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ABSTRACT
Animal movement data derived from satellite telemetry have shown a consid-

erable increase in recent years due to technological advances in the field. Global
positioning system (GPS) is the most modern technique for determining move-
ments, home range and habitat use of animals in the wild. Miniature transmitters
housing a GPS are fitted to study animals and communicate locational information
of these individuals via various means such as satellites, GSM network, blue-tooth
technology, depending on the type of the transmitter. We examine the use of GPS
methods to estimate the home range of a greylag goose (Anser anser rubrirostirs)
in Prespa, Greece. Our goal was not to provide a complete comparison of all
methods, but rather to use freely available methods and software to highlight the
challenges of estimating home range with large GPS datasets. Our review de-
tailed proposed methods to use on autocorrelated locations that are common in
GPS datasets and explain the abilities of software, or lack of theory, to calculate
home range of animals. Specifically we focused on: the Kernel Density Estima-
tion method (KDE), the Brownian Bridge Movement Method (BBMM) and its
improvement, Dynamic Brownian Bridge Movement Method (dBBMM) as well
as, comparison of these methods in order to estimate the home range of the greylag
goose. Furthermore, we methodologically extend the Brownian Bridge Movement
Method to estimate an additional variance parameter typically assumed known in
applications. The variability in time lag between successive locations was impor-
tant in our data-set due to solar-powered GPS and the BBMM method resulted
in producing larger home range size than the KDE with reference bandwidth,
which fails to take into consideration the time lag. In addition, dBBMM slightly
outperformed the BBMM and the home range polygons generated with plug-in
bandwidth appeared fragmented and possibly underestimated the home range.
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Chapter 1

Introduction

1.1 Introduction
Recent advances in global positioning system (GPS) technology for monitoring
home range and movements of wildlife have resulted in locations that are nu-
merous, more precise than very high frequency (VHF) systems, and often are
autocorrelated in space and time (Walter 2011).

The typical approach to analyse and visualize the area used by a tracked animal
is to convert its movement into a 2-dimensional spatial representation originally
referred to as a home range (Burt 1943). Home range is defined as "that area
traversed by the animal during its normal activities of food gathering, mating and
caring for young. Occasional sallies outside the area, perhaps exploratory in
nature, should not be considered as in part of the home range" (Burt 1943). The
need for performing statistical analyses of home ranges has led to more explicit
definitions such as utilization distribution (UD), defined as "the two dimensional
relative frequency distribution for the points of location of an animal over a period
of time" (Van Winkle 1975). Thus, the utilization distribution is a probabilistic
model of home range that describes the relative amount of time that an animal
spends in a place. Within such a framework one can then define home range
as "the smallest sub-region which accounts for a specified proportion of its total
utlization" (Jennrich & Turner 1969).

The first methods used to estimate UDs assumed simple bivariate normal mod-
els (Calhoun & Casby 1958, Jennrich & Turner 1969). Don & Rennolls (1983)
used a mixture of bivariate normal distributions that allowed for the possibility
of multimodality. It is possible to think of other, more sophisticated models that
could be used to describe the UD. However, it is also worth keeping models as
simple as possible, but still providing a reasonable fit to the data. Because of the
processes that give rise to home range area usage, it is not difficult to imagine
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that UDs might arise that would be difficult to model using standard bivariate dis-
tributions (Dixon & Chapman 1980, Anderson 1982). For this reason, when a
simple parametric model is inappropriate or difficult to specify, there is a need for
nonparametric estimation approaches (Worton 1989).

In recent years UDs are commonly estimated with kernel methods using a
collection of spatial points that ignore the temporal structure (Worton 1989), re-
quiring individual points to be either sampled from a track at regular intervals or
temporally independent (Fieberg 2007; Fieberg 2010). However, kernel methods
have not been useful for modern GPS data sets because of violation of indepen-
dence assumptions of the location data and for errors in proper bandwidth selec-
tion. Thus, there is a need to develop new UD methods that can accommodate the
more detailed animal tracks provided by modern GPS tracking (Kie 2010).

The recent introduction of the Brownian bridge movement model (BBMM) im-
proves on the traditional UD statistics by incorporating the temporal structure of
tracking data and explicitly modelling the movement path (Bullard 1999; Horne
2007). The BBMM does this by incorporating both the order of locations and
the amount of time between them. The model approximates the movement path
between two subsequent locations by applying a conditional random walk. The
BBMM has been rapidly adopted because it provides straightforward results, it
is based on clear assumptions, it can incorporate location errors and it is simple
to apply to a wide range of movements (Lonergan, Fedak & McConnell 2009;
Ovaskainen & Crone 2009; Willems & Hill 2009). Consequently, the BBMM has
been recognized for its broad potential in ecological studies, for example, to cal-
culate encounter rates of animals (e.g. Farmer 2010) or model disease outbreaks
(Takekawa 2010).

However, the BBMM has been criticised in the literature as it assumes unre-
alistic homogeneous movement behavior across all data. In particular, the current
BBMM assumes animal movement patterns within a track to follow one constant
property. Kranstauber (2012), based on a previous method Behavioural Change
Point Analysis (Gurarie, Andrews & Laidre 2009), improve the BBMM by al-
lowing for changes in behavior, using likelihood statistics to determine change
points along the animal’s movement path. The dynamic Brownian Bridge Move-
ment Method (dBBMM) proposed by Kranstauber (2012) performs better than or
at least similar (in cases that tracks have low variation in movement patterns) to
the BBMM, but never worse.
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1.2 Application to data
We applied the methods to estimate home range to global positioning system
(GPS) data collected from a male Greylag goose (Anser anser rubrirostirs) tagged
in spring 2014 in Prespa, Greece. The male was fitted with a neckband solar-
powered GPS collar with high accuracy, but produced large data intervals be-
cause of failure to charge the battery. The animal was monitored for four months
(March-June), during which no large trip occurred. A total of 4852 position fixes
were obtained during this period. The time intervals between the fixes ranged
widely from less than 13 minutes to 300 minutes, with the majority (over 80%)
between 12 and 100 min. Thus, the trajectory is irregular, since it is characterized
by a variable time lag between successive relocations. The first six observations
are shown in Figure 1.1.

Although the use of the geographic coordinate system (i.e. latitude, longitude)
is recommended in cases of long distance movements and is often the default ge-
ographic collection method for GPS collar data, some home range software (e.g.
adehabitatHR package in R) requires input coordinate data to be in meters. This
is challenging when global positioning system technology has been used to doc-
ument movements of wildlife that migrate long distances (Mandel 2008; Sawyer
2009; Takekawa 2010). With such movements, an animal could occupy more than
5 Universal Transverse Mercator (UTM) zones during migrations from southern
to northern latitudes (Walter 2011). Therefore, the home range analysis of this
animal might be best depicted using Albers Equal Area or Lambert Conformal.
Home range can be estimated for many animals within their respective UTM zone
if GPS locations do not extend outside of more than one zone (see Appendix B).

Geographic positions were converted to displacements in meters, using the
UTM projection, zone 34N (WGS84) for estimating home range except for the
last method (dBBMM), implemented in the move package in R, that required the
coordinates to be in Azimulthal Equidistant projection (see Appendix C).
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Figure 1.1: The first six relocations of the greylag goose from a total of 4852
relocations.

In the figure below we can see the number of locations (4852), the extent of
the coordinates (map extent), the coordinate reference system (or projection, here
longitude - latitude), the number of columns of the imported data.frame, the names
of the columns of the data.frame and their minimum and maximum values, as well
as the first and last timestamp and the duration of the observation.
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A graphical display of the distance between two successive relocations of the
goose and the time:

Figure 1.2: Plot of the distance that the goose cover and the time.
distance: the distance between two successive relocations, expressed in the units
of the coordinates x,y (here in meters).

As we can see in Figure 1.2, the goose appears to move less than usual in
June. The scientific advisor of the Society for the Protection of Prespa, George
Katsadorakis, informs us that this is expected since greylag geese molt in June and
so do not move considerably until they can fly again. The peak can be either due
to false GPS location or something to disrupt its normal movement for example,
to be chased by another animal.
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1.2.1 The scatterplot
One way to study the home range of an animal is simply to examine the scatterplot
of its location data. This is shown in Figure 1.3 for the greylag goose.

Figure 1.3: The scatterplot reflects the location data collected on the greylag
goose in Prespa, Greece.

This scatterplot is quite useful for qualitatively understanding the goose’s home
range, but it has limitations, as it lacks information on the time order of the data,
on the lengths of time intervals between time-consecutive data points and lacks
quantitative information on the relative amounts of time the goose spends in var-
ious areas (Bullard 1991). In addition, as it is observed in our scatterplot, when
we have large samples, it’s too "busy" to convey information and any overlapping
data points are presented as a single point. Thus, for example, the dense area lo-
cated near the coordinates (507000,4516300) may be even denser than it appears.
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The scatterplot for the greylag goose in google maps is shown in Figure 1.4:

Figure 1.4: The scatterplot in google maps. Longitude/Latitude projection.

1.2.2 The connecting scatterplot
The lack of consideration given to the time order of the data may be partially rec-
tified by drawing a connecting scatteplot of the data (Fig. 1.5). Unfortunately, this
compounds a new problem related to the lengths of time intervals between time-
consecutive data points. The straight lines may be a poor representation of the
true path followed by the goose. Thus, the lines may falsely suggest the goose’s
presence at locations which in fact it avoided. Furthermore, the accuracy of each
connecting line segment in the drawing is related to the goose’s average speed
over the corresponding time interval. When the goose’s average speed is high,
the line segment is more likely to be a good estimate of the goose’s actual path
than when the average speed is low. The connecting scatteplot does not reveal this
information (Bullard 1991).
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Figure 1.5: The trajectory of the goose, monitored every 13-100 minutes from
March to June. The initial and final relocations of the trajectory is indicated in
blue and red, respectively.

In order to eliminate all these problems, we need to estimate the probability
density function, f , of the home range. This function is defined over the space of
all points the goose might possibly visit and has the following properties:

• f is non-negative everywhere;

• The total volume beneath the surface defined by f is equal to 1;

• The volume beneath the surface defined by f and lying over a particular
region R is equal to the probability that the goose is in R at random moment
in time. This may also be thought of as the relative proportion of time that
the goose spends in R.
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Figure 1.6: The connecting scatterplot in google maps. Longitude/Latitude pro-
jection.
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Chapter 2

Kernel Density Estimation

The most acceptable method of home range analysis with uncorrelated locations
is Kernel Density Estimation (KDE). Although this method has been used widely
for GPS technology, it is prone to errors in proper bandwidth selection and viola-
tion of independence assumptions. The issue of autocorrelation or independence
in location data has been dissected repeatedly by users of KDE for decades, and
can be especially problematic with data collected with GPS technology as sam-
pling frequency increases (Walter 2011).

2.1 Method
Intuitively, the kernel method consists of placing a kernel (a probability density)
over each observation point in the sample. A regular rectangular grid is superim-
posed on the data, and an estimate of the density is obtained at each grid inter-
section, using information from the entire sample. The estimated density at each
intersection is essentially the average of the densities of all the kernels that over-
lap that point. Observations that are close to a point of evaluation will contribute
more to the estimate than ones that are far from it. Thus, the density estimate will
be high in areas with many observations, and low in areas with few (Seaman &
Powell 1996).
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Figure 2.1: Construction of a bivariate kernel density estimate: (a) kernel mass
being centred about each observation (b) contour diagram of the resulting kernel
estimate.

The kernel density estimator for bivariate data of the UD is mathematically
defined as:

f̂ (x;h) = n−1
∑

n
i=1 KH(x−Xi),

where H is a symmetric positive definite 2x2 matrix called the bandwidth matrix
depending on smoothing parameter(s) h,

KH(x) = |H|−
1
2 K(H−

1
2 x)

n is the number of data points (relocations), K is a bivariate kernel function, x is
a vector of (x,y) coordinates describing the location where the function is being
evaluated and Xi is a series of vectors whose coordinates describe the location of
each observation i (the ith relocation of the sample).

Several kernel functions can be used in the estimation process provided that:∫
R2 K(x)dx = 1 and K(x)> 0 , ∀x ∈ℜ2

where x is a vector containing the coordinates of a point on the plane.
Usually K will be a radially symmetric unimodal probability density function,

such as the standard bivariate normal kernel density function (Fig. 2.2), which is
defined as:

K(x) = (2π)−1 exp(−1
2xT x).

Another possible kernel is the bivariate Epanechnikov kernel:

Ke(x) =

{
2
π
(1−xT x), xT x < 1

0, otherwise.
The choice of the kernel function has not as much influence on the results as

the bandwidth selection, if the same bandwidth is used (Silverman 1986). Al-
though the Epanechnikov kernel is slightly more efficient, the bivariate normal
kernel is a common choice.
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Figure 2.2: Standard bivariate normal kernel density. The kernel is a probability
density; the volume under the curve integrates to 1.

2.1.1 Bandwidth
The bandwidth (smoothing parameter) h controls the "width" of the kernel func-
tions placed over each point. The use of an identity matrix H∈S, where S ={

h2I : h > 0
}

implies that the kernel placed on each data point is scaled equally in
all directions. This restriction has the advantage that one only has to deal with a
single smoothing parameter, but the considerable disadvantage that the amount of
smoothing is the same in each coordinate direction. This may not be appropriate
if for example the spread of the data points is very much greater in one of the
coordinate directions than the others. At the next level, H∈D, H = diag(h2

1,h
2
2)

one has the flexibility to smooth by different amount in each of the two coordi-
nate directions. However, there are situations where one might wish to smooth in
directions different to those of the coordinate axes. In this case the full bandwidth

matrix , H∈F, H =

[
h2

1 h2
h2 h2

3

]
would be appropriate.

Figure 2.3: Contour plots of kernels parametrised by (a) H∈S, (b) H∈D and (c)
H∈F
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H is of practical relevance to compare the performance of the smaller band-
width matrix classes to the full class F . Obviously there will be some loss of
efficiency due to using fewer parameters, but of interest is just how large this loss
can be. This depends on the particular density shape and orientation with respect
to the coordinate axes. Broadly speaking one often doesn’t lose very much by
using a diagonal bandwidth matrix although, full matrices are necessary in some
circumstances (Wand & Jones 1993).

Just as for many other multivariate statistical procedures, it is probably best
to pre-scale the data to avoid extreme differences of spread in the various coor-
dinate directions. If this done then there will generally be no need to consider
more complicated forms of the kernel density estimate than the form that involves
a single smoothing parameter. An attractive intuitive approach is suggested by
Fukunaga (1972). This approach is equivalent to linearly transforming the data
to have unit covariance matrix, often called sphering the data, applying the sim-
ple kernel estimator to the sphered data and then "backtransforming" to obtain
the density estimator of the original data. In case of multivariate normal data,
sphering is appropriate. However, there is no corresponding theoretical support
for sphering for estimation of general density shapes (Silverman 1986; Wand &
Jones 1995).

The study extent is then gridded with evaluation points in which different ker-
nels are summarized to produce a utilization distribution across the area of in-
terest. The resulting utilization distribution is therefore sensitive to the resolu-
tion of the evaluation grid, and more importantly, to the bandwidth selection (i.e.,
smoothing parameter) of the kernels (Walter 2011).

2.2 Bandwidth Selection
The practical implementation of the kernel density estimator requires the speci-
fication of the bandwidth matrix. This choice is very important, as will lead to
considerably different results in our estimation. In general, the problem of se-
lecting a bandwidth matrix from the data for multivariate kernel estimation has
received less attention in the literature than its univariate counterpart. However,
many of the ideas for selecting the bandwidth of the kernel estimator that exist in
the univariate case can be extended to a multivariate setting. In this section, we
will discuss three of these ideas, in order to estimate the home range of the greylag
goose.
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2.2.1 Hre f erence

It is generally accepted in the kernel literature that the choice of the kernel K is
not as important as the choice of the bandwidth. Thus, for a given kernel and sam-
ple size we can find the theoretical optimum choice of bandwidth by finding the
value of h that minimizes the Mean Integrated Square Error (MISE). The MISE is
defined as:

MISE(h) = E
∫
( f̂ − f )2

where E denotes the expectation with respect to the random observations. For our
bivariate case, the integration is over the plane.

The optimal bandwidth has been determined analytically for standard multi-
variate normal distributions. We will refer to this as the reference bandwidth (hre f )
after Worton (1995). For any number of dimensions of data being analyzed, the
bandwidth for each dimension i (i = 1, ...,d) is defined as: hi = Aσin−

1
4+d , where

A is a constant that tailors the bandwidth to the particular kernel being used, d is
the number of dimensions and σi is an estimate of the standard deviation of the
data in dimension i (Silverman 1986).

Using a normal kernel, it can be shown that for the bivariate normal distribu-

tion with variance-covariance matrix
[

σ2 0
0 σ2

]
, an estimate of the optimum h for

large sample size n is:
ĥre f = σ̂n−

1
6 ,

where σ̂ =
{

1
2

[
σ̂x

2 + σ̂y
2
]} 1

2 and σ̂x
2,σ̂y

2 are the estimated variances of the x
and y coordinates of the relocations respectively. If these variances differ greatly
it may worth rescaling the data so that the variances are equal before applying
a kernel method (Worton 1989). Thus, the bandwidth matrix H∈S, where S ={

ĥ2
re f I2 : h > 0

}
. Also if an Epanechnikov kernel is used, hre f is multiplied by

1.77 (Silverman 1986).

2.2.1.1 Discussion

Animal utilization distributions are seldom close to standard bivariate normal;
they frequently have multiple modes (centers of activity) with differing heights
and widths. Such distributions violate the assumption of normality and result in
the choice of too large a bandwidth if the reference bandwidth is chosen. This
is because the reference bandwidth treats the distribution as if it were a single
unimodal normal and creates an estimate with the amount of smoothing that would
be appropriate for such a distribution. Nonetheless, this bandwidth presents a
plausible initial choice (Seaman & Powell 1996).
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So estimation with hre f typically is not reliable for use on multimodal datasets
because it results in over-smoothing of home ranges and multimodal distribution
of locations is typical for most species (Worton 1995; Seaman 1999). An impor-
tant point to consider with previous investigations on bandwidth selection is that
analyses used simulated data on only 10 - 1,000 locations for assessing reliabil-
ity of hre f (Seaman 1999; Lichti & Swihart 2011). Still, results from simulated
datasets and real-world examples concluded that hre f should not be used on mul-
timodal data typical for most mobile species (Worton 1995; Seaman & Powell
1996; Hemson 2005).

2.2.1.2 Results

Kernel estimators were run on actual location data from a Bluethooth/GPS neck-
band transmitter of a greylang goose. The goose is tracked from March through
June 2014 (sample size: n = 4852). First, consider kernel estimation of the UD
density with hre f bandwidth.

Using hre f and the bivariate normal kernel, we found ĥre f = 187.0615, so

H=
[
(187.0615)2 0

0 (187.0615)2

]
.

Very similar estimates indeed were obtained when the above analysis was repeated
using the Epanechnikov kernel and hre f bandwidth (Fig. 2.4). This supports the
theoritical findings that the precise form of the kernel used is unimportant as long
as the bandwidth is appropriately selected. So for simplicity we used the bivariate
normal kernel.
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Figure 2.4: Comparison of the Epanechnikov (hre f = 331.0988) and the Bivariate
Normal kernel (hre f = 187.0615).

The resulting home range size areas for several probability levels are given
below (the units of the output areas are in km2):

50% 55% 60% 65% 70%
1.293387 1.539189 1.808401 2.118580 2.469726

75% 80% 85% 90% 95%
2.885248 3.376852 4.008915 4.851665 6.226986

Once the utilization distribution has been estimated, the density is converted
into a home range estimate. Contours connecting areas of equal density can de-
scribe any usage area of the home range.

17



The home range in raster mode for several probability levels is illustrated in
Figure 2.5. The UD has modified so that, the value of a pixel is equal to the
percentage of the smallest home range containing this pixel.

Figure 2.5: Estimated home range of the goose using KDE hre f . Contours repre-
sent 50, 80, 95 and 99% of the volume of the home range estimate; data points
mark the GPS locations (extent=0.2,grid=100).

The home range deduced from the UD as the minimum area on which the
probability to relocate the animal is equal to a specified value 0.95 (95%) is shown
in Figure 2.6. Including only, say, the smallest area in which the animal spent 95
percent of its time could exclude "occasional sallies" or areas the animal will never
visit again.
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Figure 2.6: An 95% estimate of the goose home range derived from kernel density
estimation with hre f bandwidth (area=6.226986 km2).

2.2.2 Least Squares Cross-Validation
Another method for choosing the bandwidth is least squares cross-validation
(LSCV). This process examines various bandwidths, and selects the one that gives
a minimum score for the estimated error M(h) (the difference between the un-
known true density function and the kernel density estimate). If a standard bivari-
ate normal density kernel K is used, the value of h is chosen to minimize:

M(h) = 1
n2h2 ∑

n
i=1 ∑

n
j=1 K?

[
Xi−X j

h

]
+ 2K(0)

nh2 ,

where K? = K(2)− 2K and K(2) is a bivariate normal density with variance - co-

variance matrix
[

2 0
0 2

]
.

The intuitive reason this method provides a good estimate is that:
E [M(h)]+

∫
f 2 ≈ E

∫
( f̂h− f )2.

Thus, by minimizing M(h) we would hope to minimize MISE(h) (Worton 1989).
Since the variances in the two dimensions may be unequal, bandwidths are

selected by the following procedure. The data are standardized by dividing each
coordinate by the standard deviation of the observations for that dimensions (Sil-
verman 1986; Fukunaga 1972). Cross validation is performed on the standardized
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data, which allows the program to select a single best bandwidth for the dataset.
Then two bandwidths are created one for each dimension by multiplying the se-
lected bandwidth by the standard deviation of each dimension of the data. This
allows the amount of smoothing in each dimension to respond to the amount of
variation in that dimension, effectively creating an asymmetrically elongated ker-
nel when the data are distributed in an elongated distribution along the x and y
axis. However, the kernel does not respond to diagonal elongation that results
from covariance between the x and y coordinates (Seaman & Powell 1996).

2.2.2.1 Discussion

Both least squares cross-validation (hlscv) and bias crossed validation (hbcv) have
been suggested instead of hre f in attempts to prevent over-smoothing of KDE
(Rodgers & Kie 2010). However, hlscv and hbcv have been minimally evaluated on
GPS datasets because previous literature only evaluated datasets collected on VHF
sampling protocols or simulated data that included at most 1,000 locations and
did not represent actual animal distributions (Worton 1995; Gitzen 2006; Lichti
& Swihart 2011). Least-squares cross validation, suggested as the most reliable
bandwidth for KDE (Worton 1989), was considered better than plug-in bandwidth
selection, discussed in Section 2.2.3, at identifying distributions with tight clumps
of points but risk of failure increases with hlscv when a distribution has a "very
tight cluster of points" (Gitzen 2006; Pellerin 2008; Walter 2011).

2.2.2.2 Results

Using the method LSCV the score function M(h) gave no minimum (Fig. 2.7).
So we aren’t able to find hlscv.

This was almost expected as we know that LSCV method used for the pa-
rameter estimation is sensitive to large samples (sample sizes > 1000 locations)
(Hemson 2005) and here n = 4852. Also, greylag goose’s locations were trun-
cated to a grid with multiple overlapping points so could be classified as having
"very tight cluster of points".
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Figure 2.7: The results of the LSCV minimization.

One way to address lack of convergence due to large datasets is subsampling
(Avery 2011) that can be used for crude estimates of home range using KDE with
hlscv. But subsampling can potentially remove important movement parameters
or habitats used and will not result in the same estimate of home range size as the
complete GPS dataset (Blundell 2001; Pellerin 2008; Rodgers & Kie 2010).

2.2.3 Plug-in bandwidth selection
Most first generation methods of bandwidth selection for density estimation (i.e.,
hlscv) were developed before 1990 but advances in theory and technological capa-
bilities has opened the door for second generation methods (Jones 1996). Second
generation methods, such as the smoothed bootstrap and plug-in methods (of-
ten combined into the solve-the-equation plug-in method; Jones 1996), appear to
be an improved alternative because of better convergence and reasonable trade-
offs between bias and variance compared to first generation methods (Jones 1996;
Duong & Hazelton 2003).
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The plug-in method is based on the estimation of the Asymptotic Mean Inte-
grated Square Error (AMISE), by replacing Ψ by estimator Ψ̂:

ˆAMISE f̂ (·;H) = PI(H) = n−1(4π)−1 |H|−
1
2 + 1

4(vechT H)Ψ̂(vechH),

where Ψ is a matrix of functionals that depend on f and vechH is the vector of
lower triangular half of H i.e., if H is diagonal matrix, vechH =

[
h2

1,0,h
2
2
]

(Duong
& Hazelton 2003).

The optimal bandwidth is :
ĤPI = argmin

H∈F
PI(H)

2.2.3.1 Discussion

Debate about the appropriateness of second generation methods still exists with
some authors claiming the estimates obtained with bivariate plug-in bandwidth se-
lection perform poorly compared to first-generation methods (Loader 1999) while
others showed it performed well even when analyzing dependent data (Hall 1995).

2.2.3.2 Results

For kernel estimation with the bandwidth plug-in we used a diagonal matrix since,
"one often doesn’t lose very much by using a diagonal bandwidth matrix" (Wand
& Jones 1993).

We found ĤPI =

[
3441.018 0

0 2502.519

]
.

The resulting home range size areas for several probability levels are given be-
low (the units of the output areas are in km2):

50% 55% 60% 65% 70%
0.41 0.50 0.61 0.74 0.86

75% 80% 85% 90% 95%
1.07 1.32 1.63 2.09 2.93
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The home range in raster mode for several probability levels is illustrated in
Figure 2.8. The bumps in HPI KDE, are due to a point in an area with a low
concentration of points.

Figure 2.8: Estimated home range of the goose using KDE HPI . Contours repre-
sent 50, 80, 95 and 99% of the volume of the home range estimate; data points
mark the GPS locations (extent=0.2,grid=100).

The home range polygons generated with HPI appear fragmented; they may
be appropriate when studying a species in highly fragmented landscapes such as
urban areas (Walter 2011).
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Figure 2.9: An 95% estimate of the goose home range derived from kernel density
estimation with HPI bandwidth (area=2.93 km2).
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Chapter 3

Brownian Bridge movement method

Global positioning system (GPS) telemetry is increasingly being used to study an-
imal movements because it provides researchers the opportunity to almost contin-
uously follow the movements of individuals for extended periods of time and over
great distances. Using these types of data, Bullard (1999) and Horne (2007) de-
scribe a new model for estimating animal movements based on Brownian bridges.

A Brownian bridge is a continuous-time stochastic model of movement in
which the probability of being in area is conditioned on starting and ending loca-
tions, the elapsed time between those points, and the mobility or speed of move-
ment (Horne 2007).

An animal’s movements define a path (i.e., trajectory), through an area, during
a specified period of time from t = 0 to Ttotal . Let’s assume that continuous ob-
servation of the animal is impossible but n discrete locations along the trajectory
are available. Our interest is in modeling an animal’s utilization distribution (i.e.,
the relative frequency of use of a two-dimensional area A ∈ℜ2) during the period
of observation [0,Ttotal]. Absent any a priori knowledge of movement patterns,
it is natural to model such movement as a random walk or its continuous coun-
terpart, Brownian motion (Fig. 3.1). An animal’s frequency of use in an area is
estimated by treating each of the n locations along the trajectory as known or ap-
proximately known, and using the properties of conditional random walk to model
the expected movement path between each successive pair of locations. When a
Brownian motion is extended for this situation (i.e., conditioned on the beginning
and ending locations of each pair), the corresponding stochastic process is called
a Brownian bridge (Horne 2007; Ross 1983).
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Figure 3.1: Brownian motion from
−→
0 = (x0,y0) to

−→
b = (xtotal,ytotal). A Brownian

motion may be thought of as a two dimensional random walk with infinitesimally
small steps.

Thus, the Brownian Bridge kernel method takes into account not only the posi-
tion of the relocation, but also the path traveled by the animal between successive
relocations (Fig. 3.2).

Figure 3.2: The relocations are located into three patches. However, the order
of the patches is not random. The BBMM allows us to identify that some areas
between the patches are actually not used by the animal (Callenge, 2011).
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3.1 Method
Consider an animal that begins at a point a = Z0 = (x0,y0) at time t = 0 and is
known to end at the point b = Ztotal = (xT ,yT ) at time t = T .

At time t, 0 < t < T , the position of the animal will be unknown, but the prob-
ability density function describing its position is known to be a bivariate normal,
Zt ∼ N(µ(t),σ2

t I2), where
µ(t) = a+ t

T (b−a) and σ2(t) = t(T−t)
T σ2

m.
Here, σ2

m is the variance of the Brownian motion, proportional to the speed of
the animal, while σ2(t) is the variance of the animal’s position as a function of
time between known observations, taking the first observation to be at time t = 0
and the second to be at time t = T . I2 is the 2x2 identity matrix.

The mean of this normal distribution moves from a to b proportional to the
time between a and b

[
i.e.,µ(t) = a+ t

T (b−a)
]
, and the variance equals 0 when

t = 0, increases up to the midpoint in time between a and b, and then decreases
back down to 0 when t = T

[
i.e.,σ2(t) = t(T−t)

T σ2
m

]
.

The probability density of a Brownian bridge with starting location a and end-
ing location b, at any point z in time from t = 0 to t = T , is:

p̂t
a,b,T (a,z) = φ(z; µ(t),σ2(t)),

where
φ(z; µ,σ2) = 1√

2πσ2 exp[−(z−µ)2

2σ2 ].
In addition, in tracking animal movements, location error is a prominent fea-

ture of most techniques for obtaining locations since the location is not known
with absolute certainty. For example, triangulation techniques using radio tags
yield some inaccuracy as does visual observation. Thus, the assumption of uncer-
tain observations may not be unreasonable in estimating an animal’s home range.
Even in instances where absolute certainty is possible in locating the animal, the
assumption of uncertainty is still reasonable (Bullard 1991).

Therefore, consider a Brownian Bridge that incorporates uncertainty in the
starting and ending locations. To take this into account, Bullard (1991) let the
starting and ending points to be random, with probability density functions fa(x)
and fb(y) , respectively, where x and y are position variables (two dimensional
vectors) in ℜ2.

Thus, the probability of finding the animal in region A at time t ∈ [0,T ] is:
P(ZT

t ∈ A) =
∫ ∫

P(Zx,y,T
t ∈ A) fa(x) fb(y)dxdy =

=
∫ ∫ [∫

A p̂t
x,y,T (x,z)dz

]
fa(x) fb(y)dxdy.

To this point a Brownian bridge model has been described that estimates the
probability of the animal being in an area A at a specific time t in the interval
[0,T ] . However, our main objective of study involves the frequency of use of an
area over the entire time of observation.
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First define the indicator function 1A(x) that takes a value of 1 if x is in the
region A and 0 otherwise. The random quantity:∫ T

0 1A(ZT
t )dt

known as the occupation time for the region A, gives the amount of time during
the observation period that the animal spends in A. Dividing by T and taking the
expected value (E), we get the expected fraction of time in A. As a function of the
region A, this yields a probability measure.

Our objective is to find the corresponding probability density function h(z)
such that:

E
[

1
T
∫ T

0 1A(ZT
t )dt

]
=
∫

A h(z)dz.
Indeed,

E
[

1
T
∫ T

0 1A(ZT
t )dt

]
= 1

T
∫ T

0 P(ZT
t ∈ A)dt =

=
1
T
∫ T

0
[∫ ∫ ∫

A p̂t
x,y,T (x,z) fa(x) fb(y)dzdxdy

]
dt =

=
∫

A

[
1
T
∫ T

0
∫ ∫

p̂t
x,y,T (x,z) fa(x) fb(y)dxdydt

]
dz.

Thus, the desired density function is given by:

h(z) = 1
T
∫ T

0
∫ ∫

p̂t
x,y,T (x,z) fa(x) fb(y)dxdydt.

This equation depends on the density functions fa and fb of the initial and final
positions of the Brownian bridge, as well as the variance σ2

m of the underlying
Brownian motion.

When the distribution of location errors, fa and fb, corresponds to circular normal
distributions N(a,δ 2

a I) and N(b,δ 2
b I), respectively, the density function simplifies

to:
h(z) = 1

T
∫ T

0 φ(z; µ(t),σ2(t))dt
where,

σ2(t) = Ta(1−a)σ2
m +(1−a)2δ 2

a +a2δ 2
b

and
a = t

T .

To avoid confusion of variance terms, note that the variance of location error
is symbolized by δ 2. While the above expression does not have an explicit form,
it can be approximated by discretizing time into arbitrarily small intervals of dt.

Model for n locations (n>2)

Consider the situation in which an animal’s movements are monitored over an
extended period of time, resulting in a series of space-time observations (Z0, t0) ,
(Z1, t1),..., (Zn, tn) collected during Ttotal = tn− t0.
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Here the location errors are assumed to be normally distributed. Thus, the
actual position of the animal at time t is modeled as a normal random variable
Zi ∼ N(zi,δ

2
i I2), where Zi is the ith observed location and ti is the corresponding

time of that observation.

Given the n observations during the time interval [0,Ttotal], and accounting for
location error as described, the density function for the fraction of time at z
during [0,Ttotal] is:

h(z) = 1
Ttotal

∑
n−1
i=0

{∫ Ti
0 φ(z; µi(t),σ2

i (t))dt
}

where
Ti = ti+1− ti,
µi(t) = zi +ai(zi+1− zi),
σ2

i (t) = Tai(1−ai)σ
2
m +(1−ai)

2δ2
i +aiδ

2
i+1

ai = (t− ti)(Ti)
−1,

δi is the standard deviation of the location error corresponding to the i obser-
vation, i = 1,2, ...,n, σ2

m is the variance of the underlying Brownian motion and
σ2

i is the variance of the animal’s position as a function of time between known
observations.

Because the BBMM estimates the probability that the animal occurred in an
area over the analysis period, there is a direct application for estimating animal
home range (Bullard 1999; Powell 2000; Horne 2007).

3.1.1 Parameter Estimation
The BBMM is dependent on time-specific location data (geographic position (x,y)
and time stamps (t) of the location), the distribution of location errors and the
Brownian motion variance parameter σ2

m.
The time interval between locations is a factor that can be manipulated by the

researcher. By decreasing the amount of time between successive locations, the
uncertainty of the actual path can be reduced. As the time interval increases, there
is less and less certainty of the actual path and this uncertainty is reflected in a
flatter probability distribution between observed locations.

The location error is assumed to be normally distributed, with mean centered
on the estimated location and variance either known (reported by the manufacturer
of the GPS collar) or estimated via independent experiment. As technological ad-
vances continue to shrink the time between locations, the location error becomes
the ultimate limit on the accuracy of estimating animal movements.
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However, σ2
m which is related to animal’s mobility, is a feature of the particular

animal under observation. An empirical estimate of σ2
m can be obtained from the

location data used to construct the BBMM by assuming that the path connecting
any two observed location is a Brownian bridge.

To estimate σ2
m assume that n is even and consider the independent Brown-

ian bridges on the nonoverlapping time intervals [t0, t2],[t2, t4],..., [tn−2, tn] while
regarding the in-between observation times t1, t3, ..., tn−1 as independent obser-
vations from these Brownian bridges (Fig. 3.3). Under the assumptions of the
Brownian bridge model, this yields a sample of n/2 independent odd observa-
tions, Z1,Z3, ...,Zn−1 that are normally distributed,Zi ∼N(µi(ti),σ2

i (ti)I2) where,
µi(ti) =Zi−1 +ai(Zi+1−Zi−1);
σ2

i (t) = Tiai(1−ai)σ
2
m +(1−ai)

2δ2
i−1 +aiδ

2
i+1;

ai =
(ti−ti−1)

Ti
;

and
Ti = ti+1− ti−1.

This allows us to construct the following likelihood function for odd locations:

L = ∏
n−1
i=1

1
2πσ2

i (ti)
exp
{
−|Zi−µi(ti)||Zi−µi(ti)|>

2σ2
i (ti)

}
. (1)

Figure 3.3: Example of three Brownian bridges connecting even observations at
time intervals [t0, t2],[t2, t4] and [t4, t6]. The in-between observations at times t1,t3
and t5 are independent observations from these Brownian bridges and can be used
to estimate the Brownian motion variance.

Here > denotes transpose. So if the standard deviation of the location error
(δ ) for each location assumed to be known then, σ2

m is estimated by leave-one-out
method (a minimum of three locations is required by the likelihood calculation)
by numerically optimizing the likelihood function over values of σ2

m. Thus σ2
m

contains both information on how straight a movement path is, as well as how
much a path varies in speed and the scale of movements (Horne 2007).
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The interaction between the parameter σ2
m and δ 2 is shown in the following

figure (Fig. 3.4). If the first combination is treated as standard, one notices that
as σ2

m grows larger, the bridge widens, an expected result, since a faster animal
covers more ground than a slower one and is therefore more likely to meander.
So when σ2

m is small, the bridge becomes narrow, since a very slow animal must
take a more direct path. Also as δ 2 grows larger, the bridge approximates a single
bivariate normal distribution because the large uncertainty in the end positions
"drown out" the part of the pdf dictated by the Brownian motion. Finally, when
δ 2 is small, the bridge has pointed ends because of little uncertainty in the end
positions (Bullard 1991).

Figure 3.4: Four graphs of a Brownian bridge from a=(0,0) to b=(1,1) in time
t ∈ [0,1].

3.2 Discussion
The BBMM is based on the properties of a conditional random walk between lo-
cations. Although it is certain that most animals do not move in a truly random
fashion, animals usually stick to their favored haunts rather than randomly wan-
der. In the absence of any other information on how an animal moved from one
location to another, a Brownian bridge can serve as a useful approximation or null
model of the actual movement process. However, violating the assumption of ran-
dom movement between pairs of locations may become much more prominent as
the time interval between locations increases. In this situation, animal movements
between locations separated by long time intervals are more likely to reflect a bi-
ased random walk (i.e, toward the home range center) than a simple random walk
between locations (Horne 2007). Benhamou & Cornelis (2010) developed "Move-
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ment Based Kernel Estimation", an approach similar to Brownian bridge method
that takes place in the framework of the biased random walk model. Here we
weren’t able to illustrate this method, because it needs a variable "activity" which
defines if the animal is resting or not using a sensor detecting head movements of
the animal, included in the GPS collar.

In addition, here a single estimate of the Brownian motion variance parameter
is used for all pairs of locations. Because this parameter is related to the mobility
of the animal, it would be reasonable to consider different variances for different
behaviors. If researchers can a priori identify these periods, separate variance
parameters could be estimated for each period. These different estimates could
then be incorporated into the BBMM to more accurately depict animal movements
(Horne 2007). Kranstauber (2012) developed a new method "Dynamic Brownian
Bridge Method" that improves the BBMM by allowing for changes in behavior.
We will see this approach in the next chapter.

3.3 Results
We assumed that the distribution of location error was circular normal, same stan-
dard deviation in x and y direction and there is no correlation between those two
directions. Although the assumption of normally distributed errors is appropriate
for GPS telemetry, this may not hold for locations collected using other satellite
systems. Furthermore, we used a single estimate of the variance for all location er-
rors to simplify calculations (δ̂ 2 = δ̂ 2

1 = δ̂ 2
2 = ...= δ̂ 2

4852). However, if researchers
have reason to believe that each location has a unique error (Lewis 2007) this can
be easily incorporated into the BBMM.

For the GPS used in the greylag goose study, the standard deviation of the
location error reported by the manufacturer is δ̂ = 2.5 meters.

The Brownian motion variance (σ2
m) was estimated using the method of max-

imum likelihood described above. The optimum value is 10.1291 (Fig. 3.5).
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Figure 3.5: The maximum likelihood estimation of σ2
m in the range [1,20], using

δ̂ = 2.5 meters.

The resulting home range size areas for several probability levels are given
below (the units of the output areas are in km2):

50% 55% 60% 65% 70%
1.452034 1.73604 2.079218 2.471827 2.912095

75% 80% 85% 90% 95%
3.473174 4.098021 4.880006 5.937952 7.762619
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Using these parameters, an estimate of the utilization distribution was deter-
mined using the BBMM. The home range in raster mode for several probability
levels is illustrated in Figure 3.6.

Figure 3.6: Estimated home range of the goose using BBMM. Contours represent
50, 80, 95 and 99% of the volume of the home range estimate; data points mark
the GPS locations (extent=0.2,grid=100).
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Figure 3.7: An 95% estimate of the goose home range derived from BBMM
(area=7.762619 km2).

In addition we examined two different approaches to estimate the telemetry
error from the data itself if this, was unknown. The first approach was to use
the variable "Estimated horizontal accuracy" (HACC) that is available in the data
frame (see Figure 1.1). But for this approach a variable "Estimated vertical ac-
curacy" (VACC) would be needed. Then due to the fact that the location error
is circular normal (same standard deviation in x and y direction and there is no
correlation between those two directions), we could estimate the standard devia-
tion for both directions and average them. The second approach was to use the
log-likelihood function (Eq.1) to estimate both σ2

m and δ with respect to both pa-
rameters, contrary to common practice, where δ is fixed. Figures 3.8 and 3.9
illustrate that the log-likelihood has a ridge shape but both parameters appear to
be estimable. From Figure 3.9, the Maximum Likelihood Estimations of the pa-
rameters are in the range δ̂ = 20− 22 and σ̂2

m > 30. Thus Maximum Likelihood
Estimation of δ̂ is an order of magnitude higher than the reference value δ̂ = 2.5
from the GPS manufacturer. Although there is no obvious reason not to use this
approach, it needs further examination.
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Figure 3.8: Contours of the log-Likelihood function (Eq.1) calculated using the
function "liker" (adehabitatHR package). Brownian motion ranging from
1 to 40, the telemetry error from 10 to 350 (length.out=50) and the number of
contours levels is 50.

Figure 3.9: Contours of the log-Likelihood function (Eq.1) calculated using the
function "liker" (adehabitatHR package). Brownian motion ranging from
1 to 40, the telemetry error from 1 to 100 (length.out=50) and the number of
contours levels is 500.
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Chapter 4

Dynamic Brownian Bridge
Movement Method

The recently developed Brownian bridge movement model (BBMM) has advan-
tages over traditional methods because it quantifies the utilization distribution of
an animal based on its movement path rather than individual points and accounts
for temporal autocorrelation and high data volumes.

However, the BBMM can be improved as it does not take full advantage of the
information contained in animal tracks. In particular, the BBMM assumes animal
movement patterns within a track to follow one constant behavior as defined by
the variance of the Brownian motion (σ2

m), which quantifies how diffusive or ir-
regular the path of an animal is. However, animal movement is actually composed
of a succession of behaviourally distinct movement patterns (Morales 2004; Jon-
sen, Flemming & Myers 2005; Bailey 2008; Gurarie, Andrews & Laidre 2009).
For example, within a day, animals may move in different ways when foraging
versus travelling between sites, and almost all species break their day into periods
of movement and rest (i.e., nocturnal, diurnal). On broader scales many species
change their movement over the year or lifetime, for example migratory animals
move over a small range when breeding but then make long distance movements
for migration. Thus, estimating σ2

m for an entire trajectory will cause this param-
eter to be overestimated in some parts along the trajectory and underestimated in
others. Overestimating σ2

m leads to an imprecision in the UD and thus wider UD
areas; whereas underestimating σ2

m results in a false precision and too narrow UD
areas (Kranstauber 2012).

Recently, Gurarie, Andrews & Laidre (2009) introduced the Behavioural Change
Point Analysis (BCPA) to statistically determine where along an animal’s trajec-
tory changes in the behavioural state occur based on changes in the underlying
movement patterns. The BCPA uses likelihood comparisons in a moving window
to identify change points and quantifies the variation in the underlying movement
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parameters along a trajectory. Kranstauber (2012) proposed a method that com-
bines the BBMM with an approach similar to the BCPA to provide a dynamic and
more accurate estimate of σ2

m along a path. This new movement analysis improves
the estimation of UD, particularly for long complex animal journeys. In addition,
adjusting σ2

m based on changes in movement patterns will provide insight into
changes in behaviour along trajectories, very much like the original intention of
the BCPA (Gurarie, Andrews & Laidre 2009).

4.1 Method
A Brownian bridge UD requires, in addition to the geographic position (x and y)
and the timestamps (t) of the locations, the variance of the Brownian motion (σ2

m)
and a vector containing the standard deviations of the telemetry errors (δ). The
error δ can be derived empirically from field tests and is a property of the loca-
tions. The geographic positions together form the matrix Z, where Zi represents
the x and y coordinates of location i and i ranges from 1 to n.

The variance of the Brownian motion σ2
m is a property of the intervals between

locations, hereafter referred to as segments, and is estimated from the trajectory
for a series of locations Z by maximizing the likelihood function using only odd
values for i (Horne 2007):

L1 = ∏
n−1
i=1

1
2πσ2

i (ti)
exp
{
−|Zi−µi(ti)||Zi−µi(ti)|>

2σ2
i (ti)

}
, (1)

where
µi(ti) =Zi−1 +ai(Zi+1−Zi−1);
σ2

i (ti) = Tiai(1−ai)σ
2
m +(1−ai)

2δ2
i−1 +aiδ

2
i+1;

ai =
(ti−ti−1)

Ti
;

and
Ti = ti+1− ti−1,

where δi is the standard deviation of the telemetry error corresponding to the i
observation, i = 1,2, ...,n.

The above equation assumes σ2
m to be the same along the entire path. How-

ever, Kraustauber (2012) suggested to use Eq.1 on subsections of trajectories to
quantify a localized movement pattern of an animal and thus obtain a more refined
UD.
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The log-likelihood for a sliding window split in two parts changing at location b,
the breakpoint, is calculated by:

log(L2(σ
2
m|Z1,w,b)) = log(argmax

σ2
m,1∈[0,∞)(L1(σ

2
m,1|Z1,b)))+ (2)

+ log(argmax
σ2

m,2∈[0,∞)(L1(σ
2
m,2|Zb,w)))

where
Zi, j is a subset of Z, w is the size of sliding window, b is the location of the

breakpoint within the sliding window and m is the margin size.

To estimate σ2
m for a subsection of a trajectory, Gurarie, Andrews & Laidre

(2009) suggested to use an adjusted version of the BCPA that allows sudden as
well as gradual changes in behavior. Within a sliding window with w locations,
the log-likelihood of using just one value of σ2

m for the whole window (Eq.1) is
compared to the log-likelihood of a window split in two parts (Eq.2) by comparing
the Bayesian Information Criterion (BIC) values.

The procedure can summarized as follows:

1. Select a window of length w (w≤ n). Only odd values can be used because
the likelihood estimation of σ2

m works on the basis of using every second
location as an independent observation.

2. Select a margin of size m applied at start and end of each window in which
no breakpoints could be estimated. A minimum of three locations is re-
quired.

3. Find the potential breakpoints b, m≤ b≤ w−m, again only odd values can
be used.

4. Calculate the log-likelihood using Eq.2 at each breakpoint.

5. Calculate the log-likelihood using Eq.1 for just one σ2
m for the whole win-

dow w.

6. Obtain the Bayesian Information Criterion (BIC) value for each model.

BIC =−2n log(L(σ2
m|Z))+d log(n),

where d is the number of the parameters in each model.

7. The model with the lower BIC is preferred. Thus, we can see if there is a
breakpoint or not.

8. Shift the window forward by one data point and repeat.
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The sliding window will produce several estimates for each segment. These
estimates will be averaged into one mean value per segment.

Also, due to the fact that not the same amount of σ2
m will be obtained at the

beginning and the end of the track, the segments that don’t have the maximum
amount of estimates for σ2

m will be omitted. Valid estimates for σ2
m can be obtained

only in the interval [m,w−m] as there is the restriction that breakpoints can’t
occur in the margin of the sliding window.

Finally, after obtaining σ2
m for segments, the UD can be calculated according

to Horne (2007). The difference it is that σ2
m varies, therefore is refered as dynamic

Brownian Bridge Movement Model (dBBMM).
For example, suppose the window width is 11 locations and we select a margin

of 3 locations (minimum=3), applied at the start and end point of each window in
which no breakpoints can be estimated. The potential breakpoints will be 3, 5
and 7 (Fig. 4.1). We then calculate the BIC value for each model, BICw=3 (d=1),
BICb1=3 (d=2), BICb2=5 (d=2) and BICb3=7 (d=2). The model with the lower
value of BIC is the one preferred. Afterwards, the window will go forward by one
data and the procedure will be repeated.

Figure 4.1: Schematic description of σ2
m estimation in one window of length 11

and margin m=3 for dynamic Brownian bridges.

Increasing the size of the sliding window (enlarging w) increases reliability in
σ2

m estimation at the cost of missing short term changes in the variation parameter.
In the other hand, increasing the margin size (m) enhances the power to identify
"weak" breakpoints at the cost of not detecting breakpoints within the margin. The
choice of m and w should be biologically informed and is determined by the time
interval that changes in behaviour are expected to occur. However, for regularly
sampled tracks, the condition Tchange > wTint should be satisfied, where Tchange
is the smallest interval between expected behavioural changes and Tint the time
between locations. This will ensure that every possible break can be described.
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Window sizes larger than Tchange could result in detecting either the onset or offset
of a behaviour but not both.

It is important to note that optimal values for w and m are track specific and should
not be generalized across projects and/or species. The main consideration should
be the time scale of targeted behavioural changes.

4.2 Discussion
Dynamically estimating σ2

m for Brownian bridges provides two major advances.
First, it improves on the estimation of the UD of the Brownian bridge movement
models for behaviourally heterogeneous animal tracks by relaxing the assumption
of a fixed σ2

m. Second, the variation of σ2
m along a trajectory provides insight

into variation in animal behaviour. Dynamic Brownian bridges method makes
it possible to analyse entire tracks that include different behavioural types. In
addition, dBBMM would also work for situations where the range of behaviour is
unknown and therefore can not be identified by experts (Kraustuber 2012).

Kraustuber (2012) also showed that dBBMM performs better than, or at least
as well as the traditional BBMM with a constant σ2

m . The performance of a
dynamic estimation of σ2

m increased as the characteristics of the path before and
after the breakpoint became increasingly dissimilar. This shows that the dBBMM
and BBMM perform similar on tracks with low variation in movement pattern. It
is important to highlight that the dBBMM produced better estimation of the home
range particularly in cases where locations were randomly sampled, proving its
power for nonregularly sampled tracks (e.g. missed GPS fix attempts).

4.3 Results
We applied the dBBMM to the track of the greylag goose. The trajectory was
obtained using a GPS neckband transmitter that produced 4852 locations over a
duration of 4 months (May to June 2014) in Prespa, Greece.

From the histogram in Figure 4.2 below we can see that the majority of the
time lags between successive relocations is between 1 and 50 minutes. An ap-
proach as suggested by Benhamou (2011) would be to use the median of the time
lags of the goose, which is 20.08333 ∼ 20.08 minutes. Thus, the GPS take ap-
proximately 3 fixes per hour, 72 fixes per day.
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Figure 4.2: Histogram of the time differences between successive relocations of
the goose.

Because no field measurement on the location error was available, it is re-
ported by the manufacturer of the GPS collar to be 2.5 meters. We also assumed
the same error, which is reasonable for GPS quality data (Frair 2010). Although
we used one single location error along the track, there is no technical limitation
to using differing location errors with the dynamic Brownian Bridge movement
model as used by Lewis (2011) in combination with the Brownian Bridge move-
ment model.

In order to detect diurnal changes in the behavior of the goose, we used a
window size of 33 locations with margins of 13 locations, which translated into
a window length of 11 hours (Tchange > wTint = 33 ∗ 20.08 minutes in this case).
It is important to note that regardless of the choice for the size of margins and
window size, the dBBMM generally performs better than the BBMM approach
(Kranstauber 2012).

To assess what a varying σ2
m could reveal about the behaviour of an individual,

we plotted σ2
m over time (Fig. 4.3). The σ2

m estimates from the tracks showed that
variation was low during the June, coinciding with the molting period that goose
can’t fly. These results highlight that a flexible σ2

m estimation can not only be used
for calculating a UD, but can also indicate changes in the behavioural state of an
individual.
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Figure 4.3: The variation of σ2
m over time, where higher values indicate more

irregular movement.

The resulting home range size areas for several probability levels are given
below (the units of the output areas are in km2):

50% 55% 60% 65% 70%
0.6 0.78 1.02 1.33 1.72

75% 80% 85% 90% 95%
2.23 2.89 3.73 4.9 6.82

We then estimated the Utilization Distribution in raster mode, with the dy-
namic Brownian Bridge Method Movement within a raster grid size 100 and ex-
tent 0.2. Also, dBBMM code requires the coordinates to be in aeqd projection,
which stands for Azimuthal Equidistance. This is different to the UTM projec-
tion we have used for the other methods but we weren’t able to change it. The
estimated home range in raster mode for several probability levels is illustrated in
Figure 4.4.
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Figure 4.4: Estimated home range of the goose using dBBMM (win-
dow=33,margin=13). Contours represent 50, 80, 95 and 99% of the volume of
the home range estimate. The extent is 0.2 and the grid is 100.
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Figure 4.5: An 95% estimate of the goose home range derived from dBBMM with
a window size of 35 locations and margins of 15 locations (area=6.82 km2).

An alternative approach would be to use the mean of the time lags of the goose,
which is 36.18822 ∼ 36.18 minutes. Thus, the GPS takes approximately 1.6 fixes
per hour. In order to detect diurnal changes in the behavior of the goose, we used
a window size of 23 locations with margins of 9 locations and recalculated the
utilization distribution. The result is shown in Figure 4.6.
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(a) (b)

Figure 4.6: The home range of the goose using dBBMM with (a) a window size
of 33 locations and margins of 13 locations and (b) a window size of 23 locations
and margins of 9 locations. In both cases the extent is 0.2 and the grid is 100.

A comparison of 50% estimates of the goose home range derived from the
dBBMM with different window sizes and margins is shown in Figure 4.7.

(a) (b)

Figure 4.7: A comparison of 50% estimates of the goose home range derived from
the dBBMM with (a) a window size of 33 locations and margins of 13 locations
and (b) a window size of 23 locations and margins of 9 locations.
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Chapter 5

Comparison of home range
estimators

5.1 Comparison of aggregate data
For comparison purposes, we used the same projection (UTM, zone 34N) for all
methods expect for dBBMM, as the program needed the coordinates to be in aeqd
projection due to technical issues. The results from the different methods are
shown in Figures 5.1 & 5.2 and are in good agreement.

According to the scientific advisor of the Society for the Protection of Prespa,
George Katsadorakis, the most plausible 95% estimate of the home range of the
goose appears to have been produced by the kernel density estimation with hre f
bandwidth (Fig. 5.1&5.2). The home range polygons generated with HPI (plug-
in) appeared fragmented and possibly underestimated the home range. In contrast,
the 95% estimate derived from the BBMM (Fig. 5.1&5.2) appeared to overesti-
mate the home range. Although, home ranges produced from the BBMM and
the dBBMM are in different projections, the dBBMM performed slightly better
than the BBMM. This result however was expected, since according to theory the
dBBMM performs better than -or at least as well as- the traditional BBMM with
a constant σ2

m (Kraustuber 2012).
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(a) (b)

(c) (d)

Figure 5.1: Estimated home range (i.e., utilization distribution) of the greylag
goose. The range in (a)&(b) is calculated using kernel density estimate with: (a)
a bandwidth hre f = 187.0615 and (b) a diagonal bandwidth matrix HPI=diag(
3441.018, 2502.519). The range in (c) is calculated using Brownian bridge move-
ment method with a variance σ2

m = 10.1291 and δ = 2.5 meters and in (d) using
dynamic Brownian bridge movement method with a window size of 33 locations,
margins of 13 locations and δ = 2.5 meters. In all panels the extent is 0.2 and the
grid=100.
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A comparison of 95% and 50% estimates of goose home range derived from
the different methods are shown in Figures 5.2&5.3 respectively. In contrast to the
95% estimate derived from KDE with hre f bandwidth, the 50% estimate appeared
to possibly overestimate the home range. In addition, the 50% estimate produced
by the dBBMM appeared to perform better than the BBMM and KDE with hre f
bandwidth .

(a) (b)

(c) (d)

Figure 5.2: Comparison of 95% estimates of goose home range derived from ker-
nel density estimation with (a) hre f bandwidth selection and (b) HPI bandwidth
selection as well as (c) a Brownian bridge movement model and (d) a dynamic
Brownian bridge movement method.
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(a) (b)

(c) (d)

Figure 5.3: Comparison of 50% estimates of goose home range derived from ker-
nel density estimation with (a) hre f bandwidth selection and (b) HPI bandwidth
selection as well as (c) a Brownian bridge movement model and (d) a dynamic
Brownian bridge movement method.
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5.2 Comparison by month
It is biologically valuable to compare different parts of the track with each other.
For example, how do data points differ between winter, summer or between be-
haviors like migrating, non-migrating, resting?

We split the data into four groups based on the month in order to see how and
if the home ranges differ. Another possible approach would be to split the data
into two groups, one including only the months May and June, as during these
months the goose appears to move less than usual since it is molting. To follow
this approach it would be better if we had the data of one year or at least of six
months.

In Figure 5.4 we provide some descriptive plots of the data from each month
and the scatterplots of the greylag goose locations per month in google maps are
provided in Figure 5.5.

Figure 5.4: Plotting the track and adding the information for each month as
coloured lines, points or circles. The colour corresponds to the month; the size
of the circles represents the relative amount of time per segment.
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(a) March (b) April

(c) May (d) June

Figure 5.5: Comparison of the scatterplots in google maps for (a) March (number
of locations: 1440) (b) April (number of locations: 1405) (c) May (number of
locations: 989) and (d) June (number of locations: 1018).
Longitude/Latitude projection.
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A graphical display of the distance between two successive relocations of the
goose and the time per month:

(a) (b)

(c) (d)

Figure 5.6: Plots of the distance between two successive relocations of the greylag
goose, categorised by month (a) March, (b) April, (c) May, (d) June. The distance
is expressed in the units of the coordinates x,y (here in meters).

Then we calculated the utlization distribution of the home range for each
month using the KDE with bandwidths hre f and HPI (plug-in), the BBMM and
the dBBMM. The M(h) function for LSCV method again gave no minimum for
none of the months.
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5.2.1 March
The results from the different methods for March are shown in Figure 5.7.

(a) (b)

(c) (d)

Figure 5.7: Estimated home range (i.e., utilization distribution) of the greylag
goose. The range in (a)&(b) is calculated using kernel density estimate with: (a)
a bandwidth hre f = 175.8366 and (b) a diagonal bandwidth matrix HPI=diag(
2734.712, 5105.481). The range in (c) is calculated using Brownian bridge move-
ment method with a variance σ2

m = 8.988 and in (d) using dynamic Brownian
bridge movement method with a window size of 35 locations and margins of 15
locations (the median of the time.lags = 20 minutes). Contours represent 50, 80,
90 and 99% of the volume of the home range estimate. In all panels the extent is
0.2 and the grid is 100.
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5.2.2 April
The results from the different methods for April are shown in Figure 5.8.

(a) (b)

(c) (d)

Figure 5.8: Estimated home range (i.e., utilization distribution) of the greylag
goose. The range in (a)&(b) is calculated using kernel density estimate with: (a)
a bandwidth hre f = 262.7008 and (b) a diagonal bandwidth matrix HPI=diag(
7792.99, 4692.919). The range in (c) is calculated using Brownian bridge move-
ment method with a variance σ2

m = 13.2673 and in (d) using dynamic Brownian
bridge movement method with a window size of 35 locations and margins of 15
locations (the median of the time.lags ≈ 20.0333 minutes). Contours represent
50, 80, 90 and 99% of the volume of the home range estimate. In all panels the
extent is 0.2 and the grid is 100.
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5.2.3 May
The results from the different methods for April are shown in Figure 5.9.

(a) (b)

(c) (d)

Figure 5.9: Estimated home range (i.e., utilization distribution) of the greylag
goose. The range in (a)&(b) is calculated using kernel density estimate with:
(a) a bandwidth hre f = 194.783 and (b) a diagonal bandwidth matrix HPI=diag(
1611.724, 560.0261). The range in (c) is calculated using Brownian bridge move-
ment method with a variance σ2

m = 8.045 and in (d) using dynamic Brownian
bridge movement method with a window size of 23 locations and margins of 9
locations (the median of the time.lags ≈ 29.9 minutes). Contours represent 50,
80, 90 and 99% of the volume of the home range estimate. In all panels the extent
is 0.2 and the grid is 100.
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5.2.4 June
The results from the different methods for June are shown in Figure 5.10.

(a) (b)

(c) (d)

Figure 5.10: Estimated home range (i.e., utilization distribution) of the greylag
goose. The range in (a)&(b) is calculated using kernel density estimate with: (a)
a bandwidth hre f = 195.9849 and (b) a diagonal bandwidth matrix HPI=diag(
6139.599, 3786.221). The range in (c) is calculated using Brownian bridge move-
ment method with a variance σ2

m = 8.2653 and in (d) using dynamic Brownian
bridge movement method with a window size of 35 locations and margins of 15
locations (the median of the time.lags≈ 20.083 minutes). Contours represent 50,
80, 90 and 99% of the volume of the home range estimate. In all panels the extent
is 0.2 and the grid is 100.
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Chapter 6

Conclusion

Despite the fact that our data suggests that a more realistic 95% estimate of the
utilization distribution may be obtained using the KDE (hre f ) than the BBMM, it
is important to realize that there are some distinct differences in assumptions, both
implicit and explicit, between the two models that can eventually lead to contra-
dicting assessments. From our greylag goose example, it is evident that areas of
frequent use were more likely to be "connected" via pathways using the BBMM
as opposed to the kernel estimate. This is because the BBMM, having more of a
mechanistic basis, estimates the utilization distribution by modeling the animal’s
expected movement path throughout an area over a period of observation. Uncer-
tainty in the actual movement path is directly incorporated via the two ecologically
based model parameters: the animal’s mobility (i.e., σ2

m) and measurable location
error (Horne 2007).

In contrast, kernel smoothing techniques do not share a similar mechanistic
basis. Instead, location data assumed to represent a statistical sample from some
underlying probability distribution, not the animal’s movement path. Location
data are smoothed to an "optimal" level in order to recover, as accurately as pos-
sible, the actual underlying distribution. The value of the smoothing parameter
is usually chosen based on some type of statistical procedure designed to mini-
mize the difference between the kernel estimate and the true distribution (Horne
& Garton 2006), and kernel estimates are notoriously sensitive to these values.
Although the smoothing employed by kernel estimates can be viewed as an indi-
rect method for incorporating process and measurement error into estimates of the
probability of occurrence, the connection is not as direct as the BBMM and there
is no connection to ecological processes (Powell 2000).

Because of the differences in fundamental assumptions, the BBMM deals
with the issues of serial correlation and unequal time intervals between locations
in a much more straightforward manner. Unlike other probabilistic home range
models, including kernel estimates, that assume temporal independence (Worton
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1987), the BBMM assumes that locations are not independent, and explicitly in-
corporates the time between locations into the model. The BBMM "fills in" the
space between sequential locations irrespective of the density of locations, where
the width of the Brownian bridge is conditioned only on the time duration between
the beginning and ending locations for each pair of locations and GPS location er-
ror. As such, BBMM is able to predict movement paths that otherwise would not
be observed with KDE methods (Walter 2011).

Although in theory equal time intervals between successive relocations are not
a requirement of the BBMM, the method uses a Brownian bridge to estimate the
probability density that the animal used any particular pixel, given its relocations.
The "shape" of the Brownian bridge characterizing two successive relocations is
adjusted as a function of the time lag separating these two relocations; if the time
lag is short, the bridge will be narrower than if the time lag was long. Even though
this approximation may be useful to account for movement constraints, e.g. an
animal cannot move 20 km in two minutes, its implications may be problematic if
the time lag between successive relocations is highly variable (Walter 2011).

The variability in time lag between successive locations was important in our
data-set and the BBMM method resulted in producing larger home range size than
the KED with hre f , which fails to take into consideration the time lag (Fig. 5.2).
Time lag was important for greylag goose (Fig. 4.2) as the solar-powered GPS
collar or occupied habitats prevented the battery from maintaining a full charge,
thereby not allowing GPS data logging upon fix attempt (Cappelle 2011). Accord-
ing to Walter (2011) a possible way to improve our results, would be a "crude"
approach to eliminate the top 1% of outliers of time difference such that 99% of
the original data would be included (OREM). While use of OREM may seem rea-
sonable for some species and studies in order to eliminate large time differences
and thus, resulting in tighter home ranges, Walter (2011) cautions researchers
from using such an approach without considering its implications to the ecologi-
cal questions at hand and prior to determining distribution of time differences with
locations from each study animal.
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Appendix A

Code in R

A.1 Kernel estimation

# Read t h e da ta
data _ g e e s e← read . csv2 ( "C : Use r s / x r i s t i n a / Desktop / H01 l o g g e r 1 (3−6) . c sv " , h e a d e r =

TRUE, sep =" ; " , quote = " \ " " , dec=" , " )
head ( d a t a \ _ g e e s e )

# Get on ly t h e c o o r d i n a t e s i n d e g r e e s
l i b r a r y ( r g d a l )
l o c← c b i n d ( " x "= d a t a _ g e e s e $LONDEG, " y "= d a t a _ g e e s e $LATDEG)

# De f i ne t h e p r o j e c t i o n o f t h e c o o r d i n a t e s ( re−e x p r e s s t h e c o o r d i n a t e s i n m e t e r s )
# Here i n UTM, zone 34N

l o c _ m e t e r s← p r o j e c t ( loc , "+ proj =utm +zone =34N e l l p s =WGS84" )

#Make s p a t i a l p o i n t s d a t a f rame u s i n g xy , a t t r i b u t e s and p r o j e c t i o n
p r o j 4 s t r i n g←CRS( "+ proj =utm +zone =34N e l l p s =WGS84" )
s p d f← S p a t i a l P o i n t s D a t a F r a m e ( l o c _ mete r s , d a t a _ geese , p r o j 4 s t r i n g = p r o j 4 s t r i n g )

# C r e a t e s p a t i a l P o i n t s from j u s t t h e xy ’ s
l o c . p t s← S p a t i a l P o i n t s ( l o c _ mete r s , p r o j 4 s t r i n g = p r o j 4 s t r i n g )

A.1.1 Hre f

l i b r a r y ( a d e h a b i t a t H R )

# C a l c u l a t e t h e UD u s i n g KED, h r e f
## k e r n e l=bivnorm , by d e f a u l t e x t e n t =1 , g r i d =60

kud1← kernelUD ( l o c . p t s , h=" h r e f " )
kud1
kud1@h
image ( kud1 )

## C o n t r o l l i n g t h e g r i d
#The UD i s e s t i m a t e d a t t h e c e n t e r o f each p i x e l o f a g r i d . A l t h o u g h t h e s i z e and

r e s o l u t i o n o f t h e g r i d doesn ’ t have a l a r g e e f f e c t on t h e e s t i m a t e s (
S i l v e r m a n 1986) , i t i s some t imes u s e f u l t o be a b l e

62



t o c o n t r o l t h e p a r a m e t e r s d e f i n i n g t h i s gr id .
## The parame te r g r i d c o n t r o l s t h e r e s o l u t i o n o f t h e g r i d and t h e parame te r

e x t e n t c o n t r o l s i t s e x t e n t .

### G r a p h i c a l p a r a m e t e r s
par ( mar=c ( 0 , 0 , 2 , 0 ) )
par ( mfrow=c ( 2 , 2 ) )

# E s t i m a t i o n o f t h e UD w i t h g r i d =80 and e x t e n t =0.1
image ( kernelUD ( l o c . p t s , gr id =80 , e x t e n t = 0 . 1 ) )
t i t l e ( main=" g r i d =80 , e x t e n t =0 .1 " )

# E s t i m a t i o n o f t h e UD w i t h g r i d =100 and e x t e n t =0.1
image ( kernelUD ( l o c . p t s , gr id =100 , e x t e n t = 0 . 1 ) )
t i t l e ( main=" g r i d =100 , e x t e n t =0 .1 " )

# E s t i m a t i o n o f t h e UD w i t h g r i d =80 and e x t e n t =0.2
image ( kernelUD ( l o c . p t s , gr id =80 , e x t e n t = 0 . 2 ) )
t i t l e ( main=" g r i d =80 , e x t e n t =0 .2 " )

# E s t i m a t i o n o f t h e UD w i t h g r i d =100 and e x t e n t =0.2
image ( kernelUD ( l o c . p t s , gr id =100 , e x t e n t = 0 . 2 ) )
t i t l e ( main=" g r i d =100 , e x t e n t =0 .2 " )

#By eye I choose t h a t g r i d =100 & e x t e n t =0.2 f i t b e t t e r t h e da ta .
# C a l c u l a t e aga in t h e k u d l

kud1← kernelUD ( l o c . p t s , h=" h r e f " , gr id =100 , e x t e n t = 0 . 2 )
kud1
kud1@h
image ( kud1 )

## Try a d i f f e r e n t k e r n e l : " Epanechn ikov "
kud2← kernelUD ( l o c . p t s , h=" h r e f " , ke rn =c ( " epa " ) , gr id =100 , e x t e n t = 0 . 2 )
kud2
image ( kud2 )
kud2@h

#Compare t h e 2 k e r n e l s
par ( mar=c ( 0 , 0 , 2 , 0 ) )
par ( mfrow=c ( 2 , 1 ) )
image ( kud1 )
t i t l e ( main=" k e r n e l =bivnorm , g r i d =100 , e x t e n t =0 .2 " )
image ( kud2 )
t i t l e ( main=" k e r n e l =epa , g r i d =100 , e x t e n t =0 .2 " )

# They are a l m o s t t h e same , so f o r s i m p l i c i t y use t h e b i v a r i a t e normal k e r n e l .

# E s t i m a t i n g t h e home range from t h e UD
#The home range deduced from t h e UD as t h e minimum area on which t h e p r o b a b i l i t y

t o r e l o c a t e t h e an imal i s e q u a l t o a s p e c i f i e d v a l u e e . x . 0 . 9 5 (95%) .

#The home range i n v e c t o r mode
homerange1← g e t v e r t i c e s h r ( kud1 , p e r c e n t =95 , un in =c ( "m" ) , unou t =c ( "km2" ) , s t a n d a r d i z e

=T )
c l a s s ( homerange1 )
p l o t ( homerange1 , c o l = 1 : 4 )

#The homerange i n r a s t e r mode
# T h i s f u n c t i o n ( getvolumeUD ) m o d i f i e s t h e UD component o f t h e o b j e c t pa s s ed as

argument , so t h a t t h e v a l u e o f a p i x e l i s e q u a l t o t h e p e r c e n t a g e o f t h e
s m a l l e s t home range c o n t a i n i n g t h i s p i x e l .

vud← getvolumeUD ( kud1 , s t a n d a r d i z e =T )
vud

#To s e e t h e d i f f e r e n c e be tween t h e o u t p u t kernelUD and getvolumeUD
par ( mfrow=c ( 2 , 1 ) )
par ( mar=c ( 0 , 0 , 2 , 0 ) )

#The o u t p u t o f t h e k e r n e l UD
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image ( kud1 )
t i t l e ( " o u t p u t o f kernelUD " )

# Conver t i n t o a s u i t a b l e da ta s t r u c t u r e f o r t h e use o f t h e c o n t o u r
xyz← as . image . S p a t i a l G r i d D a t a F r a m e ( kud1 )
contour ( xyz , add=TRUE)

#and s i m i l a r l y f o r t h e o u t p u t o f t h e getvolumeUD
par ( mar=c ( 0 , 0 , 2 , 0 ) )
image ( vud )
t i t l e ( " o u t p u t o f getvolumeUD " )
xyzv← as . image . S p a t i a l G r i d D a t a F r a m e ( vud )
contour ( xyzv , add=TRUE)

#The o u t p u t o f getvolumeUD can be used t o compute t h e home range ( t h e l a b e l s o f
t h e c o n t o u r l i n e s c o r r e s p o n d t o t h e home r an ges computed w i t h v a r i o u s
p r o b a b i l i t y l e v e l s ) .

#For example , t o g e t t h e r a s t e r i z e d 95% home range o f t h e goose .
# S t o r e t h e volume uder t h e UD o f t h e f i s r t an imal i n f u d .

fud← vud
# S t o r e t h e v a l u e o f t h e volume under UD i n a v e c t o r .

hr95← as . data . frame ( fud ) [ , 1 ]
# i f t h e hr95 <=95 t h e n t h e p i x e l b e l o n g s t o t h e home range and t a k e s 1 , 0

o t h e r w i s e
hr95← as . numeric ( h r95 <= 95)
hr95← data . frame ( h r95 )

# Conver t i n t o SPixe l sDF
c o o r d i n a t e s ( hr95 )← c o o r d i n a t e s ( vud )
g r i d d e d ( hr95 )←TRUE

# D i s p a l y t h e r e s u l t s
image ( h r95 )

#The home range s i z e
as . data . frame ( homerange1 )

#The home range s i z e f o r s e v e r a l p r o b a b i l i t y l e v e l s .
i i ← k e r n e l . a r e a ( kud1 , p e r c e n t = seq ( 5 0 , 9 5 , by =5) , un in =c ( "m" ) , unou t =c ( "km2" ) ,

s t a n d a r d i z e =T )
i i
p l o t ( i i )

# C re a t e a p l o t i n r a s t e r mode f o r s e v e r a l p r o b a b i l i t y l e v e l s
l i b r a r y ( r a s t e r )
p l o t . new ( )
b r e a k s← c ( 0 , 5 0 , 8 0 , 9 5 , 9 9 )
hm99← g e t v e r t i c e s h r ( kud1 , p e r c e n t =99 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hm80← g e t v e r t i c e s h r ( kud1 , p e r c e n t =80 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hm95← g e t v e r t i c e s h r ( kud1 , p e r c e n t =95 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hm50← g e t v e r t i c e s h r ( kud1 , p e r c e n t =50 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hvo l← getvolumeUD ( kud1 , s t a n d a r d i z e =T )
hvo l . r a s t e r← r a s t e r ( hvo l )
p l o t ( hvo l . r a s t e r , c o l = heat . c o l o r s ( 3 ) , b r e a k s = breaks , i n t e r p o l a t e =T , main=" K e rn e l

D e n s i t y E s t i m a t i o n , Href bandwid th " , x l a b =" Coords X" , y l a b =" Coords Y" , l egend .
s h r i n k = 0 . 8 , l egend . args = l i s t ( t e x t ="UD by volume (%) " , s i d e =4 , f o n t =2 , l i n e = 2 . 5 ,
cex = 0 . 8 ) )

p l o t ( hm50 , add=T )
p l o t ( hm80 , add=T )
p l o t ( hm95 , add=T )
p l o t ( hm99 , add=T )
p o i n t s ( l o c _ mete r s , pch =1 , cex = 0 . 5 )

# Con tours i n g oo g l e maps
l i b r a r y ( r g d a l )
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l i b r a r y ( g g p l o t 2 )
l i b r a r y ( m a p t o o l s )
hm95← g e t v e r t i c e s h r ( kud1 , p e r c e n t =95 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )

# Save a s h a p e f i l e
writeOGR ( hm95 , dsn="C : / Users / x r i s t i n a / Desktop " , l a y e r ="hm95" , d r i v e r =" ESRI

S h a p e f i l e " )
#Read s h a p e f i l e

s h a p e f i l e← r e a d S h a p e S p a t i a l ( ’C : / Users / x r i s t i n a / Desktop / hm95 ’ , p r o j 4 s t r i n g = CRS(
"+ p r o j =utm +zone =34N e l l p s =WGS84" ) )

# Trans form t h e p r o j e c t i o n
shp← spTrans fo rm ( s h a p e f i l e , CRS( "+ p r o j = l o n g l a t +datum=WGS84" ) )
data← f o r t i f y ( shp )
l i b r a r y ( ggmap )
l i b r a r y ( mapproj )
l i b r a r y ( r a s t e r )
l o c s _ df← as ( l o c . p t s , " d a t a . f rame " )
m← g e t _map ( l o c a t i o n =bbox ( e x t e n t ( l o c ) ) , source =" g oo g l e " )
ggmap (m) + geom_ polygon ( a e s ( x= long , y= l a t ) , data = data , c o l o u r = ’ r e d ’ , f i l l = ’

b l a c k ’ , a l p h a = . 4 , s i z e = . 3 )

A.1.2 HLSCV

#Read t h e da ta
data _ g e e s e← read . csv2 ( "C : / User s / x r i s t i n a / Desktop / H01 l o g g e r 1 (3−6) . c sv " , h e a d e r =

TRUE, sep = " ; " , quote = " \ " " , dec = " , " )
head ( d a t a _ g e e s e )

# Get on ly t h e c o o r d i n a t e s i n d e g r e e s
l i b r a r y ( r g d a l )
l o c← c b i n d ( " x "= d a t a _ g e e s e $LONDEG, " y "= d a t a _ g e e s e $LATDEG)

# De f i ne t h e p r o j e c t i o n o f t h e c o o r d i n a t e s ( re−e x p r e s s t h e c o o r d i n a t e s i n m e t e r s )
l o c _ m e t e r s← p r o j e c t ( loc , "+ proj =utm +zone =34N e l l p s =WGS84" )

#Make s p a t i a l p o i n t s d a t a f rame u s i n g xy , a t t r i b u t e s and p r o j e c t i o n
p r o j 4 s t r i n g←CRS( "+ proj =utm +zone =34N e l l p s =WGS84" )
s p d f← S p a t i a l P o i n t s D a t a F r a m e ( l o c _ mete r s , d a t a _ geese , p r o j 4 s t r i n g = p r o j 4 s t r i n g )

# C r e a t e s p a t i a l P o i n t s from j u s t t h e xy ’ s
l o c . p t s← S p a t i a l P o i n t s ( l o c _ mete r s , p r o j 4 s t r i n g = p r o j 4 s t r i n g )

# C a l c u l a t e t h e UD u s i n g Hlscv
l i b r a r y ( a d e h a b i t a t H R )
kud3← kernelUD ( l o c . p t s , h="LSCV" , g r i d =100 , e x t e n t = 0 . 2 )
plotLSCV ( kud3 )

A.1.3 Hplug−in

l i b r a r y ( ks )
l i b r a r y ( r g d a l )
l i b r a r y ( m a p t o o l s )
l i b r a r y ( g p c l i b )
l i b r a r y ( PBSmapping )
l i b r a r y ( a d e h a b i t a t )
l i b r a r y ( a d e h a b i t a t H R )
l i b r a r y ( r a s t e r )

#Need t o c a l c u l a t e t h e bandwid th m a t r i x t o use l a t e r i n c r e a t i n g t h e KDE.
Hpi1← Hpi . diag ( x = l o c _ m e t e r s )
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Hpi1

## C re a t e s p a t i a l p o i n t s from j u s t t h e xy ’ s
l o c . p t s← S p a t i a l P o i n t s ( loc , p r o j 4 s t r i n g = p r o j 4 s t r i n g )

#For home range c a l c u l a t i o n s , some packages r e q u i r e e v a l u a t i o n p o i n t s ( k s ) w h i l e
o t h e r s r e q u i r e g r i d as s p a t i a l p i x e l s ( adehab i ta tHR ) .

## S e t t h e e x p a n s i o n v a l u e f o r t h e g r i d and g e t t h e bbox from t h e
S p a t i a l P o i n t s D a t a F r a m e

expandValue← 500 # T h i s v a l u e i s t h e amount t o add on each s i d e o f t h e bbox
bound ingVa l s← spdf@bbox

## Get t h e change i n x and y and a d j u s t u s i n g e x p a n s i o n v a l u e .
d e l t a L o n g← as . i n t e g e r ( ( ( bound ingVa l s [ 1 , 2 ] ) − ( bound ingVa l s [ 1 , 1 ] ) ) + (2∗

expandValue ) )
d e l t a L a t← as . i n t e g e r ( ( ( bound ingVa l s [ 2 , 2 ] ) − ( bound ingVa l s [ 2 , 1 ] ) ) + (2∗

expandValue ) )
# #100 m e t e r s g r i d f o r da ta

g r i d R e s← 100
g r i d S i z e X← d e l t a L o n g / g r i d R e s
g r i d S i z e Y← d e l t a L a t / g r i d R e s

## O f f s e t t h e bounding c o o r d i n a t e s t o a c c o u n t f o r t h e a d d i t i o n a l area
bound ingVa l s [ 2 , 1 ]← bound ingVa l s [ 2 , 1 ] − expandValue
bound ingVa l s [ 2 , 2 ]← bound ingVa l s [ 2 , 2 ] + expandValue
bound ingVa l s [ 1 , 1 ]← bound ingVa l s [ 1 , 1 ] − expandValue
bound ingVa l s [ 1 , 2 ]← bound ingVa l s [ 1 , 2 ] + expandValue

## Grid Topology o b j e c t i s b a s i s f o r s a m p l in g g r i d ( o f f s e t , c e l l s i z e , dim ) .
gr idTopo←GridTopology ( ( bound ingVa l s [ , 1 ] ) , c ( g r idRes , g r i d R e s ) , c ( g r idS izeX ,

g r i d S i z e Y ) )
## Using t h e Grid Topology and p r o j e c t i o n c r e a t e a S p a t i a l G r i d c l a s s .

sampGrid← S p a t i a l G r i d ( gr idTopo , p r o j 4 s t r i n g = p r o j 4 s t r i n g )
## Cas t over t o S p a t i a l P i x e l s

sampSP ← as ( sampGrid , " S p a t i a l P i x e l s " )
## Conver t t h e S p a t i a l G r i d c l a s s t o a r a s t e r

sampRas te r← r a s t e r ( sampGrid )
## S e t a l l t h e r a s t e r v a l u e s t o 1 such as t o make a da ta mask .

sampRas te r [ ] ← 1
## Get t h e c e n t e r p o i n t s o f t h e mask r a s t e r w i t h v a l u e s s e t t o 1 .

e v a l P o i n t s ← xyFromCel l ( sampRas te r , 1 : n c e l l ( s ampRas t e r ) )

# Here we can s e e how g r i d has a b u f f e r around t h e l o c a t i o n s and t r a j e c t o r y . T h i s
w i l l e n s u r e t h a t we p r o j e c t our home range e s t i m a t e s i n t o a s l i g h t l y l a r g e r
e x t e n t t han t h e o r i g i n a l p o i n t s e x t e n t ( bbox ) a l o n e .

p l o t ( s ampRas te r )
p o i n t s ( l o c _ mete r s , pch =1 , cex = 0 . 5 )

## C re a t e t h e KDE u s i n g t h e e v a l u a t i o n p o i n t s .
hp ik de ← kde ( x= l o c _ mete r s , H=Hpi1 , e v a l . p o i n t s = e v a l P o i n t s )

# C re a t e a t e m p l a t e r a s t e r based upon t h e mask and t h e n a s s i g n t h e v a l u e s from t h e
kde t o t h e t e m p l a t e

hp ik de . r a s t e r ← r a s t e r ( s ampRas t e r )
hp ik de . r a s t e r ← s e t V a l u e s ( h p i kd e . r a s t e r , h p i kd e $ e s t i m a t e )

## L e t s t a k e t h i s r a s t e r and p u t i t back i n t o an a d e h a b i t a t o b j e c t . T h i s i s
c o n v e n i e n t t o use o t h e r a d e h a b i t a t c a p a b i l i t i e s such as o v e r l a p i n d i c e s or
p e r c e n t volume c o n t o u r s .

## Cas t over t o SPxDF
hp ik de . px ← as ( hp ik de . r a s t e r , " S p a t i a l P i x e l s D a t a F r a m e " )

## C re a t e new estUD u s i n g t h e SPxDF
hp ik de . ud ← new ( " estUD " , hp ik de . px )
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## A s s i g n v a l u e s t o a c o u p l e s l o t s o f t h e estUD
hp ik de . ud@vol = FALSE
hp ik de . ud@h$ meth = " Plug−i n Bandwidth "

## Conver t t h e UD v a l u e s t o volume u s i n g getvolumeUD from adehab i ta tHR and c a s t
ove r t o a r a s t e r .

hp ik de . ud . v o l ← getvolumeUD ( hp ikd e . ud , s t a n d a r d i z e =TRUE)
hp ik de . ud . v o l . r a s t e r ← r a s t e r ( hp i kd e . ud . v o l )

## Here we g e n e r a t e volume c o n t o u r s u s i n g t h e UD.
hp ik de . 9 9 v o l ← g e t v e r t i c e s h r ( h p i kd e . ud , p e r c e n t = 99 , i d a = NULL, un in = "m" ,

unou t = "km2" , s t a n d a r d i z e =TRUE)
hp ik de . 8 0 v o l ← g e t v e r t i c e s h r ( h p i kd e . ud , p e r c e n t = 80 , i d a = NULL, un in = "m" ,

unou t = "km2" , s t a n d a r d i z e =TRUE)
hp ik de . 9 5 v o l ← g e t v e r t i c e s h r ( h p i kd e . ud , p e r c e n t = 95 , i d a = NULL, un in = "m" ,

unou t = "km2" , s t a n d a r d i z e =TRUE)
hp ik de . 5 0 v o l ← g e t v e r t i c e s h r ( h p i kd e . ud , p e r c e n t = 50 , i d a = NULL, un in = "m" ,

unou t = "km2" , s t a n d a r d i z e =TRUE)

# Let ’ s p u t t h e HR volume c o n t o u r s
p l o t . new ( )
b r e a k s ← c ( 0 , 50 , 80 , 95 , 99)
p l o t ( hp ik de . ud . v o l . r a s t e r , c o l = heat . c o l o r s ( 3 ) , b r e a k s = breaks , i n t e r p o l a t e =TRUE,

main=" Ke rn e l D e n s i t y E s t i m a t i o n , Plug−i n Bandwidth " , x l a b =" Coords X" , y l a b ="
Coords Y" , l egend . s h r i n k = 0 . 8 0 , l egend . args = l i s t ( t e x t ="UD by Volume (%) " ,

s i d e =4 , f o n t =2 , l i n e = 2 . 5 , cex = 0 . 8 ) )
p l o t ( hp ik de . 5 0 vol , add=TRUE)
p l o t ( hp ik de . 8 0 vol , add=TRUE)
p l o t ( hp ik de . 9 5 vol , add=TRUE)
p l o t ( hp ik de . 9 9 vol , add=TRUE)
p o i n t s ( l o c _ mete r s , pch =1 , cex = 0 . 5 )

# Con tours i n g oo g l e maps
l i b r a r y ( r g d a l )
l i b r a r y ( g g p l o t 2 )
l i b r a r y ( m a p t o o l s )
hp95 ← g e t v e r t i c e s h r ( h p i kd e . ud , p e r c e n t =95 , i d a = NULL, un in = "m" , unou t = "

km2" , s t a n d a r d i z e =TRUE)
# Save a s h a p e f i l e

writeOGR ( hp95 , dsn="C : / Users / x r i s t i n a / Desktop " , l a y e r =" hp95 " , d r i v e r =" ESRI
S h a p e f i l e " )

#Read s h a p e f i l e
s h a p e f i l e ← r e a d S h a p e S p a t i a l ( ’C : / User s / x r i s t i n a / Desktop / hp50 ’ , p r o j 4 s t r i n g =

CRS( "+ p r o j =utm +zone =34N e l l p s =WGS84" ) )
# Trans form t h e p r o j e c t i o n

shp ← spTrans fo rm ( s h a p e f i l e , CRS( "+ p r o j = l o n g l a t +datum=WGS84" ) )
data ← f o r t i f y ( shp )

l i b r a r y ( ggmap )
l i b r a r y ( mapproj )
l i b r a r y ( r a s t e r )
m← g e t _map ( l o c a t i o n =bbox ( e x t e n t ( l o c ) ) , source =" g oo g l e " )
ggmap (m) + geom_ polygon ( a e s ( x= long , y= l a t ) , data = data , c o l o u r = ’ r e d ’ , f i l l =

’ b l a c k ’ , a l p h a = . 4 , s i z e = . 3 )
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A.2 Brownian bridge movement method

#Read t h e da ta
data _g← read . csv2 ( "C : / Users / x r i s t i n a / Desktop / H01 l o g g e r 2 . csv " , h e a d e r = TRUE,

sep = " ; " , quote = " \ " " , dec = " , " )
head ( d a t a _g )
l i b r a r y ( r g d a l )

# Get on ly t h e c o o r d i n a t e s i n d e g r e e s
l o c← c b i n d ( " x "= d a t a _g$LONDEG, " y "= d a t a _g$LATDEG)

# De f i ne t h e p r o j e c t i o n o f t h e c o o r d i n a t e s ( re−e x p r e s s t h e c o o r d i n a t e s i n m e t e r s )
l o c _ m e t e r s← p r o j e c t ( loc , "+ proj =utm +zone =34N e l l p s =WGS84" )
l o c s← as . d a t a . f rame ( l o c _ m e t e r s )
names ( l o c s )← c ( " x " , " y " )

# Trans fo rm i n t o an o b j e c t o f t h e c l a s s POISIXct ( s t o r e d a t e and t ime i n R) .
da← as . c h a r a c t e r ( d a t a _g$DATE. TIME)
head ( da )
da← as . POSIXct ( s t r p t i m e ( as . c h a r a c t e r ( d a t a _g$DATE. TIME) , f o r m a t =" \%y\%m\%d \%H\%M

\%S" ) , t z ="UTC" )
# Needs id , s i n c e we have on ly one an i ma l i d =1 .

i d d← r e p ( 1 , l e n g t h ( l o c s $x ) )
#We can c r e a t e an o b j e c t o f l t r a j t o s t o r e t h e goose ’ s movements

l i b a r y ( a d e h a b i t a t H R )
d a t a _ ge← as . l t r a j ( xy= l o c s [ , c ( " x " , " y " ) ] , d a t e =da , i d = i d d , t y p e I I =TRUE)
d a t a _ ge
p l o t ( d a t a _ge , x l a b =" c o o r d i n a t e s x i n met res , i n UTM zone " , y l a b =" c o o r d i n a t e s y i n

met res , i n UTM zone " )
p l o t l t r ( d a t a _ ge )

# Brownian B r i dg e k e r n e l method
# Suppose s i g 2 =2 .5 m e t e r s ( sd = 2 . 5 )

l i k 1← l i k e r ( d a t a _ge , s i g 2 = 2 . 5 , r a n g e s i g 1 =c ( 1 0 , 1 0 0 ) )
# Try a d i f f e r e n t r a n g e f o r s i g 1

l i k← l i k e r ( d a t a _ge , s i g 2 = 2 . 5 , r a n g e s i g 1 =c ( 1 , 2 0 ) )
# C a l c u l a t e t h e UD u s i n g BBMM

t a t a← k e r n e l b b ( d a t a _ge , s i g 1 =10 .1291 , s i g 2 = 2 . 5 , g r i d =100 , e x t e n t = 0 . 2 )
t a t a
image ( t a t a )
p l o t ( g e t v e r t i c e s h r ( t a t a , 9 5 ) , add=TRUE, lwd =2)

# C r e a t e a p l o t i n r a s t e r mode f o r s e v e r a l p r o b a b i l i t y l e v e l s .
l i b r a r y ( r a s t e r )
p l o t . new ( )
b r e a k s← c ( 0 , 5 0 , 8 0 , 9 5 , 9 9 )
hm99← g e t v e r t i c e s h r ( t a t a , p e r c e n t =99 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hm80← g e t v e r t i c e s h r ( t a t a , p e r c e n t =80 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hm95← g e t v e r t i c e s h r ( t a t a , p e r c e n t =95 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hm50← g e t v e r t i c e s h r ( t a t a , p e r c e n t =50 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )
hvo l← getvolumeUD ( t a t a , s t a n d a r d i z e =T )
hvo l . r a s t e r← r a s t e r ( hvo l )
p l o t ( hvo l . r a s t e r , c o l = h e a t . c o l o r s ( 3 ) , b r e a k s = breaks , i n t e r p o l a t e =T , main=" Brownian

b r i d g e movement method " , x l a b =" Coords X" , y l a b =" Coords Y" , l e g e n d . s h r i n k = 0 . 8 ,
l e g e n d . a r g s = l i s t ( t e x t ="UD by volume (%) " , s i d e =4 , f o n t =2 , l i n e = 2 . 5 , cex = 0 . 8 ) )

p l o t ( hm50 , add=T )
p l o t ( hm80 , add=T )
p l o t ( hm95 , add=T )
p l o t ( hm99 , add=T )
p o i n t s ( l o c _ mete r s , pch =1 , cex = 0 . 5 )

# C o n to u r s i n g oo g l e maps (95%)
l i b r a r y ( r g d a l )

68



l i b r a r y ( g g p l o t 2 )
l i b r a r y ( m a p t o o l s )
hm95← g e t v e r t i c e s h r ( t a t a , p e r c e n t =95 , i d a =NULL, un in ="m" , unou t ="km2" , s t a d a r d i z e =T )

# Save a s h a p e f i l e
writeOGR ( hm95 , dsn="C : / User s / x r i s t i n a / Desktop " , l a y e r ="hm95" , d r i v e r =" ESRI

S h a p e f i l e " )
#Read t h e s h a p e f i l e

s h a p e f i l e← r e a d S h a p e S p a t i a l ( ’C : / Users / x r i s t i n a / Desktop / hm95 ’ , p r o j 4 s t r i n g = CRS( "
+ proj =utm +zone =34N e l l p s =WGS84" ) )

# Trans fo rm t h e p r o j e c t i o n
shp← spTrans fo rm ( s h a p e f i l e , CRS( "+ proj = l o n g l a t +datum=WGS84" ) )
d a t a← f o r t i f y ( shp )

l i b r a r y ( ggmap )
l i b r a r y ( mapproj )
l i b r a r y ( r a s t e r )

m← g e t _map ( l o c a t i o n =bbox ( e x t e n t ( l o c ) ) , s o u r c e =" g oog l e " )
ggmap (m) + geom_ polygon ( a e s ( x= long , y= l a t ) , d a t a = da ta , c o l o u r = ’ red ’ , f i l l =

’ b lack ’ , a l p h a = . 4 , s i z e = . 3 )

A.3 Dynamic Brownian bridge movement method

# Read t h e da ta
data _g← read . csv2 ( "C : / Users / x r i s t i n a / Desktop / H01 l o g g e r 2 . csv " , h e a d e r = TRUE,

sep = " ; " , quote = " \ " " , dec = " , " )
head ( d a t a \ _g )
l i b r a r y ( move )
goose←move ( x= d a t a _g$LONDEG, y= d a t a _g$LATDEG, d a t a = d a t a _g , t ime = as . POSIXct (

s t r p t i m e ( a s . c h a r a c t e r ( d a t a _g$DATE. TIME) , f o r m a t =" \%y\%m\%d \%H\%M\%S" ) , t z ="
UTC" ) , p r o j =CRS( "+ proj = l o n g l a t + e l l p s =WGS84+datum=WGS84" ) , an i ma l = r e p ( 1 , l e n g t h
( l o c s $x ) ) , s e n s o r = r e p ( " gps " , l e n g t h ( l o c s $x ) ) )

#Show and summarize
show ( goose )
summary ( goose )
p l o t ( goose )
head ( a s . d a t a . f rame ( goose ) )
head ( t i m e s t a m p s ( goose ) )
n . l o c s ( goose )
head ( t ime . l a g ( goose , u n i t s =" mins " ) )
h i s t ( t ime . l a g ( goose , u n i t s = ’ mins ’ ) )
i d D a t a ( goose )
a s ( goose , ’ d a t a . frame ’ )
speed ( goose )
h i s t ( speed ( goose ) )
d i s t a n c e ( goose ) # measured i n m e t e r s
h i s t ( d i s t a n c e ( goose ) )
p l o t ( goose , t y p e =" o " , c o l =4 , lwd =2 , pch =20 , x l a b =" l o c a t i o n _ l ong " , y l a b =" l o c a t i o n _ l a t " )
p l o t ( goose )
l i n e s ( goose )

# S c a t t e r p l o t i n goo g l e maps
c o o r d s← c b i n d ( d a t a _g$LONDEG, d a t a _g$LATDEG)
head ( c o o r d s )
r e q u i r e ( ggmap )
r e q u i r e ( mapproj )
goose _ df← as ( goose , " data . frame " )
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m ← g e t _map ( l o c a t i o n =bbox ( e x t e n t ( c o o r d s ) ) , s o u r c e =" g oo g l e " )
ggmap (m) +geom_ p a t h ( d a t a = goose _ df , a e s ( x= d a t a _g$LONDEG, y= d a t a _g$LATDEG) )

#Dynamic Brownian Br i dg e Movement Model
p r o j 4 s t r i n g ( goose )
g_ aeqd← spTrans fo rm ( x=goose , CRSobg="+ proj =aeqd " , c e n t e r =T )
p r o j 4 s t r i n g ( g_ aeqd )

#Window s i z e =23 , margin = 9 , l o c a t i o n e r r o r =2 .5 m e t e r s
dBMvar ← brownian . mot ion . v a r i a n c e . dyn ( o b j e c t =g_ aeqd , l o c a t i o n . e r r o r = r e p ( 2 . 5 , n .

l o c s ( g_ aeqd ) ) , margin =9 , window . s i z e =23)
g e t M o t i o n V a r i a n c e ( dBMvar )
p l o t ( t i m e s t a m p s ( g_ aeqd ) , g e t M o t i o n V a r i a n c e ( dBMvar ) , t y p e = ’ s ’ )
g_dbbmm← brownian . b r i d g e . dyn ( g_ aeqd , l o c a t i o n . e r r o r = r e p ( 2 . 5 , n . l o c s ( g_ aeqd ) ) ,

margin =9 , window . s i z e =23 , r a s t e r =100 , e x t = 0 . 2 )
p l o t ( g_dbbmm , x l a b =" L o n g t i t u d e , i n aeqd p r o j e c t i o n " , y l a b =" L a t i t u d e , i n aeqd

p r o j e c t i o n " )
c o n t o u r ( g_dbbmm , l e v e l s =c ( . 5 , . 8 , . 9 5 , . 9 9 ) , c o l =c ( 6 , 2 , 3 , 9 ) , add=T , lwd =2)

# C a l c u l a t i n g UD a r e a s i z e
# f o r example 95%

gb← getVolumeUD ( g_dbbmm)
# C e l l s t h a t b e l on g t o t h e c o n t o u r w i l l g e t t h e v a l u e 1 w h i l e o t h e r s g e t 0

gb←gb <=0.95
a r e a← sum ( v a l u e s ( gb ) )

#The a r e a i s t h e number o f t h e c e l l m u l t i p l i e d by t h e a c t u a l s i z e o f t h e o f t h e
r a s t e r c e l l s (100 m e t r e s h e r e ) .

a r e a
image ( gb )

# C o n to u r s i n g oo g l e maps
l i b r a r y ( r g d a l )
l i b r a r y ( g g p l o t 2 )
l i b r a r y ( m a p t o o l s )
x← r a s t e r 2 c o n t o u r ( g_dbbmm , l e v e l =c ( . 9 5 ) )

# Save a s h a p e f i l e
writeOGR ( x , dsn="C : / Users / x r i s t i n a / Desktop " , l a y e r ="hm95" , d r i v e r =" ESRI

S h a p e f i l e " )
#Read s h a p e f i l e

s h a p e f i l e ← r e a d S h a p e S p a t i a l ( ’C : / User s / x r i s t i n a / Desktop / hm95 ’ , p r o j 4 s t r i n g =
CRS( "+ proj =aeqd + e l l p s =WGS84 + l o n _ 0=21.09547 + l a t _ 0=40.80724 " ) )

# Trans fo rm t h e p r o j e c t i o n
shp ← spTrans fo rm ( s h a p e f i l e , CRS( "+ proj = l o n g l a t +datum=WGS84" ) )
d a t a ← f o r t i f y ( shp )

l i b r a r y ( ggmap )
l i b r a r y ( mapproj )
l i b r a r y ( r a s t e r )
l o c s _ df← as ( l o c . p t s , " data . frame " )
m← g e t _map ( l o c a t i o n =bbox ( e x t e n t ( l o c ) ) , s o u r c e =" g oog l e " )
ggmap (m) + geom_ polygon ( a e s ( x= long , y= l a t ) , d a t a = da ta , c o l o u r = ’ red ’ , f i l l =

’ b lack ’ , a l p h a = . 4 , s i z e = . 3 )
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Appendix B

Universal Transverse Mercator
(UTM)

The UTM system applies the Transverse Mercator projection to mapping the
world, using 60 pre-defined standard zones to supply parameters. UTM zones
are six degrees wide. Each zone exists in a North and South variant.

Universal
Transverse Mercator

The Northern Hemisphere projections for
the infamous UTM system consisting of
120 zones (60 different zones with North
and South variants of each).Originally
developed for military use and now widely
misused in civil mapping.

Universal
Transverse Mercator (South)

The Southern Hemisphere projections for UTM.
These are mainly distinguished by each having
a Northing parameter of 10 million so that
no coordinates need involve negative numbers.

Limitations
The accuracy of any Transverse Mercator projection quickly decreases from

the central meridian. Therefore, it is strongly recommended to restrict the longi-
tudinal extent of the projected region when using Universal Transverse Mercator
projections to +/- 6 degrees from the central meridian.

The Mercator projection maps the world onto a cylinder where the central ring
of tangency is the Earth’s Equator.

Near the Equator, the Mercator projection provides low distortion. Away from
the Equator distortion becomes very high. This limits the utility of the Mercator
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projection to regions near the Equator. That is a big limitation because most places
that people live (and thus, most of the regions that people most frequently map)
are located not along the Equator but along North-South directions, such as from
North America to South America.

Turning the Mercator projection’s cylinder so that it is tangent to the Earth
along a meridian (longitude line) instead of the Equator results in what is called a
Transverse Mercator projection. If we created a Transverse Mercator projection
that had a meridian as the central ring of the cylinder we could make local maps
anywhere along the North-South line of tangency. If the maps are limited to the
thin, vertical region near the meridian of tangency they will be relatively free of
distortion.

The problem is that any Transverse Mercator projection created by choosing
any one meridian as a line of tangency is useful only near that meridian. If we
pick a North-South line running through Athens we can make maps all the way
from Scandinavia down the length of Africa, but any maps using this projection
in North and South America would be hopelessly distorted.

The Universal Transverse Mercator system of projections deals with this
by defining 60 different standard projections, each one of which is a different
Transverse Mercator projection that is slightly rotated to use a different meridian
as the central line of tangency. Each different center-line defines a UTM Zone.
The "UTM Zone" is a shorthand way of naming a specific, different projection
that consists of a Transverse Mercator projection using a different meridian as
the center-line. By rotating the cylinder in 60 steps (six degrees per step) UTM
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assures that all spots on the Earth will be within 3 degrees of the center-line of
one of the 60 cylindrical projections.

Each UTM Zone is a Different Projection using a different system of coor-
dinates.Therefore, if someone attempt to "combine" different UTM zones into a
map that is projected using only one of those UTM zones, will result in distortion
in the locations and shapes of the objects that originated in a different zone map.
Geographic shapes that look good in a transverse Mercator projection centered
upon a given UTM zone line will be very distorted when illustrated in a UTM
projection centered upon a different zone line.

If we need to combine objects from several different UTM zones, the correct
solution is to choose a different projection (such as a conic or azimuthal projec-
tion) for the combined map that provides low distortion over the entire region of
interest.

Remember, although no projection is perfect for all uses some projections are
better than others in the uses for which they were designed. UTM was designed
to map objects within one zone at a time. It is a very bad choice if objects from
several zones must be shown together on the same map.

Within each longitudinl zone the transverse mercator projection is used to give
co-ordinates (eastings and northings) in meters. Âă For the eastings, the origin is
defined as a point 500,000 meters west of the central meridian of each longitudinal
zone, giving an easting of 500,000 meters at the central meridian.
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For the northings in the northern hemisphere, the origin is defined as the equa-
tor.

For the northings in the southern hemisphere, the origin is defined as a point
10,000,000 meters south of the equator.Âă

The co-ordinates thus derived define a location within a UTM projection zone
either north or south of the equator, but because the same co-ordinate system is
repeated for each zone and hemisphere, it is necessary to additionally state the
UTM longitudinal zone and either the hemisphere or latitudinal zone to define the
location uniquely world-wide.

http://www.georeference.org/
http://www.dmap.co.uk/
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Appendix C

Azimuthal equidistant projection

TheÂăazimuthal equidistant projection is an azimuthal map projection. It has the
useful properties that all points on the map are at proportionately correct distances
from the center point, and that all points on the map are at the correct azimuth
(direction) from the center point. A useful application for this type of projection
is a polar projection which shows all meridians (lines of longitude) as straight,
with distances from the north pole represented correctly.
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+proj=aeqd +lat_0=Latitude at projection center
+lon_0=Longitude at projection center
+x_0=False Easting
+y_0=False Northing

http://www.remotesensing.org/
http://www.progonos.com/
http://en.wikipedia.org/wiki/Azimuthal\_equidistant\_projection
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