
  Ι 

 
 

ATHENS UNIVERSITY 

OF ECONOMICS AND BUSINESS 

DEPARTMENT OF STATISTICS 
 

POSTGRADUATE PROGRAM 

 

 
TITLE 

“Portfolio Optimization using Coherent Risk 

Measures: The case of Conditional Value at Risk” 

 

 

 

By 

Eleni P. Perdikouri 

 

 
A THESIS 

Submitted to the Department of Statistics 

of the Athens University of Economics and Business 

in partial fulfilment of the requirements for 

the degree of Master of Science in Statistics 

 

 
Athens, Greece 

May 2011 



  Ι 



  Ι 

 
 

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙ΢ΣΗΜΙΟ 

ΑΘΗΝΩΝ 

ΣΜΗΜΑ ΢ΣΑΣΙ΢ΣΙΚΗ΢ 

 

 

 
ΣΙΣΛΟ΢ 

«Βεληιζηοποίηζη Χαρηοθσλακίοσ με ηην τρήζη 

΢σνεπών Μέηρων Κινδύνοσ: Η Περίπηωζη ηοσ 

Conditional Value at Risk» 

 

 

 

Ελένη Π. Περδικούρη 

 
ΓΙΑΣΡΙΒΗ 

Πνπ ππνβιήζεθε ζην Σκήκα ΢ηαηηζηηθήο 

ηνπ Οηθνλνκηθνύ Παλεπηζηεκίνπ ΑΘελώλ 

σο κέξνο ησλ απαηηήζεσλ γηα ηελ απόθηεζε  

Μεηαπηπρηαθνύ Γηπιώκαηνο Δηδίθεπζεο ζηε ΢ηαηηζηηθή  

 

 

 
Αζήλα 

Μάηνο 2011 



  Ι 



  Ι 

ACKNOWLEDGEMENTS 

 

 

I would like to thank Professor A. Yannacopoulos for supervising the 

completion of this dissertation and I am grateful for his assistance and his 

comments concerning my thesis.  

Furthermore, I am grateful to the faculty and staff of the program of 

Master of Science in Statistics of the Athens University of Economics and 

Business. 

My special thanks to my family, I am deeply indebted for their support 

in everything I do. I also would like to thank my dearest friends J.Sagriotis, 

M. Darivianaki and Z. Papanikolaou for their encouragement and their 

support. 

 

Ι 



  Ι 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΙΙ 



  Ι 

VITA 

 

 

I was born in Athens on the 8
th

 of January 1983. I graduated from High School 

Arsakeio and after taking the National Examinations I entered on the 

Department of Mathematics of the University of Athens. In 2009 I graduated 

and, at the same year, I entered in the Master of Science of Statistics of the 

Athens University of Economics and Business.  

 

 

 

III 



  Ι 

 

IV 



  Ι 

 

ABSTRACT 

 

 

 

Eleni P. Perdikouri  

 

 

“Portfolio Optimization using Coherent Risk 

Measures: The case of Conditional Value at Risk” 

    May 2011 

 

 

 

This thesis analyzes the notion of Value at Risk and Conditional Value 

at Risk as risk measures. The aim of this work is to describe the idea of Value 

at Risk and Conditional Value at Risk, its properties and its ways of 

computing. Furthermore, this study points out the advantages and 

disadvantages of both risk measures. The central point of this work is to 

present the way that VaR and CVaR can be used to optimize a portfolio, 

whether the portfolio is linear or not, with main objective to reduce as 

possible the potential risk.  

 

Keywords: Value at Risk, Conditional Value at Risk, Optimization of the 

portfolio, Coherent Risk Measures 
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Η δηπισκαηηθή απηή εξγαζία αλαιύεη ηελ έλλνηα ηνπ Value at Risk θαη 

Conditional Value at Risk ζαλ κέηξα θηλδύλνπ. ΢θνπόο ηεο εξγαζίαο είλαη λα 

πεξηγξάςεη ηελ ηδέα ησλ Value at Risk θαη Conditional Value at Risk, ηηο 

ηδηόηεηέο ηνπο θαη ηνπο ηξόπνπο ππνινγηζκνύ ηνπο. Δπίζεο, πεξηγξάθνληαη ηα 

πξνηεξήκαηα θαη ηα ειαηηώκαηα ησλ δύν απηώλ κέηξσλ θηλδύλνπ. Κύξηνο 

άμνλαο ηεο εξγαζίαο είλαη λα παξνπζηάζεη ηνλ ηξόπν πνπ ην VaR θαη ην CVaR 

κπνξνύλ λα ρξεζηκνπνηεζνύλ γηα λα βειηηζηνπνηήζνπλ έλα πηζαλό 

ραξηνθπιάθην, είηε αλ ην ραξηνθπιάθην είλαη γξακκηθό είηε κε γξακκηθό, έηζη 

ώζηε λα κεησζεί όζν ην δπλαηόλ πεξηζζόηεξν ην ξίζθν θαη ε πηζαλόηεηα 

δεκίαο.  

 

Keywords: Value at Risk, Conditional Value at Risk, Βειηηζηνπνίεζε 

γξακκηθνύ θαη κε γξακκηθνύ ραξηνθπιαθίνπ, ΢πλεπή Μέηξα Κηλδύλνπ 
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CHAPTER 1 

 

INTRODUCTION 

The main concern of an investor is to have a specific answer to the 

question “What is the worst possible loss from my investment?”. In other 

words, every investor would like to know, a priori if possible, how much risk 

he/she is going to take, applying a chosen strategy.  

There is not a precise definition of the term risk in the literature 

because different investors are able to have different conceptions of risk and 

so different approaches, or else different strategies, in order to reduce the 

possibility of losses. In some sense, risk is a subjective concept, which 

probably is the main characteristic of risk. For that reason, even if someone 

can identify some desirable features of a risk measure or a precise strategy, 

probably there is not a unique one to solve an investor’s problem.  

Looking back at the history of risk, the optimal investment decision 

traditionally refers to the solution of an expected utility maximization 

problem. Though, despite the fact that risk is a subjective decision, there is a 

possibility to state some common risk characteristics in order to select the 

optimal choices of investors. That’s why risk measures were created.  

Risk measures are statistical tools, which are used by investors in 

finance, to make predictions about investment risk. Risk measures are part of 
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the portfolio theory, which relies on the use of standardized tools and 

predictions to make decisions about how and where to invest. This was made 

in order to find a way to limit risks and, in the same time, to maximize 

returns. For example, standard deviation is a very common measure of risk, 

which measures how much the return of an investment varies comparing with 

the expectations, which are relying in historical performance and the data.  

The main assumption for constructing an optimal portfolio was that the 

variance of the return distribution was the only tool needed for characterizing 

the risk of an investment. However, a whole new philosophy was created with 

the introduction of the notion of Value at Risk (VaR) by RiskMetrics (1996). 

The main idea behind the use of VaR is the fact that a single number is able to 

encapsulate all the information needed about the possible portfolio losses. 

The losses are implied by the left hand side tail of the return distribution. 

VaR became quickly a useful tool for computing the potential losses, such 

that the managers or the investors were taking their decisions based on VaR.  

However, in 1999 Artzner et al. laid out a paper with the desirable 

mathematical properties that a risk measure must satisfy in order to be useful 

and precise. Artzner et al. in the paper “Coherent measures of Risk” defined 

the term of “coherent risk measures” and their properties. VaR did not satisfy 

all of them, though. As an alternative to VaR, a new risk measure was created 

called Conditional Value at Risk (CVaR). The CVaR is an extension of the 

notion of VaR, providing the investors with more conservative results and, 

additionally, is a coherent risk measure. The first introduction of this measure 

was made in 2000 by Rockafellar and Uryasev in their paper “Optimization of 

Conditional Value at Risk”. In that paper, Uryasev and Rockafellar used this 

measure for portfolio optimization in conjunction with linear programming 

algorithm. This combination made CVaR popular in academic community. 

Furthermore, in the last years there is a tremendous growth of the computing 

power which has made the computation of CVaR extremely ease.  

The organization of this thesis is as follows: in section 2 I introduce 

the most common and widespread risk measure Value at Risk along with the 

idea of VaR and ways of computing VaR. In section 3 I describe the coherent 

risk measures and the reasons why Value at Risk is not a coherent risk 

measure. In section 4 I present an alternative risk measure, Conditional Value 
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at Risk which has better properties than Value at Risk and is able to product 

more precise results. I analyze the properties of Conditional Value at Risk 

have and the way of computing it. In section 5 I present ways for computing 

VaR and CVaR n several cases, such as for linear portfolios with elliptic 

distribution and for non linear portfolios.  
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CHAPTER 2 

 

VALUE AT RISK 

 

 

2.1   Risk measures 

  

The first time that the term Value at Risk was initiated was in the late 

1980s. The event that caused the initiation was the stock market crash of 

1987. This was the first major financial crash which pointed out that the 

standard statistical models used until then, were insufficient since none of 

them came even close to predict the crash.  

At the same time, the commercial banks and the trading portfolios were 

becoming not only larger, but also more volatile. So the need to create a 

trustworthy risk measure was imperative. In the early 1900s, the financ ial 

events that occurred found many firms in trouble because they were not 

capable to cover their potential damage.  

VaR was developed as a systematic way of quantifying extreme events, 

occurring in long-term history and broad market events from everyday price 

movements. Development was most extensive at J.P. Morgan, which not only 

published a methodology for the utility and application of VaR, but also gave 
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free access to its data base. That was the very first time that the use of VaR 

surpassed a small group of analysts and was extended to a large scientific, 

and not only, community. Two years later, the methodology was integrated 

into an independent for- profit business, now part of RiskMetrics Group.  

In 1997, the Securities and Exchange Commission (SEC) ruled that all 

public corporations must give out quantitative information concerning their 

activity in derivatives. That rule in combination with the vast usage of VaR, 

made some banks to choose to implement the rule by including VaR 

information to their financial statements.  

Though, the greater adoption of Value at Risk as a risk measure was 

invoked by Basel II, beginning in 1999 until nowadays.  According to 

paragraph 178 of Basel II “As an alternative to the use of standard or own-

estimate haircuts, banks may be permitted to use a VaR models approach to 

reflect the price volatility of the exposure and collateral for repo-style 

transactions, taking into account correlations effects between security 

positions. This approach would apply to repo-style transactions covered by 

bilateral netting agreements on a counterparty-by-counterparty basis. In 

addition, other similar transactions (like prime brokerage), that meet the 

requirements for repo-style transactions are also eligible to use the VaR 

models. The VaR models approach is available to banks that have received 

supervisory recognition for an internal market risk model under the Market 

Risk Amendment. Banks which have not received supervisory recognition for 

use of models under the Market Risk Amendment can separately apply for 

supervisory recognition to use their interval VaR models for calculation of 

potential price volatility for repo-style transactions. Interval models will only 

be accepted when a bank can prove the quality of its model to the supervisor 

through the back testing of its output using one year of historical data. ”  

As we can see from above, Basel II has given the possibility to the 

banks to use VaR models to compute their volatility of the portfolios 

officially.  
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2.2     Value at Risk 

 

Value at Risk (VaR) is a measure of risk in finance theory and as we already 

mentioned, probably the most popular.  

 

Generally, Value at Risk measures the potential loss in value of a risky asset 

or portfolio over a defined period for a given confidence interval.  In the 

context of finance, Value at Risk is an estimate, with a given degree of 

confidence, of how much one can lose from a portfolio over a given time 

horizon. Thus, if the VaR of an asset is 50 million euro at a one-week, 95% 

confidence level, there is only 5% chance that the value of the asset will drop 

more than 50 million € over any given week.  

 

Let X be a random variable, with cumulative distribution               . 

Generally, X may have the meaning of loss or gain, though in our study with 

X we denote the potential losses. The distribution FX is called the loss 

distribution.  To define VaR, first we must set:  

a) The time horizon (the period) Δ, in which we intend to keep our assets.  

b) The confidence level at which we want to estimate our losses.  

c) The monetary unit we use. 

d) The probability distribution of F. 

 

Definition 2.1: Value at Risk
[31] 

The VaR of X with confidence level α∈[0,1] is: 

                                                              (2.1a)                          

 

From definition (2.1a) we can clearly see that         is the lower α- 

percentile of the variable X, i.e. is the smallest value such that the probability 

that losses exceed or equal this value is greater or equal to α . Note that if X 

follows a continuous distribution then         . 

An alternative way of presenting VaR is the followed:  
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where             denotes the change in the market value of our portfolio in 

the period Δt. Δ   is the vector of changes of the variable   .  

Typical values for α are α=0.95 or α=0.99. Usually, in market risk 

management we use a time horizon Δ of 1 or 10 days, in credit risk 

management and operational risk management Δ is usually one year. At this 

point, we have to note that, by its definition, VaR at confidence level α does 

not give any information about the severity of losses which occur with a 

probability less than 1-α 
[26]

, which is clearly a drawback of VaR as a risk 

measure.   

In Figure 2.1, we depict graphically the notion of VaR.  The VaR of a 

portfolio at the confidence level α is given by the smallest number z, such that 

the probability that the loss X will exceed z is no larger than 1 -α.  At this 

point, we must make clear that VaR represents the losses. Thus, it usually is a 

positive number. If we find a negative VaR that means that we have a good 

possibility of gaining. 

 

Figure 2.1: The Value at Risk (VaR) 
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In the case that the returns follow the normal distribution, which is 

symmetric, then the figure above can provide us with the same results:  

 

 

Figure 2.2: The Value at Risk (VaR) 

 

 

Lemma 2.1: 

A point x0∈ℝ is the α- quantile of some density function F if an only f the 

following two conditions are satisfied:  

F(x) ≥α and F(x)<α for all x<x0 

              

∎ 

  

In that point, for our better understanding most in the computation part 

of Vale at Risk, we must say that practically Value at Risk is the inverse 

cumulative distribution of F, i. e.  

                                                                                                                            

Mostly, in our study, we will use (2.1c) I the computing part of VaR and not 

in the theoretical examination of this measure.  
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Example 2.1: Var for Normal and t loss distributions
 [26]

 

For normally distributed random variables, Value at Risk is proportional to 

the standard deviation. Suppose that the loss distribution FX is normally 

distributed with mean μ and standard deviation σ
2
 (i.e. X~N (μ,σ

2
)) . We fix 

α∈ (0,1). Then we have: 

              α   

where   denotes the standard normal density function and  
-1

(α) is the α-

quantile of  . 

 

Proof: 

FX is strictly increasing. So, using the lemma 1, we only have to prove that  

FX (VaRα) =α. Now,  

P (X≤ -VaRα) = P(
   

 
     α )       α   α. 

This result is commonly used in variance- covariance approach, which we are 

going to analyze later.  

The above result is used in every location- scale family, such as Student t loss 

distribution. Suppose that our loss X is of the form 
   

σ
 and has a standard t 

distribution with ν degrees of freedom, i.e.         σ  . We note that the 

moments in that case are given by:  

                  νσ   ν    , when ν>2. 

We get: 

           ν
   α   

where    is the df of standard t. 

             ∎ 

 

 

2.3 Interpretation of Value at Risk 

 

Value at Risk (VaR) is a central concept in risk management. As we 

said earlier, Value at Risk is a real number which measures the potential 

portfolio loss. Losses which are greater than VaR are suffered only with a 
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specific small probability. In that point, we must point out that Value at Risk 

refers only to “Normal Market”
1
. 

The simplicity of Value at Risk lies on the fact that a single number 

can include all the possible risks of the portfolio. Furthermore, this single 

number can be used in every report referring to the portfolio and it can be 

easily understood by everyone. So, if someone “forgets” the use of  statistics 

as a way to compute VaR, the fact that VaR refers to monetary values is 

straightforward to understand.  

For our better understanding of the concept of VaR, consider an 

example included in Linsmeier and Pearson’s paper 
[24]

. This example 

involves an FX forward contract entered into by a U.S. company at some 

point in the past. Suppose that the current date is 20 May1996 and the forward 

contract has 91 days remaining until the delivery date of 19 August. The 3 - 

month US dollar (USD) and British pound (GBP) interest rate are      

       and            , respectively, and the spot exchange rate is 1.5335 

$/₤ . On the delivery date the U.S. Company will deliver $15 million and 

receive £1 million. The US dollar mark-to-market value of the forward 

contract can be computed using the interest and exchange rates prevailing on 

20 May. Specifically,  

 

                                          
   

   
  

              

              
 
 

-
              

              
 

                                              US /G P) 
              

          
  

   
 
  

US  15 million

          
  

   
 
 

                                                    

 

In this calculation we use that fact that one leg of the forward contract is 

equivalent to a pound- denominated 91-day zero coupon bond and the other 

leg is equivalent to a dollar-denominated 91-day zero coupon bond. 

 On the next day, 21 May, it is likely that interest rates, exchange rates, 

and thus the value of the forward contract have all changed. Moreover, 

suppose that the probability that the loss will exceed $130,000 is 2%, the 

                                                           
1
 We define Normal Market as follows “For non-interest rate futures, a situation in which the distant 

months are at a premium to the nearby months. For interest rate futures, a situation in which the nearby 
months are at a premium to the distant months.” 
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probability that the loss will be between $110,000 and $130,000 is 1% and the 

probability that the loss will be between $90,000 and $110000 is 2%. 

Summing these probabilities, there is a 5% probability that the loss will 

exceed approximately $90,000. If we deem a loss that is suffered less than 5% 

of the time to be a loss due to unusual or “abnormal” market movements, then 

$90,000 divides the losses due to “abnormal” market movements from the 

normal ones. If we use this 5% probability as a cutoff to define a loss due to 

normal market movements, then $90,000 is the (approximate) Value at Risk. 

The above example is based on the assumption that losses follow the Normal 

distribution. 

             ∎ 

 

The probability used as the reference confidence level needs not be 

5%, but rather is chosen by the either the user or the provider of the Value at 

risk number: perhaps the risk manager, risk management committee or 

designer of the system used to compute the Value at Risk. If instead the 

probability was chosen to be 2%, the Value at Risk would be $130,000, 

because the loss is predicted to exceed $130,000 only 2% of the time.  

Suppose we use a probability of x percent and a holding period of t 

days. From the example above and the definition of Value at risk we gave in 

the previous section, the Value at Risk is the loss that is expected to be 

exceeded with a probability of only x percent during the next t-day holding 

period. In other words, it is the loss that is expected to be exceeded during x 

percent of the t-day holding period.  

Unfortunately, there is no methodology which will guide us for the 

optimal choice of x. This is up to the designer’s discretion and his/hers 

subjective opinion on the probability of losses. For example, JP Morgan’s 

RiskMetrics system uses 5%, while Mobil Oil’s annual report indicates that it 

uses 0.3% 
[4]

. Additionally, it is really important to keep in mind the holding 

time period t and the probability distribution of x. Two companies holding 

identical portfolios will come up with totally different values of VaR if the 

time period or the probability or both of them are different. The loss that is 

suffered with probability 1% is larger than the one suffered with probability 
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5%. Using the Variance- Covariance approach for the calculation of VaR, 

mentioned in the section 2.4.1, it had been found that it is 1.41 times as large.  

 

 

 

2.4 Methods of measuring Value at Risk 

  

In the following section we quote the standard methods used in finance 

for the computation of VaR. There are three basic ways of measuring Value at 

Risk, though there are several variations of each method. The three basic 

ways are: 

1) The Variance-Covariance method 

2) The historical data approach 

3) The Monte- Carlo simulation 

 

2.4.1 Variance- Covariance Method: 

 As we have seen previously, Value at Risk computes the probability 

that the value of an asset will drop below a specific value in a particular time 

horizon. So if we had the option to derive a probability distribution of 

potential values of risk, it would be even simpler to compute VaR. That is in 

simple words what Variance- Covariance method does. 

 

General Description: 

 This method is based on the assumption that the underlying market 

factors are normally distributed. We denote      the risk-factors which follow 

the multivariate normal distribution, i.e.              where μ is the mean 

vector and Σ is the variance- covariance matrix of the distribution. Using this 

assumption it is easy to determine the distribution of our portfolio profits and 

losses, which is also Normal. After that, due to the mathematica l properties of 

the Normal distribution, is easy enough to determine the loss which is equaled 

or exceeded a specific x per cent of the time.  

 For example, assume we want to evaluate the Value at Risk for a single 

asset, where the potential values are, as we mentioned earlier, normally 
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distributed with mean $100 million and standard deviation $20 million. With 

95% confidence interval, which is translated to 1.96 standard deviations on 

both either side of the mean, we can assess that the value of this asset  will not 

fall below $60 million or rise above $140 million, i.e.  

 

                                              

 

Even though this method is simple enough to understand, it is difficult 

when we have portfolios with a large number of assets.  The difficu lty lies in 

the fact that we must compute not only the variances, but also the covariances 

of every pair of assets. The number of computations is usually a large one. 

For instance, if we have a portfolio with 100 assets, we must estimate 49.500 

covariances, in addition to 100 variances
 [34]

.  

Clearly, this method is not very practical when we have large 

portfolios. For this reason, we want to simplify this method. To proceed, we 

map the risk in the individual investments in the portfolio to more general 

market risks, when we compute the VaR, and then we estimate the measure 

based on this market risk exposures. For the mapping we follow four basic 

steps: 

Step 1:  

In the first step we try to map every financial asset into a set of 

instruments representing the underlying market. We have to identify the basic 

market factors and the standardized positions related to market factors of 

course to do the mapping. In this step, we have a subjective opinion of the 

risk analyst in the decision of how important a risk factor is and how much it 

influences the market. The subjective choice in that point, can give to the 

analyst the flexibility in setting up the mapping.  

This step of mapping is essential in this method. Not only can you 

reduce extremely the number of risk factors, but also instead of estimating the 

variances and covariances of hundreds of individual assets, you just estimate 

the risk instruments that those assets are exposed to.  

Step 2: 

 In the second step, each financial asset is stated as a set of positions in 

the standardized market instruments.  
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Step 3: 

 In the third step, we estimate the variances and covariances of each 

instrument and across the instruments, respectively. At this point, the 

variance and covariance method captures the variability and comovement of 

the market factors: standard deviation (or else variance) captures the 

variability and correlation coefficients capture the comovements. Usually, 

this step i.e. the estimations of variances and covariances, are obtained by 

historical data.  

Step 4: 

 In the final forth step, we compute VaR for the examined portfolio 

using weights on the standardized instruments of step 2 and on variances and 

covariances of step 3.  

This method is called risk mapping. 

 For example, assume we want to compute a portfolio of a three risky 

assets. The initial value of that portfolio is $100 million. The three risky 

assets are   ,   and   . Assume that the parameters are known. We have  μ
 
, 

μ
  

and μ
 
 the means and  

 

   

   σ  σ  

σ  σ  σ  

σ  σ  σ  

  

 

the variance-covariance matrix of the returns, which is symmetric.  

We have     the covariance of the returns between assets i and j, and     the 

variances of the return of the asset i. Assume that $30 million are invested in 

asset 1, $25 million in asset 2 and $45 million in asset 3. Then the return 

distribution of the portfolio is given by:  
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where X=(x1, x2, x3)=(0.3 0.25 0.45) is the vector of the three risky assets and 

S
T
 is the inverted matrix of S and  

μ=(0.1 0.12 0.13) 

   
           
            
            

  

 

We have, mean return=0.11185 and variance of return=0.0384838. So,  

    Portfolio mean=111.85 

   Portfolio variance=38.4838 

So the VaR at 1% level is 177.677 
[5]

.  

             ∎ 

 

Comments: 

1) We must point out that the first assumption of this  method is that returns 

on individual risk factors are normally distributed. Furthermore, despite 

the fact that returns themselves may not be normally distributed and large 

outliers are very common in finance (because commonly the distributions 

are fat tailed), the assumption is that the standardized return
2
 follows the 

Normal distribution. 

2) When we analyze the results, we must not focus on the size of the returns, 

but on size of the returns related to the standard deviation.  For example, a 

large return in a period of high volatility may result in a low standardized 

return, whereas the same return in a period of low volatility may give an 

abnormal high standardized return.  

 

The basic advantage of this approach is its flexibility, its simplicity, a 

combination which made the Variance- Covariance method very popular and 

widespread used. Furthermore, this method enables the addition of specific 

scenarios and enables the analysis of the sensitivity of the results with respect 

to the parameters. However, there are some drawbacks lies of this method 

when the analyst goes to the estimation process.  

                                                           
2
 We note that                     
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 Wrong distributional assumption: If the conditional returns are not 

normally distributed, the computed VaR will underestimate the true 

VaR. That means that if there are more outliers in the actual return 

distribution than would be expected given the normal distribution, the 

actual VaR will be much higher than the computed one.  

 Input errors: As we mentioned earlier, the estimation of variances and 

covariances is made using historical data. Even accepting the 

assumption of normality, the estimations have already standard errors. 

In other words, the variance-covariance matrix that is an input to the 

VaR measure is a collection of estimates, some of which may have 

large error terms. 

 Non-stationarity: Another problem occurs when the variances and 

covariances change over time. That’s a very common issue due to the 

fact that the markets change every day and a slight change may have a 

large effect in the computations. For example, the correlation between 

the U.S. dollar and European euro may change if a financial crisis 

takes place in a country which uses euro. That incident may lead to a 

breakdown in the computed VaR. 

 

Modifications: 

Since the disadvantages of the computation of VaR using this method are 

known, efforts have been made to revitalize the approach. First, researchers 

tried to compute VaR disregarding the assumption of normality. Hull and 

White 
[17]

 underlined that the most commonly used model of calculating VaR 

assumes that the probability distribution of the daily changes in each market 

variable is normal distribution. Though, they point out that this assumption is 

far from the truth.  

The daily changes in many variables, particularly exchange rates, present 

an amount of positive kurtosis. That means that the probability distribution of 

daily changes is fat tailed, so that extreme outcomes may happen much more 

frequently than the normal distribution predicts. Duffie and Pan identify 

jumps and stochastic volatility as possible causes of kurtosis.  

 Hull and White suggested ways of calculating VaR in models where 

the variables are not normally distributed. This model allows the analysts to 
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assume a probability for the variables, such as daily changes, different than 

normal. Then, they transform these variables into new ones, which must 

follow the normal distribution. We assume that the new variables are 

multivariate normal. Those transformations are a way of handling the 

correlations between the variables.  

 For the second problem we mentioned earlier, which is the input errors, 

researchers tried to find new estimating techniques to overcome this problem. 

Some researchers suggested that the ways of calculation the estimates just 

need some changes. Other authors proposed that conventional estimates are 

based on the assumption that the standard deviation in returns does not 

change over time, i.e. homoskedasticity.  Engle 
[12]

 suggested that we can 

have better estimators if we use model that explicit allow the standard 

deviation to change over time, i.e. eteroskedasticity. He suggested 

Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) as two variants that 

provide better forecasts
 [12]

.  

 Last but not least, the final issue for which this approach is criticized is 

the fact that the Variance- Covariance method is based on the fact that there is 

a linear relationship between risk and portfolio positions. That is not always 

true, since the relationship between risk and payoffs in a portfolio which 

includes options for example is not linear.  To deal with this kind of problem, 

researchers proposed Quadratic Value at Risk. Quadratic measures give the 

researchers the opportunity to estimate VaR for complicated portfol ios that 

includes options, but there is a cost: firstly the mathematics involved in the 

calculations of deriving the VaR is very complicated and secondly some of 

the intuition is getting lost along the way.  

 

2.4.2 Historical Simulation 

 

The historical simulation is probably the simplest way of estimating 

Value at Risk and the major parameters, such as means, standard deviations, 

and correlations. The key in this method is the fact that it uses past data, 

which is collected over a specific horizon of the past, to create possible future 

scenarios. This allows the analysts to compute the changes that would 
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occurred in each period. These scenarios are thought to be a representative 

collection of all possibilities that could take place between a time period 

which is being specified from the start by the analysts.  

In addition, in historical data simulation there is no assumption of a 

complex structure of markets, fact that simplifies a lot the calculations. 

Furthermore, in HS we make no assumptions about the distribution that the 

returns follow, so it is actually a non parametric method of calculating VaR. 

That happens because this method uses the empirical distribution of the 

portfolio’s return. However, the main disadvantage of HS is the assumption 

we make that all the returns are iid. Furthermore, each day of the historical 

simulation comes with the some weight, so the analyst cannot evaluate the 

potential volatility. Lastly, the method is based on the assumption of history 

repeating itself. 

 

 

General description: 

The way historical simulation works is simple enough: as in variance-

covariance method, we have derived our portfolio in market risk factors. For 

each factor we run a time series using past data. The difference lies in the fact 

that we do not use past data to estimate the variances and covariances to be, 

since the changes in the portfolio over time yields all the information we need 

to compute the Value at Risk. 

Analytically, with HS we go back in time and we generate scenarios by 

sampling historical returns. Each return is associated with each risk factor of 

the portfolio. The overall value, of all linear and derivative position, is the 

produced portfolio. We repeat this procedure as many times as needed. The 

returns we use to create our data, may be drawn with  or without replacement. 

In fact, we use a methodology called bootstrapping to create, using the actual 

distribution of the historical data which we have weighted, to create “new” 

data.  

In other worlds, we could say that we weight our time series of 

historical asset returns. We denote with 
[4]

: 

 

Θ: the set of historical returns 
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                   ∈                

    
       

                                         

 

 We repeat the process of finding the     
  as many times needed to 

create the simulated price series    . The scenario of the risk factor Y is 

formed of the simulated prices for day T+1, T+2 … T+N.  

 

 

Comments: 

The historical simulation approach is without a doubt the easiest and 

the most popular method of calculation VaR. The great advantage of this 

method is, apart of its easiness, the fact that is extremely easy to implement 

and is fully understood even from someone who is not a statistician. 

Furthermore, HS uses the empirical distribution of the returns for the 

calculations so there is no need to assume a distribution. Moreover, HS can be 

applied to all kind of portfolios, even in nonlinear ones.  

However, it has some drawbacks. Firstly, as we already mentioned, the 

major disadvantage of this method is the assumption that the distribution of 

returns is iid. If the returns are in fact iid and we know the moments of the 

distribution, then any result about the portfolio will be accurate and they will 

not change during time. Independence indicates that the size of price 

movement in one period does not play any role to every other period, i.e. each 

period’s changes does not influence any other period. Stationarity makes us 

sure that the probability that a specific loss will be occurred is the same every 

day. Those two abilities of iid plus the assumption of normality can make the 

VaR calculation very simply, for longer or shorter periods. However, if the 

distribution of returns is not stationary and we use for our calculations the 

same constant volatility, then we will be driven in misleading results
3
.  

The above disadvantage can be combined with the fact that HS does 

not give any space to volatility changes. Large price changes usually are 

followed by even larger changes. That create tendency in the data, known as 

volatility clustering, which must be taken into account in our calculations.  

                                                           
3
 In days where we have greater volatility we will have greater losses.  
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Secondly, HS depends on the motto that “History repeats itself”. This 

method uses only the past data to calculate VaR, assuming that what 

happened to the past will happen to the future too. There is no possibility of 

subjective information, as in Monte Carlo, neither of distributional 

assumptions, as in Variance-Covariance method. That is happening due to the 

entirely computation based in historical price changes.  

Last but not least, HS does not give us the possibility to insert in our 

analysis new assets or market risks to optimize our measurement. This is 

logical of course if we think that our data is based in the past. However, as 

the time passes, new factors must be taken into account. For example, a 

financial crisis which may be occurred is a regulatory and extremely serious 

factor which can change our results in a heartbeat.  

 

 

Modifications: 

 Since the problems of this approach are known, it is expected that 

researchers have tried to find ways of eliminating them.   

a) Weighting the recent past: A logical thought can be made here, that 

recent past must be taken into more account for the future’s 

calculations of VaR than the distant one. Boudoukh, Richardson and 

Whitelaw worked exactly on that road. They suggested that the 

probabilities must be weighted based on their recency 
[6]

. In other 

words, if we assume that decay factor is 0.9, the most recent 

probability weight p, the observation prior to it will be 0.9p, the one 

before 0.81p and so on 
[34]

. 

b) Combining historical simulation with time series models:  Cabedo and 

Moya in their paper “Estimating oil price “Value at Risk” using the 

historical simulation approach” suggested another way of computing 

VaR using time series model. They prove that fitting our historical data 

to a time series model and by estimating the parameters of that model 

we will have better and more accurate results.  They fit an 

autoregressive moving average model (ARMA) to their oil data and use 

this model to forecast the returns with 99% confidence interval. Using 

their methodology, they did not directly used the distribution of past 
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returns, but the distribution of forecasting errors derived from an 

estimated ARMA model.  

Firstly, the calculated the past portfolio returns in absolute value 

and then they analyzed the produced autocorrelation. They pointed out, 

though, that autocorrelation may provide negative results, which means 

that the time series may present a non-stationary behavior or they may 

have a non- statistically significant autocorrelation level. In the first 

case, the analyst must transform the series using the lowest 

differentiation for creating a stationary behavior. In the second case, 

the methodology is equivalent to standard historical simulation 

approach. We can continue to the second phase only when a 

statistically significant autocorrelation has been determined.  

Secondly, we have the ARMA model estimation. Using past 

returns, we estimate a model for oil price behavior. In this phase, we 

must remove the autocorrelation, so we must determine the number of 

necessary to do so. 

In the third stage, we have our preliminary forecasts. Those 

forecasts are made using the coefficients estimated in the previous 

step. In that stage we also calculate the percentile associated with the 

desirable likelihood level.  

In the final stage, we calculate the future returns, which are 

corrected with the use of the percentiles calculated in stage three, by 

using the model of forecast estimated in the second stage.  These 

forecasts are used to calculate the desirable VaR. Figure 2.3 shows the 

differences: 
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Figure 2.3: Value at Risk estimates from time series model 
[26]  

    The figure 2.3 illustrates that the actual oil price returns in 1999 fall 

within the predicted bounds 98.8% of the time, in contrast to 97.7% of 

the time they do with the unadjusted historical simulation 
[7]

. The 

innovation in that method is that use time series which are sensitive in 

the changes of variance unlike historical simulation.  

c) Volatility updating: There is possibility that the recent volatility of an 

asset to be higher than the one of the historical data. To skip this 

problem, Hull and White 
[18]

 suggested that the historical data must be 

adjusted to reflect any possible changes. For example, if the standard 

deviation now is 0.8% and the standard deviation in our historical data 

was 0.6% 20 days ago, Hull and White recommended scaling that 

number to reflect the change in volatility. For 1% return on that day we 

have: 

 
   

   
                      . Their approach requires day-specific 

estimates of variances that change over the historical time period, 

which they obtained by using the GARCH models.  
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Other versions based on historical simulation:  

 A useful version of historical simulation is when the procedure of risk 

mapping gives us the opportunity to define the price of a whole portfolio as a 

deterministic function of the market parameters P(p), where P is the pricing 

function and p is the vector of all significant market parameters. When we 

examine today’s price, say today is day t, we have P(p t) price. Using the 

notation above, if we examine the parameters at some day i, we have the 

parameters vector p i and in day i+1 we have p i+1. As the basic goal to do the 

above is to model the possible changes in today’s market, we use the 

following ways: either we multiply each market parameter with the ratio of 

the same parameter at the day i+1 and day i, nor we add to today’s value the 

difference between the values at day i+1 and day i for each parameter. The 

second method is recommended when increase in volatility is being observed 

with the level of parameter, so this method is very useful for stock indexes, 

exchange rates etc 
[32]

.  

 

 

2.4.3 Monte Carlo simulation 

 

Monte Carlo simulation is generally a widespread way of generating 

values and computing parameters. In our case, our focus is on calculating 

Value at Risk. This is both a parametric and non parametric way of 

calculating VaR depending on our assumptions. However, in the case of 

Monte Carlo simulation, we are not interested in computing the entire 

distribution of losses. We are interested only in the probabilities of losses 

exceeding a specific value.  

Monte Carlo simulation has a lot of similarities with the historical data 

approach. The difference between them is that in the case of historical 

simulation we carry out the simulation using the observed changes in the 

market factors over the last N periods to generate N hypothetical portfolios, 

though in the case of Monte Carlo simulation we have the possibility to 

choose a distribution that is believed to adequately capture or approximate the 

possible changes in the market factor
 [24]

.  
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General description: 

For the Monte Carlo simulation, we follow the same two first steps as 

in Variance- Covariance method. One should build a joint distribution of 

these factors based on one of the following: historical data, data implicitly 

implied by observed prices or data based on specific economic scenarios. The 

assumed distribution is not obligatory to be the multivariate Normal, despite 

the fact that the natural interpretation of its parameters, such as mean, 

standard deviation and correlations, and the ease with which these parameters 

can be estimated is for its favor. The analysts are free to choose any 

distribution that could reasonably fit their data and it could be capable of 

describing possible future changes in the market factors.  

The difference between those two methods begins in stage 3. Instead of 

computing the variances and covariances of the market risks, we generate 

values, in other words we stimulate, by specifying probabilities for each 

market risk. Also, we specify how those market risks move together.  

Then, the simulation is being performed for a large number of possible 

scenarios. After a repeated series of runs, usually greater than 1.000 and 

maybe greater 10.000, we will have a distribution of portfolio values that can 

be used to assess Value at Risk. The profit and losses at the end of the period 

are ordered from the largest profit to the largest lost for each scenario and the 

x% quantile of the worst results is the VaR estimate.   

For example, we assume that we run a series of 10.000 simulations and 

derive corresponding values for the portfolio. These values can be ranked 

from highest to lowest and the 95%percentile VaR will correspond to the 

500
th

 lowest value of the 99
th

 percentile to the 100
th

 lowest value.  

In this method no assumption for the form of distributions is being 

made in advance. The analyst assumes a probability that in his/her belief is 

the one that the parameters follow. It is clear that if we assume the normally 

distributed market risks, our life becomes extremely easy. However, the 

power of Monte Carlo simulation lies on the fact that  we have the freedom to 

choose any probability other than normal, which we believe it is more suitable 

for our data. In other words, this method is the only method among the three 
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that which is better suited to the analyst with the possibility of subjective 

judgments.  

 

Assessment: 

 This method, without a doubt, has several important advantages, and as 

every other method, some also important disadvantages. First, and maybe the 

most important, is the fact that this method does not assumes a priori neither a 

specific model nor a specific probability for the risk markets. So it can be 

easily adjusted to economic forecasts. Also, we have the possibility of 

improving our result by taking a larger number f simulated scenarios.  

 In addition, Monte Carlo simulation is not affected by the nonlinear 

relationship between the parameters, so we can include nonlinear instruments 

such as options. Last but not least, an analyst can track path- dependence 

because the whole market process is simulated rather than the final result 

alone.  

 However, disadvantages exist too. First of all the simulation will work 

well and provide us with good results only if the assumption we have made 

for the probability distribution of the inputs is correct. In other words, if we 

assume a probability that is far from the real one, then our results will be 

extremely misleading and we may be driven to wrong conclusions.  

      In addition, as the number of market risk factors increases making the 

comovements more complex, Monte Carlo simulations become more difficult 

to run for two reasons. First, we now have to estimate the probability 

distributions for hundreds of market risk variables than just the handful as in 

a single project or asset. This is also true in cases in which the variables are 

highly correlated. Second, the number of simulations that someone needs to 

run for having a good estimation of VaR will have to increase substantially. 

That leads us to the probably most important disadvantage of Monte Carlo 

simulation: the convergence. Any Monte Carlo simulation converges to the 

true value with rate   
 

  
 , where N is the total number of simulated trajectories. 

So, if we want to increase the precision of our estimates, let’s say 10 times, 

we must run 100 times more simulations.  
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However, despite the fact that this maybe the most serious 

disadvantage of this method, in many cases there are well developed 

techniques of variance reduction, which are based on known properties of the 

portfolio such as correlations, or known analytical approximations to options 

and fixed income instruments. Another way of speeding the standard Monte 

Carlo approach is portfolio compression. In that case, we represent a large 

portfolio of similar instruments as a single instrument with risk characteristics 

similar to the original, requiring though similar risk characteristic to all the 

instruments we want to unify.  

Undeniably, Monte Carlo approach has a lot of strengths, which are 

more obvious trough the comparison of the three approaches. Unlike the 

Variance- covariance method, we are not obligated to make the assumption of 

normality in returns, which most of the times is wrong. On the contrary, we 

have the ability to assume a probability which in our beliefs fits better the 

data. Also, compared to the historical data approach, we still start with 

historical data, but we also have the possibility to enter in our model 

subjective judgments and other information which can improve our 

forecasting. Finally, Monte Carlo simulation gives us the possibility to 

include in our data even nonlinear instruments and by that possibility, to be 

more flexible. 

 

Modifications: 

 As with all the other approaches, modifications have been made to 

eliminate the disadvantages of Monte Carlo simulation too, which are mostly 

focused on the computational part. If we have a large number of instruments, 

a large number of simulations is required, for example say we have a model 

with 15 key rates and 4 possible values for each. Then, it is required 4
15

 

simulations to be completed, i.e. 1.073.741.824 simulations. The 

modifications are directed to reduce the required number of simulations.  

a) Scenario Simulation: We have the possibility to reduce the number of 

simulations required by doing the analysis over a number of discrete 

scenarios. Jamshidan and Zhu 
[19]

 suggested a way to do that so called 

scenario simulations. According to them, we can use principal 

components analysis to reduce the number of the market risks which 
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affect our portfolio. Rather than allowing every factor to take part in 

every scenario, they are looking for possible combinations of these 

variables to conclude at scenarios. Then, they compute across these 

scenarios to arrive at the simulation results.  

b) Monte Carlo simulations with Variance- Covariance method 

modification: In that modification we combine the speed of variance-

covariance method and the flexibility of Monte Carlo simulation. The 

strong part in variance- covariance method is its speed and leaving 

aside the assumption of normality, it is capable to calculate VaR in a 

heartbeat. On the other hand, Monte Carlo gives the opportunity to the 

analyst to assume any distribution he believes it fits better to the data. 

“Glasserman, Heidelberger and Shahabuddin 
[12]

 use approximations 

from the variance covariance method to guide the sampling process in 

Monte Carlo simulations and report a substantial savings in time and 

resources, without any appreciable loss of precision 
[34]

. “ 

 

2.5 Comparing Approaches  

 

 Questions arise concerning which method provides best estimations. 

Variance-covariance method is very simple to compute and is quickly enough. 

However, this method requires strong assumptions about the return 

distribution of standardized assets. On the other hand, historical simulation is 

the simplest of all the methods with no assumptions about the distribution of 

the returns, but assumes that the past will repeat itself so the data used in 

simulation is straightforward. Last but not least, Monte Carlo simulation 

provides good estimates and is flexible enough in the point you must assume 

a distribution for the future returns, but it can be very complicated in the 

computing part and slow especially when a large number of market factors 

come in the model. 

 But the query still remains: how different are the estimates of VaR 

produced by each method. If we use, for instance, the historical data approach 

and the historical data returns are normally distributed then this method will 

give the same results as the variance- covariance method, if that data is used 
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to estimate the variance covariance matrix. Furthermore, the variance 

covariance method will give the same result as the Monte Carlo simulation if 

we assume that the data which we use is normally distributed with consistent 

means and variances. Moreover, the historical data approach will g ive the 

same results as the Monte Carlo simulation if the distributions we use in the 

latter are entirely based on historical data.  

 Also, another query comes in mind: if we do find different values of 

VaR, which of the three is the best estimate? That actually depends on what 

data we want to examine and on what approach we use. In very method 

mentioned above, we gave not only the advantages and disadvantages but also 

modifications that have been made to eliminate the problems in each 

approach.  

So, in short, if we want to find which method is more appropriate and 

gives the best estimates, maybe we must look what kind of data we have in 

our hands. If we want to assess the Value at Risk for portfolios that do not 

include options over short period of time (a day or a week), the variance- 

covariance approach does a very good job regardless the assumption of 

normality. Moreover, if our risk source, for which we want to compute Value 

at Risk, is stable and where there is substantial historical data (for example 

commodity prices) then historical simulation gives good estimates. Finally, if 

we have non-linear portfolios, which may for example includes options, over 

large time periods, where the historical data is volatile and non- stationary 

and the assumption of normal is questionable, then Monte Carlo simulation is 

better.  
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CHAPTER 3 

 

COHERENT RISK MEASURES 

 

INTRODUCTION 

 

In section 2.1 we introduced the idea of risk measure and then we 

analyzed one of the most common risk measure Value at Risk. Though, 

despite the fact that anyone can, intuitively, understand what a financial risk 

may be, it is most of the times hard to give a precise assessment of financial 

risk, unless of course we have a good risk measure. It is like the temperature. 

Anyone can feel the cold, but we need the thermometer to calculate exactly 

the temperature.  

But a question arises after that. Are there some criteria that must be 

followed if we want to have a, so called, good risk measure? Properties which 

can guarantee the efficiency of our risk measure?  

The answer is positive. A list of desirable properties for financial risk 

measures was proposed by Artzner et al. in 1999 in their paper called 

“Coherent Measures of Risk” 
[2]

. This paper actually made the researchers to 
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understand that the gap between the market practice and theoretical progress 

had widened enormously.  

In their paper, they proposed a number of axioms that any so- called 

coherent risk measure should satisfy. Also, they studied the coherence 

properties of the most common used risk measures such as Value at Risk and 

gave a characterization of all coherent risk measures in terms of generalized 

scenarios. Furthermore, this specific paper made risk management a “science” 

with its own theory and framework.  

 

 

3.1 PROPERTIES OF COHERENT RISK MEASURES 

 

In this section we will introduce the properties that a risk measure 

should satisfy in order to be called coherent. Furthermore, we will comment 

every property and its significance in our study.  

First of all we will give a strict  definition of a risk measure.   

We denote with:  

(Ω, F, P): the probability space 

Δ: the time horizon (which will leave unspecified and it will be entered in 

specific problems) 

X
0 

(Ω, F, P): the set of all variables on (Ω, F) which are considered to be 

almost surely finite. 

G: is a set of all risks and it is real valued function on Ω. Also, we assume 

that G is convex cone
4
. 

ρ: the risk measure which is real- valued function and ρ: G→Ɍ  

X and Y: are random variables which denote the future value for each 

instrument.  

Furthermore, when we say ρ(X) is the minimum amount of capital that should 

be added to a risky position X, so that the position becomes acceptable to an 

external or internal risk controller 
[26]

. If it is negative, i.e. –ρ(X) capital may 

be even withdrawn. So we have: 

 

                                                           
4
 Convex cone’s definition: if X∈G and Y∈G then X+Y∈G and λX∈G for every λ>0. 
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 The definition of ρ(X) illustrates that if ρ(Χ)>0 is positive, then a 

positive amount of money must be added to make the position acceptable or 

else the money must be withdrawn. If ρ(X) <0 is negative then we already 

have an acceptable position. In that case, we can even withdraw money from 

our position (amount of money which equals the absolute value of ρ(X)) and 

still have an acceptable position. 

Now, we represent the four properties that a risk measure must follow 

in order to be called coherent.  

 

Property 1: Translation invariance: 

For all X∈G and all real numbers α, we have ρ(X+ατ)=ρ(Χ)-α 

 

Property 2: Subadditivity 

For all X1 and X2∈G, we have ρ (Χ1+Χ2) ≤ρ (Χ1) +ρ (Χ2) 

 

Property 3: Positive homogeneity: 

For all λ≥0 and X∈G, we have ρ(λX)=λρ(X) 

 

Property 4: Monotonicity 

For all X and Y ∈ G with X≤Y, we have ρ(X)≤ρ(Y). 

 

 

Comments: 

Property 1 is very useful in finance. It ensures that by adding an 

amount α in the initial position τ, the risk decreases by α. That is something 

logical actually. If we invest more money in a position, we do decrease the 

risk compared to the initial model.  

Property 2 means that the capital required for two positions X and Y 

combined will be less than the capital required for the risk treated separately. 

In other words, a portfolio which is made up of sub-portfolios will risk an 

amount of money less or equal than the sum of the risks of each sub-
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portfolios. This property is necessary and we expect to be satisfied by a risk 

measure, because it actually says that if we aggregate individual risks then we 

will not increase the overall risk, on the contrary. That property is very 

important because: 

a) If a company was forced to meet a requirement of extra capital, 

without satisfying this property, it could be capable of breaking into 

two separate incorporated affiliates, in order to reduce its regulatory 

capital requirements. 

b) Consider an example of two trading desks, D1 and D2. Denote with L1 

and L2 the possible risks of X and X2, respectively. Assume that the 

analyst wants to ensure ρ (Z), where Z= D1+ D2 is the overall loss, is 

smaller than M. If the risk measure ρ is subadditive, then the only 

thing he has to do is to choose bounds M1 and M2, such that M1+M2≤M 

and ρ (Xi) ≤ Mi. So, it is ensured that ρ(Z)≤ M1+M2≤M.  

Property 3 means that the required capital is independent of the 

currency in which the risk is measured. This property is very reasonable and 

emerges from property 2. Subadditivity implies for λ∈ ℕ, 

                       

 Last but not least, property 4 simply means that if one risk includes 

greater losses than another, then it will require greater amount of capital. In 

other words, and in financial terms, if we have a position with higher losses in 

every state of the world will require more risk capital. Or el se, if Y has a 

greater value than X, then Y should have lower risk, i.e. less amount of 

money should be added in Y than in X to make it acceptable (the amount to be 

added is the risk measure).  

 As we already mentioned, those four properties will define the 

coherent risk measure. We have the definition: 

 

Definition 3.1: Coherent risk measure 

A risk measure satisfying the four properties of translation invariance, 

subadditivity, positive homogeneity and Monotonicity, is called coherent 
[2]

.  

 

There is an argument against property 3, the property of positive 

homogeneity. Some analysts believe that if λ is a large number then somehow 
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it must being seen the concentration of risk and the fact that liquidity 

problems will be present. There for, the inequality ρ λΧ  λρ Χ  should 

stands. Though, this is impossible for the subadditive risk measures. All th is 

conflict led to the study of another family of risk measures, known as convex 

risk measures. In this family of risk measures, we have the properties 2 and 

3(i.e. the subadditivity and the positive homogeneity) relaxed and anyone just 

asks for the weaker property of convexity, i.e. for all X, Y ∈ G  

 

                                                                                                       

 

The fact is that these four properties guarantee that the risk function is 

convex, which actually in turn corresponds to risk aversion. Economically 

speaking, the relationship (3.1), gives the idea that diversification can reduce 

the potential risk.  

Moreover, the fact that coherent risk measures are also convex can be 

helpful in another aspect too. The risk surface of any coherent risk measure is 

convex. This means that any line drawn between two coherent risk measures 

lies above the coherent risk surface. This is very important in minimization 

routines because it can insure the uniqueness of a global risk minimum. 

However, if a risk measure is not a convex one, then we may face the problem 

of multiple local minima, and it may be difficult to establish which of those 

minimums is the global.  

 

 

3.2 THEORETICAL PROBLEMS IN THE APPLICATION 

OF VALUE AT RISK 

 

3.2.1   THE VIOLATION OF SUBADDITIVITY OF VALUE AT RISK: 

 

In chapter 2, we introduced one of the most widespread risk measures, 

Value at Risk. It is a fact that VaR is very ease in its application and 

computation among risk measures, along with its interpretation. That’s way 

Value at Risk was adopted as the best risk measure by essentially all banks 
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and regulators. However, Value at Risk is not a coherent risk measure, 

because it contradicts with property 2, the property of subadditivity, although 

it does follow the other three properties. In fact, Value at Risk is subadditive 

in the case where the loss distribution is an elliptical one. In the real world 

though, losses are not always elliptically distributed.  

In order to understand the mathematical problem as far the 

subadditivity is concerned, we quote some examples.  

 

Example 3.1: 

(Artzner et al. 1999: Coherent Measures of Risk 
[2]

 page 13) 

« In this example we will show that Value at Risk follows properties 1, 2, 4 

but fails to satisfy property 3. Furthermore we will show that Value at Risk  is 

not convex. 

In this example, we have two digital options
5
 on a stock, having the 

same exercise date T, the end of the folding period. The first option denoted 

by A and initial price u, pays: 

    
                                                                

           
  

where U is given. The second option denoted with   and initial price ℓ, pays:  

    
                                                          

           
  

Choosing L and U such that: 

                      

We look for the 1% values of the future net works of positions taken by two 

traders writing respectively 2 options A and 2 options B. They are -2u and -2ℓ 

respectively, supposing that r=1. The positive number 1000- ℓ-u is the 1% 

value at risk of the future net worth of the position taken by a trader writing 

A+B. This implied that the set is not convex. » 

In other words, if an agent sells both options at the same time, since those 

options are written on the same underlying asset, they are negatively 

correlated. So, the probability that one of those two options will be exercised 

is 1.6% and the 1% VaR is 1000- ℓ-u, a positive value. Then, we have: 

                                                           
5
 DEFINITION:A digital option is an option whose payout is fixed after the underlying stock exceeds 

the predetermined threshold or strike price 
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                 ℓ     ℓ                   

The relationship above, clearly contradicts with the property of subadditivity.  

 

Example 3.2: 

(Artzner et al. 1999: Coherent Measures of Risk 
[2]

 page 14) 

«In this example we will show that Value at Risk follows properties 1, 2, 4 

but fails to satisfy property 3. 

For this example, we allow an infinite set Ω and consider two 

independent identically random variables         , having the same density  

   
                          

                           
  

Assume that each of them represents a future random net worth with 

positive expected value, which is a possibly interest ing risk. Furthermore, in 

terms of quantile, the 10% Values at Risk of X1 and X2 being equal to 0, 

whereas an easy calculation showing that the 10% Value at risk of X 1+X2 is 

certainly larger than 0. So we conclude that the individual controls of these 

risks do not allow directly a control of their sum, if we were to use the 10% 

Value at Risk » 

 

Example 3.3: 

(Alexander J. McNeil, Rudiger Frey, Paul Embrechts: Quantitative Risk 

Management 
[26]

 page 241) 

«Consider a portfolio of d=10 defaultable corporate bonds. We assume that 

defaults are independent; the default probability is identical for all bonds and 

is equal to 2%. The current price of the bonds is 100. If there is no default, a 

bond pays t+1 (one year from now, say) an amount of 105, otherwise there is 

no repayment. Hence, Li, the loss of bond i, is : 

    
                          

            
  

Denote by Yi the default indicator of firm i, i.e.  

    
                               

           
  

We get: 

                        . 

Hence, the    form a sequence of iid rvs with               and 
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               . 

We compare the two portfolios, both with current value equal to 10.000. 

Portfolio A is fully concentrated and consists of 100 units of bond one. 

Portfolio B is completely diversified; it consists of one unit of each of the 

bonds. Economic intuition suggests that portfolio B is less risky than 

portfolio A and hence should have less VaR.  

If we compute VaR at a confidence level of 95% for both portfolios, we will 

have: 

Portfolio A:  

portfolio loss is          and                            

Now, 

                    and      ℓ         for ℓ<-5.  

Hence,                 . 

This means that even after a withdrawal of a risk capital of 500 the portfolio 

is still acceptable to a risk controller working with VaR at t he 95% level.  

Portfolio B: 

Portfolio loss                     
   

   
    and 

                   
   
        

The sum      
   
    has a binomial distribution, i.e. M~B(100,0.02). We get 

by inspection that: 

P (M≤5) ≈0.984≥0.95 and 

P (M≤4) ≈0.949< 0.95. So: 

           

Hence,  

                       

 

In this case a bank would need an additional risk capital of 25 to satisfy a 

regulator working with VaR at the 95% level. Clearly the risk capital required 

for portfolio   is higher than for portfolio A ». 

  

From example 3, we have two facts we have to point out:  
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1) Despite the fact that our intuition leads us to believe that portfolio B 

should be less risky, we just proved the exact opposite. So we conclude 

that VaR may give nonsensical results. 

2) We proved that VaR is not subadditive.  

 

 

3.2.2   COMMENTS: 

 

Need of Subadditivity: 

 

Generally, we have seen the violation of the subadditivity. This 

property, in short, expresses that, if we have a portfolio made by sub-

portfolios, then the amount we risk when we use the whole portfolio as one, 

will be less or equal than the sum of the separate amounts risked by its sub -

portfolios. The equality holds only when concurrent events take place, i.e. 

when all the sources of these risks can act altogether. In every other case, we 

have a strict inequality, i.e. the amount of risk of the whole portfolio is 

strictly less than the sum of the risks of the separate sub-portfolios.  

Subadditivity allows risk reduction after diversification of portfolio. 

On the contrary, if a measure contradicts this property, it allows the 

possibility that diversification will lead to an increase of the value of risk, 

even if the partial risks are influenced by concurrent events. Moreover, 

subadditivity is necessary for capital adequacy in banking supervision. Think 

of a bank which is made of several branches and assume that there is a 

diversification of the whole capital into each branch. Subadditivity can 

guarantee that the overall bank capital will be adequate. On the other hand, if 

the employed risk measure violates subadditivity, then the risk of the whole 

bank could be much higher than the sum of the risks of the branches.  

Another essential use of subadditivity is in portfolio optimization 

problems. This is due to convexity, which actually follows from subadditivity 

and positive homogeneity. Convexity assures the existence of a unique 

absolute minimum, rather than the local one in case of non-convexity. So the 

minimization comes with only a unique, well- diversified solution.  
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Where does the fact that Value at Risk is not subadditive lie? Usually it 

is caused by the fact that the assets that make the portfolio have very skewed 

loss distributions. In other words, the reason for the non subadditivity of 

Value at Risk is the fact that the underlying random variables may be 

independent but they are very heavy-tailed 

 

 

3.3   TAIL ANALYSIS 

 

When there is the special case of normality of returns, i.e. when all 

risks are jointly normally distributed, Value at Risk is known to  be coherent 

below the mean. That happens due to the fact that quantiles satisfy the 

subadditivity as long as probabilities of exceedence are smaller than 0.5 
[2]

.  

However, that is extremely unlike to happen. Since Mandelbrot 
[25] 

in 

1963 and Fama 
[13]

 in 1965, we know that usually returns are fat tailed. Thus, 

it has not been generally known when subadditivity is violated. What we do 

know is that Value at Risk is subadditive for the tails of all fat tailed 

distributions provided that the tails are not extremely fat. An example for 

that, is some assets whose, due to the fact that are so fat tailed, first moment 

is not defined, such as those who follow the Cauchy distribution.  

The standard measure to calculate tail-fatness is kurtosis, which is the 

expected forth power, i.e.     
  . A distribution has fat tails when kurtosis is 

present. Actually, when we have large returns usually kurtosis estimates are 

highly sensitive.  

When a distribution has higher than normal kurtosis we expect a major 

concentration of the mass in the center of the distribution, leaving thin tails. 

Kurtosis can be higher than normal if either the tails of the cdf are heavier 

than the normal or, as we already told, if there is great mass in the center of 

the distribution or both.  If we want to be more formal, we define a fat tail 

distribution requiring to be regularly varying. A function is regularly varying 

if it has a Pareto distribution-like power expansion at infinity. Then, to 

measure the thickness of the tails we use the tail index, which for financial 

assets is between three and five 
[8]

.  
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It is very common to observe super fat tails for assets whose prices are 

very unlike to change (either the prices have very little change or they do not 

change at all.) Furthermore, fat tailed are likely to be found in short term 

assets. In all of those cases, the violation of subadditivity can create a 

variation of problems.  

 

 

 

3.4    STABLE AND ELLIPTICAL DISTRIBUTIONS 

 

3.4.1 Stable distributions 

 

As we mentioned before, if the distribution of returns is normal, then 

subadditivity is not violated. However, Value at Risk estimation under the 

assumption of normality tends to give bad results, even at the conventional 

1% and 5% levels. Usually, it tends to overestimate Value at risk at the high 

probability levels and underestimate it at the lower probability levels. These 

bad results may lead the risk manager to underestimate the true risk or to miss 

part of the risk.  

Furthermore, Value at Risk does not pay attention to the shape of the 

distribution beyond the VaR point. If a risk manager wants to compare two 

portfolios he/she must to be sure that the distributions aroused from the 

portfolios are similar. If, however, he/she wants to increase returns by selling 

derivatives which have high risk, then the VaR will not be greatly affected. 

However, that move has changed the distribution of losses. But, as we said, 

Value at Risk does not take into account what happens to the loss distribution 

after the point of VaR. That is a major drawback of Value at Risk systems.  

A generalization of normal distribution, which can over pass the 

problem of the shape beyond VaR point, is the  stable distribution, or else a-

stable distribution. Usually the assumption of normality is based on the 

Central Limit Theorem, which is actually used in the case of a-stable 

distribution too. The differences from the normal distribution are that a -stable 
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allows bigger concentration of mass around the mean, more extreme values 

and bigger skewness.  

 

 

Definition 3.2: α- Stable distribution 
[26] 

A random variable X is said to follow a α-stable distribution if for any 

positive number a and b, there is a positive number c and a real number d 

such that 

 

                                                                 
                                                                  

 

where X1 and X2 are independent copies of X and   
  denotes equality in 

distribution.  

  

The stable distributions have a characteristic function, defined as:  

 

                                          
  

 
          α              

 

The parameters σ, β and μ are unique. Furthermore, μ is a location parameter 

and σ is a scale parameter. We use the notation: 

            
   

 
           

The distribution           is called: 

 

 

                          
                     
                         
                      

  

 

The number α s called index of stability, such that:          
[15]

.  

 The α -stable distribution depends on 4 parameters a, b, c and d. For 

those parameters we have the following 
[14]

: 
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 α, with 0<a≤2 is the stability parameter which determines the weight in 

the tails. The smaller the value of a, the greater the frequency and size 

of the extreme events. 

 b is a skewness parameter with -1≤b≤1. If b=0 we have a symmetric 

distribution. If b has positive or negative value then the distribution is 

skewed to the right or to the left, respectively.  

 The parameter c is positive and it measures the dispersion. It is similar 

to the variance of a normal distribution.  

 Finally d is a real number which can be thought as a location measure, 

it is similar to the mean of a normal distribution.  

For the case of a normal distribution, a=2 and b=0, i.e. there is no 

skewness. Also, a normal distribution has a variance equal to 2  . When a=1 

and b=0, we then have the Cauchy distribution.  

Stable distributions have a very useful property, from which the term 

“stable” actually derives. Let X1, X2…. Xn be mutually independent random 

variables with a common distribution R and let Sn=X1+X2+…..Xn. Then the 

distribution R is stable if for each n there are constants           such that: 

                   
  

That means that the density of a sum of independent identically 

distributed a-stable random variables is up to a scale and location parameter 

the same as the distribution of the initial variables, i.e. stable. We have to 

point out that this is a property that only the a-stable distributions have.  

α-stable distributions have yet another useful property. A 

generalization of the Central Limit Theorem says that: “If X 1, X2 ….. Xn are 

independent, identically distributed (iid) random variables with finite 

variance, then the sum                 will asymptotically follow the 

normal distribution. ” These assumptions may be weaked considerably. If we 

keep the assumption of independence along with the fact that no individual 

variable has a significant effect on the mean, but drop the assumptions of 

identically distributed and finite variance then the Central Limit Theorem 

continues to hold. Furthermore, if we keep the independence requirement but 

allow for cases the individual measurements to have an effect on the mean, 

then if the sum converges, it converges to an a-stable distribution. So, each 
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member of the a-stable distribution is actually an asymptotic limit for some 

set of independent identically distributed random variables.  

Using the wider class of stable distributions, we do have a way to over 

pass the violation of subadditivity through proper conditioning, which are 

valid particularly for stable distributions. In that point, we must point out that 

Normal distribution itself is subadditive and it is not heavy tailed. A lar ger 

family of distributions, which includes the Normal distribution, is stable 

distribution. Stable distributions are heavy tailed but they hold all the nice 

properties of the Normal distribution. This is an essential property. When we 

have normally distributed losses we do have subadditivity but we do not have 

a good model due to the heavy tails. This problem is solved by using the 

stable distributions because I have both subadditivity and all the features from 

the Normal distribution and from tail analysis. 

According to Fama 
[13]

 and Mandelbrot 
[25]

, the stable distributions 

present heavy- tailed which are well suited for modeling financial data. That 

is the reason they produce measures of risk based on distribution tails, like 

Value at Risk, which are reliable. Though, due to the properties we mentioned 

above, we can see a stable distribution with fat tails, as a mixture of stable 

distributions with less fat tails, or even as a mixture of normal distributions. 

So, as a result, the violation of subadditivity to the aggregate distribution can 

be over passed if we consider the whole distribution as a sum of separate 

stable distributions, in which there is no violation of the subadditivity.  

 

Proposition 3.1 
[9]

: 

Suppose that X1 and X2 are two asset returns with jointly regularly varying 

non-degenerate tails with tail index α>1. Then VaR is subadditive in the tail 

region.  

             ∎ 

 From the above proposition we are sure that the VaR of a portfolio, at 

sufficient enough low probability levels, is indeed lower than the sum of the 

VaRs of the individual positions, if the return distribution exhibits fat tails. In 

other words, subadditivity is not violated for fat tailed data, regardless of its 

dependency structure. An example of this application is the multivariate t -

Student distribution with degrees of freedom larger than 1. To show the 
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power of proposition 3.1, we illustrate the following example, considering 

zero colleration but where portfolios may be dependent.  

 

Example 3.4 
[9]

: 

(Danielsson et al.: Fat Tails, VaR and Subadditivity, page 10)  

Consider the case of a bank and a market neutral hedge fund that both have 

exposures to two company returns from the same sector. The respective 

random returns are X1 and X2. For simplicity these are assumed to be 

independent and identically distributed. By nature, a bank is long in the 

economy and hence in the two companies. The bank’s exposure is therefore 

X1+ X2. A market neutral hedge fund is short in the first firm and long in the 

second. Its exposure is X1 –X2. Assume alternatively that the returns are 

standard normally distributed, or Student-t, with α>2 degrees of freedom. It is 

immediate that E [(X1 +X2)( X1 –X2)]=0, and hence the correlation is zero. 

Consider the following conditional probability 

 

   
   

                       

 

as a measure for dependence in the tails. 

For the case of the normal distribution, since the colleration is zero, the two 

portfolios are independent and hence 

 

   
   

                       
   

                   

           

 

 

            

                                                                        
   

                      

           
 

            

                                                                                 

 

 

This is different under the assumption of Student-t distributed returns: 
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            =      
   

    
 

 

 

 

 

 

Thus for the Student returns there is clear evidence of dependence (in the tail 

area).  

The implication for the VaR is as follows. For the normal case, below the 

mean the VaR is known to be subadditive. For the non-linear dependent case 

with the Student-t risk drivers, one can calculate the VaR sufficiently deep 

into the tail area by using Feller’s convolution theorem. Since for large s  

 

                                

 

upon inversion, the univariate VaRs are s  
 

 
 

 
  

. The VaR of the 

combination of the portfolios, i.e. when the bank is integrated with the hedge 

fund, is obtained from 

 

                                     

 

upon inversion s   
 

 
 

 
  

 . It follows immediately that this VaR is smaller 

than the sum of the individual VaRs 2 
 

 
 

 
  

.  

             ∎ 

Finishing this section, we will add some characteristics that Student -t 

distribution has. Student distribution is a very widespread, especially in 

finance. One of the reasons is that it allows heavy tails. Another reason is that 

the degrees of freedom equal the tail index.  

Furthermore, if we simulate data and then analyze the results, we will 

see that if the degrees of freedom are higher than 1, then the first moment is 

well defined and the violation of the subadditivity is almost zero. However, if 
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the degrees of freedom equal to 1, then the number of times when 

subadditivity fails is very high and the first moment is not well defined.  

 

 

3.4.2 Elliptic Distributions 

  

Another extremely useful family of distributions is the elliptical 

distribution family, which actually is a generalization of the multivariate 

normal distribution. That is the reason why elliptical distributions have, like 

Normal distributions, attractable and interesting properties. The elliptic 

family is a family of symmetric distributions which includes the multivariate 

Normal and the multivariate t-distributions, as long as multivariate Cauchy, 

multivariate Logistic and multivariate Stable.  

The elliptic distributions have a constant density on ellipsoids. 

Actually, in a two- dimension of space, the contour lines of the density 

surface are ellipses. A good example is the t- distribution. Due to the fact that 

this distribution has standard univariate t marginal distributions which are 

heavy-tailed, is often used when we have to deal with asset returns.  

In the past few years, elliptical distributions have gained prominence 

as an effective and attractive tool for multivariate modeling in risk  

management. They were introduced by Kelker in 1970 and further discussed 

by Fang et al. at their paper “Symmetric Multivariate and Related 

 istributions” in 1987. Elliptical distributions are actually a generalization of 

multivariate normal family, with the difference that elliptical distributions 

allow both the presence of heavy tails and asymptotic tail dependence and the 

existence of short tails. Thus, elliptical distributions are more flexible than 

just the normal distribution. The fact that this family is able to control the 

problem of kurtosis is very important in financial risk management where the 

analyst observes empirical distributions of losses, which usually appear with 

heavier tails than the normal.  

Elliptical distributions have some very convenient properties, which 

are the reason for the wide use of that family as a risk management tool. The 

properties are three: 
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1. It is very easy to simulate elliptical distributions, even in high 

dimensions, like the normal distribution. The fact that they are  so easy 

to simulate from, is extremely useful for Monte Carlo simulation of 

dependent risks. 

2. All linear transformations of elliptical distributed vectors also belong 

to elliptical distribution family.  

3. The covariance matrix, exactly like in normal distributions, “carries” 

all the information about the potential dependency among the 

variables, even if covariances do not exist. Therefore, when we deal 

with elliptical distributed risks, the problems which arise from the 

examination of the variability and dependence in terms of the 

covariance matrix disappear.  

 

In order to proceed with the formal definition of elliptical distributions, 

we denote with    a class of functions            ℝ such that the function 

     
   

    is a n-dimensional characteristic function. Then we have: 

               

 

Definition 3.4a: Elliptical distribution 
[23] 

Consider an n-dimensional random vector                . The random 

vector X has a multivariate elliptical distribution, denoted by             if 

its characteristic function can be expressed as:  

 

                                                         
 

 
                                                           

 

for some column-vector μ, n x n positive- definite matrix Σ and for some 

function ψ (t)∈   , which is called the characteristic generator.  

 The probability density function, if it exists, has the form:  

 

                                              
  

    
   

 

 
                                                    

 

for some function      , which is called density generator.  
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 From (3.4) we have that              . As we have already mentioned, 

elliptical distribution have the property of linear transformation. Therefore, if 

we denote with A a     dimensional matrix of rank m ≤ n and b a m 

dimensional vector, then: 

 

                                                                                                                     

 

So any linear combination of elliptical distributions is in fact another 

elliptical distribution with the same density generator function.  

 

Another way to define elliptical distributions is the following:  

 

Definition 3.4b: Elliptical distributions 
[26]

 

X has an elliptical distribution if  

                                                            
                                                                              

Where Y~      and  ∈ ℝ    and μ∈ ℝ  are a matrix and vector of constants, 

respectively
6,7

. 

So, elliptical distributions are obtained by multivariate affine transformat ions 

of spherical distributions.  

 

Properties of elliptic distributions 
[26]

: 

 In this section, we will further examine the properties of elliptical 

distributions and we will compare them with the properties of multivariate 

normal distributions. The similarities between elliptical and multivariate 

normal distributions can make easier to state the assumption that the risk - 

                                                           
6
 Definition: Spherical distributions 

A random vector X=(X1,…Xd)’ has a spherical distribution if, for every orthogonal map U∈ℝ    

   
   

 
7
 Theorem 2: The following are equivalent. 

(1) X is spherical (A random vector X=(X1,…,Xd)’ has a spherical distribution if for every 

orthogonal map U∈ℝ                   y      ’  ’  Id) U  
 X)> 

(2) There exists a function ψ of a scalar variable such that, for all t∈ℝ ,                

           
      

   

(3) For every α∈ℝ , α’  
   α||X1, where              
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factors changes have an approximately elliptical distribution, rather than 

multivariate normal, which is usually false. We say that X~          , so X 

follows the multivariate normal distribution with μ the mean, Σ the variance-

covariance matrix and              
 

 
 is the Laplace- Stieltjes transform of 

the df H of W, where W is a positive mixing variable.  

Linear combinations:  

Let X~           and Y=BX+ b, where  ∈ ℝ    and b∈ℝ , then 

                    . So Y remains to be multivariate normal. The exact 

the same happens when X follows an elliptical distribution. If we take a linear 

combination of elliptical distribution, then these remain elliptical with the 

same characteristic generator ψ. Let X~          and take  ∈ ℝ    and  ∈

ℝ . Then we have  

                     

Marginal distributions: 

The marginal distribution of X must be elliptical distributions with the same 

characteristic generator. Let          
  then  

   
μ

 
μ

 
   and    

Σ  Σ  

Σ  Σ  
 . 

 

Conditional distributions: 

In the case of multivariate normal, the conditional distribution of X2 given X1 

is multivariate normal with the same characteristic generator ψ. In the case of 

elliptical distributions, the conditional distribution remains elliptical 

distribution with a different characteristic generator    . 

Convolutions: 

The convolution of two independent elliptical vectors with the same 

dispersion matrix Σ is also elliptical. If X and Y are independent d-

dimensional random vectors satisfying             and                then 

we have: 

                   

Where                 
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Though, if the dispersion matrices of X and Y differ more than a 

constant factor, then the convolution may not be elliptical distributed, even if 

the two generators are identical.  

Furthermore, we denote with      the sum of    with i=1,….n 

variables which follow the elliptic distribution, i.e.              

       . Then, by using (3.6) it follows that: 

          
 μ    Σ      

Similarly, if we denote with          the weighted sum of    variables which 

follow the elliptic distribution with i=1,…n, then we have:  

              
 μ   Σ   ψ  

 

 Those properties are the tools which help us handling the subadditivity 

problem of VaR. Due to the fact that elliptical distributions are a 

generalization of multivariate normal distributions; they hold all the essential 

properties of normality along with the fact that elliptical distributions allow 

heavy tails and kurtosis in general. So these distributions have a large range 

of applications, especially in financial problems where normality hardly 

applies. 

In risk management, elliptical distributions are amenable to the 

standard approaches, a fact that makes them extremely useful. In the elliptical 

world, Value at Risk is a coherent risk measure, holding all the properties of 

coherence, including subadditivity. So, computing the Value at Risk of 

variables which follow the elliptical distribution is just a routine and we do 

not have to be afraid about the violation of the subadditiv ity.  

 

Theorem 3.1: Subadditivity of VaR for elliptical risk factors  

(Quantitative Risk Management 
[26]

, McNeil, Freyand and Embrechts, p.242-

243) 

Suppose that             and define the set ℳ of linearized portfolio losses 

of the form 

ℳ                  ∈ ℝ

 

   

  

Then for any two losses      ∈ ℳ and 0.5≤α<1, 
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Proof: 

Without any loss of generality, we assume that λ0=0. For any L∈ℳ it follows 

from the definition of elliptical distribution that we can write 

L=λ’X          
  for a spherical random vector         , a matrix  ∈ ℝ    

and a constant vector   ∈ ℝ . By part (3) of Theorem 2 we have 

 

       L               
  

 

showing that every L∈ℳ is a random variable of the same type. Moreover, 

the translation invariance and homogeneity of VaR imply that L=λ’X, 

                            

Now, set      
 Χ and      

 Χ. Since ||(      
         

         
     and 

since            for α≥0.5, the results follows.  

                       ∎ 

 

Theorem 3.1 guarantees the subadditivity of Value at Risk for 

elliptically distributed losses. In theorem 3.2 it can be seen that when we deal 

with elliptical distributions, the Markowitz
8
 variance-minimizing portfolio 

does minimize risk measures like Value at Risk, which is coherent in the 

elliptical world.  

 

Theorem 3.2 
[11]

: 

Suppose             with          for all i. Let 

             ∈ ℝ

 

   

  

be the set of all linear portfolios. Then the following are true.  

1. (Subadditivity of VaR) For any two portfolios      ∈   and 0.5≤α≤1, 

                                                           
8
 When we use the Markowitz variance approach, we develop a mean-variance analysis for selecting a 
portfolio of common stocks. Someone can find more information in the paper “Asset Allocation 
Models Using the Markowitz Approach”, written by Paul D. Kaplan, in January 1998. 
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2. (Equivalence of variance and positive homogenous risk measurement). 

Let ϱ be a real-valued risk measure on the space of real-valued random 

variables which depends only on the distribution of a random variable 

X. Suppose this measure satisfies the property of positive 

homogeneity. Then for      ∈  : 

                                      

3. (Markowitz risk- minimizing portfolio). Let ϱ be as in 2, and assume 

that the property of translation invariance is also satisfied. Let 

             ∈ ℝ

 

   

             

 

   

  

Be the subset of portfolios giving expected return r. Then  

       ∈             ∈  
     

 

Proof: 

1. Let    be the α-quantile of the standardized distribution of this type. 

Then, 

                       

                       

                                

Since                      and      the results follows. 

2. Since            are random variables of the same type, there exists an 

α > 0 such that                      . It follows that 

                                          

3. Follows from 2 and the fact that we optimize over portfolios with 

identical expectation. 

                                                                                                               

∎ 

Remark: 

We will follow our study by introducing the term of mean-VaR. We denote by 

μ the mean of the loss distribution. Sometimes, instead of VaR, we use the 

statistic 
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We suppose to have a time horizon equals to a day. Then the mean-VaR refers 

as daily earnings at risk. When we refer to market risk management, the 

distinction between VaR and     
     does not play an exceptional role, due 

to the fact that time horizon is usually short. However, in credit market, 

where the time horizon is longer or in asset management risk,     
     does 

play an exceptional role, and is more frequently used than VaR.   

  

 

Example 3.5 
[11]

: 

Suppose that               represents n risks with an elliptical 

distribution. Also, we have linear portfolios of such risks, which are  

           ∈ ℝ

 

   

  

with distribution   .Then, the Value at Risk of portfolio Z at probability level 

α is given by: 

 

          
           ∈ ℝ          

∎ 

 

SPECIAL CASES OF ELLIPTIC DSTRIBUTIONS     

           

Examples 
[22]

: 

(Landsman and Valdez: Tail Conditional Expectations for Elliptical 

Distributions) 

 

 

3.6    Multivariate Student-t Family (page 59) 

 

An elliptically distributed vector X has a multivariate student-t distribution if 

its density generator can be expressed as:  
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where the parameter p>
 

 
 and    is some constant that may depend on p. We 

write             if X belongs to this family. Its joint density therefore has 

the form: 

      
  

    
   

            μ 

   
 

  

 

 

Using equation: 

                                     

                                                  
  

 

 
 

           
 

 
   

 
        

  

                                              

it can be shown that the normalizing constant is:  

 

                                 
    

        
            

 

Here, we introduce the multivariate student-t distribution in its most general 

form. Taking for example,   
     

 
, where n and m are integers and    

 

 
 

we get the traditional form of the multivariate student-t distribution with 

density 

 

               
          

                 
   

              

 
 

        

                   

 

In the univariate case where n=1, Bian and Tiku (1997) and MacDonald 

(1996) suggested putting             if p>3/2 to get the so-called 

generalized student-t (GST) univariate distribution with density. This 

normalization leads to the important property that Var(X) =    . Extending this 

to the multivariate case, we suggest keeping             if p>3/2, then 

this multivariate GST has the advantage that Cov(X)= Σ 

In particular, for p= (n+ m) /2 we suggest, instead of equation (3.9), 

considering 
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Because it also has the property that the covariance is Cov (X) =Σ. If 

1/2<p≤3/2, the variance does not exist and we have a heavy-tailed 

multivariate distribution. If 1/2<p≤1, even the expectation does not exist. In 

the case where p=1, we have the multivariate Cauchy distribution with 

density: 

 

                           
  

   
  

            
                          

 

                        

 

 

 

3.7     Multivariate Logistic Family (page 59) 

 

An elliptical vector X belongs to the family of multivariate logistic 

distributions if its density generator has the form: 

                                                                  
   

        
                                                     

 

Its joint density has the form: 

                         
  

    

     
 
 

               

        
 
 

                
                                    

Where the normalizing constant can be evaluated using equation     as 

follows
9
: 

                                                                     

 

   

 

  

                                     

If X belongs to the family of multivariate logistic distributions, we shall write 

           

 

                                                           
9
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3.8    Multivariate Exponential Power Family (page 60)  

 

An elliptical vector X belongs to the family of multivariate exponential power 

distributions if its density generator has the form: 

 

                                          
                                                                                 

 

The jointly density of X can be expressed in the form:  

                                        
  

    
     

 

  
                                            

Where the normalizing constant is given by:  

   
  

 
  

       
   

 
 
       

  
 

 

 

  

 

   

     =
       

    
 
   

 

  
 
        

When r=s=1, this family of distributions clearly reduces to the mul tivariate 

normal family. When s=1 alone, this family reduces to the original Kotz 

multivariate distribution suggested by Kotz in 1975. If s=1/2 and r=   , we 

have the family of double exponential or Laplace distributions.  

                        

∎ 

 

The next graph illustrates the differences between the normal and the 

student distribution with mean 0 and the same variance which is equal to 1. 

From this graph, the differences in the tail become clear.  
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Figure 3.1: Comparison of Normal and Student distribution 

 

Generally, VaR has been criticized for its lack of subadditivity, 

especially in the case where fat tails are present. Fat tails are extremely 

common in finance. However, in chapter 3 we proved that there are cases 

where subadditivity stands, making VaR a good risk measure. Of course, 

analysts want a risk measure which will not be standing only in some cases 

but generally. That is why Conditional Value at Risk was made.  
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CHAPTER 4 

 

CONDITIONAL VALUE AT RISK 

 

 

4.1  Conditional Value at Risk 

 

 As we examined in the previous chapters, Value at Risk is a 

widespread risk measure which is easy to use and implement but with serious 

drawbacks.  

Value at Risk is a risk measure which can be applied to every type of 

portfolio and allows the comparison among the risks factors of different 

portfolios. Furthermore, Value at Risk gives us the opportunity to aggregate 

the risks, taking into account the internal correlations among all risk factors. 

Additional, Value at Risk is able to assess on a complete portfolio and not 

only on individual positions in it, which is a major difference comparing to 

other risk measures. Moreover, due to the fact that Value at Risk is a 

probabilistic risk measure, gives to the analyst all the necessar y information 

on the probabilities which are associated with specific loss amounts. Last but 

not least, Value at Risk is extremely easy to implementation.  
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However, Value at Risk is extremely untrustworthy when the loss 

distribution is not normal but tends to be fat tailed, a fact which is very 

common in real data. Furthermore, Value at Risk ignores and does not take 

into account what happens after the exceeding point, or else the threshold, 

that this measure has indicated itself. Value at Risk only tells us  what we can 

lose in “good” states, where a tail event does not occur, but not in “bad” 

states, when a tail event does occur, leading the analysts to wrong results. So, 

that measure can be thought of as a “biased one towards optimism instead of 

the conservatism that ought to prevail in risk management”, as Rockafellar 

and Uryasev point out in their paper “Conditional Value at Risk for General 

Loss  istributions” 
[29]

. In addition, the fact that Value at Risk does not take 

into account what happens in “bad” states can encourage traders to promote 

their own interests at the expense of the institutions they work in. Last but not 

least, Value at Risk is not a coherent risk measure, based on the definition of 

Artzner, because it does not satisfy the property of subadditivity unless in the 

case of standard normal distribution where VaR is proportional to standard 

deviation, so VaR is coherent.  

Given these problems, the need of a new alternative risk measure 

which will be able to over pass these issues is vital. This alternative risk 

measure should be able to keep all the beneficial properties of Value at Risk 

along with the ability to solve the problems arising from it. For these reasons, 

Artzner et al proposed the Conditional Value at Risk.  

 However, when we want to define Conditional Value at Risk (CVaR), 

we have to make a distinction between the random variables which follow a 

continuous distribution and the random variables which follow a distribution 

which are discrete or with jumps.   

 When the underlying factors follow a continuous distribution, then the 

CVaR is the conditional expected loss given that the loss is greater than or 

equal to the value of VaR.  

 

Definition 4.1: Conditional Value at Risk 

Suppose X is a continuous random variable denoting the loss of a given 

portfolio and    α    is the VaR at the 100(1-α) percent confidence level, 
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with α∈ [0, 1]. The CVaR of X is the mean of the generalized α-tail 

distribution: 

 

                                      α                    (4.1)               

 

Conditional Value at Risk actually measures the amount of money 

someone can lose on average in states beyond Value at Risk level. That holds 

for continuous distributions. Generally, for both continuous and discontinuous 

distributions CVaR can be expressed as followed: 

 

                       
    

 

  
                         (4.2) 

 

where : 

  
      

                   

       

   
               

  

 

In the case of a continuous distribution CVaR can be also called Mean 

Excess Loss, Expected Shortfall, Mean Shortfall or Tail Value at Risk.  

However, when we have to deal with discrete distributions or with 

distributions which may have discontinuities, which is very common in 

everyday life, we must be more careful. To define CVaR in that case, we must 

first introduce two new quantities,       
     and      

    . The       
     is 

called Expected Shortfall (ES) or else “upper CVaR” and       
     is called 

Tail VaR or else “lower CVaR”, where: 

 

                                                    
                                                                 

and 

                                                   
                                                                 

 

 Generally, we have:                      . The equality stands 

only in the case where there are no jumps at the VaR threshold. Otherwise, 
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both the inequalities can be strict. Thus, when we have to deal with 

continuous distributions CVaR and ES coincides, but when the distributions 

are discrete, CVaR may differ from ES. 

Using the definition (4.3) we can define alternative CVaR by weighting 

both         and      
    : 

 

                                                      
                    (4.5) 

 

where: 

                                      

      
             

   
                                                                                                              

  

The definition (4.5) makes the relation between CVaR and VaR even 

clearer. When              , where         is the biggest loss that our 

portfolio can occur in the portfolio, then                  .So, the relation 

(4.5) can be written as follows: 

 

          
                           

                      

                                                                                    
   (4.7) 

 

The weights in the relationship (4.7) arise from the way that CVaR 

splits the atom of probability at the VaR value, a situation which we will 

analyze further below. The use and the importance of relationship (4.7) is 

major. Despite the fact that neither VaR nor       
     behave well in general, 

because a vast number of cases have a loss distribution which is 

discontinuous, CVaR manages to hold important properties: it is both 

continuous with respect to α and is jointly convex in (X,α).  

When the distribution of the random variables is continuous, we have 

that           . So, in the case of a continuous distribution of random 

variables CVaR and ES coincide.  
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In the case of a discrete loss distribution, where y is the stochastic 

parameter and can take the values y  y   y  with probabilities    , with 

j=1,….,J. Then CVaR is defined as 
[20]

: 

 

                         
 

   
       

  

   

     y           y  

 

      

                        

Where    satisfies: 

         

  

   

    

   

 

The big innovation of the definition of CVaR is that for discrete 

distributions, CVaR can split the atom. If       presents a vertical gap, then 

there is an interval of confidence level α where we have the same value of 

VaR. This interval has the endpoints:  

    α           
             

                
             

       

When        
               

       , the atom     
    , which 

has total probability      , is split by the confidence level α n two pieces 

with probabilities       and      [31]
. To explain better the idea of 

splitting we illustrate the following examples, which can be found in the 

“Value at Risk vs. Conditional Value at Risk in Risk Management and 

Optimization” written by Sarykalin, Serraino and Uryasev:  

“Suppose we have six equally likely scenarios with losses         . Let: 

   
 

 
 

 

 
. In this case α does not split the atom 

 

 

 

Figure  4.1: Computation of CVaR when α does not split the atom 
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probability 

1/6
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1/6
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1/6
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CVaR- 

VaR
+ 

CVaR=CVaR+ 
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Then              
          

          
     and 

       
            

   
   and 

     
     

 

 
        

 

 
     

     
 

 
   

 

 
   

Now, let   
 

  
 

In that case α does split the         atom, and: 

      
             

   
   and 

         
 

 
        

 

 
     

     
 

 
   

 

 
   

 

 
    

 

 

 

 

Figure  4.2: Computation of CVaR when α does split the atom 

 

The biggest advantage of CVaR, as we mentioned before is the fact 

that CVaR is a coherent risk measure, i.e. it follows all the four properties of 

the coherence, including subadditivity. The first, third and forth property of 

the coherence are easy to be proven. We are going to prove the second 

property, i.e. the property of subadditivity.  

 

Subadditivity of CVaR
 [26] 

We denote with, using the notation from the book “Quantitative Risk 

Management” by McNeil, Frey and Embrechts 
[26]

: 

        : is a generic sequence of random variables with associated order 

statistics               and note that for arbitrary m satisfying 1≤m≤n we 

have: 

f1 with 

probability 

1/6

f2 with 

probability 

1/6

f3 with 

probability 

1/6

f4 with 

probability 

1/6

f5 with 

probability 

1/6

f6 with 

probability 

1/6

CVaR 1/12 

CVaR+ CVaR- VaR 
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Now consider two random variables L and    with joint df F and a sequence of 

iid bivariate random vectors (      )... (        with the same df F. Writing 

               and       
    for an order statistic of                 , 

we observe that we must have: 

       
   

           
  

         
  

             
 

 

   

 

 

                             

                              

 

      

 

   

       

 

   

 

 By setting m= [n(1-α)] and letting n→  we have that  

                                

   

∎ 

 

CVaR has some other properties too. As we can see in the book of 

Pflug 
[27]

 “Some remarks on VaR and CVaR” , CVaR satisfies the following 

properties: 

i.       is translation- equivariant, i.e.  

                      

ii.       is positively homogenous, i.e.   

                          

iii. If Y has a density, 

                                       

iv.       is convex in the following sense: For arbitrary (possibly 

dependent) random variables    and    and 0<λ<1, 
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v.       is monotonic w.r.t. SD(2)
10

 (and a fortiori w.r.t. SD(1)), 

i.e. if           , then  

                                                     

vi.       is monotonic w.r.t. MD(2)
11

, i.e. if             then 

                                                                    

 

 Properties (i) and (ii) are obvious from the definition of CVaR. In that 

point we will prove property (iii) and (iv).  

 

Proof (iii) 
[27]

: 

 

                                    

                                  

                                 

One sees that: 

                                                                 

                              

 

Proof (iv) 
[27]

: 

Let    be such that: 

              
 

   
        

  

.  

Since y→ y      is convex, we have: 

                  

                α  
 

   
                        

  

 

                               α  
 

   
        

  
   

   
        

  

                                                           
10

 SD= Stochastic dominance is a term which refers to a set of relations that may hold between a pair 
of distributions. We say that SD (2) is stochastic dominance of order 2 when the relation 
                           y                      for all integrable concave, monotonic 

functions ψ.  
11

 MD= Monotonic dominance. We say that MD (2) is monotonic dominance of order 2 when the 
relation                            y                      for all integrable concave functions ψ.  
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The properties (v) and (vi) follow from the fact that y→  y      is monotone 

and convex. 

                                                                                                                                         

∎ 

The fact that CVaR is a convex function of portfolio positions is 

substantial. Additionally, the set of the minimum points is convex too on a 

convex set, a fact that makes the minimization process of CVaR easier.  

We illustrate some examples for our better understanding of the 

concept of CVaR.  

 

Example 4.1: CVaR for Normal loss distribution 
[26]

: 

“Suppose that the loss distribution    is normal with mean μ and variance   . 

Fix α∈ (0, 1). Then: 

         
         

   
 

where υ is the density of the standard normal distribution.  

First note that 

            
   

 
 
   

 
    

   

 
    

Hence it suffices to compute the Conditional Value at Risk for the standard 

normal random variable     
   

 
. Here we get: 

          
 

   
         

 

   

 

      

       
 

       
         

   
 

                                                                                                                                          

∎ 

 

Example 4.2: CVaR for Student t loss distribution 
[26]

: 

Suppose the loss L is such that    
   

 
 has a standard t distribution 

with ν degrees of freedom. Suppose further that ν>1. By the reasoning of 

example 3.1, which applies to any location- scale family, we have 
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The Conditional Value at Risk of the standard t distribution is easily 

calculated by direct integration to be 

          
     

      

   
 
     

       

   
  

Where    denotes the df and    the density of standard t. 

               

∎ 

 4.2    INTERPRETATION 

 

VaR is actually, as we have already mentioned the quantile. If for 

example, we want to calculate VaR with α=5%, then the result indicates that 

5% of the cases will overpass the 5% quantile. However, the big disadvantage 

of VaR is that it does not give us any information of how much the loss will 

be.  

That is the great difference from CVaR. CVaR is the expected, or else, 

the average value of the loss in the tail. CVaR is taking into account only the 

area of the distribution which is exceeding the value of VaR and it calculates 

the averages loss in that precise area. So CVaR is the average of the tail. 

However, there is no insurance that the loss will not be further to the right. So 

graphically, if we assume that we have a standard normal distribution and we 

want to calculate the 5% VaR we have: 
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Figure 4.3: Loss Distribution, VaR, CVaR and Maximum Loss  

 

For the same value of α we have that CVaR ≥VaR, which was actually 

the reason why CVaR was “created”. CVaR is stricter than VaR.  ue to that 

characteristic; CVaR is able to “secure” our portfolio from potential losses, 

by not letting it exposed to extreme danger.  

When the value of the confidence level α is close to 1, then CVaR 

coincides with Maximum Loss.  

 

 

4.3    OPTIMIZATION OF CVaR 

 

CVaR as we have already said is an alternative risk measure with better 

properties than VaR. In this chapter, we will study CVaR’s optimization.  

As a tool of optimization, CVaR can be easily treaded due to the fact 

that it is able to keep all the good properties as a risk measure. When we have 

to deal with normal or maybe elliptical distributions of loss, then CVaR, Var 

and even the minimum variance are equivalent and easy to be calculated. 
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However, those distributions are not very common in everyday life, where we 

mostly have to deal with fat tailed distributions. Nevertheless, in those cases 

CVaR can be expressed by an easy minimization formula. Generally, this 

formula can be used with respect to x∈X to minimize CVaR so as to optimize 

the portfolio by minimizing the risk.  

Those computational advantages of CVaR over VaR have made CVaR 

more flexible and easier to be used. Until now, there are not formulas or 

algorithms which can be used for optimizing VaR when we have to deal with 

high- dimensional instruments.  An optimization formula for CVaR has first 

been introduced by Rockafellar and Uryasev in 2000. In this approach, along 

with the calculation and the optimization of CVaR, we obtain also the 

computation of VaR. Furthermore, the minimization of CVaR also leads close 

to optimal solutions for VaR, so minimizing CVaR is very closely related 

with minimizing VaR. That is quite logical however, because VaR never 

exceeds CVaR, so the minimization of CVaR operates as a barrier for VaR. 

That is the reason why portfolios with low CVaR have low VaR either.  

When we optimize a portfolio, we actually solve a stochastic 

optimization problem, for which a numerous algorithms have been made. 

These algorithms combine the mathematical features of the portfolios along 

with simulation-based methods. One of the great contributions of the 

approach introduced by Rockafellar and Uryasev is that linear programming 

techniques can be used for optimization of the conditional Value at Risk. That 

technique is analyzed in their paper: “Conditional Value at Risk: 

Optimization Algorithms and applications”. The linearity has be proven by 

Rockafellar and Uryasev for distribution which is given by a fixed number of 

scenarios and the loss function is linear, then the CVaR function can be 

replaced by a linear function and an additional set of linear constraints.  

The problem of optimization of CVaR can be reduced in a linear 

programming problem, which is easier to be performed. Furthermore, the fact 

that CVaR can be minimized with the use of linear programming techniques 

allows the handling of portfolios with large number of instruments and 

scenarios.  
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Description of the approach 
[28]

: 

First of all, we will notate the quantities we will use as they are used in 

the paper of Rockafellar and Uryasev “Optimization of Conditional Value at 

Risk”.  

Let f(x, y) be the loss associated with the decision vector x. The vector 

x∈ X, with X being a certain subset of ℝ  and the random vector y in  ℝ . The 

vector x can be thought as the representing portfolio, and X as the set of all 

the available portfolios, which are subject to various constraints. The vector y 

represents the uncertainties which affect the current examined portfolio and 

by extension the loss. In the case where we find a negative loss, we conclude 

that we have a gain.  

For each x, the loss f(x, y) is a random variable which follows a 

distribution in ℝ, induced by the distribution of y. For our convenience, we 

assume that y has the density p(y), but we will see later that there is no need 

an analytical expression of that density for our implementation. We only need 

a proper algorithm which generates random samples from p(y). To obtain an 

analytical expression of p(y) or to perform a Monte-Carlo simulation, we 

follow the next two steps: 

(1) We first model the risk factors in  ℝ  , with     . 

(2) “based on the characteristics of instrument I (i=1,2…,n), the 

distribution p(y) can be derived or code transforming random samples 

of risk factors to the random samples from density p(y) can be 

constructed.”  

The probability of f(x, y) is given: 

                                                            y  y

 

        

                                                        

The relation (4.9) as a function of α for fixed x is the cumulative 

distribution for the loss associated with x. The importance of  (x, α) is 

significant. First of all, it determines the behavior of the random variable plus 

it has a substantial role in the computation of VaR and CVaR. Furthermore, 

 (x, α) is a nondecreasing function with respect to α and is continuous from 

the right. There is no need of the assumption that  (x, α) must be continuous 

from the left too, because there is a possibility of jumps. However, for our 
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simplicity, we will assume that  (x, α) is everywhere continuous with respect 

to α, i.e. there is no possibility of jumps. If we do not make that assumption, 

the only problem is just a complication in mathematical properties, but those 

complications can be over passed.  

We have: 

                                              ∈ ℝ                                                           

and: 

 

                                    
 

   
     y   y  y                                       

 

              

 

 

Due to the fact that  (x, α) is nondecreasing and continuous with 

respect to α, we conclude that         is the left endpoint of the nonempty 

interval consisting of the values α such that  (x, α) =β. From the relation 

(4.11), we have that:                    . Thus,          is actually 

the conditional expected value of the loss f(x, y) associated with x, related to 

that the loss is greater or equal to        .  

As Rockafellar and Uryasev point out, “the key to this approach is the 

characterization of         and          in terms of the function    on X ℝ, 

defined as follows: 

 

                                      
 

   
                                                

 

 ∈ℝ 

 

 

where: 

      
          
          

  

 

The important characteristic of    is the property of convexity. The 

property of convexity ensures that the local minimum is a global  minimum as 

well.  
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THEOREM 4.1 
[28]

:  

As a function of α,         is convex and continuously differentiable. The β- 

CVaR of the loss associated with any x∈X can be determined from the 

formula: 

                                                                          
 ∈ℝ

                                               

In this formula, the set consisting of the values of α for which the minimum is 

attained, namely 

                                                                   ∈ℝ                                                 

is a nonempty closed bounded interval (perhaps reducing to a single point) 

and the β-VaR of the loss is given by 

                                                                                                                

In particular, one always has 

         ∈        ∈ℝ                                                        

∎ 

 

To prove Theorem 4.1, we rely on the assumption that  (x,α) is 

continuous with respect to α, i.e. regardless of the x, if f(x,y)=α 

When 1-β is quite small, someone can minimize, instead of the 

quantity        , the quantity (1-β)       . This, can be done for 

computational purposes because there will be no need to divide the integral 

by (1-β).  

The power of theorem 4.1 is that: 

(1) The minimization process becomes easier numerically due to the fact 

that the functions are continuous, differentiable and convex.  

(2) There is no need to calculate VaR separately, but the value of VaR 

derives from the calculation of the endpoint of the function       . 

Also, if the VaR is not needed, then the part of the calculation of VaR 

can e omitted.  

(3) Additionally to the second point, we can calculate CVaR without first 

having calculated VaR (do not forget that CVaR depends by definition 

directly from VaR), which sometimes can be very complicated.  

In addition to theorem 4.1, there is theorem 4.2. 
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The integral of         can be approximated in several ways. For 

example, we can sample from the probability distribution of y according to its 

density p(y). Then the sampling will generate a collection of vectors y   y  

and the approximation of         will be: 

                                  
         

 

      
      y                                            

 

   

 

 

 

We have the following corollaries:  

 

COROLLARY 4.1 
[30]

: Convexity of CVaR 

If f(x, y) is convex with respect to x, then          is convex with respect to x 

as well. Indeed, in this case         is jointly convex in (x,α).  

Likewise, if f(x, y) is sublinear with respect to x, then          is sublinear 

with respect to x. Then too,         is jointly sublinear in (x,α).  

 

Proof: 

The joint convexity of         in (x,α) is an elementary consequence of the 

definition of this function in (4.12) and the convexity of the function 

(x,α)⟼     y      when f(x, y) s convex in x. The convexity of          

in x follows immediately then from the minimization formula (3.12)
12

.  

The argument for sublinearity is entirely parallel to the argument just given. 

Only the additional feature of positive homogeneity needs attention, 

according to the remark about sublinearity above. 

∎ 

 

A case where the sublinearity which is presented in Corollary 4.1 is 

obvious is the one where the function f(x, y) is linear with respect to x:  

                                                       y       y         y                                         

 

 

                                                           
12

 In convex analysis, when a convex function of two vector variables is minimized with respect to one 
of them, the residual is a convex function of the other. 
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COROLLARY 4.2 
[30]

: Coherence of CVaR 

On the basis of definition (4.1), α-CVaR is a coherent risk measure: when 

f(x,y) is linear with respect to x, not only is          sublinear with respect 

to x, but furthermore it satisfies 

                                                                                                        

And it obeys the monotonicity rule that  

                                                                                             . 

 

Proof: 

In terms of z=f(x, y) and        y  in the context of the linearity in the 

relation (3.17), these properties come out easily. The sublinearity of CVaR, in 

the case of (3.17) has already been noted as ensured in the Corollary 4.1. Like 

that, the additional properties (A) and (B) too can be seen as simple 

consequences of the fundamental minimization formula for      .   

∎ 

 

 

PROPOSITION 4.1 
[30]

: Stability of CVaR 

The value          behaves continuously with respect to the choice of 

α∈(0,1) and even has left and right derivatives, given by  

  

  
         

 

      
                   

 

  

  
         

 

      
                   

 

 

∎ 

THEOREM 4.2 
[28]

:  

Minimizing the β-CVaR of the loss associated with x over all x∈ X is 

equivalent to minimizing         over all (x,α)∈X×ℝ, in the sense that 

                                           
 ∈ 

            
     ∈  ℝ
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where, moreover,  a pair (       achieves the second minimum if and only if 

   achieves the first minimum and   ∈       . In particular, therefore, in 

circumstances where the interval        reduces to a single point (as is 

typical), the minimization of F(x, α) over (x,α)∈X×ℝ produces a pair (     ), 

not necessarily unique, such that   minimizes the β-CVaR and   gives the 

corresponding β-VaR. 

Furthermore,         is convex with respect to (x,α) and          is convex 

with respect to x, when f(x, y) is convex with respect to x, in which case, if the 

constraints are such that X is a convex set, the joint minimization is an 

instance of convex programming. 

∎ 

The power of Theorem 4.2 is the fact that is not necessary to work 

directly with the      . So we eliminate by this some difficulties like the fact 

that the computation of        is directly associated with the value of VaR. 

However, the value of VaR, as we have already mentioned, can be hard to be 

computed, a fact that makes difficult the calculation of CVaR. Moreover, 

there is no need to define a specific x which minimizes the CVaR. Instead, we 

can use the         which is convex with respect to α and even sometimes 

with respect to (x, α).  

A last comment for this approach is that the optimization process 

of         is actually a stochastic approximation problem, because the 

definition of         includes an expectation. 

To sum up, the authors in that paper proved that:  

1)         is convex with respect to α 

2)         is a minimum point of         with respect to  

3) Minimizing         with respect to α gives                       

 

 

4.4   APPLICATION OF THE METHOD 
[28]

 

 Let             be a portfolio of financial instruments with    being 

the position in instrument j and 
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 We have the random vector     y     y  , where y  is the return on 

instrument i. The distribution of y has density p(y) and is a joint distribution 

of the several returns and is independent of x.  

The return on a portfolio x is the sum of the returns on the individual 

instruments in the portfolio weighted by the proportions    . Because we have 

to deal with a quantity with negative meaning, the loss function is negative 

and is given by: 

 

                                   y      y      y      y                                               

The continuity of p(y) with respect to y insures the continuity of the 

cumulative distribution function for the loss associated with x.  

Usually we measure VaR and CVaR in terms of monetary value. 

However in this application we will measure CVaR and VaR in terms of 

percentage returns, so as to make the comparison of minimum CVaR and the 

minimum variance approach consist.  

The connection between VaR and CVaR is being made by the relation: 

                                   
 

   
                                                     

 

 ∈ℝ 

 

In this point, we must point out that         is a convex function of 

both x and α. Also, often is differentiable in these two variables. Those two 

properties make, by mathematical aspect, easier the application of the 

approach.  

For the loss associated with x we have the mean denoted by μ(x) and 

the variance denoted by σ(x). For the variable y the mean is m and the 

variance V. We have the relations: 

                                                                                                                

From the relation (4.23) it can be seen that the relation between μ and 

m is linear and the relation between σ and V is quadratic, both functions of x. 

We have the quantity R, which is the least amount that a portfolio is expected 

to return. So when we set the constraints we will accept only the portfolios 

for which stands the inequality: 
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So we take the portfolios: 

                                                                                                                    

 

We have that the set X is a convex one, and due to theorem 4.2 the 

problem of minimizing    over X ℝ can be dealt as a problem of convex 

programming. Now, if we take a sample from the probability distribution of y, 

then we have an approximation of    like the form of the relation (4.17). So if 

we have the sample y    y  then, based on the relation (4.17), we have the 

approximation: 

                                  
         

 

      
     y                                            

 

   

 

 Our goal in this part of the approach is to get an approximate solution 

to the minimization of    over X ℝ by the minimization of   
  over X ℝ. 

This problem can be easily reduced to convex programming. Furthermore, 

despite the fact that the expression (4.26) is not differentiable with respect to 

α, it can “be minimized either by line search techniques or by representation 

in terms of an elementary linear programming problem” as Rockafellar and 

Uryasev point out in their paper “Optimization of Conditional Value at Risk” 

. In order to express this step with real variables like    with k=1,…r for 

example, we have the minimization of the linear expression:  

  
 

      
   

 

   

 

 

Subject to the linear constraints:  

                                                                         

 

   

                                   

 

                                                                                                                                        

                                                                        y                      

A useful note in that point is that the above reduction to linear 

programming does not depend on a special assumption about the distribution 
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of y, i.e. we do not assume a normal distribution, but it works for a nonnormal 

distribution too.  

Since this part, we have not mentioned at all a way of finding a 

portfolio that minimizes β-VaR, i.e.: 

 

                                                                     ∈                                                     

 

Since now our approach was based on Theorem 2 and on finding a way 

to minimize    and by extension β-CVaR, i.e.: 

 

                                                                    ∈                                                    

 

However, when we find a way of minimizing CVaR and due to the fact 

that                 , the solutions of the problem 2 can be good for 

problem 1 as well. In other words, CVaR, due to the fact that measures the 

losses exceeding the value of VaR, acts as an upper bound for VaR.  

Additionally, we can compare the problems P (1) and P (2) with a third 

problem, which is very popular because it minimizes maybe the simplest 

measure of the three: the variance. So we have the problem: 

 

                                                                   ∈                                                       

 

The attractiveness of P (3) is that it reduces to a quadratic problem. 

However, it is not, like P (1), very suitable for all kind of portfolios.  

Both P (1) and P (2) negotiate to find the optimal portfolio which is 

going to minimize both VaR and CVaR. We present proposition 3.1:  

 

 

PROPOSITION 4.2 
[28]

: 

Suppose that the loss associated with each x is normally distributed, as holds 

when y is normally distributed. If β≥0.5 and the constraint (4.23) is active at 

solutions to any two of the problems P (1), P(2) and P(3), then the solutions 
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to those two problems are the same; a common portfolio    is optimal by both 

criteria. 

∎ 

Using Proposition 4.2 we have the opportunity to use quadratic 

programming solutions as the base of testing if the reduction of (4.25) into a 

linear programming problem is appropriate.  

To conclude, we showed a way of minimizing the CVaR of a portfolio 

and by extension, despite the fact it is not clear by our approach, to lower 

VaR which stands due to the inequality                  .  

 

 

4.5 COMPARATIVE ANALUSIS OF VaR AND CVaR 

 

VaR is without a doubt a risk measure which is very popular and, as 

Rockafellar and Uryasev pointed out in their paper “Conditional Value at 

Risk for General Loss distributions” 
[29]

, “VaR has achieves the high status of 

being written into industry regulations”. However, VaR has some drawbacks, 

which the use of CVaR instead can be overcome.  

CVaR has superior mathematical properties than VaR as we have 

already mentioned, as it follows all the necessary, to be a coherent risk 

measure, properties defined by Artzner. Plus, from those four properties we 

conclude that CVaR is also a convex measure, making the optimization 

procedure much easier that VaR’s.  

Furthermore, VaR, by definition, cannot control scenarios which 

exceed the VaR level, and that is a huge disadvantage of this measure. VaR is 

not able to distinguish the differences among situations where there is a large 

possibility of losses and situations where the possibility of losses is 

astounding. On the other hand, CVaR does account the losses which exceed 

the VaR levels, providing the analysts with better and more accurate results.  

The CVaR was created to estimate the tails of the distribution of loss, 

so as an estimator of potential losses, can provide the analysts with results 

more stable and most of the times more accurate than VaR. That is the reason 

why risk management using CVaR can be done very efficient. The CVaR is a 
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stable statistical estimator, but it must not in no way be compared with VaR. 

It is a huge mistake to compare the results of CVaR and VaR assuming that 

they are compared with the same value of confidence level α. The problem of 

that comparison lays in the fact that VaR and CVaR measure different parts of 

the distribution.  

However, there is a possibility that VaR and CVaR to be equal. 

Actually, if we have two confidence levels  α      α , then the comparison of 

VaR and CVaR can be found from the equation: 

             

In the paper “Risk Return Optimization with different Risk 

Aggregation Strategies” written by Serraino, Theiler and Uryasev, is 

illustrated a credit risk example, in which they find that CVaR with 

confidence level α=0.95 is equal to VaR with confidence level α=0.99.  

Furthermore, Yamai and Yoshiba, in their paper “Comparative 

Analysis of Expected Shortfall and Value at Risk, Their Estimation, Error, 

 ecomposition and Optimization” 
[33]

, they examine the estimations of Var 

and CVaR of the parametrical family of stable distributions.  

“When a random variable X follows the stable distribution, there exist 

α and    such that: 

   
          

    is the sum of independently and identically distributed n copies of X 

and α is the index of stability. The smaller α is, the heavier the tail of the 

distribution
13

.  

They ran 10.000 simulations of size 1.000 and they compared the 

standard deviations of VaR and CVaR estimators. The conclusions were 

enlightening. VaR estimators were more stable than the ones of CVaR with 

the same confidence level. However, when we have to deal with fat -tailed 

distributions the differences are obvious compared with distributions which 

are closed to normal.  Additionally, as the sample size increases at the same 

time increases the accuracy of CVaR.  

The explanation for the difference between fat tailed distributions and 

normal distributions is simple enough. When we have to deal with fat tailed 

                                                           
13

 When α=2 we have the normal distribution and when α=1 we have the Cauchy distribution. 
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distributions, the possibility of an infrequent and large loss is high; so the 

CVaR is affected since it considers the right tail of the distribution. Contrary, 

VaR is not affected of that kind of loss since VaR disregards the loss beyond 

the VaR level. That is the reason why CVaR estimations errors in fat tailed 

distributions are larger than the estimation errors of VaR.  

In the same paper, Yamai and Yoshiba 
[33]

 examined the influence of 

the sample size in the estimation errors of CVaR. They ran 10.000 sets of 

Monte Carlo simulation with sample sizes of 1.000, 10.000 and 100.000, 

under the assumption that the underlying loss distributions are stable with α= 

2.0, 1.5, 1.1. As the sample size increases, the relative standard deviations of 

the CVaR were reducing. So they conclude that a way of reducing the 

estimation errors of CVaR is the increase of the sample size.  

Another difference between VaR and CVaR is the fact that CVaR can 

be easier decomposed according to risk factors than VaR. Say that    ae the 

loss of individual risk factors and    are the sensitivities to the risk factors 

with i=1,….,n. We then have the portfolio:  

       

 

   

 

Also, we have the following decompositions:  

         
        

   

 

   

                       

And 

          
         

   

 

   

                       

It is easier to calculate quantities                   in the CVaR 

decomposition than quantities                   in the VaR decomposition. 

That is due to the fact that the estimators of the fraction  
        

   
 are not as 

stable as the estimators of the fraction  
         

   
.  

 

To sum up we have: 
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Value at Risk: 

Advantages: VaR is a simple risk measure, which measures “how much you 

may lose with a certain confidence level” . That information is summarized in 

a single number, so it is really easy to be understood. Furthermore, using VaR 

is easy to compare two different distributions in the same confidence level. If 

we calculate VaR for all the confidence levels, we will have a full image of 

the distribution we study. Moreover, due to the fact that VaR focuses on a 

specific part of the loss distribution is more stable comparing to the standard 

deviation, because it is not affected by high tail losses, when we study a fat 

tailed distribution.  

Disadvantages: The fact that VaR disregards what happens beyond the VaR 

level, it may lead to an unintentional high risk. So, if someone wants to 

overcome this possibility, he/she must calculate several VaRs with different 

confidence levels. Furthermore, VaR may increase a lot with a slight change 

of α. Also, when we have to deal with distributions that present skewness, 

VaR calculations may lead to wrong results. Last but not least, VaR is a 

nonconvex measure at risk and is discontinuous function for discrete 

distributions. Those facts make the problem of optimization of VaR very 

complicated. However, there are codes that overcome these problems, like 

PSG 
[1]

. 

 

Conditional Value at Risk: 

Advantages: The implementation of CVaR is clear: what is the possibility for 

a worst case scenario to be held. For example, if     is the worst potential 

losses and L is the loss, then the restriction             ensures that the 

average of (1-α) % highest losses will not exceed     . Furthermore, just like 

VaR, CVaR for all the confidence levels α specifies fully the distribution, so 

CVaR is also a better measure than standard deviation. Moreover, CVaR is a 

convex risk measure and is continuous with respect to α. So the optimization 

process is not as difficult as with VaR. Additionally, in the case where the 

loss distribution is normal, the CVaR optimization approach coincides with 

mean-variance approach, making our work very easy. However, that does not 

mean that optimization of CVaR without the normality is a difficult issue. On 
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the contrary, is easy to control and to achieve the optimization of CVaR for 

non- normal loss distributions. Also, CVaR can be used for linear 

programming, even when the number of the instruments is big. That is a big 

difference between VaR and CVaR, where VaR may crack when the number 

of instruments is big.  

Disadvantages: The accuracy of CVaR is totally dependent of the assumption 

of the model we have already done. If the model we assume is not good for 

the tail of the distribution (which is the part that CVaR calculates), then the 

results will be misleading. For example, the historical simulation method does 

not give us enough information about the tail of the distribution. Thus, we 

must assume a distribution to fit in our tails. If the assumption is a little far 

from the truth, then the results will be extremely wrong.  

 

Despite the advantages and the disadvantages of VaR and CVaR, the 

question which of those two risk measures is more appropriate to be used 

providing better results still remains. Probably the answer is related to who 

actually uses the risk measure. A trader for example will probably prefer to 

use VaR for various reasons. First of all, VaR is not as restricted as CVaR for 

the same confidence level. Yet, VaR is easier to be calculated. In case of 

extreme losses, the trader will not pay the price of his option because his s 

just an employee. On the other hand, the board of the company will prefer to 

use CVaR as a risk measure. The results of CVaR will cover the case of large 

losses, so it is better as risk measure for them.  

Additionally, as we already mentioned before, a bad assumption in the 

distribution of losses or the ignoring of a possible fat tail distribution will not 

“damage” VaR, since VaR disregards the tails. That does not happen in the 

case of CVaR. CVaR may not perform well in that case, providing the 

analysts with wrong results. However, if the assumption of the model is 

correct, then without a doubt CVaR will give extremely accurate estimations, 

so it is better to be used.  

To sum up, the choice as to which of the two measures, VaR or CVaR 

we will use is neither easy nor straightforward. The choice of the suitable risk 

measure is being affected by the differences in the mathematical properties, 

the simplicity of the optimization processes of those two measures, the 
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stability of the providing estimators and finally by the acceptance of the 

regulators.  
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CHAPTER 5 

 

WAYS OF COMPUTING VaR AND CVaR 

 

INTRODUCTION 

 

 As we analyzed in the second chapter, there are several different ways 

of computing Value at Risk. In this chapter, first of all we will present ways 

of computing VaR and CVaR for linear and nonlinear portfolios and we will 

compute Value at Risk and Conditional Value at Risk for data which follow 

either Normal Distribution or t- Student distribution.  

 

5.1 Computation of Value at Risk 

 As we have already introduced in chapter 2, Value at Risk can be 

expressed as followed: 

                                                                                                             

as we have said in (2.1b). The definition of VaR has an extremely ease 

interpretation: the value of the tested portfolio will not decline more than VaR 

α% of the time, over a specific number of trading days. The time horizon can 
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be a day, a week or more and is an exogenous factor to our model. However it 

must be determined from the start and plays a crucial role to our calculation 

and to our interpretation. Furthermore, the value of the chosen confidence 

level is often between 1% and 10%. The confidence level is a subjective 

parameter determined by the analyst and only by him. This is the only 

subjective factor in our model. The choice of α depends o the risk tolerance of 

management.  

A major role for the computation of VaR has the knowledge or not of 

the distribution of the returns. If the returns are normally distributed (or log-

normally distributed) then the task is ease. However, difficulties are present 

when the returns follow a different distribution than normal, which may 

present kurtosis are skewness. Furthermore, another factor that is very 

important is the linearity or not of the portfolio. If the portfolio is linear there 

are straightforward ways to compute everything. Otherwise, we follow the 

rout of historical or Monte-Carlo simulation along with specific 

methodologies to calculate VaR and CVaR.  

 

5.1.1 Computation of VaR for a linear portfolio with elliptic distribution 

[30]
 

We are going to present the computation of Value at Risk assuming 

that the pricing function of the portfolio is linear in the risk factors. This 

method is parametric and is capable of providing fast answers as long as the 

linearity holds.  

We will use the following notations: 

The row vectors: x=(       ) and 

                           y=(y    y ) 

The matrices: A=         and 

                       B 

Furthermore we have the Euclidean inner product            
      

  

We will call a portfolio linear for a specific time t and a value Π (t) if 

its profit and loss function ΔΠ(t)=Π(t)-Π(0) over a time window [0,t] is a 

linear function of the returns              , i.e.  
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The (5.2) holds not only if we use percentage returns, but also hold to 

good approximation with log-returns, which are commonly used in everyday 

market, as long as the time window is small.  

We will keep the time t fixed, so we will leave it out from our notation 

for simplicity. So, we will introduce now  

X=(        ) 

so that ΔΠ=δΧ=δ  . 

We assume that    are elliptically distributed with mean μ and a 

correlation matrix Σ=   , i.e.                   . This leads us to the 

following pdf: 

 

                                         
 
                                                                       

 

Where g:ℝ     is such that the Fourier transform of g(       as a 

generalization function of ℝ , is equal to          . Now, we will assume that 

g is a non zero everywhere and a continuous function, the Value at Risk for a 

confidence level 1-α is: 

 

                                                                                                                       

 

Since our parameters are elliptic distributed, we must solve the 

equation 

 

                                                
 

          

                                        

 

We change variables to           , dy=|A|dx, where we use the 

Cholesky decomposition of A and we have Σ    , the (4.4) now becomes: 

                                            y    y
 

              

                                                          

 

Let R be a notation which sends δΑ→(|δΑ|,0,…,0). If we change 

variables one more time to y=zR, we have the equation: 
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If        
        with z’∈ℝ    then we have shown that: 

 

                                   
                                    

        
    

  

 

ℝ   

 

 

By using spherical variables, we have the next transformations:  

            ∈      

                

we see that for solving VaR, we have to solve the equation
14

: 

 

                                          

 
 
 
 
 

     
        

         
    

  

 
 
 
 
 

                                 

  

 

 

We introduce the function
15

: 

 

     
  

   
 

  
   

  
           

       

  

 

        

  

  

 

 

    
  

   
 

  
   

  
        

  
   

    

  

  
 

           

  

 

 

 

 

We have proved the following result:  

 

Theorem 5.1 
[30]

: Suppose that the portfolio’s Profit and Loss function over 

the time window of interest is, to good approximation, given by  

                                                           

14
 The        is the surface measure of the unit-sphere in ℝ   , i.e.        

  
   

 

  
   

 
 
 

15
 In the second line we have made the transformation u=     

  and we have replaced    with -   . 
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               , 

with constant portfolio weights   . Suppose moreover that the random vector 

            of underlying risk factors follows a continuous elliptic 

distribution, with probability density given by 

          
 
                   

where μ is the vector mean and Σ is the variance- covariance matrix, and 

where we suppose that       is integrable over ℝ, continuous and nowhere 0. 

Then the portfolio’s Delta-elliptic     at confidence level 1-α is given by 

             
       

where s=    
 

 is the unique positive solution of the transcendental equation 

α=G(s).  

∎ 

 

 

Remarks: 

1. The financial interpretation of |δ | is simply the portfolio’s volatility 

with |δ |=     . 

2. If there is a Short-term Risk management, one can easily assume that 

μ 0. Specifically in that case, we have  

               
 

 

The above result is analogous with the results found in the case of 

linear portfolios with the risk factors to follow the Normal distribution. 

The only difference is, for example in the case where α=0.05 the 

normal 5% quantile is 1.65, but now is replaced by the g-dependent 

constant      
 

.  

3. For the case of t- Student distribution we have the following theorem:  

 

Theorem 5.2 
[30]

: Assuming that                with a 

multivariate Student-t random vector            with vector mean μ, 

and variance- covariance matrix Σ, the linear Value at Risk at 

confidence level 1-α is given by the following formula: 
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where now s=    
  is the unique positive solution of the transcendental 

equation   
       16 

∎ 

 

In the case of Student-t distribution     
  does not depend on n. 

 

 

5.1.2 Computation of CVaR for a linear portfolio with elliptic 

distribution 
[30]

 

In the third chapter we introduced an alternative risk measure, the 

Conditional Value at Risk which has better properties than the most popular 

risk measure, Value at Risk. CVaR actually describes how large losses are on 

average when they exceed the VaR level. CVaR is a subadditive risk statistic 

which is stricter than VaR and which indicates the size of the extreme losses 

when we have VaR as threshold. Despite the fact that CVaR has more 

attractive properties than VaR, has not still become a standard risk tool in the 

financial area, though, it is gaining in the insurance industry.  

Since the definition of CVaR is strongly related to VaR, the 

computation of CVaR leads to close optimal solutions for VaR too. Also, we 

must not forget that when the distribution of returns is normal then CVaR and 

VaR those two measures are equivalent, which means that they give the same 

optimum portfolio. However, when we have to deal with skewed distributions 

the optimal portfolios which take from VaR and CVaR can and will differ a 

lot. Rockafellar and Uryasev in 2000 in their paper “Optimization for 

Conditional Value at Risk” 
[28]

 proved that linear programming techniques can 

be used for optimization of the CVaR.  

In this section, we will represent a way of computing CVaR for a linear 

portfolio assuming that the risk factors follow an elliptical distribution. From 

(5.1), we have that: 

                                                                                                              

                                                           

16
 We have: C(ν,n)=

  
   

 
 

            
 with ν>2 and   
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Due to the fact that we are dealing with a continuous distribution, we 

have that Conditional Value at Risk coincides with Expected Shortfall (ES). 

Assuming that the risk factors are elliptically distributed, we have the density 

as t is in (5.3). So, the CVaR, or else the ES, fat the confidence level 1-α is 

given by:  

 

                           

  
 

 
                  

     
 

 
          

 

           

 

                                                   
       

 
                       

 

           

 

 

We will leave Σ=    and we will do the same linear transformations 

that we did in the previous section, when we wanted to calculate Value at 

Risk. Doing all that, we have the following result:  

 

            
 

 
                     

 

                 

 

    
 

 
                   

 

                 

    

 

If we make exactly the same transformations as before, i.e. the 

transformation     =  
        and by using again spherical coordinates  

            ∈      

we have: 

                  
      

 
     

 

 

 
 
 
 
 

           
        

         
    

  

 
 
 
 
 

                   

Now, we first do the change    to -   and then we introduce the quantity 

u=     
 , as we did before. From theorem (5.1) combined with the remark 1, 

we have that:  
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We denote     
 

   
  and we have: 

 

                              
      

 
         

  
   

          

 

  
 

 

  

                           

 

                                      
      

 
 

 

   
     

  
   

        

 

  
 

                        

  

After using the functional equation for the  -function  (x+1)=x (x) 

and the formula for |     , we have the next theorem: 

 

 

Theorem 5.3 
[1]

: Suppose that the portfolio is linear in the risk factors 

X=(       ), ΔΠ=δ∙Χ and that X~N(μ,Σ,φ), with pdf  

          
 
                   

If we write     
 

 
        

        , then the Expected Shortfall at level α is given as: 

                                                         
 

                                                           

where the constant 

   
 

 
 

   
 

   
   

  
          

 
 
 
 
   

       

 

     
 

  

 

 

∎ 

 

Let us see now the application of the above methodology when we 

have a multivariate t-Student distribution. In that case, we have that  
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 , where C(ν+n) is the same with the one that we 

introduced in the previous section. For our simplicity, we will write q instead 

of      
 

. We can evaluate the integral of the (5.13) and we have
17

: 

 

      
   

    
 

 
 

 
   

 
    

   
        

   
 

 

  

  
   

 
 
   

 
  

 

By doing some computation, which is irrelevant for our study, we find the 

following result: 

 

 

Theorem 5.4 
[30]

: The Expected Shortfall at confidence level 1-α for a 

multivariate Student distributed linear portfolio δ∙X, with  

 

  
  

   
  

  
 
            

   
             

 
 

 
   

 

 

Is given by: 
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∎ 

 

                                                           
17

 To do the evaluation of the integral we use the following lemma: “If       
 

 
     and 

Re(  )>Re(μ)>0, then  

      
   

    
 

 
 

 
   

 
    

   

        
   

 
 

    
   

 
 
   

 
  Where B is the Euler Beta function with 
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5.1.3 Computation of VaR for non linear portfolios 
[3]

 

In the previous section, we described a way of computing Value at 

Risk for linear portfolios. Unfortunately, in the real life not all portfolios are 

linear. On the contrary, we often have to deal with nonlinearities, especially 

when we refer to option position, which present nonlinearities caused by the 

portfolio’s payoff structure
18

. In those cases, Value at Risk cannot be 

calculated using the risk factor distribution. Instead, the risk factor 

distribution must first be converted into a profit and loss distribution for the 

portfolio and then, Value at Risk is computed through the profit and loss 

distribution.  

There have been proposed several ways to overpass the problem of 

nonlinearity for computing Value at Risk. There are the parametric models, 

such as the delta-normal, which, for computing VaR they use statistical 

parameters such the mean and standard deviation of the risk factor 

distribution. Using the delta of the position and these parameters, they 

calculate directly from the risk factor distribution the VaR
19

. Another way is 

the Delta- Gamma Value at Risk technique which is quite simple. Briefly, that 

technique has the following steps: 

1. We collect all the information about our portfolio, like the types of 

instruments in the portfolio and all the data we need.  

2. We calculate the covariance matrix of the risk factors: to do so, we 

evaluate the returns of the time series data. Then, we normalize the 

time series. Furthermore, we calculate the correlation matrix and then 

the covariance matrix. 

3. We use finite difference method to calculate the Delta Matrix of first 

derivatives of portfolio value with respect to the risk factors.  

4. We use finite difference method to calculate the Hessian Matrix of 

second and cross derivatives of Portfolio Value with respect to the risk 

factors.  

5. We perform a Cholesky decomposition of the covariance matrix. This 

step is useful for achieving to a lower triangular matrix.  

                                                           
18

 Generally, a non linear portfolio can be caused by options, flexibility or other price dependent 
elements in the portfolio.  
19

 The delta is actually used as an approximation for the conversion from the risk factor distribution to 
the profit-loss distribution.  
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6. We calculate the adjusted delta matrix to arrive at zero Eigen and non-

zero Eigen vectors. 

7. We calculate the cumulative distribution with the help of the above 

matrices. 

8. Finally, we take the 1-α percentile cut off from the inverse cdf.  

Non parametric models are simulation or historical models. The 

simulation approaches can be separated in two categories: the full valuation 

and the partial valuation. In the full simulation, we create a number of  

possible scenarios for the risk factors and in each scenario we perform a 

complete revaluation of the portfolio. By that, we get the profit and loss 

distribution of the portfolio. The difference in the partial simulation is that we 

indeed use simulations to create the distribution of the risk factors, but we do 

not fully revalue the portfolio. Instead of revaluating the portfolio, in this 

method, we use delta gamma approximations to calculate the portfolio value. 

The next figure shows graphically the different ways to calculate models.  

 

 

Figure 5.1: Ways of calculating Value at Risk for non linear portfolios  
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Historical Simulation

Stress Scenarios

Simulation and 
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Delta Approximation
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The most common way of dealing with portfolios which have nonlinear 

returns, or portfolios with non normal distributed assets, is the Monte Carlo 

methods. However, despite the fact that Monte Carlo methodology has the 

advantage of being universally applicable, has also a big drawback: is much 

slower and resource consuming compared with parametric methods when the 

latter are available. Additionally, the accuracy of the computation using 

Monte Carlo is usually limited to order  
  

  , where n is the number of the 

performed trials.  

 

5.1.4    Asset- Normal and Delta Normal VaR 

The basic way of calculating VaR is the Asset-Normal VaR. To use 

this method, we assume normality for the respective values of the position. 

Then, the VaR is: 

                             

 

where Σ is the variance- covariance matrix, w is the vector of the portfolio 

weights,    is the α- quantile derived from the standard normal distribution, 

(T-t) is the time window on which we do are calculations and PF is the real 

value of the portfolio.  

Now, if we want to reduce the dimension of the problem, we use the 

Delta-Normal method. With this method, “the model is based on a risk factor 

representation of the individual positions. In other words, every position in 

the portfolio is modeled exclusively on the basis of market risk factors.” This 

method has the following assumptions:  

1. There is a linear dependent relationship between the changes of in the 

value of the portfolio and the respective changes in the value of the 

risk factors. Due to the fact that a Taylor approximation of first order 

of the change of the value of the portfolio is used, the computation of 

VaR when we have to deal with linear instruments (such as forward 

contracts) is exact. However, when we have to deal with non linear 

instruments (such as options) the calculation is VaR is a local 

approximation.  
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2. The distribution of the changes in the value of the risk factors assumed 

to be the joint normal distribution. 

3. Last but not least, the composition of the portfolio is thought to be 

constant over the time. 

 

Then, the VaR is given by: 

 

                       

 

with Σ is the variance covariance matrix of the market risk factors, i.e.  

   

         

   
         

  

and   the (M 1) matrix of modified portfolio sensitivities relative to the 

changes of the market risk factors, i.e.  

   
  

 
  

   
        

 
        

  

 

with    the i-th portfolio sensitivity and       the value of the ith market risk 

factor at the time t. 

However, we have to point out, that this model has some drawbacks 

which are: 

 It does not take into account the presence of a leptokurtic or a skewed 

distribution.  

 It assumes the knowledge of the distribution of the market risk factors 

and the fact that the structure of the variance covariance matrix is 

deterministic. 

 In the definition of the VaR, the use of the        lies in the 

assumption that the volatility of the changes in the risk factors is 

constant and that there is no correlation among them, facts that are 

often violated in practice.  

Despite the drawbacks, this method is ease to interpret and to 

understanding, has low cost and is fast enough. In the case of leptokurtic risk 

factors’ distribution, where the assumption of normality does no longer exists, 
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Albanese, Levin and Chao suggested a method which uses a stochastic 

variance-covariance matrix than a deterministic one with known probability 

distribution and unknown parameters. The parameters are been estimated with 

a Bayesian approach.  

 

 

 

5.1.5    Monte-Carlo and Partial Monte-Carlo VaR 

In the Monte- Carlo method what we do is to simulate the values of the 

changes of the market risk factors and then revaluating the entire portfolio for 

each simulated trial. As it is inevitable, there are assumptions in that method 

too.  

First of all, we assume a Geometric Brownian motion for the stock 

price process. To calculate S(t) we take the stochastic differential equation:  

  

 
               

with          to be the infinitesimal increment of the Brownian motion (or 

Weiner process) and    a standard normal variable. If we assume a time T, the 

solution of the above equation for the asset price is given by:  

                    
  

 

 
             

In the above equation, we denote with    the annual expected value of the 

relative change,    the annual standard deviation of the relative change and T 

the time horizon in years. 

In that point, we must point out that the use of the Brownian motion 

takes for granted that the distribution of the price of the underlying is 

lognormal and the continuously compounded return follows the normal 

distribution. Furthermore, due to the short horizon in which we do our 

calculations for VaR we assume that the expected change in the price of a 

market risk factor over the time period is zero. This assumption is reasonable 

enough if we consider that the expected change in the price of a market risk is 

small compared with the volatility of the respective changes.  

Since we have specified the use of a stochastic process we can, now, 

generate future scenarios for the different market risk factors. However, we 
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must first generate random normal variables which are going to be correlated 

between them. These correlations are given from the estimated variance- 

covariance matrix. To generate those variables we make use of the Cholesky 

factorization. We follow the next steps:  

1. We estimate the historical correlation matrix.  

2. We decompose the correlation matrix to get the Cholesky matrix, 

which is a lower triangular matrix.  

3. We create a vector which includes uncorrelated random normal 

variables. 

4. Finally, we multiply the vector from the third step with the lower 

triangular matrix and we get a vector which contains normal random 

variables which are correlated according to the estimated correlation 

matrix.  

5. For each trial we revaluate the single positions and the whole portfolio.  

Then, the VaR we want to calculate is the α-quantile of the change of 

the portfolio. As expected, the higher the number of trials, the better the 

estimation we get.  

Monte Carlo method has plenty of advantages. First of all, we are able 

to assume an arbitrary process for the underlying asset. Furthermore, is easy 

enough to generate different correlated scenarios. When we make Monte 

Carlo simulation with fully valuation, the portfolio is revalued for each 

simulation trial, giving the analysts more accurate results for portfolios with 

option components, which are difficult to handle otherwise. Also, if the 

number of the risk factors is high, then it might be difficult to generate 

variables since the matrix Σ needs first to be Cholesky factorized. However, 

despite of the advantages of this method, there is a huge disadvantage: Monte -

Carlo simulation combined with full valuation needs high technical 

requirements and the calculations can be slow because the por tfolio in every 

trial is been revaluated.  

A way to overpass the problem of low calculations is to use Partial 

Monte-Carlo VaR, which is slightly different from the regular Monte- Carlo 

VaR. However, the drawback of this method is that “ it does not improve 

approximations over parametric models if it applies the same approximation 

methods and assumes the same processes for the market risk factors .”  
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Last but not least, we would like to point out that when we have to deal 

with only one risk factor, then using the Monte- Carlo simulation is simple 

enough. However, when we have to deal with options, where there are more 

factors that must be acknowledged such as volatility risk or the interest rate 

risk, then this method may be complicated. Additionally, the assumption that 

the risk factors are normally distributed is, as we have already pointed out 

before, not always real. To be more realistic, someone could run Monte-Carlo 

simulation using the third or the fourth moments.   

However, sometimes is even better to use the Delta-Gamma 

approximation. With this method, we first take a Taylor series approximation 

in the returns for the value of each of the assets in the portfolio. These 

component approximations are then summed over all assets in the portfolio. 

By this, we obtain the Taylor approximation for the overall portfolio. Due to 

the fact that these components are quit small, we keep only the linear and the 

quadratic terms which often give us sufficient enough results. The linear 

terms are called deltas and the quadratic ones gammas. That is why the 

second-order approximation is called a delta-gamma approximation. Even 

with this method though, the Monte-Carlo approach can present 

computational difficulties. 

 

 

5.2      Efficient frontier 
[21]

 

Efficient frontier was first introduced as a definition by Markowitz in 

1952 in his paper “Portfolio Selection”.  y efficient frontier we can, 

considering a universe of risky investments, explore what may be the optimal 

portfolio based on those investments.  

In our case, if we want to work with Conditional Value at Risk, if we 

consider the minimum of the expected returns we can minimize the value of 

CVaR. Actually, we consider different expected returns and by that we 

generate an efficient frontier. Another way of working is to maximize the 

expected returns along with the fact that we do not allow risk. To be more 

precise, when the optimal portfolio is defined in one of two ways:  

1. If we consider that all the portfolios have the same volatility level, we 

say that the optimal portfolio is the one with the highest return. 
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2. If we consider that all the portfolios have the same expected return, we 

say that the optimal portfolio is the one with the lowest volatility.  

So, if we follow the first way of efficient frontier we produce an 

optimal portfolio for each possible level of risk. On the other hand, if we 

follow the second way, we produce an optimal portfolio for each expected 

return. However, we must point out that these two ways of producing an 

optimal portfolio are equivalent because the set of optimal portfolios 

produced by the one definition or the other is exactly the same. That precise 

set of optimal portfolios is called efficient frontier.  

There are three formulations for the optimization problem with the use 

of CVaR. These formulations are equivalent because they produce the same 

efficient frontier. We have the following theorem:  

 

 

Theorem 5.5 
[21]

: Let us consider the functions φ(x) and R(x) dependent on 

the decision vector x, and the following three problems:  

                                    
 

             ∈                        

                                                 
 

                            ∈   

                                                 
 

                                  ∈   

Suppose that constraints R(x)≥ρ, φ(x)≤ω have interval points. Varying the 

parameters   , ρ and ω traces the efficient frontiers for the problems (P1)-

(P3), accordingly. If φ(x) is convex, R(x) is concave and the set X is convex, 

then the three problems, (P1)-(P3), generate the same efficient frontier.  

∎ 

 

The equivalence we mentioned before is known as “mean-variance” 

and “mean-regret” efficient frontiers. It is actually holds for every concave 

and convex risk function, as the Conditional Value at Risk is, with convex 

constraints.  
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5.3       Example: 

In that section, we will illustrate all the above theory in an example. 

We assume that we have three assets, which construct a portfolio x=(        ) 

of financial instruments with    being the position in instrument i. We must 

not forget that the sum of the weights must be 1, i.e.         =1. 

Furthermore, we have that           . 

We have the returns     and we denote with r the random vector of the 

returns y , i.e. r=          . We take two cases: first that the distribution of y 

is normal and second that the distribution of y is t -Student.  

The return of the portfolio x is, as we have defined in (3.20), the 

following: 

    y                    

Value at Risk and Conditional Value at Risk will be calculated with 

Matlab programming. 

We have the following 3D-plots: 

 

 

 

 

Figure 5.2 
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Figure 5.3 

 

 

Figure 5.4 
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Figure 5.5 

 

We can also plot the expected return of the portfolio with the Value at Risk:  

 

 

Figure 5.6 
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We can see a linear relationship between the expected returns of the portfolio 

and the Value at Risk. 

 We can also plot the expected returns with the Conditional Value at Risk:  

 

 

Figure 5.7 
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Figure 5.8 

 

 

Figure 5.9 
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