are not absolutely necessary, but they can give a noticeable improvement over
classical ones.

The remaining of this thesis is organized as follows:

Section 2 gives an extensive literature review in soccer research and several
aspects of it and presents most of the statistical methods used for soccer data. Several
models are presented for predicting the outcome of a specific game or even a whole
tournament and there are basically three different approaches. The first one is trying
to model only the outcome of a match and the models specified can be used also for
ranking the teams. For the second approach, this is the point for the argument in the
choice of the appropriate fitting distribution. The models here try to predict the
number of goals scored by each team and they are divided into two basic categories;
(i) the teams’ performances are constant and (i1) these performances change across the
time. The third approach deals with several aspects of other characteristics that can be
found in this sport. This Section concludes with the implication of soccer statistics in
€conomics.

Section 3 presents the main robust theory that we used. Again, there are two
basic approaches; (i) the work of Huber (1964) and (ii) the “Infinitesimal approach”
(Huber, 1972). This Section continues with the importance and the treatment of
outliers and after some more theoretical issues, the weighted maximum likelihood
method gradually develops. We focus on Lindsay’s (1994) approach and we basically
work on a new algorithm and its relevant equations. We also mention the importance
of the generalized linear models and how robustness is involved. The Section
concludes with the MM algorithms, which a rising area of research in statistical

science.



At the beginning of Section 4, we detect the disadvantage of maximum
likelihood estimation in soccer data and we stress our interest in weighted maximum
likelihood estimation. We give an example, in which different estimation methods can
actually produce different results. We use the Greek National A Division League for
the season of 2003-2004 and explain the structure of these soccer data. In the
following, we simulate 1000 leagues through these two estimating methods, while for
the second one we define two types of weights different from those proposed by
Lindsay (1994). There is a full description and comparison of the results and at the
end we say some interesting things about the betting market.

Finally, Section 5 concludes and suggests refinements that, we believe, would
lead to further improvement in return. In the end, after the two Appendices that
contain a list of web links for soccer statistics and a proof of the soccer’s birth, there

1s an extensive list of references.






CHAPTER 2

Review of soccer research

This section contains most of the methods used in soccer statistics. The aim of
the research had mainly been to examine the nature of the data in order to find a
distribution that fitted closely to the number of goals. There are also many other
parameters that could affect the final result. So, several models were adopted for
predicting the outcome of a specific game or even a whole tournament. A lot of
papers have been published presenting statistical methods for soccer data. Someone
could locate three basic approaches in the research of soccer statistics. The first
approach focuses on the win or the loss of a game, so it models the outcome of a
game. The models specified could be used also for ranking soccer teams. The second
category investigates models for the prediction of the number of goals scored by each
team or else, it concentrates on score modelling. The third category deals with séveral
aspects of other characteristics that can be found in this sport. This Section quotes the
main topics in literature for the three above approaches and concludes with how the

economics in general could be implicated with soccer statistics.

2.1 Modelling the win or a loss of a game

Bradley and Terry (1952) introduced a general model where are represented
the results of some experiments. The responses are pair-wise rankings of the n
elements of a set A= {al,az,...,a",}. This set can contain objects, items, persons,
teams or treatments. Such a model and developments of it have been used during the
last decades in several scientific areas such as psychology, economy and biometrics. It
should be mentioned that much earlier Zermelo (1929) had designed the first model
for paired comparisons in order to rate chess skills. One of the applications is the

paired comparison of all the teams in a Round Robin Tournament. Let y, ; denote the
result (y,; =1, if i team wins and y, , =2, if j team wins) of a match between the

pair (i, j). Then the paired comparisons may be presented as:



N exp(a,-—aj)
P(y"j _1)— 1+exp(a,.—a}.)’

where «, represerits the strength of team &, for every k.
Closely related to this model was Kuonen’s (1997) logistic regression model.
He tried to predict the probability of each team in a European soccer Cup to reach to a

certain round and the probability to win the Cup. He proposed three different methods

and the best was the one that assumed constancy of the team strength. His calculations
were divided into two parts. First, he considered for the year x, C, to be the ratio
points achieved over games played for the 3 past years and then he took a weighted
mean of the ratio points achieved over games played for each of these 3 years:

__ points achieved during the three year period

C
* games played during the three year period
. 3 2 1
Coefficient = EC"] + -ng_z + ng_3

Secondly, he calculated the probabilities described above as:
P(iwinsinleg k)= P(iwinsinlegk—1)-2P(jwinsinlegk —1)-P, (i, /)
sel :

P(i wins the tournament) =P (i wins inleg k = log, n)

where n teams participate in a tournament of £ legs and J is the set of all potential

opponents of i (k=2,...,log, n). He succeeded to predict correctly about 64.49% of

the 376 game outcomes of the European Cups from 1992 to 1996.

Later on, Kuonen and Roehrl (2000) took all the information from a ranking
system for a simple probability model and tried to predict results for the World Cup of
France ’98. A ranking system is an attempt to represent quantitatively the strength of a
team. They combined Stefani’s (1980) model (see section 2.3.5) for the Round Robin
part with Kuonen’s (1997) model for the knockout part. They used only the results of
the preliminary rounds and ignored the long-term past performance of the teams until
the start of the World Cup in order to construct a rating scheme of their own possibly
different from the already known, such as the FIFA/Coca-Cola World ranking or the
World Soccer Elo. They pinpointed differences and indicated among others, that
France deserved the World Cup and not Brazil, which was up to then top-ranked.

Thus, they verified Kuonen et al. (1999); after using a simplified version of Kuonen’s
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(1997) model, they had predicted that France would have won the Cup with a
probability of 57.4%, whereas Brazil was 3:1 favourite at the bookmakers’ odds!
Sometimes, a game is included in football pools but it cannot be played due to
bad weather. For gambling purposes, there are panels of experts who determine the
result. In Britain, Forrest and Simmons (2000) used an ordered logit model proposed
by Zavoina and McElvey (1975) and showed that panel results are more predictable
than real results. They suggest that the pools panel should add some random noise to
simulate real result more closely. An introduction of approximately 10% of “wild”
predictions into their results would reflect better the unpredictable nature of real

games.

2.2 Score modelling

2.2.1 Which distribution should we use?

Poisson distribution has a formal theoretical basis and is naturally used for
events that occur randomly and at a constant rate over the observed time period. The
Negative Binomial distribution (NBD) belongs to the family of mixed Poisson
distributions and should be in our mind, if we assume that the scoring ability varies
across time, teams and so on. It is derived from the simple Poisson distribution by
assuming that its parameter varies according to a Gamma distribution. A reason why
someone might not prefer it instead of the Poisson distribution, it is because it appears
more complicated.

One basic property of the Poisson distribution is that the mean is equal to the
variance and it is often examined by a measure called “index of dispersion”, which is
the variance to the mean ratio. In practice, for soccer data and for each team we can
calculate through a set of matches the means of goals, the variances and these indexes.
Anderson and Siddiqui (1994) noticed that, if the Poisson assumption is valid, then
we should expect almost half of the teams to have index of dispersion greater than one
and the others to have index of dispersion less than one. Karlis and Ntzoufras (1998)
showed that the distribution of the number of the goals is over-dispersed relative to
the simple Poisson distribution (i.e. a significantly larger percentage than 50% of the

teams have index of dispersion greater than one).
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The first one who presented a statistical model to predict the outcome of a
soccer game was Moroney (1956). He declared that the Poisson and even better the
NBD are the most appropriate to find the probability of winning a game. None the
less, a sufficiently developed model came much later by Maher (1982), whose work

comprised the basis for many subsequent writers. Specifically, if team i is playing at

home against team j and the observed score is (x,.j, y,.j) , he assumed that:

X, ~ Poisson(aiﬂjy) and ¥, ~ Poisson(ajﬁ,)

where X, and Y, are independent variables, , and (3, measure their attack and

defence qualities, while the team’s i home ground advantage (HGA) is measured by

~. Each match has a different fitted Poisson distribution and this was the main

differentiation from Moroney (1956) and Reep and Benjamin (1968) who fitted a
single distribution to scores from all matches and concluded that this distribution

should be the NBD and not the Poisson. After that, Maher (1982) examined the

difference Z = X, —Y, between the teams’ scores and actually improved the fit by

using a bivariate Poisson model with correlation of about 0.2, since the independence
assumption was not totally valid. '

The choice of either the NBD or the Poisson distribution also concerned
Baxter and Stevenson (1988). They fitted the two distributions on scores between
1946 and 1984 and found that, before the 1970, the NBD provided superior
description of the data, but after 1970 both distributions are adequate. Furthermore, to
discriminate between the different mechanisms requires large quantities of data. Also,
Leroux and Puterman (1992) remarked that there is little statistical evidence to favor
the choice of a finite mixture as opposed to a NBD, although the physical
interpretation of the former appears more meaningful. Douglas (1994) added that
many distributions may fit a data set well and the choice of which distribution to
apply might be a difficult one. Generally, short-tailed observed frequency
distributions are often well fitted by a number of different theoretical discrete
distributions, with little discriminatory power.

Karlis and Ntzoufras (2003) proved, that under the assumption that the joint
distribution of the number of goals scored by each team is a bivariate Poisson
distribution, the outcome (win, draw or loss) does not depend on the correlation

parameter of the bivariate Poisson distribution. Some models treat the number of
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goals using bivariate distribution (Maher (1982), Karlis and Ntzoufras (2003)). This
approach assumes dependence between the number of goals scored by each team. In a
recent work, Karlis and Ntzoufras (2003) proposed an inflated Bivariate Poisson
model to account for the excess of draws found in certain championships. This model
generalizes the idea of zero-inflated multivariate Poisson models of Li, et al. (1999).
Statistical methodologies developed for other sports are also applicable. Since
soccer was not so popular in the United States, several researchers studied sports like
basketball or rugby. Croucher (1995) faced descriptively the scoring patterns in
Rugby League, while Lee’s (1999) procedure for a bivariate NBD tried to model the
negatively correlated scores taken from the rugby league. He modelled the half-scores
in order to simulate the total scores by adding independent Poissons to twice the half
scores. Gill (2000) assumed that basketball and American football scores are normally
distributed (see Section 2.3.15) and hockey scores vary according to a Poisson
distribution. He applied a probabilistic model for late-game reversals by using data
from the 1997-98 regular seasons of the NBA, NFL and NHL sports, respectively, and
suggested, that the leader of the final period wins the game about 80% of the time.

2.2.2 Some more basic models

The probability that a match between teams i and j will end as a draw was

first proved by Keller (1994) to satisfy:
P(i ties j)= ;%\P(i beats j),

where ) is the parameter of the goal scoring distribution of team i. This holds only if
the goal scores are Poisson distributed. He used a maximum likelihood method to
estimate the probabilities of the possible outcomes in a soccer match and had in mind
only the recent results involving the two specific teams. He did not consider at all any
home advantage and a lot of data were necessary in order to obtain good estimators.
Kuonen (1996), Lee (1997) and Karlis and Ntzoufras (1998) used the model
proposed Maher’s (1982) in order to estimate the goal scoring distribution parameters
of each competing team but through less data than the Keller’s (1994) model needed.
Kuonen (1996) noticed that it was better for someone to bet during the end of the
season in major European championships like the Italian, the French and the German
and for the years 1993-1995. Also, Lee (1997) found for the English Premier League
in 1995-1996 that Manchester United could easily have lost the championship or that
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Liverpool should have finished at the second place instead of Newcastle United.
Karlis and Ntzoufras (1998) observed in the Greek League table for the 1997-1998
season, that Panathinaikos had a higher expected value of points than Olympiakos (the
winner), because they had a better attack and defence, but they lost important games
against Olympiakos and AEK (the 3™). Also, four specific teams had a probability of
relegation higher than 30% and actually three of them were relegated.

Among several models Karlis and Ntzoufras (2000b) concluded in a basic one,

also used by Kuonen (1996) and Lee (1997), which assumes that offensive (a,) and
defensive abilities (d j) of each team change in home and away games. Let n,;, and

A; be the observed and the expected number, respectively, of the goals scored by

team / against team j in the football ground k£ (1 for home/2 for away), A, the

home/away effect and p a constant. It is easy to see that this model is equivalent to

modeling two distinct models for home and away games:
n, ~ Poisson (/\;’), log (/\f)= p? +af +df SR ny = My pl=p+h
n; ~ Poisson(/\;), log(x\,.f) =p' +a +df ny =y, p'= pth
Karlis and Ntzoufras (2000b) after facilitating a backward method starting from the
full model and removing terms, arrived at the conclusion, that models with

interactions h.v, and h.d,; (indicating that offensive and defensive abilities of each

team change in home and away games) are not significantly better than the one of
independence. The final ranking and the number of goals scored and conceded by
each team were calculated from 24 leagues and were correlated up to 0.85 showing
that goal scores can be used to determine the performance of a team. They also found
evidence that there is a rather small dependence in the number of goals scored by the
two opponents and a small over-dispersion.

Koning et al. (2003) estimated the scoring intensities, i.e. the expected number
of goals in a complete match. This information was then used as input for a simulation

model that computed the probability for each team to win the tournament. The

realization of (N N ji) gives the result of a group match, where the number of goals

ij?

N;; scored during 90 minutes of play by team i against team j follows a Poisson

distribution (Nij ~ P()\ij )) . Let also T;; be the waiting time until team i scores during
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the extra (maximum ot) 30 minutes time and that both teams are equally skilled at

taking penalties. Then:

v

Pr(ibeats j)=Pr(N >N )+Pr(T <T,,N,=N,,T, <30)+%Pr(N =N,,T >30,T, >30)

Pr (i wins the ﬁnal) = é Z Pr(iwins the ﬁnalIR = R:)

where R, is a ranking obtained by simulation and S is the number of simulations. In

most applications they used for the scoring intensities as estimator an average of goals

scored by team i, weighted with the relative quality of team j’s defense:

~H 1

A A
—_— ) A
Ay = K,H+K,A ZkN"‘ /\:L +ZiN’/‘ /\./: ’

where K denotes the number of home matches played by team i, N;’ the goals
scored by team i against team j in a home match and )\,Aj the average number of

goals conceded by team ; in away games. Koning ef al. (2003) answered to many

questions and except for the European Cup of 1996 indicated the favourites.

2.2.3 Dynamic modelling

A significant extension of the method of paired comparisons appeared by

Fahrmeir and Tutz (1994). The pairs (i, j ) and ( j,i) should not necessarily be the
same and y,  could take other values (such as 3 meaning a draw). Their approach was

based on a response model that specified the connection between the observations and
the underlying abilities and a transition model that specified the variation of abilities
over time. The basic assumption was, that for each team i there exists a latent random

utility U, = a, +¢, where a, is constant and ¢, is a random variable:
y,=reb  <U -U<b,
where —oo =6, <...<6, =oo are thresholds. Assuming a continuous distribution
/3 () for the differences €, — ¢, a general ordinal paired comparison model yields:
P(y‘,‘] = r): F(Q, +a, —a})—F(H,_l +a, —a})
and after introducing time dependence, the simplest response model was:

P(y(‘)=r>:F<9 a. —da )—F(Q a —a ),\7’[,1’.

Y 1r 1 t.J t,r—1 i I
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For more compiex cases they used a Kalman filter for paired comparisons. The results
from an application to soccer data of the German Bundesliga were impressive
showing a remarkable fit to the variation of abilities of each team through time.

Dixon and Coles (1997) noticed that almost any model up to that time was
assuming constant performance rate through time. Their idea was to introduce a

dependence parameter p, because they believed that team performances were varying

through time. Furthermore, they observed the dependence between low scores such as
0-0, 1-0 or 0-1. They modified Maher’s (1982) model to:

A" exp(—x) p” exp(—y)

Pr(Xi,j =x¥; =y)= Tau(®:) x! y!

It was supposed that teams i and j scored x and y goals respectively, A =a/,7,
p=a,B,, max(—1/A,—1/p) < p <min(1/Au,1) and they used the definition:

[1-App , ifx=y=0
I+Xp , ifx=0,y=1
T (ny)={l+pp , ifx=Ly=0
l—p , fx=y=1
1 ,  otherwise

They took all the scores (x,,y,) for the likelihood function under one crucial

assumption; a team’s performance is likely to be more closely related to their
performance in recent matches than in earlier matches, so the parameters are locally

constant through time. For every time point t they constructed a ‘pseudolikelihood’:

L, (@B 75t = L) = TT {7 (5o orp (A ) oxp (s )i |

ked,
where A=a,,,8,,v, p=a,,B,y, 4 ={k:t, <t} and 1, corresponding to the time
that match k was played. Among several choices of the non-decreasing function of
time ¢, they worked with ¢(¢)=exp(—&f) down-weighting exponentially all
previous results according to a parameter {>0. By the maximization of L,, they

calculated the score probabilities and they estimated the probability of a home win in

match k as:

pi =) Pr(X,=LY,=m),

I,meBy
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where B, = {(I,m) 1> m} . The final step was to take the probabilities p;' , p of an

away win and a draw respectively, ;' =1 for a home win and 0 otherwise and define:

N
S(¢)= Z(&f’ log p’ + 6 log pi + 67 logp,f).

k=1
They concluded that the teams’ performances are genuinely dynamic.
A further improvement of the models presented by Maher (1982) and later on
by Dixon and Coles (1997) came by Dixon and Robinson (1998). They thought of the

home-away scoring process as a two-dimensional birth process:
A () =20
B (1) = Bty
where ), and p, (for x,y=0,1,..) were the parameters that determined the

(homogeneous) scoring rates during which the score is (x,y). They had used A, and

p, given by Dixon and Coles (1997) for match k at time ¢ and score (x,y) and

denoted the goal times in match k by:
(trdi)={(tessd0s): 1=1n0sm, },
where m, =x, +y, and ¢,, are the total number of goals and the time of the /-th

goal in match k respectively and J, , is 0 for a home goal and 1 for an away goal. An

extension was made to model injury time. Since there were not available data showing
how much injury time was added, goal times over 45 and 90 minutes were considered

as (possibly) censored observations. They introduced the parameters p, and p, for the
multiplicative adjustment to the scoring intensities over the extra times. Thus, the
home scoring rate (similarly for the away scoring rate y, (¢)) was taken to be:
PAN, Sforte(44/90,45/90]
A (1) =1pA N, fort€(89/90,90/90]
AvAk, otherwise
The best-fitted model was the one that added variation parameters & and &, and
allowed for intensities a linear change through time:
X(O)=X)+¢&t
()= (1) + &t
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and A (similarly for p ) was defined to be:

1, forx=y=0

Aos Jorx—y>1

Ay =Moo forx—y<-1

Ay Jorx—y2>1,x>2
Ay, forx—y<-1y>2

They found a continuously increasing rate for both teams, perhaps due to tiredness of

players, which leads to mistakes in defending. The attack and defense parameters
decreased and increased respectively from a higher to a lower division. The scoring
rates of home and away teams depended on the current score, especially when the
home team had a small lead. No evidence for the immediate strike back was found.

Another paper based on Lee (1997) and Dixon and Coles (1997) was
published by Rue and Salvesen (2000), who used Markov Chain Monte-Carlo
(MCMC) methods and took the modified model:

log(A\)=c +a,+d, kA,
log(n)=c" +a,+d,+k4,,’
a+d —(aj +dj.)
2
and k& > 0 is a small constant for the intensity of the psychological effect, in which the

where 4, = is the difference in strengths between the two teams

stronger team i underestimates the underdog ;. They also used 7, , (x, y) defined by

Dixon and Coles (1997) with p=0.1. The next step was to truncate the Poisson

distribution after 5 goals and they proposed the following robust model:
exp (c(‘)),exp (c(y ) )) ,

where 7° was the resulting truncated law. Finally, they introduced time through a

7r(x,y

M) =(1=e)- " (5,3 ) +em (5,

Brownian motion. They found many interesting things for the English Premier League
1997-1998 season; Manchester United should be the champions and not Arsenal and
Aston Villa could easily have finished in the 15™ position instead of the 7™.
Knorr-Held’s (2000) main concern was rating and had in mind that recent
results have more influence in estimating current abilities than earlier results. In his
cumulative link model for ordered responses, the latent parameters represented the
team strength. These were allowed to evolve through time according to specific

constrained random walks with independent normal increments. This model treated all
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teams symmetrically. Posterior mode estimators of the abilities were calculated with
an extended Kalman filter together with an ad hoc method for a variance parameter.
For the German Bundesliga in the period of 1996-1997, he found different patterns in

the estimated abilities for the various teams and interesting temporal trends.

Crowder et al. (2002) presented an autoregressive model AR(1):
Yie ™ Yio = R (71‘,1—1 — Yo ) tu,
for the underlying parameters =, = (7‘," Vs, )T . The attack «, and defence g,

abilities of each team i at time ¢ were expressed in terms of a basic set of

paa pa/}

] was a 2x2 matrix of auto-
Psa  Pps

unconstrained parameters. Also, R :[

regression parameters, #, were independent N, (0,)_7) innovations and -, was the

base-line value towards which v, was drawn, if R was small. The two
approximation were:
& =m,+ 3,
a,—o,y=R (ai,l——l — Oy ) +u, and
a,=m,+3r,

orifteams i and j did not play at time ¢:
a, =m,
[a jt —m it ’
where m, =, +R(au_1 —aio) and r, represented the discrepancies between the

home and away goals and their expected values. Hence, the second approximation

along with the reduced formula constituted the formal model for (a,.,,ﬂ,.,,a " j,)

without losing too much predictive power in comparison with the 4R (1) model. This

new method for prediction was computationally fast. They focused on modelling the
92 soccer teams in the English Football Association League and compared the results
with those of Dixon and Coles’ (1997) model. They could both predict about the same
home wins, but the model of Crowder, et al. (2002) was slightly better for away wins.
Dixon and Coles’ (1997) method started poorly but improved very quickly and

became better than the approximation method around week 210.
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2.3 Other aspects of modelling

2.3.1 Is chance more important than skill?

Reep and Benjamin (1968) came up to a ‘historical’ conclusion using the
famous in literature ‘r-pass movement’. This was nothing more than the success of
exact r passes among players of the same team during a match. A “0-movement”
pass was defined in situations like penalties or when the first attempted pass was

intercepted. The probability of an r-pass movement was given by:
P(r)=(p- Py p, b, (1= P,
where p, is some function with p, > p, > p; >...> p > p,.,. In other words, one

would expect p, to be fairly high (but less than unity) and p, to fall rapidly to some

low value beyond which there is little further decrease; a form like this function’s
behaviour is the exponential one. They suggested that, if the probability of a pass
succeeding varies from pass to pass throughout an attempted chain, from chain to
chain and from game to game, then the distribution of length of pass-chains would be
approximately the NBD or a compound Poisson. The most known result was that
‘chance does dominate the game’.

In a next paper Reep, et al. (1971) modified that suggestion. They said that the
probability of pass-success not only varies from player (chain initiator) to player
(another chain initiator), but also from throughout the chain, from one period in a
game to another and from game to game. Therefore the underlying distribution was
not an exact compound Poisson. They excluded the goals shots arisen from penalties
or interceptions, which were erroneously included in the count of 0-pass move. The
probability of “success” is relatively invariant over movements and between the
players. The new result was that skill supplants chance, when the player is in the
shooting area, where he has two choices: passing or shooting.

Hill (1974) confirmed, in a sense, the latter. He compared expert forecasts’
tables before the beginning of a specific season to the tables of the final season’s
results and proved statistically, that throughout a whole season and not in each game,
skill supplants chance. This statement sparked off tries to discover ways of predicting

the outcome of soccer matches in long runs (rather than in short ones).
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2.3.2 First team players

It is reasonable for a coach to start a game with his best players, or to be more
precise, with the players that are high skilled and well exercised at the same time. The
physical characteristics that the starters have, is significant to be discovered. Thus, the
players of the bench who lack on such characteristics should work on these, the
trainers could improve their work and generally a team would be built more carefully.

Snyder er al. (1998) were interested in finding a way to classify individuals’
features based upon some physical variables, for each of the different field positions.
They presented several approaches, where efficient and realistic imputation
algorithms were sought. Any information that measured the examined physical
characteristics could be used for imputation. Cluster analysis gave bad results,
projections and linear DA were not so good, but Logistic DA or CART showed that

the variables were indeed divided into subsets that represented these attributes.

2.3.3 Playing strategies: the model of Pollard and Reep (1997)

Any coach would like to possess all possible information about his players’
abilities. Many data considering a variety of moves during matches had been collected
from Church and Hughes (1987), Franks (1988), Paukku (1994) and some others.
These data could consist a unit of measurement. Ali (1988) and Pollard et al. (1988)
were the first who analysed such collected data. A typical example for studying the
different strategies is the ball possession. A ‘good’ ball possession has more chance to
produce a goal. Olsen (1988) and Pollard (1995) studied the case of weighting, since
each shot has different probability to score.

Ball possession had been in the work of Pollard and Reep (1997) the basic unit
of measurement. They assigned each shot a weight according to its estimated
probability p of scoring. For example shots from central locations in the penalty area
were on average 15 times more likely to end up in goals than shots from outside. The
pitch was divided in 6 zones starting from the defence towards the attacking line (see
Figure 2.3.1). The zone, in which the ball possession started, was recorded. There
were two different types of possession; the ‘set play’ (such as a free kick or a corner)
and the ‘open play’. For possession of type j starting in zone i, the probability of

scoring a goal was estimated as:
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p; = Zpijk In,, i=12,..,6, j=1(open play) or 2(set play),
k=1

where the k" ball possession P, Was basically the weighted value shot and n, the

total number of team possessions of type j originated in zone i .

—» Direction of attack —»

Figure 2.3.1: Division of the field of play into six zones
(taken from Pollard and Reep (1993))

In Tables 2.3.1 and 2.3.2 there are the results from the World Cup of 1986 in
Mexico. From such tables it was feasible to compare or even to implement different
strategies. They defined the ‘yield’ of a ball possession using estimated probabilities
based on the scoring of a goal through the logistic regression analysis as the estimated
probability of scoring a goal minus the estimated probability of conceding a goal,
based on the outcome of the possession. The yield is easier to interpret when given as
rate per 1000 ball possessions and the values give then the net yield in goals per 1000
ball possessions. For example, a yield of 3.5 (see Table 2.3.2) means that for every
1000 ball possessions a team expects to score 3.5 more goals than it concedes.

Negative yield values mean that, on average, more goals were conceded than scored.
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No. of team possessions for | Yield for the following
Zone of origin | the following types of play: types of play:

Open play Set play Open play  Set play

1 865 651 59 2.2

2 822 244 85 0.5

3 837 321 6.2 2.2

4 473 450 10.9 8.5

5 318 336 24.8 12.6

6 111 416 78.3 18.0

Table 2.3.1: Yield per 1000 team possessions, classified by zone of origin

and type of play (taken from Pollard and Reep (1993))

Situation Strategy n Yield
Goal kick Long 99 2.7
Throw-in in own half  Short 276 -0.2
Possession in zone 4  Short passing only 1372 11.1
Running with the ball 288 16.3
Long forward pass 148 23.1
Free kick in zone 5 Direct shot 60 12.5
Other 143 16.8
Throw-in in zone 6 Short 98 3.5
Long towards goalmouth 32 21.7
Centres from zone 6 Above waist height 240 333
Below waist height 103 96.6

Table 2.3.2: Yield per 1000 team possessions from playing strategies
in different situations (taken from Pollard and Reep (1993))

2.3.4 Strategies and levels of measurements

In all soccer tournaments worldwide, when two or more teams finish in the
same position, then there are some rules that determine the final ranking. In the
Premier League of English Football the number of wins and draws firstly determines

the positions. If the teams have the same number of points, then the goals scored and
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concede are examined. The team with the highest goal difference gets the highest
place. If there is still problem, then the best team is the one that scored more goals.
Otherwise, if the teams cannot be ranked under these rules, they play each other. The
question is, if this is the right way to determine the final League positions or instead
there exists another better measure.

Croucher (1984) noticed that such a change could affect team strategy,
because there would be different motivations to raise or to lower the total number of
goals in a game. Wright (1997) mentioned that this particular tie-breaking mechanism
assumes an interval scale, since a 3-1 victory is the same as a 6-4 victory. Many fans
support that a ratio scale might be better; then a 3-1 score would be of the same value
as a 6-2 score. According to the ratio tie-breaking mechanism, a team loosing 3-1
would try to score, because the ratio would be doubled with only one goal scored. So,

the loosing team would be more offensive than the winning.

2.3.5 Feeling stronger at home

The first two approaches that tried to quantify the home ground advantage
(HGA) came by Stefani (1980) and Pollard (1986). The first one used the formula:
Vizj,

w,=u—u +h+e,

where w; is the goal margin in a match with team i playing at home against team J,
u, and A, are measures of team’s i ability and HGA respectively and ¢; is a zero-

mean random error. This model was often used later on by many researchers, such as
Clarke and Norman (1995) and Kuk (1995). On the other hand, Pollard (1986) just
counted the number of matches won by home teams as a percentage of all games
played and did not take in mind the different skills. This was acceptable only in the
case that each team had about the same abilities. Both agreed in the existence of
HGA.

Someone might wonder what causes a HGA. Courneya and Carron (1992)
could observe it but not answer to the question. Clarke and Norman (1995) used least
squares for soccer data in English football and produced a HGA effect for each team
in addition to a team rating. They showed that a team’s HGA varies from year to year.
Some teams have negative HGA, which it may have greater effect on winning than on
goal difference. On average it is worth just over half a goal. There is some evidence

for club effect, but this is not indisputable. A possible reason of its existence might be
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the geographical distance between the two teams’ origins. None-the-less, it is almost
the same in all divisions agreeing with Dowie (1982). So, because the top teams have
more fans and belong to the high divisions, the audience’s size does not affect HGA.
Bland (1995) calculated the correlation between home points and attendance,
away points and attendance, home goal difference and attendance, and away goal
difference and attendance. He found that the difference between home points and
away points was positively related to average attendance. Therefore, the audience’s
size is a cause of HGA. Bland and Bland (1996) disagreed openly with the earlier
argument of Clarke and Norman (1995). They believed that the situations are not the
same; for a player in lower division playing in front of a crowd of 10,000 is might be

the same as for a player of major division playing in front of 30,000 fans.

2.3.6 Empty and crammed tiers

It is very common the late years that people go more infrequently to stadiums
to watch soccer games. Generally, there is variability in the crowd’s size from match
to match. When a match is indifferent form point view or a big favourite confronts an
underdog, less fans watch it. On the contrary, if there is big uncertainty about the
outcome or need for points, then the interest increases and is maximized in a total
uncertain future result. Peel and Thomas (1988, 1992) thought that bookmakers’ odds
might contain information about the connection between attendance demand and
uncertainty of the outcome. They found a U-shape relationship between attendance
and the home win probability odds, because more fans want to watch a game when
either the home or away team stands high in the League table.

Forrest and Simmons (2002) interpreted this result by saying that as the teams’
chances of winning grow less equal, attendance generally falls away. More spectators
are attracted to matches where the prospects of the competing teams are evenly
balanced. They used a two-stage model and data from 1997-1998 bookmakers’ odds
in England in order to measure this uncertainty, but they allowed for the possibility
that these are biased predictors of the outcomes of the matches. In the first stage a
latent regression generates the probability of a win for either side. The second stage is
just a simulation model. They found that it would be inappropriate to assume
efficiency when modelling attendance demand, because that particular year the soccer
betting market was not fully efficient. Also, the paradox was that, even though the
fans prefer well-balanced games, this might run the risk of lowering attendances.
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2.3.7 Artificial pitch surface

There are -some few teams worldwide that play their home games in an
artificial pitch, but it is observed that the number of such teams increases in recent
years. Barmnett and Hilditch (1993) examined the possible presence of any HGA due to
this in the four divisions of the English Football League for a period of 10 years. In
Table 2.3.3, it seems that teams with an artificial pitch won much more games playing

at home than the others and succeed to reduce a lot the percentage of losses.

Percentages for the following venues:

Pitch Home Away

Win Draw Lose | Win Draw Lose
Natural | 47.7 27.1 252 | 248 27.0 482

Artificial | 57.7  25.1 17.1 | 25.1 262  48.6

Table 2.3.3: Percentages of game outcomes

(taken from Barnett and Hilditch (1993))

In away games there are not any significant differences in the patterns of the three
possible outcomes for the two groups. After analysing different measures of (relative)
performance, they concluded that there exists a statistically significant advantage for
teams employing an artificial pitch, when playing at home. A large variety of

alternative explanations for the differences in performance were rejected.

2.3.8 Dismissal of a player
The biggest punishment in a soccer match by a referee is to show a player the

red card and to disqualify him for the rest of the game and thus, the team that loses a
player, finds it difficult to win. Ridder et al. (1994) stated that the sooner a team loses
a player the more probable is to lose the game too, because the according probability
increases considerably (see Table 2.3.4). Three assumptions were made:

1. The two teams scored according to two independent Poisson processes.

2. The scoring intensities’ ratio of the two full teams is a constant for each game.

3. After the red card the scoring intensities vary (and actually increases as shown

by Morris (1981)) over time.
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Minute of red card | _ Probability .
Team of 11 wins Draw Team of 10 wins
0 0.65 017 0.18
15 0.62 0.18 0.20
30 0.58 0.20 0.22
45 0.54 0.21 0.25
60 0.49 0.23 0.28
75 0.44 0.24 0.32
90 0.375 0.25 0.375

Table 2.3.4: Probabilities of the Outcome of the Match by Minute of the Red Card
(taken from Ridder et al. (1994))

Ridder et al. (1994) estimated the effect of the red card by linear regression.
Their estimator was based on a comparison of the number of goals scored by the same
team before and after the red card. They noticed that the goals after the red card
increased and usually this was given to the already weaker team. Also, if a player had
instantly to make decision to risk a red card, there is a unique time moment in the
game at which the optimal action of the defender changes; after that moment, he
should trip up the opposing player (see Table 2.3.5).

Probability of score
Relative strength of teams
030 060 1.00
0.5 70 42 0
1 71 48 16
2 72 52 30

Table 2.3.5: Time (Minute of Game) after which a defender
should stop a breaking-away player by probability
of score and relative strength of the defender’s

team by minute of the red card
(taken from Ridder et al. (1994))
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2.3.9 When the coach foots the bill

Most of the times, when a team has a run of bad results, the board decides to
fire the coach expecting to reverse the situation with a new one. It is common belief
that the new coach will motivate the players better, and therefore improve the results.
One could compare the new with the old coach, but there are several difficulties. For
example, how the performance should be measured? Does the moment of dismissal
play any role? And of course, it is natural that the two coaches do not face the same
conditions or equal teams in strength.

Brown (1982) used as measure of performance the percentage of wins. The
change of a coach cost about 11% in the percentage of games won; in a season of 14
games, it cost a little bit more than a one game won during the season. The board
prefers a tactic like this in order to appease fans and press media, because it is more
difficult to hire new players during the season. The findings of Van Dalen’s (1994)
model were that all coach changes have a positive effect on the goal difference and
the effect is significantly positive in the three of the five cases examined. The decision
whether or not to fire a coach is significantly positive related to the ranking for almost
all teams in baseball and basketball according to Scully (1995).

On the other hand, Koning (2003) noticed that there are times that a team
performs worse with the new coach. His model included the non-constant quality of a
team and the also non-constant HGA and could separate the defensive from the
offensive skills. He did this separation, because he felt that a new coach would try not
to lose at first and not necessarily to play well. An extra defensive effort might reduce
the offensive efforts and therefore we may not see any change at the goal difference.
Hence, he found that the defensive performance did improve, but in 11 out of 28
coach changes the quality of a team and HGA decreased in general. Not even a

temporary improvement exists.

2.3.10 Balance

Koning (2000) used a probit model to assess whether the balance in
competition in Dutch professional soccer had changed over time. He defined a soccer
league to be in perfect balance for a certain year, if the probability that any team won
a home game did not vary with the opponent or with the team. The conclusions were
born out by three different measures of balance. Contrary to popular belief, the
balance has not been chanéed much for about the past 30 years.
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2.3.11 The structure of a tournament

Let us consider a tournament with groups of teams in the first Round Robin
round, where the best two teams qualify to the next round in a knock-out procedure up
to the final. There are two ways of continuing; either after a lottery-pick or based on
standard fixed structure. McGarry and Schutz (1994) thought the case, where in the
first part the teams are separated into 6 groups according to the FIFA/Coca-Cola
World ranking system, but the first two seeds are reserved from the actual holder of
the Cup and the host team. It was shown, that the (almost sure) promotion of the host
team to this high seed does not affect the final winner. In the second part, the seeding
depends on the first round’s results. Because the tournament was not balanced, they
gave a rating score to each team and used a paired comparison model with the help of
a Monte Carlo procedure for the simulation. They found that this structure was not
very fair. Due to the seeding of the knockout part the last two groups were
underprivileged. The first and the third groups were preferable from the rest.

Marchand (2002) considered a classic 16-team knockout tournament. The
standard method usually gives big advantage to the higher seeded teams. In the
random method the initial structure is totally at random and the higher seeded teams
may lose this advantage. He focused on the probability that a top ranked team finally
wins and how this probability may vary between the two cases. He indicated that the
outcomes of the standard knockout tournament and the random knockout tournament
might not differ as much as one expects. The advantage of the standard draw for the

top seeded team may be generally overestimated.

2.3.12 Long spells of same football results

Dobson and Goddard (2003) investigated the issue of persistence in sequences
of consecutive match results. They followed Koning’s (2000) modelling approach and
used a Monte Carlo analysis to test for short-term persistence effects in the presence
of team heterogeneity. The conclusion was that the hypothesis of non-persistence
could not be rejected in cases of sequences of consecutive losses and sequences of
consecutive matches without a loss. On the contrary, in sequences of consecutive wins

or consecutive matches without a win it seems to exist a negative persistence.
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2.3.13 The betting market

Many of the already mentioned papers have applications in the betting market.
Each bookmaker employs a panel of selectors to create predictions, which are viewed
as unbiased by an average bettor. Usually a fixed percentage of the betting money
returns to the bettors and the rest remain to the bookmaking agency (perhaps the
government) for various expenses and sport programs. The amount of money spent is
fixed, but the possible profit can be fixed or variable. Also it seems to exist a
significant negative correlation between the cost per bet and the yearly amount spent
per bettor. If the cost of a bet rises, then the bettor spends less money and tries to find
fewer but more accurate bets. A simple and not expensive betting scheme appears to
provide increased gross revenue.

Stefani (1980) observed some tendencies in the outcomes of the games from 6
major National Championships in Europe and 3 European Cups; on average the
possible outcomes were separated as 49% home wins, 27.8% ties and 23.2% home
losses, 2.73 goals were scored per game and playing at home gave an advantage of
0.47 goals per game. Certain nations deviated a lot from those averages and this must
be taken in mind, if a betting is to be designed. Stefani (1980) considered the betting
strategies from two approaches and tried to optimize them. In the first one, patterns of
selections are chosen independently from the teams that are playing. The best random
pattern consists of all home wins alternated one at a time with ties. The bettor could
wait for whole years to gain some money, which also depend on payoffs. In the
second one, a least square method is used to make predictions and the selections are
made based upon the previous performances of the teams. It is necessary to permutate
selected home wins with home losses when a tie is predicted. The latter approach
provides better short and long term return than the former one.

In a subsequent paper, Stefani (1987) explained the gambling on American
football games. He compared four different estimators; James-Stein’s, Harville’s, the
Least Square and the Weighted Least Squares. The first two are biased, while the
other two are unbiased. No statistically significant differences were found. Each one
lagged about 1% behind a typical sports book in selecting the winning team and about
0.25 points per game in average absolute error. He supported that little or no profit is
possible, if a bet is placed on every game. The bettor should be selective in order to

make some profit, because he would be fortunate to be 0.524 accurate. Only few,
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highly skilled and selective bettors can reach a level of 0.55 or maximum 0.60
accuracy against the sports book.

Index betting is a recent way for betting on sports. Jackson (1994) dealt with
this new area and tried to make a link with finance (see also Section 2.4). He pointed
out the similarities and the two main differences between index betting on sports and
gambling on the future price of stocks. The first is that in sports the event takes place
and this determines a final value for the index, often with much bigger variability than
stocks. The second is the modelling; in sport there is a wide range of applications due
to the quantity of data and models, while in the stock market the models that describe
the underlying process are extremely few and complex.

Boulier and Stekler (2003) were interested to find whether the expert’s
predictions of National Football League games were more accurate than those that
would have been solely on the rankings. They compared some methods of forecasting
and their analysis derived solely from the rankings based on ‘power scores’. They
predicted the probability that a higher ranked team will win by estimating a probit
model. A team that is ranked 1 position higher than its opponent has only slightly
better than even chance of winning, while a team that is 30 positions above its
opponent should win more than three-quarters of the time. After that, they used the
technique of recursive regression, where the estimations were made from the data
available from the first 6 weeks. From week 7 and then, the probits were weekly
updated so as to predict the outcomes of every next week. According to ‘Brief score’
the betting market was the best predictor, the recursive probit model was the second
best and the sports editor was the worst. They concluded that the statistical model of
the sports editor’s forecasting procedure yields slightly superior forecasts to the actual
forecasts in a ‘real world’ situation for a large sample of predictions and that the

information contained in the betting market is the best predictor of the outcomes.

2.3.14 Genetic and Neuro Tuning

Prediction of the outcome of a match has been a hot theme the late years for
everyone who watches sports. Many models and PC-programs have been developed
for this cause and most of them use stochastic methods of uncertainty description.
Recently, some models appeared that use neural networks for the results of football

game predictions and deal with non-linear dependencies.
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Rotshtein et al. (2003) proposed a model with two phases. In the first phase,
they define the fuzzy model structure, which basically uses information about both
teams’ previous games resuits. The second phase consists of fuzzy model tuning. It is
based on the method of identification of the non-linear dependencies trained by
experimental data ‘past-future’. They use fuzzy IF-THEN rules and for tuning they
combine a genetic algorithm with neural network.

2.3.15 Brownian motion

A last special case, which also responds to the question of Section 2.2.1,
contains sport scores (such as basketball scores) that can reasonably be approximated
by a continuous distribution. Stern (1994) wanted to estimate the probability that the
home team wins the game given that they lead in score in specific time moment.

At the beginning, he transformed the time scale to the unit interval. Then he
represented by X (t) the (positive or negative) lead of the home team at time ¢ and
assumed that it could be modeled as a Brownian motion process with drift p and
variance o’ per unit time:

X()~N (p.t,azt)

X(s)—X(t),s >t, is independent of X(t).

X(s)—X(t) ~ N(p(s—t),a2 (s——t))
The probability that the home team wins a game is Pr(X (1)>0)=&(u/0), where
@ is the cumulative density function of the standard Normal distribution. If the home

team is leading (or losing) by 1 points at time t, then under the random walk this

probability is:

l+(1—t)u
PNl

His application to 493 games from the 1991-1992 National Basketball Association

Pr,, (1.t)=Pr(X (1)>0|X (t)=1)=Pr(X (1) - X (£) > 1)=&

(NBA) season indicated that the Normal distribution appears to be a satisfactory
approximation to the distribution of score differences in each of the four quarters.

Surprisingly, the Brownian motion model is well applicable to baseball too.
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2.4 Economic implications

Professional soccer is often used as a test for the validity of some econometric
models. Success might be seen in both ways; from the team’s ranking in the final
League table and from the annual report of the ‘team company’ at the end of the
season. According to Dobson and Goddard (1995), teams that have been in the
League a long time are found generally to enjoy higher attendances. However, teams
from towns with a high proportion of professional and managerial employees are not
much affected by price changes, or indeed by the team’s form. In addition, there exist
a ‘loyalty’ factor, which seems to affect all clubs, regardless of position or status.

An econometric model appeared by Szymanski and Smith (1997). A
competitive market is supposed to exist, where football skills can be bought. A team’s
position in the League is determined by the skill they managed to buy and fixes in
advance the yield of this investment. Each team’s aim is to reach the highest possible
ranking, because improvements in League position trade profit. This model performs
reasonably well and it shows indeed that some of the top teams make profits, while
the rest suffer losses. It can also estimate how much money is needed by a team to
move up the League.

Szymanski and Smith’s (1997) work could be extended to several fields of
soccer industry. One of them is the player’s transfer fee. A transfer fee is defined to be
the total amount of money one team raust pay to another, so as to obtain the services
of a player. Dobson and Gerrard’s (1997) model confirmed that the selling team is
able to make profit through the difference between the value placed on the transferred
player and the reserve price for the player.

Many financiers study the effectiveness and consequences of incentives (we
took a first glimpse of motivations in section 2.3.4). A key for strategic behavior is the
pay-offs, especially when these change. Dewenter (2003) believed that sports are
appropriate area of such a study, since there are competitive situations, strategic
behaviors and, of course, available data. He focused his analysis on the effects of
changing the pay-off system by the FIFA. He applied panel count data techniques so
as to examine, if the outcomes of the matches had changed after introducing a three-
point system in the Portuguese first division. He found that the transition to this
system resulted in less attractive matches, because the underdogs defended even more

than before. None the less, only the scores had been affected and not the outcomes.
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Actually, this had negative effect on the home advantage; the home goals reduced
more than the away goals and the goal difference decreased.

The efficiency of financial markets is recently tested through the efficiency of
sports betting market and the predictability of match results. Gandar et al. (1988)
proposed several economic tests, which select bets purely based on the teams’ past
performances and attempt to exploit certain hypothesized patterns of the public. Any
biases in the bookmakers’ odds are assumed to last long enough to be detected and
exploited by bettors. Goddard and Asimakopoulos (2004) proposed a forecasting
model based on ordered probit regression, whose main advantage derives from its
ability to predict matches played in the closing (and perhaps at the starting) stages of
the season. It contains additional information that is not impounded into the
bookmakers’ odds, and that the latter are weak-form inefficient. A fine strategy for
exploiting inefficiencies in the bookmakers’ prices is to place those bets, which the
model assesses to be good value at specific times in the season. Such a strategy

appears capable of generating a positive return.
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CHAPTER 3

Weighted maximum likelihood estimation

Our approach will be based on modeling the scores between the competent
teams and not the final outcome (win, draw or loss). The basic problem is that an
“unusual” score could produce invalid results. For example, if we examine the
strength (i.e. the defensive and the offensive ability) of a specific team and we
observe a win with the “unusual” score of 7-0, it is obvious that this team will appear
stronger than it really is. We know that the number of goals scored by a team is a
sufficient indicator for the strength of a team, since it must score in orde; to win. Also
a high number of goals scored leads to a high final position and this is not necessarily
true. Karlis and Ntzoufras (2000a) proved that there is a high correlation between the
final ranking and the number of goals scored and conceded by each team.

The need for another way of score modeling, which will give more robust
estimates, is clearly obvious. In Section 3.1.1 we shall see that Grunert and Fieller
(1995) noticed that there are two main types of distortion from the model in use and
its assumptions; data contamination and model deviation. Our main concern will be
the location of any possible outliers and then to treat them with a special manner.
There are several suggestions in the literature, such as rejection. We shall attempt to
conclude to more robust estimates by finding and giving the observations the
appropriate weights, i.e. unexpected scores will be down-weighted.

This section presents some of the basic robust theory including the several
approaches made by Huber and another basic one called “the Infinitesimal approach”.
This theory is used in order to introduce the weighted maximum likelihood method
and among several researches we focus on Lindsay’s (1994) approach. We also
mention the importance of the generalized linear models and how robustness is
involved. The section highlights a new algorithm and the relevant equation known as
“iterative reweighting least squares” algorithm and “iteratively reweighted estimating
equations” respectively, and concludes with a recent developed area in scientific

research, the MM algorithms.
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3.1 Robust statistics

3.1.1 General

Hampel et al. (1986) gathered and presented most of the hitherto known
theory in robust statistics. Of course, this area of statistics is huge of its own, so we
shall try to restrict as far as possible only to the essential parts of it, which will be
used in the following for our work. In this Section and mainly in Section 3.1.4 we
shall point out some fundamental aspects about robust theory already used in their
book, “Robust Statistics” (1986).

It is very common in statistics to exist several assumptions that are
approximations to reality. The problem with the theories of classical parametric
statistics is that they derive optimal procedures under exact parametric models, but
say nothing about their behaviour when the models are only approximately valid. A
possible approach would be to replace a given parametric model by another one and
to enlarge it to a “supermodel” by adding more parameters. This basic idea made
Hampel ef al. (1986) declare that robust statistics, as a collection of related theories, is
the statistics of approximate parametric models. Robust statistics deal with several
known areas, such as the rejection of outliers or even the violation of the
independence assumption. It should not be confused with nonparametric statistics,
because neighborhoods of parametric models are considered.

The need for a different approach ensued from the fact, that the theories of
parametric models were only approximations to reality. Also, certain central limit
theorems gave information about an imaginary limit under certain assumptions and
could not clarify how far we are still away from that limit or whether the assumptions
are fulfilled. There are four types of deviations from strict parameters models:

1. The occurrence of gross errors.

2. Rounding and grouping.

3. The model may have been conceived as an approximation anyway.

4. Apart from the distributional assumptions, the assumption of independence may
only be approximately fulfilled.

We should mention here, that gross errors mainly occur as copying or keypunch

errors and they are the most frequent reasons for outliers.
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According to Grunert and Fieller (1995) there are basically two types of
distortion; data contamination and model deviation. The first one is given where the
model corresponding to the data differs from the model of the sample representation
of “reality”, while the second one occurs when the assumptions do not correctly
describe the “reality”. “Reality” stands for a probability distribution of a random

variable X and the random sample of variables X,,...,X,, independently and
identically distributed (i.i.d.) like X , constitute the sample representation of “reality”
(Bamett (1982)). Let X ,.D , 1€ {1,...,n}, denote the random variable corresponding to
the i-th observation of the sample data and F, , F, X(0) be the distribution functions of
X and X respectively. Data contamination occurs either when X ‘D . ¢ "D are not
identically and/or independently distributed or when X lD . ¢ _D are i.i.d. like X7,
but F, , = Fy . The differences are:

i. It is not always true that the same kind of distortion holds for both data and

model assumptions. For example, for a nonparametric model for F, with no

other assumption apart from continuity, a distortion like a mixture model could
affect the data but cannot cause wrong model assumptions, since nothing other
than continuity is assumed.

ii. The consequences of data contamination and model deviation are not necessarily
equivalent under the same kind of distortion. For example, they could differ with
respect to bias.

Finally, the main aims of robust statistics are:

* To describe the structure best fitting the bulk of the data

* To identify outliers or deviating substructures

* To identify leverage points (i.e. points that influence the estimating parameters a

lot)

* To deal with unsuspected serial correlations and deviations from the assumed

correlation structures

If the data are of high quality or they do not have any outliers, robust methods are not

absolutely necessary, but they can still give a noticeable improvement over classical

ones.
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3.1.2 Huber’s approaches

As we know, the likelihood function expresses the probability of the observed
data as a function of the unknown parameters. The values that maximize this function
are called maximum likelihood estimators (MLE) of these parameters. The
disadvantage of MLE is that they are explicitly model-dependent and as such, they are

criticized as being non-robust. Let X,..., X, be i.i.d. observations, which belong to
some sample space X with a density f . For the location estimate 7' of an unknown
parameter 6, instead of solving the ML equations »  f'/f(x,~T)=0 or
minimizing a relationship of the form —Z log f (x, —T), Huber (1964) solved the
equations » 9(x,—T)=0 or minimized a relationship of the form ) p(x,—T).
So, the two approaches optimise a different function. Any estimator defined by either
of these two last equations is called an M-estimator. Huber (1967) called them the
“maximum likelihood estimates under non-standard conditions”. The next step was to

withdraw from a strict parametric model of the form G(x—§) for known G and to
assume that a (known and fixed) fraction € (0 < &<1) of the data might be consisted of
gross errors with an arbitrary (unknown) distribution H (x—6). Thus, he introduced

the “gross-error model™:
F(x—0)=(1—5)G(x—9)+€H(x—0).

As we have just seen, the M-estimators were just a slight generalization of
MLE in the sense that M-estimators are based on different estimating equation that
give more or less weight in a certain observation. The introduction of this flexible
class of estimators gave a very useful tool and properties like consistency and
asymptotic normality were derived. Huber’s (1964) main aim was to optimise the
worst that could happen over the neighbourhood of the model, as measured by the
asymptotic variance of the estimator. He had to make some restrictions in order to be
able to ignore or at least control the asymptotic bias, which in real life is unavoidable.
Then, he used the formalism of a two-person zero-sum game: Nature chooses an F
from the neighbourhood of the model, the statistician chooses an M-estimator via its

1, but in reality an F is chosen from the neighbourhood of the model, and the gain

for Nature the loss for the statistician is the asymptotic variance V(q/J,F ), which
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under mild regularity conditions turn out to be f ' dF / (1/)' dF )2 (see also Definition

2(b) in Section 3.1.5). It was shown that under very general conditions there exists a
saddle point of the game.

In the gross-error model case, it consists of what has been called “Huber’s
least favourable distribution”, which is normal in the middle and exponential in the
tails. The very known Huber-estimator is given in the form:

%, (x) = min {b, max (x,~b)} = x-rnin[l,I%],

for 0 <b < oo (see Figure 3.1). It is the MLE for the distribution with density:

NS TIETN

which is least favourable in the minimax sense.

fx)=

Y

Figure 3.1.1: 9 -function defining the Huber-estimator with
cut-off point b

As we can see, the 1 -function gives as weights the observations themselves inside a
specific space of the real line, while outside that the weights become equal to the two
edges of the space (—b and b respectively). Hence, the observations are censored,
since they are not allowed to take very large or very small values.

After the Minimax approach for robust estimation, Huber (1965) evolved
another one using Robustified Likelihood Ratio Tests. He censored the classical
likelihood ratio tests by putting a bound (possibly asymmetric) from above and below

on the log likelihood ratio of each observation. So, a single observation could not
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carry any more the test statistic to +oo, even if the likelihood ratio was unbounded.
This method could also give robust confidence intervals and point estimates of

location. In particular, Huber (1968) followed the next procedure:

“Given the length 2a > 0 of the confidence interval, look for the estimate
T which minimizes the maximum probability (over the neighborhoods of
the parametric model distributions) of overshooting or undershooting the
true 6 by more than a. The estimate can be derived via a maximum test
between 8 = —a and 0 =+a..”
In this sense, Huber-estimators form the optimal robust estimators for the normal

location model.

3.1.3 The Infinitesimal approach

The fact that many statistics depend only on the empirical cumulative
distribution function of the data is useful for this approach, where three central
robustness concepts are studied. Huber (1972) explained their use by linking them to
the stability of aspects of a bridge, for example.

First of all, Qualitative Robustness is defined as the equicontinuity of the
distributions of the statistic as n changes. It is very closely related to continuity of the
statistic viewed as functional in the weak topology and it can be considered as a
necessary but rather weak robustness condition. According to Huber (1972), a small
perturbation to the bridge should have small effects. On the other hand, more

informative is the Influence Function (/F), which measures the effects of
infinitesimal perturbations (see also Definition 2(a) in Section 3.1.5). So, IF (x;T,F)

describes the effect of an additional observation in any point x on a statistic 7, given
a (large) sample with distribution F . In the end, the Breakdown Point measures the
distance from the model distribution beyond which the statistic becomes totally
unreliable and uninformative. It is guidance up to what distance from the model the
local linearization provided by the IF can be used or it tells us how big the
perturbation can be before the bridge breaks down.

Two important norms of /F are the sup-norm over x, known as “gross-error
sensitivity” y’, which measures the maximum bias caused by infinitesimal

contamination (and the stability of 7 under small changes of F') and the L, -nomm
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with respect to F', namely f IF*dF . Both norms depend on F , so they can be seen

as two new functionals measured by the “change-of-bias function” CBF and the
“change-of-variance function” CVF . The sup-norms of the two latter functions are
the “change-of-bias sensitivity” and the “change-of-variance sensitivity”.

It should be mentioned, that robustness theory requires high breakdown point
and low gross error sensitivity. The concept of “breakdown point” belongs to the
maximum permitted percentage of the minority of the data, such that it has only
limited influence. A value of 0.5 is the best possible for the breakdown point, which
indeed indicates that any majority can overrule any minority. The problem with the
gross-error sensitivity is that a low value contradicts the efficiency requirement of low
asymptotic variance under the parametric model. Both of them have positive lower
bounds and as a rule these bounds cannot be reached at the same time. Hampel (1968)
came up to the famous result:

“The most robust, the less efficient”
Actually, there is an optimal class of compromise statistics or “admissible robust

statistics™, such that while the one bound increases, the other must be decreased.

3.1.4 Outliers

Most of the times many people usually regard an outlier solely as gross error.
None the less, there are situations where the “outlier” is a proper observation and it is
the most informative of all, so that the rest of the sample may be forgotten. Classical
examples are the exams, where an outlier is the only correct value and the bulk of
results are false. Also, in other cases the outlier indicates a different model for all
data. When someone rejects an outlier, he should be very careful and know the aims
that a rejection like this serves. Generally, if an outlier is too far “away”, it is deemed
too unlikely under the parametric model used and should be rejected, because the aim
is the safety of the main statistical analysis. The danger of keeping the outlier could be
disastrous and probably much bigger than the efficiency loss caused by rejection, if
that was a proper observation. Another aim is the identification of interesting values
for special treatment. The underlying model or some kind of effect may be of great
interest. Even the gross error could be corrected or studied in more detail.

The two quantitative robustness tools that we have already seen can be used,

so as to treat any possible outliers. On one hand, /F gives much information about
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the local behavior near the parametric model. It is characterized by its high jumps at
the rejection points, which cause relatively large efficiency losses and whose height
depends on the local density of the underlying distribution at the rejection points. On
the other hand, the breakdown point of the combined rejection-estimation procedures
tells us about their global reliability and how many distant outliers can be safely
rejected. We must not forget that the ability to reject depends on the proportion of
outliers and the best we can succeed is a value of 0.5 (50%). It also explains the
“masking effect” of the outliers; an outlier masks a second one close by if the latter
can be rejected alone, but not any more “in company”.

Hampel et al. (1986) suggested two major ways of treating outliers; the first is
to “move them in” close to the good data; the second is to reject them “smoothly”,
with continuously decreasing weight and influence. They arrived at some conclusions
regarding the behavior of rejection rules for robust estimation. First of all, any way of
treating outliers, which is not totally inappropriate, prevents the worst. Totally
inappropriate are considered a non-robust computer program (e.g. least squares!)
without any built-in checks and without a careful follow-up residual analysis, and
furthermore, some objective rejection rules, like Studentized range. Most methods still
lose unnecessarily at least 5-20% efficiency in some realistic situations. In general,
one should not only detect and accommodate outliers, but also interpret and correct
them. Identification of outliers and suspect outliers can be done much safer and better
by looking at residuals from a robust fit, rather than a non-robust fit. Finally, rejection

rules with subsequent estimation are nothing but special robust estimators.

3.1.5 Some more theory

Let X,,...,X, be i.i.d. observations, which belong to some sample space X . A
parametric model consists of a family of probability distributions F, on X , where
the unknown parameter 8 belongs to some parameter space € . In robust theory, the
model {F},;H € 9} is a mathematical abstraction, which is only an idealized

approximation of reality. Our aim is to find or to construct statistical procedures,
which still behave fairly well under deviations from this assumed model. So, we do
not only consider the distribution of estimators under this specific model, but also

under other probability distributions. We consider estimators, which are functionals
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[i.e. T,(G,)=T(G,) for all nand G,,] or can asymptotically be replaced by

functionals. This means that we can assume that there exists a functional

T :domain(T)—R such that T,(X,,..,X,) —T(G) in probability, when the

n—s

observations are i.i.d. according to the true distribution G in domain(T). The latter is
the set of all distributions in F(X) for which T is defined and G, = lz A, 1is the
n i=1 '

empirical distribution of the sample, where A_ represents a degenerate distribution
that gives probability 1 at point x and O elsewhere. We say that T(G) is the

asymptotic value of {T,; n>1} at G.

Definition 1.
A functional 7 will be called Fisher consistent, if T(F,)=0 for all 0 in 6.

So, at the model, the estimator {7,;n>1} asymptotically measures the right quantity.

Definition 2.
(a) The influence function (IF) of T at F is:
T{(1—t)F+tA )-T(F
1P (T, F)= i ((-)F+14,)-T(")

—0 t

in those x € X that the limit exists.

(b) The asymptotic variance is closely related to IF . Actually, it is given by:
2
V(T,F)= [ IF(xT,F) dF (x).
(¢) On the other hand, the asymptotic relative efficiency of a pair of estimators

{T,;n>1} and {S,;n>1} is given by:

ARE, ;= ).

Except for the expected square of /F , there are at least other three important

summary values. The first one is the supremum of the absolute value, which defines

the gross-error sensitivity of T at F as v =+ (T,F )=sup|]F (x;T,F )| This
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measures the worst (approximate) influence, which a small amount of contamination
of fixed size can have on the value of the estimator and for that, it can be thought as
an upper bound on the (standardized) asymptotic bias of the estimator. The second
one deals with small fluctuations in the observations. The worst (approximate and

standardized) effect of adding an observation at y and removing another one at x is

: : . e IIF(y;T,F)—IF(x;T,F)l
examined via the local-shift sensitivity A" = sup . On the
x=y y—x

contrary, the third one refers to the complete rejection of the extreme outliers.

Extreme outliers will be considered (and then are entirely rejected) all observations
further away than the rejection point p’ = inf {r >0; IF(x;T,F)=0 when|x|> r} )
Let us now assume a countable set X = {O, L...K } , K <00, as sample space.
Also, my (x) will be called the model vector and is a family of probability densities
on X, with m,(x)>0 (for all x€ X). The i.id. observations X,,..., X, are made
from my(x). The data vector d(x) expresses the proportion of the n observations

that have value x and the function #(x) denotes some nominal true density.

Definition 3.

The Pearson residual function is defined as:

OO

my (x)

Remark 1.

These residuals are not standardized to have identical variances. Also, it is

important to notice, that they have range [— l,oo).

Definitions 4.
(a) The (squared) Hellinger distance (HD) between the data vector and the

model vector is defined by Z[\/d (x) = \/ mg (x)r

(b) and the minimum Hellinger distance estimator (MHDE) is that value of (3,

which minimizes the above distance.
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Remark 2.

The pioneering work by Beran (1977) showed that the MHDE could achieve
first-order efficiency and robustness properties. Also, Titterington et al. (1985) proved
that MHDE is an important alternative to the MLE among various minimum-distance
estimates, while Simpson (1987) found that in the Poisson model the Hellinger
distance has an asymptotic breakdown point of 0.5. For a more recent comparison of
the MHDE with the MLE, as well as the balance between robustness and efficiency,
the reader may refer to Lindsay (1994) and Karlis and Xekalaki (1998, 2001).

Remark 3.

Let §€ X, x,(x) be a degenerate distribution at £ and:

t.(x)=(1—e)t(x)+ex,(x)

an ¢ -contaminated version of density t(x) . A different expression of the IF is:

_oT((1=e)t+ex,)-T(F)| _or(r)
B Oe \ - Be

e=0

2

I'(€)

where ¢ is an € -contaminated version of density t(x) defined right above. Whén the
functional is the MLE T,, (r) or the MHDE T, (¢), then T'(¢)=i(8)" u(&8),
where i(3) is the Fisher information and u(S;ﬁ)z—-Vlog(mﬁ (5)) is the score

Sfunction (the symbol V denotes the differentiation with respect to 3).

Remark 4.
When the model is correctly specified, any estimator with the same /F as the

MLE (given by the latter expression) has the same efficiency and so is optimal.

Remark 5.
All the first-order efficient estimators could be considered non-robust, because

they have the same sensitivity to contamination as the MLE. However, Taylor series

approximations like AT (¢):=T(t,)—T(t)=eT'(£) can be very misleading.
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3.2 Weighted maximum likelihood method

The idea of robustness depends largely on stability of the parameter estimates
under slight departures from the model. We would like to “correct” surprising

observations; “surprising” in the sense that they occur in locations £ with small
probabilities m, (£). Thus, it seems very natural to downweight data points with large

Pearson residuals or generally of dubious authenticity.

3.2.1 Lindsay’s (1994) approach

Lindsay (1994) worked with another function, the “residual adjustment
function” in order to find the key structural element that links ML and minimum HD
and to measure the robustness properties of MHDE, since the results from the IF were

poor. The central point of his research was estimating equations for 3 of the form:

> A(8(x))vm, (x)=0,

where A(6) satisfies the next assumption.

Assumption 1.

The residual adjustment function (RAF) is assumed to be an increasing twice-

differentiable function 4(§) on [—1,00), with 4(0)=0 and 4'(0)=1.

Examples

*  Using the linear RAF 4,,(6) =6, we take the important case of the MLE:

0= Zé(x)Vmﬁ (x)= Z(d(x)——mﬂ (x))u(x;b)z Zd(x)u(x b

¢ For the minimum HD, we also take the form:
ZA( )V’"ﬂ x)=0,
if we use as RAF the 4, (6)= [\/6—}— }

A very important class of RAFs has the form:

A)(@):M_I_L

A+1
For several values of A, we obtain known corresponding results such as:

— ML for A=0
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— HD for /\:—%

— Minimum Pearson’s chi-squared for A\ =1
— Minimum Neyman’s chi-squared for \ = —2
— Minimum Kullback-Leibler divergence for A — —1

The most important property of RAF is that solving the estimating equations

> A4(8(x))Vm, (x)=0 corresponds to the minimization of a measure of “distance”
between the data d and the model m, . Also, the degree of robustness relative to ML

depends on how much 4(6) deviates from linearity. Note that in fact A(6(x)) is a

weight for the observation x. So, observations with large Pearson residuals are given
smaller weights.

Lindsay (1994) developed a large subclass of density based minimum distance
estimation, called “minimum disparity estimation”, of which minimum HD estimation
is a part. This estimation is an efficient and robust estimation method in parametric
models and succumbs the disadvantages of Huber’s (1981) minimax approach, which
despite its fine theoretical properties, it is very difficult to apply in problems. other
than location. For discrete models Lindsay’s (1994) method extends easily the ideas
from MLE, since it compares the observed probability function to the expected under
the assumed model probability function, via a suitable chosen disparity function. For
continuous models this is not straightforward, because the observed measure is a
discrete one, while the assumed density is continuous. There are several solutions
proposed in the literature mainly based on “kernel density estimators”, but our work

will not extend to this area.

Definition 5.

(a) Suppose that G() is a real-valued thrice-differentiable function on
[~1,00) with G(0)=0 and §(x) is the Pearson residual. For any pair of densities
m,(x) and d(x), the disparity measure determined by G is defined as:

p(6’mﬂ)= > m, (x)G(8(x)).
(b) The minimum disparity estimator (MDE) is that value of 3 -call it T(d )-

which minimizes p.
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Cressie and Read (1984 and 1988) introduced an important class of such

measures, known as Cressie-Read family of power divergence measures:

[ar<x>/mﬁ<x)1*—1}_Z ey

T A Y )

PWD(d,mﬂ)=Zd(x){

For several values of )\, we take known measures such as:

— Likelihood disparity for A =0:
LD(d m ) Zd [log( )— log (mﬁ (x))]
— Twice-squared HD for A = ——12— :

HD(d,m,) =23 (x) - Jm, ()]

— Pearson’s chi-squared divided by 2, for A=1:

ps(d,my)= 5 4G = )

2my (x)

— Neyman’s chi-squared divided by 2, for A=—2:

NCS(dymy) =3 [¢x)=my (=)

2d (x)
— Kullback-Leibler divergence for A =—1:

(d mﬁ) > my(x [log m, (x ))—-log(d(x))].

Lindsay (1994) used all the former information and proved that on one hand
the RAF determines various second-order measures of efficiency and robustness
through a scalar measure called the “estimation curvature” and on the other hand the
breakdown properties of the estimators through its tail behavior (a breakdown point of
50% 1is given). Furthermore, a second-order approximation of the RAF,

A(8)= 6+ A, 6°/2, shows how the curvature parameter A, becomes a measure of

the trade-off between the efficiency and robustness in a second-order sense. In the
following, we shall present only some basic of his findings. For further explanation

and proof, the reader can refer to the paper of Lindsay (1994).
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&5 The first “suspicion” is that the deficiency of an MDE is a simple function of

the estimating curvature A, and a nonnegative quantity D depending on the

model but not on A(6).

Proposition 1.
Suppose that the sample space is finite (K <oo). The second-order
efficiency of a MDE with RAF A4(6) is:

E,(MDE)=E,(MLE)+ 4;D.

& Suppose that the true density is a contaminated model. Generally, the objective
is to create a test procedure, more robust in the sense of preserving size and
hence confidence intervals coverage, but equivalent to the likelihood ratio test,

when the model is right. If we want to test the hypothesis

Hy:8=70,.
we can express the likelihood ratio test in terms of the likelihood disparity
function: .

LRT =2n[LD(d,m, )~ LD(d,m, )|, with T =T,,,(d).
Simpson (1989) used the disparity difference test statistic:
DDT =2n(p(d,m, )~ p(d,m;)|, withT=T(d),
in the case that p equals to squared HD. We consider its behaviour as a test
statistic for H :T(t): B,, where t may or may not be in the model. Under

certain conditions, it holds the next:

Theorem 1.

(i) If ¢(x) is in the model, then, under the null hypothesis:
DDT — X3 s -

(ii) Under the null hypothesis, if #(x) is the true density and dim(3)=1, then:
DDT —c(t) X},

where: c(t) =Var, [-T' (t, X)] Vp (t, m, )L’-‘:ﬁo .
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Lindsay (1994) noticed that the likelihood disparity was not bounded over all

d and m,. Hence, there was obvious the need for some new disparities, so as

moments of all orders to exist. For any fixed number a € [O,l] and a=1-a, such
disparities are:
» the blended weight chi-squared disparity:

[d (x)— mg (x)r

Z[a d(x)+amﬂ (x)]

>

BWCS(a)=)_
where the corresponding RAF is:

4,(8)
* and the blended weight Hellinger chi-squared disparity:
2
|4 (x)—m, (x)
—_ 2
Z[a\/d (x)+ a\/mﬂ (x)]

2

N
1+ab6 2

)
14+ ab

BWHD, =)

>

where the corresponding RAF is:

44®=5W®W4+%VPN®F,

with w(§)= a6 +1+a.

Finally, another desirable fixture is the robustness against “inliers”. Although
minimum Hellinger distance has the right tail behavior to deal with large outliers, it
has some deflects with respect to inliers. For this, we should try to find adjustment

functions that down-weight both positive and negative residuals relative to ML, in the

sense that |A (6)| <6]. If we start with the convex function G(§)=e™* —1, then we

obtain the negative exponential (NE) disparity measure with RAF:
Avp(6)=2—(2+6)e’.

This disparity measure has the advantage, that it generates a bounded RAF. Indeed,
the minimum NE disparity estimator generates a second-order efficient estimator that
shrinks both positive and negative residuals, because:

A'(5)=(1+6)e

A"(8)=—6e"

A"(8)=(5—1)e™
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The key element in the WMLE approach is to define the weights in a “clever”
way, so as to down-weight appropriately the ML score function (see also Section
3.3.1) and thus to obtain robust estimates with high efficiency. By suitably defining
the weights, we may obtain weighted likelihood estimates that reflect disparities
evaluated at the observed data points and not at the whole real line. By such an
approach we overcome problems with any numerical integration needed (in

continuous cases), which can lead to stability problems.

Remark 6.
It is important to note that the two approaches (the approach of Huber and the
one defined above) share some common elements. The most important is that the

RAF operates in the Pearson’s residuals as Huber’s v -function operates in simple

residuals. Thus both methods down-weight unexpected observation, the former is
based on simple residuals while the later in Pearson’s residuals (see Agostinelli, 2002

for a discussion on this issue).

The Algorithm
Basu and Lindsay (1993b) proposed to rewrite ZA( )Vm (x)=0 ina

weighted form of the likelihood equation, with weights defined by:

ZA( Z[A )] Vm, (x)=
T (1+a ()9 (5)=
=2 x; )
The term 4(—1) in w™ forces the weights to be nonnegative (since A is increasing)

and it can be replaced by any other constant without changing the above equalities.

The algorithm is as follows:

“Given current estimate b, create weights w' (x)

and solve for the above equations equal to zero
with these weights fixed.”

For example, if m, is the Poisson model (mean parameter (), then the algorithm

gives a re-weighted mean as the next value of the parameter:
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Zw
Zw

When the algorithm has converged, the final set of weights w’ (x) reflects the relative

influence that the observed cells had in the final solutions. Finally, we just mention
that in the continuous case, in the place of the two summations, there are respectively
two integrals. The main issue upon the updating equation is that one needs to evaluate
the two integrals numerically. Usually this can be made using standard algorithms
which are based on the feature that evaluate the function to be integrated at suitably

chosen points.

3.2.2 Related material
Basu and Sarkar (1994) made an extensive empirical study to compare the
estimators and the disparity tests generated by the NE disparity at the normal model to
those generated by the BWHD family. Generally the efficiency of an estimator T
relative to the MLE is estimated by the ratio of the mean square errors (MSEs):
. MSE (MLE)
efficiency = W(T)_
It is shown that the curvature parameter of the RAF is not always an adequate global
measure of the trade-off between robustness and efficiency of the MDE. The
estimator obtained by minimizing the NE disparity is an attractive robust estimator
with good efficiency properties.
Harris and Basu (1994) also studied the HD and expressed it in the form of a
penalized log-likelihood. They considered a parametric family of distributions with

countable support and their aim was to make inference about the parameter based on a

random sample of size n from m . For simplicity, they examined cases where § was
scalar, but the methods could be generalized to multiparameter 6. Let f, be a data

driven modification of the model, such that the minimization of the Kullback-Leibler

(KL) divergence between d and f; generates the MHDE of the parameter based on

myg . They showed that minimizing the HD corresponds to minimizing:

;d( [log /fﬂ ]+Zm

52



where N, ={x:d(x)=0} and N is the complementary of N,. The term
Z AL (x) can be thought of as a penalty applied to the KL divergence of.a

modified function f,(x) and minimizing the HD can be thought as equivalent to

maximizing a penalized log-likelihood. According to Good and Gaskins (1971), the

usual method of penalized KL divergence minimizes:

> d(x)[log(d(x)/ £, (x))] + 1/ (5),

X

where J(B) is a penalty function and / is the weight put on the penalty. The
minimum HD corresponds to using the penalty a0 (x) with the penalty

weight h being equal to 1. Harris and Basu (1994) used another class of estimators,
the minimum penalized Hellinger distance estimators (MPHDE’s), which are
constructed by minimizing:
Z d(x)[log (d (x)/ 15 (x))] +h Z m, (x).
x d(x)=0

They found that most of the MHDESs’ robustness was derived from the modification in
the density rather than the use of the penalty. This modification produces a function
that essentially “ignores” the outlying observations. If the weight on the penalty is
changed, this will not alter the robustness properties of the parameter estimate.

Field and Smith (1994) also worked on the uncertainty of the data source.

They assumed a parametric model f(x;0) and modified the usual likelihood

equations in order to achieve robust estimates with high breakdown properties. The

main tools were the score function f’/f(x,6) and two weight functions w(x,8). The

first one is similar to a Huber-style estimate, since it truncates the score function but

the truncation is carried out on the probability scale and not in a Euclidean scale. The

idea is to consider the supremum of each score function over the central (1 =7 p)% of

the distribution as determined by the current value of 6 . The j -th component is:

!
Con
w, (x,0)=min{ sup {+———F.1t,
’ vea@o) | | f/
7(1’,0)}
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where A(6,p)= {xlpg F(x,0)§1—p}. On the contrary, the second one uses the

same weight for each component of the score function:

M if F(x,0)<p
p
w(x,6):«l ifpSF(x,O)Sl—p.
L‘fﬂ ifF(x,0)>1—p
p

Both weight functions have the important property being invariant under monotone
transformations of the data. The latter additionally down-weights smoothly any
points, which do not lie within the central (1 2 p)%. They used an iterative
procedure, starting with the ML score function. By truncating its norm and adjusting
the score function to have Fisher consistency and the pre-assigned bound on the
supremum of the /F', the optimal score function is obtained. The starting point should
be a high breakdown estimate. After some examples, they calculated the efficiencies
and a simulation study compared their estimator’s performance to some others.
Markatou (1996) pointed out the dilemma between weighted likelihoods and

usual M-estimation for random variables, which follow a continuous distribution. She

studied a contaminated Normal model (1—&)N(0,1)+¢eN (u,az) for various values

of ¢, 1 and o and presented a Monte Carlo comparison between the methods of

Basu et al. (1995) and the classical Huber’s (1981) robust methods. Robustness is
defined by the existence of a root at or near the parameters of the component with the
larger mass and by the existence of a root at or near the parameters of either

component when ¢=0.50. She used the negative exponential (NE) RAF,
A(5)=2—(2+6)exp(—6) and the RAF based on HD. The algorithm requires

appropriate starting values and in her simulations she only uses the pairs (/.L,O’z) of
starting values (med (X,),1.48-med IX ,—med (X, )I) and the corresponding ML

estimates of location and scale. Convergence is achieved, when the difference in the

estimators between two consecutive steps is less than or equal to 107°. One result is
that the biases of the location and scale estimates do not differ much, when different
starting values are used. Generally speaking, when ¢ increases, the power of p in the

weighted score estimation equations:

54



Z[wx M, F]p (x:8)=0

should increase so as to guarantee a smaller weight for the aberrant data. For certain
combinations of p and ¢, if we use the appropriate RAF, estimators with very small
bias are generated. Basu et al. (1995) recommend the use of a grid of starting values,
mainly with high percentages of contamination.

Basu et al. (1997) worked on the same basis and established that the Minimum
NE disparity estimator (MNEDE) is asymptotically as efficient as the MLE at the

model and robust under data contamination. The MNEDE is obtained by minimizing

the NE disparity D(g,.0) between g, and f, over ©, where f,€F,, g€G,

g(x)
A=)

The MNEDE, like the MHDE, is a very attractive robust estimator since it attains its

D(g,@)sf{exp[—é(g,O,x)]—l} o (x)dx and 6(g,0,x)=

robustness properties without sacrificing first-order efficiency at the model. A very
nice feature of the MNEDE is the robustness it provides against inliers, a property that
the MHDE does not share. On the whole, the MNEDE appears to be a promising
estimator and a major competitor of the MHDE within the class of robust first-order
efficient estimators.

Finally, we should make two last important remarks. The first of the two is
that Bohning and Hoffmann (1982), in their attempt to find the MLE for a certain
class of discrete sampling models, pointed out that one of the main restrictive
assumptions someone has to make is the concavity of the log-likelihood function.
Secondly, Markatou (1999a) took a closer look at the performance of weighted
likelihood in the context of mixture models. It is shown that the weighted likelihood
methodology produces robust and first-order efficient estimators for the model
parameters. When the number of components in the true model is higher than the
number of components specified in the hypothesized model, the weighted likelihood

equations have multiple roots.
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3.3 Generalized Linear Models (GLMs)

Up to this point, we have discussed procedures for simple data sets, having a
single variable. Generalized linear models (GLMs) are an extension of classical linear

models. A vector of observations y having n components is assumed to be a

realization of a random variable ¥ whose components are independently distributed

with means p . The systematic part of the model is a specification for the vector p in
terms of a small number of unknown parameters f3,,...,5, . In the case of ordinary

linear models, this specification takes the form:
P
E(Y)=p = Zx,.j L i=1.,n,
J=1

where the (s are parameters whose values are usually unknown and have to be
estimated from the data and x, is the value of the j-th covariate for observation i.
We may rewrite it in matrix notation:

Hias) = X )
where X is the model matrix and ( is the parameter vector. We also make the

assumption, that we know the covariates that influence the mean and can measure
them effectively without error. For the random error, we assume independence and
constant variance of errors.

The classical linear model can be separated in three parts. The random

component consists of the components of Y being independently Normal with

E(Y)=p and constant variance o®. The systematic component consists of the

covariates x,,...,x - which produce a linear predictor

n=)_x,8,.

P
=1
Finally, the link between the random and the systematic part is: u=mn. If we write
n, = g (1), then g(-) will be called the link function. GLMs allow two extensions;

) the distribution may come from an exponential family (and not explicitly from
the Normal case).

(i)  g(-) may become any monotonic differentiable function.
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Definitions 6.
A probability distribution is said to be a member of the exponential family, if
its probability density function (or probability function, if discrete) can be written in

the form:

fy (3:60,9)=exp

y0—b(9)
W+c(y,¢)].

The parameter 6 is called the natural or canonical parameter and the parameter ¢ is

usually assumed known. When it is assumed unknown, it is often called the nuisance

parameter. The basic properties are:
E[Y]=0b'(0)

Var [Y] =a (¢)b" (0) .

Robust inference about GLMs is very limited. Sections 3.3.1. and 3.3.2.
present some important papers and research on GLMs or robustness in GL.Ms.

3.3.1. Iterative Reweighting Least Squares (IRLS)
In order to find the MLE ﬁ of [, we must maximize the log-likelihood

function. If we use the exponential family, the joint density for Y = (¥;,1,,....%, )T is:

n

f y’9¢ Hf;f y,=0,’¢)_exp(zy' ’a_(- +Z ey,

i=1 i=1

where 6=(6,,...0,) stands for canonical parameters and ¢ =(g,,...¢,) for

nuisance parameters. Hence, the log-likelihood function can be written in the form:

log(f, (v:8.4)) = 2 +2 c(y,4)

=1

1 ="b'(6)
and depends on 3 through: {g(u )=n, i=1,.,n.

n
n=xp =Zl:x"fﬁf
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A relatively detailed proof for the MLE of 3 starts by considering the scores:

Uy (ﬂ)=5%10g(ﬁ (%:8.9)), k=12..p

and then u, (3)=0, k=12,..p = u(B) = 0. From the exponential family:

w (8)= -2 t0g(f; (B 9)) = 2322 L O Sy -

B, 3B, a(8) 0B, ‘=
“Yaal a(£§0i)]+°=;a% yﬂ;(q&..)( )33, e
9 . . :
RO T
SR qs,()a' [2‘; o aﬁk; =
—-b'(6
_;y' a( () ! b”19.-) g'(lﬂ,-)x" B
b (8, :
- S R
NV Tl X k=1,.,p,

which depend on 3 through g, = E(Y,) and Var(y,), i =1,...,n. In theory, we solve

the p simultaneous equations (B) =0, k=12,.,p to evaluate B . In practice,
these equations are usually non-linear and have no analytic solution. Therefore, we
rely on numerical methods to solve them.

First, we note that the Hessian H and the Fisher information / matrices can

be derived directly from the last expression. Recall that these two matrices are closely

connected, because [ is minus the expected value of the Hessian matrix. So, we take:

58



2

[H CB)L/‘ = 6,Bja:3k

0
"o,
- 0 < Yi— M Xix
aﬁj =1 Var(}’l) g,(p’l)
_a,‘l’i

" 88, x, &
LI +200=m) 2

S Var(¥) ' (1) 98,

log( £, (3:8,¢))=

Xig
Var(Y)g' (1)

and:

1(8), = E[-[H ()], ]=
ou,
=i : 6:31 -——x"‘—_i(E[K]—“')aaﬁj

xllt

Var (¥))g' (1)

=1 Var(Yl) g,('u'l) =1
O,

n, 88, «x, 2 ij

= — N - B — K,

2 V(g =" Mag,
Oy On,

_&0n 8B, x, _

—; Var(Y) g'(m)
b

_z":g’(u.-) Yox,

a =1 Va"(Yi) g,(l".-)

- XXk

TS Var()g' ()

or equivalently in the very important relationship:

Xt
Var(Y,)g' (1)

I/ ( B ) =X"wx,
where:
x1T Loy Yy
X = —
S B X,,
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w 0 . . . 0
0 w,
W = diag(w) =
.0
0 0 w,
and:
w, = : , i=LkL..,n.

1

Var (¥,)g' (1)
The Fisher information matrix depends on 3 through ;2 and Var (K) i=1..,n.

Now, the scores can be written as:

n

uk (ﬂ):z(y l‘l'l xlkwg (ur lek == 1129---3p’

=1

where z,=(y,—p,)g' (), i=1,...,n. Therefore: u(B)=X"Wz. One method to
solve the p simultaneous equations u, (B) =0, k=12,...,p that give ,3 could be

the (multivariate) Newton-Raphson method. If 3’ is the current estimate of 3, then

the next estimate is:
g =g -H(E) ule)
&
=g +1(8) u(g)
This iterative algorithm is called Fisher scoring. By using former relationships and

substituting in the latter one, we get:
g =g+ XWX] XW'Z =
=[x wx] XWX + XTW'2|=
=[xwx] X" [Xp' +2']=
=[x wx| XW'[q +]

where 7', W' and z' are all functions of B'. This is a weighted least squares

i+1

equation, that is 8'"" minimizes the weighted sum of squares:

(17+z—XB)TW(7}+z—Xﬁ)=iw,.(ni+z,.—x,Tﬁ)2
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as a function of 3, where w,,...,w, are the weights and 7+ z is called the adjusted

dependent variable. The Fisher scoring algorithm (also known as IRLS, because it

involves iteratively minimising a weighted sum of squares) proceeds as follows:

1. Choose an initial estimate 8’ for 8 at i=0.

2. Evaluate ', W' and z' at 3'.

3. Calculate ' =[X"W'X] X"W'[yf +7'].

4. If "ﬂ'“ -B II >some pre-specified (small) tolerance, then set i — i+1 and go to

2.

5. Use B as the solution for (3.

Remark 7.
The canonical link function is g(u)=>5""(u). Because with this link
n, = g(u;)=40,, it holds:

_ Oy, _ Ou, =b"(0), i=1,.,n.

g' (k) on 09

So, Var(Y,)g'(1,)= c(¢,) which does not depend on 3 and that is why:

!

op, 0

on, 9B,

J

Xik
Var(Y)g' (1)

It follows that H(B)=—I(B) and, for the canonical link, Newton-Raphson and

=0, forallj=1,..,p.

Fisher scoring are equivalent.

Remark 8.
The linear model is a GLM with identity link 7, = g(x)=0 and

Var(Y)=0*, foralli=],...,n. Therefore:

L] =[Va’(Y,~)g'(M~)2]—l =0’

z,=(y—m)e (w)=y-n,

, i=1,..n.

Hence, neither z+7n=y nor W =0"*I depend on § and the Fisher scoring

algorithm converges in a single iteration to the usual least squares estimate.
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Remark 9.
The standard errors (estimated standard deviations) are given by:

N | =

_1'2'
= , i=L..,p.

i

sef)=

1()

oz

The asymptotic distribution of the MLE can be used to provide approximate large

sample confidence intervals. We can find 4 such that:

P —thﬂ'lgh —a & P

UGNS

i

i ]

ﬂ',—h[l(ﬁ)“]%sﬂ,.sB,.+h[1(5)“F] a.

The endpoints of this interval cannot be evaluated, because they also depend on the

unknown parameter (. However, if we replace / (B) by its MLE 7 (B) , We obtain
the approximate large sample 100a% confidence interval:
[B,. —s.e.(Bi)h , B,. +s.e.(ﬁ,)h] .
As it is well known, for a = 0.9,0.95,0.99, we take h=1.64,1.96,2.58 respectively.
McCullagh and Nelder (1989) issued an important report on IRLS, where they

P
applied it to the MLE of the parameters (3 in the linear predictor 7= Zx 3, of a

J=1
classic GLM. They did not use the dependent variable y but an adjusted dependent
variable z, a linearized form of the link function applied to y. Also, the weights

p ~
were functions of the fitted values f = Zx B, - The process is iterative, because both
J=1

z and the weight W depend on the fitted values, for which only current estimates are

available. The procedure is:

“Let 1), be the current estimate of the linear predictor, with corresponding

fitted value [y, derived from the link function 7= g(p). Form the adjusted

dependent variate with typical value:

B N
20:770‘1"()"_.“0)[:1%] s
0

where the derivative of the link is evaluated at [i,. The quadratic weight is

defined by:
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WO‘_[SQ] Voo
Hy

where V, is the variance function evaluated at f1,. Now regress z, on the
covariates x,,...,.x, Wwith weight W, to give new estimates BI of the

parameters; from these, form a new estimate 1), of the linear predicior.

Repeat until changes are sufficiently small.”

This algorithm has the advantage that it uses the data themselves as the first

estimate of /i, and from this we get 7, (dn/d ,u)o and V. It is shown that the MLE

for 3, are given by:

dn_ _
ZW(y—u)d_u‘Xj"O’

for each covariate x,, where the summation is over the » units. Also, if / denotes

the Fisher information matrix, then the new estimate Bm satisfies:

(1h), =S x, [,H(y_u)g%}’

where the sum is over the »n units. These equations have the form of linear weighted

2
least-square equations with weight W =V '[%TZJ and dependent variate
7
dn
z=n+y—p)—.
=rg,

The iterative reweighting algorithm used by Basu and Lindsay (1993b) can be
generally attributed to Beaton and Tukey (1974) and it is much simpler to apply than
the Newton-Raphson method. Good references are also Holland and Welsch (1977)
and Birch (1980), while Byrd and Pyne (1979) and Green (1984) discuss convergence
results and Del Pino (1989) gives an extensive bibliography. Let:

Y:r+l = anpﬁpxl + Enxl

be the standard regression model. A robust estimate B of B is found by minimizing:

$oo(i=xe)

=] o
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where o is a known or previously estimated scale parameter. Let 1 represent the

first derivative of p. Then ﬁ satisfies the estimating equation:

Y;'—Xi:é
g

n

Z x4

=1

=0, forj=12,.,p,

H

where x, is the j-th component of the i-th row X, of X. In order to avoid

numerical methods, we use the weight function:
_ ()
w(r) =2
and the last equation becomes:

2.

i=1

Yi—Xi:é
ag

X'—Xi:é
g

w

}r,.j =0, forj=12,..,p.

This is a weighted version of the ordinary least squares. Now, this equation can be

solved iteratively using a weighted least squares algorithm. Let W, be the nxn

diagonal matrix whose i -th diagonal element is:
w|——=1.

o

Then for a given starting value 3,, the first iteration yields:
B, =[X"W, X X"W, Y.

This iteration scheme is continued till convergence to a specific level of tolerance is

achieved.

3.3.2. Robustness in GLMs

Some of the well-known robust methods for estimating regression coefficients
produce robust but usually inefficient estimators (Rousseeuw and Leroy (1987)). One
of the first attempts to apply the minimum MHDE method to regression models was
made by Pak and Basu (1994). They dealt with the MDE in linear regression models
and showed that the estimators of the regression parameters are asymptotic normally
distributed and efficient at the model, if the weights of the density estimators are
appropriately chosen.

Markatou et al. (1997) discussed a method of weighting the likelihood

equations and focused on the weighted likelihood estimating equations:
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3 w(x,;Mg,Is')u(X,;ﬁ)z
1=1

where the weight function w(x,;M e F ) is selected such that it down-weights points

that are inconsistent with the assumed model. They identified the outliers by the

Pearson residual (also given by Definition 3):

If the observed proportion of values at ¢ is the same as the probability of observing ¢

under the assumed model, then §(¢)=0; when the model is correctly specified, &(¢)
converges to 0 almost surely. If there is no data observed at ¢, then §(r)=—1. For

the model m, (t) the goodness-of-fit is examined by the Pearson’s chi-squared
statistic:

P = "Z m, (1)62
The most important thing is that the weights are functions of the Pearson’s residuals

and are defined via the RAF:
A(5())+1

wlt, My, F)=w(6 (1)) = §(r)+1

Defining the weights in this form, it is guaranteed that the weighted likelihood

estimator is a root of the MDE equation:
Z A( )vﬁmﬁ t)=0.

Markatou et al. (1997) noticed that the difference between two competing
nested models in a logistic regression could be used as a chi-squared test of the
smaller model against the larger. Also, we could expect the sum of weights to be

roughly equal in magnitude to:
(n=r),
with: n’ :%W2 '(k—1—dim(B)) and: W, =—4"(0). Thus, n" reflects the loss of

sample size necessary to achieve the improved robustness properties. Finally, they
came up to some conclusions and made a comparison between MDE and weighted

likelihood estimation:
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i. if the weight functions génera_te increasing RAFs, then their method provides a
link between the ML score equation and the MDE equations; otherwise, a
selection criterion is needed to obtain the robust root

ii. their method provides furthermore a set of diagnostic sets
iii. the set of weights are extremely useful in testing goodness-of-fit and estimation.
In a following paper, Markatou (1999b) gave attention to linear regression and

proposed a weighting scheme, where the components of the vector x,, i=1,2,...,n do
not all take the same weight w, , but each component x;, i=1,2,...,n, j=12,..,p is
down-weighted differentially. This is achieved by using a matrix of weights:
W (xi) =diag (w,.,, w,.z,...,w,p)

There exists of a bound on a selected sensitivity and the efficiency of the sub-vector
of parameters of interest is increased. The new estimators are asymptotically normal
and have desirable robustness properties, but they are not invariant to non-singular
reparametrization. This is not necessarily a disadvantage of the estimates, since there
are many practical situations in which invariance might not be a desirable property.

Cantoni and Ronchetti (2001) proposed a class of robust testing procedures
for GLMs. The main idea is that the robust estimation is made via another estimator,
called the Mallows quasi-likelihood estimator. This is the solution of a special case of

the estimating equations: » 4(y,,4,)=0, with ¢ being the Huber function:

-1

v.(r)=

B csign(r), if|r|>c.

r, if |r| <c

These procedures are very reliable in the presence of outlying points and other
deviations from the assumed model. Further research includes the extension of these
procedures to generalized estimating equations and to nonparametric models, like
generalized additive models. However, there are computational problems.

By concluding this subsection, we refer to the paper of Lu et al. (2003), in
which they proposed an estimation approach for finite mixtures of Poisson regression
models based on MHDE. The methodology was also applicable to the standard
Poisson regression model and the MHDE procedure could also be modified for a
zero-inflated Poisson regression, which is a mixture of Poisson regression and a

degenerate component whereby all of its mass is zero (see also B6hning, 1998). They
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developed a computational algorithm in order to extend the HELMIX algorithm of
Karlis and Xekalaki (1998) to the finite mixtures of Poisson regression models
setting. Through Monte Carlo procedures they showed that MHDE is a viable
alternative to the MLE for both continuous and discrete random regressors. The
MHDE outperformed the MLE, when the parameters were not sufficiently separated
or near zero and for the regression coefficients of the component with small mixing
probability, while the MLE appeared to be worse than the MHDE. Finally, a large
sample size generally improved the performance of the estimators, but this might not

be necessarily so, when the parameters were not well separated.

3.3.3. Iteratively Reweighted Estimating Equations (IREE)

As we have already seen for the simple case, where we did not use any
covariates, the equations defined by the MDE are usually non-linear and we have to
apply numerical methods in order to solve them. It is obvious that as the number of
the parameters increase, so does the numerical difficulty. A similar technique to the
IRLS was introduced by Basu and Lindsay (2004) with the major advantage of being
vastly simpler to program. In addition, this new method does not require any matrix

inversion per step and for example in a multidimensional normal model in d

dimensions with p=d+d(d+1)/2=d(d+3)/2 unknown parameters, for
estimating (,X), it requires (p+2) numerical integrations. On the contrary, each
step of the Newton-Raphson method requires (p+1)(p+2)/2 numerical
integrations and the inversion of a p dimensional Hessian matrix.

First of all, for the estimating equation »  A(6(x))Vm,(x)=0, assuming
that Z my (x) can be differentiated under the integral sign, we can write:

ZA(é(x)-—/\)mB (x)

Vm, (x) _

m, (x)

2

for any constant A, or:

where:



This is a weighted version of the estimating equation of the likelihood disparity:
S d(e) o) () Im, (1) -

If m,(x) is in the exponential family and (= (Bl, B,s-res B p) represents the set of the

natural parameters, then a relationship of the following form holds:
Vs (x)
m, (x)

for some functions K and S,, which may depend on . Hence, the i-th equation of

=K(B){S,(x.8)—8)]

the above weighted expression can be written as » - w(x) K (8)[S, (x.8)—8,]|=0 and

thus we arrive at the fixed-point equation 3 =F (B) with:
5 — > w(x)S, (%8
v
The iteration is continued till convergence is achieved. Basu and Lindsay (2004)

referred to this algorithm as the IREE algorithm. When they used A= 4(—1), the

weights w(x) were non-negative, since the RAF A(§) is increasing on [—1,00], and
they referred to this case as the standard IREE algorithm (or the IREE with standard
weights).

Example 1
For the one-parameter exponential family, let = be the mean and V the

variance for the model mg. Then:

Vs, (x) _ (x—n)
m, (x) v

and for p the IREE will solve the equation:

This gives the fixed-point equation for p as:

#:F('U)LZE:SWL((;;).

In general, for a univariate parameter 3 :
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F(8)= nglfi;,ﬂ)’

[S x ﬁ ,3] for some functions K and S.

Vm, (x )
m, (x)

The convergence of the fixed-point algorithm applied to the fixed-point

if

formulation we have already seen, depends on the derivative of F([3) at the solution

and the rate of the convergence is quadratic, if this derivative is zero. If

S, (x,8)=S, (x) is independent of 3, direct differentiation of:

> v(x)S(x.8)
>owlx)

S
combined with the result that at the solution § = F Zw , gives:

)= 2B (86)-5)
> w(x)

F(B)=

at the solution, where:
W ()= 2
op
A nice improvement of the standard IREE is possible, if we allow negative weights.
Basu and Lindsay (2004) referred to the case of A=—1 as the optimal IREE
algorithm (or the IREE with optimal weights).

Through some examples Basu and Lindsay (2004) tried to compare the
several methods. As expected, the Newton-Raphson method converges substantially
faster then the standard IREE. However, it is fair to say that the convergence of the
standard IREE is moderately quick. For the Beran (1977) data, while the standard
IREE requires about 2.5-3.5 times the number of steps needed for the Newton-
Raphson method to converge, overall it only requires just about double the number of
numerical integrations or less compared to what is necessary for the Newton-
Raphson. This is because at each step the standard IREE requires only 4 numerical
integrations whereas the Newton-Raphson method requires 6 integrations involving
much more complex functions. Also, the optimal IREE is far superior to the standard
IREE and comparable to the Newton-Raphson method.
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Remark 10.

Sometimes a small decrease in efficiency of the optimal IREE is observed,
which depends on outliers. The optimal [REE is a quadratically convergent algorithm
only at the model. In terms of real data examples this means that the algorithm waill
perform best, when the data roughly follow the pattern dictated by the model. As an
observation “goes” far away from the bulk of the data and the hypothesized model,
the optimal IREE will need more steps to converge. In fact, the actual MHDE also are
affected most by mid sized outliers. However, when the outlier becomes unacceptable
large, most robust MDE would be able to clearly distinguish it as such and
downweight it almost entirely. The majority of the data (excluding the outlier), which
follow the model closely, would now govern primarily the performance of the
estimator (as well as the IREE algorithm). For large outliers and robust initial
estimates, the weights for values of X around the outlier are practically equal to zero
(either for standard or optimal IREE), so that in extreme cases the algorithm works as

if the outlier was simply not there. Consequently, the algorithm converges quickly.

3.4 MM algorithms

These kinds of algorithms can be thought as a part of the MM algorithms,
which are an extension of the known EM (Expectation-Maximization) algorithm. A
lot of things can be said about EM algorithm, but this is beyond the scope of our work
here. Some central aspects for the reader to refer to EM algorithm can be found in
Dempster et al. (1977), Little and Rubin (1987) and McLachlan and Krishnan (1997).
The main idea is that the EM algorithm is an optimization transfer algorithm that
depends on the notion of incomplete or missing data. On the other hand, MM
algorithms do not involve missing data and Ortega and Rheinboldt (1970) first
enunciated the general principle behind them. Lange ef al. (2000) illustrated in their
article a number of specific examples drawn from the statistical literature. Many
important results emerged from this work and the discussion article that followed by
Leeuw and Michailidis (2000), Wu (2000), Meng (2000), Groenen and Heiser (2000),
Gelman (2000) and Hunter and Lange (2000). One of the topics discussed was the
name itself and probably the most appropriate seems to be “MM algorithms”. In

minimization problems, the first M of MM stands for majorize and the second M for
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minimize. The opposite holds in maximization problems. Generally, MM algorithms

seem to be easier to understand and sometimes easier to apply than EM algorithms.
Since our -work is focused on the Poisson regression model, it is worth

mentioning the basic relevant result. If we have the observation y, for case i, it is

convenient to write the mean de*’

as a function of a fixed offset d, >0 and a
covariate vector x,. If o, are nonnegative coefficients and sum to 1, one method of

constructing a majorizing function depends directly on the inequality:

f[za,v,]sza,f(vf)

defining a convex function f(u). Itis helpful to extend this inequality to:
cw _|c'w

o)<y Ll —u |,

(o) <5 22

when all components ¢, and w, of the vectors ¢ and w are positive. In a medical

imaging context, De Pierro (1995) introduced another method of optimization

transfer. If f(u) is convex, then he invoked the inequality:

b

f(c'v) < Za,.f[%(vi —w,)+c'w

where:

o, >0, Za, =0 and o, >0 whenever ¢, =0.

Furthermore, there are no positivity restrictions on the components ¢, or w,. Since
the function:
f (u) =—de +yu
is concave, this last inequality applies to the log-likelihood:
L(9)= Z(—dieﬂo +y,Ind, + yx/6—Iny, !)'
i=l
In maximizing the corresponding surrogate function, one step of Newton’s method
yields the update:

zm:xij (yi - diex,'o" )

n+1 n 1=
01+ =0, + .

28" 2
Zd,.e' xii/aij
=1
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The reader can ;:onsult Becker et al. (1997) for more details and other results of how

De Pierro’s method operates in GLMs. It is noteworthy that minorization by a
quadratic function fails for Poisson regression, because the functions f (u) do not
have bounded curvature.

In this last paragraph, we shall see how Hunter and Lange (2004) applied the

MM algorithms on a Poisson sports model. If we address back to section 2 and recall

a simplified version of Maher’s (1982) model, then the number of goals scored by

team i/ against team j follows a Poisson process with intensity e, where o, is the

offensive ability for team i and d, is the defensive ability for team j.If § =(0,d) is

the parameter vector, then the corresponding Poisson log-likelihood function is:
1,(6)=p,(0,—d,)—e"™ —Inp,!,

where the parameters should satisfy a linear constraint, such as:

Zo,.+2dj=0.
! J

Also, under the 2 assumptions that:
* Different games are independent of each other and
«  Each team’s goals in a single game are independent of its opponent’s,

the full data log-likelihood is obtained by summing /, (§) over all pairs (i, j). Setting

the partial derivatives of the log-likelihood equal to zero leads to the equations:

ZP,-j ) ZP,-,
and e” L

E e"J’ .
J

Of course, these equations do not admit a closed form solution, so we turn to an MM

algorithm. Hunter and Lange (2004) via a procedure that uses some well-known
inequalities, proved that the updates take actually the form:

J i
ST E il

] i

o™+ = 1

ad  d = In

A good modification of this algorithm is to update the o vector before the d vector

in each iteration, in order to use the updated subsets of the parameters as soon as they

become available. Hence, we could replace the formula for df."'“) above by:
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] Zp"f

d(m+1) == |0

J ) z‘eo’(mﬂudr) g
J

In practice, an MM algorithm often takes less number of iterations, when we cycle
through the parameters updating one at a time than when we update the whole vector
at once. Such versions of MM algorithms are called cyclic MM algorithms and they
generalize the ECM algorithms of Meng and Rubin (1993).
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CHAPTER 4
Application

As we have discussed earlier in Sections 1 and 2, for some reasons we prefer
to fit the Poisson distribution for our soccer data, although we have the suspicion that
the underlying distribution is a (probably small) deviation of it. For soccer data, there
are some references (see Karlis and Ntzoufras (2000, 2003)), which indicate that the
goals scored by each team are slightly over-dispersed. The use of MLE in soccer data
has several disadvantages, so we will try to apply robust methods via the WMLE,
using of course the Poisson distribution. This comes in the wake of Douglas (1994)’s
remark, that short-tailed observed frequency distributions are often well fitted by a
number of different theoretical discrete distributions, with little discriminatory power.
The theory of robustness deals not only with model deviation but also with data
contamination. One of the solutions proposed in the literature is the “correction” of
surprising observations by downweighting data points with large Pearson residuals.

In this Section, we will try to model soccer matches throﬁgh a GLM taking
into account the actual scores and not the outcomes. Generally, this could be very
dangerous, since “unexpected” scores could influence heavily the results. In the
beginning of Section 3, we said that a win with the “unusual” score of 7-0 is not the
same with a win of a more “usual” score such as 1-0, 2-0 or 2-1. Of course, we are not
talking about the points won from that game; we are talking about how strong this
team appears to be and this is measured via its offensive and defensive ability. This
has direct connection to the rating of the teams. Bassett (1997) gave a very good
relative example, where different methods of estimating the parameters of a standard

linear model can produce very different results. Hence, comparing least squares with
least absolute value (or L, ), he found such differences in ratings and relative rankings.
The main cause is, that the least squares can be strongly influenced by a single
observation, since a team’s rating depends on the relative strength of its opponent.
This interdependence combined with the sensitivity of least squares is why only few

“unusual” scores greatly influence the rating estimates.
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4.1 An example

We shall now present a virtual example to show exactly what we mean. In the
season 2004-2005, the schedule of the UEFA Cup changed. After the preliminary
rounds, the best 40 teams are separated in 8 groups of 5 teams. Each team has to face
every other of the 4 opponents, but the innovation is that do not play each other twice.
All the teams have to play against the others only once. The 2 games will be played in
home ground and the other 2 away. The three teams of each group that collect most
points, can continue to the next round.

Let us suppose that one of the eight groups consists of teams A, B, C, D and E.
In Columns 1 and 2 of Table 4.1.1 the matches and the hypothesized results are listed.
Columns 3 and 4 refer to two kinds of weights produced by the WMLE for each score
separately (details will be given later in Section 4.2.2), while Columns 5-7 show the
expected scores from the three cases. We observe that all the weights take values from
0 to 1 and small weights indicate that the scores are “unexpected”. We shall show that
these two different weighting schemes produce different results one from the other
and from the MLE. Especially in this case where the size of the data set is small, only

one or very few “unusual” scores may influence a lot the ratings and the estimates.

Expected Scores
Matches | Scores Yia) Yi2) WMLE | WMLE
MLE | @ ()
A-B 1-5 | 0.838-0.601 | 1.000-0.983 | 1.30-3.58 | 1.27-3.57 | 1.29-3.51
C-D 3-3 | 0.508-0.718 | 0.972-1.000 | 1.63-2.65 | 1.49-2.68 | 1.75-2.66
C-A 4-1 | 0.653-0.824 | 0.998-0.998 | 3.13-1.55 | 3.02-1.48 | 3.19-1.48
B-E 1-3 | 0.823-0.708 | 0.996-1.000 | 1.60-2.49 | 1.49-2.45 | 1.61-2.52
A-E 2-3 | 0.656-0.719 | 0.969-1.000 | 0.99-3.32 | 0.93-3.31 | 1.00-3.45
D-B 3-2 | 0.698-0.766 | 0.998-1.000 | 2.23-1.86 | 2.29-1.76 | 2.32-1.93
D-A 1-1 | 0.607-0.844 | 0.842-1.000 | 2.97-1.15 | 3.10-1.10 | 3.17-1.19
E-C 3-1 | 0.622-0.752 | 0.985-0.965 | 1.83-2.26 | 1.69-2.14 | 1.91-2.21
B-C 1-2 | 0.791-0.730 | 0.983-0.995 | 1.97-2.98 | 1.82-2.91 | 1.95-2.87
E-D 0-3 ] 0.783-0.690 | 0.712-0.996 | 1.36-2.15 | 1.25-2.20 | 1.54-2.20

Table 4.1.1: Final scores and weights and expected scores from the three approaches

For example, for Method I team C is not expected to score 3 goals égainst team D, but
for Method II the less logical score is the one of team’s E, which does not succeed to
score any goal against team D. This probably means that according to Method I and

from team’s C offensive ability in combination with team’s D defensive ability, we
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should expect team C to score fewer goals in the specific match. Similar thoughts can
be made for Method II in the match between teams E and D. We can also observe
many more differences, like for example the game between teams D and B. For
Method II the final result is absolutely expected, since both weights are equal or very

close to 1, but for Method I we cannot draw safe conclusions. The weighs of 0.698

and 0.766 are mid-high values in the space [O,l]. This could be translated as logical

outcome for the match, but we should probably expect fewer goals to be scored. The
two methods will be discussed extensively in paragraph 4.2.2.

Table 4.1.2 shows the full data of the group. Except for the final ranking, the
total points and the number of wins, draws and losses respectively (Columns 2-4), it is

very interesting to take a look at Column 5.

Teams | Ranking | Points | W-D-L | Score Differences’
E 1 9 3-0-1 +2 9-7)
D 2 8 2-2-0 +4 (10-6)
C 3 7 2-1-1 +2 (10-8)
B 4 3 1-0-3 0 (9-9)
A 5 1 0-1-3 -8 (5-13)

Table 4.1.2: Full data of the group

From the total points won, we know which is the true ranking (here, the best team is E
and the worst is A). However, if we rely on the score differences (i.e. the total goals
scored minus the total goals conceded), there seems to be some kind of confusion. In
this case, team D appears as the best one, since it has the biggest (positive) difference,
while the best attacks belong to teams D and C.

Table 4.1.3 shows the model’s (see paragraph 4.2) expected final ranking and
total points gathered. The ranking is of great interest, because it determines the next

round’s opponents for the three teams that will continue to the competition.

Teams | Observed MLE WMLE (w1) | WMLE (w2)
Points Rank | Points Rank | Points Rank | Points Rank

E 9 1 6.644 3 6.532 2 6.909 2

D 8 2 7.780 1 8.143 1 7.779 1

C 7 3 6.679 2 6.530 3 6.448 3

B 3 4 5.418 4 5.308 4 5.573 4

A 1 5 | 1.809 5 1.815 5 1.763 5

Table 4.1.3: Expected ranking and points
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MLE suggests that the best three teams (ordered) are D, C and E. On the other hand,
both Methods I and II of WMLE find as best teams D, E and C. The problem with
MLE is that there is strong dependence on the goals scored. Hence, it chooses as best
team one of D and C, because these two have the best attacks (each one scored 10
goals) and it founds D as the best team, because it has better score difference (+4).
The same procedure is followed for positions 3 and 4 between teams E and B. This
does not happen in WMLE, which clearly find E as the second best team (D is still
expected to finish in the 1% place). Nonetheless, from the (expected) points, teams E
and C are very close for Method I, but for Method II the difference is slightly more

obvious.

4.2 A close look at the Greek League

Data refer to the season 2003-2004 of the Greek National A Division (GNA).
According to Karlis and Ntzoufras (1998), soccer data form a kind of three-way
“contingency table” with counts of the goals scored by team A, against team B,
playing in ground C. The model can estimate the offensive parameters (by the factor
A), the defensive parameters (by the factor B) and the home effect (C).

GNA consists of 16 teams playing with each opponent twice, once at home
and once in away football grounds; so, each team plays 30 total games, 15 in home
and 15 away. The final league consists of 240 soccer games (or 480 observed scores).
Every win gives three (3) points to the winner, every draw one (1) point to each
opponent and if a team looses, gets zero (0) points from that match. The team, which
collects the highest number of points at the end of the season, is the winner of the
league and becomes champion. Positions 2 and 3 are of crucial interest, since they
give the right (including the champion) of playing in the prestigious and profitable
European cup “Champions League” for the following year. Also, positions 4-6 give
the corresponding right for the “UEFA” cup. Finally, for the bottom of the League
table, the two teams that collect the fewest points are automatically relegated to the
lowest division and are substituted in the next season by the two best teams of Greek
National B Division (GNB). There is the rule that the third weakest team of GNA
plays against the third strongest team of GNB. This is a double “fight” in both football

grounds. If it is needed, extra time of 30 minutes is played and if it is not yet clear
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which is the winner, there is the process of penalties. The winning team will play in

the GNA for the following year, while the loosing one will struggle in the GNB.

Ranking Teams Points | Goals | Goal Diff. | W-D-L
01 Panathinaikos 77 62-18 +44 24-05-01
02 Olympiakos 75 70-19 +51 24-03-03
03 PAOK 60 47-27 +20 18-06-06
04 AEK 55 57-32 +25 16-07-07
05 Aigaleo 52 37-26 +11 15-07-08
06 Panionios 47 40-29 +11 12-11-07
07 Chalkidona 45 40-39 +01 13-06-11
08 Iraklis 42 40-39 +01 12-06-12
09 Ionikos 33 33-43 -10 09-06-15
10 Xanthi 30 28-42 -14 08-06-16
11 OFI 29 27-44 -17 07-08-15
12 Kallithea 27 37-42 -05 05-12-13
13 Aris 27 24-46 =22 07-06-17
14 Akratitos 23 31-69 -38 05-08-17
15 Panileiakos 21 28-56 -28 04-09-17
16 Proodeftiki 20 26-56 -30 04-08-18

Table 4.2.1: GNA’s full data

Greek league data were taken by an International Soccer Server web site
available in the URL address http://www.bettinggenius.com. In the Appendix there
is a list of some relative web links. Some basic data are concentrated in Table 4.2.1.
Columns 1-5 show the final ranking of the teams, the points they gathered, they goals
they scored and suffered and the goal difference respectively, while in Column 6 there

are the numbers of wins (W), draws (D) and losses (L) for each team.

4.2.1 Estimating the parameters using MLE

In our application we use the Poisson log-linear model with the form:
y; ~ Poisson (/\U) o

, Lj=1L2,...,p

log(X;)=n+h+o,+d,

where p is the number of the teams in the league, y; and ); are the observed and the

expected number of the goals, respectively, scored by the home team i against the

away team j; p is a constant parameter, 4 is the all teams’ common home effect
parameter, o, stands for the offensive ability of team i/ and d; encapsulates the
parameter for the defensive performance of team ;.
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Table 4.2.2 gives a first insight about the estimating parameters taken from the

model including a constant parameter (intercept 4 ) and this model can be the basis

for predicting future outcomes. Columns 2-4 show the estimated parameters, when the
model uses all the data (240 games). On the other hand, Columns 5-7 show the
estimated parameters, when the model uses the data only from the 1* round (first 120
games). We also fitted the same model but without the constant w . The conclusions
taken from both models are almost identical. The small differences in the coefficients
were in their values themselves and not comparing each other. So, from now on, we

shall not give results for both models but only for the one, which contains 1 .

Using ALL the data Data only from the 1* round
Teams Offensive Defensive Offensive Defensive
(o) () (o) ()

Intercept -0.040 0.007

Home effect 0.370 0.338
Panathinaikos 0.471 -0.682 0.378 -0.528
Olympiakos 0.594 -0.613 0.501 -0.720
PAOK 0.208 -0.301 0.232 -0.372
AEK 0.411 -0.113 0.487 -0.182
Aigaleo -0.033 -0.355 -0.042 -0.617
Panionios 0.050 -0.241 0.151 -0.045
Chalkidona 0.067 0.057 0.028 0.034
Iraklis 0.067 0.057 -0.003 -0.105
lonikos -0.120 0.143 -0.059 0.263
Xanthi -0.286 0.111 -0.266 0.118
OFI -0.319 0.156 -0.210 0.285
Kallithea -0.003 0.173 0.017 0.200
Aris -0.434 0.195 -0.374 0.235
Akratitos -0.074 0.618 -0.268 0.793
Panileiakos -0.262 0.400 0.211 0.409
Proodeftiki -0.337 0.396 -0.783 0.235

Table 4.2.2: Model details

We take the constraint that all the offensive coefficients add up to zero and so

16 16
do the defensive ones (that is, Z ;== Zd, =0) and we can say, that each team is
=1 =1

compared to a hypothesised “average” team, whose coefficients are expected to take

values equal or very close to 0. All 16 teams can also easily be compared each other,
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since large values of o, correspond to teams that have good attacks. One the other
hand, small values of d, belong to the teams with good defences.

According to the model parameters, at the end of the 1% round, Olympiakos
had clearly a better attack and defence than Panathinaikos. It seems though, that in the
2™ round Panathinaikos improved its performance. Thus, at the end Olympiakos had
better attack but slightly worst defence than Panathinaikos, which finished first in the
league. Conversely, during the 1* round, the defence produced by Proodeftiki, Aris
and Akratitos (and only one “step” away Xanthi) were the worst, while the worst
attack came from Akratitos, Panileiakos and OFI. Nevertheless, what it really counts
is the end of the championship. There, it was revealed that the three teams with the
worst defence were Akratitos, Panileiakos and Proodeftiki (all three of them were
relegated to GNB), while Aris, Proodeftiki and OFI had the worst attack. Maybe the
entire above stand up for the fact that the teams should give more attention to their
defences (either by buying good defending players or by putting in practice better
defending tactics on the football grounds). One more final remark is that Chalkidona
and Iraklis seem to be equal in strength. This appears first in Columns 4 and 5 of
Table 4.2.1 and more intense in Columns 2 and 3 of Table 4.2.2. Just to reveal to the
reader this equivalence, we give the corresponding coefficients with bigger accuracy:

Chalkidona : (07,d7)= (0.066855433, 0.05673122)
Iraklis (os,ds) = (0.066857054, 0.05673065).

For practical purposes, when statistical software (supporting GLMs) is not
available, someone can estimate such coefficients as the mean number of goals scored
and conceded, respectively. Norman and Clarke (1995) described a way of calculating
the home effect and the probability of a win via simple packages supporting
probability function calculation. All these calculations do not need special statistical
knowledge and any non-statisticians can easily perform them. Also, the number of
goals scored by a team is a sufficient indicator for the strength of a team, since a team
must score in order to win. Karlis and Ntzoufras (2000) proved statistically this
statement and they actually found high correlations between the final ranking and the
number of goals scored and conceded by each team; hence, the goals scored can be
used in order to determine the performance of a team. Furthermore, it was found that
the distribution of the numb‘er of the goals is slightly over-dispersed relative to the

simple Poisson distribution (see also Karlis and Ntzoufras (2003)).
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From the assumed model, we used the above estimated parameters in order to
generate replications of leagues. The total team points and the ranking of each
replicated league were used to assess the distribution of the final league under the
assumption that the model used is a sufficient summary of reality and the teams have
the same performance as in the observed league. The analysis accounts for corrections
of games that were surprisingly unfair or won by luck. For each data set we simulated
10000 leagues and the predicted results are shown in Table 4.2.3. The model
predicted correctly 106 out of 240 or 44.17% of the total games played.

Model using Model using data
Teams all the data only from the 1* round
Observed | Predicted | Predicted | Predicted | Predicted

Points Ranking Points Ranking Points

01. Panathinaikos 77 02 67.540 02 67.330
02. Olympiakos 75 01 69.861 01 69.475
03. PAOK 60 04 53.702 04 54.013
04. AEK 35 03 55.973 03 55.794
05. Aigaleo 352 05 48.428 06 48.152
06. Panionios 47 06 48.320 05 48.680
07. Chalkidona 45 07 42.387 08 42.049
08. Iraklis 42 08 42.199 07 42.205
09. Ionikos 33 10 35.138 10 35.071
10. Xanthi 30 11 32.479 11 32.245
11. OFI 29 12 30.139 12 31.129
12. Kallithea 27 09 37.654 09 37.681
13. Aris 27 13 27.143 13 27.239
14. Akratitos 23 16 24.259 16 23.976
15. Panileiakos 21 14 25.706 14 25.744
16. Proodeftiki 20 15 24.278 15 24.302

Table 4.2.3: Expected ranking and points

It is clear that Olympiakos (2™ in rank) had a higher expected value of points
than Panathinaikos (which won the championship) and Olympiakos is the best team
with average difference of more than 2 points. This could easily be interpreted, since
Olympiakos had better attack and defence, but lost “important” games against PAOK
(3™ in rank) and AEK (4™ in rank) as someone can see in Table 4.2.4 (Columns 4-7
show which percentage the model gave to each outcome and the possible score). It
should be noted that the 2 games between these 2 challengers of the title ended
without a winner. Also, AEK should had finished 3™ and should play in the place of
PAOK at the Champion’s League in the following year. Proodeftiki, Panileiakos and
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Akratitos are indeed the three worst teams in the league, but they should probably
finish in different ranking. This means that the 3™ from the end should be Panileiakos,
which should be the one (and not Akratitos) with the right to fight with Ergotelis (the
third strongest team of GNB) for a place in GNA for the following year. Finally, there
are some other small differences, but the most impressive is that Kallithea should not

live under constant strain and reach the 9" place instead of the 12"

. SN (N — Probability of | Expected
1 X 2 Score

Panathinaikos-PAOK 3-0 Win 0.63]0.240.13 | 1.65-0.60
PAOK-Panathinaikos 1-2 Win 0281030 042| 0.87-1.14
AEK-Panathinaikos 2-2 Draw 0291027044 | 1.06-1.38
Panathinaikos-AEK 2-1 Win 0.670.20|0.13 | 1.99-0.73
Olympiakos- Panathinaikos 1-1 Draw 0471029024 1.27-0.83
Panathinaikos -Olympiakos 2-2 Draw 0431030027 1.21-0.88
PAOK-Olympiakos 0-2 Win 0.27 {028 | 0.45| 0.93-1.29
Olympiakos-PAOK 1-2 Loss 067021012 1 .87-0..64
AEK-Olympiakos 0-1 Win 028 [ 025 0.47 | 0.14-1.56
Olympiakos -AEK 0-1 Loss 071 0.18 | 0.11 | 2.25-0.78

Table 4.2.4: “Important” games for the 2 challengers of the title

From Table 4.2.3, we observe that the model performs well regarding the
teams in the middle of the League Table, but there are déviations at the two edges of
it. More specifically, according to the model, the top teams seem to have more points
in reality that they should really get, while the opposite happens for the worst teams.
This is shown clearly in Figure 4.2.1, where the observed points won by the teams are
plotted against the expected points including the straight line for the perfect fit. The
first teams are indeed above that line, while in the middle things seemed to be
relatively satisfactory and the last teams go below the line. We have already said
much about robustness theory and this is absolutely relevant to it, since we assume a
model, but there is possibly some deviation from it. Also, in Figure 4.2.2 we make the
graphical representation of the absolute values of the differences between these points

(which give the residuals of the model, in a sense) and there is obviously a U-shape.
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Figure 4.2.2: Existence of U-shape in the residuals of the model
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As we said before, the model could predict correctly 106 out of 240 total
played. It is very interesting to see how these predictions are distributed. The three
possible outcomes are represented as 1 for a home win, X for a draw and 2 for an
away win. The first two rows of Table 4.2.5 show how close was each predicted
number of an outcome to what really happened. Our model predicted that there should
have been 114 home wins, 55 draws and 71 away wins, but the true numbers were
115, 56 and 69 respectively. The point that is of great interest for most is the second
part of Table 4.2.5; Rows 3-4 show that the model predicted correctly 53.91% of the
total home wins (62 out of 115), 23.21% of the total draws (13 out of 56) and 44.93%
of the total away wins (31 out of 69). This fact is a clear indication that this model (as
most of the statistical models) lacks in the prediction of the draws, although it does a

fairly good job with the wins (either home or away).

Outcomes 1 X 2

Observed number 115 56 69

Predicted number 114 55 71

Number of correct predictions 62 13 31
Percentage of correct predictions | 53.91% 23.21% 44.93%

Table 4.2.5: Predictions of the model for the three outcomes

A very important issue is also the goodness-of-fit of the model. Discrete data
allow calculating probabilities of single outcomes after the model has been estimated.
For count data models, we can use the predictions to evaluate the goodness-of-fit (see
also Winkelmann (2003)). A related procedure for the Poisson model is based on the

Pearson statistic:

K - (J’i"';\i)z
P—g—& :

where y, are the observed values and X,. the predicted ones. If the Poisson model is

Zn:(yi —/\i)z//\i

i=1

correctly specified, then it holds £ [( V= /\,.)2 / )\,] =1,s0 E =n. In

our case, we found P = 385.4258 <480 =n, so the Poisson assumption is valid.
Coming back to the results of our model, in the top half of Table 4.2.6 we can

see the distribution of ranks after using all the data for the two edges of the League

Table. According to this, Olympiakos should have been the champion, since it had
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higher probability to win the league than Panathinaikos. The case of any other team to
win the championship is infinitesimal. The three last columns show the probability of
ending up in the last place (1), in the last two places (2) or in the last three places (3).
The probabilities of Columns 2 and 3 add up to 1, of Column 4 to 2 and of Column 5
to 3. Combining columns 3-5, someone can find Akratitos as the worst team, which is
consistent with Table 4.2.3. Proodeftiki seems indeed to be the second weakest team,
while Panileiakos fills the triad of the weakest links of GNA. Also, the bottom half of
Table 4.2.6 gives the distribution of ranks for the model after using the data only from

the 1* round. The results from these two halves of Table 4.2.6 are very similar.

ALL THE DATA
Probability Probability | Probability | Probability
Teams Of' of of of
Winning Relegation Relegation Relegation
The Champion (0] 2 3)
Panathinaikos 0.3829
Olympiakos 0.5806
Other team 0.0325
Kallithea 0.0059 0.0214 0.0516
Aris 0.1375 0.3076 0.4809
Akratitos 0.2852 0.4991 0.6626
Panileiakos 0.1899 0.3917 0.5698
Proodeftiki 0.2694 0.4872 0.6625
DATA ONLY FROM THE 1* ROUND
Probability Probability | Probability | Probability
Teams of of of of
Winning Relegation Relegation Relegation
The Champion (0)) 2) 3)
Panathinaikos 0.3803
Olympiakos 0.5830
Other team 0.0367
Kallithea 0.0061 0.0216 0.0514
Aris 0.1348 0.3001 0.4670
Akratitos 0.2839 0.4986 0.6705
Panileiakos 0.1951 0.3910 0.5748
Proodeftiki 0.2699 0.4923 0.6668

Table 4.2.6: Probability of ranks after using all the data and the data only of the 1*
round (the three last columns differ to the number of the worst teams)
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ALL THE DATA
T Probability of Expected Probability of
Teams T ending up in the R ending up in the
Observed position Expected position
Panathinaikos 01 0.3829 02 0.4788
Olympiakos 02 0.3408 01 0.5806
PAOK 03 0.2591 04 0.2802
AEK 04 0.2516 03 - 03618
Aigaleo 05 0.2143 05 0.2143
Panionios 06 0.1947 06 0.1947
Chalkidona 07 0.1839 07 0.1839
Iraklis 08 0.1797 08 0.1797
lonikos 09 0.1552 10 0.1705
Xanthi 10 0.1416 11 0.1715
OF1 11 0.1409 12 0.1595
Kallithea 12 0.0749 09 0.1725
Aris 13 0.1620 13 0.1733
Akratitos 14 0.1635 16 0.2852
Panileiakos 15 0.2018 14 . 0.1781
Proodeftiki 16 0.2694 15 0.2178

Table 4.2.7: Probability of observed and expected ranks after using all the data

It would also be very interesting to see the probability for each team to get a
specific position in the League Table. Column 3 of Table 4.2.7 gives the probabilities
of getting the actual final positions. On the other hand, Column 5 of Table 4.2.7 gives
the probabilities of getting the positions that the model predicted. For once more, we
verify our former results. Panathinaikos should have finished in the 2™ place instead
of the 1* (47.88%>38.29%). Olympiakos deserved to win the championship instead of
ending up behind Panathinaikos (58.06%>34.08%). The team with the right to take
part in the preliminary round of the next season’s Champions League should have
been AEK (36.18%>25.16%) and not PAOK (28.02%>25.91%). Kallithea had much
bigger probability of finishing in the gth place instead of the 12" (17.25%>7.49%) and
Akratitos had greater chance to finish last in the League than 14™ (28.52%>16.35%).
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One of the big disadvantages of MLE is that it is completely model dependent.
This means that there is strong dependence on the goals scored and the choice for
ranking teams is basically made via attacking performances. Since we suspect that we
should not have much faith in MLE, we changed by purpose only 1 match event to see
what would happen. We changed the easy win of Olympiakos against Akratitos;
instead of the large score 7-0 we let Olympiakos win Akratitos only 1-0. Olympiakos
would take again 3 points from the win and Akratitos none. Note that now the

marginal differences (see Column 4 of Table 4.2.1) would be +45 for Olympiakos and

+44 for Panathinaikos.

Teams Probability of Expected | Expected
Winning The Champion | Ranking Points
Panathinaikos 0.4730 2 67.736
Olympiakos 0.4772 1 67.739
Other team 0.0498

Table 4.2.8: Results from MLE after changing only 1 observation

The results from Table 4.2.8 are impressive! Olympiakos is still expected to end up in
the 1% place, but now we cannot be so sure. The gap between the two teams’ expected
points narrowed from (69.861-67.540=) 2.321 points to (67.739-67.736=) 0.003
points! Furthermore, Olympiakos cannot any longer be seen as the “certain”
champion, since the probability of winning the championship reduced from 58.30% to
47.72%, while it increased for Panathinaikos from 38.03% to 47.72%, respectively.
Our model could predict what could happen in a specific match day, since we
know and use all the former information. Table 4.2.9 shows a typical example. We
use all the available data from the 1* round and we try to predict what will happen in
the following day, which is the 1* day of the 2™ round. Of course, this can be done for
every match day. If we use the biggest probabilities as the critetion to predict the
outcome, then our model is still correct something less than 50%. Of course, we
should not rely on these probabilities, because this is not the right way to decide. For
example, the probability of Iraklis winning OFI is the biggest in their game and takes
the value 39%. But the probability of Iraklis not winning OFI is
32%+29%=61%>39%. So, it is not very safe to predict based on the biggest
probability. After all, most models have the disadvantage of not being able to predict
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a draw. Maybe the most predictable draw here could be the match between OFI and

Iraklis, since all three probabilities are close each other.

oll:;[:::::lssszgfes Pgec(:)irc;: 4 e (i wins) | P(draw) | P(j wins) gl:lsti;vnig
Kallihea: 0] 1601 g5 | 025 | o024 | 2
ey 120|032 0.29 0.39 X
Ai;?iz % 3I§§ 0.52 0.27 0.21 X
Akraﬁtr;: 3 }:g; 0.51 0.24 0.25 1
Challdona: 21 22 o | oas | o1 |
g ol e 0.21 0.12 2
Py o 05| om | 026 | s | X
Panathiil(:lnlsc}:;i (1) (1)3; 0.11 0.23 0.66 2

Table 4.2.9: Observed and predicted values for the 16™ day

Finally, Figures 4.2.3 and 4.2.4 show how the 16 teams’ coefficients change
through the time and more precisely through the 2" round after we have used the data
only from the 1* round. The data were updated from match to match. These two
figures give justify to our suspicions about the change in the teams’ performances in
the 2™ round. For example, Figure 4.2.3 show clearly the gradual improvement in
Panathinaikos’ offensive ability, while Olympiakos’ attack generally improved, but
this was not a stable improvement. Some kind of crisis in the attack of Olympiakos
appeared around 21% and 24™ match days. At the bottom of the League Table and for
the 2" round, Panileiakos and Proodeftiki had big problems with their attacks, but
Akratitos; players could find the nets more easily. On the other hand, in Figure 4.2.4
we can see that Panathinaikos had a very reliable defence, Olympiakos was not again
stable in his defensive performance this time and Aris defending performance was
probably the reason, which kept the team away from relegation (recall that teams with

good defences have small values of d,).
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Figure 4.2.3: The offensive coefficients of all teams through the 2™ round

90



Panathinaikos Olympiakos

/ i~ >~

5 !
L ?
5 10 15 5 10 18
defensive ability defensive ability
PAOK AEK
=)
o
8 8
Q <
5 10 15 5 ,10 15
defensive apility defensive ability
Aigaleo Panionios
8
\\—“ o /\/-—— A
& = 8
< K
5 10 15 5 10 15
defensive ability defensive ability
Chalkidona Iraklis
’>)
b .
/ 2 x-\
o Ead _F'_._'_._,.-"'-‘—\_._-_
oy Q P
o
) 10 15 5 10 15
defensive ability defensive ability
lonikos Xanthi
o 8
o (=]
8 S
5 10 15 5 10 15
defensive ability defensive ability
OFI Kallithea
@«
o~ o]
o N
o

A

|
.
/

5 10 15 5 10 15
defensive ability defensive ability
Aris Akratitos

065 085
035 050

5 10 15 5 10 15
defensive ability defensive ability
Panileiakos Proodeftiki

005 00
032

l e
T ee—f

5 10 15 10 15

defensive ability defensive abiiity

Figure 4.2.4: The defensive coefficients of all teams through the 2" round

91



4.2.2 Estimating the parameters using WMLE
Just before we present two relevant methods, we shall make some important
remarks about the weights that we shall use. Basu and Lindsay (1993b)’s IRLS is the
nucleus of our application and the estimation for each parameter is given by:
B =XW, X[ XW,Y.

The criterion for the algorithm to stop comes through the relationship:

max|G8,, — 6| <107°.
Number Estimated
Function
Of Iterations | Value Of A
MLE 2 1.310
MHD 21 1.291
NEYMAN 3100 1.128

Table 4.2.10: Estimated A after using RAFs

According to Lindsay (1994), the estimating equations for A have the form
> " A(8(x))Vm, (x)=0, where A(6) is the RAF. The first thing to be solved is

which RAF we should use. As we have said before, MHD has very good robust
properties for outliers (while the NE for example is the best for inliers), so this could
be a natural choice. Through the IRLS we compared the weights defined by the RAFs

using MHD and Neyman’s function. Our data set consisted of all the goals achieved

in the league and we assumed that these were generated from a Poisson(/\) without

using any covariates at this time. The aim was to find which RAF could estimate A
faster and more precisely. We gave a starting value of 2 for A\ in the algorithm and
convergence was achieved, when the difference between two consecutive steps was
less than or equal to 107°. Table 4.2.10 indicates that the MHD is more appropriate to
work in the following, since it gives an estimation close to the MLE (which obviously
converges in exactly 2 steps) and in a much more smaller number of iterations than
Neyman’s RAF. From the same table, we also make the assumption that the goals
scored for the year 2003-2004 in the GNA came from a Poisson distribution with

estimating parameter close to 1.3 or from a (possibly small) deviation of it.
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At this point, we should make some remarks about the weights. These decline
smoothly as the residuals depart from 0 to —1 or 400 and take the maximal value of 1
when the residuals are 0. An observation that is consistent with the assumed model
receives a weight of approximately 1. On the other hand, a weight of approximately 0
indicates that the observation is highly inconsistent with the model. The final weights
indicate which of the data points were downweighted in the final solution relative to
the MLE. The corresponding to each observation weight depends on:

(1) The score itself
(i1) [f the score belongs to a home or away team

(ii)  The team itself

Weights

Team i Team j Score Method I Method 11

w, w, w, w,
Aigaleo AEK | 0-1 0.799 0.845 | 0.773 1.000
Akratitos Aris | 1-0 0.835 0.888 | 0.998 0.805
Chalkidona Panileiakos | 1-3 0.771 0.199 | 0.960 0.601
OFI Panathinaikos | 1-3 0.743  0.635 | 0.987 0.980
Olympiakos Akratitos | 7-0 0.515 0964 | 0.977 0.953
Proodeftiki Olympiakos | 1-0 0.795 0.454 | 0995 0432
Olympiakos Panathinaikos | 1-1 0.845 0.838 | 1.000 1.000
Panathinaikos Olympiakos | 2-2 0.712 0.564 | 0.992 0.929

Table 4.2.11: Some weights for specific games

Consider now the model with covariates. Table 4.2.11 provides some
examples at games and the associated weights for the observations. About (i), both
matches between Olympiakos and Panathinaikos ended in a draw but with different
scores. We see that all four weights are different, which means that_ scores themselves
affect the weights. Regarding (ii), the first two games have the same scores but in
“different” playing grounds. This means that the home ground is an important factor
for determining the weights. For example, it was not so unexpected for Aigaleo to
score a goal in home against AEK as it was for Aris to score a goal in Akratitos’ home
field. As for (iii), both Panathinaikos and Panileiakos succeeded to take an away win
of 1-3, but the corresponding weights are totally different. The two games have the
same scores in “similar” playing grounds, but they belong to different teams This

happens, because Panileiakos is almost for sure unexpected to score 3 goals against
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Chalkidona, but Panathinaikos had better chances of doing that against OFI. We also
give the corresponding weights for Olympiakos’ two “unexpected” results in home
and away fields, which is assort of combination of the three above cases. According to
Method I, Olympiakos should not have scored so many goals against Akratitos
(despite the facts that Olympiakos had the better attack in the league and Akratitos
was finally relegated). Similar to this, both methods indicate that Olympiakos should
have scored one or more goals against Proodeftiki. It is very interesting to take a first
look in the differences that appear in the weights for the two methods. These two

kinds of weights depend on the residuals, which are defined right in the following.

Method I
One fundamental drawback in Lindsay (1994)’s approach for our application

is that we cannot use the Pearson’s residuals:

5(1)= :ﬂ(g) L

The problem arises at the numerator d (t), which is the proportion of observations in

the sample with value equal to . We cannot find such frequencies, because each team

has different o, and &, and for every combination of these covariates used in the

model, there is only 1 observation. It is clear that such residuals are not suitable for
every situation and mainly in the continuous case. Such problems are referred in the
literature and many authors propose several methods and solutions. In order to

surmount this obstacle, Basu and Lindsay (1994), formulated their thought of

estimating d (t) via a kernel density estimator, which could treat continuous data.

This idea was widely used by many researchers, as Agostinelly and Markatou (1998),
Markatou et al. (1998) and Markatou (2000).

Let us recall that the kernel density estimator has the general form:

F=13 kA

i=1

where h is a smoothing parameter (called the bandwidth) and K () is a kernel

function (the appropriate one here is the Poisson kernel). Since in our case it holds

that n=1, h=1 and each point x represents the goals y,, one possible form of the

residuals (after estimating the numerator by the number 1) could be:

94



-1, £=1,2,...,480.

I

The numerator implies that there exists exactly 1 observation from the specific

distribution (in the denominator). In other words, we observe this specific observed

score y, , given that this number comes from a Poisson (), ).

In Table 4.2.12 and Figure 4.2.5 we can briefly see how the residuals and the
weights are distributed. There are indeed some outliers but most of the data points are
(as it 1s logically expected) consistent with the assumed model. One score is totally
unexpected (the 3 goals scored from Panileiakos against Panathinaikos) and three or

four more observations have obviously smaller weights than the others. Table 4.2.13

presents these games.

Min Max Median Mean
Residuals 1 0.1959 | 1177.417 2.309 8.23
Weights 1 0.05741 | 0.9927 0.7973 0.7615

Table 4.2.12: Summary of residuals 6, and weights (Method I)
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Figure 4.2.5: Weights’ graphical representation (Method I)
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Matches with the most | Predicted | Observed . .
Residuals | Weights
unexpected results Scores Scores
Panathinaikos 3.18 6 15.746 0.429
Panileiakos 0.18 3 1177.417 - 0.057
Iraklis 1.31 6 519.872 0.086
Aris 0.48 0 0.609 0.955
Panileiakos 0.88 0 1.401 0.874
Kallithea 1.09 5 233.661 0.126
Akratitos 1.17 2 3.721 0.709
AEK 2.34 7 136.327 0.163
Chalkidona 1.99 1 2.685 0.771
Panileiakos 047 3 89.748 0.199

Table 4.2.13: Residuals and weights of the most outlying observations (Method I)

Using ALL the data Data only from the 1* round
Teams Offensive  Defensive Offensive Defensive
(Oi) (d,.) (0) ()

Intercept -0.173 -0.102
Home effect 0.414 0.360
Panathinaikos 0.561 -0.889 0.459 -0.843
Olympiakos 0.709 -0.632 0.624 -0.752
PAOK 0.266 -0.332 0.287 -0.381
AEK 0.475 -0.057 0.503 -0.133
Aigaleo -0.006 -0.326 -0.011 -0.583
Panionios 0.064 -0.235 0.135 -0.044
Chalkidona 0.096 0.062 0.043 0.027
Iraklis -0.009 0.054 -0.007 -0.041
Ionikos -0.132 0.206 -0.144 0314
Xanthi -0.267 0.131 -0.248 0.125
OFI -0.355 0.182 -0.244 0.292
Kallithea -0.052 0.214 0.024 0.244
Aris -0.541 0.105 -0.490 0.223
Akratitos -0.035 0.645 -0.211 0.781
Panileiakos -0.454 0.408 0.013 0.450
Proodeftiki -0.321 0.463 -0.731 0.326

Table 4.2.14: Model details (Method [)

The corresponding to MLE Table 4.2.2 for the Method I of the WMLE takes

the form of Table 4.2.14. There are some obvious differences. The first one is that

according to the model parameters, Olympiakos had indeed the best attack, but

Panathinaikos had clearly the best defence of the League. On the other hand, during

the two rounds, the three bottom teams had the worst defences, while there is some

kind of deviance regarding the worst attacks; at the end of the 1* round the worst
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attacks came from Proodeftiki, Aris and Xanthi (or OFI), while at the end of the
season Aris, Panileiakos and OFI had the worst attack: Finally, the value of the
constant moves away from zero and the home effect is slightly bigggr.

We simulated 10000 leagues using the above estimates and the predicted
results are shown in Table 4.2.15. In this case, the model came up to the striking

correct prediction of 124 out of 240 or 51.67% of the total games played!

Model using Model using data
Teams all the data only from the 1* round
Observed | Predicted | Predicted | Predicted | Predicted

Points Ranking Points Ranking Points

01. Panathinaikos 77 02 70.141 02 70.550
02. Olympiakos 75 01 70.761 01 70.906
03. PAOK 60 04 55.248 04 54.741
04. AEK 55 03 55.485 03 55.531
05. Aigaleo 52 06 47.380 06 47.622
06. Panionios 47 05 48.123 05 47.942
07. Chalkidona 45 07 42.851 07 42.574
08. Iraklis 42 08 40.310 08 39.980
09. Ionikos 33 10 34.083 10 33.900
10. Xanthi 30 12 32.571 11 32.804
11. OFI 29 11 29.696 12 29.989
12. Kallithea 27 09 35.545 09 35.376
13. Aris 27 13 27.398 13 27.748
14. Akratitos 23 14 25.737 14 25.584
15. Panileiakos 21 16 22.918 16 23.310
16. Proodeftiki 20 15 24.207 15 24.612

Table 4.2.15: Expected ranking and points (Method I)

The results are similar to those of Table 4.2.3, but there are again some
differences. The only and probably imperceptible disadvantage in Table 4.2.15 is that
the confusion from the 1% round for places 5-6 there still exists at the end of the
season, while this is solved in Table 4.2.3. We could say that some kind of
improvement appears in the first two places. Olympiakos keeps the higher expected
value of points than Panathinaikos and Olympiakos is the best team but with average
difference of only 0.62 points. Similar results hold for AEK and PAOK. However, the
big advantage is that the 3™ worst team (Akratitos) takes the place that it “deserves”.
Thus, Ergotelis should face Akratitos for a place in GNA (as it really happened).
Panileiakos and Proodeftiki are the two worst teams in the league, but the difference

between them is now more visible. The rest are very alike (including Kallithea).
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ALL THE DATA
Probability Probability | Probability | Probability
Teams of of of : of
Winning Relegation Relegation Relegation
The Champion (1) 2) A3)
Panathinaikos 0.4729
Olympiakos 0.5132
Other team 0.0139
Kallithea 0.0108 0.0353 0.0812
Aris 0.1054 0.2108 0.3772
Akratitos 0.1303 0.2906 0.4485
Panileiakos 0.3892 0.6135 0.7578
Proodeftiki 0.2305 0.4490 0.6260

Table 4.2.16: Probability of ranks after using all the data (Method I)

Table 4.2.16 gives the distribution of ranks for the model after using all the
data for the two edges of the League Table. According to this, Olympiakos should
have been the champion, since it had higher probability to win the league than
Panathinaikos, whose probability is increased in comparison to Table 4.2.5. There is
also a very small chance for some other team to win the league. From columns 3-5,
Panileiakos appears as the worst team, which agrees with Table 4.2.15. Proodeftiki is
the second weakest team, while Akratitos fills the triad of the weakest links of GNA.
Also, Table 4.2.17 gives the distribution of ranks for the model after using the data
only from the 1* round. Column 2 shows for once more, that Panathinaikos improved

its performance in the 2™ round.

DATA ONLY FROM THE 1* ROUND
Probability Probability | Probability | Probability
Teams of of of of
Winning Relegation Relegation Relegation
The Champion (1) (2) 3)
Panathinaikos 0.4786
Olympiakos 0.5071
Other team 0.0143
Kallithea 0.0099 0.0372 0.0798
Aris 0.1151 0.2615 0.4271
Akratitos 0.1223 0.2824 0.4497
Panileiakos 0.3873 0.6100 0.7601
Proodeftiki 0.2326 0.4464 0.6170

Table 4.2.17: Probability of ranks using the data only of the 1% round (Method I)
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The updated probabilities of the three possible outcomes for the 16™ day are

shown in Table 4.2.18. As someone can see, there are not big differences. We could

only mention that the two obvious expected wins of Chalkidona and Panathinaikos

against Proodeftiki and Xanthi respectively are even more apparent and that the match

between OFI and Iraklis becomes more in the balance.

ogls[:::gsssi:ges Pl;c(:)ircet:d P(i wins) | P(draw) | P(j wins) %?lsteczvn:g
K‘i"iﬁfﬁiﬁ 1 (1):‘9”1; 0.51 0.26 0.23 >
=R M| 03 031 0.36 X
Aigfefi % (1)% 0.53 0.27 0.20 X
Akra;?tz:; ?) (1)‘91(1) 0.49 0.27 0.24 1
g?:cl)lslledf(t)lnl:: % g:ég 0.74 0.17 0.09 1
Obympiakos: 11 1851 g6 | 021 | om | 2
P o %] o8 | 0| es | x
panaﬂﬁﬁnﬂfgii 1 Ves| 008 0.23 0.69 2

Table 4.2.18: Observed and predicted values for the 16" day (Method I)

Method 11

In this second method, we propose an alternative estimator of the numerator.

We think of how the kernel works in practice and we give an “extra” weight exactly

at the observation, while we smooth this weight in an area around the observation.

Hence, the residuals could be further updated as:

P .
PdYe) 4 ka0
P(y2.)
Min Max | Median | Mean
Residuals 2 | 0.0000002809 | 65.7683 | 0.3283 1.137
Weights 2 0.2297853 1.000 0.9825 | 0.9309

Table 4.2.19: Surhmary of residuals 6, and weights (Method II)
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Figure 4.2.6: Weights’ graphical representation (Method II)
Matches with the most | Predicted | Observed Residuals | Weights
unexpected results Scores Scores

Panathinaikos 3.49 6 1.098 0.904
Panileiakos 0.30 3 65.768 0.230
Iraklis 1.62 6 31.379 0.321
Aris 0.64 0 0.901 0.925
Akratitos 0.58 0 0.788 0.936
Panathinaikos 3.03 0 19.739 0.391
Proodeftiki 0.55 1 0.163 0.995
Olympiakos 2.80 0 15.498 0.432
Panileiakos 1.18 0 2.255 0.801
Kallithea 1.41 5 14.467 0.444
PAOK 2.73 0 14.327 0.446
Proodeftiki 0.51 0 0.672 0.949
Olympiakos 2.48 0 10.944 0.494
AEK 0.81 1 0.021 1.000

Table 4.2.20: Residuals and weights of the most outlying observations (Method II)

In Table 4.2.19 and Figure 4.2.6 we can briefly see how the residuals and the
weights are distributed. All the descriptive statistics for the weights take larger values

than in Method I and furthermore they can take the maximum admissible value of 1.
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There are still some outliers and the bulk of the data points are (as it is logically
expected) consistent with the assumed model. For once more, the 3 goals scored from
Panileiakos against Panathinaikos is a totally unexpected number and there is a group
of probably six more observations with obviously larger residuals than the others. In
Table 4.2.20 the reader can see these games and the differences with Table 4.2.11 are
not only in the values of the residuals and the weights but also in the games
themselves.

Table 4.2.21 shows the updated model parameters. The results are similar to
those of Table 4.2.15 and we can just notice that the parameters of the top teams seem
to be slightly downweighted towards 0. In Table 4.2.22 there the predicted results
after the simulation of 10000 leagues using the above The model predicted correctly
120 out of 240 or 50% of the total games played. The confusion for places 1-2, 3-4
and 5-6 appears again and from the data of the 1¥ round the three worst teams are

almost equivalent.

Using ALL the data Data only from the 1% round
Teams Offensive  Defensive Offensive Defensive
() (d;) (o) ()

Intercept -0.034 0.017
Home effect 0.372 0.331
Panathinaikos 0.493 -0.815 0.442 -0.731
Olympiakos 0.635 -0.613 0.561 -0.716
PAOK 0.236 -0.301 0.267 -0.350
AEK 0.434 -0.064 0.480 -0.152
Aigaleo -0.017 -0.331 -0.013 -0.578
Panionios 0.078 -0.207 0.156 -0.031
Chalkidona 0.059 0.059 0.018 0.034
Iraklis 0.020 0.054 -0.017 -0.080
Ionikos -0.094 0.160 -0.059 0.252
Xanthi -0.276 0.107 -0.263 0.114
OF1 -0.317 0.150 -0.230 0.274
Kallithea -0.040 0.179 -0.019 0.186
Aris -0.462 0.123 -0.392 0.226
Akratitos -0.065 0.650 -0.232 0.789
Panileiakos -0.352 0.418 0.062 0.455
Proodeftiki -0.331 0.430 -0.760 0.308

Table 4.2.21: Model details (Method II) 0 —
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Model using Model using data
Teams all the data only from the 1* round
Observed | Predicted | Predicted | Predicted | Predicted

Points Ranking Points Ranking Points

01. Panathinaikos 77 02 69.698 02 69.790
02. Olympiakos 75 01 70.522 01 70.536
03. PAOK 60 04 54.792 04 54.458
04. AEK 55 03 55.460 03 55.403
05. Aigaleo 52 06 48.192 06 48.366
06. Panionios 47 05 48.933 05 48.400
07. Chalkidona 45 07 41.702 07 41.950
08. Iraklis 42 08 41.348 08 41.388
09. Ionikos 33 10 35.906 10 35.620
10. Xanthi 30 11 33.103 11 32.468
11. OFI 29 12 31.066 12 30.646
12. Kallithea 27 09 36.278 09 36.622
13. Aris 27 13 28.374 13 28.548
14, Akratitos 23 14 23.987 15 24.126
15. Panileiakos 21 16 23.590 16 24.113
16. Proodeftiki 20 15 23.744 14 24.223

Table 4.2.22: Expected ranking and points (Method II)

ALL THE DATA
Probability Probability | Probability | Probability
Teams . Of. . . of S .
Winning Relegation Relegation Relegation
The Champion 1) (2) 3)
Panathinaikos 0.4502
Olympiakos 0.5261
Other team 0.0237
Kallithea 0.0084 0.0261 0.0656
Aris 0.0879 0.2188 0.3752
Akratitos 0.2693 0.4989 0.6796
Panileiakos 0.2781 0.5065 0.6877
Proodeftiki 0.2744 0.5027 0.6829

Table 4.2.23: Probability of ranks after using all the data (Method II)

For Method II, Table 4.2.23 gives the distribution of ranks for the model after
using all the data for the two edges of the League Table. It agrees with the belief that
Olympiakos should have been the champion and that Panileiakos was the worst team,
Proodeftiki the second weakest team and Akratitos the third weakest team of GNA.
However, the “weird” thing is that the data only from the 1** round (Table 4.2.24)

indicate Akratitos as the second worst team of GNA. This is something that we had
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seen in the MLE. Panileiakos was the worst team and Proodeftiki the third weakest
team of GNA.

DATA ONLY FROM THE 1* ROUND
Probability Probability | Probability | Probability
Teams . Of. of . of of
Winning Relegation Relegation Relegation
The Champion (1 2) 3)
Panathinaikos 0.4438
Olympiakos 0.5348
Other team 0.0214 .
Kallithea 0.0075 0.0291 0.0637
Aris 0.0895 0.2149 0.3730
Akratitos 0.2705 0.5008 0.6850
Panileiakos 0.2796 0.5094 0.6896
Proodeftiki 0.2668 0.4912 0.6729

Table 4.2.24: Probability of ranks using the data only of the 1* round (Method II)

The new updated probabilities of the three possible outcomes for the 16™ day

are shown in Table 4.2.25. The differences for once more are small.

il T ey Py P [
Kallihea: 01 158 os0 | 025 | o025 | o
e 5| 1| 03 | o» | x| X
Ai;‘;iﬁ % (l):gg 0.53 0.26 0.21 X
Akraf?tr;z 3 i:gg 0.53 0.24 0.23 1
g?féﬁff?ﬁ % ?):3?1 0.73 0.17 0.10 1
Olymgflgﬁi : (1):22 0.68 0.20 0.12 )
P?Jﬂfﬁﬁi 8 (1)128 R 0.25 0.56 X
Panathi)rfe?irlfg; " (1):4712 0.09 0.22 0.69 2

Table 4.2.25: Observed and predicted values for the 16" day (Method II)
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Method I Vs Method I1

First of all, the two methods are very similar and produce alike results. If we
compare at start Figure 4.2.5 with Figure 4.2.6, we can see that both methods find
easily the two most outlying observations. But after that, Method I identifies maybe
four more obvious outliers, while Method II shows a group of at least six (or even
more than ten) data points with large residuals. From these figures, we can see that the
bulk of the data points are (as it is logically expected) consistent with the assumed
models. From Tables 4.2.18 and 4.2.25 the two methods produce almost identical
probabilities for a typical match day, which agree a lot with those given by the
bookmakers (see Table 4.2.28).

Model using all the data
League Table Predicted
(Ranking) & Points
Observed Observed MLE WMLE
Ranking Points Method I | Method IT
(01) Panathinaikos 77 (02) | 67.540 | (02) | 70.141 | (02) | 69.698
(02) Olympiakos 75 (01) | 69.861 | (01) | 70.761 | (01) | 70.522
(03) PAOK 60 (04) | 53.702 | (04) | 55.248 | (04) | 54.792
(04) AEK 55 (03) | 55.973 | (03) | 55.485 | (03) | 55.460
(05) Aigaleo 52 (05) | 48.428 | (06) | 47.380 | (06) | 48.192
(06) Panionios 47 (06) | 48.320 | (05).| 48.123.| (05) | 48.933
(07) Chalkidona 45 (07) | 42.387 | (07) | 42.851 | (07) | 41.702
(08) Iraklis 42 (08) | 42.199 | (08) | 40.310 | (08) | 41.348
(09) Ionikos 33 (10) | 35.138 | (10) | 34.083 | (10) | 35.906
(10) Xanthi 30 (11) | 32.479 | (12) | 32.571 | (11) | 33.103
(11) OFI 29 (12) | 30.139 | (11) | 29.696 | (12) | 31.066
(12) Kallithea 27 (09) | 37.654 | (09) | 35.545 | (09) | 36.278
(13) Aris 27 (13) | 27.143 | (13) | 27.398 | (13) | 28.374
(14) Akratitos 23 (16) | 24.259 | (14) | 25.737 | (14) | 23.987
(15) Panileiakos 21 (14) | 25.706 | (16) | 22.918 | (16) | 23.590
(16) Proodeftiki 20 (15) | 24.278 | (15) | 24.207 | (15) | 23.744

Table 4.2.26: Comparison of MLE and WMLE (including both methods)

However, there are some few and possibly critical differences, which make us
believe that Method I is slightly better than Method II. The most obvious one is the
total number or the percentage of the correct predicted games. Also, Akratitos in
Table 4.2.15 goes safely away from the last two places, but in Table 4.2.22 this
distance is not so big and the data of the 1* round imply that Akratitos should be in
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the 15™ place. From the same tables, Olympiakos is better team than Panathinaikos
with average difference of 0.62 points in Method I and 0.824 points in Method II. We
should not forget though, that Panathinaikos was the true champion. This means that
we would like to find that Panathinaikos is the best team; if not, it would be desirable
the difference from Olympiakos to be as small as possible. In the same logic for the
two major challengers of the title, the probabilities in Table 4.2.13 are more
acceptable than those of Table 4.2.23. A last disadvantage of Method II is that the
data of the 1* round indicate Akratitos as the worst team (see Table 4.2.24), while
Panileiakos is steadily the worst team for Method I (see Tables 4.2.16 and 4.2.17).

All the above are briefly summarised in Table 4.2.26. For once more it is sown
that the model performs well in the middle of the League Table, but there are
deviations at the two edges of it. According to the model, the top teams in GNA seem
to have more points in reality that they should really get, while the opposite happens
for the worst teams (see Figure 4.2.1). Also, the graphical representation of the
residuals of the model (i.e. the absolute values of the observed points minus the
expected points) shows an obvious U-shape (see also Figure 4.2.2). This is a clear
indication that there must exist a deviation of the model we assumed and that is why

we used robustness methods.

4.2.3 Challenging the bookmakers

We must mention that our model did not come up for betting purposes, but as
it appears, the bookmakers use similar models. Many bookmakers in the website gave
quite the same estimated probabilities to ours. Everyone who deals with the betting
market sees the inconsistency of soccer bets, since outcomes with small probabilities
give small returns. The challenge is to find “good” bets, in which the bettor suspects
that the probability of occurrence of an outcome is bigger than the probability
determined by the bookmaker’s odds, giving a positive expected return. According to
many persons’ belief, the realistic case is the one in which someone should try not to
gain as more money as he can, but to limit his loss. Only few, highly skilled and
selective bettors, who can reach a level of 55% or maximum 60% accuracy against the

bookmakers, achieve a successful strategy for a possible small or no profit.
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Day 16° Bookmakers’ odds

Matches Bookmaker GB Bookmaker IW Bookmaker SB
H | D|A|H[D]J]A|H][D]A

Kallithea

Vs 200 3.00 335|190 3.00 330 | 2.05 3.10 3.20
Ionikos
OF1
Vs 230 3.05 2.75| 230 3.00 260|225 320 275
Iraklis
AEK
Vs 1.50 345 575 | 1.55 3.30 480 | 1.44 3.75 6.00
Aigaleo
Aris
Vs 1.50 345 575 | 145 340 540 | 1.40 3.75 6.50
Akratitos
Chalkidona
Vs 1.60 330 500 | 1.50 340 500 | 1.53 3.50 5.25
Proodeftiki
Olympiakos
Vs 140 375 700 | 140 3.60 6.00 | 144 3.60 6.50
PAOK
Panileiakos
Vs 250 3.00 250 | 245 290 245 | 250 3.10 2.50
Panionios
Xanthi
Vs 550 335 1.55 | 540 350 145 | 550 3.40 1.53
Panathinaikos

Table 4.2.27: Odds given by different bookmakers in the website for the 16™ day

Finally, we quote the predictions given by three different known bookmakers
in the website for the 16™ day. Table 4.2.28 shows what everyone can see in a usual
betting coupon. GB stands for the URL address http://www.globet.com, [W for
http://www.interwetten.com and SB for http://www.sportingbet.com. Someone
could use such odds and then construct a coupon of his own with probabilities. We

linked the two coupons through the following relationships: Let O, , O, and O, be

the three odds for a home-win, a draw and an away-win respectively, then the

corresponding probabilities are given by:

1 1 1
0, 0 0, 0, T e o)
1+~ 4 1+—2 4 1+ 24 4

OD OA OH OA OD OH

under the assumption, of course, that the game is fair.
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Day 16"

Bookmakers’ probabilities

Matches

Bookmaker GB

Bookmaker IW

Bookmaker SB

H

D

A

H

D

A

H

D

A

Kallithea
Vs
Ionikos

0.44

0.30

0.26

0.45

0.29

0.26

0.43

0.29

0.28

OFI
Vs
Iraklis

0.39

0.29

0.32

0.38

0.29

0.33

0.40

0.28

0.32

AEK
Vs
Aigaleo

0.59

0.26

0.15

0.56

0.26

0.18

0.61

0.24

0.15

Aris
Vs
Akratitos

0.59

0.26

0.15

0.59

0.25

0.16

0.63

0.23

0.14

Chalkidona
Vs
Proodeftiki

0.55

0.27

0.18

0.55

0.27

0.18

0.58

0.25

0.17

Olympiakos
Vs
PAOK

0.63

0.24

0.13

0.62

0.24

0.14

0.62

0.25

0.13

Panileiakos
Vs
Panionios

0.353

0.294

0.353

0.352

0.296

0.352

0.355

0.28

0.355

Xanthi
Vs
Panathinaikos

0.16

0.27

0.57

0.16

0.25

0.59

0.16 026 0.58

Table 4.2.28: Corresponding probabilities for the bookmakers’ odds for the 16™ day

From the odds of Table 4.2.27 we are driven to Table 4.2.28, which gives the

probabilities after using the three above equalities. These probabilities give a good

proof of how well our model works or actually of how close it is to the bookmakers’

belief. Against our model, all these bookmakers predicted that Panileiakos and

Panionios seemed to be equivalent for the win of the game. However, for the other

match in the balance between OFI and Iraklis, the bookmakers gave the biggest

probability to the home team, while our model gave it to the hosted team. Hence,

these could be some hints to suspect a possible draw, since this is the most difficult

outcome of the three to predict, as we have said before.

In the end, we mention that we programmed several routines in order to

extract numerical results, which can come up at the reader’s disposal. We chose to

work in the R “environment”.
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CHAPTER 5

Conclusions

Although at the beginning of its history the statistical community did not give
much attention to soccer, later on the statisticians found this area, and sports
generally, as a blooming field for applying statistical methodologies and developing
methods for dealing with athletic data. Section 2 shows clearly that the number of
publications scaled up, perhaps due to the growing popularity of soccer or even to the
birth of powerful computers, which permit the calculation of extremely complicated
models.

A first issue that could be debatable is which distribution we should use,
because different distributions could fit soccer data sets well. Moroney (1956)
declared that the Poisson and even better an allied distribution, the Negative Binomial
distribution (NBD), are the most appropriate to find the probability of winning a
game. A major differentiation raised by Maher (1982), who observed that each match
had a different fitted Poisson distribution. The choice of either the NBD or the
Poisson distribution concerned Baxter and Stevenson (1988) and other statisticians,
who concluded that after 1970 both distributions are adequate for soccer data. Hence,
someone might prefer the Poisson distribution, because it appears less complicated.

Our approach assumes that the goals scored by each team are independent.
This sounds paradoxical, since the two teams act and compete together. Practice has
shown that usually the correlation is relatively small (and statistically not significant).
Karlis and Ntzoufras (2003) used a bivariate Poisson distribution with its extensions
and defined more general models in order to cope with excess of draws and
correlation observed in certain championships. Their models could indeed predict
more precisely the draws and allowed for better fit of soccer data, because they could
handle both correlation and over-dispersion. Here, we do not extend to so complicated
models and we restrict to the simple Poisson distribution.

In practice, it was found that the Poisson and the NBD were very close to each

other. We prefer to fit the Poisson for our soccer data, since among other advantages
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this distribution has a formal theoretical basis and is naturally used for events that
occur randomly at a constant rate to the observed time period. In addition, as shown
by goodness-of-fit test based on Pearson’s residuals, our model fitted well the data
and the need for a more complicated model, as the NBD, was non-existent.
Nonetheless, we have the suspicion that the underlying distribution is not exactly this
one, but a (probably small) deviation of it. Using a robust estimation method, such

small deviation can be handled successfully.

Poisson NBD Over-dispersion
A AN | B p B | B P B
1 0.1090.593 0367 0.040|0.593 0.367 0.040 1.01
1 0605|0441 0342 0.2170.443 0.341 0.216 1.05
1 1.201|0.305 0.289 0.406 | 0.311 0.289 0.400 1.10
1 1.345|0.278 0.275 0.447 | 0.288 0.275 0.437 1.15
1 2406 0.140 0.176 0.684 | 0.153 0.182 0.665 1.20
1 1.250]0.296 0.420 0.284 | 0.311 0.405 0.284 1.25

Table 5.1: Poisson Vs NBD; probabilities of outcomes in a hypothetical match

In Table 5.1 we give an example, where the two distributions are compared.
We suppose that team i plays against team j and the parameter )\ of the Poisson
distribution is supposed to be equal to 1 for team i, while the other parameter for

team j takes several values. Firstly, we fitted the Poisson distribution and we found
the three probabilities F,, P, and P, for the three possible outcomes of the game,

which are the win, the draw and the loss respectively for team i. Next, we fitted the
NBD with the same parameters and allowing a small over-dispersion. We can clearly
see, that the new probabilities are quite the same to those that came from the Poisson
distribution. Some differences begin to appear, only when the over-dispersion
becomes larger, but a value like 1.25 or more is not usually true for soccer data.
Hence, although our data might be slightly over-dispersed relative to the Poisson
assumption, the differences are small. For all the above reasons we chose to work

with the Poisson distribution.
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A secoﬁd issue 1s the structure of the model. Since we deal with count data, we
used a generalized linear model with the Poisson distribution underlying, of course.
There seems to exist a “home effect”, while the presence of the constant parameter
and the interpretation of all the coefficients depend on the constraint. We take into
account the different abilities of both teams in a match and we separate each team’s
ability into “offensive” and “defensive”. The insuperable difficulty is that no model
can fully embody several other aspects, such as psychological factors or the referee
effect.

Under Douglas’ (1994) thought and our suspicion, we apply robust methods
using the Poisson distribution. The need for such an approach arose, since the theories
of parametric models were only approximations to reality and it was not clarified,
whereas certain assumptions were fulfilled. The two desirable features of robustness
is that, it deals firstly with model deviation and secondly with data contamination.
One solution is the “correction” of surprising observations by downweighting data
points with large Pearson residuals. During 1964-1981 Huber’s researches constituted
the pattern in robust theory. Many years later, Lindsay’s (1994) paper engaged in a
very important function, called “residual adjustment function” (RAF) in order to find
the key structural element that links ML and other distances and disparity measures
such as the “minimum Hellinger” distance (MHD). His goal was to measure the
robustness properties of MHD estimation. Many interesting and important articles
followed. In our work we focused on the “Iterative Reweighting Least Squares”
(IRLS) algorithm used by Basu and Lindsay (1993b). See also an improved algorithm
in Basu and Lindsay’s (2004) paper.

In this report we applied a log linear model with the inkling of a possible
existence of outlying observations. We did not rely on MLE, which could give very
misleading results. Indeed, we gave an illuminating example where after changing
only 1 observation (by arbitrarily downweighting it), the results from MLE changed
completely. Nevertheless, we presented several results (such as estimated parameters
and expected ranking and total points) through MLE just to have a measure for
comparison. Also, we showed in two figures how all the teams’ coefficients were
changing through the 2™ round of the champion, after having used the data only from
the 1* round.

Hence, we were based on more robust methods by using WMLE. At first, with
the contribution of several RAFs, we estimated the value of the parameter A\ for the

111



underlying Poisson distribution. We chose to work with MHD, but we had problem in
using Pearson’s residuals as Lindsay (1994) did. The basic drawback was the
estimation of the numerator for the Pearson’s residual. Several authors have
mentioned relevant problems, which become clearer in the continuous case. There are
several methods, like the kernel density estimators, which treat continuous data, but
the scope of our work was not to resort to such methods. Instead, we proposed two
different methods (which were grounded on IRLS and IREE) by just thinking of how
the kernel density estimators work. Their only difference was in the definition of the
residuals. A first sign that we were in the right way came from the fact, that the bulk
of the data points were consistent with the assumed model(s). The two methods
produced similar results and mush better than those of MLE, as expected. Both
methods locate easily the most outlying observations. However, there are some few
and possibly critical differences, which indicate that the first method is slightly better

than the second one.

We shall now discuss some issues that can be studied more extensively and we
suggest refinements for further improvement. For example, we assumed that the
Poisson distribution is adequate for describing soccer data by exploiting the offensive
and defensive abilities of the competing teams. The Poisson distribution is very
simply to be applied via standard statistical software, while the NBD demands more
intensive computations and special programming for estimating the model parameters.
The choice of Poisson distribution against the NBD still concerns some statisticians.
Up to 1970 there were strong grounds for preferring the NBD and thereafter the
Poisson seemed adequate. For some (known or unknown) reasons this could change
again. According to many fans of the sport, the gap between the strong and the
weakest teams is narrowing. The year of 2004 is a fine example, since an outsider,
Porto, won the Champions League (against Monaco) and the Greek National Football
Team conquered the Euro Cup. The point is that a distributions which fitted the data
well for the last 30 years or more, might not be appropriate for the future.

Another point for further research in our work is the definition of the residuals.
The residuals from a robust fit show outliers and the proper random variability of the
“good” data much clearer than from least squares, which tend to smear the effect of
outliers over many data points and makes their detection more difficult. We proposed
two methods, where we gave two estimations of the numerator for the Person’s
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residuals used by Lindsay (1994), which could be refined. Someone could find
different estimates of the numerator either by a thought like ours or by using similar
estimators as for continuous data, such as kernel density estimators. Both ways appear
quite challenging and they could probably improve our results.

We mention that our model did not come up for betting purposes, but as it
appears, the bookmakers use similar models and their estimated probabilities for the
three possible outcomes of soccer games are quite the same to ours. Everyone who is
knowledgeable about betting market sees the inconsistency of soccer bets, since
outcomes with small probabilities give small returns. The challenge is to find “good”
bets, in which the bettor suspects that the probability of occurrence of an outcome is
bigger than the probability determined by the bookmaker’s odds, giving a positive
expected return. Thus, we challenge the interested reader and anyone who deals with
such issues to develop refined models, which could be very useful devices for this
purpose.

Finally, we underline the importance and the more general use of WMLE. A
lot can be said about robustness in GLMs and the treatment of other distributions
except for Poisson. Here, we have just seen an application to soccer data, but the
methodology stands for every occasion in which “strange” observations can distort the
results by using MLE for example. It is well known that the MLE of the unknown
parameters are explicitly model-dependent and as such are heavily criticised as being
non-robust. The WMLE method is a fine alternative and someone could use the
WMLE for more general data, such as in Economics, Biometrics, Psychology and

many other areas of scientific research.
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Appendix I

Web resources

This page will give to the interested reader some web links to soccer pages.

S ) ] Linf .
» The FIFA official web site:
http://www fifa.com

* The UEFA official web site:
http://www.uefa.org

» The results of all European cups:
http://www.europeancups.bravepages.com

* The results of the National championship of several countries
http://www.rsssf.com/ec/

» Several data and statistics:
http://www.soccerstats.com

*  Other data about soccer:

http://www.soccerway.com

Statistics i 1 betti

» Statistical community and journals:
http://www statsci.org
» Software on-line in order to perform prediction:
http://users.aol.com/soccerslot/forthdim.html
* Betting odds:
http://www.bettinggenius.com
* A site permitting to bet on-line:

http://www.betandwin.com
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Appendix 11
The contribution of Ancient Greece

in history of soccer

This page shows a marble relief from the National Museum of Archaeology in
Athens; a Greek athlete balances a ball on his thigh, supposedly demonstrating a

training technique to a boy. This very same image is nowadays featured on the

European Cup trophy.

Episcyros played by the ancient Greeks and Harpastum played later on by the

Romans can count themselves as the ancestors of the modern form of soccer.

: NEM/z,
AR LY
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Appendix 111

The reaction of World’s media for the

Greek success in the Euro Cup (2004)

This page shows what reported some of the media in the entire world about the

Greek National Football Team after winning the Euro Cup 2004 (Portugal).

uro 2004

o

e

@

Greece's improbable but deserved victory at UEFA EURO 2004™ has stunned the whole
of Europe. It's not a dream. Greece are the champions! Charisteas's goal made eleven
million Greeks the happiest nation in the world. The 4th of July must be Greece's new
national holiday. Otto's warriors marched on to a surprising but well deserved triumph.
Eusébio was among the spectators and he would probably have needed to come on to the
pitch if his compatriots were to ever get past the resilient Greek defence. That defence
was the best at EURO 2004 and no one could beat them. Sensational.

(Bulgaria - Meridian Match)

Greece are European champions! Believe it or not! Sensational, a real football miracle,
unbelivable. Otto Rehhagel set the unbreakable defence and Greece deserved this
unbelievable triumph. Like before at EURO 2004, Greece played with very high
discipline, and with a strong and solid defence they didn't allow Portugal to get near their
goal and produce any serious threat. Figo and company were weak, short of ideas and
creativity. The Greeks were like football gods at the Luz last night.

(Croatia - Sportske novosti)

Charisteas sent shockwaves through the 62,000 in Estadio da Luz in Lisbon, as he headed
the ball powerfully past the Portuguese keeper Ricardo. The Greek way of playing may
and will be criticised but, the fact is, this underestimated Greece team are European
champions."

(Denmark - Ekstra Bladet)
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A tear flowed down the face of the beautiful game last night. An evening that was heaven
Jor Hellas will be remembered as a triumph of tactics over instinct, of set-piece
preparation that saw Angelos Charisteas head the Greeks, the 100-1 outsiders as EURO
2004 opened, to the most improbable of victories. If Greece's moment in the international
sun was a success for organisation, good coaching and supreme fitness, last night's
showdown of European football will trigger too many laments.

(England - Daily Telegraph)

Greece, heroes of a modern mythology, caused one of the biggest surprises ever in
Sootball history at the Luz stadium. Winning the EURO 2004 final against the arch-
Sfavourites of Portugal, Otto Rehhagel's players achieved their Olympus. Their success
can be compared with Uruguay's victory against Brazil in the 1950 World Cup or
Germany's win over Hungary in 1954 or even to Denmark's achievement at EURO 92.
(France - Le Parisien/Aujourd'hui en France)

50 years after the 'Wunder von Bern', Otto Rehhagel led Greece to the biggest sensation
in the history of the European Championship. A goal from Bremen striker Angelos
Charisteas on 57 minutes gave the Hellenic outsiders a surprising 1-0 win over favourites
Portugal. The 15,000 Greek fans among the 62,865 spectators in the sold-out Estddio da
Luz celebrated their side's first-ever trophy in a major tournament as Portugal failed to
avenge their 2-1 defeat in the opening match.

(Germany - Frankfurter Allgemeine Zeitung)

Just think - had Russia converted a single chance of the many they created against
Greece the future winners would have been stopped in their tracks. But there is no sense
in recalling that now. Let us think about another thing - that 65-year-old Otto Rehagel is
the main hero of the championship. He did not possess the strongest team in the
competition, but it proved not to be decisive. Because this team had the wisest and the
most cunning head coach, a head coach-who outplayed everyone.

(Russia - Sport-Express)

Greece are champions of Europe. Believe me, it is not a dream. It is true, it is a reality.
The captain, Theodoros Zagorakis, the best player in the stadium, raised the cup to the
sky in Lisbon. These celebrations may be the first and only ever time for the Greeks.
Angelos Charisteas was already the hero against Spain and France and, from yesterday,
he is the seventh Greek god. Zeus, Apollo, Hermes, Ares, Poseidon, Ifestos, now
Charisteas.

(Spain - Marca)

Greece are the top team. The genius behind Greece is already royalty in Germany. It is
King Otto, who has for a long time demonstrated his ability of saving teams that appear
to have lost before the start of the game. He was unpopular in Greece for a long time but
by making them Europe's top football nation last night, King Otto has become royalty in
another football kingdom. He is the man who achieves the impossible.

(Sweden - Aftonbladet)

The sensation is complete: football minnows Greece have beaten Portugal 1-0 in the
European Championship final. Angelos Charisteas scored the golden goal. Exactly 50
years to the day after the 'Miracle of Berne'’, when Germany beat Hungary 3-2 in the
World Cup final, football has written a new fairy tale - this time the 'Miracle of Lisbon’. It
is even more remarkable than the 1992 European Championship (which had only eight
teams), when Denmark became European champions after coming straight from their
holidays because Yugoslavia were unable to take part.

(Switzerland - Blick)
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