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ABSTRACT

Chrissanthi Seizi

“A Comparative Study of Divergence Measures Used in Image

Segmentation”
June 2005

The problem described in this thesis is a general problem of image
segmentation when images come from a thermal video sequence taping human
subject(s). Our goal is (in real time) to isolate, within each frame, the pixels
indicating human body.

Using the temperature value of each pixel (recorded by the thermal
camera), we will describe two methods which will allow us to segment the
first frame of the video. Then, a dynamic process will take action in order to
categorize the pixels of each of the subsequent frames to the appropriate
class.

A series of different distance and discrepancy measures can be used in
the dynamic approach. Theoretic properties regarding several measures will
be provided, along with their specific forms under special distributional
assumptions of the study. Apart from that, the issue on how to update the
parameters in a mixture after collapsing some of their components will be
covered as well.

This work will conclude by applying and judging upon their
performance, several of the aforementioned techniques in a short thermal

video clip.






IIEPIAHYH

Xpvoavin Zeiln

“LZouykprrikny Medétn Métpov Amdxhong mov Xprowporolovvrat
otnv Kararpunon Ewévag”
Iobvviog 2005

To mpéPAnpa mwov meprypdpetar e avtn tn dwtpiPry eivar éva yeviko
wpoPAnua xatdTunong sikévag, tav M ekdéva mpoépyerar and pia Oeppikn
Bivteo eyypapn avlpdmov(wv). xomdg pag eivar (oe mpaypatikd ypdévo) va
anopovodoovpue, o€ kdbe ewkdva, Tig yneideg (pixels) mov avaloyodv o710
avlpanivo chpa.

Xpnowonowdvtag 11 Oeppoxkpacia Mg kdBe ynoeidag (n omoia
xatayphoetar and v Osppikn kapepa), Oa meprypdyovpe 0o pedddovg o1
onoieg Ba emrpéyovv v katdTunon TG TPAOTNG £kévag Tov Pivieo. Ev
ovveyeia pe 1 Pondeia prag dvvapikig dwadikaciag 8a katnyoproroovvIAL OL
ynoeideg kaBepldg and T1g enepyOpUeveG €1KOVEG Tov Pivteo otV KATAAANAn
KAGOT.

M oeipd and dra@opeTikég LETPNOEIS ATOCTACE®V KAl ANOKAICEQ@V
unopovv va ypnotpononboivv otn Suvauikn Swadwkacia. Bswpnrikéc 1816meg
oV aPopovv diapopeg perpnosig Ba avaeepBovv, pali pe 11g e1d1kég HopoEg
wov Aappavouv kGtw and ovykekpipéveg vrobéoelg katavopdv. IIépav
0070V, Ba avagepOei kol To Oépa TOV TOG AVAVEDVOLUE TIS TOPARETPOVS
piag pi€ng oy nepintwon mov cvyyovedovue kamwota péAN NG,

H mapodoo epyacia 8o nepatwbdei pe v e@appoyn} Kol Tn GLYKPLTIKN
perétn, andédoong drapdpawv TEXVIKOV ToV £xovV avaeepbei mapandve ot éva

ovvtopo Beppikd Piveo.
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CHAPTER 1

INTRODUCTION

The problem described in this thesis is a general problem of image
segmentation when images come from a video sequence. In order to describe
the problem a little bit more extensively, we can say that a video sequence
consists of N frames where in each frame/image we have rxc pixels, with r
and ¢ corresponding to the number of rows and columns respectively. The
data values available to us, are the temperatures of each pixel and based on
these we are interested in classifying each pixel of every frame into one of the
two broad categories that we will call skin and background.

In practice it turned out that the class of background pixels was
consisting of two subclasses: the actual background pixels (referring to the
environment around the subject) and the skin pixels covered by clothes,
whose temperatures were higher than the actual background pixels but lower
than the subject’s (uncovered) skin pixels. Thus, we decided to work with
three categories, calling the new one, grey zone.

Our method is similar to Grimson’s at al (1998) method in the sense
that we also use a multi-Normal representation at the pixel level. However,
this is where the similarity ends. We, just like Morellas at al (2003), use an
expectation-maximization (EM) algorithm to initialize our models. However,
incontrast to Morellas at al (2003) who then use just the Jeffreys divergence,
we then use several divergence measures as the matching criterion between
Normals of incoming pixels and existing model Normals.

So, initially, in chapter 2, we will try to partition the first frame in
three (non-overlapping) areas corresponding to skin, background and grey
zone through model based clustering. This will be attempted by two different

cluster analysis techniques. The first one is k-means which manages to split



the image in three areas committing each pixel to one particular group.
However, we would rather assign each pixel with probability to all of the
groups and that is attempted with the second technique: the EM algorithm.

After this, each pixel x, of the first frame is considered to be a mixture of the

three Normal distributions:
X, ~ w,N(,ul,of)+ szCle,af)+ w3N(/13,0'32)
So, from the application of EM algorithm on the first frame’s pixels we
take estimators [, f,, i, 67, G2, 61 for the parameters u,, 4,, /s, 0, 05,
o} of the mixture of distributions. Those estimators are the same for all of

the first frame’s pixels.

Of course, in what follows, each pixel x; of the following frames is
also considered to be a mixture of three Normal distributions, but as we will
mention in what follows, the parameters of the mixture are different for each

one of the pixels of the following frames.
We then, in chapter 3, start the process of awareness of next frame’s

pixels. We need to classify the pixels of incoming frames to one of the three
Normal distributionsN(pl,a'f), N(;lz,af), N(/13,0'32). We assume that every
new pixel comes from a Normal distributionN(,up,o-f,), where x4, is the

actual value of the pixel’s temperature and a; is a (known) value related to
the camera’s accuracy. We then measure how close is the distribution of the

incomin ixel Nlu ,o0%) to the three existing distributions Nly,,o?),
g p P ? 1 1

Nu,,02), N{u;,02). Several distance and divergence measures are presented
and applied in this chapter. The incoming pixel is then ascribed to that

Normal from which it desist less.

When we have founded the one of the three Normal distributions
Ny, 02), Nlu,,02), N(/Ja,af), say N(g,o?) which is the ‘closest’ one to
the distribution N('up,af,) of the incoming pixel, the incoming pixel
contributes to the process of awareness of the parameters of N@i,a,z).
NCu,,az) and N(,up,az) are approximated by a single Normal component.

i P

The next issue to be clarified is what will be the parameters (weight, mean



and variance) of this new updated distribution. We present, in chapter 4, the
method of moments in updating those parameters and we propose some other
formulas as well. When the procedure is applied to all »xc¢ pixels of second
frame, the three distributions accounting for each pixel are different from the
distributions accounting for another pixel.

The process of awareness is applied to all subsequent frames of a short
video clip. The parameters of the mixture of the three Normal distributions
accounting for a pixel in a frame are now different from the parameters of the
mixture accounting for the corresponding pixel of another frame. Then, the
performance of different methods is judged in chapter 5. Finally, the Matlab
code used along with a short description is presented in an appendix.

We should make a discussion here about the parameters of the three
Normal distributions accounting for a pixel. Those parameters are initially the
same for all of the first frame’s pixels but when the algorithm continues the
things change. It would not be correct to have the same value for all the skins
temperatures because in fact there are certain areas in the face (for example
the areas around the veins) which have larger temperatures than other areas of
the face. So, except for the first frame, in all the other frames the mixtures of
Normal distributions accounting for each pixel are different.

Moreover, because of the fact that the subject is not static through the
video, it is moving; some pixels can change from background to skin or grey
zone and reverse. So, the parameters are reset in every frame and the
algorithm is award of the new areas to which the pixels move.

We could then say that one of the important advantages of the
algorithm is that everything is being examined pixel wise and it thus makes
global fit versus local fit.

In what follows the algorithm which has been applied is given with all

its steps.

Step 1: We apply k-means on first frame’s pixels.

Step 2: We use the k-means estimates as initial values in EM which is applied
on first frame’s pixels. EM provides estimators w,, w,, W,, &, Ay, s, Or»

G;, 6} about the weights, means and variances of the three distributions



which stand for skin, background and grey zone. Those estimators are the
same for all of the pixels of te first frame.

Step 3: We take the second frame’s pixels and assume that every new pixel

comes from a Normal distribution N(,up,af,), where u, is the actual value of

the pixel’s temperature and O'f, is a (known) value related to the camera’s
accuracy. For each pixel we calculate the distance of distribution N(,up,a;)

from each one of the Normal distributions N(;z,,af), N(,uz,azz), NCu3,a;).
Each pixel is then assigned to that distribution from which N(/IP,O';) desists

less.

Step 4: For each pixel of second frame we allow N(/zp,crf,) to contribute to
the process of awareness of the parameters of N(,u,,af), which is the

distribution from which N(up,az) desists less. This updating of the

P
parameters is being happened according to the method of moments but we
also present some other formulas too. After this step, the parameters of the
three distributions accounting for each pixel are different from the parameters
of the distributions accdunting for another pixel.

Steps 3 and 4 succeed each other for all of the rest frames. Every time, for

every frame, the assumed distributions of the incoming pixel N(;zp,a;)
contributes to the awareness of the parameters of N(,u,.,a,z) from which

N(/zp,crf,) desists less. After this, the parameters of the three Normal

distributions accounting for a pixel in a frame are different from the
parameters of the mixture accounting for the corresponding pixel of another

frame.

Step 5: The obtained results are checked. We choose an area which in all
frames includes skin pixels and count the number of pixels of the last frame
which were assigned to each of Normal distributions accounting for human

body, background and grey zone.



CHAPTER 2

INITIALIZATION

2.1 Introduction

In the first frame of the sequence we have a rxc¢ matrix of continuous
data (temperatures) and we need to derive a method which will split this
image in three (non-overlapping and possibly non continuous) areas
corresponding to skin, grey zone and background. In other words we need to
cluster the ‘similar’ pixels in three groups, or to put it differently, we need to
classify each pixel in one of the three clusters. This can be done in several
ways. In what follows we will present two different cluster analysis
techniques that can be employed here: the k-means and the EM method. We
will provide the theory for these methods and then we will apply the two
algorithms in the short thermal video data. The comparison of the two

methods on these data will conclude this chapter.

2.2 K-means

K-means method assumes that the number (k) of clusters is known a
priori. Although this is generally quite restrictive, in our problem we have

already decided to use three clusters, so this is not an issue here.



2.2.1 The method.

The method operates iteratively. It starts using k observations as
centroids of the clusters and then calculates the distance of each observation
from the k centroids. Each observation will be assigned to the centroid, from
which the distance is minimum. When all the observations have been assigned
to one of the k centoids, i.e. the k initial clusters have been created; the new
centroid of each cluster is calculated as the mean value of cluster’s
observations. The same procedure is repeated until there is no difference in

the centroids between two iterations.

2.2.2 The distance in k-means method.

In order to calculate the distance between two observations here we
will just mention, that there are several measures of distance that can be used.

The most widely used is the Euclidean distance:
£ 2
d(x,y)= > (x, - ) (2.2.2.1)
i=1

where, x = (xl,xz, ..... ,xp) , y= (yl,yz, ..... ,yp) the two observations.

2.2.3 The initial centroids.

There are several algorithms that can be used to calculate the initial
centroids. The choice of one of them depends on the nature of the problem
and the data. Software packages have automated procedures for selecting the
initial centroids.

The free choice of initial centroids is a major disadvantage of the
method. Different choices can lead to totally different clusters. This means
that choosing different points as initial centroids, one can find completely
different solutions at the end of the algorithm. The best thing one can do is to

test several observations as initial centroids and choose those ones that finally



give the “best” cluster representation of the data. The general philosophy in

the literature is that the initial centroids have to be chosen to be as far from

each other as possible.
2.2.4 Algorithm’s termination.

Another point of concern is the algorithm’s terminating condition. Or
in other words when it can be said that there is no much difference between
two iterations? Again, the answer depends on each case’s needs. Usually a
“small” tolerance number will be defined and we terminate the iterations

when all successive centroid differences are smaller than this tolerance

number.
2.2.5 The algorithm’s rate of convergence.

K-means method is a fast algorithm and usually only a few iterations
are needed. When appropriate initial centroids have been selected, the clusters
created from the first iterations are very similar to the final solution; the
differences exist only to those few observations which are among two
clusters. So, there is no need for a large number of iterations. This property

makes k-means to be appealing when we have large data sets.

2.2.6 Other properties.

Another property of the algorithm according to Karlis (2004) is that the
clusters created contain approximately the same number of observations.

Moreover, it should be noted that the clusters are always convex, non

overlapping sets.



2.3 EM algorithm

In our problem, the results provided by k-means method were good
enough, but not exciting. That is because with this method each pixel is
committed to one particular of the three groups. We would prefer to assign the
observations with probability to a group and then define some threshold
which will determine the status of a pixel. If we account three Normal
distributions,N(;z,,af), N(,az,azz), N(y3,0'32) for the three groups of pixels
(human body, background and grey zone), each data point should ideally be
partially committed to all of the existing distributions. The level of each
distribution’s commitment should be described by appropriate weighting

factors. In other words, each pixel x; of the first frame will be considered as
a mixture of the three Normal distributions:

x, ~ w,N(,ul,a,Z)+ sz(yz,azz)+ w3N(;13,o~32)
where, w, 20 and Zw, =1.

In order to calculate the distributions’ parameters, which will be

represented from now on by the vector ¢ = (wl,wz,/zl,/zz,af,af )T, we will use
the EM algorithm. LEM algorithm for this particular application has been
formulated in the past by Hasseblad (1966, 1969). A short description of this

method is as follows.

2.3.1 The method.

EM algorithm is an iterative algorithm, which was originally suggested
by Dempster, Laird and Rubin (1977) and it was proposed for the computation
of maximum l‘ikelihood estimates when missing cases exist. Many additional
details and aifernatives are discussed by McLachlan and Krishnahn (1997). It
proceeds iteratively in two steps; the Expectation or E-step and the
Maximization or M-step (it is due to those two steps that the algorithm is
named EM algorithm). The EM method uses tﬁ"—eﬂobAserved data to obtain a

value of the estimate that maximizes the log likelihood



n k
L (¢)=Zlog(z w,f (x,. /9, )), where f (xi/ ¢j) is the probability density of the
i=l =

data and with ¢ = (w,,..w,,d,,..4, ) we symbolize the parameters we have to estimate.

Although it could be claimed that it is just a numerical maximization

method, the EM algorithm has many applications mainly because of its

amazing statistical interpretation and the simplification of problems it

provides.
The EM algorithm is applied in problems of missing data or when we

can express the problem as if missing data exist. In our case, which is a
problem of mixtures of distributions, we treat as missing variables the
indicator variablesz;, (i=1,2,3 and j=1....,rc) which are the probabilities
the j-th pixel to belong to the i-th group. (We use subscript i=1 for the
background, i=2 for the grey zone, and i=3 for the skin distribution).

Using some initial values of ¢, say ¢(°), the algorithm’s first step (E-
step) requires the calculation of the expectation of the complete data log
likelihood, L, (¢) which has been given above, conditional on the observed
data and the initial values. McLachlan and Basford (1988), point out that this

step is affected simply by replacing each indicator variable z;, by its
expectation conditional onx;. That is, z, is replaced by the initial estimate of
the posterior probability that j-th pixel belongs to i-th group. In our case, we
provide the k-means estimates of the parameters w'®, 49, ¢/, i=123 as

starting points of the algorithm and the E-step of algorithm in the k-th

iteration calculates

-1 1 2 l

Z;; ' -
>wi(e)’ ,,{ owy & Y}

q

i.e. the probability that the j-th pixel belongs to the i-th group where,



3
k (k) _
0_<_z,.5).<_1and Zz,j =1
On the M-step, the intention is to choose the value of ¢, that
maximizes the expectation of the complete data log likelihood

n k
LC(¢)=Zlog(ij f(x,./¢j)). One nice feature of EM algorithm in the
i=l

j=1
problem we examine is that the solution to the M step exists in closed forms.

In our case, M-step calculates the new estimators. More precisely:

rc
5

-
wi(k+1) =4
rc
(
Zzi/' x.l
(k+y _ =l
4 rcwi(k+l)

(k) (ke1) 2
+
> (xf”:“f )

(k+l))2 _ =l
(O'i - rcw('”“

i

E and M steps succeed each other until some convergence criterion is

satisfied.
2.3.2 Lack of progress.

Two kinds of criteria are usually used. The first one stops the iterations

when the relative increase of log likelihood between two successive iterations

is smaller than a crucial value of tolerance (fol,) . This criterion has the form:

)26

‘ L(¢("“)) )S tol,

Where L(¢(’)) is the log likelihood after r iterations. The other type

criterion stops the algorithm when the parameters do not change much

between two successive iterations. These criteria have the form:

max (l¢("+l) ~¢(')

)s rol,,

where the max( ) function returns the maximum coordinate of a vector.

10



In both cases the algorithm stops when there is not much change from
one iteration to the next. In our case we use partly the second type of
criterion, where the terminating condition was set to be:

w(lr+l) _ wl(k) < 10-10

i

for i=1, 2, 3.
2.3.3 Characteristics.

It should be noted at this point the importance of the fact that z,

presents the probability that the j-th pixel belongs to the i-th group. When the
algorithm converges, those probabilities are available and are in fact those
ones that can be used to classify each observation to that cluster in which it
belongs with the higher probability. One of the advantages of EM over k-
means method (probably the most important one), is that each observation
belongs to all clusters with some probability. That is why the clusters created
by EM may overlap, a fact that is impossible in k-means algorithm.
McLachlan, (1992) claims that another nice feature of EM algorithm is
that the log likelihood for the incomplete data specification is non-decreasing
from one iteration to the next. This means that it can never be decreased after

an EM iteration. i.e. L(¢(“'))2 L(¢(”)). However, we have to be careful because

in some cases there is the danger of trapping in a local maximum rather than a
global one.

Although the programming of this algorithm is quite easy and mainly,
can be done in any statistical software, however, EM algorithm has the
disadvantage to be quite slow as a method. That is because convergence is
quite slow. McLachlan and Krishnahn (1997) discuss about speeding up the
convergence of the algorithm. We will just mention that one simple way to
achieve faster convergence is to provide the algorithm with the most suitable
initial values possible. So the speed of convergence is affected, among others,
and by the choice of initial values. However, we should mention here that
there still remains the danger of trapping in a local maximum. In our example,

we have provided the algorithm with the k-means estimates of the parameters

of interest.

11



2.4 Example

In our example we have one subject (more precisely a woman)
monitored with an infrared camera. The analysis of each frame of the video is

254x318 pixels. In figure 2.4.1 we provide a thermal image of a frame with

temperatures.

Figure 2.4.1. Thermal image of the first frame’s temperatures.

We can see in figure 2.4.1 that the background pixels have, as
expected, lower temperatures than the skin pixels. One interesting thing to
note is that the pixels denoting the nose of the subject have relatively low
temperatures, similar to those of the background pixels. This happens because
the breathing function causes our nose to have similar to the environment
temperatures.

Next, in figure 2.4.2 we present a histogram of the pixel temperature

values referring to the frame of figure 2.4.1.

12
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Figure 2.4.2. A histogram of the pixel temperature values.

From several histograms studied, it appears to have three modes. In
figure 2.4.2 one mode is in the temperature of approximately 29, one a bit
lower of 32 and one close to 34. The three modes of this histogram resemble
the form of a mixture of three Normal distributions. This fact led us to
account for three Normal distributions; one on the lower band of temperatures
which accounts for background pixels, one in the upper temperature values to
represent the human body pixels and one for the ‘grey zone’. The last group
contains pixels that have higher temperatures than background but lower than
human body pixels.

The resulting figure of the initial frame segmentation to skin,

background and grey zone pixels can be seen in figure 2.4.3.
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Figure 2.4.3. The classification of first frame’s pixels through k-means
method. Blue colour denotes the pixels ascribed to background, green colour
denotes the pixels ascribed to skin and red colour denotes the pixels ascribed

to grey zone.

Clearly, most of the subject’s body pixels have been correctly
committed to the ‘body group’. However, there are some pixels on the nose
that have been committed to the background group and some pixels around
the nose, on the right eye, on cheeks and on the chin that have been
committed to the grey zone group. This misclassification is easily explained
by the fact that in those areas of body, the temperature is quite low; thus those
pixels could not be ascribed to the group of body pixels that had higher
temperatures. Another misclassification has happened to those pixels of skin
on the shoulders, which are in fact pixels of skin covered by clothes. However
those pixels have not been ascribed to grey-zone group but to body group.
The explanation of this lies on the fact that being spring time the subject is
dressed with light clothes and in this area the cloth touches the skin causing
the high temperature value of covered skin pixels.

Although the classification of pixels obtained by k-means is

satisfactory enough, in our problem, as already mentioned, we prefer each

14



pixel to be committed not to one particular group, but partially committed to

all of the existing groups.
That was the reason why we then decided to apply EM method. We

first estimated the weights, mean values and variances based on the groups
created by k-means method and then provided EM algorithm with those
values, ie. w® =06726, w”=0.1572, w® =01702, u© =29.4754,
w9 =319259, 4® =33.7167, o =0.6173, o =1.1079, o =1.1243.

The new values of the parameters of interest obtained by the EM
algorithm are: w® =0.6815, w{’ =0.0605, w® =0.2580, u® =29.4366,
u® =31.5141, uP =33.3902, o =0.4918, 0¥ =04337, o® =1.0539 and
the classification of pixels to that group for which the probability z, was

maximum is shown in figure 2.4.4.

Figure 2.4.4. The classification of first frame’s pixels through EM
algorithm. Blue colour denotes the pixels ascribed to background, green
colour denotes the pixels ascribed to skin and red colour denotes the pixels

ascribed to grey zone.
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We can see in figure 2.4.4 that the misclassification happens in less
pixels comparing with the misclassifications in k-means method.
The differences between the results of the above methods are given in

figure 2.4.5:

Figure 2.4.5. The differences between the classification of first frame’s
pixels through k-means and EM algorithm. Blue colour denotes the pixels that
have been ascribed to the same group by both methods, green colour denotes
the pixels ascribed to grey zone by k-means but to skin by EM, and red colour
denotes the pixels ascribed to grey zone by k-means but to background by

EM.

It is clear from the last picture that the differences between the two
methods exist mainly to those pixels that have been committed to the ‘grey
zone’ cluster by k-means methods, whereas EM placed them to the ‘skin’
group. We can observe that some of those pixels are clearly skin, but some
others are skin covered by clothes. The disagreement of the two methods on
classification of those pixels is justified because of their nature to lie between
the two major components characterized by background and skin.

The goal of the initialization phase is to provide statistically valid

values for the temperatures of first frame’s pixels corresponding to the scene.
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These values will then be used as starting points for the process of awareness

of next frames’ pixels.

2.5 Spatial aware classification scheme

In the previous section we classified each pixel to the group with the

highest probability. Alternatively, we could have defined a threshold T (like
T =0.6, 0.7, 0.8) and we would have classified only if q}azyg{zu}> T. Otherwise

we would define a specific neighborhood of the pixel and study what
happened there. The pixel would be finally ascribed to that group to which
most of the pixels in the neighborhood were ascribed.

However, as we are interested in updating on real time we only do
rough classification and we don’t take under consideration what happens in
the neighborhood of pixels. We will simply classify each pixel to that group
in which it belongs with the higher probability z, .
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CHAPTER 3

THE MATCHING OPERATION

3.1 Introduction

We have ascribed first frame’s pixels to three Normal distributions. In

other words, each pixel X, of the first frame is considered to be a mixture of

the three Normal distributions:
2 2 2
X, ~w1Nc¢z,,al )+w2NCle,0'2 )+w3N(;t3,0'3)
Next phase is concerned with the classification of next incoming

frames’ pixels. In this chapter we will describe a method to ascribe the pixel

values of an incoming camera frame to one of three Normal
distributions N(g,,0?), N{g,,0?2) or Nu,,02).

We assume that every new pixel comes from a Normal
distribution N(/zp,a';), where 4, 1is the actual value of the pixel’s
temperature and af, is a value related to the camera’s accuracy.

Thus, the issue is to find a way to measure how close is the distribution
of the incoming pixel N(,up,a;) to the three existing distributions N(;ll,crf),
N(pz,azz), N(/13,0'32 ) Once we have measured the ‘distances’ between those

distributions, the pixel will be ascribed to that Normal from which it desist

less.
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3.2 Measures of distance

Distance measures are being used to measure how close two
probability distributions are to each other, or in other words how easy is to
distinguish between the two distributions. According to Ali and Silvey
(1966), these measures have been called in many different ways in literature;
measures of distance (Adhikari and Joshi, 1956), measures of separation (Rao,
1952), measures of discriminatory information (Chernoff, 1952; Lehmann,
1959), measures of variation-distance (Kolmogorov, 1963), coefficients of
divergence (Kullback, 1959).

It should be noted at this point that in topology in order to characterize
a measure d(,-) between two distributions f;, f, as distance (or metric) it has
to satisfy the following three properties:

(1) d(f,f,)=0 ifand only if £, =1,

(2 d(f.£)=4d(f 1) (the symmetric property of distance)

(3) d(f, £)<d(f. £,)+d(f:» £;), (the triangular inequality)

Corollary

If a measure between two distributions d(f,/,)is a distance (or

metric) it satisfies the Shannon’s inequality: d(f, f,)20

Proof

Subsequently from the third property and by setting f; = f, we take:
d(f,. £,)sd(f,. £,)+d(f,. 1)

But , by the first property we have d(fl,fl)= 0 and by the second we
bhave d(f;, f,)=d(f;,£,)- So, we will have that d(f, f,)>0.

Not all of the coefficients used in literature (mentioned below) to
measure the discrepancy between two distributions satisfy the three
conditions. Some of them satisfy only the first two and in this case are called

divergences. There are some other measures, however, that do not satisfy the
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symmetry property either. Here, all of them will be mentioned as distances,
but not in the strict sense the word has in metric spaces.

The applications of these measures can be found in statistical
inference, in analysis of contingency tables, in approximation of probability
distributions, in pattern recognition, in signal processing etc.

Many known distance measures between probability distributions will
be given, starting from some general classes of divergence coefficients and
going to particular cases. Most of them have been found in literature and
collected by Basseville (1988). Moreover, for some of the divergences which
will be mentioned, we will provide these measures in closed forms when the

distributions are 1-dimensional Gaussian distributions.

3.2.1 A review of distance measures.

. Csiszar f divergence
dj
d(f,.1,)=g| E, f(iJ (3.2.1.1)
df,
df‘ A¢( )——f—(—2 i.e. the likelihood ratio, f: a continuous convex

where

5i(x)

real function on R,, g an increasing function on R and E, the expectation

with respect to f].

This class of distance measures has been introduced independently by
Ali and Silvey (1966) and by Csiszar (1967a and 1967b) and its many
properties were studied by Vajda (1972). For different functions f and g it

gives a number of very widely used distance measures.

It should be noted, however, that this class of distance measures satisfy

the first property of a metric, i.e. d(f;,f;)=0 only if g[E [f(1)]]=0. For this

]ﬂ Sl L0

reason (3.2.1.1) can be written as: d(f, f,)= gl: { (df
2
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J Alpha divergence measure (of fractional order a € [0,1])

(ﬂ,fz)- ljfz( sz——lnjf @z (3212

The class of alpha-divergences is also known as Renyi divergence and
leads to different measures by selection of fractional order. Hero et al. (2001)

claims that when the distributions are very similar, i.e. when it is difficult to

which

-

discriminate between them, the optimal choice of a is a=

corresponds to Hellinger affinity D, (/. /.) =21nf,/f, (x) fo(x)dx. The
2

performance of this member of the class is, in this case, even better than that

of Kullback Leibler divergence, whichis D, (. ,)-

Lemma: The alpha divergence measure when £, f, are Gaussians, 1-

dimensional distributions is given by:

D (fnfz)— (o'lz)l—a(a'zz)a"+ﬁ (4, = 11,)"

a-1 aaf +(1-a)? 2(1-a)?+ac?

Proof

D)= [ )dz———mjf e

If 1, f, Gaussians N(,u,,of), N(,ul,azz), then:

[A2 )L ()=

() ) exp{_(l-a)(x—;e)z} _
) "2 ot 257

() p{a(x 22+(1—a)(x—Ae)zof}d)=
J2nct U[fml 2010,

22
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e o? ~2ap02x + apio? +x°07 ~2p0%x +

Jzn(oﬂ)“ & Iex%_ﬁ

+plol —aolx® + 2ou,0! x — aplo; J}ix

[(002 +0? ~act )t ~(2apo? + 2,07 ~2amot e+

“Ser e

2.2 2.2 2.2
+aulo? + piot —aplo? Jix

_ 1 fex _aoy +(1- a)o’z{ 0'2 (1-a)u,0? +[“M°f+(l—a)uzofJ2_
\/2”(0'12)4(0?% 20,0, a; +(1-a)o; ao? +(1-a)a?

*ex (a’ulo-zz +(1—a)y20-‘2)2 _ apio; +(1 a):uzo'l dx =
*|20ic2laci +-a)) 20107
R I o,

> %

M,z Fo2)™ 200}

R 2a.o§(aa +(1 a)al ]
*exp{ a(l 0)0'10'2(,11 +ul - 2;llp2)}dx=

20'l o, (aO'2 +(1 a)a-l )

\/aal +(1- a)ol W[ s ao('zﬂjr 1@)&}
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So: D, (ffo)= V2 o)) @ (=)
P a1 act+(-a)? 2 (-a)ol +ac?

. Un-normalized a-divergence measure

The un-normalized « -divergence is defined according to Hero et al.

(2001) as a multiple of the alpha divergence measure.
Di(fif,)=-1n [£*(2) £ (2)dz =(1-a) D, (£, ;) (3.2.1.3)
This class of divergences is found in literature as Chernoff distances,

while the integral 'fj]" (z)f;*(z)dz is found to be named Chernoff

coefficient.

Un-normalized « -divergence measures are obtained by (3.2.1.1) by

setting f(x)=-x"", 0<a <1 and g(x)=-logx in the Csiszar’s divergence.

Lemma: The un-normalized alpha divergence measure when f;, f, are

Gaussians, 1-dimensional distributions is given by:

D*(f. £,)=(1—a)D, (fpfz)“— gl Z_(Z(ai)); a(lz—a)(l_(gl);zﬂi);azz

. Amari a-divergence

(i 1)= 5 [ A+ A WU LW aer

(3.2.1.4)
This family of parametric divergence functions was introduced, and
investigated by Amari (1982, 1985). It is sometimes found in literature as a-

divergences, as well (Zhang (2004)).

Lemma: The Amari a-divergence when f,, f, are Gaussians, 1-

dimensional distributions is given by:
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« 2lo; o Gz)l_a 1-o’ (et — 11, )
A*(h fo)= 12 [ (- E,)a)z+((1+a)a, {_ 4 (1-a)o§+lzl+a)a,z}]

Proof
4 1- 4 1 4 o b2, b
A A= O 5 AR 11 (5 W
« 2,2 A ST
AR T T AT (A ()
4 l~a 14
R (1)1 (4 (o)
But

PRI o O G SO R R o A

—a)(x-p) oi+(1+a)(x—u,) o}
_ {__‘, _ Iexp{—(l a)(v /11) 0'_+( +a)(t /1_) o, }dxz

ki i
40,0,

e Lra IexP{" (l_a)(X2 el !I‘Z)Zitc(::")(xz - 241,x+ /12:)0'!: }dx
Al ) ()

J'exp{_ [(l—a)azz +(1+a)0'l]x —2[(1 a):ulo'z +(1+a)/‘20'1 }" [] a),ul 0, +(1+a)/120'| ]}dx

40'l 02
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1

I-a Tea

i)
J.exp{ (1-a)o; +(l+a)o’l [ , 2(1—a)/qa§+(1+a);lzafx+[(l—a)ylaf+(1+a),uzoszJ

400 (l—a)a§+(l+a)of (l—a)crz: +(l+a)o:>',2

exp{ [(l —a)u o5 +(1+a) 0} T B [(1 —a)pio; +(1+ a)yz:of]}dx _

[(l —a)o; +(1 +a)0'12]40'130':2 40/c;

. (1-a)puos: +(1+a) w0 ;
. (1-a)o: +(1+a)o;
B = L J. R 20,0

Vax(Jer)* (Vo) a)or+(va)e;

S (1 a )a (/1, + 4 -—2;11;1) _
p{ 4o 0, l(l a)02 +(l+a)al ] }dx

[o—

() (7

\/ 2(0',2 )Hza (0'2 ) {_ 1-a’ (1, =11, }
(—ali+(rap? ™ 7 (Capi+(ra)’

) | 20,0 expd - ! a) -(/‘ +’“-_2/l““')}=
_ )° J Ud“dn@q.%‘Wﬁmﬁkﬂmﬂ#]

So:

bt

J L
(1 a)o; +(l+a)0',

A f1)=12

|

. Hellinger distance
a2, (5= -1 (.2.15)
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The family of Hellinger distances satisfies all of the conditions

required for a measure to be characterized as distance. It is a Csiszar f
divergence with f(x)=ll—x""|y and g(x)=x"%, p>1.
This family is sometimes called “Generalized Matusita distance” and

denoted by M,(f,, 1,)-
It gives many different distance measures for various values of p. The

most widely used of them are:

for p=1: H,(f,,f2)=J'|f1—fz

for p=2: Hz(f"f’)z(,[(\[f—l—\/f)zf

In literature the term “Hellinger distance” is usually referred to H:,

and

which is, according to Basseville (1988), a Csiszar f divergence; (set in
(3.2.1.1) f(x)=(Vx -1 and g(x)=x).
Furthermore, Hero et al. (2001) related this Hellinger distance ( H;) to

Hellinger affinity D, (fl,fz)=21nJ‘1/f,(x)f3(x)dr, which is an Alpha
2

divergence measure. He first proved that:

1
10 )= T~ (760 e o] 10,01.5) |
2
H, is sometimes called Matusita distance and being symbolized by:

M, (£, 1,)-

Lemma: The Hellinger distance when f|, f, are Gaussians, 1-

dimensional distributions is given by:

H,(fuf)= [2-2V2 Lp{u}

2] 2 2 2
o +o, 4(0’l +cr:)

Proof

1,0 12)=(JNAR VAR ) = [AGks + 162 [ GG =
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= \/2 -2 J‘,/f, ix;f: ixidx

[TV = IJ T .exp{- ("2‘0’1:" )-("2“0/2;5 )}dx=

2 2 ) ) 2
XT=2ux+pu XT=20,X+ 4y H d
- = = x

el expl-
B j \270,0, [exp{ 207 20,

”J 1 (dl2 + a;’)xZ - 2(;110'22 + uzof)x+ uos+mol|
- 2 b 40/ 0; -
J 70,0, 1~2
2 N, *+o?! __/‘10'22 +4U:O'1: J-
=ex (,1110'22 + #30‘2) _ ,ulzo-‘_? +ﬂ22012 J. 1 ex ) —[ n : O-lz +UZZ
P 4ol0; (of + 0'22) 4070, \/2710'1 o, P 4o/0;

Lol + o] )
9 L) A1 2 21 2 1 (0.12+o-‘_’2)(x—£l—_1—!_21—_1—
LU O O, =i O 0, — U0 0] o +0;
=exp MU0, 0, —}, 0,0, —H,0,T, 5

2 af 2 2 I—————exp - 33
40/0; (an +0'z) J270,0, 40, 0;

» x=
)
40,0,

. (x— O]+ j,0] J
L — 1) cl+0o?2
=exp{_ (24 "), } 1 Ptol )|,

2 &
o] +0,

3

(x— HOT + 1,07 )

2 i ol
(,lzl ";IZ) 20,0, | o] +0;
=EXpy— 2 1, 2 e =P PO X =
4(0'1 +a,) Ao 20,05 , 20/0;
2 ———= LTI
o, +0; o +0,
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. LP distance

Lp(f,,fz)=(J|f, -5 ) 0<p<o (3.2.1.6)

The family of L, distances satisfies the first two of the distance
properties, so it is a class of divergences. It gives different measures when
one changes p. For example:

for p=1: L (£, £)= [/~ £.

, which is a metric.

1
22)2, also found in literature as Patrick and

for p=2: L:(fnfz)z(,{ 1

Fisher distance.

Lemma: The L, distance when f|, f, are Gaussians, 1-dimensional

distributions is given by:

! (e —1,) }
L2 1°oJ2 = 2 M - 2 2
(1) J\/Mro-, \ﬁmaz J27r(af +0'22) exp{ 2‘0’l + 07 )

Proof

L, (f.,f:)z[ﬂf, ()= £ () dx]u: )
- \/ﬂfl (x)]2 dx + _"fz (-")]2 dx -2 J'fl (Jc)f2 (x)dx

j [ﬁ(x)]%bmf[—zﬁ—;}:{exp{-“‘;;lﬁfﬂzdx:

=\/2;af J (Jow, ]"{ (";al—)}""
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= ! - %J' exp (x_l#l) dx =
V2700 1T g >0, 2-0]
1

Ij](x)fz(x)dxz J‘\/_Z%E_ J;?exp{_ (x;o/:‘z.)z (xzo'l:z)z}

22
20,0,

_ 1 J. L ] (0,2 +0'§)x2 —2(,(110‘22 +,u:o'f)x+ufcrz2 + 1507 _
V2r \/2;70',30'22 P

(T3 MO +10] 2
(/1,03+/1 o) yfaf+;1§af}f 1 { et \/0', +0; ]

1

= exp —F ——=eXpqy— ra‘\
Bz F 20/0; (0} +073) 2003 J27070? 200,
.4 1ol + ol |
0 L (a]-+a;) x- % TG

1 £ oo { 0' o’ — oo} 1 - o +0;
= exp- Fif20 9 ~ F 929 l"'J‘ ——exp4— St X

2n ’70'I o, (crl +0'2) \[2;;0-1-0-; 20,0,

HO; + 1,07
2 X — ) Bl
() 1 1 ol +o]
= ! exp - fo P I’x:
\/271 (O’ +0; ) \/c)'l +0', 0'1'0'2' 9,0,
"' 2 2 &
O'l +0, oy +0,

- 1 expd— (,Ul _/'12)2
\/er(of +03) 2(0; +03)
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1 1 (e, - /‘2) }
L 1, -2
So: L{f.12) JJ 4no} ,/47r0'22 J27lo? +0'2) Xp{ 2Ao? +0?)

. Kolmogorov variational distance

V(5. £) = 11,6 £ (x)ax (3.2.1.7)
It is a Csiszar f divergence with f(x)=|1—x| and g(x)=x and is
distance as it satisfies all of the conditions required. V(f;,f,) is also a

Hellinger and L, distance obtained by (3.2.1.5) and (3.2.1.6) setting p=1.

] Kullback Leibler information number

filo ,zf f, is absolutely continuous with respect to f,
K(fi,f2) = ‘[ 5

o, otherwise

(3.2.1.8)
This measure was introduced by Kullback and Leibler (1951). It is,

according to Onishi and Imai (1997), the most fundamental divergence in

information theory.
Kullback information number is non-negative, additive, but not
symmetric, which means that it satisfies only the first out of the three

conditions of a metric, so it is neither a divergence nor a distance.

It should also be noted that K(f,f,) is undefined if f,(x)=0 and
f,(x):tO for any x. This means that, according to Kullback (1967),
distribution f;(x) has to be absolutely continuous with respect to f,(x) for
K(f,/,) to be defined.

K(fl,fz) has been characterized as a Csiszar f divergence; it can be

obtained by (3.2.1.1) by setting f(x)=-logx and g(x)=x. According to
Hero et al. (2001) it is also obtained by (3.2.1.2) whena — 1; i.e. is an alpha

divergence measure.
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Lemma: The Kullback-Leibler information number when f, f, are

Gaussians, 1-dimensional distributions is given by:

K(fof)=tog Db i Late)

2 20', 207

Proof

K(f.1)= jf(x)logﬁ ;

and

L[ ay
o Ui 2
log £ (%) » Nrkon 20,

£:(x) ! {_(x-uJZ}
—————\/.27‘- exp ——20_23

So:

£ilx) £ilx)
k(. f,)= M@mﬁo AP%&J

=Eﬁ[logg_(x—#l) L= l‘z)j|=

o, 20} 20}

=10gf—2- f;[(x /11)2] Elkx /‘2)2]

o, 20} 20;

o, O Ol =20, +
=log—2 ——_+21 4 My T

o, 20} 203

L=t
=logg—:——l—+ (/ 't, ) .
o 2 20, 20,

. 1D | (:U My )
Thus: K(ﬁ,f:)—loco_—l‘g“'zalz 207

Jeffrey’s divergence number:
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I 1)= A —fz]log—;'— (3.2.1.9)

Jeffrey’s divergence (Jeffrey’s (1948)) is closely related to the

Kullback Leibler divergence number in the sense that J(f,f,) is the
symmetric version of K(f, f,) since:
J(fs h))=K(£. £)*+K(fos /)
Clearly, K(f,f,) and J(f,f,) share most of their properties.

Similarly toK(f,,£,), J(f.f,) requires that f(x) and £ (x) be absolutely

continuous with respect to each other. This is one of the problems that, just

like K(f, %), J(£, /) has.
J(ﬁ,fz) is a Csiszar f divergence. It is obtained by (3.2.1.1) by setting

fx)=(x-1)logx and g(x)==x.

Lemma: The Jeffrey’s divergence number when f,, f, are Gaussians,

1-dimensional distributions is given by:

J(f.,f:)%[ﬂ—ﬁ] +(L”7—‘@)—[#+%j

o, O, 2
Proof

I ) =K(fs )+ K (fos f}) =

-1+ 0'22” " 0'121 +(/‘1_/fz)-+(#z—.fl.)_
207 20, 20] 20,
___014 +0; ——I+(ﬂl _/‘2)2 _1_+L
200} 2 ol o
21[0_1_&)2+Q;/_'-)_2[;+;j
2\o, o 2 o, o;
° Lin’s information number
1(£,.£,)= [£,(x)log f‘(xl) g (3.2.1.10)
LA AR
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Although theK(f,,f,) and J(f,f,) measures have many useful

properties, they require that the probability distributions involved satisfy the
condition of absolute continuity. Also, there are certain bounds that neither X

nor J can provide, which is an issue that will be studied in another
paragraph. I( Jis fz) was introduced by Lin, (1991) to overcome those

difficulties. It is a measure that preserves most of the desirable properties of

K; it is in fact closely related to K and can be described in terms of

K(fo )
1A= K[ £i3fi+31)

I(£,£,), just like K(f;, f,), satisfies the first one out of the three
conditions of a metric, so it is neither a divergence nor a distance. It is clear

that I(f#,f,) is well defined and independent of the values of f(x) and

fz(x)

2x

I(f,f,) coincides with the Csiszar f divergence if f(x):xlogl

and g(x)=x.

° Symmetric version of Lin’s information number

L(f1.>)= [, (x)log f'("l) + £3(x)log - fz("l) & (3.2.1.11)
@ el e
I(f,, f;) is obviously not a symmetric measure. Lin, (1991) defined L,
which is a symmetric divergence based on I as:

L(£.5)=1(£: £)+1(1: 1)
Obviously, L(f,f,) is related toI(f,f,), in the same way that

J(f, 1) isrelated to K(f;, f,)-

. Jensen-Shannon Divergence Measure
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Let =,7,20, =, +x,=1, be the weights of the two probability
distributions f;, f, respectively and H, a concave function. The Jensen-
Shannon divergence is defined as

IS, (£, £,)=H(z f,+m, f,)-mH(f)-mH(S,) (3.2.1.12)

Since His a concave function, according to Jensen’s inequality,
JS, (fl,fz) is nonnegative and equal to zero only when f = f,.

JS,(f,f,) has been derived by Lin, (1991) as a generalization of
L(j],fz)and one of its major features is that we can assign different weights

to the distributions involved according to their importance. This is
particularly useful in the study of decision problems where the weights could

be the prior probabilities.

° Bhattacharrya distance
B(f,f,)=—log p(f,.1,) (3.2.1.13)

where p(fl,fz)=_[ f,fzdle—%H;(fl,fz), as Bhattacharrya coefficient. It

is obtained by (3.2.1.1) by setting f(x)= —+x and g(x):—log(— x) and thus

belongs to the family of Csiszar f divergences. It is also an alpha-divergences

obtained by (3.2.1.3) for a =

R

Lemma: The Bhattacharrya distance when f|, f, are Gaussians, 1-
dimensional distributions is given by:

. 1 ol +0; (/’1_/12):
B{/,.f,)=—1 ! =
(jl f') 2 o8 2\/0'120':2 * 4(0‘12 + 0')

Proof
B(f;, /) =-log [/, fyax
and

[JFifids =1-ZH2(7,. 1)
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But:

Hi(f.£.)=2-22 ""’; p{———(“‘f"l):}

4(0;+ag)
So:
Gaz (,ul_:uz)z _
Iflfzdx“l__H (ﬁ’fZ) 1-1+ ‘/— 0'1 +0'2 XP{_4(O',2+0'22)}_
_ (u-m)
V2 o] +a, p{ 4(o;] +03)

and:

O'O'a + (,ul_/‘z)ﬂ _ ll 0' +O'-, (:ul_/lz)z

B(f,£,)=-log2

+0'2 4(0-13 +o'z) 2 7\/‘71 O', 4(0'1:4-0'22)
] 1-P, where P.: Error probability in classification of the optimal
Bayes rule
d(f;.f,)=1-P, =1- |minf,, (1 - 7)1, Jax (3.2.1.14)

where 7, 1-7: a priori probabilities.

It is known that the error probability P, of the optimal Bays rule for

the classification into two classes with a priori probabilities 7 and 1-r and

with corresponding densities of the observations f, and f,, Iis
P = Jmin[;y’l,(l—zr)fz]dr. It results that 1-P,, which is a way to measure the
distance between f; and f,, is obtained by (3.2.1.1) by setting

f(x)=-min(x,1 - x) and g(x)=x+1.

° Lissack and Fu distance

d(f,.1,)= j|f £ de,a>0 (3.2.1.15)

It is a Csiszar f divergence only ifa =1. In this case it is identical to L,

and H,.
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° Chi-Squared divergence

d(f,.£,)= | [f,(x}:(s(x)]? —14+ [HOEL [flz(zg (3.2.1.16)

It is, according to Rigau et al. (2003) a Csiszar f divergence obtained

by (3.2.1.1) by setting f(x)=(x—1)2 and g(x)=x.

Lemma: The chi-squared divergence when f;, f, are Gaussians, 1-

dimensional distributions is given by:

‘ I (ﬂ:/)}
k)= e p{ 2070

Proof

d(f, f,) = J'[fl(x) S (x)]2 1+ f[ﬂz((g

and

. fe=) =

20,0;

\/;'z?2 J‘exp{_ (202: _O_‘:)xz —2(2“‘1022 _/120-12)X+2f“120':: - 130} }dx _
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All of the above measures of divergences which have been given in
closed forms when the distributions are 1-dimensional Gaussians take into

account the first and second moments.

3.2.2 Inequalities among distance measures

In this paragraph, some inequalities among distance measures are
given. Most of them have been found in literature; some of their proofs are

presented as well.

At first, several inequalities between the Error probability in

classification P, and many of the above mentioned distance measures are

given. Those inequalities were derived in an attempt to find bounds of the
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classification error probability. They have been collected by Basseville,

(1988):

%[l—\/l—w(l—n)pz(ﬁ,m]sP,(f[,fz)sJz(l—nTp(ﬂ,fz), (3.2.2.1)

where p(f;,f,)= J L f,dA

lmin(;r,l —m)e” ) < p (£, £,) < (1l —ni[J—:—fZ)jl_ (3.2.2.2)

2

P,(f,,fz)s%—%V(f,,fz) (3.2.2.3)

Pe(ﬂ,fz)S%—%H;(f,,fz) (3.2.2.4)

Some other known inequalities among the most widely used distance

measures, are the following:

H (. e~ H (. £))=1-0" (/1. £2) (3.2.2.5)
£ ¢ 1 (3.2.2.6)
H(f,, £) <V (f £) < HE N2 - H (1, 1) (3.2.2.7)
%e’((f"f’) <1-v(£,,£,)< p(fn 1,) (3.2.2.8)
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Between Kullback Leibler number and L, distance Bretagnolle and

Huber, (1979) proved the following:

Lemma: L (£, f,) < 2V1-e ¥Vi-t) <2 o¥Uih) (3.2.2.9)
Proof

-k(f,.1,)=- jf,log If,log————jﬁlog +jmog1—

=Jf log(min{%,l}}+jfllog(max{%,l}}g

< logjfl min{—J;—z,l}%—logJ'fl max{—?—,l} =

71 1

i 1
=] - fI|+log| 1+— -fl=
Og_ 2 ] g[ 2 ]
[( 1 ( 1 ,
=log|| 1-— -+ -fill=
°°_( 2L j 2 j
F \
=log_l—z( = 2) :|—

=10g[1—%Lf(fpfz)]

S0:

1 _ 1
_K(f"f2)$1°g[l‘z~’4f(fl,}3)] e SI—ZLf(fl,fz) o
L(f,, f,) < 4— e XU

or: L(f,,f,) < 2\1-e *A) <2 g KUh1)

This inequality can be restated as follows:

Jmin (f1 , fz) > %e‘g(f‘"f’)

Another inequality between Kullback Leibler number and L, distance

was the following derived by Kullback, (1967), Csizar, (1967) and
Kemperman (1969):

Lemma: L (f,, ,)< 2K(};. f;) (3.2.2.10)
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Proof

If 4={f,2 1}, fi=gli/as a= [ S, P= |/,

Imoo Iﬂ "jf fﬂ:log[fﬂ ]jf-

=I fllog(fo/sz)zplog;
-p

Ifloo—f—>(l p)loo

1-
S0: K(fhf:)zploggﬂl—p)logl_;’:f](f“fz)
if: p—q:r:
K(f"fl)ZH(’)z(q”)logq”+(l—q—r)log11q"',
1 ~q
or:

q
H'(r)= log(l+ q] IOO(I—ﬁJ

1 11 1
=—+ >4
I—g—r p 1-p p(i- p)

H()= s

K(f, f)>4——2(p a) =2(f /- If) —{ﬂf flJ
~<[1A-£l] =35 (5 5)

or:

B(£.£)<2K(£.5) © L(f. £,)<\2K(#. £,)

Devroye (1987) proved that Hellinger distancesH,(f,,f,) and

H, (£, f,) are related with the inequality:

41



Lemma:

H (fo ) sH (L)< H, (S L)NA-H: (S £) <2H. (£, £)  (3.2.2.11)
Proof
H, :,“ft'"le

w5
1=\~ 1= J(VF ~E)F VB2 [T R =1

50! sz (ﬂ’fz)SHl (f],fz)

1 (5 1) =[ Vi~ AI] =[[(JF -JE)VE+JE)] <

Cauchy - i
[Savarz J S-’.(\/z-—\/f-j)2 (\/—f+\/72)- =

inequality

=1 (JF +\R) =H: (2+2fJFf )= H: (4- H3) < 4H:
(because' H; (fljz)zj(\/f—\/j?)ﬂ =2—2‘[\/ﬁ_f:j

So: H,(f, £.)sH, (£, L)4-H: (fi. 1) <2H.(£. 1)

Devroye (1987) also proved that Hellinger distances H,(f, f,) and

H, (£, f,)are related by the inequality:

Lemma; 2-H, (fl,f:)z{l—%Hf (f,,fz)]- (3.2.2.12)

Proof

We will use Le Cam’s inequality:
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jmin {flf} 2 ‘%I(\/ﬂf ):
Proof of Le Cam’s inequality:

[fJ.ﬁ \/fl_f] :(f"‘f f‘\/%] - fff.fl%fj/; fl ) /J.f, f fjl' f‘ - r”J./', fl

Similarly: [ J' \/fl_f]s If
Lo fi

(j\/flf:)z{ [ Jir+ | «/ﬁf:} sz[ | \/flf:j +z[ | \/.flf:] <
Lo Sh LARE RAAA
<2 [ fi+2 [ fy=2[min{£. £}
fi<h L<h

So: 2jmin{f1,f3}2'[(\/tfx-—f:)z

= '“fl —f:l =l—fmin{fl,f:} o J‘min{/],f;}=l—%

2 2

But:

9 l_m

and:

H: (£ £)=[(JF ) =2-2[FF =
(JV7r) :!_1—§H§ (.fi,f:)}-

So: 2-Hl(_f;.fz)z{l—%Hi(f,,f:)]

One, rather obvious, inequality between Kullback and Jeffreys number

K(f.6)<sJ(A. 1) (3.2.2.13)
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Lemma: For Hellinger A, and L, distances if f;, f, Gaussians:

Hf(./’l,.f:)ﬂ[l—g‘—:j +(”‘7;ﬂ)— (3.2.2.14)
o; 20
Moreover if: o/ =0/ =0’ and o 2 —
4
L (. /) SHy (£ 15) (3.2.2.15)

Proof

8o

r>20 < x2 =

Lt —.\'~<_‘—';:— <> exp{—x}gexp{_f}

| =

o 2 --2exp{—x}$2 -2€:xp{—%‘JL

i o s
4

l - [2 —2exp{—x}:| s2—2exp{—x} S2—2exp{—£}
dro- 2

So: Li( £, 4)<H; (£, £,)

Or: Lz(fl’fz)SHz(ﬁ’f?)

Several relationships have been found in literature between Kullback
information number or Jeffrey’s number and I(f,£) and L(f.f)

divergences, introduced by Lin, (1991).
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First of all, from the definition ofI(fl,fz), (3.2.1.14), it is obvious that

I directed divergence is bounded by the X divergence.

o I(f.f)s %K firf) (3.2.2.16)

The L divergence is related to the J divergence in the same way as /

is related toX. From inequality (3.2.2.16) and the definition of L(f},f,),

(3.2.1.15), we can easily derive the following:

Lemma: L(f,f)s%K(ff) (3.2.2.17)
Proof

fi+ /e

L < 77

10 )= [fiop—L8 < [r(og— L) ___
I glf,(x)+ fz(x)j OO

Jehos [ 4 -1 1rog 209 - L (7.5

Moreover, a lot of effort has been devoted to finding the relationship
(in terms of bounds) between the K(f,f,) directed divergence and the
variational distance. The variational distance between two probability

distributions is defined as

F (£ £) = ZIA ()= 4(3)

Bounds of distance measures concerned to the variational distance are

useful in decision-making applications. Several lower bounds for K(f,f,) in

terms of V(f,,fz) have been found, among which the sharpest is given by:
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o K(£.5)zmax{L( (£, ALV (AL (3.2.2.18)

where:

o2tV f) _ 2V 1)
Ll(V(fl,fz»_log2—V(fl,f2) 2+V(1. 1) 0<V(f,f,)<2

(3.2.2.19)
established by Vajda (1970) and

L (.14

_Vh) VL) T AL)
)= 2 36 288 ° 0V (A f,)s2

(3.2.2.20)
derived by Toussaint (1975).

However, according to Lin, (1991), no general upper bound exists for

either K(f,f;) orJ(f,f,) in terms of the variational distance. This is

another difficulty in using the X ( S fz) directed divergence as a measure of
discrepancy between probability distributions. In contrast to those situations

for the K and Jdivergences, both lower and upper bounds exist for I(fl,fz)

and L(f, f,)divergénces, introduced by Lin, (1991).

Lemma: For the I(f,f,) directed divergence the following lower

bound holds:

1(£,£)2 max{g(fif—))lq(m)} (3.2.2.21)

2 2
where L, L, are defined by (3.2.3.19) and (3.2.3.20), respectively.

Proof

K(f,. £,) 2 max{L, 7 (1. L) LV (. L)

1.1)<K(figfv3 1)
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So: I(f, £,)> max{lq(V(f.%fn +%fz))’IQ(V(f"%f' ’%f’))}

But:

35435 ) J40-(3460+ 150 = 1403 56

=LA~ £ =2V . 1)

Lin, (1991) proved that the variational distance and the L divergence

measure satisfy the inequality:

L L(fl,fz)SV(j;,fz) (3.2.2.22)
and since I(f, f;) is clearly not greater than L( £, f;), i.e.:

o I(f.6)SL(f. 1) (3.2.2.23)

we can derive both lower and upper bounds for L(f,, f,):

° ](fl,fz)sL(fl,fz)gV(fl,fz) (3.2.2.24)"

Moreover, from (3.2.2.24) it is clear that the variational distance serves

as an upper bound to I divergence as well. Thus, considering (3.2.2.21) and

(3.2.2.24) we can provide the lower and upper bounds for I(fl,fz):

¢ maX{LI (;—(%—f—)]L (K—(fz’i)}sl(fl,_,g)sr’(f,,f:) (3.2.2.25)

Some other inequalities proved by Lin, (1991) about / and L

divergences are those concerning to their boundedness, namely,

. (£, 5)<1 (3.2.2.26)
and
*  L(f.f)<2 (3.2.2.27)
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3.3 The example

In our example we have already ascribed first frame’s pixels to three
Normal distributions. We want to classify each one of next frames’ pixels to
one of the three Normal distributions N(/ll,0’12 ), N(;lz,azz) or N(;g,of).

We assume that every new incoming pixel comes from a Normal
distribution N(;zp,o-f,)and we measure how close is the distribution of the
incoming pixel N(ﬂp,a;) to the three existing distributions N(,u,,of),
N(/Jz,af), N(y3,a32). The pixel is ascribed to that distribution from which it
desist less.

In order to measure those distances and ascribe the pixels of second
frame to one of the Normal distributions N(,ul,alz), NCuz,af), N(u3,a§) we

have applied several of the measures mentioned above. More precisely we

used the Hellinger H, distance, the L, distance, the Kullback- Leibler

information number, the Jeffrey’s divergence number, the Bhattacharrya

distance and the Chi- Squared distance.

For illustration reasons we present the assignment of second frame’s
pixels according to Jeffrey’s divergence (figure 3.3.1) and the assignment

according to L, distance (figure 3.3.2).
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Figure 3.3.1. The assignment of second frame’s pixels according to

Jeffrey’s divergence.

Figure 3.3.2. The a551gnment of second frame s pixels according to L,

distance.

In those figures each pixel represents that group (background, skin or

grey zone) with which the pixel was matched. It is clear that Jeffrey’s number
provided more satisfying results than L, distance (actually it provided the
most satisfying results among all the distance measures we tried as we will

see on the experimental results chapter). The L, distance has completely

misclassified the background pixels in the lower part of the figure.
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CHAPTER 4

UPDATING THE PARAMETERS

4.1 Introduction

Once we determined a way to find which of the distributions ¥ (,ul,af ),
N(;lz,azz),N(;t3,0'3z), say N(/l,.,af) is closest to the distribution of incoming
pixel NCup,ai) and have ascribed the pixel to this Normal, the pixel will

contribute to the process of awareness of the parameters of distribution
N(lu,.,af). The parameters of distribution N(,up,af,) from which the pixel is

supposed to come from will give extra information about the parameters of
N(y,,af). In practice we will approximate N(lzzi,aiz) and N(/Jp,af,) with a

single Normal distribution. The next issue to be clarified is what will be the

parameters (weight, mean, and variance) of this new updated distribution.

The problem of estimating those parameters is one of the oldest
estimation problems in the statistics literature. It was first considered by
Pearson, (1894) but it continues to be of interest as it has been witnessed by
many recent papers; it attracts a great deal of attention which probably
reflects its difficulty and the lack of completely satisfactory solution.

One general method for estimation is the method of moments, which
provide reasonable parameter estimates provided the sample size is large
enough. However, the method of moments lacks some optimal properties of

other estimation methods, for example, the maximum likelihood estimation.
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4.2 The method of moments

Assume we have two Normal distributions, f, ~ N(,ul,of) with weight
w, and f, ~ thlz,a;) with weightw,. We merge them, and want to
approximate their mixture with a single Normal distribution f ~ N(,u,az) with

weightw.
Thus, ¥ ~wN(y,0?)+ sz(,uZ,azz) will be approximated by

Z ~wN Cz:,az).
First of all, it is clear that the new density will have weight equal to the

sum of weights of the pooled densities. So:
w=w +Ww, (4.2.1)

By equating the theoretical first moments of Y'and Z we have:

Wity + Wl =Wl

or,

=iy Ma g (4.2.2)

and by setting p =22 jn (4.2.2) we have:
w

p=(1-p) + pu, (4.2.3)

Similarly, by equating the theoretical second moments of Yand Zwe

have:

W, (af +,u,2)+w2 (0-22 +,uzz)=w(02 +p2)

or, using (4.2.2)

W o W, s Wy W, s s [w w, i
—Lo  +—y +—=0G +—=; =0" H —u +—u,
w w w w w w
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or,

Do Wl s W W o Wa o W Wy Wy
O =0 +— ) +—=0y v ==y =5 [y =2~ [},
w W W w w Ww W

and because of (4.2.1) we have,

> W . W, s W, (H’l +W:)—Wl' . W, (Wx +1|’2)—1|'5 #: " WwW,

oc=—to +—=0,+ - o+ = 10 14
W W W [ Wwow
or,
S W o W, WL LW, W,
O m—bO + =0T+ ]+ —— it ===y 1,
1 w W wo W B
or,
g W o Wy o W Wl oo 5
o-=—0 +—0; +———;(;1l +/1,—2;ll;1,)
w woo W . .
. W,
Finally, as we have set p=—, we get:
W
2 2 2 2
o’ =(1-p)o} + po; +(1=p)p(4, - 1) (4.2.4)

(4.2.1), (4.2.2) and (4.2.4) give the parameters of the single Normal

distribution which approximates the mixture of the two Normal distributions.

4.3 Method of moments in our example

In our example, we first introduce some learning parametera, which
stands for the weight ofN(,up,af,); i.e. the distribution of the incoming pixel.

Obviously, we need to have 0<a<l1 and as a weighs on the weights of the

three existing distributions, we subtract 100a% from each one of the three

3
existing weights w,, w,, w,, (ZW,=IJ and assign it to the incoming
i=]
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distribution’s weight. The general principal about the parameter a is that it is
related to the rate of recording. The faster the rate of recording is, the smaller

the value of a we take. In our case, based upon the rate of recording of the

camera used this was set a =0.05.

In other words, the three existing distributions have weights w, (l—a),

i=1,2,3 and the incoming distribution N(;zp,af,) has  weight

By this definition of a, the sum of all the existing weights is equal to

one:
3

a+z3:w,(l—a)=a+iw, —iaw, =Zw,. =1
i=l =1 i=1

i=1

Let us assume now that we have a match between the new distribution
N(/Jp,af,) and one of the existing distributions N(ﬂl,af),N(yz,azz),N(,u3,a32),
say the distribution N(/Jj,a'f.) 1< j<3 (which we will call from now on the

winner distribution).

We update the weights of the mixture model as follows:

w, =(1-a)w,, i=1,2,3 and i# j

w =(l-aw, +a

i.e. we assign the weight of the incoming distribution to the winner.

Then update the means and variances g, and af i=1,2,3. If we call w,
the (1—a)wj, i.e.,, w, is the weight of the j-th component (which is the
winner in the match) before pooling it with the incoming distribution p, and
if we call w, =a, i.e., the weight of the new observation, then we define

_ W o
p_wl+w2 (l——a)wj+a
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and using the method of moments, i.e., the formulas (4.2.3) and (4.2.4), we
get:
#,=(1=p)u, +pu,

o7 =(1-p)oi+pai+(1-p)p(n,~ 1)

while the other two (unmatched) distributions keep the same mean and

variance that they had before the matching.
The updating of parameters described above is being applied for all

pixels and all frames. In what follows, a mathematical algorithm is given.

After Steps 1 and 2 of the algorithm given in the introduction (from

which we obtained estimators i, 67, w,, i=1,2,3), set :
i, =h, 6, =67, W, =W, fori=1,2,3, and j=I,..,1c

Then perform the following steps for all pixels (j=1,..,rc) and all

frames (k=1,..,N):

> Let i, :=argmini=,,2',D[N(ﬁi,j'k_l,éiz_j_k_l),N(xjk,cz):I, where x,,
denotes the value of pixel j in the k-th frame and D[.,.]

denotes the chosen discrepancy.

A

» For i=i,, set Wi :=(1‘—oL)wi_j_k_1 o B =

~

A2
Ciik = Fijt+

» Calculate W, ;,, i, 6. ; from the formulas in section

4.2, setting:

=: - A 2 _ a2
w, —(l“a)wio,j,k-n By = ik-10 O T 0 5

_ . 2 o2
W, =0, I, =X;, 0,=0,
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4.4 Simulation study.

In this section we present a simulation study in order to try some other

. W, .
formulas for p instead of p = >— where we will allow both the means and
w, +,

variances to influence the parameter p which is used in:
p=(1-p)p +pu,

o’ =(1-p)o} + po; +(1-p) p(14 "/‘2)2

In order to check the quality of the approximation for each one of the

formulas of p we used the qq plots (of the exact versus the approximating

distributions).

We first try the following formula for p:

p=—B (4.4.1)
w0, +W,0,

where the variances of the two distributions have been introduced.
In order to check the appropriateness of the above formula we
simulated data from mixtures of Normal distributions:
2 2
wlN(,u,,o'l )+W2N(/Ll,0'2)
We define the parameters x4, 4,, 0y, 0,, W, w, =1-w, of each one of

the mixtures to take values:
4, =0,5,10,15,20,25,30

M, =0
c,=15,9

o, =159

w, =0.1,0.5,0.9

w, =1-w, =0.9,0.5,0.1
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The full factorial of all the possible combinations for the parameter
values gave us 189 cases.

We then calculated the parameters g and o’ of the distribution that
approximates each mixture based on the formulas:
p=(1-p)m+pt
o’ =(1-p)ot +pol +(1-p) p(t - 1)
where p is given in (4.4.1).
To check the quality of the approximation of the distribution N(,u,az)

to the mixture of two components, in each of the above described cases, we
used the qq (quantile-quantile) plots (figure 4.4.1), where the quantiles of the

approximating versus exact distribution are plotted.

3
3
L i
§8 ~
% e = — .
3 =
%
§ ]
£

R

20 30 40 50 60 70

sont(c)

Figure 4.4.1. A qq plot.

We calculated the area between the dichotomous of the axis and the
line of the plot and compared it with the corresponding area provided when

W,

using the method of moments with p = . It was found out that in some

W, +,

w,0,

provided smaller area thanp= , while the

mixtures p=—3>="—="—
W,0, + W0, W,

opposite happened in other mixtures. It is clear that in a qq plot, the less area
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found between the dichotomous of the axis and the line of the plot, the better

the approximation is. We then observed that the approximation when using

w,0, . . . e
=— "% _ was not good enough for mixtures with big deviations

o, o,
between o, and o,. Thus, we decided to use the following formula for p,

where o ’s and w’s weigh less.

YRS (4.4.2)

L= Jwo, + \[wzaz

We checked the performance of distribution N(,u,az) by same way as

before and concluded that w, and w, should weigh more than o, and o, in

p’s formula. Thus, we tried the above formula:

_ W:\/gz_
p_\Vl\/-OT-Q-]‘/z\/gz_ (443)

This formula provided smaller areas between the dichotomous of the
axis and the line of qq plots comparing with the areas calculated for formulas

(4.4.1) and (4.4.2). However, in those mixtures where the means g and g,
differ a lot, none of the three formulas for p seemed to be good enough. We

then decided to let the means g4 and 4, to be used in p as well:

JIATAN -2
= ek, A 4.4.4
o JIRTON LIRS TATIN o ( )

This formula operated much better in approximating the mixtures with

a single distribution.
Pednekar et al. (2002) proposed Gaussians functions to be used for

defining the percentage of participation of each distribution of a mixture in

the parameters of a single distribution which approximates that mixture. Thus,

we next used the following formula for p:
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exp{—l——-——(#l _flz)z]

2 o;

p: 3 3
exp{—g———( 22) ]+exp[—§—( ‘ 22) ]

1 0,

(4.4.5)

This formula provided even better results than the previous formulas,

but we made one more effort to improve p by inducing in (4.4.5) the weights

w, and w,:

exp(— W, (/11 :,U:) J
ol

p= 2 2
p[ W (u]a;uz) J+exp[_wz (=12 J

] o,

(4.4.6)

At the end, we made an overall comparison of the results of this
simulation study. We compared the average areas found for each simulated
mixture with the use of each one of ps given by (4.4.1), (4.4.2), (4.4.3),

W,

(4.4.4), (4.4.5), (4.4.6) and of course by p= . We concluded that

W, + W,

formulas (4.4.4), (4.4.5) together with p= L provided the minimum
W, +W,

areas among all the different ps.
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CHAPTER S

EXPERIMENTAL RESULTS

5.1 Introduction

In the previous section we described a statistical procedure for pooling
together the distribution of an incoming pixel to the ‘closest’ one of three
existing Normal distributions N(,ul,of), N(uz,a;) and N(;13,a32), which
account for human body, background and grey zone pixels. When the
procedure is applied to all »x ¢ pixels of second frame, the three distributions
accounting for each pixel are different from the distributions accounting for
another pixel. .

Then, the same procedure is applied to all following up frames. Every
time, the pixels are assigned to that Normal from which they desist less. We
used several different measures to define the distance between distributions;
Jeffrey’s divergence, Kullback Leibler divergence, Hellinger H,, L,,
Bhattacharrya and Chi-Squared divergence. Some of them appeared to be
quite unsuitable, as they did not manage to result in proper ascription of

pixels in distributions.

5.2 The results

We will judge the performance of several measures of distance on an
inframed video segment. More precisely, we select an area 94x57 pixels
corresponding to face during the entire video segment and we count the

number of face pixels at the last frame of the video, to judge how well each

divergence does.

61



The area of pixels selected is shown in figures 5.2.1 and 5.2.2, for the

first and the last frame correspondingly.

Figure 5.2.1. The area of pixels in the first frame in which our results

were checked.

Figure 5.2.2. The area of pixels in the last frame in which our results

were checked.
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The number of pixels of the last frame in this area which where
assigned to each of Normal distributions accounting for human body,
background and grey zone were then counted. The results for Jeffrey’s

number, Kullback-Leibler divergence, Hellinger H,, L, , Bhattacharrya and

Chi-Squared divergence are presented in Table 5.2.1. Inside the parentheses

the corresponding percentages are given.

L2 H2 Chi | BHAT | KULLB | JEFFR

wf 2322 4307 4310 4307 4562 4561
(0.4334) | (0.8038) | (0.8044) | (0.8038) | (0.8514) | (0.8513)

wb 1015 66 66 66 79 79
(0.1894) | (0.0123) { (0.0123) | (0.0123) | (0.0147) | (0.0147)

wgr 2021 985 982 985 717 718
(0.3772) | (0.1838) | (0.1833) | (0.1838) | (0.1338) | (0.1340)

wfalse | 3036 1051 1048 1051 796 797
(0.5666) | (0.1962) | (0.1956) | (0.1962) | (0.1486) | (0.1487)

wtrue | 2322 4307 4310 4307 4562 4561
(0.4334) | (0.8038) | (0.8044) | (0.8038) | (0.8514) | (0.1487)

n 5358 5358 5358 5358 5358 5358

Table 5.2.1. The number of pixels of the last frame in the area of interest

which where assigned to human body, background and grey zone for some

where:

divergences, with the corresponding percentages.

wi: the number of pixels into the specific area which were matched to
the distribution of face.

wb: the number of pixels into the specific area which were matched to
the distribution of background.

wgr: the number of pixels into the specific area which were matched
to the distribution of grey zone.

wfalse: the number of pixels into the specific area which were wrongly

matched. (wfalse= wb+wgr)
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wtrue: the number of pixels into the specific area which were correctly

matched. (wtrue = wf)

n: the number of pixels into the area

Next, in figure 5.2.3 the assignment of the last frame is given after

applying the L,, H,, Kullback Leibler divergence, Jeffrey’s divergence,

Bhattacharrya and Chi-Squared divergence.

Kullback Jeey’s
Figure 5.2.3. The classification of last frame’s pixels using L,, H,, Kullback

divergence, Jeffrey’s divergence, Bhattacharrya and Chi-Squared divergence.

It is obvious from the Table above that L, did not manage at all to

assign the skin pixels to proper distribution. Kullback and Jeffrey’s

divergence measures provided similar results, which were the best among all

the other measures.



We then checked the resulis provided by the use of different ps in the

formulas of method of moments instead of p=

when using Jeffrey’s
W, +w,

divergence. If we name

FORMULA 1:

FORMULA 2:

FORMULA 3:

FORMULA 4:

FORMULA 5:

FORMULA 6:

w0,

P=_— o=,
W0, +W,0,
NATXA

p= \/WIO'l +\/W._,O': ’

W,4/0
P= >
11'“/0'1 +1,4/0,

HaW14/O

£ ﬂn"’;\/OT;"' uzw:\/oT: ,

exp[—l——h#ﬁf[:) J
2 o

2 23 °
%(,ul—lzuz) ]+exp[—%(#l_flz) ]

o, o)

p =1
exp(—

o

pP= 2 2\’
exp(_wl (-1 J"[ ACRT, J

o, o,

exp{—wl (/11 j/uz) J

then the number of pixels of the last frame in the area defined earlier which

where assigned to each of Normal distributions accounting for human body,

background and grey zone along with the corresponding percentages are given

in Table 5.2.2.
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FORM 1 | FORM2 | FORM 3 | FORM 4 | FORM 5 | FORM 6
wi 4419 4598 4612 4834 4908 4923
(0.8247) | (0.8582) | (0.8608) | (0.9022) | (0.9160) | (0.9188)
wb 62 74 63 91 80 97
(0.0116) | (0.0138) | (0.0118) | (0.0170) | (0.0149) | (0.0181)
wer 877 686 683 433 370 338
(0.1637) | (0.1280) | (0.1275) | (0.0808) | (0.0691) | (0.0631)
wialse 939 760 746 524 450 435
(0.1753) | (0.1418) | (0.1392) | (0.0978) | (0.0840) | (0.0812)
wtrue | 4419 4598 4612 4834 4908 4923
(0.8247) | (0.8582) | (0.8608) | (0.9022) | (0.9160) | (0.9188)
n 5358 5358 5358 5358 5358 5358

Table 5.2.2. The number of pixels of the last frame in the area of interest

which where assigned to human body, background and grey zone for some

formulas for p, with the corresponding percentages.

%
In figure 5.2.4 the assignment of the last frame is given after applying

each one of formulas 1, 2, 3, 4, 5, and 6 for p (when the Jeffreys divergence

measure is used).
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formula 1 formula 2

formula 3 formula 4

formula 5 formula 6

Figure 5.2.4. The classification of last frame’s pixels using formulas 1,
2,3,4,5and 6 for p.

Comparing the results obtained by the various formulas of p with the

corresponding result of Jeffrey’s number given in Table 5.2.2 (where

W,
p= . was used) we can see that all formulas except for formula 1

W, +w,

w,

provided greater percentages of correct ascriptions than p= .
w oW,

Obviously, the best results were obtained when formulas 4, 5 and 6 were

used.
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CHAPTER 6

CONCLUSIONS

6.1 Conclusions

We have presented a general problem of image segmentation when
images come from a video sequence. The data values were the temperature of
each pixel. First of all we isolated the first frame’s pixels that indicated
human body from those ones that indicated background and those ones that
indicated grey zone. Two different cluster analysis techniques were
employed: the k-means and the EM method. After this first phase we have
provided statistically valid values for the temperatures of first frame’s pixei

corresponding to the scene. Then, each pixel x, of the first frame was

considered to be a mixture of the three Normal distributions:
2 2
X, ~ wlN(/Jl,O', )+ szCuz,az )+ w3N(/13,0'32)
Next phase was concerned with the classification of next incoming
frames’ pixels. We assumed that every new pixel comes from a Normal

distribution NCup,ai) and measured the distance between the distribution of

the incoming pixel N(,up,a;) and each one of the three Normal

distributions NCtzl,alz), NCuz,a;), N(,u3,o32). Several distance measures were
presented and applied. We concluded that the best results were provided by

Jeffrey’s divergence.

After finding which of the distributions N(,ul,a,2 ), N(uz,azz), N(;13,0'32)

. . . . . . . 2
is closest to the distribution of the incoming pixel N(,up,ap) we had to
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approximate those two ‘closest’ densities with one single distribution. So, the

next issue was to define the parameters of this new distribution. If
S~ N(ul,af) with weight w, and f, ~ N(;zz,azz) with weightw, are the two
distributions merged we need to approximate their mixture with a single
Normal distribution f ~N(/1,0'2) with weightw. The method of moments
provides the weight, mean and variance of the new distribution by:
w=w +Ww,
p=(-p)m+pn,
2
o* = (1-p) o + poi +(1-p) p (14~ 1)

w. a a
where p=—:. However, we tried some other formulas for p, instead of
w

P =2 which provided slightly better results.
w

6.2 Future research

All of the above open up a wide range of issues that require further
research. Most notably the fact that the pixels of each frame considered to be
independent from their neighborhood pixels violates the smoothness of the
visual world. Use of spatial statistics along with some Bayesian approach
would probably be the next step in improving the segmentation while keeping

in mind that we are interested in maintaining the results online.
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Appendix

Presentation of the Algorithm

The algorithm presented below was written in Matlab. The first part is a
function which calculates the weights, mean values and variances of the groups
created by k-means method. It accepts as input the values of temperatures of first

frame’s pixels.
function [W0,M0,S0]=EM _initial3(X);

% Calculates the k-means estimates.
% They will be used as initial values in EM.

km=kmeans(X,3);
=L

for i=1:80772

if km(iy=1
km1(=X(i);
=ith

end

end

FL

for i=1:80772
if km(i)==
km2(j)=X(i);
it

end

end

=L

for i=1:80772
if km(i)==
km3Gy=X(0);
LG

end

end

[N c]=size(X);

[r]l cl]=size(kml);
[r2 c2]=size(km2);
[r3 c3]}=size(km3);
cl+c2+c3;

wl0=cl/(cl+c2+c3);

w20=c2/(cl+c2+c3);
w30=c3/(cl+c2+c3);
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WO0=[w10;w20;w30};

m10=mean(kml);
m20=mean(km2);
m30=mean(km3);

MO0=[m10;m20;m30];

s10=sqrt(var(kml));
s20=sqrt(var(km?2));
s30=sqrt(var(km3));

S0=[510;520;s30];

The returned k-means estimates of the above function are stored into 3
matrices called W0, MO, SO.

The next function gives the image of the woman after the isolation of pixels
that indicate human body from those ones that indicate background and those ones
that indicate grey zone after the implementation of k-means method.

function [km]=km3_image_framel(X);
% Gives the image of frame 1 after kmeans method.

km=kmeans(X,3);
imagesc(reshape(km,254,318)); »

After that, the algorithm continues with a function which calculates the EM
estimates of the weights, means and variances. This function accepts as input the
values of temperatures of first frame’s pixels and the algorithm’s terminating
condition. The function calls as a subfunction the one that calculates the k- means
estimates, Le. it uses W0, M0, SO. The returned estimates are stored in matrices Wem,

Mem, Sem.
function [Wem,Mem,Sem] = EM3(X,k);

% Provides the EM estimates for the weights, means and variances of 3 Normal distributions.
% You must provide the data set and the terminating condition.

[WO0,M0,S0]=EM _initial3(X);

[N c]=size(X);

WOV=[W0(1)*ones(1,N); W0O(2)*ones(1,N); WO(3)*ones(1,N)];
MOV=[MO(1)*ones(1,N);M0(2)*ones(1,N);M0(3)*ones(1,N)];
SOV=[SO0(1)*ones(1,N);S0(2)*ones(1,N);S0(3)*ones(1,N)];
S01=S0V.~(-1);

S02=(-1/2)*S0V.A(-2);

Z27=[X";. X" X");

YO=WOV.*S01.*exp(S02.*(ZZ-M0V).A2);
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SUMY0=[sum(Y0);sum(Y0);sum(Y0)};

Z0=Y0./SUMYO0;

WI1=(sum(Z0")./N;

MI1=(Z0*X)./(N*W1),
MIV=[MI(1,1)*ones(1,N);M1(2,1)*ones(1,N);M1(3,1)*ones(1,N)];
SV=Z0.%(ZZ-M1V).~2;

S1=sqrt((sum(SV"))./(N*W1));

while abs(W1(1,1)-W0(1,1))>k | abs(W1(2,1)-W0(2,1)>k | abs(W1(3,1)-WO0(3,1))>k
W0=Wi;

M0=M1;

S0=S1;

WOV=[WO0(1,1)*ones(1,N); W0(2,1)*ones(1,N); WO(3,1)*ones(1,N)];
MOV=[MO(1,1)*ones(1,N);M0(2,1)*ones(1,N);M0(3,1)*ones(1,N)};
SOV=[S0(1,1)*ones(1,N);S0(2,1)*ones(1,N);S0(3,1)*ones(1,N)];
S01=S0V.A(-1);

S02=(-1/2)*SOV.~(-2);

YO=WOV.*S01.*exp(S02.*(ZZ-MOV)."2);
SUMY0=[sum(Y0);sum(Y0);sum(Y0)];

Z0=Y0./SUMYO0;

WI1=(sum(Z0"))./N;

MI1=(Z0*X)./(N*W1);
M1V=[MI(1,1)*ones(1,N);M1(2,1)*ones(1,N);M1(3,1)*ones(1,N)];
SV=Z0.%(ZZ-M1V)."2;

S1=sqrt((sum(SV"))"./(N*W1)),

end

Wem=W];

Mem=M1;

Sem=S1;

The next two functions give the image of the woman after the isolation of
pixels that indicate human body from those ones that indicate background and those
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ones that indicate grey zone after the implementation of EM method and the
differences between the results of k-menas and EM method.

function [WemV,MemV,SemV,im]=EM3image_fr1(X,k);

% Gives the image of frame 1 after EM algorithm.

% It is based upon the posterior probabilities.

% The terminating condition must be given.

[Wem,Mem,Sem] = EM3(X(;,1),k);

[N cl=size(X);

WemV=[Wem(1,1)*ones(1,N);Wem(2,1)*ones(1,N); Wem(3,1)*ones(1,N)];
MemV=[Mem(1,1)*ones(1,N);Mem(2,1)*ones(1,N);Mem(3,1)*ones(1,N)};
SemV=[Sem(1,1)*ones(1,N);Sem(2,1)*ones(1,N);Sem(3,1)*ones(1,N)];
Sem1=SemV.~(-1);

Sem2=(-1/2)*SemV.~(-2);

ZZ=[X(,1)5XGD5XGD';
Yem=WemV.*Seml.*exp(Sem2.¥(ZZ-MemV)."2);
SUMYem=[sum(Yem);sum(Yem);sum(Yem)];

ZINEWem=Yem./SUMYem;

[i,j]-max(ZINEWem); 5
im=j;

for i=1:N

if j(i)==2

im(i)=3;

else if j(i}==3

im(i)=2;

end

end

end

imagesc(reshape(im,254,318));

function [km_EM]=dif km_EM3(X,k);
% Gives the differences in frame 1 between the kmeans's and EM' results.

[km]=km3_image framel(X(;,1));
[WemV,MemV,SemV,im]=EM3image fr1(X(;,1).k);
km_EM=abs(im-km");
imagesc(reshape(km_EM,254,318));
Next, function JEF 3cl is given which calculates the Jeffrey’s divergences of
the data of a frame from each one of the Normal distributions which have the
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parameters obtained after the implementation of EM method. It takes as inputs the
two vectors of the data of the first two frames.

function [J]=JEF_3cl(X,Y,k);

% Calculates the Jeffreys divergence of the data of a frame from each one of the distributions
% of a mixture.

Z22V=[Y;Y'Y'};

[N cl=size(X);

SXV=0.025.*ones(3,N);
[WemV,MemV,SemV]=EM3image fr1(X,k);

J=(1/2).*(SXV./SemV-SemV./SXV).A2+(Z2V-MemV).A2./2). *(1./(SXV.*2)+1./(SemV."2));

Similarly to the above function, functions dL2 3cl, dH2 3cl, dK 3cl,
BHAT _3cl, CHI_3cl were applied to the data which calculated the L2, H2, Kullback,
Bhattacharrya and Chi-squared distances. They differ from JEF 3cl function only to
the last row which becomes correspondingly for each function:

L2=sqrt((ones(3,N)./sqrt(2*pi*ones(3,N))).*(ones(3,N)./sqrt(2*SXV."2 )+
ones(3,N)./sqrt(2*SemV.”2)-2*(ones(3,N)./sgrt(SXV.~2+SemV."2)).*
exp(-(Z2V-MemV).”2./(2*(SXV."2+SemV."2)))));

H2=sqrt(2*ones(3,N)-2*sqrt(2)*sqrt(SXV.*SemV./(SXV.”2+SemV. 2)).*
exp(-(Z2V-MemV)."2./(4*(SXV.*2+SemV."2))));

K=log(SXV./SemV)-(1/2).*ones(3,N)+(SemV. 2)./(2*SX V. 2)+
((MemV-Z2V).22)./(2.%(SX V. 2));

B=(1/2). *log((SX V.A2+SemV."2)./(2.*sqrt(SXV."2.*Sem V. 2)) )+
(Z2V-MemV).A2./(4.%(SXV.A2+SemV. 2));

C=(SemV.*2./(SXV.*sqrt(2.*SemV.”2-SXV."2))).*
exp((Z2V-MemV).*2./(2.*SemV."2-SXV.*2))-ones(3,N);

Next function gives the assignment of second frame’s pixels according
to Jeffrey’s divergences. Similar functions could have been constructed to give the
assignment of second frame’s pixels according to other divergences as well. The
function below accepts as inputs the values of temperatures of first and second
frames’ pixels, i.e. the two first columns of our matrix of data.

function winners_frame2 cl3(X,Y,k);

% Gives the image of the winners (the distribution of minimum distance)

[J]=JEF_3cl(X,Y,k);
[p.r}=min(J);
imagesc(reshape(r,254,318));

In what follows the function which makes the updating of the parameters of
the Normal distribution which approximates the mixture of the two ‘closest’ Normals
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according to the method of moments is presented. It uses Jeffrey’s divergences. It
accepts as inputs the whole matrix of the data of all frames X, the EM algorithm’s
terminating condition k and the learning parameter which stands for the weight of the

distribution of the incoming pixel a.

function [WNEW MNEW,S2NE W]=updatingJ_3cl(X,k,a);

% Gives the parameters of the distributions of each one of the pixels using Jeffrey's
% divergence.

[Wem,Mem,Sem] = EM3(X(;,1),k);
[WemV,MemV,SemV]=EM3image frl1(X(:;,1),k);
[N c]=size(X(:,1));

Z_f2=[X(:2);X(:2);X (D)%
SXV=0.025.*ones(3,N);

[JI=JEF _3cl(X(:,1),X(:,2),k);

[p.r]=min(J);

R=full(sparse(r,1:N,ones(1,N)));

WNEW=WemV-a.*WemV+a.*R;

p=((a*ones(3,N))./WNEW).*R;

MNEW=(ones(3,N)-p).*MemV+p.*Z_fr2;
S2NEW=(ones(3,N)-p).*SemV.A2+p.*SXV.A2+p.*(ones(3,N)-p).*(MemV-Z_{i2).”2;

Similar functions were applied to the data which used the L2, H2, Kullback,
Bhattacharrya and Chi-squared distances. Moreover, the next function makes the
update using Jeffrey’s divergence and calculates p by formula sz

wo, +Ww,o,

instead of the method of moments.

function [WNEW,MNEW,S2NEW]=updatingJ _3cl_form1(X,k,a);
% Gives the parameters of the distributions of each one of the pixels.

[Wem,Mem,Sem] = EM3(X(:,1),k);

[WemV ,MemV,SemV]=EM3image fr1(X(;,1).k);
[N c]=size(X(;,1));

Z_fr2=[X(;,2);X(:2);X(:,2)T;
SXV=0.025.*ones(3,N);

[JIFJEF _3cl(X(:,1),X(:,2),k);

[p,r]=min(J);

R=full(sparse(r,1:N,ones(1,N)));

WNEW=WemV_*SemV-(a*WemV).*SemV+a*R).*SXV;
p=(((a*ones(3,N)).*SXV)./WNEW).*R;

MNEW=(ones(3,N)-p).*MemV+p.*Z_fr2;

S2NEW=(ones(3,N)-p).*SemV .~2+p.*SXV.*2+p.*(ones(3,N)-p). ¥(MemV-Z_{r2)./2;
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For using formula p= it the 11"™ and 12™ line of the above

\/w,a, +\/H’._,O'2

function become:

WNEW=sqrt(WemV.*SemV-(a*WemV).*SemV)+sqrt((a*R).*SXV);
p=(sqrt((a*ones(3,N)).*SXV)./ WNEW).*R;

. }V‘v \’ o."l .
For using formula p = N those two lines become:

w,Jo, +W,0,

WNEW=WemV *sqrt(SemV)-(a*WemV).*sqrt(SemV)+Ha*R).*sqrt(SXV);
p=(((a*ones(3,N)).*sqrt(SXV))./WNEW).*R;

i W, [0 .
For using formula p = ackh'it those two lines become:
MW,«/O] + W, O,

WNEW=MemV.*sqrt(WemV.*SemV-(a*WemV).*SemV)+Z_fr2.*sqrt((a*R).*SXV);
p=(Z_fr2.*sqrt((a*ones(3,N)).*SXV)./WNEW).*R;

eXP(‘%—*—(M ;#) J

For using formula p = > -~ those two
2 i 2 o
lines become:
WNE W=exp(((-1/2)*(MemV-Z_fr2).72)./SemV.2)+R . *exp(((-1/2)*(MemV-
Z_£r2).A2)./SXV.A2);
p=(R.*exp(((-1/2)*(MemV-Z_fr2).A2)./SXV.A2))/WNEW;
exp(— W (lul :/Uz) ]
- those

For using formula p= .
W (/11 —H, )2 w, (,u, —H, )2
exp| ———— 5 |+exp| ————5~"
1 o,
two lines become:

WNEW=exp((-WemV.*(MemV-Z_{r2)."2+(a*WemV).*(MemV-
Z_1r2)./2)./SemV."2}+R *exp((-a*(MemV-Z_{r2).72)./SXV.2);
p=(R.*exp((-a*(MemV-Z_£r2).~2)./SXV.*2))./WNEW;
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Next a function which makes the video of our data is given. It accepts as
inputs the matrix of our data, the name we want to give to the video and the duration

of it.

function makeavi(Z,name,sec)

n=size(Z,2);

fps=min(n/sec,n);

aviobj = avifile(name,'compression’,'Cinepak’,'fps', fps,'quality',75)

for i=1:n;
imagesc(reshape(Z(:,i),254,318));
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end;

aviobj

aviobj=close(aviobj);

close;

Using the above function and all the previous functions, a new function is
presented which repeats the same procedure for all frames and makes the video where
for each frame the pixels are assigned to that normal from which they desist less.

function winners_imagesJef 3cl(X,k,a,name,sec);

% Gives the images of the winners through frames:2_98
% (the distribution of minimum Jeffreys distance)

% set k=1e-10, a=0.05, sec=30
[WNEW,MNEW,S2NEW]=updating_3cl(X,k,a);

[N cl=size(X(, 1));

SXV=0.025.*ones(3,N);

[J1_2)=JEF 3cl(X(:;,1),X(:,2),k);
[p,vl=min(J1_2);
vid(;,1)=v';

for fr=3:98

22V=[X(:,fr) X fr) ;X ()0
J=(1/2).%(SXV./(sqrt(S2NEW))-(sqrt(S2NEW))./SXV).A2+(Z2V-
MNEW).A2./2).%(1./SXV.~2+1./S2NEW);

[p,r(fr-2,:)]=min(J);

Vid(.,fr-1)=r(fr-2,:);

R=full(sparse(r(fr-2,:),1:N,ones(1,N)));

WNEW=WNEW-a*WNEW+a*R;

p=((a*ones(3,N))./ WNEW).*R;

MNEW=(ones(3,N)-p).*MNEW+p.*Z2V;
S2NEW=(ones(3,N)-p). *S2NEW+p.*SX V.~2+p.*(ones(3,N)-p). (MNEW-Z2V).~2;

end

makeavi(Vid,name,sec);

78



That function uses Jeffrey’s divergence and the method of moments. Similar
functions were applied to the data using other measures of divergence and different

. W,
p’s instead of p = —3—.
W+,

In order to check the result obtained an area was chosen which in all
frames actually included skin pixels. Next function counts the number of
pixels of the last frame which were assigned to each one of Normal
distributions accounting for human body, background and grey zone. It also
gives the corresponding percentages.

function [wwl,ww2,ww3,pf,pb,pgr]=perc_square3Jef 3cl(X,k,a);
% Gives the images of the winners through frames:2_98

% (the distribution of minimum Jeffreys distance)

% set k=1e-10, a=0.05, sec=30
[WNEW,MNEW,S2NEW]=updatingJ 3cl(X,k,a);

[N cJ=size(X(:,1));

SXV=0.025.*ones(3,N);

for fr=3:98

Z2V=[X( )X 03X G
J=(1/2).*(SXV./(sqrt(SZNEW))-(sqrt(S2NEW))./SXV)."2H(Z2 V-
MNEW).~2./2).%(1./SXV.A2+1./S2NEW),

[p.1(fr-2,)]=min(J);

R=full(sparse(r(fr-2,:),1:N,ones(1,N)));

WNEW=WNEW-a*WNEW+a*R;

p=((a*ones(3,N))./WNEW).*R;

MNEW=(ones(3,N)-p).*MNEW+p.*Z2V;
S2NEW=(ones(3,N)-p).*S2NEW+p.*SXV.~2+p.*(ones(3,N)-p). *(MNEW-Z2V).12;

end

gr=r(96,:);
wwl=0;
ww2=0;
ww3=0;
for p=127:183
for pp=85:178
if r(96,p*254+pp)==1
wwl=wwl+];
elseif r(96,p*254+pp)==2
ww2=ww2+l1;
else
ww3=ww3+1;
end
end
end

n=(183-127+1)*(178-85+1);

pf=max(max(wwl,ww2),ww3)/n;
pb=min(min(ww1,ww2),ww3)/n;
pgr=(n-max(max(wwl,ww2),ww3)-min{min(ww1,ww2),ww3))/n;
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The above function uses Jeffrey’s divergence and the method of
moments. Similar functions were applied to the data using other measures of
W,

divergence and different p’s instead of p = .
W, +w,
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