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ABSTRACT

Maria - Theodosia Benia

Characterizations of Lifetime Distributions
Based on Reliability Measures

May 2006

The aim of this dissertation is to provide several characterization theorems
that can be used to identify lifetime distributions by their reliability measures.
We deal with the most important lifetime distributions such as the
Exponential Distribution and the Pareto Distribution, as well as discrete
distributions such as the Geometric and the Yule.

A sort description of the most common used reliability measures that are
helpful in describing the evolution of the risks to which an item is subjected
over time is given in the first part. The relationship between the parent
distribution and its weighted counterpart in the context of reliability is
examined.

A collection of characterization theorems concerning each distribution
seperately is provided. Characterizations that arise not only from the simple
form of the distribution, but also from the size-biased form have been studied.
Particular emphasis is given on the Weibull distribution, because of the
particularity of this disdribution.

The Weibull model can be used in many analyses relating to health sciences,
for example, the time of occurrence of cancer in a tissue follow a Weibull

distribution.
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INEPIAHYH

Mapia — Beodocia Mrevia

Xapaktnpiopoi Katavopov Zong

Baociwopévor o Métpa A&omoTiag

Maiog 2006

2xomdG NG Epyaciag avtng eival va TPoCsEEPEL PEPLKOVG YOPAKTNPLOUOVS HE
TOVG OMOLOVG HUTOPOVUE VO OVOYVOPICOVHE KATOL KaTavour xpovov amd ta
pétpa aflomotiag . H epyacia oavti aoyoreitar pe 11¢ Pacikotepeg
katavopés Long onmg eivar n ExBetikn katavopn xar n katavoun Pareto,
KaBd¢ eniong kol pe drakpitég katavoués 0nwg n 'eopetpixn kar 1 Yule.
2V Tp@Tn evétnTo divetar pio cOvioun meplypan tov pétpov afromortiog
MOV YPTMOLHOTOLOVVIAL 7O OLYVA Kal YPTNCLUEVOVY GTINV TEPLYPOPT] TOV
TOAVAV KIvOOVOV GTOVG 0T0iovg VTOKELTOL VA VTOKEIPNEVO PECO GTO YPOVO.
Erniong peletdte n oyxéon perad g apylkng katavouns kat tng Cuyiopévig
CUUTANPOUATIKNAG TNG.

Aivetar pa cviroyn and Bswpnpata (XApakInplopovs) yia K4Be katavoun
Eexmprota. Emiong vaapyovv xopakinplopoi t@V HEPOANTTIKOV ®G TPOG TO
néyebog, exdoymv tov katavopudv avtov. Epgaon divetar otn katavopr
Weibull e&artiag tng 1dwopopeiag t™g. To poviého tng Weibull pmopei va
ypnolpomon0ei oe mOAREC avAAVGEIC OTIC EMOTHHEC TNg vyeioag, yia
napaderypo o xpovog £wg MV eUPAVIOT KapkKivov Kdmolov 16tod akolovbei

v katavoun Weibull.
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Chapter 1

Introduction

Over the past 10 years there has been a heightened interest in improving quality,
productivity and reliability of manufactured products. Global competition and
higher customer expectations for safe, reliable products are driving this interest.
To meet this need, many companies have trained their design engineers and
manufacturing engineers in the appropriate use of designed experiments and
statistical process control. Now reliability is being viewed as the product feature
that has the potential to provide an important competitive edge. A current
industry concern is in developing better processes to move rapidly from product
conceptualization to a cost- efficient highly reliable product. A reputation for
unreliability can doom a product, if not the manufacturing company.

But reliability theory can be applied to other areas than those related to
engineering that gave the theory its first impetus as for example in health,
economic and environmental studies. There are many books related with the
subject, for example Mann et al (1974), Kalfleisch et al (1980), Lowless (1982).

Chapter 2 provides a review of the most common used reliability measures that
are helpful in describing the evolution of the risks to which an item is subjected
over time. These measures can be applied to both continuous and discrete
lifetimes.

The concept of weighted distribution is considered. This concept is widely
applied in reliability, biometry, survival analysis and several other fields. A

number of papers has appeared during the last fifteen years using the concepts of



weighted and size-biased sampling, see for example Gupta and Keating (1986),
Jain et al (1989), Patil (1991).

Even though the main interest of this thesis concerns the characterizations of
lifetime distributions it is necessary to consider briefly lifetime distributions.
Chapter 3 is devoted to the presentation of these distributions. Throughout the
literature on life data certain parametric models have been used repeatedly,
exponential and Weibull models, for example, are often used. These distributions
admit closed form expressions for tail area probabilities and thereby simple
formulas for survival and hazard functions. The properties and the theoretical
bases of these distributions are considered only briefly. These have been
discussed in some detail by Johnson and Kotz (1993, 1994) and Mann et al
(1974) for many of the models introduced.

Mann et al (1974) summarized from an industrial life testing point of view,
estimation procedures for these as well as other distributions, both for single
sample and two sample problems, with censoring. Gross and Clark (1975) give
similar result from the biometrical point of view. In Chapter 3 we also examine
the effect of weighting not only upon the distributions but also upon their
reliability measures.

Chapter 4 provides a collection of characterization theorems concerning each
distribution separately. Characterizations that arise not only from the simple
form of the distribution, but also from the size-biased form have been studied.
Particular emphasis is given on the Weibull distribution.

The Weibull model was utilized in many analysises relating to health sciences.
For example, Pike (1966) suggested a model to describe the process underlying
the phenomena of carcinogenesis, that is the time of occurrence of canser in a
tissue follow a weibull distribution and Berry (1975) discussed the design of
carcinogenesis experiments using this model. Chapter 5 includes an analytical
presentation of these papers as well as a collection of other applications, in

different fields of this distribution.



Chapter 2

Reliability Measures

2.1 Introduction

This chapter includes a definition of reliability as being mentioned by
Leemis (1995) and Kales (1998) and illustrates some examples for further
understanding this meaning. Various reliability measures that are helpful in
describing the evolution of the risks to which an item is subjected over time
are introduced. In particular, five reliability measures are presented: the
reliability function, the hazard rate function, the failure rate function, the
mean residual life function and the vitality function. These five measures
apply to both continuous (for example, a light bulb) and discrete (for

example, a computer program that is run weekly) lifetimes.

2.2 Reliability

Definition 1. The reliability of an item is the probability that the item will
perform a specific function under specified operational and environmental
conditions, at and throughout a specified time.

The first thing to notice in this definition is that reliability is a probability, so we
are dealing with the lows of random chance as they appear in nature. Indeed,

occurrences of inopportune interruptions in functionability or service in a system

are random events.
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The next thing to notice is that the definition depends on a specified function,
operating conditions. environment and time. So before we deal with reliability.
the producer (or provider) and the user must reach formal agreements on what
the product or service is to do, how the user is to use the product or service (that
is, how he or she will operate the product or receive or apply the service). The
environmental conditions must be specified. Conditions such as temperature,
humidity and turning speed all affect the lifetime of a machine tool. The 20.000-
mile reliability of a subcompact car is different if it is used for highway driving
or to tow a trailer down city streets. Environmental conditions associated with
the lifetime of a person might be the city in which they live and whether they
smoke. Also the instant or duration in time that the performance of the product or
service is demanded must be defined.

The definition of reliability allows for the specification of demand time to be
either an instant in time or a time interval. In actuality, the demand time may be
a sequence of instances or it may be a series of intervals. That depends, of
course, on the type of system or service. How we apply the definition of
reliability to an actual product or service depends heavily upon the nature of the
demand time.

If the demand time of an item's performance is a time interval or is
continuous we describe the performance as time dependent. A time dependent
performance may be for a specified mission or may be continuously operating.
Examples of a specified mission operation are the launching of a satellite or a
haircut. Examples of a continuously operating item are a refrigerator. A power-
generating station or the telephone company's directory assistance service. Time-
dependent items are expected to operate throughout their demand intervals
without interruption or, in case of continuously operating items, all the time.
Reliability is often misunderstood. A single grenade, for example, that explodes
when it should might be called to have 100% reliable. This is inaccurate since a
reliability of 100% implies that each grenade of this type will explode when it
should. The true reliability of these grenades might be 99.99% and just happened
to toss one that worked.

Also there are differences between reliability and quality. The primary difference

between these two terms is that reliability incorporates the passage of time,



whereas quality does not, since it is a static descriptor for an item. Two
transistors of equal quality sit side by side on a shelf. One of these transistors
will be used in a television set, the other in a common launch environment. Both
transistors are of identical quality, but the first one has a higher reliability since
it will operate in a less stressful environment.

High reliability implies high quality, although the converse is not necessarily
true. Consider two automobile tires, each of high quality. One has produced in
1957, the other in 1995. Although each was produced with the most stringent
quality control procedures available, their reliabilities will be different due to
technology changes introduced

between 1957 and 1995, such as steel-belted redials.

The 60.000-mile reliability of the tire produced in 1995 will be higher than the
reliability of the 1957 tire. Technology advances in the 38 years between the
manufacture of the two tires may come in the form of improved design (for
example, tread or steel belts), components (for example, rubber), or processes
(for example, manufacturing advances). Some quality improvements (for
example, improved tread design) improve the reliability of the tire, while others

will not.

2.3 Reliability Measures

This section introduces five reliability measures that define the distribution
of a continuous nonnegative random variable t, the lifetime of an item. The five
reliability measures are not the only ways to define the distribution of T. Other
methods include the moment generating function E[e'], the characteristic
function E[e""] and the Mellin transformation e[T*]. The five reliability measures
used here have been chosen because of their intuitive appeal and their usefulness

in problem solving.

2.3.1 The Reliability Function

The first reliability measure is the reliability function (or survivor

function) f(t). The reliability function is a generalization of reliability. Whereas

reliability is defined as the probability that an item is functioning at one



particular time, the reliability function is the probability that an item is

functioning at any time t:

F (t) = P(T21), £20.

It is assumed that F(t) 1 for all t<0. All reliability functions must satisfy three

conditions :

F (1) =1 for all t<0

IimrF®m=o0

F (t) is nonincreasing.

Since reliability function is a probability function the following hold:

1.

2
Bi.
4. If F(t) is the unreliability at the time t (i.e., the probability of a failure

0< F(t) <1
F (t) =1 implies certainty of success.

F (t) =0 implies certainty of failure.

period to the time t), because success and failure are mutually exclusive and
exhaustive events at any time t, F (t) + F (t) =1 for all values of t.

If A and B operate independently  F 4 ()= Fa (£)x Fs (), otherwise,

fAB(t)l‘ —F—A/B(t)XfB(f) = .F_AB(t)= FB/A(I)X FA(’)

There are two interpretations of the reliability function. First, f(t) is the

probability that an individual item is functioning at time t. This important in

determine the lifetime distribution of a system from the distribution of the

lifetimes of its individual components. Second, if there is a large population of

items with identically distributed lifetimes, f(t) is the expected fraction of the

population that is functioning at time t.

The reliability function is useful for comparing the reliability patterns of several

populations of items. The graph in figure 2.1 is a plot of F,(t) and F» (t) where

F,(t) corresponds to population 1 and F» (t) corresponds to population 2. Since



77_1 (t) >F, (t) for all t values, it can be concluded that the items in population 1 are

superior to those in population 2 with regard to reliability.

The failure density function is defined by f(t) = -F "(t) where the derivative

exists and has the probabilistic interpretation

f(t)A(t) = P(t <T < t+ A(t)) for small A(t) values.

F (1)

Figure 2.1 Two Reliability Functions

All failure density functions for lifetimes must satisfy two conditions

0

= Jrr=

0

»  f{t)>0forallt>0.

It is assumed that f(t) = O for all t < 0. The failure density function shown in figure 2.2

illustrates the relationship between comulative distribution function F(t) and the
reliability function F (t). The area to the left of time t; is F(t) and the area to the right of

tois F(t,).



f(1)

to t

Figure 2.2 Relationship between reliability and comulative distribution function

2.3.2 The Hazard Rate Function

The hazard rate function hy(t), is perhaps the most popular of the five

reliability measures for lifetime modeling due to its intuitive interpretation as
the amount of risk associated with an item at time t. A second reason for its
popularity is it usefulness in comparing the way risk change over time for
several populations of items by plotting their hazard rate functions on a single
axis. A third reason is that the hazard rate function is a special case of the
intensity function for a non homogeneous Poisson process. A hazard rate
function models the occurrence of one event, a failure, whereas the intensity
function models the occurrence of a sequence of events over time.

The hazard rate function can be derived using conditional probability. First,

consider the probability of failure between t and t + A(t):
t+ A1)

PE<T<t+A(t))= If(f)df = F(t)- F(t+AQ)

Conditioning on the event that the item is working at time t yields

P(thgr+A(t))=13(t)—F(t+At)
P(T21) F(t)

PU<T<t+A{t) /T>t)=



If this conditional probability is averaged over the interval [t, t+At] by dividing

by At, an average rate of failure is obtained

F(t) - F(t + A)

F()A®)
As A(t) = 0 this becomes the instantaneous failure rate, which is the hazard rate
function
hr(t) = Tim F(t)_—F(t+At) _ F_(t) _ _.)_‘(t_) (>0
a0 fDA®) F(r) F(r)

Thus, the hazard rate function is the ratio of the probability density function
to the reliability function. Using the previous derivation, a probabilistic
interpretation of the hazard rate function is
ht(t) At) =Pt <T<t+ A(t) / T>t) for small A(t) values,
which is a conditional version of the interpretation for the failure density
function.

All hazard rate functions must satisfy two conditions:

o [h @t = e

- R()20 foralltz0.

The shape of the hazard rate function is of great interest because it gives
information about how a system ages. Gaver and Acar (1979) and Leemis (1995)
are dealing with the different hazard rate function shapes.

It is plausible to think that the time series of failures in a system may involve

these stages.

1. Early failure. There may be a relatively large number of failures soon after a
system is introduced because of design defects, production errors, or errors
stemming from maintenance personnel inexperience. This situation is
characterized by a hazard rate function that is initially large, but that decreases

with time. "Infant mortality" is an evidence.

9



2. Random failures. Following the early failure period there may be a period
during which failures occur at an essentially constant rate for a rather prolonged
time. During this period the hazard rate function is nearly constant, so the times
between failures are close to being exponentially distributed. The effect of age or
wearout is not yet apparent.
3. Wearout failures. Eventually following the period during which a constant
hazard is evident there is likely to be a period of ever-increasing failure rate
caused by wearout of system components.

The term failure may refer to an event that is analogous to human death, after
which the entire system is replaced. On the other hand, repair or component
replacement may occur after failure, the system is only repaired, not entirely

replaced.

h(t
() DER -

BT

Figure 2.3 Common hazard rate function shapes.

The slope of the hazard rate function indicates how an item ages. The intuitive
interpretation as the amount of risk an item is subjected to at time t indicates that
when the hazard rate function is large the item is under greater risk, and when
the hazard function plotted in figure 2.3 correspond to an increasing hazard rate
function (labeled IFR for increasing failure rate), a decreasing hazard rate
function (labeled DFR for decreasing failure rate) and a bathtub-shaped hazard
rate function (labeled BT for bathtub-shaped failure rate).

10



The increasing hazard function is probably the most likely situation of the
three. In this case. items are more likely to fail as time passes. In other words,
items wear out or degrade with time. This is almost certainly the case with
mechanical items that undergo wear or fatigue. It can also be the case in certain
biomedical experiments. If T is the time until a tumor appears after the injection
of a substance into a laboratory animal and the substance makes the tumor more
likely to appear as time passes, the hazard rate function
associated with T is increasing.

The second situation, the decreasing hazard rate function is less common.
In this case, the item is less likely to fail as time passes. Items with this type of
hazard rate function improve with time. Some metals work-harden through use
and thus have increased strength as time passes. Another situation for which a
decreasing hazard rate function might be appropriate is in working the bugs out
of computer programs. Bugs are more likely to appear initially, but the likelihood
of them appearing decreases as time passes.

The third situation, a bathtub-shaped hazard rate function, occurs when the

hazard rate function decreases initially and then increases as items age.
Items improve initially and then degrade as time passes. One situation where the
bathtub-shaped hazard rate function arises is in the lifetimes of manufactured
items. Often, manufacturing design, or component defects cause early failures.
The period in which these failures occur is sometime called the burn-in period.
The time value during which early failures have been eliminated may be valuable
to a producer who is determining an appropriate warranty period. Once items
pass through this early part of their lifetime, they have a fairly constant hazard
function, and failures are equally likely to occur at any point in time. Finally, as
items continue to age, the hazard rate function increases without limit, resulting
in wear-out failures.

The bathtub-shaped hazard rate function also arises in the lifetimes of people.
In this case, the early failures are known as infant mortality deaths and occur
during the first few years of life. After this time, the hazard rate function has a
very gentle increase through the tee-age years and into adulthood. Finally, old
age deaths occur during the later years of life. The magnitude of the hazard rate
function depends on factors such as the standard of living and medical services

available. Also, occupation (for example, flower arranger versus stunt man) and
11



life style (for example. eating habits. sleeping habits. smoking habits. stress
level) affect a lifetime distribution. The hazard rate function is used in actuarial
science, the appropriate premium for a life insurance policy is based on
probabilities associated with the lifetime distribution. The lowest life insurance
premiums are usually for children who have survived the infant mortality pert of
their lifetimes.

Care must be taken to differentiate between the hazard rate function for a
population and the hazard fate function for an individual item under
consideration. To use human lifetimes as an illustration, consider the following
question: do two healthy 7- year - old boys living in the same town necessarily
have the same hazard rate function? The answer is no. The reason is that all
people are born with genetic predispositions that will influence their risk as they
age. So, although a hazard rate function could be drown for all 7 - year - old
boys living in that particular town, it could be an aggregate hazard rate function
representing the population, and individual boys may be at increased or
decreased risk. This is why life insurance companies typically require a medical
exam to determine weather an individual is at higher risk than the rest of the
population. The common assumption in most probabilistic models and statistical
analyses is that of independent and identically distributed random variables,
which in this case are lifetimes. This assumption is not always valid in reliability
since items are typically manufactured in diverse conditions (for example,

humidity, temperature and raw materials).

At this point, it will be appropriate to mention the comulative hazard rate

function Hr(t), which can defined by

Hr(t) = J-hT (TVT ,t>0
0

The comulative hazard rate function is also known as the integrated hazard rate
function. All comulative hazard rate functions must satisfy three conditions:

» Hi(0)=0

s lier(f) =0

=

* Hy(t) is nondecreasing



The cumulative hazard rate function is valuable for generation in Monte Carlo
simulation, implementing certain procedures in statistical inference, and defining

certain distribution classes.

2.3.3 The Mean Residual Life Function

The mean residual life function p’(t) is defined by,
p'®=E[T-t/T>t] ,t>0.
The mean residual life function is the expected remaining life, T - t given that the
item has survived to time t. the unconditional mean of the distribution, E(T) is a
special case given by p'(0). To determine a formula for this expectation, the

conditional probability density function is needed

/@)
F@)

T2t

frirs() =

The conditional probability density function is actually a family of probability

density functions (one of each value of t ) each of which has an associated mean.

E[T/T>t]= ‘]‘T fre(rydz= ]-Z'Md‘t .

A ! F)

Since the mean residual life function is the expected remaining life, t must

subtracted yielding

WO =E[T-t/T=t]= [(r- i(_d wjl(_d
T

All mean residual life functions associated with distributions having a finite

mean must satisfy three conditions

= u'()=0

= pw TR 2-1

. "j- dr .
o,UT(t)



The distribution function F(t),its reliability function f(t)or its corresponding

random variable T,is said to have the following properties (Abouammoh, 1988):
1.Increasing (decreasing) failure rate IFR (DFR) : if hy(t) is increasing

(decreasing) int> 0 .

2.Increasing (decreasing) failure rate average IFRA (DFRA) : if t”! Ih,.(x)ix is
0

increasing (decreasing) int > 0.

3.New better (worse) than used NBU (NWU): if f(t+s)s(2)f(t)f(s), for all

s, t>0.

4.New better (worse) than used in expectation NBUE (NWUE): if

uj’f(x)ix < (Z),uf(t) for t >0,

where u = ﬁ(x)dx<oo.
0

S.Increasing (decreasing) mean residual life DMRL (IMRL): if

ﬁt) F(x)dx is increasing (decreasing) in t > 0.

6.Harmonic new better (worse) than used in expectation HNBUE (HNWUE)

if: Tf(x)dx <(>)u exp(

—LJ fort> 0.
H

7.New better (worse) than average used in failure rate NBAFR (NWAFR) if:

L= lirr()ls'1 log F(s) exists and t'log F(t)< L, t> 0.

8.New better (worse) than used in failure rate NBUFR (NWUFR) if:

L exists and dilogf(t)s L ,t>0.
4



We summarize the implications between these classes in figure 2.3

DRML

N

IFR = IFRA = NBU = NBUE = HNBUE

J

NBUFR = NBAFR
Figure 2.3 Implications between classes 1-8

Now, we introduce the following classes of life distributions that express

some criteria of aging in terms of the mean residual life.

Let T de a nonnegative random variable with reliability function F(t) then

1. F is said to have DMRL if

ult)= [F(t)]—l Tﬁ(x)dx is decreasing in t > 0.

2. F is said to have specific interval decreasing mean residual life average

(SIDMRLA) if

S+t

D(t,s)= t! I/.t(x)dx is decreasing in t for all s, t > 0.

3. F is said to have decreasing mean remaining life average (DMRLA) if

t! jy(y)dy is decreasing in t 2 0,
0

t - 3 oo
i.e.,D(t,0)=t" J-[F(Y)] ] F(x}ixdy is decreasing int > 0.
0 y
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4. F is said to have new better than average mean residual life (NBUMRL)

property if 4(0)=¢" Ij,u(y}?'y
ie. 1 ’J.[F(y)]— aj’f(x)chdy <u

where u= ﬁ(x)dx
0

5. F issaid to belong to the class of new better than used mean remaining life

(NBUMRL) if u(f)< u, that is

[FOI [Feeke <

6. F is said to belong to the class of decreasing harmonic mean residual life

average (DHMRLA) if

!
-1 -1 A0 . .
t Iﬂ (x)x is increasing in t > 0.
0

o It
i.e.,l:,u" ﬁ(x)] dt is decreasing int> 0.

7. F is said to have new better than used harmonic mean residual life

property (NBUHMRL) if

ie., u” ﬁ(x}ixﬁexp(—L), t>0.
p H

Abouammoh (1988) has proved the following theorems

1. SIDMRLA and DMRL are equivalent
2. DMRL implies DMRLA
3. DMRLA implies NBAMRL

16



DMRL implies NBUMRL
NBUMRL implies NBAMRL
DMRL implies DHMRLA
DHMRLA implies NBUHMRL
NBUMRL implies NBUHRML

© N o » o

These implications are summarized in figure 2.4

DMRLA = NBAMRL

== ==

DMRL = NBUMRL

g S S

SIDMRLA DHMRLA= NBUHMRL

Figure 2.5 Implications between properties given in theorems 1-8.

2.3.4 Other Reliability Measures

For a given distribution function Fx(t) = P(X< t) the residual life distribution
at time t F*(t) can be defined as
FXt)=P(x<X<x+t/X>x) ,t20.
The residual life distribution is defined for those x that P (X > x) >0.
A direct consequence of this definition is the following expression

of the residual life function at time t,

Px<X<x+1) _Fy(x+0)-Fy(x)

FX(1) = i
P(X >x) Fx(®)

Thus, the residual life function can be written equivalently as

17



i Fx (x+1)

— t>0.
Fy(@®

F*(t) = 1

The ratio

 P(X>x+1) Fy(x+1) s

r (t) P(X > x) F\ (l)

express the possibility that a system survive during t given that it had survived
until the time instant x , and it is known as the failure rate function.

Two meanings are introduced here the multiplicative failure rate function which
is defined by the ratio

 P(X >x-1)

() - P(X > x) yt2l

and the additive failure rate function which is defined by the ratio

_ PX>x+1)
P(X >x)

(1) t>0

>

An other reliability measure is the vitality function ux(t) that measures the
vitality of a time period in terms of the increase in average lifespan, which
results from surviving that time period.

It is defined as

ux(t) =E [X / X>1] .
Obviously,

ux(t) =p™(t) + t.
Finally,

o’x(t) = Var [X -t/x> 1]

is the residual life variance function.

2.4 Reliability Measures of Discrete Distributions

Many of the concepts that apply to continuous distributions also apply to
discrete distributions. Discrete failure time distributions are applied less
frequently than continuous distributions since there are fewer situations for

which failures can only occur at discrete points in time.

18



A situation for which time might be modeled discretely is software reliability.
The modeler must determine whether time should be modeled continuously (for
example, an operating system) or discretely (for example. a monthly payroll
program). If time is measured discretely and the time values correspond to the
run number. the run number when failure occurs is the failure time. It can be
argued that there is no such thing as a "bug" in a program, and programs just do
what they are instructed to do. This philosophy indicates that there is not a
problem with the program when it fails but rather there is a problem in the data
that caused the failure to occur. In either case, the program or the data should be
modified so that the program will not fail. The failure rate for a new computer
program is usually decreasing over time, since bugs generally become less likely
with subsequent runs.

It is not always clear whether a discrete or continuous model should be used.
The modeler should consider whether failure can occur at any moment in time
(for example, fuse failure, machine breakdown or fatigue failure for systems
operating continuously in time) or only upon demand (for example, a motor that
doesn’t start, a switch that fails to open, or automobile brakes that fail).

All reliability measures apply to discrete distributions as well as continuous
distributions. The probability density function will be replaced by the
probability mass function and the names of the other measures remain the same.
Assume that the nonnegative discrete random variable T may assume the values
(i tolf ..
where 0 <t; <t, < .... The probability mass function is
f)=PT=y) j=1,2,..
so the reliability function is the left-continuous ( that is, for all t and € > 0
lgi_rg(fr (t-¢&)- Fr(t)) =0) nonincreasing step function
Firlt)=RT=t)= Z/(tj) £20

IE

The probability mass function has nonzero mass at the time values t;,

t2,...while the reliability function is defined for all nonnegative t value. The

hazard rate function is also defined at the discrete points in time tj, tz,... and the

magnitude of the hazard rate function is still interpreted as the risk at time t;.



Also. since time is discrete. the hazard rate function is no longer derived as a
limit.

PT=1,) fli,)

P(T=1,) Fqlt))

h(t) = P(T =1,/ T > ;)

A dilemma is encountered when attempting to define the comulative hazard
rate function when the time is discrete. Two possible but different choices for the

definition are
H(t) = -log Fr(r) t=0.
- )
H(t) = J t>0.
Jilget
the first definition parallels the relationship establishes in the continuous case
and the second definition accumulates the hazard rate function as it evolves over

time. Both definitions are very close when the probability mass function values

are small. Thus, the comulative hazard rate function
H(t) = -log Fr(t) is a left-continuous nondecreasing step function. The mean

residual life function is defined as before
pf)=E[T-t/T=t] ,t=0
which is calculated by

KRy =" { Zf,f(t,)} .

FT(t) Jile, 2t

Since the mean residual life function is defined for all t > 0 and everything in the
expression except t is constant between mass function values, the mean residual

life function decreases with a slop of -1 at all values for which there is no mass.

2.5 Relationships Among Reliability Measures

All the above reliability measures are equivalent in the sense that each
completely satisfies a lifetime distribution. Any one reliability measure of a
lifetime distribution implies the other. Algebra and calculus can be used to find
on one reliability measure of a lifetime distribution give that another is known.
The matrixes in table 2.1 and 2.2 shows the relationships among some of the
most important reliability measures of continuous and discrete lifetime

distributions respectively.
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fx(t) Fx() hy () 1 (1)
dF x ; 1+ u™
£(t) S0 QUEIRNCTY expl [ F4 Ve |
o T ' 1+ 4% (x) 1+ pX(x)
Fy) fo(x)dx exp| - thx (x)dx | e pl -J i dx ]
hx(t) — fX(t) _dln‘f;tX(f) 1';{'\1(;;)
[ Gyt

[xf () i Jexp{ : Ihx(y)dy}dx
) : ——1 il [Fx(xyax L e

y Fx(t); '

[ £y explr— jh/\,(x)dx}

Table 2.1 Relationships among reliability measures of continuous lifetime distributions
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fx(t) Falh) hy (1) 0]
dF y : : 1 X (k
fx(t) A e (nexpl - (k) ] EXP[ Y e B ]
dt k=0 i (k)
i - N ES7a(CIN I L7 ()
A 0 _dInFx(1) 1+ 12X (x)
A » X
WAL & e
WA s Zexp[— thm}
#.\’ (t) k:l —t . FX(k) k=t II=0 ]
kax (k) Frt)im exp[— th(k)]
=/ k=0

Table 2.2 Relationships among reliability measures of discrete lifetime distributions



2.6 Reliability Measures of Weighted Distributions

In this section the definition of the weighted distributions is given (Patil and
Rao (1977)) and some of their reliability measures are studied.
Consider a natural mechanism generating a random variable X with probability
density function f(x;0) where ®eQ, the parameter space. For drawing a random
sample of observations on X, we have to use a method of selection, which gives
the same chance of including in the sample any observation produced by the
original mechanism. But in practice it may so happen that the relative chances of
inclusion of two observations x and y are w(x):w(y) where w(.) is nonnegative
valued function. Then the recorded X to be
Denoted by X,, has the probability density function

w(x) [y (x;60)

P G2 0 = = 0]

2.1)

where
E[w(X)] = _[w(x)f(x;@)dx or Zw(x)f(x;@) depending on whether X is

continuous or discrete. Further, if 0 < w(x) < 1, E[w(X)] is the probability of
including an observed

value in the sample.

The distribution defined by (2.1) is called a weighted distribution with weight
function

w (x), which can be arbitrary.

When an investigator collects a sample of observations produced by nature,
according to a certain model, the original distribution may not thus be
reproduced. The main interest in any investigation is, however, to determine the
characteristics of the original distribution. Further, it also becomes important to
assess the nature and amount of distortion caused in the determination of these
characteristics in case the change in the underlying distribution due to sampling
bias is ignored. A general situations involving"non-response” responsible for
generating weighted distributions are: Truncation, missing data and damaged
observations.

The assumptions of the implications of the relationship between the original
distribution of X and the weighted distribution obtained using some weight
function w(x) can generate interesting and useful characterization results.
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Table 2.3 gives various weight functions, which are commonly used in statistical
work. Note that the weight functions in the table are all monotone functions,

either increasing or decreasing.

X220 W(x)
General X
Discrete x® a>0
Continuous x*a>0
Discrete 1-(1-B) ,0<B<1
Discrete XE]
Discrete x(x-1)...(x-r+1)
Discrete " ,0<op<1
Continuous e

Table 2.3 Some weighted functions

The following theorems by Jain et al. (1989) are indicating the relationships
between the reliability measures of the weighted distribution and the reliability

measures of the original distribution.

Theorem 1. Let X be a nonnegative continuous random variable, denoting the
life time of a component with probability density function fy(x) and distribution
Sfunction Fx(x). let the weight function w(x) be a positive function with 0 #
E[w(x)] < oo and E(X?) <co. The corresponding weighted random variable X"
with probability density function and distribution function denoted by " x(x) and
Fx"(x) respectively. Let also A(x) = E[w(x) / X>x].

Then the reliability function F e (x) can be expressed as follows

F oy (x)= F x (x)A(x)

E[w(x)]
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Theorem 2. Let X and X be defined as in Theorem 1. Let also hy(t) be the
hazard rate function of X. Then the hazard rate function hy" (1) of X" can be
expressed as follows

w(x)h, (x)

1) where A(x) = E[w(x) /X > x]

hy"(1) =

Theorem 3. Let X and X* be defined as in Theorem 1. Let also y* (1) be the mean

residual life function of X. Then the mean residual life function

1" (x) of X can be expressed as follows

-y QT AO
A= 0 y o I# (u)}

Moreover in the following theorem taken by the paper of Jain et al.(1989) the
hazard rate function of the parent distribution is expressed in terms of the

corresponding measure of the weighted distribution.

Theorem 4. Let X and X" be defined as in Theorem 1. Let also hx(t) be the
hazard rate function of X. Then the hazard rate function hx(t) of X can be

expressed as follows

h,.(x)
1. hy(x) = - () ,W(X)
I X epr:— jhxw (u)du:l-dt

;o w()
* du
exp| — |———
{ oI/lX (u)}

X..v 1+,u © du d
g (X)I ™ (t I:oﬂ (u)}t

2. A(x) =

25



Dimaki et al.,(1998) have examined the discrete case. As before, the following
theorems indicate the relationship between the reliability measures of the

weighted distribution and the reliability measures of the parent distribution.

Theorem 5. Let X be a nonnegative integer valued random variable with
probability function p,. let also w(t) be a nonnegative strctly monotonic weight
function and assume that E[w(x)] exists. Denote by X" the new random variable

with probability density function p,". Then, the reliability

functions Fy(tyand F " (1)of X and X" respectively, satisfy the condition

Fx (6)=Fx(r) E[wg&jf d _

Theorem 6. Let X and X" be defined as in Theorem 5. Then the hazard rate
Sfunctions hy(t) and hy" (1) of X and X" respectively satisfy the condition

hy (1)
A0 = )] X > 1) +[1_EMX)/ at >’]}h ®
M}(t) u)(t) X

Theorem 7. Let X and X" be defined as in Theorem 5. Then the mean residual
life functions p*(1) and,UX (1) of X and X" respectively satisfy the condition
1 T,

X" T Fx /
paier) Fx(t)E[w(x)/X>t]§ oI ]
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Chapter 3

Specific Distributions

3.1 Introduction

This chapter includes some general information about some specific
distributions (continuous and discrete) which are the Geometric Distribution,
the Yule Distribution, the Exponential Distribution, the Pareto Distribution
and the Weibull Distribution. Also the corresponding sized-based distribution

of them has been found.

3.2 Discrete Distributions

Suppose that X is a random vector for a random experiment, taking values in a
subset of R”. If S is countable, X is said to have a discrete distribution. The
(discete) density function of X is the function f from S to R defined by
F(x) =P(X =x) forx € S.

f satisfies the following properties:

a. f(x)>0forx eS
b. > f(x)=1

xe$

c. Y f(x)=P(XeA)forAcS

xeA
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Property (c) is particularly important since it shows that the probability
distribution of a discrete random variable is completely determined by its density
function. Conversely, any function that satisfies properties (a) and (b) is a
density, and then property (c) can be used to construct a discrete probability

distribution on S.

We can extend f, if we want, to all of R" by defining f(x) = 0 for x ¢ S.
Sometimes this extension simplifies formulas and notation.

A vector x € S that maximizes the density f is called a mode of the distribution.
When there is only one mode, it is sometimes used as a measure of the center of
the distribution.

A discrete probability distribution is equivalent to a discrete mass distribution,
with total mass 1. In this analogy, S is the (countable) set of point masses, and f
(x) is the mass of the point x in S. Property (c) simply means that the mass of a
set a can be found by adding the masses of the points in A.

For probabilistic interpretation, suppose that we replicate the underlying
experiment repeatedly. For each x in S, let f;(x) denote the relative frequency of
x in the first n runs (the number of times that x occurred, divided by n). Note
that for each x , f;(x) is a random variable for the compound experiment, but by
the low of large numbers, f,(x) should converge to f (x) as n increases. The
function f, is called the empirical density function, these functions are displayed
in most of the simulation applets that deal with discrete variables.

The density function of a random vector X is based, of course, on the underlying
probability measure P for the experiment. This measure could be a conditional
probability measure, conditioned on a given event B in the experiment with P(B)
> 0. The usual notation is f(x / B) = P(X = x/ B) for x € S.

Suppose that X is a discrete random variable taking values in a subset S, and that
B be an event in the experiment (that is, a subset of the underlying sample
space).

Then P(B) = ZP(B/X =x)P(X =x) is the law of total probability.

xe§
This result is useful, naturally, when the distribution of X and the conditional

probability of B given the values of X are known.
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P(B/ X = x)P(X = x)
D P(B/ X =y)P(X =y)

ves

And P(X =x/B) = is the Bayes' Theorem .

Bayes' theorem is a formula for the conditional density of X given B, as with the
law of total probability, it is useful, when the quantities on the right are known.
The (unconditional) distribution of X is referred to as the prior distribution and

the conditional density as the posterior density.

3.3 Continuous Distributions

Suppose that X is a random vector for a random experiment, taking values in
a subset S of R". Then X is said to have a continuous distribution if
P(X =x) =0 for each x in S.
Moreover, a real-valued function f defined on S is said to be a (continuous)

probability function for X if f satisfies the following properties

a. f(x)20 forx eS.
b. jf(x)dx = 1.
N

c. jf(x)dx =P(X e A) forAcS.

Property (c) is particularly important since it implies that the probability
distribution of X is completely determined by the density function. Conversely,
any function that satisfies properties (a) and (b) is a probability density function,
and then property (c) can be used to define a continuous distribution on S.

A vector x € S that maximizes the density f is called a mode of the distribution.
If there is only one mode, it is sometimes used as a measure of the center of the
distribution.

Unlike the discrete case, the density function of a continuous distribution is not
unique. Note that the values of f on a finite (or even countable) set of points
could be changed to other nonnegative values, and properties (a), (b) and (c)

would still hold. The key fact is that only integrals of f are important.

29



The fact that X takes any particular value with probability 0 might seem
paradoxical at first, but conceptually it is the same as the fact that an interval of r

can have positive length even though it is composed of points, each of which has

0 length. Similarly, an region of R’ can have positive area even though it is

composed of points (or lines) each of which has area 0.
Suppose that X is a continuous random vector taking values in a subset S of R".

Suppose that the underlying experiment has sample space T, a subset of R*. The
density function of X, of course, is based on the underlying probability measure
P for the experiment. This measure could be a conditional probability measure,
conditioned on a given event B. The usual notation is f (x / B), x € S, this

function is a continuous density function. That is, satisfies properties (a) and (b)

while property (c) becomes If(x/B)dx =P(X ea/B) for AcS.
A

Unlike the discrete case, the existence of a density function for a continuous
distribution is an assumption that we are making. It is possible to have a
continuous distribution without a density.

First, suppose that X is a random vector taking values in a subset S of R” whose
n-dimensional volume is 0. It is possible for X to have a continuous distribution,
P(X = x) = 0 for each x in S.

But X could not have an n-dimensional density function in the sense of the
definition above. In particular, property (c) could not hold since the integral on
the left could be 0 for any subset A of S. However, we may be able to find a
random vector Y taking values in a subset t of R*(where k<n) such that T does
have a density and X = r (Y) for some function r from T into S. In this case, any
probability problem involving X can be changed into a problem involving Y.

It is also possible to have a continuous random vector X that takes values in a
subset S of R" with positive n-dimensional volume, yet X still does not have a
density function. Such distributions are said to be singular, and are rare in

applied probability.
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3.4 Specific Discrete Distributions

A number of discrete distributions is examined in the sequel. We also
examine the effect of weighting on these distributions. Many properties and

characterizations are mentioned.

3.4.1 The Geometric Distribution

Consider a sequence of independent trials with probability of success p at
each trial. Then the number of failures encountered in order to obtain the first
success has the geometric distribution. A random variable X that follows the
geometric distribution is often referred as discrete waiting-time random variable.
It represents how long (in the terms of the number of failures) one has to wait for

a SuUccCess.

Definition 1. 4 random variable X has a geometric distribution with parameter p
if its probability function is given by,

fx(t)=pq',t-—0, 1,2,... and0<p<l,g=1-p
Symbolically X ~ G(p)

The Geometric distribution has an important property the lack of augmentative
memory. When the lifetime of a component follows the Geometric distribution
with parameter p>0 it can be proved that the conditional probability of the time
until failure X to exceed t+y given that it has already exceeded t equals to the

probability that X exceed y.

Theorem 8. Let X be a discrete random variable taking values in {0, 1, ..} the
equation P(X>t+y / X>t) = P(X2y), ,y=0, I,... (3.1)

defines univocally the distribution of X as Geometric with parameter p>0
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Proof.
Necessity: Let X ~ G(p). Then,
P(X>t+y / X>1)

- P(X>t+y,X>f)_P(X>t+y)_q'+"‘_ =
P(X >1) P(X >1) q' 1

—Fi(y-D=PX>y-1)=P(X2y)

Sufficiency: Let X be a random variable with reliability function Fy(r) and

the equation (3.1) holds for t=k-1 and t+y=k, meaning that t and t+y are

successive. The equation (3.1) can be written equivalently

P(X>kX>k-1)

- PX 2=
P(X >k-1)
le_p()(—o)
P(X >k-1)

(3.2)

If we denote q, = P(X>1) and p, = P(X=1), i=0,1,...,n then the equation (3.2) can

be written as

‘P
qi

:1 po

Consequently,
q = (1-po)*”"
That is, qx = P (X>t) = Fx(t)= qo" .

Therefore X~G (po)

If X follows a geometric distribution with parameter p>0 then the formulas of the

most commonly used reliability measures are,

the probability distribution function of X :
Fx(t)=P(Xzt)=1-q'",

the reliability function :

Fyx (1)~ qm,
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the hazard rate function :
hx(t)=p.

the mean residual life function :
1
ni()=—.
pP

the additive failure rate function :
r(t)=q',
the vitality function :
1
ux(t)= — +t.
p

The weighted form of the geometric distribution is
* t
fx (r)(t) :(t ]q"rp"+l which is a negative binomial distribution.
-r

In the special case of w(x)=x the weighted form is
fx'(t) = tp’q"".
Moreover, the probability generating function of a geometric random variable is

given by,

Gx(t)= —£—
1—gt

So the probability generating function of the size-biased version is given by,

2
Gxe(t) = t[ﬁ] ,
The probability generating function of the size-biased version of factorial order r
is

rel

Gxegry(t) = f[ﬁ) .
The reliability measures of X* the size-biased version of X when X follows a
Geometric distribution with parameter p are
the probability distribution function of X* :
Fx+()=P(X*2t)=1-q"",

the reliability function :

Fr(®) - q(pt+1),

(93]
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the hazard rate function :

ho(t) - 21
(p+q

the mean residual life function :
p+g+l
()=
p(pt+1)’
the vitality function :

u (t) M +t.
p(pt+1)

3.4.2 The Yule Distribution

This section contains some general information about the Yule
distribution as well as the Univariate Generalized Waring distribution and the
Waring distribution since they are an extension of the Yule distribution. Johnson

et al (1993) and Dimaki et al (1998) have studied thoroughly these distributions.

Definition 2. 4 non-negative integer valued random variable X is said to have
the Univariate Generalized Waring distribution (UGWD) with parameters o, k

and p if its probability function is given by.

Py Ak sy 1

px = P(X=x) = =0,1,2,..., >0, k>0, p>0
(a+p)(k) (a+k+p)(x)
where a(r) = M, r=0,1,2,...
I'(a)

Definition 3. A non-negative integer valued random variable X is said to have
the Waring distribution with parameters a and p if its probability function is

given by,

s Pa
px=P(X=x)= ———,x=0,1,2,..., a>0, p>0
(@+p) i

Clearly, X~Waring(a, p) < X~UGWD(a, 1;p)

Definition 4. 4 non-negative integer valued random variable X is said to have

the Yule distribution with parameter p if its probability function is given by,
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px!
px=PX=x)= ———.x =0, 1,2,..., p>0

(p+l)(.r+]) .
Obviously, X~Yule(p) < X~Waring(1, p)

If X follows a Yule distribution with parameter p>0 then,
the reliability function is

Fr)- ey =n.1=0,1,2....
p

]
where P(X=t) - lak =0, 1,2,...
(p+D)(p+2)...(p+t+])

the hazard rate function is

hx()= —2— =0, 1, 2,...
p+t+l

the mean residual life function is

p+t+l

pX ()= ,1=0,1,2,...

and the vitality function is
(Rl

,t=0,1,2,...
p-1

ux(t)

Regarding the size-biased version X* of X when X follows a UGWD, a Waring

distribution or a Yule distribution the following holds

® [f X is distributed according to a variant of the generalized Waring
distribution UGWD(a, k;p) denoted like:
d ,x=0]12,.,r-1
fx(x) =y, _Pw Aok 1
@+ Pl (@rk+p), A

Jxsrr+l,..

where c; and dy are arbitrary constants in order to make fo (x)=1,
x=0
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. *r) x(r)f/\’ (x) .
then the random variable X* defined as f = T - x=rr+l,..., given that
l_ZIX |
E[X"] = p” <oo. follows a shifted r units to the right generalized Waring
distribution UGWD(a+r. k+r; p-1).

® |f X is a random variable taking values on {1, 2, 3,...} with E(X)<c and the
distribution of X is the zero truncated univariate generalized Waring (a, k; p)
distribution then the distribution of the random variable X* that also takes values

on {1, 2, 3,...} with E(X*)<co is the shifted Waring(a +1, k+1; p-1).

® ]f X is a random variable taking values on {1, 2, 3,...} with E(X)<c and the
distribution of X is the shifted Yule with parameter p+1then the distribution of
the random variable X* that also takes values on {1, 2, 3,...} with E(X*)<w is

the shifted Waring distribution with parameters(1, 2; p).

® [f X is a random variable taking values on {1, 2, 3,...} with E(X)<co and the
distribution of X is the Yule with parameter p then the distribution of the random
variable X* that also takes values on {1, 2, 3,...} with E(X*)<c is the univariate

generalized Waring distribution UGWD(2, 2; p-1).

® [f X is a random variable taking values on {1, 2, 3,...} with E(X)<c and the
distribution of X is the Yule with parameter p+1 then the distribution of the
random variable X* that also takes values on {1, 2, 3,...} with E(X*)<w is the
shifted

UGWD(1, 2; p-1).

The reliability measures of X* the size-biased version of X when X follows a
shifted Yule distribution with parameter p+1, p>0 are
the reliability function :

-ﬁ,\"(t)— 2+1-1

P(X*=1),t=1,2,...
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where P(X*=t) = pr! ]
(p+D(p+2)..(p+t+])

the hazard rate function :

h,\" () £

/+p+1-

the mean residual life function :

tp+p+1
=L

b

the vitality function :

(@) =Py
p—1

3.5 Specific Continuous Distributions

A number of continuous distributions are examined in the sequel. We also
examine the effect of weighting on these distributions. Many properties and

characterizations are mentioned.

3.5.1 The Exponential Distribution

Consider a device subject to shocks following a Poisson process with parameter
L. Then X, the time interval between successive occurrences of shocks has the
exponential distribution eith parametr A. In general, the time between two

successive events of a Poisson process follows the exponential disribution.

Definition 5. Ler X be a positive random variable. Then x follows the
Exponential distribution with parameter A>0 if its probability density function is
given by,

(M) = ke ™ x>0

where A>0.

Symbolicall. X~Exp(A).

The Exponential distribution has an important property the lack of

augmentative memory. When the lifetime of a component follows the
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Exponential distribution with parameter A>0 it can be proved that the conditional
probability of the time until failure X to exceed t+y given that it has already

exceeded t equals to the probability that X exceed y.

Theorem 9. Let X be a continuous random variable with values t>0 the equation
PX>t+y/ X>t) = P(X>y), t,y>0 (3.2)

defines univocally the distribution of X as Exponential with parameter \ >0

Proof.
Necessity: Let X ~ Exp(X). Then,

P(X>t+y / X>t)

P(X>t+y,X>1) PX>t+y) e
N saB@EsE) v e AB@GS 1 ~ o
=e™ = p(X>y)

Sufficiency: Let X be a random variable with reliability function fx(t) and the

equation (3.2) holds .The equation (3.2) can be written equivalently

PX>t+y,X>1)
RO Dl %
P(X >t+y)=P(X > y))P(X >1) (3.3)

But Fx(t)= P(X>t), so the equation (3.3) can be written as

Fx @+y) = Fx(y) Fx @)
The general solution of this functional equation is
Fx ()=e

Since lim Fx (f)=0=> ¢ = - A where A>0.

Thus, Fx(f)=e ™

Therefore , X~Exp (})

If X follows a Exponential distribution with parameter A>0 then the formulas of
the most commonly used reliability measures are,
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the probability distribution function of X :
Fx()=1-¢",

the reliability function :
Fx()=e™

the hazard rate function :
hx(t)=A,

the mean residual life function :
1
X
(===
po( i
the additive failure rate function :

()= ™

the vitality function :

Ux(t)= %'*‘t.

Exponential hazard

oo ND

Figure 3.1 The Exponential hazard function
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Exponcitaal suryivorn

Figure 3.2 The Exponential reliability function

The weighted form of the Exponential distribution is

x(a+l)—] /f{a+l ex p (_ ﬂx)
I[(a+))

fx %(t) =

which is a Gamma distribution with parameters A and a+1.So the Exponential
distribution is not form-invariant under size-biased sampling of order a.

In the special case of a =1 the size-biased version X, X* follows a Gamma

distribution with parameters A,2.

fx+(t) = A2xexp(-Ax).

Moreover, the mass generating function of an Exponential random variable is

given by,

So the mass generating function of X* is given by,
2. 2
Myxs(t) = | — .
x*(t) (l—t)
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The reliability measures of X* the size-biased version of X when X follows an
Exponential distribution with parameter A are

the probability distribution function of X* :

Fx«(t) =1- Atexp(- At)- exp(-At),

the reliability function :

Fy (f) = exp(-At)( At+l),

the hazard rate function :

At
B )= 2L
At +1
the mean residual life function :
X* At +2
()=,
A4 +1)

the vitality function :

u..(t) __Lﬂ__*_t-

v AL +1)

Because of its constant failure rate property, the exponential is an excellent
model for the long flat "intrinsic failure” potion of the Bathtub Curve since most
components and systems spend most of their lifetimes in this portion of the
Bathtub Curve, this justifies frequent use of the exponential (when early failures
or wear out is not a concern).

Just as it is often useful to approximate a curve by piecewise straight line
segments, we can approximate any failure rate curve by week by week or month
by month constant rates that are the average of the actual changing rate during
the respective time duration's. That way we can approximate any model by
piecewise exponential distribution segments patched together.

Some natural phenomenon has a constant failure rate (or occurrence rate)
property; for example, the arrival rate of cosmic ray alpha particles or geiger
counter tics. The exponential model works well for inter arrival times (while the
Poisson distribution describes the total number of events in a given period).

When these events trigger failures, the exponential life distribution model will

naturally apply.
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3.5.2 The Pareto Distribution

Let X(t) be the individual income at time t. assume that:

1. The population is closed (no births or deaths)

2. There is a minimum income level xg

3. The incrementary random variable Y = [dlogX(t)] is independent of all past
increments

4. The random variable Y, given X(t) = o, has the Normal distribution with
parameters -1, 10 and o’

Then the limiting distribution of X(t) is Pareto with parameter A = x¢ and

2n
0= =L,
02

Definition 6. Let a random variable X. then X follows the Pareto distribution
with parameters 0 and A if its probability density function is given by,
fx(x) = 2857,
where >0, >0, x=>0.
Symbolically, X~Pareto(6, 1)

The Pareto distribution has an important property, the lack of multiplicative
memory. When the lifetime of a component follows the Pareto distribution with
parameter A>0 and 6=1 it can be proved that the conditional probability of the
time until failure X to exceed ty given that it has already exceeded t equals to the

probability that X exceed y.

Theorem 9. Let X be a continuous random variable with values t>1 the equation
P(X>ty / X>t) = P(X>y), t21,y>0 (3.4)
defines univocally the distribution of X as Pareto with parametes 1,1, A >0
Proof.
Necessity: Let X ~ Pareto(/,4). Then,

P(X>ty / X>t)

PX>ty,X>t) P(X>t) )~
T T P> P(X>D) 1!

=y =P(X>y)
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Sufficiency: Let X be a random variable with reliability function Fy (#) and the

equation (3.4) holds .The equation (3.4) can be written equivalently

PX >t),X >1)
P(X >1)

=P(X>y)=>

P(X>tp)=P(X > y)P(X >1)
(3.5)
But Fy (1)= P(X>t), so the equation (3.5)can be written as

Fx@) = Fx(3) Fx()

The general solution of this functional equation is
f.v (N=x"

Since lim F x (1)=0=> ¢ = - A where A >0.

Thus, Fx()=t*, t=1, A>0
Therefore, X~Pareto (1, A).

If X follows a Pareto distribution with parameters 8,A >0 then the formulas of the
most commonly used reliability measures are,

the probability distribution function of X :
Fx(t) =1-A17"
the reliability function :
}':x = /’i-:g’t—-l1 ,
the hazard rate function -
A
hX(t)=—a
t
the mean residual life function :
X !
ty=——, A>1,
W Digym
the multiplicative failure rate function :

rX(t)= t_'{,
the vitality function :
At
ux(t)= ——, A>1.
x(t) T
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The weighted form of the Pareto distribution is

fx*a(t) =(7x-a)9}"° x-Ueat])
which is a Pareto distribution with parameters 8, A-a .So the Pareto distribution
is form-invariant under size-biased sampling of order a.
In the special case of a =1 the size-biased version X, X* follows a Pareto
distribution with parameters 0, A-1

fx (t) =(A-1)6*' x™*
The reliability measures of X* the size-biased version of X when X follows a
Pareto distribution with parameters 0,A >0 are

the probability distribution function of X* :
Fx+(t)=P(X*2t)=1- 0*' 1),

the reliability function :
Fy @) = 0 D

the hazard rate function :
he () =21 o1,

the mean residual life function :

W ()=

K

(1 2)

the vitality function :

u, () =" 2‘) A>2.

3.5.3The Weibull Distribution

Definition 7. Let a random variable X. then X follows the Weibull distribution

with parameters a, and y if its probability density function is given by,

B-1 B
Folo) _ﬁ(uJ exp[_(x-yﬂ
a\ «a a )

where a>0, >0 and x>y,

Symbolically, X~Weibull(a, B ;v )
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If X follows a Weibull distribution with parameters a=1. y=0, >0 then the
formulas of the most commonly used reliability measures are,

the probability distribution function of X:

p
Fx(t)=1 exp[—(t-—yﬂ >
a

the reliability function:

_\P
Fx (1) = eXp[— (%H ;

the hazard rate function:

R
hy (1) - E(‘—Y) ,
[0

0

the mean residual life function:

el (2] o (52

Because of its flexible share and ability to model a wide range of failure rates,
the Weibull distribution has been used successfully in many applications as a
purely empirical model.

The Weibull model can be derived theoretically as a form of Extreme Value
Distribution, governing the time to occurrence of the "weakest link" of many
competing failure processes. This may explain why it has been so successful
in applications such as capacitor, ball bearing, relay and material strength
failures.

Another special case of the Weibull occurs when the shape parameter is 2. the
distribution is called the Rayleigh Distribution and it turns out to be the
theoretical probability model for the magnitude of radial error when the x and
y coordinate errors are independent normals with 0 mean and the same

standard deviation.
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Chapter 4

Characterizations of Specific Lifetime
Distributions

4.1 Introduction

This chapter is the most important since it includes many proved
characterizations of the lifetime distributions that are studied in this
dissertation. These characterizations are based on the reliability measures of
the distributions with the exception of the Weibull distribution, which
unfortunately has only a few characterizations related with its reliability
measures. Considering the importance of the Weibull distribution in the
reliability  theory some other characterizations are mentioned.
Characterizations that arise not only from the simple form of the distribution,

but also from the size-biased form have been studied

4.2 Some Basic Theorems

The following two theorems have been proved by Dimaki and Xekalaki

(1996) and shows that for every strictly monotonic function w(.), E[w(X) / X

> t] can be expressed in terms of w(x) and Fx(-) only.
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Theorem 1. Let X be a continuous random variable with reliability function
Fx (t) for all t>0. Let also z(t) be a differentiable function such that
E[z(t)]<oo. Then,

c]'l?x (x)dz(x)
E[Z(f)/X>t] = z(1) + I—m)—— (4])
Proof.
jz(t)dF (x) - jz(t)d(—F (@) - [z0)dFx(x)
E[z(t)/X>t] = = :

- F, () 1~ F\ (1) Fx()

{[z(x)F X (X)r J.FX (x)dz(x)}

Fx(f)

Z(OFx(0)+ J}?X (x)d=(x)

F(t)

[Fr (et

O TR0

Theorem 2. Let X be a discrete random variable with reliability function
Fx @)
t=0, 1,2, . Let also z(t) be a differentiable function such that E[z(t)]<co.
Then,

S letx +14+~z()F v ()

E[z@t)/X>t] = z(t+1) + = =0 (4.2)

Proof.

PX=x)
E[z(t)/X>1] = z(t+1) + X§Iz(x)P(X X/ X >1)= Zﬂ z(x)———= i)
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_ P(X > x)~P(X > x+1)
\;f( 2 P(X >1)

]

P(%B ‘g‘[z(x)P(X > x)—z(x)P(X = x+1)]

I

73()(1—>t)[ ;{;}z(")P (X 2x)- Z: 2(X)P(X 2 x+1) }

= TX};)- » zZ@+DP(X 2+ 1)+ xiz z(x)P(X 2 x)— Xg;] z(x)P(X >x+1) :I

. —P(Xl | z(t+DP(X >1) +)§;lz(x+ DP(X 2 x+1l)— Z; Z(x)P(X =2 x+1) }

1 [ o £
- —P(X | z(t+1)P(X > t)+x§]z(x+l)P(X >x)~— z z(x)P(X > x) }

2(1+1) + [Zz(x+1)P(X>x) Zz(x)P(X>x)]
P(X x=t+] x=1+]
= D— X
Z(t+1) + = = P( >0 gllz(x"' )—z(x)|PCX >x)
i[z(x +1+ —z(x)]Fx (x)
§ Z(t+1) + x=t+]

Fi(b)

The following theorems give us a useful equation which expresses the mean

residual life function in terms of the reliability function.

Theorem3. Let X be a continuous random variable with reliability function

F x(t) for all 120. Then,

, 120 (4.3)

Proof.

If in equation (4.1) we replace z(x) = x-t we get
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oz

[Fx (s,

X t)l

But, by definition p*(t) = E[X-t/X>1].

E[X-t/X>t] = =

o

Thus, p*(t) = = ! [Fyxax.

x({);]

Theorem 4. Let X be a discrete random variable with reliability function
Fx@)
t=0,1,2,... . Then,

X R ai=
= = Fx , =01,2,... 4.4
p ) 7 m; (x), ¢ (4.4)

Proof.

If in equation (4.2) we replace z(x) = x-t we get

E[X-t/X>1] = = 1(1) ifx (x)
X x={

But, by definition p*(t) = E[X-t/X>t].

1 &—
Thus, p*(t) == Fx(x).
us, u(t) Fw); (x)

Theorem 5. Let X be a continuous random variable with reliability function
fx(t) for all t20. The form of anyone of the following functions determines

uniquely the distribution of X
i) the reliability function
ii) the hazard rate function hx(t)

iii) the mean residual life function u™(1)

Proof.
By definition, hx(t) = [x Q)
Fx(@)
d;;x(t)
d ty=-—
and f, (") ™
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thus, ha(nyas 9520 B0 o dInTRR @
Fy() di dr

Jdlnl?,\' (x) = _[h_\. (X)dx=> InFy(t)~InF x(0) = - Ih_\, (x)dx
4] 0 0
but Fy(0)=1=InFy(0)=0

consequently, Fy (= exp{— Ih‘y (x)dx 4.5)
0

We have already proved that the mean residual life of a continuous random

variable X can be written in terms of its reliability function as following,

= ' R '
) =0 I_[Fx (x)dx = u* (1) = (t)[ J?X (x)dx — FX (x)dx] (4.6)

but, pX(0) = - 1(0) [Fo(dx = [Fu(x)dx=[xFx (x)]w—a]-xdf“x(x)==
X 0 0 0 0

Al o

[xdFx (x) = [xdFy (x) = E(X) = p = ™ (0) = p

]

The equation (4.6) can be written as

ur (= 1_:‘3([) Lz - Fx (x)dx} =

1

s (OF x(t)= - [Fx(x)dr =
N

d — d ’
e (L OF x (@) = E(” - Oj?x (X)de =

WX @) Fx@+u  O(F x (1) =~Fx(t)=
L+ @) Fr@)=-u* OF ) =

1+ (u* (@)

Y h.\’ (t)
uo@)

But, Fx )= exp{— jh.y (x)dx |[=
0 ;
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. [ X '
Fr (t):exp[_ ;%de}

J-1+(/1 @) - [ +’Iu @)

0 H (x) Olu (x) 0 'u (\)
i dx 1 .

dinu? =
e LLIC

1

fteg ool -

dx .
T e O a0

0

lj fx +ln'u:(t)
s (x)  p(0)

The equation (4.7) can be written as,

—  dx p*© ]
o= exp[_ e ™o

4.7

(4.8)

Theorem 6. Let X be a discrete nonnegative random variable with reliability

function Fx (t) for all t>0. The form of anyone of the following functions

determines uniquely the distribution of X

i) the reliability function

ii) the hazard rate function hy(t)

iii) the mean residual life function u*(t)

Proof.
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By definition, A, (1) —M: P(X >1)= P(X =1)

P(X 20 h, (1) el

Specializing (4.9) for t=r and t=r+1 we get,

M’ p(XZr.,.])_f.(_)_(;r-"_l)

P(X 2r)=—
() h, (r+1)

by subtracting the resulting equations we obtain,

P(X=r) PX=r+l)_

P(X=r)= h
v (r) hy(r+1)

PX=r) PX=r+D_

P(X2r)-P(X2r+l)=— = T

P(X=r+l)-P(X=r)
hX(r+]) hX(r)

+P(X =r)=0=

PX=r+1) 1-hy(r)
hy(r+1) hy (r)

PX=r)=0=

(I-hy (rDhy, (r+1)

P(x=r+1)- ()

P(X=r)=0

The unique solution of this difference equation is given by,

Pex=r=pox =0 [ h(;)()i';(i )
i=0

, 1=0,1,2,... (4.10)

We have already proved that the mean residual life of a discrete random

variable X can be written in terms of its reliability function as following,

Xy vz 1 mf
) f’x(t)g x(x)=
x ] » =1 __
= — Fx - Fyx
p*(t) FXU)[(Z_; (x) Z x ]=
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WO Fr()=3 Frx)-3 Fr(x)

But, (0)————(721?\():) ZF\(x) ZP(X>x)—

-3 XP(X = x) = E(X) = p=> 1" (0) =

a=0

Now the equation (4.11) can be written as,

_ [
P Fx(@)=p- Fx(x)

x=0

Specializing (4.12) for t=r and t=r+1 we get,

W) Fx(=p-3 Fr(x)

x=0

ux(r+1) Fx(r+1)=u—ifx (x)
x=0

by subtracting the resulting equations we obtain,
pX@+1) Fx(r+1)- pX@) Fx(r)=—-Fx(r)=

HO-lg
Fx(r+l) e D) 1% (r)=0

The unique solution of this difference equation is,

pr (-1

P(X>r)= ]‘[# R

, 1=0,1,2,...
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4.3 Characterizations

4.3.1 The Exponential Distribution

Theorem 7. Let X be a continuous random variable defined in [0, o).
X follows the Exponential Distribution with parameter A>0 if and only if the

hazard rate function at the time t is constant, equal to A.

Symbolically, X~Exp(}) < hy(t) = A
Proof.
Necessity: Let X follows an Exponential distribution with parameter A, then the

probability density function of X is fx(r) = Ae ™', >0

and the reliability function of X is Fx (1)=e ™

! At
Consequently, A, (1) = Z"'( )l A

Fx(@) e

Sufficiency: Let X be a continuous random variable with a constant hazard rate

function hy(t)=A,A>0.

Then we can calculate the reliability function Fx (¢) of X by using equation (4.5)

Fx (#)=exp| - J.hx (x)dx} =

Fx(f)=exp| - J.Mx}= g™
0

Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 5) it can be concluded

that X follows an Exponential distribution with parameter A.

Theorem 8. Let X be a continuous random variable defined in [0, o).

X follows the Exponential Distribution with parameter 1>0 if and only if the

mean residual life function at the time t is constant, equal to %1

1
Symbolically, X~Exp(4) o uf) = o
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Proof.

Necessity: Let X follows an Exponential distribution with parameter A, then the

reliability function of X is Fx(1)=e M

Consequently,
p*(t) = _! ]?\»(x)dx= ije'”dx: ! (—e™) I
Ex®; e ; e A

Sufficiency: Let X be a continuous random variable with a constant mean

residual life function px(t)=c=%, c,A>0.

Then we can calculate the reliability function Fx (1) of X by using equation (4.8)

= o O [ d
Fx()= -
"0 y”(z)exp[ (,Iu"(x)]:>

1

—3 "1 =
Fy()= -C-exp[— J-——dx}Ze ¢ =gV
c G G

Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 5) it can be concluded

that X follows an Exponential distribution with parameter A.

From theorems 7 and 8 can be observed that if X is a continuous random
variable that describes the life time of a component and X~Exp(1), A>0, then the
product of the hazard rate function and the mean residual life function is
constant, in particular it is equal to 1.Next will be proved that this property leads

to a unique determination of the distribution of X as Exponential.
Theorem 9. Let X be a continuous random variable defined in [0, o).
The equation hx(t)yx(t)=1

determines uniquely the distribution of X as Exponential with parameter 1,A>0.

Symbolically, X~Exp(}) < hx(t) u*(t) =1.
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Proof.

Necessity: Let X follows an Exponential distribution with parameter A, then

the hazard rate function of X is hx(t) = A and the mean residual life function

.X 1

18 )= =
wo (1) 3

Consequently, hx(t) ux(t) =1.

Sufficiency: Supose that the equation hx(t) p*(t) =1 holds.

The hazard rate function can be relared to the mean residual life function
through

the equation

1+(ue* @)
u (1)

1+ @) =h,(Op* ()=

=h, (1)=

1+ (u* () =1=>

@) =0=
p*(t) = ¢, where c is a constant

Consequently, X is following an Exponential distribution with parameter

l=/1,k>0.
c

Theorem 10. Let X be a continuous random variable defined in [0, o).
X follows the Exponential Distribution with parameter A>0 if and only if the

additive failure rate function is independent from x for each t20.
Symbolically, X~Exp(}) < r¥(1) = g(1), 120.

Proof.

Necessity: Let X follows an Exponential distribution with parameter A, then the
reliability function of X is Fx (1)=e M

Consequently,
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Fx (x+1) et

=e " =g(t),t >0.
Fx(x) e

(1) =

Sufficiency: Let X be a continuous random variable with additive failure rate
function
r(t) independent from x for each t>0. Then,

rX(t) = g(t), t=0

Fx(x+t
Thus, Frlet) 2(t),t>0.
Fx(x)

Consequently, Fx (x+1)= g(t)_1~:x (x).

The general solution of this functional equation is given by the following
equations,

Fx(f)=be" and git) = e

But, Fx(0)=1 and F x(®)=0

So it can be concluded that, ¢ = -A ,A>0

Consequently, F x(f)=e M

Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 5) it can be concluded

that X follows an Exponential distribution with parameter A.

Theorem 11. Let X be a continuous random variable defined in [0, o).
X follows the Exponential Distribution with parameter A>0 if and only if the

I+ A 150120

vitality function of X is equal to

1+ At

Symbolically, X~Exp(A) <> ux(t) - , A>0, t20.

Proof.

Let X follows an Exponential distribution with parameter A
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X~exp(h) < u(t) = %@ W) + t = %+ t & ux(t) = %+ t o

1+ Ar

ux(t) = . A>0, t=0.

Theorem 12. Let X'® be the size-biased version of order a =1 of a random
variable X defined in (6, +). The reliability function Fye (x)=(At+De ™ |
0>0, A>a, x>0 if and only if X following a Exponential(}), 1>0 distribution.

Symbolically, X~ Exp(1) < Fx+(x)= (A +De ™ , >0, 1>a, x20.

Proof.

Let X be a continuous, non-negative random variable following an
Exponential(A) , x>0, distribution and 0, A >0. By direct calculation we find
that the reliability function of this distribution is:

Fx(x)=e™* (4.14)
The reliability function of the size-biased of order a version of a continuous

distribution is given by,

— 1 —
Fyxe(x)= B Fx(x)A(x)

where A(x) = E(XY X>x).
For the Exp(A) and for a =1

1
E(X)=—,1>0.
(=125

Also, Dimaki and Xekalaki (1996) showed that for every strictly monotonic
function w(:), E[w(X ) X >t]can be expressed in terms of w(-)and Fx () only,
namely:

O]’fx (x)aw(x)

E[w(X)/ X >t]=w(t)+L—W,t20.

59



Applying the above result for w(x) = x we have that,

E(x 1Xx>x)= /1’;1 . G

Consequently, by substitution back to (4.14) we obtain that,

A+l

AT = Ae
v (x) 2

ie. Fao (x)=(U+1)e™”

Theorem 13. Let X'* be the size-biased version of order a = 1 of a random

Ax
AxBiiy

variable X defined in (6, +c). The hazard rate function is h, .(x)=

0>0, 2>a, x>0 if and only if X follows a Exp(2), A>0 distribution.

Ax

Symbolically, X~ Exp(}) <h,.(x) = el 6>0, A>a, x26.
+

Proof.

Let X be a continuous, non-negative random variable following an Exp(}) ,
x20, distribution and A >0. By direct calculation we find that the hazard rate
function of this distribution is:

h,(x)=21 ,2>0 (4.16)
The hazard rate function of the size-biased of order @ = 1 version of a

continuous distribution is given by,

x*h, (x)
h,.(x)=—2%"— 4.17
g (%) 400 (4.17)
where A(x) = E(X%/ X>x).
For the Exp(A) and for a = 1
agge 2380 oas0, (4.18)

Substituting (4.16) and (4.18) in (4.17) it follows that,

Ax
Ax +1
A

h.(x)=
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Consequently,

2

Ax
h,.. =
5 (%) Ax +1

A>a

Theorem 14. Let X'® be the size-biased version of order a = 1 of a random
variable X defined in (6, + ). The mean residual life function is
Ax+2

u (x) == 0>0, A>a, x20 if and only if X follows a Pareto(0, 1), 1>0
A(Ax +1)
distribution.
Symbolically, X~ Exp(}) < u™ (x) = AL 0>0, A>a, x>0
’ AAx+1) T T T T

Proof.
Let X be a continuous, non-negative random variable following an Exp(}) ,

-i

x20, distribution and A >0. By direct calculation, since Fx (x)=e""and

fy(x)=2e* we find that the maen residual life function of this distribution

is:

2 (x) = IFX—((:))dt—-% 2>0 (4.19)

The mean residual life function of the size-biased of order a version of a

continuous distribution is given by,

(g 0T AO
HE Ohu s ‘{ frw (u)]d e

where A(x) = E(X% X>x).
For the Exp(A) and fora = 1
Ax+1

Ax) - . A>0. (4.21)

Substituting (4.19) and (4.21) in (4.20) it follows that,
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At +1

o !

l.
X*, v A T B d_u _
y7i (A)_lx—kl:[ T exp Jl dt'=
A A A

1

(]-(lt + 1) exp][ —A(t — x)]dt

C Ax+1
1 [+ ] o0
= Aex t CANdt+ ex expAndt =
~ p(zx)xjexp( ydt+—— p@x)J pE-At)
1 1 1 UL |
Ax+1 Adx+1 A Ax+1
i.e.
Ax+2
X
xX)=———
u(x) /l(ﬂx+1)’)”>l'

Theorem 15. Let a random variable X be defined in (0, +o0) with hazard rate

Sunction hx(x), x 26, 8>0. The hazard rate function of the corresponding size-

hy (x)

biased of order a,a >0 distribution is h,., (x)the ratio is is equal to

hy.(x)

Ax+1

if and only if the original random variable X follows an Exp(}), >0

distribution.

he(x)  Ax+1
hy.(x) Ax

Symbolically, X~ Exp(A) <

Proof.

Necessity: Let X be a continuous, non-negative random variable following an
Exp(L) distribution and A >0. Then.
hx(x) = A,
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the hazard rate function of the size-biased of order a = 1 version of a

continuous distribution is given by,

h..(x) _M
E(X/X>x)
for the Exp(})
Ax
h.(x)= .
w® Ax +1
Thus,
hy(x) Ax+1
hy. (%) x
Sufficiency: Soppose that hy(x) _ Ax+1
hy (x) Ax
From the definition of the hazard rate function it follows that:
he(®)  h(x) EX/X>x)
() ) x
E(X /X >x)

Dimaki and Xekalaki (1996) showed that for every strictly monotonic function

w(.), E[w(X) / X>t] can be expressed in terms of w(.) and _P—‘x(-) only, namely:

fo (x)dw(x)

E[w(X) / X>t] = L >0.
[wW(X) / X>t] = w(t) + 0 t

Applying the above result for w(x) = x we have that,

E[X/X>x]=x ' [Fx@ar

f,\'()()
Then,
hy(x) 1+ 4 = 1 ﬁx([)dt‘- A dal <:>1+—1-;1X(x)=lx+1<:>
hy.(x) x Fx(x); Ax x

u*(x) =i-© X ~ Exp(2).



4.3.2 The Pareto Distribution

Theorem 16. Let X be a continuous random variable defined in [0, o).
X follows the Pareto Distribution with parameters 6, A>0 if and only if the

hazard rate function at the time t is inversely proportional to t, equal to A/t.

Symbolically, X~Pareto(8,1) <> h(1) i
!t

Proof.

Necessity: Let X follows a Pareto distribution with parameters 6. A. then the
probability density function of X is fx(1) = A0t Ll =6
and the reliability function of X is Fx (£)=0*1

A,-a~]
Consequently, A, (¢)= ZX O 267 4 i

Fx(@® 6%t 1t

Sufficiency: Let X be a continuous random variable such that the hazard rate

function hi(t) is inversely proportional to t ,that is, hx(t)=%,)>0.

Then we can calculate the reliability function Fx(t) of X by using equation (4.5)

Fx(t)=exp| - J'h‘\.. (x)dxil N

- b
F x (£) =exp| — J'% dx] = exp(-AMnt+Aln0) = exp [ln(éj 1— 61t
L @ S

Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 5) it can be concluded

that X follows a Pareto distribution with parameters 0, A.
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Theorem 17. Let X be a continuous random variable defined in [0, o).
X follows the Pareto Distribution with parameters 0, .>0 if and only if the

mean residual life function at the time t is a linear function of t, equal to

Yo Al

Symbolically, X~Pareto(3,0) < u*(1) T

Proof.

Necessity: Let X follows a Pareto distribution with parameters 0, A, then the
reliability function of X is Fx(1)=60%1"*

Consequently,

] o o0

Xy L | -
puo(t) _x(t) Fx(x)dx IR

! { !

Sufficiency: Let X be a continuous random variable such that the mean residual

life function is a linear function of t, that is, ux(t)=ﬁ,)»>].

Then we can calculate the reliability function Fx(t) of X by using equation (4.8)

= we [
PO 0 exp{ !u*(x)}z

6 _
Fx()= lt_l ex% —(/I—I)J‘ﬁ

U'x

0 | t] 6 ¢
7€X% _(l_l)lngilz79_l+] = 0'{[_/1

A-1
Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 5) it can be concluded

that X follows a Pareto distribution with parameters A, 0.

From theorems 16 and 17 can be observed that if X is a continuous random

variable that describes the life time of a component and X~Pareto(A, 0), A, 6>0,
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then the product of the hazard rate function and the mean residual life function is

a constant ¢ =

, ¢>1. Next will be proved that this property leads to a unique

determination of the distribution of X as Pareto.

Theorem 18. Let X be a continuous random variable defined in [0, o).
The equation hy(t)u*(1)=c, c¢>1

determines uniquely the distribution of X as Pareto with parameters 2, 6,1,0>0.

Symbolically, X~Pereto(l) <> hx(t) p*(t) =c,c>1.
Proof.

Necessity: Let X follows a Pareto distribution with parameters A,0 then the

hazard rate function of X is hx(t) = 4 and the mean residual life function is
t

X t
t)= —
T )] PR

Consequently, hx(t) p*(t) = ALI =c, ¢c>1.

Sufficiency: Supose that the equation hx(t) pX(t) =c,c>1 holds.
The hazard rate function can be relared to the mean residual life function

through the equation

1+ (u* (1)
p (1)

L+ @) =h,Ou* )=

=h, ()=

1+(u* (@) =k, where k is a constant=

') =1=

TS (c-1)t, a linear function of t
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Consequently, X is following a Pareto distribution with parameters

=Aand 6,

c—1

A, 6>0.

Theorem 19. Let X be a continuous random variable defined in [0, o).
X follows the Pareto Distribution with parameters A, >0 if and only if the

multiplicative failure rate function is independent from x for each t>0.

Symbolically, X~Pareto(4, 0) <> ry () = g(t), t=0.

Proof.

Necessity: Let X follows a Pareto distribution with parameters A,0, then the

reliability function of X is F x (t)=60"t"

Consequently,
Fx(x-f) @D+

rx(t) = ) E —— =t =g(1),1>0.
Fx(x) 0" x

Sufficiency: Let X be a continuous random variable with multiplicative failure

rate function ry(t) independent from x for each t=0. Then,

rx(t) = g(t), 20

Thus, %Ix;) =g(1),t20.

Consequently, Fx (x-1)= g(t)Fx (x).
The general solution of this functional equation is given by the following

equations,

Fx()=bt* and g(t) = ¢°

But. Fx(1)=1 and Fx(0)=0

So it can be concluded that, ¢ = -A ,A>0
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Consequently, Fy (r)=t"
Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 5) it can be concluded

that X follows a Pareto distribution with parameters A,1.

Theorem 20. Let X be a continuous random variable defined in [0, o).
X follows the Paretol Distribution with parameters 4,0>0 if and only if the

At

vitality function of X is equal to : A>0,120

Symbolically, X~Pareto(d,8) < ux(1) ;{—}"—1 1>0, 120.

Proof.

Let X follows a Pareto distribution with parameters A,

X~Pareto(A.0) < p,x(t) = _l—[—l@ ux(t) +t= 1.’1’_1

& ux(t) = % , A>0, t20.

Theorem 21. Let a random variable X be defined in (6, +c0) with probability
density function fx(x), x >0, 6>0. Then the corresponding size-biased of order

a,a >0 distribution is the Pareto(9, A-a), if and only if the original random
variable X follows a Pareto(8, 1), A>0 distribution.

Symbolically, X~Pareto(0,3) <> X ® ~ Pareto(6,1-a)

Proof.

o

Necessity: Applying the definition of the weighted distribution with w(x) = x

for the case of the Pareto distribution we get,

X f(x) _ x*A0%

% (x) =
x(x) E(X®) E(X%)

3

A6

where E(X?) =
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xal‘{elx—(/h-l) (}. _a)
10

So. fx*a(x) = (/‘{ = a)gi—ax—(/l—aﬂ)

where f"%x(x) is the Pareto distribution with parameters 6,A-a..

>1

Sufficiency: Let f*ax(x) = LC-\"(’Q,X

£ (x) %,xﬂ

where fx %(x) =(A-—a)8* *x 4" x >0.

Then, fx(x) = Cx™*f *x(%).
It is obvious that O]‘f\ (x)dx =1.
6
Therefore.
C ujx'“ 2 (x)dx =1.
o

a

Then, C i ,50 fx(x) = A0*x™ 4
A-a

i.e. X ~ Pareto(6,1).

Theorem 22. Let X' be the size-biased version of order a,a >0 of a random

variable X defined in (8, +). The reliability function F ys (x)=8"x 4

6>0, A>a, x>0 if and only if X follows a Pareto(0, 1), A>0 distribution.

Symbolically, X~Pareto(0, 1) < F xe (x)=0"x"*  §>0, A>a, x>0.

Proof.

Let X be a continuous, non-negative random variable following a

Pareto(0, L), x>0, distribution and 6, A >0. By direct calculation we find that

the reliability function of this distribution is:

Fx (x)=6x"
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The reliability function of the size-biased of order a version of a continuous
distribution is given by,

1
E(X%)

Fye(x)= Fx(x)A(x) (4.23)

where A(x) = E(X% X>x).
For the Parerto(0,)) it can easily been proved that:

A0°
A-a

Ex*)=2"—i>a

Also, Dimaki and Xekalaki (1996) showed that for every strictly monotonic
function wf(-), E[w(X)/X >t]can be expressed in terms of w(-)and Fx () only,

namely:

o0

[Fx (x)aw(x)

Ew(X)/ X >1]= w(t)+’—f—x(’)—,t > 0.

Applying the above result for w(x) = x we have that,

a

E(x* /X>x)=jx :
—-a

Consequently, by substitution back to (4.23) we obtain that,

fxw(x)= L B’Ix"‘ﬂx—
160° A-a

A-a

i.e.

F yoo (x)=0*x"** x>0 and 6>0, A>a.

Theorem 23. Let X ® be the size-biased version of order a,a >0 of a random

variable X defined in (6, +). The hazard rate function is h,., (x)= Ao !
x

0>0, 2>a, x>0 if and only if X follows a Pareto(0, 4), A>0 distribution.

Symbolically, X~Pareto(6, 1) <.:>hX.,, (x) 2,1;(1 , 0>0, 1>a, x2>0.
x
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Proof.
Let X be a continuous, non-negative random variable following a Pareto(0, 1)
x>0, distribution and 6, A >0. By direct calculation we find that the hazard

rate function of this distribution is:

= % >0 (4.24)

The hazard rate function of the size-biased of order a version of a continuous

distribution is given by,

x“h, (x)
h ., (x)=—""= 4.25
o ()= (4.25)
where A(x) = E(X?% X>x).
For the Parerto(6,1)
A(x) . A>a. (4.26)

Substituting (4.24) and (4.26) in (4.25) it follows that,

o A
X
h, . (x)= X
X ( ) ixa
A-a
Consequently,
hxw(x)zﬂ” 2 i>a
X

Theorem 24. Let X ° be the size-biased version of order a,a >0 of a random

variable X defined in (68, +wo). The mean residual life function is

pt(x)= i ad i >0, A>a, x20 if and only if X follows a Pareto(6, 1), A>0
—a—

distribution

Symboli

Y 9>0 i>a, x20.
A=-a=—1

cally, X~Pareto(6, 1) eut (x) =
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Proof.

Let X be a continuous, non-negative random variable following a Pareto(6,
L) , x>0, distribution and 0, A >0. By direct calculation, since

Fy (x)=60*x7and f,(x)=16"x"*"" we find that the maen residual life
function of this distribution is:

F\'(I) _ X
\(x) A-1

pt(x)= f A1 (4.27)

The mean residual life function of the size-biased of order a version of a

continuous distribution is given by,
5
v () LA P
x) = 4.28
HinlE V=S u(t) ‘{Iu () (4:28)

where A(x) = E(X% X>x).
For the Parerto(9,A)

a

Ax) =

, A>a. (4.29)
-

Substituting (4.27) and (4.29) in (4.28) it follows that,

X At”
xee A-1TA-a [ du
= - d{:
o 9= AL A e - 14
A-a A-1 A-—1
21y




Theorem 25. Let a random variable X be defined in (8, + o) with hazard rate
Junction hy(x), x 20, 6>0. The hazard rate function of the corresponding size-

h . (x)

biased of order o,a >0 distribution is h ., (x)the ratio is is equal to

v (x)

A-a
a

if and only if the original random variable X follows a Pareto(8, 1),
A>0 distribution.

hx' (x) j._a

Symbolically, X~Pareto(0.1) <
h, (x) o

Proof.

Necessity: Let X be a continuous, non-negative random variable following a

Pareto(0, A) , x>0, distribution and 0, A >0. Then,
A

hx(x) S
x

The hazard rate function of the size-biased of order a = 1 version of a
continuous distribution is given by,

B xh, (x)
CE(X/X >x)

X*

For thePareto(6,1)

A1

hyo(x) = —.

Thus,

hy(x) A

Reo(x) A-1
h

Sufficiency: Soppose that —f—(ﬂ = —i—
hy(x) A-1

From the definition of the hazard rate function it follows that:
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hy(x) h, (x) _E(X/X>x)
FraGoet ol ()t T eyt
E(X/X >x)

Dimaki and Xekalaki (1996) showed that for every strictly monotonic function

w(.), E[w(X) / X>t] can be expressed in terms of w(.) and Fx (-) only, namely:
JF x (xyaw(x)
E[W(X) i X>t] = W(t) + —’——_.——,t > 0.
Fxy(®

Applying the above result for w(x) = x we have that,

o0

E[X/X>x] = x + = 1 [Fx@ar

x (x)

X

Then,
MTH._I__I P_y(t)dt—i_—lc>1+l,u‘(x)=ic>
By (x) x Fx(x) 7 P I

u*(x)= —ll—xT <> X~Pareto(0,10).

4.3.3 The Geometric Distribution

Theorem 26. Let X be a discrete random variable taking values in {0,1,2, ...}.
X follows the Geometric Distribution with parameter p>0 if and only if the

hazard rate function at the time t is constant, equal to p.
Symbolically, X~G(p) < hx(1) = p.

Proof.
Necessity: Let X follows a Geometric distribution with parameter p, then the

probability density function of X is P(X=t) = pq',t=0,1,2,...,0<p<l,q=1-p
and the reliability function of Xis Fx(f)= ¢"*',t=10,1,2,..., 0<p<l,q = 1-p
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Then,
P(X2t) = P(X>) + P(X=1) = ¢ +(1-q)q' =¢'.

P(X=1) pq'

Consequently, A, (¢
q Y, hy (1) PS4

p

Sufficiency: Let X be a discrete random variable with a constant hazard rate
function hy(t)=p, p>0.

Then we can calculate the probability function P(X - t) of X by using equation
(4.10)

(A=h(Dh(i+1)

P(X=t)=P(X=0) , t=0,1,2,...
H Wy
P(X - 1) - P(X O)H( p)p
P(X =t) = P(X = 0)(1-p)' = (4.30)
Y P(X=1)=) P(X=0)1-p) =
1= P(X'—O)i(l—p)’ (4.31)

but, 0 <p <1 = |I-p| <1

bl
1-(-p) p

The equation (4.31) can be written now as,

so 30~ p)

1= P(X = 0)~ = P(X =0)=p
p

Substituting this result in equation (4.30) we get,
P(X = t) = P(X = 0)(1-p)' = P(X = t) = p(1-p)' > P(X = 1) = pq' . (4.32)

Since the form of the probability function of a random variable determines
uniquely the distribution of the random variable, it can be concluded that X

follows a Geometric distribution with parameter p.
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Theorem 27. Let X be a discrete random variable taking values in {0,1,2,...}.

X follows the Geometric Distribution with parameter p>0 if and only if the

mean residual life function at the time t is constant, equal to y

Symbolically, X~G(p) c;,u‘\'(t) e

Proof.
Necessity: Let X follows a Geometric distribution with parameter p .

Consequently,

FY()XZ_;FA(X)j

W= S-S |

n () =

L @OF x (t):if‘x (x)—ifx ()=
x=0 x=0

But,

1 0)==

= )ZFX(x) ZFX(x) ZP(X>x)—

=ixP(X-x)=E(X)=,u p
So,

i =1 _
HXOF x(@)=p-Y Fx(x) (4.33)
x=0
The mean of the Geometric distribution is p = E(X) = 9

and the reliability function is F x ()= q"*'

The equation (4.33) can be written as,
X AR
1+ x+
p g =2-2g
P x=0
-1

but, ZQXH :C]+C]2 +q3 ++q’ :1+q+q2 ++q1 _1:
x=0
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1+ s 1 1+1 l

= ] =
qg-1 p

Consequently.

1+] 1+1
#“'(t)—£3+pq 1+1] L_gtq l+p,
P q pq

+1+l_1+1 1+] 1
_q+4 9_9 _1_,

rq” rd" p

y
=ut ()=~
p

Sufficiency: Let X be a discrete random variable with a constant mean residual

life function p*(t)=c = —1—, c,p>0.
P

Then we can calculate the reliability function ]_*"x(t) of X by using equation

(4.13)
(- 1
Fx()=PX>t)= ]‘[ e
a— ! l_l
Fx=]15— H(l p)=(-p)y* =q"
p

Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 6) it can be concluded

that X follows a Geometric distribution with parameter p.

From theorems 26 and 27 can be observed that if X is a discrete random
variable that describes the life time of a component and X~G(p), p>0, then the
product of the hazard rate function and the mean residual life function is
constant, in particular it is equal to 1.Next will be proved that this property leads

to a unique determination of the distribution of X as geometric.
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Theorem 28. Let X be a discrete random variable taking values in{0,1,2,...}.

The equation hX(t)/zX(t)=1

determines uniquely the distribution of X as Geometric with parameter p,p>0.

Symbolically, X~G(p) < hx(t) w1 =1.

Proof.

Necessity: Let X follows an Geometric distribution with parameter p, then the

hazard rate function of X is hx(t) = p and the mean residual life function is

WXty = -
p

Consequently, hx(t) p*(t) =1.

Sufficiency: Supose that the equation hx(t) p*(t) =1 holds.

The mean residual life function can be relared to the reliability function

through the equation

1 © __
()= FX()ZFx(x T t)ZP(X>x):>

p* OPX >1)=) P(X >x)
x4
Specializing (4.34) for t=r and t=r+1 we get,

wX(PP(X >r)= iP(X > x)

X

prXr+DP(X >r+) = iP(X>x)

x=r+}

by subtracting the resulting equations we obtain,
X +DPX >r+)— X (NP(X >r)=—P(X >r)=

¥ r+DPX > r+ D)= [ () -1]Pr > r)=0=
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p (r+D) PX2r+)=PX =r+1) |-[g* () -1]P(X > 1) =0=
uE (r+DPX 2r+1) - g (r+)PX = r+1)=[p* () -1P(X 274D =0=
[p-" r+D)—-pu*r+ I]P(X >r+D)=pu'(r+)P(X =r+1)=

ptr+)-p* )+l P(X =r+1)
wX(r+1) S P(Xzr+l)

pr )= p*(r)+1
u¥(r+1)

=h,(r+)=

prr+)—pg* @O +1=pg  r+ Db, r+1)=
but, we supposed that hx(t) p*(t) =1. So,
u*r+)-—u (r+1=1>
prr+)-pf(r)=0=

ux(r) = ¢, where c is a constant

. 1
Consequently, X is following a Geometric distribution with parameter = —f ) %

p>0.

Theorem 29. Let X be a discrete random variable taking values in {0,1,2, ...}.
X follows the Geometric distribution with parameter p>0 if and only if the

additive failure rate function is independent from x for each t{0,1,2, ...}.

Symbolically, X~G(p) < r¥(1) = g(1), 120.
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Proof.

Necessity: Let X follows a Geometric distribution with parameter p. then the

reliability function of X is F x (r)=q""'

Consequently,

FX(X'l‘t) q.x+l+] :
X —— =-—=q =g(1),t20.
r(t) FX(X) q 1

Sufficiency: Let X be a discrete random variable with additive failure rate
function
r*(t) independent from x for each t>0. Then,

X(t) = g(t), t=0

Fx(x+t
Thus, ) 2(0),t =0.
Fx(x)
Consequently,
Fx x+t) —
x4 _E w20 (4.35)
g(t)
Specializing (4.35) for t=r and t=r+1 we get,
F —
x(x+r) 2F i)
&()
B —
Fx(x+r+l) =Fx(x)
g(r+1)

by subtracting the resulting equations we obtain,

I_T,Y(x+r) i FX()H—I’ il
g(r) glr+1

0=

Frixtr+)-EY DT cim=0
g(r)

The general solution of this difference equation is,
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Fen=]]2 Z(’;)l) =

r+l

Fr()=8C*D . F (=1

£(0)

Consequently,

Fy (r)=q""

Since the form of the reliability function of a random variable determines
uniquely the distribution of the random variable (theorem 5) it can be concluded

that X follows an Geometric distribution with parameter p =1-q.

Theorem 30. Let X be a discrete random variable taking values in {0,1,...}.

X follows the Geometric Distribution with parameter p>0 if and only if the

+ pt

vitality function of X is equal to ! ,p>0,1>0

Symbolically, X~G(p) < ux(t) = —P p>0, 120
p

Proof.

Let X follows a Geometric distribution with parameter p

X~G(p) & 1¥(1) = L X)) + 1= Lt ux) = ~+t e
p p p

1+ pr

ux(t) = , p>0, t=0.

Theorem 31. Let X' be the size-biased version of order a=1 of a random

variable X taking values on {1,2,3..). The vreliability function is

Fx+(x)= q'(pt+1), ifand only if X follows a Geometric(p) distribution.

Symbolically, X~ G(p) < Fx(x)=q'(pt+1)
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Proof.

Let X be a non-negative integer-valued random variable distributed according

to the G(p). p >0 distribution.

The reliability function of the size-biased of order a=1 version of a discrete

distribution is given by,

F x(x)= E(;( )I?x(x)E[X/X>t]

Dimaki and Xekalaki (1996) showed that for every strictly monotonic

function w(-), E[w(X)/X >t]can be expressed in terms of w(-)and Fy () only,

namely:

Elw(0)/X > )= w(t+ ) +[Fx(©] - 3 [wex +1) - wx) Fx (x).

x=t+]

Applying the above result for w(x) = x we have that,

E(X /X>t)=(t+1)+q“'*" > q -t+1+1i:>
a=t+] q

E(X /X > 1) = LFPt

Consequently, by substitution back to (4.14) we obtain that,
1+pt

t+]

Fxe()=q"'—B— =3 _(pt+1)=q'(pt+1).
q

a
P

from which follows that X* is distributed according to the G(p) .

(4.36)

(4.37)

Theorem 32. Let X be the size-biased version of order a=1 of a random

variable X taking values on {1,2,3...}). The hazard rate function is

2

h,.(x)= ttp , if and only if X follows a G(p) distribution.
p

+q

2

Smbolically, X~ G(p) <h,.(x) = —2
tp+q
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Proof.

Let X be a non-negative integer valued random variable distributed according

to the G(p), p > 0.

It have been proved that,

If X~G(p)e>h,(t)=p ,t=0,1,2,...
Therefore, in the present case

p+l1
p+t+1

X~ G(p) ©hy (1) = ,t=0,1,2,...

The hazard rate function of a weighted distribution is given by,

_ hy (1)
E[w(X)/X > ] +[1 E[w(X)/X > t]hx ®
w(t) w(t)

h,. (1)

Applying equation (4.15) for w(x)=x we have that for the G(p)

E[X /X >1] = LR

Substituting (4.38) and (4.40) in (4.37) it follows that,

hx°(x)=1+t - l+pt]
_Iz+[1__p_ i
pt pt
- p >
1+pt p’t—p(1+pt)
pt pt
pt = pt _ pt

T (+pt)+p*t-p(l+pt) tp(q+p)+q tp+q

Consequently,

tp’
h..(x)= )
() tp+q
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Theorem 33. Let X~ be the size-biased version of order a=1 of a random

variable X taking values on {0,1,2,...}). The mean residual life function is

. tp+q+1
¥ (=217

4=0,1,2, ... if and only if X follows a G(p) distribution.
p(pt+1)

tp+q+1
p(pt+1)

Proof. Let X be a non-negative integer valued random variable distributed

Symbolically, X~ G(p) <p* (x) = 1=0,1,2, ...

according to the G(p), p > 0.
It have been proved that,

If X~G(p) Fx()=q"',t=0,1,2,... (4.41)
The mean residual life function of a weighted distribution is given by,
] o

> Fx(X)E[W(X)/X > x] (4.42)

DR Fx (E[W(X)/X > t] .54

Applying equation (4.15) for w(x)=x we have that for the G(p)

I+ pt
p

E[X/X>t]=

(4.43)

Substituting (4.41) and (4.43) in (4.42) it follows that,

HX‘(t) - 1 qu«rl[px_*'lj___
qwl(pt +1)x:w] p

WP

1 o
= ——— ) (Q"px+q") =
q‘(pt+1)fv".

I [tp+q+1)
pt+1 p
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Consequently.
tp+p+1

X
B oy

Theorem 34. Let a random variable taking values in {0,1,2,...} with hazard
rate function hx(t). The hazard rate function of the corresponding size-biased

(x)

of order a1 distribution is h..(x)the ratio is is equal to tpti if and
p

@)

only if the original random variable X follows G(p) distribution.

h, (x)  tp+q
h..(x) tp

Symbolically, X~ G(p) < (Gl

Proof.

Necessity: Let X be a random variable distributed according to a G(p).

Obviously,
hy(t)=p
and
tp’
h,.(t)=
x (1) pra
h (x
Thus, —2 28 P*q.
h..(x) tp

Sufficiency: From the definition of the hazard rate function it follows that:
P(X =1)
PX=1) ZP(X X) Z xP(X =x)
hX(t) = P(XZt) —__x=t x=1
h,.(t) P(X*=t) tP(X =t)
P(X*21) E(X)
D xP(X =x)
x=1
E(X)

_tp+q
Y Px=x) P

Xc=t

1.e.
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P> xP(X =x) = (p+ DY P(X = x). (4.45)
A=t A=t
Specializing (4.45) fort =r and t = r+1 we get

pixP(X =X)= (tp—p+l)iP(X = X)

p i xP(X=x)=(tp+1) iP(X =X).

X=t+! X=t+1

By subtracting the resulting equations we obtain

ptP(X = t) = (tp+1)P(X = t)-p iP(x =X),t=r,r+1,. (4.46)

P(X =1t) = piP(X =x)

Applying the same procedure in relation (4.24), yields
P(X=t) - P(X=t+1) =pP(X=t)

or, equivalently

P(X=t+1)-1-p)PX=1t)=0

The unique solution of this difference equation is given by,
t-1
P(X=t) =P(X = 1) [ Ja-p)i=12,.
i=1
=P(X=1)(1-p)"”

But ZP(X =t)=1.Therefore,
t=1

ip(x =I)1-p)~ =1

leading to

P(X=1)=p(l-p)

Consequently,

P(X =t)= pd-p)1-p)"'= p(1-p)'=pq',t = 0,1,2,... and 0< p <1, g = 1-p
i.e. X~ G(p).
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4.3.4 The Yule Distribution

Theorem 35. Let X be a non-negative integer valued random variable. Then
X follows the Yule Distribution with parameter p, p>0 if and only if the
hazard rate function at the time t is inversely proportional to time ti.e. if and

only if

ho(y=—P— 1=012,...
' p+it+1

Symbolically, X~Yule(p) < h, ()= —L
' p+t+1

Proof.

Necessity: Let X follows a Yule distribution with parameter p,p>0 then the

pt!
(p+D(p+2).(p+tt+])

probability density function of X is P(X=t)=

and the reliability function of X is Fx O=P(X>1t)- £JF—IP(X =1
p

Consequently,

po PXE0 P Pl
X P(X21) P(X>H)+P(X =0 ﬂp()(_t)+P(X=t)
p

1 _ P

i+l t+p+l

p

Sufficiency: Let X be a discrete random variable such that the hazard rate

function hy(t) is inversely proportional to t ,that is, A, ()= ——I;—-l—,t =0,1,2,...
p+it+

Then we can calculate the probability function P(X = t) of X by using equation
(4.10)
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= (1-h()(i+1)

Px=0=PX=0)] ———  1=0,1,2,...
=0 h(l)
GPriE) s
—P(XTO)ﬁ ety it Y. Pibaiah 2040
1=0 P
p+i+l

i+ 12 /
= PX=0)][ ———==P(X=0)
o p+i+?2 p+2p+3 p+ir+1
!

= P(X =0) =>
(p+2)..p+1+))

Ty P(X=1) 1!
P(X=0) (p+2)..{p+t+1)

= X ~ Yule(p).

Theorem 36. Let X be a non-negative integer valued random variable. Then,
X follows the Yule Distribution with parameter p, p>0 if and only if its mean
residual life function at the time t is a linear function of t, given by,

+r+1
pr =L

Jrm(1.2 1!
p+t+1

Symbolically, X~Yule(p) < pu* (1) = :
p -—

Proof.
Necessity: Let X follows a Yule distribution with parameter p, then the

reliability function of X is Fyx O=P(X>1)- I—HP(X =1)
p

Consequently,
1 S
X(gy = == Fx(x)=
R Fx(t);
X(t) = LY Iy P(X
pX(t) P(X>t),z_(:, (X >x+1)=
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I 2 x4t
SEH  px mxin =

() =
lpx=n= P
p
i 1 e Sel Ly px+1)!
t) =
Ho(D)=— pt! S p (p+Da(p+x+i+])
p (p+D.(p+t+1])
ux(t)=r(p+t+2)l"(p-1) (1) = ARy
C(p)[(p+1+1) p-1

Sufficiency: Let X be a discrete random variable such that the mean residual life

function is a linear function of t, that is, pX(t)= p+t-1+1’p>1

Then we can calculate the reliability function Fx(t) of X by using equation
(4.13)

*(r)-1

Fy(t)=P(X>0)= []“ T

p+)+1

v F+2 2 3 r+2
P[5 11

£ p+r+7 p+7p+3 p+t+2
p-1
@+2)

= = X follows the truncated Yule distribution.
(p+2)..(p+1+2)

From theorems 35 and 36 can be observed that if X is a discrete random
variable that describes the life time of a component and X~Yule(p), p>0, then the

product of the hazard rate function and the mean residual life function is a

P

T c>1. Next will be proved that this property leads to a unique
p-

constant ¢ =

determination of the distribution of X as Yule.
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Theorem 37. Let X be a non-negative integer valued random variable.
Then, X follows the Yule(p), p>0 distribution if and only if,

hx(t) /JX(I) ¢, where c constant, t=0,1,2, ...
Symbolically, X~Yule(p) < hy(t) u*(1) =c,c>1.

Proof.

Necessity: Let X follows a Yule distribution with parameter p then the hazard

rate function of X is A, (¢) S -
p+t+1
T +r+1
and the mean residual life function is px(t)=£—tl;—
p -_—
X P _
Consequently, hx(t) p(t) ——l—c, c>1.

Sufficiency: Supose that the equation hx(t) p*(t) =c,c>1 holds.
The hazard rate function can be relared to the mean residual life function

through the equation

pre+)-pF @ +1
p(t+1)

h,(t+1)=

or equivalently,

pr@+)-pugF O +1=p ¢+ DA+ 1)

but hx(t) p*(t) =c

So,

pra+)-p (M +1=c,

which yields

X+ -pu*M=c-1,1=0]12,..

The unique solution of this difference equation is given by

,uX O =k+(c-Dt,t=0,]12,..: where k, c are constsnts.
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This is a necessary and sufficient condition for X to be distributed as Yule(p)

4 :k_+_1_>0'
c-1 k-1

with p =

Theorem 38. Let X be a non-negative integer valued random variable. Then,
X follows the Yule Distribution with parameter p, p>0 if and only if its
vitality function at the time t is a linear function of t, given by,
W)= P 610,

p-1
pt+p+1

Symbolically, X~Yule(p) < u” (1) = 1
D

Proof.
Necessity:Let X follows a Yule distribution with parameter p

Then,

t+1 t
X~Yule(p) & p¥(®) = 24 Xy + o= 220
p-1 p-1
t +1
—sux(t)= 2P it
where a = P ,b:p+1
p—1 p-1

Sufficiency: : Let X be a discrete random variable such that the vitality function

is a linear function of t, that is, u*(t)=cz + b

Then we can calculate the mean residual life function u* (f) of X

)= pX ()=t +b=>u (t)=(@-t+b

This is a necessary and sufficient condition for X to be distributed as Yule(p)

a b+l
a-2 b

with p= > 0.
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Theorem 39. Let the random variables X and X* taking values on {1,2,3,...},
and also that E(X) < oo Then X* is distributed according to the shifted
Waring distribution with parameters (1,2;p) if and only if the distribution of
X is the shifted Yule with parameter p+1.

Symbolically, X~ shifted Waring(1,2;p) <X ~ shifted Yule(p+1).
Proof.

Necessity: Let X be a random variable distributed according to a shifted Yule

(p+1). Then,

(p+1)x—1)
() =—2 L =12,
f (x (p + 2)()r) *

and | miE(X) == 22e Therits derinad by,
p

x(p+1)(x—1)!

. - (p+ 2)(x) -
Sr(x)= 7+l =
P
p(p+1D)x!

TP+ (D)

P2y 2-nlis 1
(p+ 1)(2) (p+ 3)(x—l) (x-1!

fr(x)=

Therefore the random variable X* follows a shifted generalized Waring

distribution UGWD(1,2;p).

Sufficiency: Let X* be a random variable distributed according to a shifted

UGWD(1,2;p). also X* is given by

£ (x) = %}()x),leﬂ,...
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JX .

Py 2 en ey 1
fr(x)=u =
\ xX(p+1) ;5 (p+3),,, (x-1!
P22

Sr(x)=u
‘ x(p+ Dy (P +3)
P l(x—l)
Sx(x)=u
’ (P+2(P+3),

But, it is obvious that Zf\ (x)=1.

a=]

Consequently,

2 1
ILI p (x-1) 1:>
p + 2 x=] (P + 3)(x—l)

(x 1)(P H 1)
Z (p+ 2)(x)

p+2

The expression in the summation is the shifted Yule with parameter p+1

P+
and obviously Z—(—l)———
p+ 2)(:)
Consequently,
1
/1 p e 1 - ﬂ e £_+__
p+2 P

Therefore, X ~ shifted Yule (p+1).
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Theorem 40. Ler X' be the size-biased version of order a=I of a random
variable X taking values on {1,2,3..}). The vreliability function is

Fxe (x)-ﬂP(X*zt), if and only if X follows a shifted Yule(p+l)
p

distribution.

Symbolically, X~ shifted Yule( p+1) < Fx: (x) ﬂP(X*—t)
p

Proof.
Let X be a non-negative integer-valued random variable distributed

according to the shifted Yule (p+1), p >0 distribution. Then,

Fx(t)=——P(X=1),t=012,..
p+l1

where P(X =t) = (iH'_l)(_E_i)_'
(p+2),,

Consequently,

- t (p+1)t—1) t!
Fx(t)= = .
) p+1 (p+2)“) (P+2)(n)

The reliability function of the size-biased of order a version of a discrete

distribution is given by,

E(;( )ix(x)E[X/X>t]

l_:*x(X)=

Dimaki and Xekalaki (1996) showed that for every strictly monotonic

function w('), E[w(X)/X >t]can be expressed in terms of w(-)and fx(-) only,

namely:

Elw(x)/X > = wit+ 1)+ [Fx ]+ 3 [wex +1) - wo Fx(x). (4.47)

x=t+]
Applying the above result for w(x) = x we have that,
E(X /X >t)=(t+1)E(X) (4.48)

Consequently, by substitution back to (4.14) we obtain that,
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—E (t+)= t+1 Poy L2 1
(p+2)(l) p (p+1)(2) (p+3)(t_” (t"l)!

Sl pexs - gy
p

Fx (1)

from which follows that X* 1is distributed according to the shifted
UGWD(1.2;p) or equivalently to the =zero truncated Yule(p).

Fr ()t poxrisy
p

Theorem 41. Let X' be the size-biased version of order a=1 of a random

variable X taking values on {1,2,3..}. The hazard rate function is

hX. (x)

e if and only if X follows a shifted Yule(p+1) distribution.
p+t+

Symbolically, X~shifted Yule(p+1) <h_.(x)= r;‘ 1
p+t+

Proof.
Let X be a non-negative integer valued random variable distributed according
to the shifted Yule(p+1), p> 0.

It have been prooved that,

If X~Yule(p)e h, (t)=—F— | t=0,1,2,...
p+t+l

Therefore, in the present case

p+1

X~shifted Yule(p+1) < h,(t) L t=1.2,... (4.49)

p+t+l

The hazard rate function of a weighted distribution is given by,

h.. (1) = b () (4.50)
X ElwX)/X>1] | E[W(X)/X>t}h ©
w(t) w(t) &

Applying equation (4.15) for w(x)=x we have that for the shifted Yule (p+1)
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E[X /X > 1 - {Lrke+D) (4.51)
P

Substituting (4.49) and (4.51) in (4.50) it follows that,

p+l1
p+t+l
h . .(x)=
(t+l)(p+l)+ 1_(t+1)(p+1) p+1
tp tp t+p+1
p+1
= p+t+1 &
—(t+1)(p+1)_t+p+1 p+1
tp tp p+t+l
p+1
gDt ity gop
p+1t p+t+1]
tp
Consequently,
p
h .(x)=
x () p+t+1

Theorem 42. Let X~ be the size-biased version of order a=1 of a random

variable X taking values on {1,2,3...}. The mean residual life function is

uX (x) = “’—*—pT*—l,z=o,1,2, .. ifand only if X follows a shifted Yule (p+1)

distribution.

Symbolically, X~shifted Yule(p+1) < p* (x) M,IZO,],Z,

Proof. Let X be a non-negative integer valued random variable distributed

according to the shifted Yule(p+1), p > 0.
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It have been prooved that,

If X~Yule(p)esp*) =P =012,
Therefore, in the present case
X-~shifted Yule(p+1) < p*@=Piil jama (4.52)

The mean residual life function of a weighted distribution is given by,

! ZFx(x)E[w(X)/X > x] (4.53)

b OEw0 X5 0.2

Applying equation (4.15) for w(x)=x we have that for the shifted Yule (p+1)

E[X/X>t]_m+_l)

(4.54)
p

The reliability function of a discrete random variable X which is distributed
according to the shifted Yule(p+1) is,

p+i+l

-1
FX (t) FX(I)]I—‘I_'I;:H_—Z -
P
L 1+i
=Fx(
X()I_Ip+2+1
= 1
=Fx()—&2 =
(P+2)
|
 ml t (4.55)
pst2 (p+2)(1—l)

Substituting (4.53) and (4.55) in (4.54) it follows that,

. 1 <N x! x+1)(p+1
() = | : > (x+D(p+1)
1 t! (t+D(+)) Sip+2 (P+2) P
p+2 (p+2)(:-l) P
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Consequently,

Theorem 43. Let a random variable taking values in [1,2,..}) with hazard

rate function hy(t). The hazard rate function of the corresponding size-biased

h (x
( )is equal to p+!

of order a=1 distribution is h,.(x)the ratio is if and

h . (x)

only if the original random variable X follows shifted Yule(p+1) distribution.

h (x
Symbolically, X~shifted Yule(p+1)) <—2—— (x) = p+_l.
hx' (x) )4

Proof.

Necessity: Let X be a random variable distributed according to a shifted
Yule (p+1).

Obviously,

P(X=t) = %%,t £1,2,...
(1)

and

Ex)= Rl
p

Also,
P(X 2t) = P(X=t) + P(X>1)

= P(X=t) + ——P(X=1)
p+1

—me(x = 1).
p+1

Therefore,

p+1
p+l+t

hx(t)=

Moreover,
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PX=t) _p+hHt! Py 2
E(X) P+2),, @+, (P+3) -

i.e. X*~ shifted UGWD(1,2;p).

P(X*= 1)

Therefore,

P(X*2t) = P(X* = 1) + T p(x* =1y = P
p

P(X*=1).

That implies that

p
h, (t) =
x(V) p+t+l

which leads to the result.

Sufficiency: From the definition of the hazard rate function it follows that:

P(X=1)
o _ PO | BP0 SRK0
By (1) 11284(:;3 tpg((x“)‘) tgP(X=X) v
3 xP(X =x)
e,
pS XP(X = %) = (p+ Dt P(X = x). (4.57)

Specializing (4.57) fort =rand t = r+1 we get

pi xP(X=x)=(p+ l)tiP(X =X)

pi xP(X=x)=(p+l)(t+l)iP(X = x).

x=t+] x=1+1

By subtracting the resulting equations we obtain

tP(X =1t) = (p+1) iP(x =x),t=r,r+l,. (4.58)

x=1+)
Applying the same procedure in relation (4.58), yields
(pHt+2)P(X=t+1)-tP(X=t) =0

or, equivalently
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P(X=t+1)- ———P(X =1) =0
p+t+2

The unique solution of this difference equation is given by,

P(X=t) = P(X =1 =12,
(*=1) ( )H p+i+2’
—1)
=P(X = ])Ll)'_
(p+3)(|-n
or equivalently,
~1)
(p+3)(|_|)

But ZP(X =t)=1.Therefore,

t=1

ZP(X—]) (t+1)! _

( 3)(t -1)
leading to
px =12+

p+2
Consequently,

—1 -

P(X = 1) = p+l (t-D! (p+1) l).’

P+2(P+3) .y (P+2)
i.e. X~ shifted Yule(p+1).

4.4 Characterizations of the Weibull Distribution

Roy and Mukherjee (1986) proposed four different characterizations of the
Weibull distribution the first two in terms of two reliability measures, the
reliability function and the hazard rate function respectively. The third one have
to do with the Fisher information minimization in a restricted class of
distributions and the fourth states that the Weibull law has the maximum entropy

within the class of distributions
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If R(x) = -log(1-F(x)) -log_I*:x (x),where F is the distribution function of a non-
negative random variable X, then for the Weibull distribution where F(x) = 1-
exp(Ax" ) , it is clear that R(x) = Ax® so that, for all x > 0, y > 0,

R(xy)R(1) = R(x)R(y), (R(1)>0) (4.59)
If, conversely (4.59) holds for all x > 0 and all y > 0, then R(x) = Ax° for some

a > 0, A > 0, as guaranteed by the multiplicative version of the classical Cauchy

functional equation. Thus we have for R(1) > 0,

Theorem 44. R(xy) R(1) = R(x)R(y) for all x > 0, y > 0 if and only if X ~
Weibull(a, ).

It is easy to verify that if (4.59) holds for all x > 0 and for two values y; and y>
of y > 0 such that logy,/logy, is irrational, then again the same conclusions

holds.

Theorem 45. F, with support < [0, =), is a weibull distribution function if and

only if R satisfies the conditions:

(a) R(xy)R(1) = R(x)R(y), with R(1) > 0, for at least one value of y >0, y = 1, for
all x > 0, and

(b) xR'(x)/R(x) is non-decreasing for x > 0.

Proof:

If Fis Weibull, R(x) = Ax® and assertions (a) and (b) are immediate.

Conversely suppose (b) holds and (a) holds for y = yg #1 and for all x > 0.

If vo = logyo (20),

Then defining ¢(u) = R(e")/R(1), we have @(u+vg) = @(u)e(vo).

If then we define
v(u) = loge(u)-(u/ve)loge(vo) ,

then y has period vy and assumption (b) implies that y’is non-decreasing. These
two facts together imply that y is constant = y(vg) = 0, so that
loge(u)/u = constant = loge(1), or R(x) = R(1)x% as desired to prove.
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If X > 0 is a random variable, and its distribution function F has a continuous

probability density function f, then the hazard rate of X at x is defined as

h, (x)= l_i‘ (x)) , and R(x) = fhx(t)dt. Considering hx(x) and R(x) as functions
x (X

of the random variable x it may be of interest to examine their distributions
from the characterization point of view. In fact it can be observed that R(x) is
an increasing and continuous function in x and whatever be the functional
form of fx(x)

Pr[R(x) <u] = 1-e™.

Hence the distribution of R(x) cannot characterize that of X. however, it may
be observed that if X follows an exponential distribution, hx(x) has a
degenerate distribution and conversely, if hx(x) is degenerate, x follows an
exponential distribution. So the possibility of characterizing the Weibull

distribution through the distribution of hx(x) have to be examined.

Theorem 46. (i) h is strictly increasing with hx(0) = 0, and (ii) hy(X) ~
Weibull(a’, 1) with a'> 1 if and only if X ~ Weibull(a, 1) where a > 1,

l+—1—,=l,and1'= A(ad’)".
a «a

Proof:

Let X ~ Weibull(a, ) with o > 1, so that hx(x) = hax®". Since a > 1, (i) is
immediate. Also hX(x) has its probability density function given by f(x(h))
x’ (h) where f is the probability density function of X and x(h) = (h/Aa)"/®1,

whence (ii) readily follows.

Conversely, let (i) and (ii) hold. Let then f be the inverse function of h on
[0, ), so that, in particular, f(0) = 0. Then, by virtue of our assumption,

F.(f(u)) = P[X < f(u)] = P[h(x) < u] = 1- exp(-A'u®). (4.60)

From the definition of R(x) as —log[1-F(x)], we have therefore that
R(f(u)) =2 .

flu)

Since R(x) = [h, (t)dt, we have [h, (t)dt= A'u® so that
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[vf'(v)dv = A'u" whence f'(u) = a’ad A u® 2.

This implies that f(u) = a’A’'u®'/a-1, using f(0) = 0 and «’ > 1. Substituting
this back in (4.60), we see that X ~ Weibull(a, 1), where o and A are related to

o'.A" as stated.

A distribution function with probability density function f(x) given by

B

@)

may be called a generalized gamma distribution and denoted by GG(a,$,A). It
is clear that X ~ GG(a,fB,A) if and only if X" ~ G(B,L). Also B = 1 corresponds

X" exp(-Ax"),x >0,

to the Weibull distribution, a = 1 to a Gamma distribution, and a = = 1 to an
exponential distribution.

Let Fy be the class of all distribution function’s with support c [0, «) and
having a density function f with the properties

(1) f 1s continuously differentiable on (0, ),

(if)  xf(x)>0 as x—>0", x' ™*f(x)—>0 as x—>w.

(iil) (a) [x*f(x)dx=1, (b) [x™f(x)dx=2.

Theorem 47. Among all members of F,, Fisher-information is minimized by

GG(a,1,1).
The maximum entropy distribution is the Weibull distribution

Theorem 48. [f X > 0, then among all distributions for X with ElogX= g; and
EX* = g, (for an arbitrary, fixed a >0), where g,,g> are (admissible)
constants, the entropy of the distribution is maximum for an X whch follows a

GG(a,B,4) distribution (with f and A determined by g, and g3).
Corollary: In particular, the maximum entropy distribution is the Weibull

distribution if g2""® = (EX®)"® = ) exp(g,+v/a), where v is the Euler’s

constant.

103



Scholz (1990) presented a characterization of the three parameter Weibull
distribution given in terms of relationships between particular triads of
quantiles as delineated by the set C below. These relationships stipulate that a
certain function of the quantile triad is always proportional to a second
function of the same triad, the proportionality factor remaining constant over
all such triads. Of course, this characterization of the three parameter Weibull
distribution is easily specialized to the case of a two parameter Weibull

distribution.

In order to state the characterization theorem the following notation is
introduced. Let

C={(u,v,w):0<u<v<w<l, log(1-u)log(1-w) = (log(1-v))*}

And let F be a cumulative distribution function with quantiles

xp(u) = x(u) = F"(u) = Inf{x: F(x) 2 u} for 0 <u < 1. For the three parameter

Weibull distibution function, defined for a > 0, § > Oand AeR by

B
Gx)=1- exp(—(%ﬁ) ] forx > A

\
and G(x) = 0 for x <A, it is known that for same fixed t, namely t = A, the
following relationship holds between its quantiles, x(u) = xg(u):
x(u)x(W)-x*(v) = t(x(u)+x(w)-2x(v)) for all (u, v, w) € C
(4.61)
The following theorem states that this relationship actually characterizes the

three-parameter Weibull distribution.

Theorem 49. Any random variable X with cumulative distribution function
F(x) and quantiles xp(u) = x(u) satisfying the relationships (4.61) is either
degenerate or X has a three parameter Weibull distribution with A = 1.

Of course the degenerate case could be subsumed in the Weibull model with a
>0.

Proof:

The proof consists of the following steps.

1. The support of F cannot be (-0, ).

2. The support is finite only in the degenerate case.
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3. Assuming that the support is [a, ©) or (-0, a] it follows that a = t.

4. Finally, it is shown that the quantile relationship (4.61) translates into a
linearity relation from which the Weibull characterization follows.

Proof of 1: This follows by contradiction upon dividing the relation (4.61) by

x(u) x(w) and letting u—0 and w—1 while holding v fixed.

Proof of 2: Suppose F has finite support [a, b]. Let Y = X — a with

corresponding quantiles y(u). The quantile relation (4.61) translates to

y()y(w) = y2(v) = (t — a)(y(u)+y(w) - 2y(v)) for all (u, v, w) e C.

Writing s = t — o and letting u—0 and w—1 while holding v fixed, with y(v) =

y. leads to the following equation

-y* = s(b-0-2y) with solutions y = s + /s* - (b - a)s

For any s this equation yields at most one solution y € [0.b — a]. This implies

the degenerate case of the characterization.

Proof of 3: Dividing the relationship (4.61)by x(w) (or x(u), whichever

becomes unbounded) and letting u—0 and w—>1 while v is fixed one obtains

t=a.

Proof of 4: Proceeding as in step 2, the quantile relation becomes

y(u)y(w)-y>(v) = 0 for all (u, v, w) € C.

Let h(z) = log(y(p™'(2))) for all z € R, where p(p) = log(-log(1 — p)). For all

(u, v, w) € C one now has

h(p(u)) + h(p(w)) = Zh(p(v)) and p(u)+p(w) = 2p(v).

this implies the following functional equation

for all z,,z, € R.

h(z, + Z}J ] h(z,) + h(z,)
2 2

Since h(z) is bounded on any finite interval it follows that h is convex,

concave and continuous, thus linear, i.e., h(z) = A +Bz with B > 0 since h(z)

is strictly increasing. Hence

y(p) = exp(h(p(p))) = exp(A + Bp(p)) = exp(A)(-log(1-p))® ,

which is the p-quantile of a two parameter Weibull distribution with a -

exp(A), and B = 1/B. Hence x(p) = y(p) + A is the p-quantile of G(x).
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Chapter 5

Applications of the Weibull Distribution in

lab experiments

5.1 Introduction

Pike (1966) suggested a model to describe the process underlying the phenomena
of carcinogenesis, that is the time of occurrence of cancer in a tissue follow a
weibull distribution. And Berry (1975) examined Pike’s model from the
viewpoint of experimental design. Two design problems are discussed in his
paper, the first concerns whether a time has been reached when it is optimum to
terminate an experiment by sacrificing all surviving animals, and the second is
the design of an experiment to test if the carcinogenic effect is related to the age
of injection. This chapter includes a brief review of these papers illustrating only

a sort part of the Weibull’s distribution application field.
5.2 Weibull Distributions for carcinogenesis experiments

Pike (1966) suggested a model to describe the process underlying the phenomena of

carcinogenesis. Pike’s model will be described next.
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Suppose that for any given normal cell (and its linear descendants in the tissue

under consideration) the comulative distribution function (cdf) of its time to
occurrence is F(x), and that the tissue is originally composed of n independent

cells. The cdf of the time, X, , to occurrence of cancer in the tissue is then

prob(X, < x) = Gu(x) = 1 - [1 - F(x)]"

with the associated probability density function (pdf)

gn(x) = nf(x)[1 - F(x)]™"

In this case n is very large and this suggests that although both F(x) and n are
unknown the asymptotic theory of extreme values which deals with the form of
Gn(x) as n—>co0 may provide some guidance in a search for plausible distributions of
time to occurrence of cancer in a tissue.

There are three possible asymptotic distributions of G,(x) :

G(x) = 1 —exp[-exp[a(x~u)]] a>0,-00<x<om
G(x)=1-exp{-[(s-V)/(s—x)]*} k>0, x<s,v<s.

G(x) = 1 —exp [-b(x - w)k] k>0, x 2w, b > 0. (weibull distribution).

The second asymptotic distribution is not applicable to this situation. For the
conditions required for either the first or third asymptotic distributions to hold F(x)
must be extremely smooth over the range of interest and F(o) must equal 1.

One may hope to have most success in applying these distributions to experiments
in which the carcinogenic insult to the experimental animal was applied
continuously (or regularly) until the appearance of a tumor or death, and to have
some success in experiments in which the insult was delivered for only a short time
stopping before the first possible time of tumour appearance. Experiments in which
the insult is delivered over a limited period would, however, lead to a sharp change
in F(x) at (or shortly after) the time the insult was stopped, and the asymptotic
distributions would, therefore, not be expected to apply. The theoretical derivation
of these two distributions also shows that one may more legitimately hope

for success when the experiments are conducted with inbred strain of animals of a
single

sex and where the experimental conditions of insult are finely controlled.

The author has chosen the third asymptotic distribution to the analysis of certain
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experiments. He chose this distribution because human mortality data on certain
cancers show just the age specific mortality pattern that the third asymptotic
distribution has, that is mortality rates rising as a power of age, and because certain
animal experiments have been shown to behave in this way too. The parameters
have a relatively clear cut interpretation with k and w being independent of the
carcinogenic insult which is measured by the parameter b

Consider experiments of the type in which a comparison is made between a number
of groups of mice, where the groups are distinguished though being subject to
different carcinogenic insults (e.g. different intensities of carcinogen or different
sized areas of tissue exposed).

The individual mice fall into two categories depending on their manner of ‘death’.
Category 1: those mice showing the accepted criteria for diagnosis of carcinoma (in
the relevant tissue) before they die (or removed from the experiment for any other
reason).

Category 2: those mice not in Category 1

The time (after the start of the experiment) x at which the carcinoma was diagnosed
is recorded for each mouse in category 1 and time y of removal from the experiment
(by death or otherwise) is recorded for each mouse in category 2.

So that writing the general cdf as

G(x | k, w, b) = 1 — exp [- b(x — W)*]

with associated pdf

g(x | k, w, b) = bk(x — w)* ! exp [- b(x — w)¥]

The contribution to the likelihood function from a mouse in category 1 diagnosed at
time x is given by g(x | k, w, b), while the contribution of a mouse in category 2
‘dying’ at time y is

1 -G |k,w,b).

The general experiment may be described as one in which r groups of mice are

insulted with different carcinogenic stimuli. In general the cdf for the i-th group
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may be written G(x | k, w, b;) so that the contribution to the likelihood function

from this group is

S,

{b,. X, w ex;%b x - ]} ; {exl{—b(y ]} (5.1)

J=1 j=1

where in this group s; is the number of mice in category | and t; the number in
category 2, x;; is the time of diagnosis of carcinoma for the j-th mouse in category
I and yj;; the time of ‘death’ of the j-th mouse in category 2. Let L; be the natural
logarithm of 95.1) so that the complete likelihood function L(k, w, by, by, ..., bj) =
L(k, w, b) may be written

Lk, w, b) =
rZLi =S5, Inb, +(lnk)§r:szln(x,j —w-3h, [Z(xl —wf +i(y,.j —w)*
=1 i=1 i=l j=1 =1 | j=t Jj=1 L

We will deal only with the case where k, w are known. Then,

OL(k,w,b s, 2

oLk w.5) _ Zumo -3, - wy*
abl I Jj=t

so that,

b 5

3@, - -2, -

5

5; has the approximate variance ——and is uncorrelated with l;,- Gi=j) 4
s

!
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The most common problem faced in carcinogenecis experiments for which the
above model might be appropriate involves testing the ‘goodness of fit’ and then
testing whether two or more b;’s are equal, that is whether their treatments have
equal effect.

‘Goodness of fit” may be tested graphically by plotting the observed proportion
survivors against their predicted values. A chi-squared ‘goodness of fit’ test may
also be made. If, however, the number of groups of animals is large, this test will
be difficult to interpret since the number of degrees of freedom will be
determined only within a wide range of values, unless the parameters themselves
are calculated using the data grouped as for the chi-squared test itself.

Tests of special assumptions about the parameters can, of course, be made by

standard likelihood ratio method.

This model (Pike’s model) describes adequately the observed age distribution of
many human cancers (Doll(1971)), of infiltrating skin cancers in experimental
mice (Peto et.al(1972)) and of all skin tumors in experimental mice (Lee et.al
(1971)). Moreover, the model has been successfully applied to experiments with
rats in which an intrapleural inoculation of asbestos resulted in tumors,

mesothliomas, of the pleura (Berry,et.al(1969) and Wagner et.al (1973)).

In Pike’s model when the values of k and w are known, maximum likelihood
(ML) estimation of, comparison of, and significance levels for the various
constants of proportionality are straightforward. Peto (1973) suggested that
multiple regression models by ML can be fitted, in which the log of the constant
of proportionality is a linear combination (with unknown coefficients) of one or
more explanatory variables.

In standard multiple regression techniques to compare two hypothesis in one of
which the regressor variables from a subset of the regressor variables in the
other, one tests differences in sum of squares for the two ML solutions. To
compare two such hypotheses with Weibull methods, one compares the two

maximum likelihood’s, taking twice the difference as being distributed
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approximately as chi-squared with degrees of freedom equal to the difference in

the number of regressor variables.

A numeric example
Pike’s model will be fitted to a two group experiment of Gliisksmann and Cherry
(of Stangeways Laboratories Cambridge) on vaginal cancer in female rats
insulted with the carcinogen DMBA.
The two groups were distinguished by pretreatment regime. The data are as
follows (x’s and y’s given in days after start of treatment with DMBA):
si=17,4=2
X1i= 143, 164, 188, 188, 190, 192, 206, 209, 213,

216, 220, 227, 230, 234, 246, 265, 304
yii = 216, 244
s2=19,t, =2
X2i = 142, 156, 163, 198, 205, 232, 232, 233 ,233,

233, 233, 240, 261, 280, 296, 296, 323
y2i = 204, 344.
With w = 100 and k = 3 assumed known we find

b, =4.51x107 and b, =2.38x107
with respective approximate variances 1.19x107™" 2.99x107"

The log-likelihood function equals to —191.96.
With w = 100 and k = 3 assumed known and b; = b, we find

b=3.07x10"
with log-likelihood function equal to —-218.63
The test for b; = b is thus 2x(-191.96+218.63)~ X,2=53.3

Thus the two treatments have different effect due to the different pretreatment

regimes.
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5.3 Design of carcinogenesis experiments using the

Weibull Distribution

Berry (1975) examined Pike’s model from the viewpoint of experimental design.
Two design problems are discussed in this paper, the first concerns whether a
time has been reached when it is optimum to terminate an experiment by
sacrificing all surviving animals. This question is concerned in terms of return
per unit cost, and it is shown that the optimum strategy is to allow all animals to
live out their lives. The second example is the design of an experiment to test if
the carcinogenic effect of asbestos is related to the age of injection, by allocating
animals to two groups, one to be injected immediately and the other when older.
Under certain assumptions it is possible to compute the optimum delay period
before the second group is injected and the optimum distributions of animals
between the two groups.

The approach based on the Weibull distribution was introduced for the case where the
dose is applied continuously and Peto & Lee (1973) considered it unlikely to be relevant
where a single application is given, and observations are continued for a long time
thereafter. Superficially, experiments involving a single injection of asbestos into the
pleural cavity belong to the later category, but nevertheless the author used an analysis
based on the Weibull distribution for two reasons. First, asbestos is not easily destructible
and remains in the animal for some considerable time after injection, so that the animal is
exposed for more than a sort period of time. Secondly, as already have been mentioned
the Weibull distribution fits the data (Berry and Wagner, 1969) and this overweighs any
theoretical considerations. This approach is only applicable to tumours, which either
result in death, e.g. a mesothelioma, or are observable in life, e.g. a skin tumour, and not

to tumours which are only observed incidentally after death from some other cause.

Suppose that animals are continuously exposed to a carcinogen and as a result are at risk
of developing a specific type of tumour. This tumour may occur during an animal’s life
or the animal may die, or be killed, before the tumour has occurred. For the sake of

brevity the specific type of tumour will be referred to as simply a tumour, and the
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occurrence of death without the specific tumour as due to natural causes. The risks of a
tumour developing or death occurring due to natural causes are assumed to be
independent, and at time t days after first exposure the tumour incidence rate in surviving
animals is ck(t - w)*! for t > w, and zero for t < w.

This formulation leads to the time of tumour occurrence having a Weibull
distribution but, as demonstrated by Peto and Lee (1973), the model is
overparametrized since the estimates of k and w are highly interdependent.
Fortunately k and w may be dependent only on the general type of carcinogen
and tumour, and be independent of dose, and if previous data are available may
be assumed known. Attention will be restricted to this case and the tumour
incidence rate rewritten as cy(t). Let f(t) be the probability density of the times
of tumour occurrence in the absence of mortality from other causes, and let F(t)
be the corresponding comulative probability distribution. Then

cy(t) = f(t) / {1-F(1)},

and by integration

1 — F(t) = exp{-cC(1)},

where

C(H= j y(u)du.

Suppose that in a group of n animals, m developed the tumour and the remainder
died of natural causes, thus providing right-censored information on the time of
tumour occurrence. Then the log likelihood L is given by

L=mlogc + X" log{y(t)} = cX C(1),

Where X' denotes summation over animals with the tumour and X over all

animals. Hence the maximum likelihood estimate of ¢ is é:m/ZC(t) with

asymptotic variance c¢’/E(m), where E(.) denotes expected value. Therefore

mortality from natural causes reduces the accuracy of the experiment by
decreasing F (m). For the purpose of experimental design it is necessary to know

something about the natural death rate so that experiments may be designed to
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give a required accuracy. Suppose that the natural death rate is y'(t) which is
such as to lead a Gomprtz distribution for the times of deaths in the absence of
exposure to carcinogen. That is, y’(t)zexp(a +bt), where a and b are
parameters. Then the total death rate is cy(t)+y’(t). We then have that the
expected proportion of animals surviving to t, S(t), is given by

S(t) = exp{-cC(t) - C'(1)},

Where C(t) is defined similarly to C(t). Thus there is an explicit expression for
the expected number of animals surviving at any time, but the number expected

to develop the tumour by t, m(t), may only be obtained by numerical integration,

E{m@®)}= n]S(u)cy(u)du. (5.2)

5.3.1 Choice of Duration

In an experiment of the type we are considering suppose that, instead of allowing
each animal to live out its life, the experiment is terminated at a predetermined
time T by killing all survivors (this is a common practice). A tumour in an early
stage may be discovered in an animal so sacrificed, but it is not clear how to take
account of this in the analysis, and Lee & Peto (1970), who terminated an
experiment with mice after 18 months because of an epidemic, decided to ignore
it. Therefore sacrificed animals provide right-censored information as if they
died of natural causes at the time.

We consider whether a time is reached when it is optimum in terms of return per
unit cost to terminate the experiment. The cost of carrying out an experiment will
be taken as having two components, a fixed overhead per animal and running
expenses. The former consists of the cost of obtaining the animal, applying the
treatment, carrying out the post mortem, etc. the running expenses consist of the
cost of food, space in the animal house, cleaning out, etc., and are taken as a

daily rate per animal. The cost function is probably a reasonable assumption for
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an animal house in which there is a continual input of new experiments, as space
becomes available, although one detail makes it not quite appropriate to our
situation. That is, that our rats are caged in fours and therefore the average time
a cage is in use is not proportional to the mean survival time, but to the mean of
the maximum of four survival times. However, the effect of this may be shown to
be negligible.

The return will be defined in terms of the accuracy with which the tumour rate is
estimated, i.e. as Fisher’s information or the reciprocal of the variance of ¢,
which is proportional to E{m(T)}. This may be criticized since it is assumed that
information is of equal value independently of when it becomes available. It
might be considered more realistic to place more value on information, which is
available early.

Without loss of generality let the running expenses be one unit per animal per
day and the overhead cost be X units per animal. Then the total expected cost is
n{X+s(T)}, where s(T) is the expected survival time in days when the
experiment is terminated at time T. the cost per unit of information, K(T), is
given by,

K(T) = n{X +s(T)}/E{m(T)} = (5-3)

:{X+ JS(u)du} / jcy(u)S(u)du (5.4)

If y (u) is monotonically increasing in u then it may be seen from the above, or
alternatively may be provided by differentiation, that K(T) has no true minimum
but declines monotonically in T. the condition that y (u) increases with u is
certainly true for the Weibull case and is likely to be so in all practical situations
with a homogeneous group of animals. Therefore K(T) is least when all animals
are allowed to live out their life.

If the efficiency of termination at T, relative to allowing all animals to live out
their life, is denoted by R(T) then

R(T) = K(0)/K(T) (5.5)
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It has been shown above that R(T) approaches one asymptotically with
increasing T.

In some circumstances it would be useful to know how quickly the asymptote is
approached. This can be obtained by evaluating (5.4) for a known natural death
rate and a specified tumour rate. It is also necessary to specify X but limits can

be given for R(T) without doing so since from (5.3) and (5.5)

! X [E{m(w)}]+ 5(0) [E{m(oo)} s(T)}

R(T) X +s(o)| E{m(T)} | X +s(0)| E{m(T)} s(0)
a/R(T'| X =)+ (1-a)/R(T | X = 0),

where a= X|{X+s(w)} and therefore 0 < a < 1. Thus

R(T|IX = 0) 2 R(T) 2 R(T|X = o ).

If we suppose that X is known and the other parameters have been given values

estimated from experimental results. Then we can plot the relative efficiency

against time and against the proportion of animals expected to have died.

The author made these plots for 4 different values of c chosen to give expected

percentages of 10, 30, 50 and 70 developing the tumour, if the experiment was

terminated prematurely. He observed that the variation is wide at the first plot

but it is much reduced at the second. And also that if an experiment is terminated

prematurely then the loss in efficiency is expected to be a little less than the

proportion of animals alive at that time.

5.3.2 Age at Exposure

If individuals are exposed to a carcinogen then an unresolved question is whether
the age at first exposure has any effect on the subsequent tumour incidence rate.
To investigate this using asbestos injection in rats, the experimental strategy is to
divide a group of young rats into two groups. Group 1 is injected with asbestos
immediately and group 2 after a delay. There are three decisions to be made in

specifying the design. First, what size of experiment is necessary? Secondly,
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what should be the relative size of the two groups? Thirdly, what should be the
length of the delay period? The longer the delay period the longer the effect to be
measured, but the greater the dilution of group2 though natural mortality.

It is reasonable to plan on the basis that any effect of the delay in injection is on
the parameter ¢ of the Weibull distribution, i.e. at any given time after injection
of the respective groups, the tumour incident rate in group 2 is A that of group 1.
It is required to make inferences on A and in particular to test whether A = 1.
Then the log likelihood is given by

L = (m; +my)logc + malogh — cZ;C(t) — AcZ,C(t)

where 2i indicates summation over group | and t is measured from the time of

injection of the group concerned. The maximum likelihood estimates are,

P m, +m,
s, C(1)+A%,C()
7_mE,CQ
m,Z,C(t)

Evaluation of the log likelihood with both ¢ and A estimated by maximum
likelihood and also with A fixed as 1, and taking twice the difference, gives a test

statistic, z?, for testing the hypothesis that A = 1,

- A
z> = 2m2logd -2(m, +m2)log{-—sw}

Am, +m,

(5.6)

which asymptotically should be distributed as chi — squared with one degree of
freedom.

To proceed further it is necessary to specify values for a, b, ¢, k and w.
Reasonable values a = -11.9633, b = 0.008627, ¢ = 1.37 x 107, k = 3 and

w = 350, are estimated from

an earlier experiment injecting the same material into young rats. For any A the

expected values of m; and m> may be computed from (5.2) and insertion of these

for m; and m, and A for A in (5.6) yields an expected value of z°.
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Now if A=1. then A would be dependent on the delay, d. in the absence of any
information on the form of relationship the author postulate A = 1 + Bd and
consider tow values of B, 1/350 and 2/350, that is A approximately equal to 2 or 3
with a delay of one year. Then z was evaluated for d = 150(50)350 and for an

experiment of 100 animals with n; = 20(2)60 in group 1.

@)

(b)
35
B=2/350 3 B=2/350
%
B=1/350 At
1.5 V\ 15 __,.r-—-—-—a.._.___\\hhs = 1/350

14 1- .

150 200 250 300 350 20 40 60

Delay(days) Nurrber of animals in

group 1 out of 100 (n1)

Figure 5.1 ‘Expected’ value of test statistic z: (a) maximized with respect to n),

plotted against delay, (b) for a delay of 250 days, plotted against n;.

The highest values of z with respect to n; are plotted against d in figure 5.1 (a).
for both values of B the optimum delay is between 250 and 300 days but, as the
exact choice is not very critical, is taken as 250 days. In figure 5.1 (b), for a
delay of 250 days, z is plotted against n;, and the optimum value of n; is 34 for
both values of B. The final decision is to choose the size of the experiment to
give a 90% chance of detecting an age effect by a two- sided significance test for
the case B = 2/350, that is A = 2.43. This requires z = 3.24 compared with 2.73 in

figure 5.1. Therefore a total of 141 animals are required.
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5.4 Other Applications of the Weibull Distribution

As mentioned earlier in Chapter 3 the fact that the hazard rate of the Weibull
distribution is a decreasing function when the shape parameter B is less than 1. a
constant when 3 equals 1 (the exponential case), and an increasing function when
B is greater than 1. has made this distribution highly useful as a lifetime model.
Naturally numerous papers appeared dealing with this particular type of
application and the analysis of data resulting from such life tests.

Despite a warning issued by Gorski (1968) on the ‘Weibull eurhoria’ many more
papers have appeared since 1970 exploring several new and interesting
applications of the Weibull distribution. Barros and Estevan (1983) and Tuller
and Brett (1984) have discussed the Weibull distribution in the analysis of wind
speed. Zhang (1982) considered the Weibull distribution in the analysis of flood
data, while Selker and Haith (1990) applied the distribution to model the rainfall
intensity data.

The Weibull model was utilized in many analyses relating to health sciences.
Dyer (1975) applied the distribution to analyze the relationship of systolic blood
pressure, serum cholesterol, and smoking to 14-year mortality in Chicago Gass
Company, coronary and cardiovascular-renal mortality were also compared in
two competing risk models in this study. Potier and Dinse (1987) made use of the
Weibull distribution in their semiparametric analysis of tumor incidence rates in
survival/ sacrifice experiments.

In addition to the above-mentioned applications, the Weibull distribution also
found important uses in a variety of other problems. For example, Wong (1977)
illustrated the uses of the distribution in analyzing hydrometeorogical data. The
application of the Weibull distribution to the analysis of the reaction time data
has been introduced by Ida (1980). Barry (1981) used the distribution as a human
performance descriptor, Kanaroglou, Liaw and Papageorgiou (1986) applied it in

the analysis of migratory systems.
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