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ABSTRACT

Statistical theory provides various models for modelling continuous data
which exhibit some form of dependence. Well known models such as the
family of the autoregressive moving average models have proved of great use
accounting for the dependence of the data. Such models, while suitable for
continuous data, cannot be directly applied to discrete data due to their
nature. This fact led to the need to define appropriate time series models
to deal with discrete data. Models that capture the existing dependence in
discrete data are categorized in two major classes, the observation and the
parameter driven models.

In an observation driven model the conditional mean of the present obser-
vation is modelled through a function of the past observations and assumes
a discrete distribution for the data. These models can account for the de-
pendence as well as for covariates which may affect the marginal mean of the
observation. By considering different distributions for the data, a variety of
models arise; other assuming no overdispersion, such as the Poisson Integer
Autoregressive model (INAR), and other accounting for overdispersion, such
as the negative binomial model (NB).

In a parameter driven model the dependence arises from an unobserved
process, mostly a time series. The distribution of the present observation is
conditional on the latent process in a way that the marginal distribution of
the observations accounts for the dependence among them. Similar to the
observation driven models, parameter driven models are capable of modelling
the mean of an observation as a function of covariates. These types of models
are more flexible than the observation driven models because by assuming
different structures of the latent process one can account for different struc-
tures of the dependence among the data as well as for possible overdispersion.
On the other hand the estimation of the parameters is more complicated. A
well known model of this family is Zeger’s model (1988).

In our case, we used one model from each class to model daily car ac-
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cidents counts in 27 areas of the Netherlands using weather variables from
each area. The purpose was to measure and examine the effect of weather
variables to the daily counts of accidents. We have selected a variety of dif-
ferent locations (in fact different road segments) to allow for variability in the
weather conditions. We use two models; the Poisson INAR model from the
observation driven class and Zeger’s model from the parameter driven class.
Diagnostic tests were considered in order to identify which model fitted the
data best and subsequently the best model’s estimated coefficients were used
for a meta-analysis and a meta-regression. The latter analyses belong to the
class of the meta-analytic methods which are used in order to obtain an over-
all measure of each covariate’s effect and to examine the existence of factors
that affect it.

Zeger’s model was shown to provide a better fit to the data than the
Poisson INAR model due to the fact that it accounts for overdispersion. The
meta-analysis models provided a single overall effect for each covariate. The
mean daily temperature was found to reduce the mean accidents by 0.8% (p-
value = 0.002). Precipitation covariates, duration and intensity, were found
to increase the mean accidents by 11.24% (p-value < 0.001) and 3.4% (p-
value < 0.001) respectively. Temperature below zero showed to increase the
mean accidents by 6.25%(p-value = 0.08). The other variables like wind
velocity, windspeed and humidity, did not manage to explain any of the
accidents variability. Note that detailed description of the weather effects
is quite demanding as it is well known in the traffic literature that weather
variables also affect the exposure, and exposure is highly correlated to the
accident counts. Thus the reported effects do not indicate a causal effect and
must be interpreted with care.

The meta-regression models identified variables which influence the effect
of the covariates. It was shown that an increase of one unit of the maximum
temperature decreases the effect of the mean temperature on the accidents
by 0.004% (p-value = 0.042) and a decrease of a unit of the minimum tem-
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perature increases the temperature below zero effect by 0.768% (p-value =
0.047). The effect of humidity covariate one the mean accidents becomes
stronger when combined with lower minimum temperatures by 0.052% (p-
value < 0.001). The rainfall intensity effect was related to the increase of the
rainfall duration and it decreases by 25.67% (p-value = 0.09).
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INIEPIAHYH

H Bewpla Twv ypovohoydv oepdv éxel xatahdBet éva ueydho wépog ot
Bihoypagpia T oTATIOTLNAE TOL APOPd TN HoVTENOTOINON SLVEYDY dedouévwy
ue xadmota popet) e€dptnomng. I'vwotd poviéha, énwe to povtého autonahivipo-
MOV XN TV UEG0U, £X0LV BpeL UEYAAT QapUoYT) BLETL UTopoUv va aviyvedGouy
v e€dptnorn mou umdpyer ota dedouéva. Ta povtéla autd, Tapd To TO
Yeyovég 6TL elvar xatddnha yia cuveyy dedouéva, de pmopolv va éxouv
dueon egapuoyY| oe daxpLtd dedouéva Aéyw TG guong Tous. Autd odrynoe
oty avayxn vo xafoploTovv XATIAANAA LOVTEAA YPOVOAOYLXMV GELPMV Yo
SraxpLtd dedouéva. Movtéha mou Bploxouv Ty e€dptnom oe dlaxpttd dedouéva
€youv ywprotel oe dbo xatnyopleg, Ta observation xou ta parameter driven
MOVTEAX.

H »Adomn twv observation driven povtéhwy Bewpel ot 7 deopevuévn uéon
T e mapovoag T dlvetar wg ouvdptnon twv mapeAfEVTILY TGV ot
unoBétouv ddpopeg daxpltés xatavoués yia ta dedopéva. Tao povtéha autd
AauBdvouv uroduy v uro uekétn edptnomn xabdg xon mbavég Sabéoiueg
enelnynuatés uetafAnté mou umopel va emnpedlouv Tov mepldplo uéco
TV TapatneRcewy. YToBétovrag SLaopeTixés xatavoués yia ta dedopéva,
eZdyovtow ToAAG povtéla, Hepixd utoBéTouy ot 1) Staxduaven elva fon ue
péomn T, 6mws to Poisson Integer Autoregressive model (INAR) »at dhha
emTpénouy utepdtaxluavon, 6w to Negative Binomial model (NB).

Yta parameter driven povtéla v e€dptnon Bewpeitar oL mpoépyeTan ano
pLa un tapatnpoduevn Swadixacta, cuvitbwg ua ypovooepd. H xatavoun twv
TopoVowY TOY elvon deopeuuévn oty dladuxacia auth pe tétolo TpdéTo BoTe
7 meptfdpLa xatavour) Twv tapatnefoewy va hauBdver unoduv v e€dptnom
Tou undpyet wetald Toug. Tétolou TUMOU UOVTEAA Elvor TO EVEAXTA ATO Ta
observation driven povtéha Sétt unoBétovrag dtdpopeg Loppés e€dptnong oty
AavBdvovoo Saduaocia eEdyovrar ot SlapopeTinéc HopPég EEdPTNONG OTNV
rapatnenfeloa dtadixaoio xabde xor dapopeTnod Pabuod unepdiaxduavon,.

Qotéoo, N extiunon Tev Tapauétpwy elvar mo dVoxoAr. ‘Eva and Ta mo
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YVWoTé poviéha Tne xAdomg authc elvat to povtéro tou Zeger (1988).

Ty epapuoyr Hog, xpnowtonotovue £va uoviého and xdbe xhdon yia va
TepLypdoupe nuepriota atuyfuata avtoxivitey o 27 teptoyéc g Ohhavdiog
HECW EMEENYNUATXGDV UETABANTAY Xapdv ouvindv and xdbe nepoxy. O
ox6m0¢ Jag oy va eZeTdoovue TNV enidpacn xapdv ouvinxdy tdve oe
nuepiiota atuyfuata. AwhéZope pa TANBGpa dtapopeTindv Tonobeaidy éto
dote oL xapés ouvlrxes va dlagpoponotovvrat. Xprnowsonotfooue %o povr-
éha- to Poisson INAR povtého ané tnv observation driven xAdon xot To
uovtého tou Zeger ané trv parameter driven xAdorn. Awyvwotxd TeoT
£QaPUGOTNXAY OTA aToTEAéoUATA TOV XG0e HovTéhou yia va Peebel Towd povtéro
TPOGAPUOLETAL XAAUTEPA OTA JESOUEVA XAl OTY) GUVEYELX OL EXTIUNCELS Ao TO
XAAVTEPO LOVTENO XPNOLOTOMOTXAY YOl UETA-AVAAUGT]) XL META-TIAALVSPOUTIOY).
Avutéc ot uéfodor avixouv oty xatnyopla TV peTa-avaAuTXOY HEBSSWY
TOU YPMOULOTOLOUVTAL OTAV O EPELYNTAG EVOLAPEPETAL VO ATOXTHOEL ULl UOVO
extiunon g enidpaone e xdbe petafAnTic xat To TS ALTH umopel va
ennpedleTon and dLaPopous TAPAYOVTES.

To povtélo Tou Zeger €deile va mpooapuolel xakltepa Ta Sedopéva pag
ané 1o Poisson INAR povTéAO AOYW TOu oTL emTpémeL umepdtaxupavon. Ot
ueta-avaduTixée pébodot pac Edwoav W xar pévo extiunon yia xdfe eme-
Enynuoatod] yetafAnth. H péon nueprowa Bepuoxpacio €deile va petdver to
uéoo aptbud atuynudatov xatd 0.8% (p-value = 0.002). O petofhntéc g
Beoxéntwong, 1 ddpxeta xar 1 €viact), @AVIXAY Vo aUEAVOUY TOUG UEGOUG
TV Nuepnotwy atuynudtey xotd 11.24% (p-value < 0.001) and 3.4% (p-value
< 0.001) avtiotoya. Ocepuoxpasiec und Tov uUNdeviés Pavnxay va avEdvouy
o atuyruata xatd 6.25%(p-value = 0.08). Ou unéhowneg petofAntés 6m6g
N Ta)YvTTa xar 7 dtevbuvor Tou avéuou xabdc xat To Toad TN vypaoiag
oTNV atubécpapa Sev xatdgepay va eENYHOOLY GNUAVTLXG TOGOGTO TN METO-
BAntétnrac e eCaptnuévng petaBintic. H nepiypagr twv emdpdoswy twv
xapedv ouvBndv elvar tohdmhoxn xabde elvar yvwotéd aro ) Piihoypapia

oL oL xaupieég ouvlrreg ennpedlouv TNy éxbfeon atov xivduvo, 1 onola elvan
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viMA& ocuvoyeTiouévn pe Ta nueprota atuyfuata. Ondte Ta avagepbueva
aroteAéopata de delyvouy uia dueon enidpact xon TPENEL VO EPUNVELTOVY UE
TpocoYN.

Ta povtéha g YeTA-TaMVOPOUNOTG EVTOTLoUVE XATOlEC METABANTES OV
eMNPEALOUVE TO AMOTEAECUA TV APYIXGY ETEENYNUATIXOV UETABANTAY. u-
Yxexpwéva, ad&non g uéylotng Bepuoxpactiog xata Yt Yovada HetdveL Ty
enidpaomn tne uéone Oepuoxpaciag ota atdynuata xata 0.004% (p-value =
0.042) evd erdTTwon g eAdyoTne Bepuoxpaocioc xata o wovdda auvgdvet
v enidpaon TV Oepuoxpactdy und touv undevég xata 0.768% (p-value =
0.047). Erionc, to mocootd uypaciog otnv atudogaupa €xel HeYAAUTERY
enidpaon 010 uéoo twv atuynudtey xata 0.052% (p-value < 0.001) 4tav
n eAdyrotn Bepuoxpacio uewbel xata pa uévada. H enidpaon g évraong
™ Beoyhc oxetiletan pe ) dMdpxeta g xat uetdvetar xata 25.67% (p-value
= 0.09) 6tav avgdvetal 1 avtioTtolyy didpxeta.
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Chapter 1

Introduction

1.1 Car accidents modelling

The last few years, road accidents statistics are the subject ;oé( increased in-

terest both on the part of policy makers and academia. Thg:&}iective is £0.

better understand the complexity of factors that are related to %‘2@ acmdents
in order to take corrective actions to remedy this situation. In this context,
the modelling of accidents over time has obtained considerable attention by
researchers in the past. For instance, several researchers have analyzed the
effect of policies, economic climate and social conditions on the year-to-year
changes in accidents risk (Chang and Graham, 1993; Oppe, 1991). Other
researchers have looked at month-to-month changes in accident levels (Van
den Bossche et al., 2004; Keeler, 1994; Fridstrgm and Ingebrigtsen, 1991).
However, there are only few studies which have looked at changes in accident
counts at a more disaggregate level. For instance, Levine et al. (1995b) and
Jones et al. (1991) studied daily changes, whilst Ceder and Livneh (1982) ex-
amined hourly fluctuations in accidents. Both approaches, high-level or low-
level data aggregation, have advantages and disadvantages. While changes
in accident counts on a highly aggregated level can be explained by struc-
tural changes, they cannot easily pick-up patterns of seasonality or weather

1
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effects. In contrast, the lower the level of aggregation, the more it is possible
to study the effects of weather conditions, traffic volume, holidays etc. on
changes in accident counts. Several authors have therefore warned for biases
being introduced by modelling accident counts at high levels of aggregation
(Golob et al., 1990; Jovanis and Chang, 1989). Therefore, in this thesis,
we study the effects of weather conditions on daily accidents for 27 cities in
the Netherlands in the year 2001. The use of weather conditions is moti-
vated by earlier research where significant influences of weather conditions
on accidents were found.

From a methodological perspective, a number of approaches have been
suggested by researchers to model time-series accident count data. More
specifically, serial correlation between successive daily accident counts, i.e.
autocorrelation, is reported as an important challenge for all accident mod-
els (Levine et al., 1995a; Fridstrgm et al.,, 1995). For instance, Miaou and
Lord (2003), Shankar et al. (1998) and Fridstrgm et al. (1995) use the nega-
tive binomial (NB) model to account for temporal serial correlation between
accident counts. Ulfarsson and Shankar (2003) use the negative multino-
mial (NM) model to predict the number of median crossover accidents using
a multi-year panel of cross-sectional roadway data with roadway section-
specific serial correlation across time.

1.2 Observation driven models

Every potential model should take into account the large and significant
autocorrelations in the data. Cox (1981) characterized two classes of time-
dependent data: observation-driven and parameter-driven models. In an
observation-driven model, the conditional distribution of Y; is specified as a
function of past observations y;—1, y;i—2, ...ys—x for some value of k. The first-
order autoregressive time-series model for Poisson distributed data (INAR)

is an example of an observation driven model.

2



The Poisson INAR model was first developed by Al-Osh and Al-Zaid
(1987) and McKenzie (1985). This model assumes that the present obser-
vation Y; is the sum of two components. The first component is a random
variable which is defined as the sum of the successes in an experiment with

t—1 trials and probability of success a. This variable is notated as a o Y;_;

”

where ” o” is called the thinning operator. The second component is equal
to a Poisson random variable R; which is independent from the first compo-
nent. Hence, the model assumes that Y; = aoY;_; + R;. In fact the binomial
thinning operator assumes that the random variable o o ¥;_; is a binomial
random variable with success probability o and number of Bernoulli trials
equal to Y;_;. Joe (1996) generalized this approach by developing a method
to define the thinning operator for cases where the marginal distribution is
in the convolution-closed infinitely divisible class. This extension not only
includes the Poisson case and many other models found in the literature, but
also the Gaussian AR model defined below.

The model, we will work with, is based on the Poisson INAR model and
is extended to a Poisson INAR regression model by letting the probability
of success a and the Poisson random component R; to depend on regressors.
This model is estimated with the EM algorithm. Its procedure removes the
need for other optimization algorithms that can be quite complicated for the
problem with covariates, while at the same time offers interesting insights to
the researcher. For example, the byproducts of the algorithm can be further
used for predicting new values.

1.3 Parameter driven models

In the parameter-driven models autocorrelation is introduced through a la-
tent process. Zeger (1988) proposed a model which belongs to this class
where the dependence is arisen from an unobserved process, mostly a time
series. The distribution of the present observation is conditional on the latent

3



process so that the marginal distribution of the observations accounts for the
dependence among them. Similar to the observation driven models, param-
eter driven models are capable of modelling the mean of an observation as a
function of explanatory variables. Specifically, Zeger models the conditional
distribution of the present observation on a latent process ¢; as Poisson with
mean equal to the product of the latent process value and the exponent of a
linear function of the regressors, that is Y; | €, ~ Poisson{e;exp(x:b)), where
X¢ is the vector of covariates at time t and b the vector of coefficients. This
type of model is more flexible than the INAR model because by assuming
different structures of the latent process one can account for different struc-
tures of the dependence among the data, not necessarily of autoregressive
nature as the INAR model does, as well as for possible overdispersion. The
estimation of the parameters provided is based on quasi-likelihood methods
and leads to a Fisher scoring algorithm.

1.4 The structure of the thesis

In chapter 2 we present the theory and properties of the observation driven
model Poisson INAR of order 1, which is a special case of the models defined
by McKenzie (1985) and Al-Osh and Al-Zaid (1987). This model has very
similar properties to a time series autoregressive model for continuous data
(AR1). The model is later modified by adding covariates to either or both the
components that comprise the observation. Subsequently, the estimation of
the model’s parameters are obtained by maximizing the likelihood function
using the EM algorithm. The estimation procedure is thoroughly explained
and it includes full implementation details.

Chapter 3 presents Zeger’s parameter driven model (1988). We review
the theory and the properties of this model and explicitly note the difficulty
in the model’s estimation by maximum likelihood methods. A more feasible
method is applied, namely the quasi-likelihood, which leads to a Fisher scor-
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ing algorithm. Further details are given for the estimation of the parameters
of the underlying process which, as noted earlier, arises the autocorrelation
in the observed data and a test for the existence of a latent process is pro-
vided. We also present some diagnostic methods for the goodness of fit of
the models.

The data used in this thesis are daily accident count data for 27 sites
in Netherlands for the year 2001. For all sites we have a full meteorological
data taken from the nearby meteorological stations. This comprises 27 series
of data with quite detailed weather conditions in a daily level. Note that
the original data were in hourly basis but such data contain so many zeroes
to be of practical use. The data themselves imply that we have to run our
models in 27 different datasets and thus we need to synthesize the findings
in order to be able to examine more thoroughly the weather effects. To do
this we use standard techniques from biostatistics to synthesize results from
different sources, namely we make use of meta-analysis procedures. Chapter
4 reviews the theory of meta-analytic methods and their purpose of use.
The most common methods are described, namely the meta-analysis and
meta-regression models. Estimation procedures are given for both fixed and
random effects models as well as some criteria for choosing between them.

The data analysis, including data description, application and resuits
of the fitted models, is fully explained in Chapter 5. The second section
of this chapter is a preliminary analysis of the data that was conducted so
that we can get acquainted with the data. The other sections consist of the
estimated parameters of the two models and their interpretation, as well as
a comparison between their results and goodness of fit. Subsequently, we
apply the meta-analytic methods on the estimated coefficients of the models
and obtain a common effect of each covariate on the mean accidents (meta-
analysis) as well as the factors that this effect is related to (meta-regression).
Finally, concluding remarks can be found in Chapter 6.






Chapter 2

Integer Autoregressive Models

2.1 Theory and Properties

Let’s begin with the well-known autoregressive model AR(1) for continu-
ous data. The model assumes that Y; = ¢Y;_; + ¢;, where |¢| < 1 and
€ ~ N(0,0?) independently from Y;_;. It can be shown that Y; inherits its
properties from e, thus it is normal distributed. In the case of discrete data,
Y; is required to be an integer valued process making the normal distribution
assumption inappropriate. Therefore this model cannot be used directly for
discrete data. McKenzie (1985) and Al-Osh and Al-Zaid (1987) defined an
analogous process for discrete data, called the Integer-valued autoregressive
(INAR) process as follows:

Definition: A sequence of random variables {Y;} is an INAR(1) process if it
satisfies a difference equation of the form

Yi=aoY, 1+ R, t=1,2,... (2.1)

The operator ” o” denotes the binomial thinning operator defined by

Y
aOY=ZZt,
t=1
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where Z; are independent Bernoulli random variables with P(Z; = 1) = a =
1—- P(Z; = 0), a € [0,1]. Thus, conditional on Y;, a oY} is a binomial
random variable where Y; denotes the number of trials and a the probability
of success in each trial. Pavlopoulos and Karlis (2006) have summarized the
elementary properties of the binomial thinning operator, which can be found
in the Appendix A of this thesis. The term R; is referred to as the innovation
term and it is a sequence of uncorrelated non-negative integer valued random
variables independent of Y;_; with mean ug and variance 012{.

One can easily see that the binomial operator mimics the multiplication
used for the normal time series model so as to ensure that only integer values
will occur. This implies that the INAR model can be interpreted as a birth
and death process, see Ross (1983, Section 5.3). Each individual at time ¢ —1,
has probability o of continuing to be alive at time ¢, and at each time ¢, the
number of births follows a discrete distribution with mean pp and variance
o%.

This model belongs to a more general family of autoregressive models
discussed in Grunwald et al. (2000). The basic ingredient of the INAR model
is that it assumes that the realization of the process at time ¢ is composed
by two parts, the first one clearly relates to the previous observation, while
the second one is independent from it and depends only on the current time
point. Thus, the first part represent the influence of previous time periods
while the innovation term captures the effects of the present time point.
Although it is possible to incorporate higher-order lags into the model, we
do not pursue them since their interpretation is not straightforward (see Jin-
Guan and Yuan, 1991). Therefore, in this thesis we will confine ourselves to
the first-order case.

The mean of an INAR(1) process is given by the formulae

t—-1

E(Y,) = a'E(Yo) + pr »_ d'

1=0



and the variance by

t t
Var(Y,) = a*Var(Yo) + (1 - a) ) | a¥ 'E(Yey) + +0i )_a?U™"
Jj=1 j=1

where pg and 0% are respectively the (assumed finite) mean and variance
of the i.i.d. innovations. In order for second-order stationarity to hold, the
initial value of the process, Yy, must have:

2
B(¥) = 2 and Var(Ye) = "ﬁ%‘g—’* 2.2)

The auto-covariance function of a stationary INAR(1) process {Y:},., is
given by the formula

(k) = Cov(Y;,Ysx) =¥ 1 (0) , ke Z (2.3)

From the autocovariance function, it is easy to obtain the autocorrelation
function p(k) as follows:

_ (k)
(k) = 71/'_(0) = ol

Thus, the autocorrelation decays exponentially with lag k£ and for £k = 1 we

(2.4)

obtain that the parameter a represents the correlation between sucqessive
time points. Note that this is the case for the time series model for continuous
data AR(1). As is evident from (2.4), the model can account only for positive
autocorrelation. .By specifying the distributional form of the innovation term,
a large number of different models can arise. The most common choice is to
assume a Poisson distribution for the innovation term R;. Generalizations
of the basic INAR model can be based on either other distributional forms
for R;, e.g. McKenzie (1986) or by replacing the binomial thinning operator
with other kind of operators based on similar arguments (e.g. Al-Zaid and



Al-Osh, 1993).

The simple Poisson INAR model can be extended to an INAR Poisson
regression model by adding covariates to both the innovation term and/or
the autocorrelation parameter. The model then takes the form

Yi = apoY 1+ Ry
R, ~ Poisson()\;)

i

logh: = z.8 (2.5)

!
WY

log

l—at

where z; and w; are vectors of covariates at time ¢ for the innovation term
and the autocorrelation parameter respectively while 3 and ~ are the vector
of the associated regression coefficients. Note that the covariate information
for the two parts of the model are not necessarily the same.

The simple Poisson regression model corresponds to the case when a; = 0
for all ¢ and thus it is in fact a special case of the model described in (2.5).
The model can capture the autocorrelation present in time series data. It also
assumes that the correlation between successive points may depend on some
variables, i.e. it is not constant across time. We will derive some properties
of this model by letting oy = « for all ¢ since this is the case that we will
use later. The mean and variance of the Poisson INAR(1) regression model
described in (2.5) is

B(Y) = o'B(¥a) + 3 o' hes (2:6)

1=0

t—1 t
Var(Y,) = a®Var(Y,) + Z a®\_i + (1 —a) Z ATE(YL)  (2.7)

1=0 =1
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Cov(Y,,Yi-n) = aVar(Yi-n) (2.8)

Var(Y;_s)

Cor(Y:, Yip) Var(Y;)

(2.9)
Note that in order for the marginal mean to be equal with the marginal vari-
ance, implying that the marginal distribution of the variables is Poisson, the
initial value Yy must be drawn from a Poisson process. If this is satisfied then
the complicated formulae of the variance Var(Y;) reduces to the formulae of
the mean FE(Y;) as defined in (2.6). We can see that the model is no longer
weak stationary, as is to be expected. Furthermore, the interpretation of the
parameters have changed. For example, the correlation between two succes-
sive time points is not o anymore but weighted by the square root of their
variance ratio as (2.9) shows. Considering the interpretation of a coeflicient,
if we fix t and two observations Y; and Yt' differ only in one covariate of z,
say Zx, then from (2.6) we get that

t—1
E(Y, —o'Y) = ) o',

1=0
t-1
— Z olexp(z o8 + Pi)
=0
= exp(By)E(Y; - 'Yo) (2.10)

We see that the interpretation of a coefficient is not straightforward. More-
over, equation (2.10) shows that the effect of a covariate on the dependent
variable is not constant across time. Nevertheless, if we let ¢ — oo then from
(2.10) it is clear that the interpretation is exactly the same as the one in the
simple Poisson regression.

Clearly, the above model offers great flexibility for modelling data with
temporal serial correlation. For accident data, it is reasonable to assume
correlation between successive time points as a result of sharing common
elements like infrastructure and road conditions that may continue to have
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effects on road safety during successive time periods (such as icy roads).
However, it is also plausible to assume that this correlation changes across
time due to changes in driving conditions, e.g. as a result of different weather
conditions.

2.2 Estimation

The probability function of Y; | Y;—; is the convolution of a Poisson with a bi-
nomial random variable (see, Shumway and Gurland, 1960). The conditional

distribution for known values of the parameters a4, A; takes the form

P(Yt =y | Vo1 = ym1, 00, Ap) =
_ z ezp( )\t ( yt—lk ) ai"_k(l — at)yt—l—yt+k (211)

Yt —

where o; and ); are defined previously and s = max(0, y; — y;—1)-

The likelihood for the model defined in (2.11), conditional on some initial
value Yy, takes the form

T
L(8) = HP(Yt =yt | Yio1 = Y1, 0, M)

t=1

where 8 = (3, ) denotes the vector of unknown parameters. The likelihood
is complicated since it involves multiple summation making the maximization
a difficult task. ML estimation for the model including covariates has been
discussed in Bockenholt (1999). He proposed a Newton-Raphson approach
for maximizing the likelihood. For the model without covariates, see the
contributions by Al-Osh and Al-Zaid (1987), Ronning and Jung (1992) and
Freeland and McCabe (2002). Brijs et al. (2004) provided an EM algorithm
for the Poisson INAR(1) model described in (2.5).

The EM algorithm is a general-purpose algorithm for maximum likeli-
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hood estimation in a wide variety of problems that either containing missing
values or they can be considered as containing missing values. For our formu-
lation of the model, we can rewrite the observation at point t as Y; = A;+ R;
where A; = o; o Y;_1. In fact, we have observed data Y; while we cannot
observe the latent variables A; and R;. Note that if we could observe those
values, then the estimation of the complete data (A;, R;) would be straightfor-
ward as it comprises simple maximum likelihood estimation in GLM models.
Recall that A; ~ Binomial(Y;—1,a;) and R; ~ Poisson(\;).

The EM algorithm proceeds by estimating the unobserved data by their
conditional expectations given the data and the current values of the param-
eters and then it maximizes the complete data likelihood using the expecta-
tions of the unobserved data taken at the previous step. The algorithm has
some interesting properties like monotonic but slow convergence, parameters
always in the admissible range etc. Multiple runs are suggested in order to
ensure that the global maximum has been located. More details on the EM
algorithm can be found in McLachlan and Krishnan (1997).

In our case, the algorithm has to be constructed so as to estimate, at
the E-step, the conditional expectations of A; and R; given the data and the
current values of the estimates and to maximize, at the M-step, the complete
likelihood. The latter is equivalent to maximizing the likelihood of a standard
GLM model for the binomial distribution and the likelihood of a GLM model
for the Poisson distribution. Statistical packages now offer procedures to fit
these models. Hence the algorithm can be described as follows.

13



o E-step: Using the current values of the estimates, say 8°¢ = (3°'¢, v°!4),
calculate

St = E(Rt I yt7yt—1,9°ld)

Yt
= Z ZP(Rt =z ' Y, yt—laeom)

zZ=$

_ iz P(Rt=Z)P(Yt=yt—Z)
P(YE =Yt | Yioi= Yi— 1,a°“’,/\;”")
ezp( /\old)(,\old)z
]

—_ z = PY= -z
E_:S Yt—ytlYt 1= Y- 1,010“1 /\Old) ( v )

z=8

— )\ozdzyt: Rt=z—1)P(Yt=yt_z)
/\oldP(Yt—yt—].IY; 1= Y 1,aold )‘old)
PYi =y |Yie1 =y 1,a°‘d /\old)

for t =1,...,T, where according to the model

old )

\old — old d ool — exp(wyy
: e:zrp( 3 )an lo% 1+exp(wn°’d)

The conditional expectation of A; given the data and the current values
of the estimates can be determined by simple subtraction, as

= E(At | ytayt—laeo’d) =Y — St

e M-Step: Update the parameters in @ by fitting two GLM models.
Namely, update 3 by fitting a Poisson regression model with response
variables ¢; and design matrix z, while < can be updated by fitting a
binomial logit model with response s; and design matrix w.

e Stop iterating when some convergence criterion is satisfied, otherwise,
go back to the E-step.
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Remark: The algorithm just described, ignoring the time series structure,
below is in fact an algorithm that fits a Poisson-Binomial regression model.
In addition one must be cautious at the M-step where the expectations are
not necessarily integers. Thus fitting GLM models is not exactly true but
just implies that we make use of the IRLS algorithm for ML estimation in
GLM models.

The above algorithm has all the pros and cons of the standard EM.
Initial values for 3 can be retrieved by fitting a simple Poisson GLM model
to the data. This algorithm was extensively used in our data analysis and
we did not face any problems. Slow convergence can be improved if after few
EM steps one uses other algorithms with better convergence properties like
Newton-Raphson. Few iterations are sufficient to be close to the maximum
and thus quite good initial values for other algorithms are available.

The model so far has been applied to many types of data. Franke and
Seligmann (1993), for example, fitted an INAR process without covariates
in epileptic seizure counts assuming that the innovation term was a finite
mixture of Poisson random variables. A similar approach has been considered
by Karlis and Xekalaki (2001) for modelling count data of fires in Greece for
a specific time period.

2.3 Related material

A substantial volume of literature is available on the probabilistic properties
of INAR(1) and generalizations to INAR(p) models of higher order (see e.g.
Al-Zaid and Al-Osh, 1988, 1990; Du and Li, 1991; Al-Osh and Aly, 1992;
DaSilva and Oliveira, 2004).

Statistical inference for parameters of INAR models is less developed
than their probabilistic properties, motivated almost exclusively by (but also
restricted to) specific cases of application on data of small counts, conducive
to equidispersion or slight overdispersion. Al-Osh and Al-Zaid (1987) were
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concerned with estimation of the two parameters of the Poisson INAR(1)
model, where innovations follow a Poisson law. Based on Monte Carlo simu-
lations of the model they assessed the behavior of bias and mean square error
(MSE) of Yule-Walker type estimators (YW), obtained by the method of mo-
ments, and of estimators obtained by methods of conditional least squares
(CLS) and conditional maximum likelihood (CML), conditioning on the ini-
tial observation in the series. Recently, Freeland and McCabe (2005) have
rigorously addressed the asymptotic properties of YW and CLS estimators
of the parameters of the Poisson INAR(1) model. They derived the asymp-
totic covariance matrix of CLS estimators explicitly, and showed asymptotic
equivalence of the distributions of CLS and YW estimators, for large sam-
ples. Estimation by CML for the Poisson INAR(1) model is treated also by
Freeland and McCabe (2004a), along with development of methodology for
assessing the model’s adequacy when fitted to time series of small counts. An
overview on statistical inference for INAR(1) models, from the more general
standpoint of conditional linear (CLAR) processes with discrete support, is
provided by Jung et al. (2005). Recently Varin and Vidoni (2005) psoposed
a composite likelihood approach for estimation of the INAR and other au-
toregressive models. The idea is close to the conditional maximum likelihood
in the sense that they construct a composite likelihood by considering the
joint distribution of pairs of observations.

Franke and Selingmann (1993) proved consistency and asymptotic nor-
mality of CML estimators of the vector of four parameters in the INAR(1)
model with innovations following a m-mixture of Poisson components with
m = 2. They referred to this model as switching-INAR(1), or SINAR(1)
in short, and applied it to time series of slightly overdispersed data of daily
counts of epileptic seizures. Clearly, the INAR(1) models treated in the
present thesis are a special case of the SINAR(1) model for m = 1.

Thyregod et al. (1999) considered the INAR(1) and INAR(2) models
with Poisson innovations, and also a self-ezciting threshold-INAR(1) model
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(SETINAR in short) consisting of two Poisson INAR(1) branches. For other
applications of the INAR model one can see Cardinal et al, (1999) and Brijs
et al (2004).

Prediction and forecasting by INAR models have been described in Free-
land and McCabe (2004b), and on INAR(1) with Poisson, binomial, or neg-
ative binomial innovations, fitted by Bayesian methodology by McCabe and
Martin(2005), while Jung and Tremayne (2006) have produced coherent fore-
casts by the Al-Zaid and Al-Osh (1990) version of the INAR(2) model with
Poisson innovations, fitted by the method of moments. Integer forecasting is
also considered in Pavlopoulos and Karlis (2006).

Extensions of the binomial thinning operator can be found in Al-Zaid
and Al-Osh (1988, 1993), Al-Osh and Aly (1992). A large literature review
can be found in Yiokari et al. (2001). Generalizations have been proposed
by Brannas and Hellstrom (2001), Gourieroux and Jasiak (2003).

17



18




Chapter 3

Zeger’s model

3.1 Theory and Properties Py

e B
; L\
/J\TV’\ S\
A model which belongs to the class of the parameter- 'ﬁﬁ-j,qu dels l'-'?-‘t\]e

one proposed by Zeger (1988). Let’s suppose we have O‘h"if—'!“n ed a l"F‘FﬁP %e‘ues

of counts y;, t = 1,2,...T, as well as a vector of covanat{"a 35&__‘ r g
describe y; = E(Y;) as a function of the px1 vector of cowrﬂﬁ,:g., M"/ h in-
dependent data, log-linear models can be used to achieve this. Furthermore,
assuming that the distribution of y; is Poisson, that is y; ~ Poisson(u,),
where y; = exp (x;b), maximum likelihood method can be used to estimate
the unknown vector of coefficients b. In practice, quite often the sample
variance exceeds the sample mean, providing evidence that an overdispersed
relative to the Poisson distribution must be used. In this case quasi-likelihood
methods which allow a variety of variance-mean relation is more appropri-
ate. Two of the most common relations are (i) Var(Y;) = ¢, and (ii)
Var(Y;) = p + p2o?, where ¢ and o are unknown scale parameters.

With time series it is unlikely that the observations are independent.
Extensions of log-linear models which account for dependence are necessary
to obtain valid inference about the relationship of y; and x;. Zeger suggested

that if ¢; is an unobservable noise process then the conditional distribution
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of y; on ¢ is Poisson with mean equal to the product of the latent process
value and the predictor as in a simple log-linear model. Therefore

Y, | & ~ Poisson(eezp (x,b)) (3.1)

Assume that ¢; is a non-negative time series with mean 1, autocovariance
function .(h) and variance o2. The assumption of non-negativity of the ¢,
is clear in order to ensure that the conditional mean of Y; is non-negative.
The condition that E(e;) = 1 is imposed for identifiability reasons; otherwise
if c = E(e;) # 1, then ¢ can be absorbed into the intercept term in the
exponent of y;.

In order to meet the non-negativity of the ¢, it is often convenient to
model the logarithms of the ¢;. Letting é; = log €;, then the conditional mean
of Y; on ¢ can be written as

u; = exp (x;b + &) (3.2)

Of course; in order for the corresponding ¢, to have mean 1, we must assume
E(exp(d;)) = 1. Unless the 6; is a stationary Gaussian process, there is not
an explicit relationship between the ACVF’s of ¢, and ;. In the case where
€; is a stationary log-normal process, i.e., d; is a stationary Gaussian process
with ACVF ~;(.) then there is a nice connection between the ACVF’s of
the two processes. First, in order to satisfy the identifiability requirement
that E(e;) = E(exp(d;)) = 1 it is required that §; ~ N (lgg-,af). Then,
with this choice of mean and variance in the log-normal distribution, v.(h) =
Elexp(bi4n — 0;) — 1] = exp(ys(h)) — 1 for all h.

The latent process introduces both autocorrelation and overdispersion in
Y;. Specifically, the following can be derived from the model:

w = E(Y;) = ezp (x;b) and Var(¥y) =, + pjo? (33)
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The autocovariance function of this process is given by the formulae :

Yy (R) = prepsssnye(h) (3.4)

From the covariance function, it is easy to obtain the autocorrelation function
as follows:

<(h
oy(h) = ut+:ut7() :
Vs + 84,020 + 207)

pe(h)
VI + (02pn) 11 + (02p:) ]

(3.5)

We can see from (3.3) that the marginal variance of Y; is greater than its
marginal mean providing this way a degree of overdispersion which depends
on the variance of the latent process 2. Another interesting property of this
model is that the form of the autocorrelation of the observed counts inherits
its structure from that of the latent process. It is also obvious from (3.5) that
even if there is no significant autocorrelation in y;, it does not necessarily
mean that autocorrelation is not present in ¢, either, since |p,(h)| < |pe(h)]-
This implies that the autocorrelation function of the observed count process
will tend to underestimate that of the latent process, even in the simplest
case where no regressors are present. Methods for estimating the underlying
autocorrelation and to test if it is zero or not are provided in the following
section. The interpretation of any element of the vector of coefficients b in

the above model is the same as in a simple Poisson regression model.

3.2 Estimation

The estimation of the model’s unknown parameters is a very difficult task
if we consider maximum likelihood estimation. Having in mind the model
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described in (3.1) the likelihood is the T-fold integral

00 C)OT

P(y1,y2, - y1) = / / HP(yt | €)P(e1,€2. .. €r) der ... der
“o0  —oo ¥=1
o0 oC T
= / / exp {Z[ x,by: — e;exp (x,b) ]}
) —00 S

T T

X (Hei")P(el,eg ...e7) dey .. .deT/Hyt!

tal t=1

As is evident, the likelihood of the model can not be written down in closed
form making the maximization impossible by direct numerical methods. To
overcome this difficulty, Chan and Ledolter (1995) proposed an algorithm,
called Monte Carlo EM (MCEM), whose iterates converge to the maximum
likelihood estimate. The algorithm shares the same principle with a simple
EM with the difference that the vector of the means of the latent process
variables conditional on the observed data is estimated via Monte Carlo
simulation. The difficult step in the algorithm is the generation of replicates
of the latent process given the observed data. Chan and Ledolter discuss the
use of the Gibb’s sampler for generating the desired replicates and give some
guidelines on the implementation of the algorithm.

This section considers a simpler method of estimation of the regression
parameters b, given consistent estimators of the covariance parameters 8 =
(03,0,,)', where 8, completely specifies the autocorrelation function p.(h).
This estimation procedure is the one that was suggested by Zeger (1988).
The estimation of b is based on a similar procedure as the one followed in
quasi-likelihood for independent data.
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The main idea of the quasi-likelihood method is based on the quantity

_ Y, — i
U= Var(Y:)

which has three similar properties to the log-likelihood functions, namely

1 dU, 1

= 4 = — — —
E(Uy) =0, Var(Uy) Var(¥) and E (dut> Var(®y)'
Since most first-order asymptotic theory connected with likelihood functions

is founded on these three properties, it is reasonable that, to some extent,

the integral
@= / Var

if it exists, should behave like a log—hkehhood function for . The quasi-
likelihood method leads to the maximum likelihood estimates for many of
the generalized linear models. For more details in quasi-likelihood method
one can look McCullagh and Nelder (1989).

Hence, in the case of independent data, b is the root of the p equations

T
U, Z di — ) =0, r=1,2...p (3.6)
=]

The quasi-likelihood estimator is consistent and asymptotically Gaussian.
This approach is also robust in that consistent inferences can be made given
only that E(Y;) = u; whether or not v; = Var(Y;). Now, by letting

Y = (yl,y% "'1yT),) "= (Hl, H2, ---HT)I, V = Var(Y)

equation (3.6) can be rewritten

Ub)=DVYY-pn)=0 (3.7)

where D is a matrix whose components are D;, = gg‘. With independent
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data V is diagonal. With time series data, V will include off-diagonal terms
which depend on nuisance parameters. Specifically if R, is a n X n matrix
with jk elements p.(|j — k|) then V = Var(Y) = A + 02ARA, where
A = diag(uy, po, ...ur). As we can see equation (3.7) depends on b but also
on the nuisance parameters 8 through V. To compute b for a given value of
0 we need to solve the system of equations

U)=D'V1®) (Y —pu)=0 (3.8)

An iterative weighted procedure can be used as in the case of quasi-likelihood
with independent data. The parameter estimates at the (j+1)st iteration,
bU+1, are given by

bU+D) = b + (D'V-1(8) D) 'U(BLY) (3.9)

where it can be shown that the inversed matrix is the asymptotic covariance
matrix of b. So
Var(b) = (D'V~1(8) D)™! (3.10)

Given an estlmatlon procedure for 0, b is found by alternately solving (3.8)
for bUTD given 87 , then using the updated bU+Y to find 8" until con-
vergence.

A drawback of (3.9) is its solution requires inversion of the n x n co-
variance matrix, V. We are unaware of an efficient algorithm for inverting
matrices with the structure of V. Hence, we consider an approximation to
(3.8) that is computationally simpler and leads to nearly efficient estimators
in many practical cases.

Inversion of V is difficult because the parameter-driven process does
not have a stationary autocorrelation function. To simplify calculations,
we approximate the actual autocorrelation matrix, R, by a band diagonal
matrix, corresponding to an autoregressive process. Let B = diag(u; +
o2u2). We approximate V with Vg = BY/2R(a)BY/2, where R(a) is the
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autocorrelation matrix of a stationary autoregressive process with an s x 1
vector of parameters, a. Let Or = (02, @) and define bx to be the solution
of the estimating equation

U(br) = D'VR!(8r) (Y — 1) =0 (3.11)

Note that the algorithm for finding by given g is greatly simplified. The
inverse of the matrix Vg, ignoring edge effects, satisfies

Vg! = B Y2LL'B"'/2 (3.12)

where L is the matrix which applies the autoregressive filter, i.e the elements
of Ly are

Yt — 1Ye—1 — ... — OpYi—p (t > D)

The iterative procedure has now the form
by = by + (D'B~V2LL'B~Y/2D)"'U(bY)) (3.13)

Under the assumption that ¢; is a stationary process and given \/n (9 -0)=
0,(1) for some fixed 6, then b is asymptotically multivariate Gaussian with
mean the true b and covariance matrix

Var(bg) = I, 15! (3.14)
where Iy = D'V;'D and I; = D'VR'VV;'D. The more complicated form

of the asymptotic covariance matrix is due to the fact that Vg is not the

[

actual covariance matrix.
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3.3 Estimation of nuisance parameters

Zeger proposed estimation of the nuisance parameters by a method of mo-
ments. Note that Var(Y;) = u; + u2o?. Hence o2 can be estimated by

T
. t;[(yt = fie)? — fi]

o2 = (3.15)
> uE
t=1
The autocorrelation function of €; can similarly be estimated by
T -~ -~
; [(ye — ) (Yemn — frz—n)]
. t=h+1
pe(h) = T (3.16)
62 > fufli-n
t=h+1

In many cases, pe(h) is fully specified in terms of fewer parameters 6. For
example, if the latent process is assumed to be a integer autoregressive of
order p with vector of coefficients 8 then by the Yule-Walker equations we
can estimate theseparameters. One limitation of moment estimation is that
a:" can be negative and g.(h) is not constrained to the interval (-1,1). When
the sample size is small and |p.(h)| is large, a different approach may be
needed. However, this is unlikely to happen if a test for the existence of a
latent process is proved significant.

In order to test for the significance of autocorrelation in the latent process
one needs the variance of the estimate of the autocovariance function ¥, (h)
which is given by

]

G2+ —)  (317)

Hish

—h

A 1 e g 1

Var(3c(h)) = w5——— ) biin(3 + %
(X fefiern)? =1

t=1

Under the assumption that the latent process is white noise with positive
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variance the 4.(h) are asymptotically distributed as independent random
variables with mean +.(h) and variance estimated by (3.17). For more details
of the inference on autocovariances of the latent process see Davis et al (1999).

The model was first applied by Zeger (1988) to modelling the trend in
U.S. polio incidence by using linear and trigonometric functions of time as
covariates. A similar analysis was carried out by Davis et al. (2000) with an
application to daily asthma counts at a hospital in Sydney. As we will see
later, this model will prove of great use in modelling daily accident counts
as a function of weather variables.

3.4 Testing for the existence of a latent process

Prior to the estimation of the nuisance parameters it is reasonable to test for
the existence of a latent process. Brannas and Johanson (1994) review the
following statistic

T
Z[(yt - ﬂt)2 - yt]

derived by several authors and based on a local alternative hypothesis or
the Lagrange multiplier test of the Poisson distribution against a negative
binomial distribution. A variant was introduced by Dean and Lawless (1989)
in order to improve the small sample performance of the test

T R
tZI[(yt — f1g)% — yp + hefiy]
Sy = =

o

T -~
23 i
t=1
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where h; is the tth diagonal element of the GLM ”hat” matrix as defined in
Fahrmeir and Tutz (1994), for example, as

H=AY2X(X'AX)'X A2

where A = diag(u1, o, ...ur) and X the design matrix. This statistic is
asymptotically distributed as a N(0, 1) variate under the null hypothesis of
no latent process and it is used in a one sided test. Simulations have shown
that S, has better size properties in small samples.

Another test introduced in Davis et al (1999) was designed for overdis-
persion due to the existence of a latent process. Under the null hypothesis
that there is no latent process the Pearson residuals

Y —
=2t

_

He

have approximately zero mean and unit variance. Hence the statistic

where

can be used to test for a latent process. The expression for O'ZQ can be derived
using the fact that a Poisson random variable Y; with mean y; has fourth
central moment E(Y; — u;)* = u; + 3u2. Under the hypothesis that the
variance of the hidden process is zero

Q ~ N(0,1)
approximately. Studies based on simulated data in Davis et al. (1999) pro-
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vided evidence of better size properties for S, and we will use this for our
analysis.

3.5 Diagnostics

This section considers measures of goodness of fit of the models based on the
X2 distribution. We will see that the types of diagnostics presented here,
are similar to the residual diagnostics used in a standard GLM fit. We are
referring to the Pearson residuals. These statistics are not the best way to
assess the fit of the model described in this thesis. Nevertheless, we use them
since we are mainly interested in a comparison between the two models.
According to the Poisson INAR(1) regression model, marginally each
observation Y; ~ Poisson(u;). Hence, we can obtain Pearson residuals by

using R
Yt — He

\/Var(Y?)

where VELT(Y}) = ;. The well-known Pearson goodness of fit statistic is
given as > eZ which, under the assumption that the model fit is adequate,
follows a X? distribution with degrees of freedom equal to the number of the

€y =

observations minus the number of the estimated parameters (similarly to a
standard GLM).

Another appealing definition of residual for the INAR model is described
in Freeland and McCabe (2004a). By taking advantage of the decomposition
of the observation in two unobservable processes, two sets of residuals are
defined; one for each component. The natural way for this definition is as
follows: for the continuation component let ¢;; = a; o Y;_; — &;Y;—; and for
the arrival component let €3 = R; — 5\t. However, these definitions are not
practical because 0 Y;_; and R; are not observable. Nevertheless, they can
be replaced with their conditional expectations given the observed values of
Y; and Y;_;. These expectations have already been found through the imple-
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mentation of the EM algorithm for the estimation of the Poisson INAR(1)
regression model. Note that the sum of €;; and ey, after the replacement
with the conditional expectations, is equal to y; — &yi—1 — \¢ which in fact
is the difference between the observed and the fitted value.

The Pearson residual type for Zeger’s model is the same as before with
the difference that V;zr(Yt) = fi + fi;’6%. Other diagnostics for Zeger’s
model are extensively discussed in Davis it et al (1999). They propose use
of standardized Pearson residuals which are defined as

€t
V1— h

where e is the Pearson residual and A is the tth diagonal element of the
GLM "hat” matrix.

The Pearson residuals can be further used to estimate the amount of the

ét=

residual overdispersion; variability of the dependent variable that has not
been explained by any of the available covariates. This can be achieved by
dividing the Chi-square statistic with the respective degrees of freedom. The
idea behind this is that under the hypothesis that there is no overdispersion
the square of each residual is an estimate of unity. Hence their sum divided
by the respective degrees of freedom should be a number lying close to unity.
Large deviations from this are evidence of overdispersion.

While we will use this diagnostic in the sequel we must point out that
asymptotic results are not valid, especially when the counts are very small.
This is due to the fact that the denominator of Pearson residuals can be
very small if the true counts are small which deviates from the asymptotic
normality assumption. For this reason the diagnostic must be used with care.
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Chapter 4
Meta-analytic methods

This chapter describes two of the most important models in the literature
of meta-analytic methods; meta-analysis and meta-regression. These models
are often used when the researcher is interested in combining specific re-
sults from related but independent studies and as we will see they are very
similar to linear regressions. The following sections describe the theory and
the properties of the meta-analysis and meta-regression models and present
estimation procedures for each model’s unknown parameters.

4.1 Meta-analysis

Meta-analysis can be defined as the quantitative review and synthesis of the
results of related but independent studies. By combing information over
different studies, an integrated analysis will have more statistical power to
detect a specific effect than an analysis based on only one study. When several
studies have conflicting conclusions, a meta-analysis can be used to estimate
an average effect. Methods for providing such an overall estimate are well
known, and have been extensively discussed from Fleiss (1993) from classical
perspectives and from Smith et al (1995) from Bayesian perspectives. These
methods are frequently used in the field of biostatistics where the researcher
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combines several randomized control trials in order to detect the treatment
effect produced by a specific therapy. In this case, a collection of studies
related to this treatment is gathered and an overall effect is given by the
methodology followed in the meta-analysis.

Once the primary studies have been collected, the meta-analyst needs to
identify a summary measure common to all studies and subsequently combine
the measure. Often there is little control over the choice of the summary
measure because most of the decision is dictated by what was employed
in the primary studies. For example if risk differences are reported in the
primary studies instead of odds ratios, then the analyst has little choice but
to utilize the average risk difference as the summary statistic in the meta-
analysis. There are mainly two classes of measures. The first one consists of
measures suitable for discrete outcome data such as difference in proportions
and the second one for continuous data that may generally be thought of as
means.

Another important issue to consider in a meta-analysis is the source of
variation. There are at least three sources of variation to consider before
combining summary statistics across studies. First, sampling error may vary
among studies since different sample sizes may have been used in the primary
studies resulting in estimated summaries with varying degrees of precision.
Second, study level characteristics may differ creating reasons to believe that
the effect is different among the studies. Third, there may exist inter-study
variation. The fixed effects model presented in section 4.1.1 assumes that
each study is measuring the same underlying parameter and that there is
no inter-study variation. Conversely, the random-effects model introduced
in section 4.1.3 assumes that each study is associated with a different but
related parameter.
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4.1.1 Fixed-effects model

A fixed-effects model assumes that each study summary statistic, Y; is a re-
alization from a population of study estimates with common mean 6. Let o
be the central parameter of interest and assume there are ¢ = 1,2, ..., k inde-
pendent studies. Assume that Y; is such that E(Y;) = 0 and let Var(Y;) = s?
be the variance of the summary statistic in the ith study. For moderately
large study sizes, each Y; should be normally distributed (by the central limit
theorem) and approximately unbiased. Thus

Y ~ N(a,s?) for i=1,2,....k (4.1)

and s? assumed known. The central parameter of interest is o which quan-
tifies the average effect.

4.1.1.1 Estimation

In order to estimate the common effect o, a maximum likelihood estimation
will lead us to the obvious weighted average with weights w; = 1/s2. So

k
E W;iYi
i=1
k
w;
i=1

&= (4.2)

k
Standard inferences about « are available using the fact & ~ N(a, (3 w;)™?).
i-1

4.1.2 Random-effects model

The random-effects model assumes that each study summary statistic Y; is

drawn from a distribution with a study-specific mean, o;, and variance s2.

Y; | 04,82 ~ N(ay,87) for i=1,2,...k (4.3)
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Furthermore, each study-specific mean «; is assumed to have been drawn
from some superpopulation of effects with mean o and variance 7% with

a; | @, 7% ~ N(a, 72) (4.4)

The parameters o and 72 are to referred as hyperparameters and represent,
respectively, the average effect and inter-study variation.

Note that given the hyperparameters, the distribution of each study sum-
mary measure, Y;, after averaging over the study-specific effects, is normal
with mean o and variance s? + 72. As in the fixed-effects model, « is the
parameter of central interest. However, the between-study variation, 72 plays
an important role and must also be estimated. In addition, it is also possible
to derive estimates of the study-specific effects, o;, that are useful for infer-
ences regarding identifying particularly effective studies. The distribution of
a;, conditional on the observed data and the hyperparameters is

Q; l Yi, @, 7-2 ~ N(Bia + (1 - Bi)Y;I, 3;2(1 - B‘l)) (45)

where B; = Eﬁ?ﬁ This equation will prove very helpful in the estimation of
the hyperparameters.

4.1.2.1 Estimation

The estimation of the parameters in the random-effects model is a little more
complicated than the fixed-effects model due to the inter-study variation 72.
Proposed methods for estimating 72 include methods of moments (DerSimo-
nian and Laird (1986)) and restrictive maximum likelihood. We construct a
very simple EM aigorithm for the estimation of the hyperparameters and the
estimates’ standard errors are obtained via the expected information matrix.
The algorithm can be described as follows.
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e E-step: Using the current values of the estimates, say a®¢,(7°4)2,
calculate

2i = E(ai | Yi, aold’ (,rold)2)

quldaold + (1 _ B,?ld)yi

where B¢ = Zﬁ'(ﬁr?o'T)z The above equation is obtained directly from
equation (4.5) which shows the conditional distribution of ¢; given the
observed data and the hyperparameters.

e M-step: Update the central parameter o by

k k
> Eloq | yi, 0%, (794)?) Yz
new __ i=1 - i=1
“ T k k

and the between-study variation 72 by

\ .
Y El(ai — a®?)? | y;, o', (7°4)?]
=i

(rrey k
i[Var(ai | yi, %, (794)2) 4 (z; — ald)?]
= K
g[s?(l — Bo') 4 (z; — a°4)?]
k

e Stop iterating when some convergence criterion is satisfied, otherwise,
go back to the E-step.

We saw earlier that the marginal distribution of y; is normal with mean
« and variance s? +72. This likelihood can be easily twice differentiated and

we can derive the asymptotic standard errors of the estimated parameters by
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the inverse of the expected information matrix. It can be easily shown that

k k
Var(@) = > 1/(s?+73) 17" and Var(r2)=2[ > 1/(si+77)* ]

=1

4.2 Meta-regression

The meta-analysis methods presented in the previous chapter attempt to
combine the study-specific results in order to obtain a single summarized
effect size. The observed effect in each study is an estimate, with some
imprecision, of the true effect in that study. Statistical heterogeneity refers to
the true effects in each study not being identical. Diversity among the studies
included in a meta-analysis necessarily leads to statistical heterogeneity. In
contrast to simple meta-analysis, meta-regression aims to relate the size of
effect to one or more characteristics of the studies involved.

Various statistical methods for meta-regression have been published. For
example, fixed effects meta-regression was described originally by Greenland
(1987), a random effects model more recently by Berkley et al. (1995) and
a fuller comparison of available methods made subsequently by Thompson
and Sharp (1999). In the next sections we present the meta-regression mod-
els, both fixed and random effects and their estimation techniques through

maximum likelihood estimation.

4.2.1 Fixed Effects Model

The fixed effects model is no different in nature from a simple linear re-
gression. Similar to the meta-analysis, assume we have k studies plus some
characteristics of each study. Let’s denote the available information from
¢ study, 7 = 1,2, ...k in the form of covariates, so that x; is the vector of
available information on the ith study. Also, let y; and s; be the summary
statistic and its variance observed from the ith study. The fixed effects model

36



assumes that
Y~ N(a+x;8,s3) for i=12 ..,k (4.6)

where (o, 3) are the parameters of interest. The main difference between
this fixed effects meta-regression model and the fixed effects meta-analysis
model is the additional vector of unknown coeflicients 8 which describes
the relation of the summary statistics with the explanatory variables. The
model described in (4.6) is exactly the same with a linear regression model
with heteroscedastic errors with known variances.

4.2.1.1 Estimation

The estimation of the model is feasible through maximum likelihood estima-
tion and it leads, as expected, to the weighted least square estimator. By
letting Y = (1, Y2, .-, %) » V = diag(s?, s, ...,52), b = (o, 3) and the k x p
design matrix (including the constant) as X then

b=XV1X)XV1ly

The inference on the coefficients can be easily extracted by the fact that
b ~ N,(b,(X'V'X)™1). Due to the fact that the weights are considered
known there is no need to multiply the standard errors of the coefficients

with the mean square error, since it is equal to unity.

4.2.2 Random Effects Model

This model is an extension of the simple meta-analysis random effects model
and it can account for residual heterogeneity even after the inclusion of sig-
nificant covariates. The meta-regression random effects model assumes that
the intercept is a random variable and follows a normal distribution with
mean o and variance 72. These parameters, along with the unknown coeffi-
cients, are the parameters of main interest in this model. According to the
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previous notation, the model assumes that

Y| ai ~ N(a; +x;ﬁ, s?) for i=1,2,..,k

a | e, 7" ~ N(a, 7%

The marginal distribution of y; is normal with mean a—{—x;B and variance s,?-i-

72. The between study variation 72

must be estimated and a EM algorithm
will be provided in the next subsection for all the parameters’ estimation.
Similar to the meta-analysis random effects model, we can derive estimates
of the study specific o; given y;. These estimates can be used in identifying
studies with homogenous effects. The conditional distribution of o; given y;

and the parameters is
ai | yi,@,8,7° ~ N(Bia + (1 = Bi)(yi — x;8), s1(1 - By)) (4.7)

2
¥
where B; = ;?—iﬁ

4.2.2.1 Estimation

Most estimation schemes for random effects model (not only for meta-re-
gression) are based on restricted maximum likelihood (REML) due to the
difficulty of the unobserved random variables. Nevertheless, maximum like-
lihood estimates can be derived with an EM algorithm. We will see that the
two steps of the algorithm for the estimation of the meta-regression random
effects model have many similarities with the steps of the estimation of the
meta-analysis model. Note that if we could observe the random variables «;
for i = 1,2,...,k then the estimation of the hyperparameters (o, 72) would
be very easy; so would be the estimation of 3. Let’s describe the two steps
of the EM algorithm using the same notation as before.
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e E-step: Using the current values of the estimates, say o®¢, 3°¢, (7°14)2,
calculate

z = E(ai | yi,a"[d,ﬁdd, (Told)Z)

B0 + (1 — BYY)(y; — x:8)

2
where B¢ = 3?+_(STL‘W The above equation is obtained directly from
equation (4.7) which notes the conditional distribution of ¢; given the
observed data and the hyperparameters.

e M-step: Update the central parameter o by

new __
« =

k
QE(OH | yi,aold,ﬁold, (Tald)Z)
i= 1
k k

w

the between-study variation 72 by

k
E E[(ai _ aold)2 I Vi, a"ld,ﬂdd, (Told)2]
(Tnew)2 :F i=1
k

k

S Var(a; | yi, %, 8%, (194)2) + (7 — a4)?]
i=1

k

k

> [s2(1 = B) + (z — a®%)?]
i=1

k

By letting X denote the design matrix, without the inclusion of the
intercept, the new parameter estimate of 3 is given by

B = (X' VX)X VY - Z)
where Z = diag(z1, 29, ...2¢)-
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e Stop iterating when some convergence criterion is satisfied, otherwise,

go back to the E-step.

The standard errors of the estimated parameters are found by the

inverse of the information matrix.

4.3 Model selection

The analyst has to decide whether the inference of the combined effect will
be based on the fixed or the random effects model. The fixed effects model
assumes that the study-specific summary statistics share a common a. A

statistical test for the homogeneity of the study means is equivalent to testing

Hy: oy=o02=...=0r=qa against

H;: At least one «; different

k
Under Hy, for large sample sizes, the quantity Q = > w;(y; — fi;)? follows
i=1

a X ,f_p, where p and ji; are the number of unknown parameters and the
fitted values of a fixed effects model and w; = 1/s2. If Q is greater than the
100(1 — «) percentile of the X ,f_p distribution, then the meta-analyst may
conclude that the study means arose from two or more distinct populations
and proceed by either attempting to identify covariates that stratify studies
into the homogenous populations or estimating a random effects model. If Hy
cannot be rejected the investigator would conclude that the studies share a
common mean «. This test has low power against the alternative var(a;) > 0,
this is why we will consider the heterogeneity significant at the 10% level
instead of 5%.

Another criterion for choosing between the two models is the well-known
Akaike Information Criterion (AIC) which is equal to minus twice the log-
likelihood plus twice the number of the estimated parameters. This implies
that the smaller the value of the AIC the better this model is. This criterion
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can be easily evaluated for both fixed and random effects models since their
respective likelihoods are the product of k¥ independent normal distributions.
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Chapter 5
Data Analysis

The aim of this chapter is to identify common points as well as possible
differences between the two time-series models we described, the Poisson
INAR(1) regression model and Zeger’s model. We divide the current chapter
into six sections. The first one is a description of the data and the explanatory
variables that will be included in the time series models. The second one is a
preliminary analysis of the data in order to discover some useful aspects of the
data. The third section presents the results of the models we estimate with
the two methods, INAR’s and Zeger’s respectively and a comparison between
their estimates is made. The fourth section examines the goodness of fit of
the two models for every station with the help of the Pearson residuals. The
last two sections consist of the meta-analysis and meta-regression results

respectively.

5.1 Data Description

This study is based on the daily accident counts that were obtained from
the major roads covered by the surface of 27 big cities in the Netherlands in
the year 2001. The cities were selected based on two criteria. Firstly, their

proximity to some national weather stations in order to obtain accurate daily
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weather conditions for each city. Secondly, the cities were selected so that
they are far enough apart in order to prevent that weather conditions would
be identical for the different sites for too many of the observations. The
location of each station in the Netherlands can be seen in the map (Figure
5.1).

With respect to weather conditions, the daily weather observations were
obtained from the Dutch National Meteorological Institute. More specifi-
cally, the following variables were created from the data and considered for
inclusion in the model, based on previous research where they have shown to
be important/significant or at least hypothesized as being influential towards
predicting the number of accidents. Note that the data are daily averages
and thus they do not reflect instant weather conditions.

e wind. Variables related to wind velocity have been used by Lian et al.
(1998), Levine et al. (1995b) and Baker and Reynolds (1992). The lit-
erature teaches that wind is usually not found to be significant, except
for heavy storms and for large vehicles. Nevertheless, we use the pre-
vailing wind direction in degrees 360=North, 180=South, 270=West,
O=calm/variable and the daily mean windspeed in 0.1 m/s. Note that
we transformed the values of wind direction using the cosine of twice
the wind degrees in order to equalize the effect of degrees that differed
by 180 units.

e temperature. Temperature has found to be important, especially in
combination with snowfall or rain (e.g., Branas and Knudson, 2001;
Brown and Baass, 1997; Fridstrgm et al.,, 1995; Fridstrgm and Inge-
brigtsen, 1991). We use the daily mean temperature in 0.1 degrees
Celsius.

e precipitation. Rainfall has found to be a significant predictor for road
accidents in many studies (see e.g. Fridstrgm et al., 1995; Levine et al.,
1995b; Satterthwaite, 1976). We use precipitation duration in 0.1 hour
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Figure 5.1: Location of the stations on the Netherlands
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and daily precipitation amount in 0.1 mm. Moreover, an additional
variable was created that expresses the intensity of rain, calculated
as the ratio of the precipitation amount divided by the precipitation
duration. High values for this variable indicate heavy rains during
small time periods.

e humadity. We refer to humidity as the percentage relative humidity
which means how much moist is in the air. It depends on the season,
temperature and the wind direction. If the humidity is high during

winter periods, it can be dangerous because fog can start freezing on
the road.

e radiation. Radiation refers to how much sun reaches the earth; on
sunny days during summer the radiation is very high. So, this variable
in some sense measures how intense the sun is burning on a day.

5.2 Preliminary analysis

Figures 5.2 and 5.3 show the accident series for the sites under study. It is
apparent that the mean daily accident count is different between the sites.
Table 5.1 shows some of the data characteristic for the sites. Clearly, there
are differences between them. Firstly, for most of the sites the ratio of the
variance to the mean is larger than 1 implying overdispersion relative to the
simple Poisson distribution. An overdispersed model, like the negative bino-
mial model could be used to account for the overdispersion. However, after
fitting the Poisson INAR(1) regression model, it may turn out that the re-
maining overdispersion is no longer significant. The reason is that the covari-
ates used for modelling the data will possibly explain the overdispersion to a
large extent. Secondly, there is a large difference between the autocorrelation
of the sites. Note also that in the majority of the sites the autocorrelation is
not negligible and, thus, fitting a time series model is highly advocated. Also,
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there seems to be a positive correlation between the mean of the accidents
and the autocorrelations which can be seen in Figure 5.4. The autocorrela-
tions reported are of the first order. Higher order autocorrelations were not
large, apart from the autocorrelations for lags multiple of 7, which in some
sense indicates the effect of the day. This is why we will include the days
as dummy variables in the covariates using corner point parametrization and
setting as reference level Sunday. Usage of these variables is also important
as they provide information about the day specific traffic volume.

Figure 5.5 shows the boxplots for some of the weather variables for all
the sites. The boxplots corresponds to the sites and each figure to a vari-
able. The four variables presented in the plot are the mean temperature, the
precipitation duration, the daily precipitation amount and the mean wind-
speed. It can be seen that there are some differences between the stations’
covariates, especially for wind speed.

Before proceeding in the analysis we must point out some important as-
pects related to traffic accident analysis. First of all,many researchers have
questioned whether accidents can be autocorrelated themselves based on the
random nature of accidents. We emphasize that observed data show signifi-
cant autocorrelation which can be interpreted due to sharing same environ-
mental and infrastructure conditions. For example, 4 road with significant
problems in its surface may be the reason for producing more accidents which
are related at time because for example when it rains it is very slippery. Thus
the observed autocorrelation can be attributed to the underlying conditions
that produced the accidents. Other authors have reported negative rela-
tions between successive accident counts in road segments in the sense that
if somewhere there were important accidents the next days the drivers are
more alert and drive more carefully.

Moreover it is well established in the accident literature that exposure,
i.e. the number of cars in the road is an important factor related to the
accident counts. It is reasonable tat the more cars in the road the more
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Station mean variance autocorrelation variance/mean

Arcen 1.463 1.969 -0.037 1.346
Berkhout 1.014 1.008 0.035 0.994
Cabauw 2.699 4.942 0.072 1.831
De Bilt 2.564 3.681 0.105 1.435
De Kooy 0.478 0.594 -0.039 1.242
Deelen 4.214 8.756 0.092 2.078
Eelde 3.170 4.455 -0.012 1.405
Eindhoven 3.438 6.379 0.012 1.855
Ell 1.581 2.107 0.040 1.333
Gilze-Rijen 4.088 6.630 0.035 1.622
Heino 2.710 4.031 0.067 1.488
Herwijnen 2.964 4.320 0.032 1.457
Hoogeveen 1.416 2.161 0.116 1.526
Leeuwarden 1.134 1.485 0.007 1.309
Lelystad 1.296 1.594 0.014 1.230
Maastricht 1.638 2.094 0.037 1.278
Marknesse 1.940 3.293 0.021 1.698
Nieuw Beerta 0.460 0.551 -0.018 1.198
Rotterdam 10.153  35.141 0.152 3.461
Schiphol 8.781 24.60 0.193 2.802
Soesterberg 3.370 5.673 0.070 1.684
Stavoren 0.381 0.506 -0.018 1.328
Twenthe 1.578 2.530 0.015 1.603
Valkenburg 3.044 6.537 0.012 2.147
Vlissingen 0.416 0.474 -0.026 1.139
Volkel 1.521 1.849 0.009 1.216
Wilhelminadorp  0.586 0.710 0.024 1.211

Table 5.1: Descriptive measures for the stations
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Figure 5.4: Plot of the mean accidents versus the autocorrelation
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Figure 5.5: Boxplots of some of the weather variables for the stations

accidents we observe, but again a sort of congestion may occur where due
to small speed the accidents can be reduced. So, exposure is important but
unfortunately we do not have data related to traffic volumes for all areas in
a daily basis. To account for this we use as proxy variables the days since
it is observed that traffic volumes relate to the day significantly. However
one must be cautious when interpreting observed effects. For example high
temperatures are usually related to more cars in the road and thus we expect
more accidents. So, from one hand the exposure is higher and thus we expect
more accidents. So the effect of the high temperature is that it may increase
the accidents but not directly but indirectly via the increase of the exposure.




Concluding interpretation of the observed effects must be very cautious
since car accidents are very complicated phenomena.

5.3 INAR and Zeger results

In this chapter we present the results of the fitted models applying both INAR

and Zeger regressions and we note significant differences between them. To

be more specific, we will use all the methodology described in chapter 2 and

3. For Zeger’s model, we assume that the underlying process &, 1{}43 hpaSSe
through the autocorrelation to the observed process is a stationa ﬂﬁg-normal LA
autoregressive model of first order with autocorrelation paramétﬂf céa‘wd {’l}f at

€; = exp(6;) with autocorrelation parameter of first order a. e {»arlrnaw{f" ; i‘
parameters of the models for each of the sites are placed side by\':mit-' S0 LIL;,H‘

the reader can make a direct comparison between the two modeTs 1-&1521}&5’ '
The bottom part of all the tables consists of the estimated autocorrelation
parameters « for the INAR’s and Zeger’s model and the variance o2 of the
latent process. The inference of the autocorrelation parameter in Zeger’s
model is based on the asymptotical normality of the estimated autocovariance

of order 1 with mean the true autocovariance and variance defined in (3.17).

So, the standard errors and t-values reported for this parameter are referred

to the autocovariance of first order and not to the autocorrelation parameter

a directly. We suggestively present the results only for four of the stations.
The results for all the stations can be found in Appendix B.

We begin the analysis with the test for the existence of a latent process, as
described in section 3.4. Specifically, we fitted a Poisson regression model to
the data ignoring the possible presence of a latent process and then evaluated
the Q statistic. The third column of Table 5.2 shows the significance of the
test for each station. The test is highly significant for all stations except for
Berkhout, implying both the presence of a latent process and overdispersion.
Hence, Zeger’s model is highly advocated.
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Let’s begin the comparison between the two models for site De Bilt (Ta-
ble 5.3). The last row of the table shows the inference on the estimated
autocorrelation parameter a as well as the estimated value of the variance
of the latent process o2. The INAR model suggests that the dependence
among the data is not significant (& = 0.0435, p-value = 0.326) while Zeger’s
model shows a large correlation on the hidden process (& = 0.8199, p-value
= 0.034). This diversity is explained by the fact that the autocorrelation
of the latent process will always be greater than the autocorrelation of the
observed process, as noted in Chapter 3. Zeger’s model also assumes the pres-
ence of overdispersion due to the existence of the latent process. Its estimated
variance is equal to 0.0618 which, although being so small, has a significant
effect on the standard errors of the estimated coefficients. Note that the stan-
dard .errors of Zeger’s estimated parameters are systematically greater than
the INAR’s respective. However, both models have indicated significant the
same explanatory variables. Specifically, INAR model suggests that if the
temperature reaches below zero, it increases the mean accidents by 27.978%
(p-value = 0.087) while Zeger implies a larger increase by 32.152% (p-value
= 0.072). Also, an increase of the rainfall duration by one unit increases sig-
nificantly the mean accidents by 8.804% (p-value = 0.003) and by 11.427%
(p-value < 0.001), according to INAR and Zeger’s model respectively. More-
over, the inclusion of the effects of the weekdays are highly significant and
they indicate a bigger number of accidents with respect to Sunday.

Table 5.4 depicts the estimated parameters for the two time-series models
for Deelen’s station. Both models suggest that significant autocorrelation is
present and should be accounted for. Zeger’s model has provided a larger
estimate of the autocorrelation parameter (& = 0.2547, p-value = 0.041)
than the INAR’s (@ = 0.0764, p-value = 0.022) for the same reason as for De
Bilt’s station. The variance of the latent process is quite larger, 62 = 0.1808
and we can see how it decreases the precision of the estimated coefficients
relatively to the INAR model. Highly significant, besides the weekdays, is the

94



precipitation duration effect which, according to the INAR model, increases
the number of the accidents by 8.797% (p-value < 0.001) and by 8.256%
(p-value = 0.005) according to Zeger’s model.

Carrying on to Rotterdam’s station, we can see from Table 5.5 that both
the INAR and Zeger’s regression models have identified significant presence
of autocorrelation. The standard errors of the estimates of Zeger’s model are
still larger than the INAR’s due to the extra variability that this parameter
driven model assumes. Considering the effect of the covariates, INAR model
shows that an increase of the mean temperature by one unit will lead to
a decrease of the mean accidents by 0.111% (p-value = 0.036) and Zeger’s
model by 0.131% (p-value = 0.062). Radiation is significantly reducing the
mean accidents by 0.492% (p-value < 0.001), as shown from INAR model, and
by 0.393% (p-value = 0.005) from Zeger’s model. Precipitation’s duration
and intensity are found to be highly significant for this station increasing
the mean accidents by 14.509% and 14.201% for INAR and by 15.021% and
13.69% for Zeger’s model.

Finally, Table 5.6 presents the results for Schiphol’s station. The esti-
mated values of the autocorrelation parameters for both models are highly
significant. Similar to the previous analyses, the standard errors of Zeger’s
estimated parameters are greater than the INAR’s respective. The INAR
estimated coefficient of the humidity covariate is significant and results in a
decrease of the mean accidents by 0.652%, which may seem contradicting.
This estimate can be misinterpreted since it implies that higher percentages
of moist in the air leads to less mean accidents. However, we can not be
certain of this result due to the absence of exposure data during that time.
This observation will be further discussed in Chapter 6 where we note the
limitations that rise from the absence of exposure variables. Radiation is also
significant, as the INAR model shows. Specifically, an increase of the daily
mean radiation by one unit decreases the mean accidents 0.232% (p-value

= 0.059). Moreover, rainfall duration and intensity have proven significant
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from both models, increasing the mean accidents by 19.346% and 4.557%
(INAR model) and by 18.242% and 4.708% (Zeger’s model).

5.4 Diagnostics

This section assesses the goodness of fit of the two models by means of
Pearson residuals and plots of the fitted and observed values for the sites that
were presented in the previous chapter. Figures 5.6 and 5.7 show the plots of
the observed and fitted values for the two models for each site analysed in the
previous section. The thick lines represents the fitted values while the thin
lines the observed data. We can see that both models’ fitted values follow the
same pattern with the actual data. Also, the fitted values of the two models
do not seem to differ significantly. Recall that the estimated coeflicients of
both INAR and Zeger model were different mostly between their standard
€ITors.

Figure 5.8 shows the plots of the Pearson residuals versus time. Both
INAR and Zeger residuals are plotted in the same graph so that the reader
can compare easily the two residual series; the thick one is for Zeger’s model
and the thin one for the INAR model. We can see from the graphs that the
INAR residuals are larger, in absolute value, from Zeger’s residuals. This is
explained by the fact that Zeger’s model assumes that the data are overdis-
persed. Hence, we expect larger estimated values of variances of the data
by Zeger’s model, thus smaller absolute residual values. The residual series
from Zeger’s model does not exhibit any outliers apart from one observation
in De Bilt’s station and in Deelen’s station.

Table 5.7 consists of the Chi-square statistic constructed by the Pearson
residuals and the goodness of fit test which is obtained by comparing this
value with the 95% percentile of the X2 distribution with each model degrees
of freedom. The third column is produced by dividing this Chi-square statis-
tic with the respective degrees of freedom, which are 348 for both models.
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Station Sa p-value
Arcen 3.653 <0.001
Berkhout -0.003 0.501
Cabauw 6.201 <0.001
De Bilt 2.635 0.004
De Kooy 2.454  0.007
Deelen 11.263 <0.001
Eelde 3.483 <0.001
Eindhoven 9.362 <0.001
Ell 2.502 0.006
Gilze-Rijen 5.652 <0.001
Heino 5.412 <0.001
Herwijnen 3.392 <0.001
Hoogeveen 6.809 <0.001
Leeuwarden 3.037  0.001
Lelystad 2.344  0.010
Maastricht 2.767 0.003
Marknesse 5.143 <0.001
Nieuw Bierta 2.410 0.008
Rotterdam 11.047 <0.001
Schiphol 12.205 <0.001
Soesterberg 7.099 <0.001
Stavoren 3.310 <0.001
Twenthe 6.161 <0.001
Valkenburg 7.590 <0.001
Vlissingen 1.777  0.038
Volkel 2.135 0.016
Whilhelminadorp 2.170 0.015
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| INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.2297 0.6375 0.360 0.719 0.3406 0.6575 0.518 0.605
Wind

Direction 0.0166 0.0511 0.324 0.746 0.0122 0.0530 0.231 0.817

Speed 0.0009  0.0026 0.367 0.714 0.0010  0.0028 0.367 0.713
Mean Temp -0.0014  0.0011  -1.361 0.173 -0.0014 0.0013  -1.142 0.253
Temp below zero 0.2467  0.1443 1.709 0.087 0.2788  0.1550 1.799 0.072
Humidity 0.0031  0.0061 0.507 0.612 0.0011  0.0065 0.168 0.867
Radiation -0.0008  0.0024  -0.348 0.728 0.0005  0.0026 0.187 0.851
Precipitation

Duration 0.0844  0.0287 2.944 0.003 0.1082  0.0306 3.533 <0.001

Intensity -0.0040 0.0239  -0.168 0.867 -0.0002  0.0238  -0.010 0.992
Weekday

Monday 0.5094  0.1430 3.564 <0.001 0.5109  0.1389 3.679 <0.001

Tuesday 0.4305  0.1450 2.969 0.003 0.4459  0.1412 3.159 0.002

Wednesday 0.6997  0.1373 5.097 <0.001 0.7131  0.1353 5.270 <0.001

Thursday 0.4714 0.1450 3.251 0.001 0.4971 0.1416 3.512 <«0.001°

Friday 0.7558 0.1374 5.499 <0.001 0.7640 0.1351 5.656 <0.001

Saturday 0.0774  0.1623 0.477 0.634 0.1270  0.1535 0.827 0.408
Other parameters

a 0.0435 0.0443 0.981 0.326 0.8199 0.0239 2.122 0.034

o2 0.0618 - -

Table 5.3: Results based on the fitted INAR and Zeger’s regression model
for De Bilt

INAR | Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.9799  0.4691 2.089 0.037 0.4578  0.5929 0.772 0.440
Wind

Direction -0.0159  0.0416  -0.382 0.703 -0.0279  0.0518  -0.539 0.590

Speed -0.0009  0.0018  -0.481 0.630 0.0003  0.0023 0.138 0.890
Mean Temp 0.0005  0.0008 0.599 0.549 0.0001  0.0010 0.094 0.925
Temp below zero 0.0898  0.1105 0.813 0.416 0.1601 0.1380 1.160 0.246
Humidity -0.0009  0.0045 -0.201 0.841 0.0052  0.0058 0.910 0.363
Radiation -0.0021  0.0021  -1.007 0.314 0.0002  0.0026 0.065 0.948
Precipitation

Duration 0.0843  0.0210 4.022 <0.001 0.0793  0.0282 2.816 0.005

Intensity -0.0068  0.0241  -0.281 0.779 -0.0122  0.0299  -0.409 0.683
Weekday

Monday 0.4979  0.1141 4364 <0.001 0.4803  0.1285 3.737 <0.001

Tuesday 0.3628 0.1180 3.075 0.002 0.4235 0.1348 3.143 0.002

Wednesday 0.5415  0.1131 4.788 <0.001 0.5184  0.1344 3.858 <0.001

Thursday 0.5225 0.1156 4.518 <0.001 0.5163  0.1364 3.785 <0.001

Friday 0.7073  0.1103 6.413 <0.001 0.6938  0.1307 5.310 <0.001

Saturday 0.0831  0.1313 0.633 0.527 0.1521  0.1370 1.110 0.267
Other parameters

a 0.0764 0.0333 2.297 0.022 0.2547 0.0225 2.046 0.041

o2 0.1808 - : s

Table 5.4: Results based on the fitted INAR and Zeger’s regression model
for Deelen
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INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value
Constant 2.2787  0.3045 7.485 <0.001 2.2825  0.3772 6.051 <0.001
Wind
Direction 0.0410  0.0262 1.563 0.118 0.0392  0.0339 1.156 0.248
Speed -0.0014  0.0008 -1.774 0.076 -0.0012  0.0011  -1.092 0.275
Mean Temp -0.0011  0.0005 -2.092 0.036 -0.0013  0.0007 -1.864 0.062
Temp below zero -0.0866  0.0857 -1.010 0.312 -0.0932  0.1089  -0.856 0.392
Humidity -0.0034 0.0031 -1.119 0.263 -0.0030  0.0039 -0.768 0.443
Radiation -0.0049  0.0011 -4.429 <0.001 -0.0039  0.0014  -2.802 0.005
Precipitation
Duration 0.1355  0.0150 9.043 <0.001 0.1399  0.0210 6.652 <0.001
Intensity 0.1328  0.0177 7.485 <0.001 0.1283  0.0234 5.486 <0.001
Weekday
Monday 0.5681  0.0729 7.796  <0.001 0.5372  0.0835 6.430 <0.001
Tuesday 0.3985  0.0734 5.429 <0.001 0.3992  0.0872 4.576 <0.001
Wednesday 0.5231  0.0715 7.318 <0.001 0.5116  0.0864 5.922 <0.001
Thursday 0.6407  0.0718 8.929 <0.001 0.6226  0.0868 7.170  <0.001
Friday 0.5432  0.0714 7.606 <0.001 0.5444  0.0859 6.335 <0.001
Saturday 0.1962  0.0780 2.515 0.012 0.1826  0.0888 2.057 0.040
Other parameters
a 0.0542  0.0268 2.026 0.043 0.2185  0.0096 1.649 0.099
o2 0.0722 - : S
Table 5.5: Results based on the fitted INAR and Zeger’s regression model
for Rotterdam
INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value
Constant 2.1993  0.3154 6.974 <0.001 2.1841  0.4051 5.392 <0.001
Wind
Direction -0.0690  0.0307  -2.250 0.025 -0.0555  0.0368  -1.508 0.132
Speed -0.0011  0.0009 -1.266 0.206 -0.0006  0.0012  -0.534 0.594
Mean Temp -0.0001  0.0006 -0.108 0.914 -0.0005 0.0008 -0.575 0.565
Temp below zero 0.1143  0.1012 1.129 0.259 0.0361  0.1296 0.278 0.781
Humidity -0.0065 0.0032 -2.052 0.040 -0.0050 0.0042 -1.183 0.237
Radiation -0.0023  0.0012  -1.886 0.059 -0.0013  0.0016 -0.801 0.423
Precipitation
Duration 0.1769  0.0171 10.359 <0.001 0.1676  0.0226 7.407 <0.001
Intensity 0.0446 0.0184 2.420 0.016 0.0460 0.0236 1.954 0.051
Weekday
Monday 0.4469  0.0774 5.775 <0.001 0.4186  0.0842 4.972 <0.001
Tuesday 0.3660  0.0797 4.589 <0.001 0.3949  0.0896 4.405 <0.001
Wednesday 0.4069  0.0789 5.155 <0.001 0.4083  0.0916 4.455 <0.001
Thursday 0.5232 0.0776 6.740 <0.001 0.5139 0.0907 5.665 <0.001
Friday 0.4543  0.0780 5.827 <0.001 0.4785  0.0889 5.383 <0.001
Saturday -0.1654  0.0995 -1.663 0.096 -0.0386  0.0926 -0.417 0.677
Other parameters
a 0.1241  0.0283 4.382 0.000 0.4395  0.0115 3.598 0.000
o? 0.0937 - - -

Table 5.6: Results based on the fitted INAR and Zeger’s regression model

for Schiphol
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INAR fited vaiues for De Bilt Zeger fited values for De Bilt

INAR fited values for Deelen Zeger fited values for Deelen

Figure 5.6: Plot of observed and fitted values versus time for each model for
De Bilt and Deelen
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Figure 5.7: Plot of observed and fitted values versus time for each model for
Rotterdam and Schiphol
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Figure 5.8: Plot of the residual series of both models versus time
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INAR Zeger
Chi-square p-value overdispersion | Chi-square p-value overdispersion
Arcen 458.350 <0.001 1.317 381.261 0.106 1.096
Berkhout 354.677 0.391 1.019 370.304 0.197 1.064
Cabauw 495.741  <0.001 1.425 354.526 0.393 1.019
De Bilt 432.400 0.001 1.243 381.178 0.107 1.095
De Kooy 418.813 0.004 1.214 370.648 0.164 1.074
Deelen 673.577  <0.001 1.936 399.133 0.030 1.147
Eelde 417.540 0.006 1.200 347.306 0.500 0.998
Eindhoven 489.325 <«0.001 1.406 365.984 0.243 1.052
Ell 405.336 0.018 1.165 355.437 0.380 1.021
Gilze-Rijen 496.423  <0.001 1.427 363.177 0.277 1.044
Heino 471970  <0.001 1.356 346.133 0.518 0.995
Herwijnen 444.455 <0.001 1.277 370.831 0.192 1.066
Hoogeveen 504.860 <0.001 1.451 351.576 0.436 1.010
Leeuwarden 427.105 0.002 1.227 365.663 0.247 1.051
Lelystad 422.840 0.004 1.215 378.239 0.127 1.087
Maastricht 413.000 0.009 1.187 355.302 0.382 1.021
Marknesse 446.437 <0.001 1.283 334.311 0.692 0.961
Nieuw Beerta 400.533 0.027 1.151 354.767 0.390 1.019
Rotterdam 621.615 <0.001 1.786 358.697 0.335 1.031
Schiphol 673.639 <0.001 1.936 375.797 0.146 1.080
Soesterberg 548.421 <0.001 1.576 375.232 0.151 1.078
Stavoren 409.443 0.013 1.177 348.004 0.490 1.000
Twenthe 502.347 <0.001 1.444 363.693 0.270 1.045
Valkenburg 558.119  <0.001 1.604 381.079 0.107 1.095
Vlissingen 407.378 0.015 1.171 376.467 0.141 1.082
Volkel 405.197 0.019 1.164 366.781 0.234 1.054
Wilhelminadorp | 385.459 0.081 1.108 347.515 0.497 0.999

Table 5.7: Goodness of fit tests and diagnostics for INAR and Zeger’s model
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This way we obtain a measure of the residual overdispersion; variability of
the dependent variable that has not been explained by any of the available
covariates. The left part of the table contains these diagnostics for the INAR
fitted models and the right part for Zeger’s fitted models.

Under the assumption of Poisson distributed data and the inclusion of
every significant covariate, each residual should have unit variance. Therefore
the sum of the squared residuals divided by the respective degrees of freedom
(residual overdispersion) must be a number close to unity. However, we can
see from the third column of the table that the INAR regression model is
not a good fit for the data, or at least as good as Zeger’s model, since there
exists a large amount of variability which remains unexplained from the re-
gression. The residual overdispersions are highly significant in the sense that
they are significantly larger than the unity, implying that the Poisson distri-
bution assumption is not plausible for the data. In contrast, Zeger’s model,
which accounts for overdispersion assuming that Var(Y;) > E(Y;), seems to
provide a good fit for almost all of the sites since the residual overdispersions
are very close to unity and they are no longer significant. Zeger’s model suc-
ceeded in fitting the data better than the INAR model due to fact that even
in the cases where there was not statistical presence of autocorrelation, it
still accounts for overdispersion (remember that Var(Y;) = p; + o2u?, which
is independent of a); something that the Poisson INAR did not (if the auto-
correlation parameter is set to zero then the INAR regression model reduces
to a simple Poisson regression). Hence, we conclude that Zeger’s method
provides more reliable estimated effects than INAR’s (regarding to the data
under study) and any further analysis and inference of the factors should be
based on Zeger’s model results.
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5.5 Meta-analysis results

We are interested in combining all the available information we have on every
factor using the meta-analysis. We saw earlier that the researcher needs to
identify the independent studies which quantify the effect of the covariates. In
our case, each station represents a study since every regression model applied
to the sites has estimated the effects of these factors. Another important task
of the meta-analysis is the identification of the summary measure common
to all studies. It is obvious that the suitable measure which quantifies the
effect of each and every covariate is its estimated coefficients. The last thing
left to do is to combine the estimated effects from each study by choosing
between fixed or random effects model. We present the pooled estimates for
both type of models so that the reader can see possible differences between
them.

The comparison between the goodness of fit of the INAR and Zeger’s
model showed that the estimates obtained from the parameter-driven model
are more reliable, as mentioned in section 5.4. Therefore, we will use these es-
timated effects as the common measure of the studies. The regression model
through which the pooled estimate and its inference is obtained assumes that
the observations are drawn from normal distributions. The estimated coef-
ficients satisfy this assumption as we noted in section 3.2. Hence, we can
carry on with the estimation of the fixed and random effects models for the
covariates.

A very simple and nice way to begin a meta-analysis is by creating a
weighted forest plot. This figure plots the common measures of every study
along with their respective confidence intervals giving us the ability to iden-
tify at once which study produced a statistical significant effect and what
is the direction of this effect. Hence, the researcher gets a very good idea
of the studies’ variability and of the amount of heterogeneity. The bottom
point of this graph is the pooled estimate with its confidence interval. As we
saw before, the length of this interval depends on whether we use fixed or
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random effects model. This plot was named as weighted because the size of
the plotted points, representing each study estimate, differ with respect to
the standard error of the estimate; the smaller the standard error the larger
the point gets. The name forest was given because the intersections of the
confidence intervals with the y-axis produce a graph which looks like a tree.

This section presents the meta-analyses of the covariates that proved
statistical significant. The rest of the analyses can be found in the Appendix
C. The first covariate which will be analyzed is the mean temperature. Its
weighted forest plot (Figure 5.9) shows that most of the estimated coefficients
are negative which means that higher mean temperatures have an effect of
decreasing the mean accidents. The overall mean temperature effect has been
found highly significant for both fixed and random effects models with an
estimate equal to 0.7968% (Table 5.8). The test for homogeneity of the effects
across the stations did not exhibit any statistical significance implying that
there is no need for the random effects model. We derive the same conclusion
if we choose the best model according to the AIC for these models.

Figure 5.10 presents the weighted forest plot for the temperature be-
low zero indicator. We can see that only three stations exhibited statistical
significance at the 5% level for this covariate and all showing an effect of in-
creasing the mean accidents. The other stations’ estimated effects were either
negative (negative coefficient) or positive (positive coefficient) but without
any significance. The above means that probably the heterogeneity of the
studies will not be significant. Indeed, we can see from Table 5.9 that the
Q quantity is not statistical significant at the 10% level. We arrive at the
same conclusion if we select the best model with the AIC. The fixed effects
model estimated coefficient is equal to 0.0606 which means that when the
temperature reaches below zero, it increases the mean accidents by 6.247%
(p-value = 0.077).

The next variable considered in the meta-analysis is the precipitation
duration. This covariate was found to be statistical significant for almost
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every station; some with greater effects than the others (Figure 5.11). The
fact that many of the studies provided us with significant coefficients of this
covariate implies that the estimated pooled effect will be significant too.
Considering though the variation of these estimated effects, there is a big
chance that the between-study variation will be significant. The test of zero
between-study variation is significant at the 10% and the estimated 72 is
equal to 0.0011. Moreover, the AIC of the random effects model is smaller
than that of the fixed effects model. Therefore, the inference of the common
estimate will be based on the random effects model. Table 5.10 shows that
the estimated common coefficient is highly significant and equal to 0.1062
Thus, if the precipitation duration is increased by one unit we ex;f&fan
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increase of the mean accidents by 11.238%. i ’84/0
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Figure 5.12 presents the weighted forest plot for the precipitatiorn in¢en-
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Most of the estimated coefficients are positive but some of them exhibit a—=—

greater effect than the others. This can be seen in the figure where there
area few large positive values. Hence, the common effect will probably be
estimated by the random effects model. The test for homogeneity across
the study-specific estimates is significant at the 10% level, implying that
the random effects model should be preferred to the fixed effects model; so
does the AIC test. Table 5.11 shows that the estimate of the between study
variation is equal to 0.0006 and the estimated pooled coefficient is equal to
0.0334, which is highly significant. This means that the mean accidents are
increased by 3.396% for an extra unit of rainfall intensity.

5.6 Meta-regression results

We saw in the meta-analysis results that some of the coeflicients presented
significant heterogeneity. This means that there could be two or more pop-
ulations from whom the coefficients arise. A simple way to incorporate this
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mean temperature

Station

Arcen
Berkhout
Cabauw
Bilt

De Kooy
Deelen
Eelde
Eindhoven

Ell
Gilze-Rijen
Heino
Herwijnen
Hoogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta
Rotterdam —8—
Schiphol —_—
Soesterberg e e
Stavoren

wen
Valkenburg I
Vl|ssir§en
Volkel

Whilhelminado
Combined -

-0.01 -0.0042 0.0 0.0042 0.01

Estimates

Figure 5.9: Weighted forest plot for the mean temperature

Fixed effects | Random effects | Test of homogeneity

o 72 o T Q

estimate -0.0008 0.0000 {-0.0008 0.0000 25.3876

standard error | 0.0002 -1 0.0002 0.0000 -

t-value -3.1936 -1-3.1936 0.0013 -

p-value 0.0014 -| 0.0014 0.9990 0.4971
AIC | -280.0027 -278.0027

Table 5.8: Estimated common parameter and inter-variation for the mean
temperature
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temperature below zero

Station

Arcen
Berkhout
Cabauw
De Bilt

Eindhover|1|

E
Gilze-Rijen
Heino
HHerwijnen
oogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta
Rotterdam
Schiphol
Soesterberg
Stavoren
Twenthe
Valkenburg

Vlissirgen

Volkel

Whithelminadorp
Combined

T

1 “ Hlll.ll 'I|

*

r T T 1
-2.74 -1.3717 0.0 1.3717 274

Estimates

Figure 5.10: Weighted forest plot for the temperature below zero indicator

Fixed effects | Random effects | Test of homogeneity

o T2 o T2 Q

estimate 0.0606 0.0000]0.0635 0.0036 32.5678

standard error | 0.0342 -10.0368 0.0086 -

t-value 1.7703 -11.7288 0.4152 -

p-value 0.0767 -10.0839 0.6780 0.175
AIC -0.7606 | 1.0536 |

Table 5.9: Estimated common parameter and inter-variation for the temper-
ature below zero indicator
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Station

De Kooy
Deelen
Eelde
Eindhoven
Ell

Gilze-Rijen
Heino
HHerwijnen
oogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta
Rotterdam
Schiphol
Soesterberg
Stavoren
Twenthe
Valkenburg
Vlissirgen
Volkel
Whilhelminadorp
Combined

precipitation duration

|
RN

I
043

-0.2165

L

0.0

Estimates

0.2165

0.43

Figure 5.11: Weighted forest plot for the precipitation duration

Fixed effects

Random effects

Test of homogeneity

2

2

Q T Qa T Q
estimate 0.1129 0.0000| 0.1065 0.0011 51.4029
standard error | 0.0069 -1 0.0100 0.0007 -
t-value 16.4699 10.6482 1.6740 -
p-value <0.0001 -1<0.0001 0.0941 0.0021
AIC | -69.5379 -74.9582 |

Table 5.10: Estimated common parameter and inter-variation for the precip-

itation duration
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Station

Arcen
Berkhout

EindhoverlnI

E
Gilze-Rijen
Heino
HHerwijnen
oogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta
Rotterdam
Schiphol
Soesterberg
Stavoren
Twenthe
Valkenburg
V|issir3en
Volkel
Whilhelminadorp
Combined

precipitation intensity

T
0.25

-0.1253

0.0

Estimates

0.1253 0.256

Figure 5.12: Weighted forest plot for the precipitation intensity

Fixed effects

Random effects

Test of homogeneity

o T2 Q T2 Q
estimate 0.0295 0.0000{0.0334 0.0006 38.6616
standard error | 0.0062 -10.0086 0.0005 -
t-value 4.7751 -13.8765 1.2750 .
p-value <0.0001 -10.0001 0.2023 0.0525
AIC -83.4549 -88.3415

Table 5.11: Estimated common parameter and inter-variation for the precip-

itation intensity
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into a model is by adding covariates which reflect some of the characteristics
of each study. Therefore, significant regressors will result in lowering the
between-study variation 72 rendering him insignificant. In other words, the
addition of covariates in the model will probably explain an amount of the
heterogeneity (Thompson and Sharp (1999)).

The purpose of this chapter is the identification of such regressors using
meta-regression analysis. We will consider only the random effects model
since we want to make a direct comparison of the heterogeneity before and
after the meta-regression. The covariates used for the models were con-
structed from each site’s annual data. Hence, we included regressors such as
the minimum, maximum and average of wind speed, temperature, radiation,
humidity and precipitation’s duration and intensity. A dummy variable was
also added to the analysis indicating the proximity of each station to the sea.

Given the large amount of explanatory variables in each study and the
problem of multicollinearity associated with it, a stepwise model selection
procedure was carried out. Specifically, the selection of the variables for
the models was based on a backward search technique. In the first step,
for each set of related variables (e.g. those related to wind, precipitation,
temperature etc.) one variable was selected from each set; the one with the
highest correlation with the response variable. Regressors that belonged to
the same set but had small correlation between them were included in the
analysis. After estimating these models and evaluating the significance of
each of the included variables, we started removing the most insignificant
covariates. This procedure continued until no further covariate could be
removed or added to the models. The entry/remove tests were based on
likelihood ratio tests.

Table 5.12 depicts the estimated parameters of a random effects model for
the wind speed covariate on the annual minimum temperature and the annual
mean humidity. The coeflicient of the temperature’s covariate is negative
which means that the effect that the wind speed has on the mean accidents
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is weaken by the increase of the temperature. On the other hand, higher
percentage of humidity in the air increase the effect of the wind speed on the
mean accidents.

The mean temperature effect on the mean accidents shows a significant
relation to the annual highest temperature (Table 5.13). Specifically, the co-
efficient of the maximum temperature’s covariate is equal to -0.00004, mean-
ing that an increase of a unit of the maximum temperature decrease the
effect of the mean temperature on the accidents by 0.0044%. This relation
was expected to be found, since we had seen that most of the mean temper-
ature coefficients were negative, implying that higher temperature leads to
less mean accidents.

A plausible relation between the effect of the temperature below IJEIU"‘ A
indicator and the minimum temperature covariate is shown in Table 5.
The model estimated a negative coeflicient of the minimum temperat::feg/e4/0
covariate equal to -0.0077. This means that an increase of one unit ‘of the &y
minimum temperature decrease the effect of the temperature below zero m“
dicator on the mean accidents by 0.7677%. This was of course expected sinca
as the minimum temperature increases, the risk of ice presence on the roads
is reduced.

The humidity effect on the mean accidents becomes stronger as the min-
imum temperature decreases as is shown from Table 5.15. If the minimum
temperature is decreased by one unit, then the effect of the humidity variable
on the mean accidents is increased by 0.052%. This is explained by the fact
that the danger of an amount of humidity in the atmosphere is higher when
combined with low temperatures due to the fact that fog can possibly start
freezing on the roads and the roads are more slippery.

The effect of radiation seem to depend on the maximum wind speed
and the mean temperature. Table 5.16 shows the estimated coeflicients
of these regressors from the random effects model. Recall from the simple
meta-analysis for the site-specific radiation effects that there was significant
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presence of heterogeneity. The meta-regression model succeeded in lower-
ing this amount by including these two covariates. This can be seen from
the reduction of the Q statistic equal to 44.2473 (p-value = 0.0142) for the
meta-analysis to 20.0780 (p-value = 0.6923) for the meta-regression model.

The precipitation duration results (Table 5.17) need to be interpreted
with caution. We can see that the effect of an intense rainfall on the mean
accidents is dependent of three covariates, the maximum temperature, the
mean precipitation duration and the maximum precipitation intensity. The
estimated negative coefficient of the max temperature weakens the effect of
the intensity.

Despite the inclusion of these covariates, there is still a significant amount
of heterogeneity not explained by the model. The Q statistic before the
meta-regression was equal to 51.4029 (p-value = 0.0021) and now is equal
to 32.1980 (p-value = 0.0961). This is evidence that there still may be an
important explanatory variable (unavailable, though) that should be included
in the model in order to account for the observed residual heterogeneity.

The negative coeflicient of the mean rainfall duration produces a de-
crease on the intensity effect by 25.6704% as the duration increases (Table
5.18). From a first view, we should expect the opposite; higher precipita-
tion duration should probably lead to stronger intensity effects on the mean
accidents. However, we must keep in mind that rainfall duration and inten-
sity are negatively correlated, e.g. a long time rainfall will be accompanied
by weak intensity. High intensity rainfall will probably appear with short
rainfall duration. This is why the mean precipitation duration covariate has
a negative coeflicient. Recall also that rainfall duration influences also the
traffic volume, the more rain the less cars in the road.

Moreover, the significant variation between the sites that had appeared
in the meta-analysis has now been explained by the additional regressors that
were included in the meta-regression model. The residual overdispersion is
no longer significant (Q = 20.5942, p-value = 0.6086).
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Random Effects Model

estimate st.error t-value p-value
o -0.0522 0.0246 -2.1186 0.0341
Min Temp -0.0001 0.0001 -2.3137 0.0207
Mean Humidity 0.0005 0.0003 1.6485 0.0993
72 0.0000 0.0000 0.0000 1.0000
Test of homogeneity
Q 20.7764 - - 0.6519

Table 5.12: Meta-regression random effects model for the wind speed

Random Effects Model
estimate st.error t-value p-value

o 0.0136 0.0071 1.9231 0.0545
Max Temp -0.00004 0.0000 -2.0303 0.0423
72 0.0000 0.0000 0.0000 1.0000
Test of homogeneity

Q 21.2654 - - 0.6777

Table 5.13: Meta-regression random effects model for the mean temperature

The meta-regression random effects model for the wind direction effect
did not identify any significant factors that relate to it. This implies that the
model includes only the intercept term and thus it is reduced to the simple
meta-analysis model.
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Random Effects Model
estimate st.error t-value p-value
a -0.5812 0.3253 -1.7864 0.0740
Min Temp -0.0077 0.0039 -1.9836 0.0473
T2 0.0000 0.0073 0.0001 0.9999
Test of homogeneity
Q 28.6330 - - 0.2795

Table 5.14: Meta-regression random effects model for the temperature below
zero indicator

Random Effects Model
estimate st.error t-value p-value
a -0.0407 0.0123 -3.3095 0.0009
Min Temp -0.0005 0.0001 -3.4733 0.0005
72 0.0000 0.0000 0.0000 1.0000
Test of homogeneity
Q 15.8411 - - 0.9195

Table 5.15: Meta-regression random effects model for the humidity

Random Effects Model

estimate st.error t-value p-value
e’ 0.0738 0.0169 4.3600 0.0000
Max wind speed -0.00004 0.0000 -1.9257 0.0541
Mean Temp -0.0006 0.0002 -3.7491 0.0002
T2 0.0000 0.0000 0.0001 0.9999
Test of homogeneity
Q 20.0780 - - 0.6923

Table 5.16: Meta-regression random effects model for the radiation
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Random Effects Model

estimate st.error t-value p-value
o -0.7148 0.2468 -2.8959 0.0038
Mean Temp 0.0062 0.0024 2.6140 0.0089
Min Humidity 0.0046 0.0022 2.0949 0.0362
Max Radiation 0.0001 0.0000 1.9314 0.0534
T2 0.0000 0.0003 0.1387 0.8897
Test of homogeneity
Q 32.1980 - - 0.0961

Table 5.17: Meta-regression random effects model for the precipitation du-
ration

Random Effects Model
estimate st.error t-value p-value
Q 0.7546 0.2313 3.2618 0.0011
Max Temp -0.0014 0.0007 -1.9915 0.0464
Mean Precipitation duration | -0.2967 0.1766 -1.6803 0.0929
Max Precipitation intensity | -0.0010 0.0005 -2.1079 0.0350

72 0.0000 0.0002 0.0000 1.0000
Test of homogeneity
Q 20.5492 - - 0.6086

Table 5.18: Meta-regression random effects model for the precipitation in-
tensity
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Chapter 6
Conclusions

The models described in this thesis serve the same purpose; to model time
series of counts accounting for the presence of autocorrelation between them.
It is important to note that the literature contains very few publications on
fitting time series models in accident count data and usually the models fitted
were not correct. So in this thesis we provide correct models for the problem
at hand. The Poisson INAR(1) regression-model failed in fitting the accident
counts of the stations under analysis due to the fact that it does not allow

for overdispersion.

Therefore, in order to fit an observation driven model in the data, one
needs to assume a different distribution for the process { R;} than the Poisson,
such as to account for possible overdispersion. Another solution described
thoroughly in Pavlopoulos and Karlis (2006) is to assume that the innovation
process is a finite mixture of m independent Poisson processes. Note that
the Poisson INAR model presented in this thesis is a special case of the
finite mixture model for m = 1. By letting m > 2 the model becomes able
of accounting for overdispersion. Another issue that possibly leads to an
inadequate fit of the INAR model is the existence of significant covariates
(unavailable though), such as exposure, that have not been included in the
regression. This of course suggests the following limitations.
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Due to the absence of data on exposures for the different days of the
week and for each of the 27 cities studied, we cannot measure the possibly
confounding effect of weather conditions on accidents, directly or indirectly
through exposure. Indeed, weather may have both a direct effect on accidents
due to a change of the risk per unit of exposure and an indirect effect through
exposure, since the amount and means of traffic may change due to differing
weather conditions. In this thesis, we only model the direct effect of weather
conditions on accidents. However, we believe that this limitation does not
have serious effects on the results, given the type of roads we consider in
the data. Indeed, this analysis focusses on the number of accidents on the
major roads network and we believe that the effect of weather on exposure
is much more dominant on the underlying road network than on the major
roads network.

Also, the use of climatological weather data instead of using accident
records to describe weather conditions may introduce a measurement problem
since weather conditions (like rainfall) may be very local. However, since we
model the number of accidents on the level of a larger geographical area (i.e.
a major city), we think that it is more efficient to use data from a nearby
weather station.

Finally, our mddel does not distinguish between different types of injuries,
such as fatalities, severe and light injuries. In fact, earlier research has shown
that some of the weather effects may have a different impact with respect to
the type of injury. However, since the number of injuries of different types are
not independent from each other, they should be studied preferably within
a multivariate model. A recent work on this type of model has been carried
out by Heinen and Rengifo (2004), who present a multivariate autoregressive
model of time series of count.data using copulas.
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Appendix A

Properties of Binomial Thinning

Let X and Y denote two independent non-negative integer-valued random
variables, and the symbol 2 denotes equality of probability distributions.
We provide some properties of the binomial thinning based on the results of
Pavlopoulos and Karlis (2006).

Al. The characteristic function of a0 X, is ®pox(u) = E (X)) =
E {(1 —a+ aei")X}, for u € R. This is derived from taking double expec-
tation of o o X given X, which is a binomial random variable with X trials
and probability of success a. Direct consequences of A1l are the following
properties.

A2.00X 2 0 & 1loX

A3. aj0 (a0 X) (anag) o X, for every ay, az € [0, 1].

A4 ao(X+Y) (aoX) + (oY), for every a € [0, 1].
Non-central moments u/. (a0 X) = E [(a 0 X)"] of ao X are obtained directly
from A1, provided.'that pL(X) = E(X") < o0, for r = 1,2, 3,4 respectively:

A5. piaoX) =ap(X),

A6. py(ao X) = o?uy(X) + ol — )y (X),

AT. pi(ao X) = adus(X) +3a%(1 — a)uh(X) + a(l — 3a + 2a?)u)(X),

A8. pj(aoX) = oy (X)+6a*(1—a)uy(X)+a?(1—a)(7—11a)uy(X) +
a(l — a)(6a? — 6a + 1)} (X).

Central moments p,.(ao X)=E[(ao X — E(ao X))], for r = 1,2,3,4, are

[Is]

X.

s L]
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obtained by the non-central moments using the standard formulas. Tedious
algebra leads to the following formulas for the central moments:

A9. pr(ao X)=Var(aoX)=a*Var (X) +a(l — a)E(X),

A10. yz(aoX) = a3uz(X)+3a%(1—a)Var(X) +a(l - 3a+20?)E(X),

All. yy(ao X) = auy(X)+6a*(1—a)E(X3)+a?(1—a)(7T—11a)E(X?)
+a(l — a)(6a? — 6a + 1)E(X) — 1203(1 — a)E(X)E(X?) — 40?(1 — 3a +
20%)[E(X)]? + 6a3(1 — a)[E(X)].
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Appendix B

INAR and Zeger results

In this appendix we provide detailed results for all sites when fitting both
the INAR and Zeger’s models.

INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -1.2621 0.8637 -1.461 0.144| -1.0714 0.8691 -1.233 0.218
Wind

Direction 0.0074 0.0681  0.108 0.914 0.0283 0.0746  0.379 0.705

Speed 0.0033 0.0038 0.873 0.383 0.0027 0.0041  0.649 0.516
Mean Temp 0.0004 0.0013 0.325 0.745 0.0004 0.0015 0.290 0.772
Temp below zero 0.1822 0.1920  0.949 0.343 0.1538 0.2039  0.754 0.451
Humidity 0.0104 0.0083  1.253 0.210 0.0083 0.0085  0.979 0.328
Radiation 0.0016 0.0032  0.484 0.628 0.0014 0.0034  0.406 0.685
Precipitation

Duration 0.0701 0.0350 2.005 0.045 0.0782 0.0389  2.009 0.045

Intensity 0.0396 0.0521  0.760 0.447 0.0446 0.0571  0.782 0.434
Weekday

Monday 0.4182 0.1867  2.240 0.025 0.4096 0.2049  1.999 0.046

Tuesday 0.4353 0.1864  2.336 0.020 0.4119 0.1990 2.070 0.038

Wednesday 0.6084 0.1787 3.405 <0.001 0.6042 0.1941 3.112 0.002

Thursday 0.5294 0.1839  2.878 0.004 0.5402 0.1999  2.702 0.007

Friday 0.7366 0.1780  4.137 <0.001 0.7338 0.1901  3.860 <0.001

Saturday 0.3719 0.1892  1.966 0.049 0.3765 0.2094  1.798 0.072
Other parameters

a 0.0000 0.0445 0.000 1.000 | -0.3807 0.0440 -1.298 0.194

o? 0.1501 - - =

Table 6.1: Results based on the fitted INAR and Zeger’s regression model
for Arcen
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INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -0.8392 1.0465 -0.802 0.423 | -0.7971 0.9553 -0.834 0.404
Wind

Direction -0.0303 0.0855 -0.354 0.723 | -0.0327 0.0793 -0.412 0.680

Speed 0.0024 0.0026 0.924 0.356 0.0022 0.0024 0.933 0.351
Mean Temp -0.0004 0.0016 -0.244 0.807 | -0.0004 0.0015 -0.247 0.805
Temp below zero 0.2505 0.2349  1.066 0.286 0.2610 0.2175  1.200 0.230
Humidity 0.0039 0.0102 0.381 0.703 0.0041 0.0095 0.431 0.666
Radiation 0.0045 0.0033 1.370 0.171 0.0043 0.0031 1.399 0.162
Precipitation

Duration 0.0825 0.0498 1.655 0.098 0.0779 0.0468 1.665 0.096

Intensity 0.0625 0.0376  1.663 0.096 0.0600 0.0350 1.712 0.087
Weekday

Monday 0.0910 0.2030  0.448 0.654 0.1023 0.1881  0.544 0.587

Tuesday 0.1814 0.2008  0.904 0.366 0.1953 0.1884  1.037 0.300

Wednesday 0.1244 0.2035 0.611 0.541 0.1207 0.1911  0.632 0.528

Thursday -0.0484 0.2131 -0.227 0.820 | -0.0339 0.1987 -0.171 0.865

Friday 0.0918 0.2045  0.449 0.654 0.0851 0.1940 0.439 0.661

Saturday -0.1376  0.2194 -0.627 0.531 § -0.1211 0.2029 -0.597 0.551
Other parameters

o 0.0454 0.0554 0.82 0.412 | -0.7127 0.0492 0.612 0.535

o2 0.0000 g

Table 6.2: Results based on the fitted INAR and Zeger’s regression model
for Berkhout

] INAR | Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.5007 0.6109  0.820 0.412 0.5547 0.7009  0.791 0.429
Wind

Direction -0.0565 0.0482 -1.172 0.241 | -0.0535 0.0575 -0.930 0.352

Speed -0.0004 0.0017 -0.226 0.821 | -0.0003 0.0020 -0.136 0.892
Mean Temp -0.0007 0.0009 -0.788 0.431 | -0.0008 0.0011 -0.721 0.471
Temp below zero -0.2706 0.1615 -1.676 0.094 | -0.3009 0.1874 -1.606 0.108
Humidity 0.0000 0.0060 0.003 0.998 | -0.0006 0.0070 -0.080 0.937
Radiation -0.0037 0.0021 -1.710 0.087 | -0.0036 0.0025 -1.426 0.154
Precipitation

Duration 0.1086 0.0262 4.142 <0.001 0.1081 0.0333  3.248 0.001

Intensity 0.0499 0.0317 1.572 0.116 0.0516 0.0380  1.358 0.175
Weekday

Monday 0.6940 0.1417  4.897 <0.001 0.6803 0.1600 4.252 <0.001

Tuesday 0.6891 0.1403 4.913 <0.001 0.6787 0.1598  4.247 <0.001

Wednesday 0.7269 0.1395 5.210 <0.001 0.7258 0.1595 4.552 <0.001

Thursday 0.8510 0.1394 6.107 <0.001 0.8396 0.1592 5.274 <0.001

Friday 0.8317 0.1383 6.016 <0.001 0.8381 0.1582 5.297 <0.001

Saturday - 0.2388  0.1570  1.521 0.128 0.2414 0.1730 1.395 0.163
Other parameters o

a 0.0000 0.0360 0.000 1.000 | -0.0007 0.0279 -0.003 0.997

o 0.1457 - -

Table 6.3: Results based on the fitted INAR and Zeger’s regression model
for Cabauw
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INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -0.7917 1.1265 -0.703 0.482 [ -0.8516 1.1811 -0.721 0.471
Wind

Direction 0.1319 0.1153 1.144 0.253 0.1067 0.1223  0.872 0.383

Speed -0.0049 0.0034 -1.443 0.149 | -0.0047 0.0035 -1.319 0.187
Mean Temp 0.0026 0.0021 1.220 0.223 0.0028 0.0022 1.261 0.207
Temp below zero -1.2576 0.7516 -1.673 0.094] -1.2628 0.7555 -1.672 0.095
Humidity 0.0001 0.0115  0.009 0.993 0.0006 0.0121  0.047 0.963
Radiation 0.0005 0.0038 0.138 0.890 0.0001 0.0040 0.026 0.979
Precipitation

Duration 0.0789 0.0782  1.009 0.313 0.0764 0.0837 0.913 0.361

Intensity 0.0280 0.0747 0.375 0.708 0.0175 0.0819 0.214 0.831
Weekday

Monday -0.1539  0.2883 -0.534 0.594 | -0.1436 0.3144 -0.457 0.648

Tuesday 0.0182 0.2763  0.066 0.948 0.0381 0.2922  0.130 0.896

Wednesday -0.2030 0.2958 -0.686 0.493 | -0.1980 0.3161 -0.626 0.531

Thursday -0.2154 0.3041 -0.708 0.479 | -0.2081 0.3184 -0.654 0.513

Friday 0.3801 0.2553  1.489 0.137 0.3929 0.2749  1.429 0.153

Saturday -0.3744  0.3204 -1.169  0.243 | -0.3604 0.3378 -1.067  0.286
Other parameters

a 0.0000 0.0517  0.000 1.000 [ -0.3920 0.1253 -0.870 0.384

a? 0.2780 - - -

Table 6.4: Results based on the fitted INAR and Zeger’s regression model
for De Kooy

INAR | Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -0.0826 0.6181 -0.134 0.894 | -0.1782 0.6199 -0.288 0.774
Wind

Direction 0.0001 0.0449 0.003 0.997 | -0.0038 0.0494 -0.076 0.939

Speed 0.0008 0.0017  0.455 0.649 0.0010 0.0019 0.514 0.607
Mean Temp -0.0016 0.0009 -1.785 0.074 | -0.0016 0.0010 -1.581 0.114
Temp below zero -0.1269 0.1273 -0.997 0.319 | -0.0873 0.1347 « -0.649 0.517
Humidity 0.0090 0.0059 1.520 0.129 0.0098 0.0062 ‘1»‘5&3 0.114
Radiation 0.0035 0.0021 1.685 0.092 0.0036 0.0023  1.582 0.114
Precipitation

Duration 0.0814 0.0253  3.222 0.001 0.0834 0.0286 2.916 0.004

Intensity 0.0228 0.0340 0.670 0.503 0.0233 0.0373  0.624 0.532
Weekday

Monday 0.5893 0.1219  4.833 <0.001 0.5935 0.1289 4.605 <0.001

Tuesday 0.4311 0.1221  3.531 <0.001 0.4636 0.1311  3.537 <0.001

Wednesday 0.4209 0.1236  3.407 <0.001 0.4201 0.1334  3.148 0.002

Thursday 0.3985 0.1243  3.207 0.001 0.3983 0.1338  2.977 0.003

Friday 0.5386 0.1216 4.429 <0.001 0.5390 0.1297 4.156 <0.001

Saturday 0.2139 0.1286 1.664 0.096 0.2107 0.1392 1.514 0.130
Other parameters

a 0.0000 0.0472  0.000 1.000 | -0.0733 0.0202 -0.241 0.810

o? 0.0663 - - -

Table 6.5: Results based on the fitted INAR and Zeger’s regression model
for Eelde
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| INAR | Zeger

estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.2742 0.5088  0.539 0.590 0.3922 0.5606  0.700 0.484
Wind

Direction -0.0509 0.0436 -1.166 0.244 | -0.0410 0.0506 -0.809 0.418

Speed 0.0001 0.0019 0.044 0.965 | -0.0006 0.0023 -0.277 0.782
Mean Temp -0.0003 0.0009 -0.369 0.713 | -0.0005 0.0010 -0.509 0.611
Temp below zero 0.2177 0.1232  1.766 0.077 0.1899 0.1413  1.344 0.179
Humidity 0.0034 0.0050 0.695 0.487 0.0028 0.0056  0.497 0.619
Radiation 0.0016 0.0020 0.781 0.435 0.0016 0.0024  0.693 0.488
Precipitation

Duration 0.1711 0.0235 7.293 <0.001 0.1728 0.0287 6.022 <0.001

Intensity 0.0492 0.0276 1.779 0.075 0.0510 0.0326  1.566 0.117
Weekday

Monday 0.4147 0.1182  3.508 <0.001 0.4032 0.1342  3.005 0.003

Tuesday 0.5057 0.1175  4.302 <0.001 0.4798 0.1331 3.605 <0.001

Wednesday 04660 0.1176  3.964 <0.001 0.4524 0.1338  3.380 <0.001

Thursday 0.5550 0.1189  4.668 <0.001 0.5433 0.1346 4.037 <0.001

Friday 0.7649 0.1139 6.714 <0.001 0.7340 0.1291 5.685 <0.001

Saturday 0.1847 0.1276 1.448 0.148 0.1660 0.1428  1.163 0.245
Other parameters

o 0.0000 0.0376  0.000 1.000 | -0.0607 0.0211 -0.287 0.774

a2 0.0995 . . .

Table 6.6: Results based on the fitted INAR and Zeger’s regression model
for Eindhoven

| INAR | Zeger
estimate. st.error t-value p-value | estimate st.error t-value p-value

Constant 0.6128 0.8270 0.741 0.459 0.5636 0.8791 0.641 0.522
Wind

Direction 0.1274 0.0630 2.024 0.043 0.1227 0.0670 1.832 0.067

Speed -0.0007 0.0030 -0.221 0.826 | -0.0005 0.0032 -0.144 0.886
Mean Temp -0.0003 0.0013 -0.217 0.829 | -0.0004 0.0014 -0.286 0.775
Temp below zero -0.0170 0.1988 -0.085 0.932 | -0.0180 0.2100 -0.086 0.932
Humidity -0.0087 0.0083 -1.055 0.291 | -0.0082 0.0089 -0.922 0.356
Radiation 0.0032 0.0030 1.076 0.282 0.0034 0.0032 1.065 0.287
Precipitation

Duration 0.1867 0.0335 5.574 <0.001 0.1848 0.0365 5.068 <0.001

Intensity -0.0361 0.0455 -0.793 0.428 | -0.0340 0.0485 -0.701 0.483
Weekday

Monday 0.3672 0.1653  2.221 0.026 0.3632 0.1753  2.072 0.038

Tuesday 0.0936 0.1809 0.518 0.605 0.1040 0.1879  0.553 0.580

Wednesday 0.3911 0.1650  2.370 0.018 0.3993 0.1752  2.279 0.023

Thursday 0.5514 0.1666  3.309 <0.001 0.5453 0.1772  3.077 0.002

Friday 0.5762 0.1630  3.536 <0.001 0.5787 0.1735 3.336 <0.001

Saturday 0.2535 0.1771 1.431 0.152 0.2527 0.1865 1.355 0.175
Other parameters

«a 0.0018 0.0409  0.043 0.966 0.0420 0.0379  0.096 0.924

a? 0.0863 . . .

Table 6.7: Results based on the fitted INAR and Zeger’s regression model
for Ell
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| INAR | Zeger

estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.7042 0.5085 1.385 0.166 0.7301 0.5678 1.286 0.199
Wind

Direction -0.0614 0.0405 -1.516 0.129 | -0.0597 0.0465 -1.283 0.200

Speed 0.0007  0.0021 0.352 0.725 0.0007 0.0024 0.281 0.779
Mean Temp -0.0009 0.0008 -1.156 0.248 | -0.0009 0.0010 -0.971 0.331
Temp below zero 0.0244 0.1180 0.207 0.836 0.0236 0.1349 0.175 0.861
Humidity 0.0027 0.0049 0.554 0.580 0.0027 0.0057  0.474 0.636
Radiation 0.0029 0.0019  1.502 0.133 0.0029 0.0023  1.298 0.194
Precipitation

Duration 0.0836 0.0233 3.588 <«0.001 0.0843 0.0279 3.024 0.003

Intensity 0.0304 0.0239 1.275 0.202 0.0322 0.0277 1.161 0.246
Weekday

Monday 0.4689 0.1047 4478 <0.001 0.4602 0.1163 3.956 <0.001

Tuesday 0.3225 0.1081 2.982 0.003 0.3155 0.1203 2.621 0.009

Wednesday 0.3831 0.1056 3.627 <0.001 0.3708 0.1198 3.096 0.002

Thursday 0.4887 0.1047 4.668 <0.001 0.4839 0.1189 4.069 <0.001

Friday 0.4896  0.1048 4.673 <0.001 0.4837 0.1186 4.077 <0.001

Saturday -0.0543 0.1227 -0.442 0.659 | -0.0517 0.1287 -0.402 0.688
Other parameters

a 0.0179  0.0369 0.486 0.627 0.1583 0.0177 0.799 0.424

a2 0.0896 . = x

Table 6.8: Results based on the fitted INAR and Zeger’s regression model
for Gilze-Rijen

| INAR | Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.5323 0.6882  0.773 0.439 0.5411 0.7190  0.753 0.452
Wind

Direction -0.0489 0.0519 -0.942 0.347 | -0.0463 0.0570 -0.813 0.416

Speed 0.0014 0.0027  0.505 0.613 0.0014 0.0030  0.489 0.625
Mean Temp -0.0021 0.0010 -2.068 0.039 | -0.0022 0.0012 -1.910 0.056
Temp below zero -0.0822 0.1360 -0.604 0.546 | -0.0580 0.1494 -0.388 0.698
Humidity -0.0006 0.0066 -0.095 0.925 0.0007 0.0072  0.090 0.928
Radiation 0.0013 0.0024  0.565 0.572 0.0017 0.0026  0.656 0.512
Precipitation

Duration 0.0415 0.0301 1.381 0.167 0.0353 0.0343  1.028 0.304

Intensity 0.0223 0.0230 0.972 0.331 0.0193 0.0260 0.741 0.459
Weekday

Monday 0.6410 0.1522 4.211 <0.001 0.5640 0.1481  3.809 <0.001

Tuesday 0.4541 0.1524  2.980 0.003 0.4299 0.1535  2.801 0.005

Wednesday 0.5421 0.1514  3.580 <0.001 0.4858 0.1537  3.160 0.002

Thursday 0.6277 0.1497 4.192 <0.001 0.5746 0.1515  3.792 <0.001

Friday 0.7220 0.1477 4.888 <0.001 0.6715 0.1487 4.515 <0.001

Saturday 0.4673 0.1522  3.070 0.002 0.4278 0.1516  2.822 0.005
Other parameters

a 0.0690 0.0436  1.583 0.113 0.1953 0.0264  0.957 0.339

o? 0.1293 - - -

Table 6.9: Results based on the fitted INAR and Zeger’s regression Heino
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| INAR 1 Zeger

estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 1.0132 0.5850 1.732 0.083 0.9584 0.6269  1.529 0.126
Wind

Direction 0.0338 0.0468 0.723 0.470 0.0377 0.0518 0.728 0.467

Speed -0.0006 0.0017 -0.344 0.731 | -0.0007 0.0019 -0.344 0.731
Mean Temp -0.0020 0.0009 -2.159 0.031| -0.0020 0.0010 -1.944 0.052
Temp below zero -0.1130 0.1286 -0.879 0.380 | -0.1029 0.1416 -0.727 0.468
Humidity -0.0046 0.0058 -0.797 0.426 | -0.0040 0.0064 -0.626 0.531
Radiation 0.0034 0.0020 1.704 0.088 0.0037 0.0022 1.658 0.097
Precipitation

Duration 0.1467 0.0246 5.967 <0.001 0.1494 0.0282 5.305 <0.001

Intensity 0.0037 0.0111  0.339 0.735 0.0041 0.0122 0.340 0.734
Weekday

Monday 0.4988 0.1285 3.881 <0.001 0.4962 0.1333 3.723 <0.001

Tuesday 0.3703 0.1299  2.850 0.004 0.3738 0.1385  2.700 0.007

Wednesday 0.5267 0.1263 4.172 <0.001 0.5226 0.1350 3.872 <0.001

Thursday 0.5612 0.1266 4434 <0.001 0.5582 0.1361 4.100 <0.001

Friday 0.6290 0.1257 5.004 <0.001 0.6198 0.1342 4.619 <0.001

Saturday 0.2982 0.1333  2.237 0.025 0.2928 0.1411  2.075 0.038
Other parameters

a 0.0012 0.0408 0.029 0.977 0.1995 0.0214 0.630 0.529

a2 0.0676 - - -

Table 6.10: Results based on the fitted INAR and Zeger’s regression model
for Herwijnen

| INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -0.6984 0.9273 -0.753 0.451 | -0.4417 1.0970 -0.403 0.687
Wind

Direction -0.0863 0.0736 -1.174 0.241 { -0.0981 0.0839 -1.169 0.242

Speed 0.0014 0.0030 0.455 0.649 | -0.0005 0.0036 -0.141 0.888
Mean Temp -0.0010 0.0014 -0.724 0.469 | -0.0011 0.0017 -0.608 0.543
Temp below zero 0.1414 0.1910 0.740 0.459 0.1032 0.2265 0.456 0.649
Humidity 0.0064 0.0090 0.709 0.478 0.0062 0.0109 0.566 0.572
Radiation 0.0037 0.0034 1.085 0.278 0.0026 0.0040 0.658 0.510
Precipitation

Duration 0.0479 0.0470 1.020 0.308 0.0310 0.0543 0.571 0.568

Intensity 0.0936 0.0597 1.566 0.117 0.1009 0.0702 1.439 0.150
Weekday

Monday 0.0019 0.1978 0.010 0.992 | -0.0093 0.2043 -0.045 0.964

Tuesday 0.3203 0.1833  1.747 0.081 0.2514 0.1994 1.261 0.208

Wednesday 0.1694 0.1907 0.888 0.374 0.1566 0.2070  0.756 0.449

Thursday 0.3374 0.1829 1.845 0.065 0.2983 0.2020 1.477 0.140

Friday 0.2860 0.1845  1.550 0.121 0.2594 0.2004 1.295 0.196

Saturday 0.3277 0.1837 1.784 0.075 0.2666 0.1939 1.375 0.169
Other parameters

a 0.0693 0.0395 1.753 0.080 0.3491 0.0547 2.083 0.037

o2 0.3265 : - -

Table 6.11: Results based on the fitted INAR and Zeger’s regression model
for Hoogeveen
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INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -2.4049 0.9673 -2.486 0.013 | -2.2310 0.9685 -2.303 0.021
Wind

Direction -0.0117 0.0808 -0.145 0.885 | -0.0152 0.0846 -0.179 0.858

Speed 0.0060 0.0027  2.242 0.025 0.0061 0.0029 2.124 0.034
Mean Temp 0.0014 0.0015 0.956 0.339 0.0017 0.0016 1.069 0.285
Temp below zero 0.4795 0.2237  2.144 0.032 0.5247 0.2335  2.247 0.025
Humidity 0.0167 0.0093  1.803 0.071 0.0154 0.0096 1.611 0.107
Radiation 0.0026 0.0033 0.797 0.426 0.0021 0.0035 0.618 0.537
Precipitation

Duration 0.0642 0.0490 1.312 0.190 0.0610 0.0522  1.169 0.243

Intensity 0.0008 0.0410  0.020 0.984 | -0.0022 0.0441 -0.050 0.960
Weekday

Monday 0.8108 0.2066 3.924 <0.001 0.7633 0.2030 3.760 <0.001

Tuesday 0.2831 0.2218 1.276 0.202 0.3114 0.2195 1.419 0.156

Wednesday 0.3532 0.2207  1.600 0.110 0.3281 0.2213  1.482 0.138

Thursday 0.3479  0.2238  1.554 0.120 0.3072 0.2235 1.375 0.169

Friday 0.4626 0.2196  2.107 0.035 0.4195 0.2174 1.929  0.054

Saturday 0.3713 0.2198  1.690 0.091 0.3480 0.2188  1.591 0.112
Other parameters

o 0.0380 0.0443  0.859 0.390{ 0.1778 0.0553  0.495 0.620

o? 0.1540 - - =

Table 6.12: Results based on the fitted INAR and Zeger’s regression model
for Leeuwarden

INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -1.2776  0.8973 -1.424 0.155 | -1.1738 0.9245 -1.270 0.204
Wind

Direction 0.0383 0.0705  0.543 0.587 0.0376 0.0746  0.504 0.614

Speed 0.0062 0.0025  2.473 0.013 0.0059 0.0027  2.198 0.028
Mean Temp 0.0016 0.0014 1.134 0.257 0.0015 0.0015 1.043 0.297
Temp below zero 0.0559 0.2105 0.266 0.791 0.0260 0.2214  0.117 0.907
Humidity 0.0088 0.0088  0.995 0.320 0.0079 0.0093  0.850 0.395
Radiation 0.0007 0.0029 0.251 0.802 0.0006 0.0031  0.181 0.856
Precipitation

Duration -0.0243 0.0450 -0.540 0.589 | -0.0208 0.0476 -0.438 0.662

Intensity 0.0481 0.0310  1.552 0.121 0.0508 0.0335 1.515 0.130
Weekday

Monday 0.2724 0.1931 1.411 0.158 0.2737 0.1972  1.388 0.165

Tuesday 0.1352 0.1956  0.691 0.490 0.1163 0.2038  0.571 0.568

Wednesday 0.3425 0.1889  1.813 0.070 | 0.3472 0.1957 1.775 0.076

Thursday 0.2226 0.1939  1.148 0.251 0.2257 0.2017  1.119 0.263

Friday 0.6608 0.1804 3.663 <0.001 0.6594 0.1863 3.539 <0.001

Saturday 0.2452 0.1917 1.279 0.201 0.2496 0.2000 1.248 0.212
Other parameters

a 0.0062 0.0429 0.144 0.886 0.0406 0.0458  0.087 0.931

o? 0.0981 - . ]

Table 6.13: Results based on the fitted INAR and Zeger’s regression model
for Lelystad
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INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.3761 0.7317 0.514 0.607 0.3721 0.7614  0.489 0.625
Wind

Direction -0.0680 0.0688 -0.989 0.323 | -0.0663 0.0728 -0.910 0.363

Speed -0.0028 0.0025 -1.106 0.269 | -0.0027 0.0027 -0.986 0.324
Mean Temp -0.0018 0.0012 -1.509 0.131| -0.0019 0.0013 -1.497 0.135
Temp below zero -0.1784 0.1991 -0.896 0.370 | -0.1900 0.2094 -0.907 0.364
Humidity 0.0017 0.0075 0.230 0.819 0.0021 0.0079 0.270 0.787
Radiation 0.0012 0.0030 0.399 0.690 0.0013 0.0032 0.405 0.686
Precipitation

Duration 0.0847 0.0354  2.391 0.017 0.0819 0.0380  2.155 0.031

Intensity 0.0546 0.0319 1.711 0.087 0.0543 0.0342  1.587 0.113
Weekday

Monday 0.1827 0.1589  1.150 0.250 0.1821 0.1654 1.101 0.271

Tuesday 0.1569 0.1612 0.973 0.330 0.1635 0.1678 0.975 0.330

Wednesday -0.0504 0.1679 -0.300 0.764 | -0.0433 0.1736 -0.249 0.803

Thursday 0.1127 0.1653  0.681 0.496 0.1090 0.1738  0.627 0.531

Friday 0.5060 0.1507 3.357 <0.001 0.5017 0.1600 3.136 0.002

Saturday -0.2062 0.1868 -1.104 0.270 | -0.1837 0.1804 -1.019 0.308
Other parameters

a 0.0230 0.0473 0.485 0.628 0.2114 0.0375 0.543 0.588

o2 0.0961 - - -

Table 6.14: Results based on the fitted INAR and Zeger’s regression model
for Maastricht

| INAR | Zeger
estimate :st.error t-value p-value | estimate st.error t-value p-value

Constant -1.2899 0.7860 -1.641 0.101 | -1.3260 0.8629 -1.537 0.124
Wind

Direction 0.0290 0.0585  0.495 0.621 0.0362 0.0672 0.538  0.590

Speed 0.0068 0.0024  2.838 0.005 0.0068 0.0028 2.433  0.015
Mean Temp -0.0026 0.0012 -2.259 0.024 | -0.0024 0.0013 -1.751 0.080
Temp below zero 0.3411 0.1569 2.174 0.030 0.3582 0.1816 1.972  0.049
Humidity 0.0116 0.0076 1.533 0.125 0.0121 0.0086 1.413  0.158
Radiation 0.0105 0.0026 4.053 <0.001 0.0103 0.0030 3.478 <0.001
Precipitation

Duration 0.1419 0.0333 4.261 <0.001 0.1343 0.0401 3.346 <0.001

Intensity 0.0704 0.0437 1.611 0.107 0.0696 0.0522 1.332 0.183
Weekday

Monday 0.1644 0.1541 1.067 0.286 0.1548 0.1734 0.893 0.372

Tuesday 0.2930 0.1533  1.912 0.056 0.2740 0.1714  1.598 0.110

Wednesday -0.1516  0.1687 -0.898 0.369 | -0.1684 0.1873 -0.899 0.369

Thursday 0.3494 0.1537 2.274 0.023 0.3342 0.1704 1.961 0.050

Friday 0.6185 0.1430 4.326 <0.001 0.6146 0.1618 3.797 <0.001

Saturday 0.4420 0.1480 2.986 0.003 0.4004 0.1699 2.357 0.018
Other parameters

a 0.0016 0.0385  0.041 0.967{ -0.0259 0.0369 -0.117  0.907

a? 0.1674 : . -

Table 6.15: Results based on the fitted INAR and Zeger’s regression model
for Marknesse

90



INAR | Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -2.8480 1.5424 -1.847 0.065 | -2.6485 1.5906 -1.665  0.096
Wind

Direction 0.1038 0.1133  0.916 0.360 0.1049 0.1210 0.867 0.386

Speed 0.0016 0.0043 0.373 0.709 0.0011 0.0046 0.237  0.813
Mean Temp -0.0023 0.0021 -1.101 0.271| -0.0023 0.0023 -1.027  0.304
Temp below zero | -0.2952 0.3356 -0.880 0.379 | -0.3114 0.3515 -0.886  0.376
Humidity 0.0167 0.0149 1.124 0.261 0.0148 0.0155 0.953  0.341
Radiation 0.0081 0.0048 1.691 0.091 0.0078 0.0051  1.535 0.125
Precipitation

Duration -0.0432 0.0820 -0.527 0.598 | -0.0398 0.0871 -0.457  0.648

Intensity 0.0686 0.0871 0.787  0.431 0.0664 0.0939 0.707  0.479
Weekday

Monday 0.7655 0.3283  2.332 0.020 0.7830 0.3432  2.282 0.023

Tuesday 0.2938 0.3556  0.826 0.409 0.2733 0.3714 0.736 0.462

Wednesday 0.4149 0.3483  1.191 0.234 0.4193 0.3638  1.153 0.249

Thursday 0.7475 0.3264  2.290 0.022 0.7587 0.3436  2.208 0.027

Friday 0.7893 0.3221  2.451 0.014 0.7859 0.3398  2.313 0.021

Saturday 0.4367 0.3454 1.264 0.206 0.4455 0.3619 1.231 0.218
Other parameters

a 0.0000 0.0573  0.000 1.000 | -0.0892 0.1302 -0.195 0.845

a2 0.2848 - - -

Table 6.16: Results based on the fitted INAR and Zeger’s regression model
for Nieuw Beerta

INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.6713 0.5032 1.334 0.182 0.6389 0.5845  1.093 0.274
Wind

Direction 0.0603 0.0459 1.314 0.189 0.0568 0.0541  1.050 0.294

Speed -0.0044 0.0021 -2.097 0.036 | -0.0046 0.0025 -1.812 0.070
Mean Temp -0.0013 0.0009 -1.558 0.119| -0.0013 0.0010 -1.256 0.209
Temp below zero 0.1382 0.1239 1.115 0.265 0.1472 0.1490  0.988 0.323
Humidity 0.0039 0.0048 0.794 0.427 0.0046 0.0058 0.793 0.428
Radiation 0.0003 0.0020 0.164 0.870 0.0006 0.0024  0.233 0.816
Precipitation

Duration 0.0767 0.0263 2.913 0.004 0.0756 0.0326  2.317 0.021

Intensity 0.0011 0.0328  0.035 0.972 0.0030 0.0386  0.078 0.938
Weekday

Monday 0.4911 0.1229 3.997 <0.001 0.4725 0.1365 3.461 <0.001

Tuesday 0.4548 0.1222 3.721 <0.001 0.4473 0.1391  3.216 0.001

Wednesday 0.4841 0.1210 3.999 <0.001 0.4782 0.1388  3.445 <0.001

Thursday 0.5683 0.1210 4.697 <0.001 0.5580 0.1385 4.029 <0.001

Friday 0.4819 0.1213 3.973 <0.001 0.4781 0.1389  3.443 <0.001

Saturday 0.2773 0.1283  2.162 0.031 0.2723 0.1435 1.898 0.058
Other parameters

o 0.0262 0.0373  0.701 0.483 0.1117 0.0232 0.671 0.502

o2 0.1396 - - -

Table 6.17: Results based on the fitted INAR and Zeger’s regression model
for Soesterberg
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INAR | Zeger

estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -4.6585 1.7977 -2.591 0.010 | -4.4495 1.9216 -2.316 0.021
Wind

Direction -0.1138  0.1329 -0.856 0.392 | -0.1338 0.1457 -0.918 0.358

Speed 0.0018 0.0041 0.435 0.663 0.0018 0.0044 0411 0.681
Mean Temp 0.0039  0.0024 1.601 0.109 0.0031  0.0026 1.168 0.243
Temp below zero 0.7410  0.3908 1.896 0.058 0.5415 0.4337 1.249 0.212
Humidity 0.0286 0.0175 1.638 0.101 0.0283 0.0188 1.501 0.133
Radiation 0.0052 0.0049 1.079 0.281 0.0048 0.0052  0.930 0.352
Precipitation

Duration 0.2777 0.0854  3.253 0.001 0.2532 0.0917  2.761 0.006

Intensity -0.0203 0.0752 -0.270 0.787 | -0.0068 0.0817 -0.084 0.933
Weekday

Monday 0.2824 0.3196  0.884 0.377 0.2095 0.3495  0.599 0.549

Tuesday -0.0279 0.3525 -0.079 0.937 0.0187 0.3623  0.052 0.959

Wednesday 0.0943 0.3315 0.285 0.776 0.0517 0.3621  0.143 0.886

Thursday 0.0881 0.3452  0.255 0.799 0.0508 0.3638  0.140 0.889

Friday 0.1757 0.3327  0.528 0.598 0.1300 0.3572  0.364 0.716

Saturday 0.2104 0.3422  0.615 0.539 0.1790 0.3618  0.495 0.621
Other parameters

a 0.0000 0.0452  0.000 1.000 | -0.1317 0.1680 -0.398 0.691

o2 0.5071 - - -

Table 6.18: Results based on the fitted INAR and Zeger’s regression model
for Stavoren

| INAR I Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -1.8085 0.7245 -2.496 0.013 | -1.7417 0.8413 -2.070 0.038
Wind

Direction -0.0537 0.0669 -0.804 0.422 1 -0.0536 0.0794 -0.675 0.500

Speed 0.0044 0.0031 1.437 0.151 0.0039 0.0037  1.053 0.293
Mean Temp -0.0001 0.0013 -0.077 0.939 0.0001 0.0015  0.042 0.966
Temp below zero 0.4672 0.1616  2.891 0.004 0.4627 0.1963  2.358 0.018
Humidity 0.0140 0.0071 1.973 0.049 0.0134 0.0084 1.602 0.109
Radiation 0.0041 0.0029 1.396 0.163 0.0039 0.0035 1.113 0.266
Precipitation

Duration 0.0951 0.0398  2.389 0.017 0.0980 0.0486  2.017 0.044

Intensity 0.0137 0.0288 0.474 0.635 0.0135 0.0347  0.389 0.697
Weekday

Monday 0.7359 0.1829  4.023 <0.001 0.7238 0.2062  3.510 <0.001

Tuesday 0.5704 0.1889  3.020 0.003 0.5321 0.2140  2.487 0.013

Wednesday 0.5286 0.1900  2.782 0.005 0.5392 0.2146  2.513 0.012

Thursday 0.8983 0.1802 4.986 <0.001 0.8995 0.2052  4.383 <0.001

Friday 0.8724 0.1788  4.879 <0.001 0.8609 0.2054 4.193 <0.001

Saturday 0.5677 0.1889  3.005 0.003 0.5500 0.2117  2.598 0.009
Other parameters

a 0.0000 0.0389  0.000 1.000 0.0356 0.0476  0.187 0.852

a2 0.2504 i : -

Table 6.19: Results based on the fitted INAR and Zeger’s regression model
for Twenthe
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| INAR | Zeger

estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.0369 0.4993 0.074 0.941 0.1070 0.5751  0.186 0.852
Wind

Direction 0.0458 0.0471 0.973 0.331 0.0571 0.0584 0.978 0.328

Speed -0.0002 0.0014 -0.153 0.879 { -0.0003 0.0018 -0.160 0.873
Mean Temp -0.0003 0.0009 -0.289 0.773 | -0.0006 0.0011 -0.607 0.544
Temp below zero 0.0148 0.1501  0.099 0.921 | -0.0304 0.1779 -0.171 0.865
Humidity 0.0067 0.0049  1.357 0.175 0.0064 0.0058  1.105 0.269
Radiation -0.0020 0.0016 -1.250 0.211 ] -0.0014 0.0019 -0.741 0.459
Precipitation

Duration 0.1710 0.0267 6.411 <0.001 0.1752 0.0353 4.958 <0.001

Intensity 0.0591 0.0309 1.912 0.056 0.0566 0.0386  1.466 0.143
Weekday

Monday 0.5896 0.1230 4.795 <0.001 0.5480 0.1492 3.673 <0.001

Tuesday 0.4641 0.1239 3.746 <0.001 0.4218 0.1476  2.857 0.004

Wednesday 0.4272 0.1254  3.407 <0.001 0.4105 0.1491  2.753 0.006

Thursday 0.7427 0.1205 6.166 <0.001 0.7146  0.1445 4,945 <0.001

Friday 0.5583 0.1227 4.550 <0.001 0.5523 0.1464 3.773 <0.001

Saturday 0.1130 0.1372  0.823 0.410 0.0786 0.1621  0.485 0.628
Other parameters

o 0.0016 0.0327 0.048 0.962 | -0.1252 0.0271 -0.746 0.456

- 0.1613 - .

Table 6.20: Results based on the fitted INAR and Zeger’s regression model
for Valkenburg

INAR Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 2.6276 1.1885  2.211 0.027 2.6049 1.2236  2.129 0.033
Wind

Direction -0.0345 0.1270 -0.272 0.786 | -0.0427 0.1318 -0.324 0.746

Speed -0.0058 0.0031 -1.879 0.060 | -0.0058 0.0032 -1.807 0.071
Mean Temp 0.0000 0.0021  0.009 0.993 0.0000 0.0022 0.009 0.993
Temp below zero | -0.1790 0.5159 -0.347 0.729 | -0.2494 0.5268 -0.473 0.636
Humidity -0.0348 0.0123 -2.821 0.005 | -0.0344 0.0127 -2.708 0.007
Radiation -0.0101 0.0042 -2.390 0.017 | -0.0102 0.0043 -2.336 0.020
Precipitation

Duration 0.0706 0.0844  0.836 0.403 0.0577 0.0884  0.652 0.514

Intensity 0.0042 0.0745  0.057 0.955 0.0112 0.0755 0.149 0.882
Weekday

Monday 0.1052 0.3103  0.339 0.735 0.1017 0.3288  0.309 0.757

Tuesday -0.1661  0.3317 -0.501 0.617 | -0.1883 0.3408 -0.553 0.581

Wednesday 0.2011 0.3050  0.659 0.510 0.2072 0.3171  0.654 0.514

Thursday 0.1793 0.3034  0.591 0.555 0.1636 0.3181  0.514 0.607

Friday -0.0530 0.3179 -0.167 0.868 | -0.0477 0.3263 -0.146 0.884

Saturday 0.1266 0.3070  0.412 0.680 0.1088 0.3261  0.334 0.739
Other parameters S

a 0.0000 0.0491  0.000 1.000 | -0.5592 0.1358 -0.856 0.392

o? 0.2079 - :

Table 6.21: Results based on the fitted INAR and Zeger’s regression model
for Vlissingen
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INAR | Zeger

estimate st.error t-value p-value | estimate st.error t-value p-value

Constant 0.7703 0.8326  0.925 0.355 0.9605 0.8533 1.126 0.260
Wind

Direction -0.0008 0.0637 -0.013 0.990 0.0026 0.0662  0.039 0.969

Speed -0.0051 0.0029 -1.740 0.082 | -0.0055 0.0031 -1.803 0.071
Mean Temp -0.0009 0.0013 -0.672 0.501 | -0.0008 0.0014 -0.559 0.576
Temp below zero 0.1816 0.1802 1.007 0.314 0.1659 0.1895 0.876 0.381
Humidity -0.0054 0.0081 -0.665 0.506 | -0.0072 0.0084 -0.848 0.397
Radiation 0.0019 0.0032  0.580 0.562 0.0014 0.0033  0.429 0.668
Precipitation

Duration 0.1373 0.0336 4.083 <0.001 0.1405 0.0356  3.943 <0.001

Intensity -0.0531 0.0534 -0.995 0.320 | -0.0514 0.0546 -0.942 0.346
Weekday

Monday 0.2518 0.1661  1.516 0.130 0.2400 0.1696 1.415 0.157

Tuesday 0.1038 0.1736  0.598 0.550 0.0849 0.1774  0.479 0.632

Wednesday 0.1720 0.1679  1.025 0.306 0.1683 0.1733  0.971 0.332

Thursday 0.1774 0.1711 1.037 0.300 0.1808 0.1758 1.029 0.304

Friday 04577 0.1606 2.850 0.004 0.4512 0.1653 2.729 0.006

Saturday -0.0318 0.1827 -0.174 0.862 | -0.0286 0.1840 -0.156 0.876
Other parameters

a 0.0192 0.0476 0.403 0.687 0.2399 0.0386 0.458 0.647

o2 0.0736 - - 3

Table 6.22: Results based on the fitted INAR and Zeger’s regression model
for Volkel

| INAR { Zeger
estimate st.error t-value p-value | estimate st.error t-value p-value

Constant -1.2200 1.2375 -0.986 0.324 | -1.1864 1.3160 -0.902 0.367
Wind

Direction 0.1138 0.1024 '1.112 0.266 0.1195 0.1089 1.098 0.272

Speed 0.0009 0.0036  0.251 0.802 0.0009 0.0039 0.220 0.826
Mean Temp 0.0045 0.0019 2.359 0.018 0.0044 0.0021 2.102 0.036
Temp below zero 0.2081 0.4488  0.464 0.643 0.1497 0.4685  0.320 0.749
Humidity -0.0008 0.0126 -0.065 0.949 | -0.0012 0.0135 -0.089 0.929
Radiation -0.0012 0.0038 -0.313 0.754 | -0.0010 0.0041 -0.254 0.800
Precipitation

Duration 0.0511 0.0652  0.783 0.433 0.0542 0.0692 0.783 0.434

Intensity 0.0983 0.0441  2.228 0.026 0.1007 0.0489  2.057 0.040
Weekday

Monday 0.2880 0.2504 1.150 0.250 0.2877 0.2621  1.098 0.272

Tuesday -0.0345 0.2730 -0.126 0.900 | -0.0277 0.2838 -0.097 0.922

Wednesday -0.3197 0.2937 -1.089 0.276 | -0.3114 0.3065 -1.016 0.310

Thursday 0.2770 0.2576 1.075 0.282 0.2823 0.2718  1.039 0.299

Friday 0.1752 0.2620  0.669 0.504 0.1879 0.2737  0.687 0.492

Saturday 0.1868 0.2596  0.720 0.472 0.1928 0.2711 0.711 0.477
Other parameters

a 0.0000 0.0423  0.000 1.000 0.2261 0.0989  0.426 0.670

o2 0.1860 . s :

Table 6.23: Results based on the fitted INAR and Zeger’s regression model
for Whilhelminadorp
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Appendix C

Meta-analysis results

This appendix provides the weighted forest plots and fitted meta-analysis
fixed and random regression models for the covariates that were not statistical

significant.
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Station

Arcen
Berkhout
Cabauw
De Bilt

De Kooy
Deelen
Eelde
Eindhoven
EN

Gilze-Rijen
Heino
Herwijnen
Hoogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta
Rotterdarmn
Schiphol
Soesterberg

wind direction

i

Stavoren
Twenthe
Valkenburg
Viissingen
Volkel
Whilhelminadorp
Combined

r
-0.42

-0.2086

0.0

Estimates

0.2096 0.42

Figure 6.1: Weighted forest plot for the wind direction

Fixed effects

Random effects

Test of homogeneity

0 T2 0 T2 Q
estimate -0.0023 0.0000 | -0.0023 0.0000 20.8967
standard error | 0.0117 -1 0.0117 0.0008 -
t-value -0.1995 - [-0.1995 0.0000 -
p-value 0.8419 -1 0.8419 1.000 0.7473
AIC | -72.295 | -70.2926 ]

Table 6.24: Estimated common parameter and inter-variation for the wind

direction
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wind speed

Station

Arcen
Berkhout
Cabauw
De Bilt

Eindhoven
El

Gilze-Rijen
Heino

HHerwijnen
oogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta

Rotterdam — w1
Schiphol —_— 1
Soesterberg
Stavoren
Twenthe
Valkenburg
Vlissingen
Whilhelmi Vg iy
ilhelminadom
Combined ——

i i T 1
0.01 -0.0061 0.0 0.0061 0.01

Estimates

Figure 6.2: Weighted forest plot for the wind speed

Fixed effects | Random effects | Test of homogeneity

0 T2 0 T2 Q

estimate -0.0001 0.0000 | -0.0001 0.0000 32.9156

standard error | 0.0004 -1 0.0004 0.0000 -

t-value -0.1666 -1-0.1664 0.0004 -

p-value 0.8677 -1 0.8678 0.9997 0.1646
AIC -235.5824 -233.5804 |

Table 6.25: Estimated common parameter and inter-variation for the wind
speed
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humidity
Station

Arcen 7

Berkhout
Cabauw
De Bilt

De Kooy
Deelen
Eelde
EindhoverlwI

E
Gilze-Rijen
Heino
Herwijnen
Hoogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta
Rotterdam
Schiphol
Soesterberg
Stavoren
Twenthe
Valkenburg
Vlissingen

Volkel
Whilhelminadorp
Combined

g

RN N

f T T 1
-0.07 -0.0326 0.0 0.0326 0.07

Estimates

Figure 6.3: Weighted forest plot for the humidity

Fixed effects | Random effects | Test of homogeneity

0 T2 [ 72 Q

estimate 0.0018 0.0000|0.0018 0.0000 27.9048

standard error | 0.0014 -10.0014  0.0000 -

t-value 1.2892 -11.2907 0.0090 -

p-value 0.1973 -10.1968 0.9928 0.3632
AIC | -181.0422 -179.0401

Table 6.26: Estimated common parameter and inter-variation for the humid-
ity
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Station

Arcen
Berkhout
Cabauw
De Bilt

De Kooy
Deelen
Eelde
Eindhoven
Ell

Gilze-Rijen
Heino
HHerquen
oogeveen
Leeuwarden
Lelystad
Maastricht
Marknesse
Nieuw Beerta
Rotterdam
Schiphol
Soesterberg
Stavoren
Twenthe
Valkenburg

radiation

Viissingen

Volkel
Whilhelminadorp
Combined

F
-0.02

-0.0093

0.0

Estimates

0.0093 0.02

Figure 6.4: Weighted forest plot for the radiation

Fixed effects | Random effects | Test of homogeneity

6 72 0 72 Q

estimate 0.0006 0.0000|0.0010 0.0000 44.2473

standard error | 0.0005 -10.0007 0.0000 -

t-value 1.1385 1.5354 1.3699 -

p-value 0.2549 -10.1247 0.1707 0.0142
AIC |  -219.340 | -223.7851 |

Table 6.27: Estimated common parameter and inter-variation for the radia-
tion
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