
 

 

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 
ΑΘΗΝΩΝ 

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ 

 

ΤΙΤΛΟΣ 

Clustering Validation Techniques on microarray data 

 

ΧΡΥΣΑΝΘΗ ΙΩΑΝΝΗ ΠΑΠΑΓΙΑΝΝΑΚΟΠΟΥΛΟΥ 

 

ΕΡΓΑΣΙΑ 

Που υποβλήθηκε στο Τµήµα Στατιστικής 

του Οικονοµικού Πανεπιστηµίου ΑΘηνών 

ως µέρος των απαιτήσεων για την απόκτηση 

Μεταπτυχιακού ∆ιπλώµατος 

Συµπληρωµατικής Ειδίκευσης στη Στατιστική 

Μερικής Παρακολούθησης (Part-time) 

Αθήνα 

ΙΟΥΛΙΟΣ 2011 



 

 -I-  

Abstract 
 

The term cluster analysis encompasses a number of different algorithms and 

methods for grouping objects of similar kind into respective categories. A general 

question facing researchers in many areas of inquiry is how to organize observed data 

into meaningful structures, that is, to develop taxonomies. In other words cluster 

analysis is an exploratory data analysis tool which aims at sorting different objects 

into groups in a way that the degree of association between two objects is maximal if 

they belong to the same group and minimal otherwise. Given the above, cluster 

analysis can be used to discover structures in data without providing an 

explanation/interpretation. In other words, cluster analysis simply discovers structures 

in data without explaining why they exist. 

While many clustering algorithms produce a candidate partitioning, relatively 

few attach a measure of confidence to the proposed clustering. An ideal clustering 

algorithm would do both; however, such a procedure is not always practical. As a 

result, the field of cluster validation attempts to remedy this by proposing methods to 

assess how well a proposed clustering of a dataset reflects its intrinsic structure. 

The main goal of this thesis is to use validation indexes along with clustering 

algorithm using data from a microarray experiment. Once a clustering algorithm has 

been applied, validation indices were computed in order to conclude how many 

clusters the data set will have. 
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Περίληψη 
 

Ο όρος ανάλυση κατά συστάδες εµπεριέχει έναν αριθµό διαφορετικών 

αλγορίθµων και µεθόδων για οµαδοποίηση αντικειµένων ίδιου είδους σε 

αντιπροσωπευτικές κατηγορίες. Ένα συχνό πρόβληµα που αντιµετωπίζουν οι 

ερευνητές είναι το πώς ορισµένα δεδοµένα µπορούν να οργανωθούν σε δοµές που 

έχουν νόηµα. Με άλλα λόγια η ανάλυση κατά συστάδες είναι ένα ανιχνευτικό 

εργαλείο ανάλυσης δεδοµένων, που βασικός του σκοπός είναι η κατηγοριοποίηση 

διαφορετικών αντικειµένων σε οµάδες, σε τέτοιο βαθµό ώστε ο βαθµός της σχέσης 

των αντικειµένων να είναι ο µέγιστος, αν ανήκουν στην ίδια οµάδα, και ο ελάχιστος 

σε άλλη περίπτωση. Παρόλα αυτά, η ανάλυση κατά συστάδες απλά ανακαλύπτει 

δοµές στα δεδοµένα, χωρίς να εξηγεί γιατί υπάρχουν αυτές οι δοµές.  

Παρότι πολλοί αλγόριθµοι οµαδοποίησης δεδοµένων παράγουν ένα υποψήφιο 

διαχωρισµό δεδοµένων, σχετικά λίγοι συµπεριλαµβάνουν ένα επίπεδο εµπιστοσύνης 

για το διαχωρισµό που έχει προταθεί. Ένας ιδανικός αλγόριθµος οµαδοποίησης θα 

έκανε και τα δύο. Παρόλα αυτά, µία τέτοια διαδικασία δεν είναι πάντα πρακτική. Σαν 

αποτέλεσµα, η τεκµηρίωση της ανάλυσης κατά συστάδες προσπαθεί να προτείνει 

µεθόδους για το πόσο καλά µία οµαδοποίηση ενός σετ δεδοµένων αντανακλά την 

δοµή του.  

Ο κύριος σκοπός της εργασίας αυτής είναι η χρήση δεικτών τεκµηρίωσης µαζί 

µε αλγορίθµους οµαδοποίησης σε δεδοµένα από µικροσυστοιχίες, µε σκοπό να 

καταλήξουµε στον αριθµό των οµάδων που θα µπορούσε να χωριστεί το σετ 

δεδοµένων. 
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Chapter 1 
 

1.1 Introduction  

 

Clustering may be defined as a process that aims to find partitions of similar 

objects. It is an unsupervised technique used to group together objects which are 

“close” to one another in a multidimensional feature space, usually for the purpose of 

uncovering some inherent structure which the data possesses  [1]. An effective 

analysis should result in groups whose objects are homogeneous but at the same time 

objects of different groups should differ as much as possible [2].   

This chapter provides an overview about how the Clustering Algorithms work 

with examples and all the details needed to complete a clustering task. In Section 1.2, 

a mathematical definition for clustering is given. Dissimilarity measures are presented 

in section 1.2.1. Also, since we have to calculate the distance of one group with 

another group, we have to discuss about Linkage Methods. The latter are presented in 

Section 1.2.2. 

There are two main types of clustering algorithms: 1) Hierarchical and 2) 

Partitioning discussed in Sections 1.3 and 1.4 respectively.  

 

1.2 Cluster Definition 

 

As a first approach, we need to define what a cluster is. Let X be our data set, 

that is, � � ���, ��, … , �	
  . 
 

Now, let be the partition,� , of � into  sets, ��, j=1,…,m. These sets are called 

clusters and need to satisfy the following two conditions [3]: 

 

� ��  �  � , � � 1, … ,  

� � �� � �����  
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It is important to say that the objects (vectors) contained in a cluster Ci are more 

similar to each other and less similar to objects (vectors) contained in the other 

clusters. In order to join or separate vectors it is necessary to measure how similar, or 

dissimilar, two objects are. This task is carried out through the use of distances 

measures. Also we want to join, or separate, clusters, this can be done using Linkage 

Methods. Several distances measures and Linkage Methods are discussed in the next 

section.  

 

1.2.1 Dissimilarity Measures 

 

Dissimilarity measure the discrepancy between the two objects based on 

several features. Dissimilarity may also be viewed as measure of disorder between 

two objects. These features can be represented as coordinate of the object in the 

features space. There are many types of distance and similarity. Each similarity or 

dissimilarity has its own characteristics. 

 

The dissimilarity coefficient, ���, �� are small when objects � and � are alike, 

otherwise, ���, �� become larger. The dissimilarity measures need to satisfy the 

following conditions:  

 

� 0 � ���, ��  � 1 

� ���, �� � 0 

� ���, �� � ���, �� 

 

 

Most of the clustering algorithms use dissimilarity measures to join, or to separate, 

objects. We will mention some of these measures: 

 

� City block Manhattan Distance 

The taxicab metric is also known as city block distance, Manhattan distance, or 

Manhattan length, with corresponding variations in the name of the geometry. It 

examines the absolute differences between coordinates of a pair of objects. The 
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taxicab distance, d2, between two vectors p,q in an n-dimensional real vector space 

with fixed Cartesian coordinate system, is the sum of the lengths of the projections of 

the line segment between the points onto the coordinate axes. More formal, 

 

����, �� �  �|�� ! ��|	
���   

Where ��, and  �� are the i coordinates of x and y respectively, and x and y are objects 

of X. The City block distance is always greater than or equal to zero. The 

measurement would be zero for identical points and high for points that show little 

similarity. 

 

� Euclidean Distance  

The Euclidean Distance between points x � �x�, x�, … , x#� and y � �y�, y�, … , y#� is 

given by: 

d��x, y� � &��x' ! y'��#
'��  

where x', and  y' are the i coordinates of x and y respectively, and x and y are objects 

of X. 

 

� Mahalanobis Distance  

Formally, the Mahalanobis distance of a multivariate vector from a group of values 

with mean and covariance matrix S is defined as [4]: 

 d�x, y� � (�x ! y�)S+��x ! y� 

  

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the 

Euclidean distance. Mahalanobis distance is widely used in cluster analysis and 

classification techniques. 

 

� Minkowski Distance  

The Minkowski distance is a metric on Euclidean space which can be considered as a 

generalization of both the Euclidean distance and the Manhattan distance. The 
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Minkowski distance between points � � ���, ��, … , �	� and � � ���, ��, … , �	� is 

given by [2][5] : 

���, �� � &�|�� ! ��|,	
���

-
 

 

Minkowski distance is typically used with p being 1 or 2. The latter is the Euclidean 

distance, while the former is sometimes known as the Manhattan distance. 

 

1.2.2 Linkage Methods 

 

The Linkage methods are the quantitative measures used to join the two most 

similar clusters in the agglomerative clustering algorithm. In order to define the 

Linkage Methods, let ��and �� be two clusters, and let |��| and.��.  denote the number 

of objects that each one have. Let �/��, ��0 denote the dissimilarity measures between 

clusters �� and �� , and ���, �� the dissimilarity measure between two objects �, and � d 

where � is an object of  �� and � is an object of �� . Some of the most used linkage 

methods are the following:  

 

 

� UPGMA  

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is a simple 

agglomerative or hierarchical clustering method used in bioinformatics for the 

creation of phenetic phylogenetic trees (phenograms). The algorithm examines the 

structure present in a pairwise distance matrix (or a similarity matrix) to then 

construct a rooted tree (dendrogram). At each step, the nearest two clusters are 

combined into a higher-level cluster. The distance �/��, ��0 between clusters  �� and  �� is defined as the average of all dissimilarities  ���, ��. That is [6]: 

1/�� , ��0 � 1|��|.��. � ���, ���234�235
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� Single Linkage Clustering Method (SLINK) 

 

SLINK is the short of single linkage clustering. Whereas the UPGMA clustering 

method defines the similarity between any two clusters as the arithmetic average of 

the similarities between the objects in one cluster and the objects in the other, SLINK 

does this differently. In SLINK, the distance between two clusters is taken to be the 

minimum of all the pairwise distances. Then, the SLINK is defined as follows: 1�/��, �� 0 � min�234�235
���, �� 

 

� Complete Linkage Clustering Method (CLINK) 

 

The CLINK is exactly the opposite of the SLINK. The CLINK is the maximum of 

all pairwise distances. It is defined as follows: 

 19/�� , �� 0 � max�234�235
���, �� 

 

� Ward’s Minimum Variance   

 

In the Ward’s Method the distance between two clusters is defined as a weighted 

version of the squared Euclidean distance of their mean vector. That is: 

 

1;�/��, �� 0 � |��|.�� .|��| < .�� . =.>? ! >�.=�
 

 

where >� � �|34| ∑ �  A234   and  >� � �|34| ∑ �  A234  

 

 

� Weighted pair-group Method using Arithmetic Averages (WPGMA) 

 

The WPGMA is a variant of the UPGMA. The distance between clusters is 

calculated as a simple average. One starts with the original dissimilarities between 
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objects and at each merger of clusters C' andCC, forming some new clusterCD , the 

dissimilarities are updated by [6]: 

1E��F, ��� � 12 ����, ��� < 12 ����, ��� 

 

When there are unequal numbers of objects in the clusters, the distances in the 

original matrix do not contribute equally to the intermediate calculations, and the final 

result, is therefore, said to be weighted. 

 

1.3 Hierarchical Clustering Algorithms  

 

Hierarchical clustering groups data with a sequence of nested partitions, either 

from singleton clusters to a cluster including all individuals or vice versa. The former 

is known as agglomerative hierarchical clustering and the latter is called divisive 

hierarchical clustering. Both agglomerative and divisive clustering methods organize 

data into the hierarchical structure based on the proximity matrix. An important 

objective of hierarchical cluster analysis is to provide a picture of the data that can be 

easily interpreted, such as a dendrogram. A dendrogram lists the clustering one after 

another and cutting it at any level defines a clustering and identifies clusters. 

Hierarchical clustering algorithms involve N −1 steps. It produces a hierarchy of 

nested clustering. At each step t, a new element is assigned to a cluster using the 

information produced in the previous step. Two categories of these algorithms are 

discussed: (1) Agglomerative (AGNES) and (2) Divisive (DIANA) hierarchical 

algorithms. Both algorithms have the disadvantage that once an element is assigned to 

a cluster there is no way to recover it later.  

 

1.3.1 Agglomerative hierarchical nesting algorithm (AGNES) 

 

 The AGNES algorithm works by assigning each word to a separate cluster, 

and then iteratively joining together the most closely related (i.e. least dissimilar) 

clusters until a single super-cluster is formed. At first, each object is a small cluster by 

itself. Clusters are merged until only one large cluster remains which contains all the 
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objects. At each stage the two “nearest” clusters are combined to form one larger 

cluster. The method is described below: 

 

Let �/�� , ��0 be a function that measures the proximity between ��and��, and H the 

current level of hierarchy. Then, the general scheme can be described as follows [7]: 

 

a) At the beginning each of the objects in X forms a small cluster by itself. 

b) At the first step, the two closest, or most similar, objects are joined using a 

dissimilarity measure �/��, ��0  .That is, find the smallest value of the dissimilarity 

matrix and join the corresponding objects. 

c) In the second step we have I ! 1 clusters. Now we will want to merge the closest 

clusters using one of the linkage method previously described. 

d) At step H we have I ! �H ! 1� clusters, and we want to join the closest clusters as in 

the previous step.  

e) Repeat until all the vectors lie in a single cluster. 

 

The following example [8] shows how the AGNES algorithm works: 

 

In Table 1.1, a data set consisting of flowers is given [6]. 8 variables have been 

measured on these flowers: winters, shadow, tubers, color, soil, preference, height, 

and planting distance. Before we begin with the steps of the algorithm it is necessary 

to standardize the data.  

 

Flowers win shadow tuber color soil prefer height dist 

Myosotis 0 1 0 5 2 2 20 15 

Iris 1 1 1 5 3 8 45 10 

Lily  1 1 1 1 2 9 90 25 

Red Rose 1 0 0 4 2 18 200 60 

Scotch Rose 1 0 0 2 2 17 150 60 

Tulip 0 0 1 2 1 5 25 10 

 
Table 1.1 – Standardized Data: Flowers 

 
Step 1 

Once the data has been standardized, the next step is to find the Proximity Matrix in 

order to find the nearest object among X. That is, find the Euclidean Distance among 

all the possible pairs of vectors (Table 1.2). Looking at the Dissimilarity Matrix 
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(Table 2.2) the nearest objects are Red Rose and Scotch Rose (d = 1.36). Then, we 

join it and now we have five clusters: (1) {Red Rose, Scotch Rose}, (2) Myosotis, (3) 

Iris, (4) Lily and (5) Tulip. 

 

 Myosotis  Iris Lily Red Rose Scotch Rose Tulip 

Myosotis 0      

Iris 3.26 0     

Lily  3.84 2.95 0    

Red Rose 4.82 4.56 4.01 0   

Scotch Rose 4.72 4.54 3.37 1.36 0  

Tulip 3.53 4.52 3.39 5.01 4.51 0 

 

Table 1.2 - Distances 

Step 2 

In this step we needed to join the nearest clusters, to do this we will use a linkage 

method, that is, find the distance between the clusters. We will calculate the new 

distances using equation of CLINK and will obtain a new matrix. The new distances 

are: 

 ���JK�, LMNHMO
P, �NLNH�L� � max/��JK�, �NLNH�L�, ��LMNHMO, �NLNH�L�0� Q�4.82,4.71� � 4.82 ���JK�, LMNHMO
, �J�L� � max�4.56,4.53� � 4.56 ���JK�, LMNHMO
, Y�Y�� � max�4.01,3.37� � 4.01 ���JK�, LMNHMO
, HZY�[� � max�5.01,4.51� � 5.01 

 

The new proximity matrix is: 

 {Red,Scotch} Myosotis Iris Lily Tulip 

{Red,Scotch} 0 4.82  4.56 4.01 5.01     

Myosotis 4.82 0 3.26 3.84 3.53   

Iris 3.26 3.26 0 2.95 4.52 

Lily  3.84 2.95 2.95 0 3.39 

Tulip 4.82 4.56 4.52 3.39 0 

 

Table 1.3 - Distances 

 

The nearest clusters are Iris and Lily and therefore the new distances are: 
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����J�L, Y�Y�
, �JK�, LMNHMO
� � max�4.56, 4.01� � 4.56 ����J�L, Y�Y�
, �HZY�[
� � max�4.52,3.39� � 4.52 ����J�L, Y�Y�
, ��NLNH�L
� � max�3.84,3.26� � 3.84 

 

Now the new proximity matrix is: 

 

 {Iris,Lily} {red,scotch} Myosotis Tulip 

{Iris,Lily} 0 4.56 3.84 4.52     

{red,scotch} 4.56 0 4.82 5.01   

Myosotis  3.84 4.82 0 3.53 

Tulip 4.52 5.01 3.53 0 

 

Table 1.4 - Distances 

 

As in the previous step we need to join the nearest clusters, that is, myosotis and tulip. 

Then the new distances will be: ����J�L, Y�Y�
, ��NLNH�L, HZY�[
� � max�3.84, 4.52� � 4.52 ����NLNH�L, HZY�[
, �JK�, LMNHMO
� � max�4.82, 5.01� � 5.01 

 

The last proximity matrix we have is: 

 

 {Iris,Lily} {red,scotch} {myosotis,tulip} 

{Iris,Lily} 0 4.56 5.01  

{red,scotch} 4.56 0 4.52  

{Myosotis, tulip} 5.01 4.52 0 

 

Table 1.5 - Distances 

 

The new clusters are now: (1) {red, scotch, myosotis, tulip} and (2) {iris, lily}.  

 

 Step 4 

This is the last step and the only thing to do is to join the two clusters. Then, in the 

last step all the vectors lie in a single cluster. Due to the fact that AGNES algorithm is 

an hierarchical one, the only way to obtain a graph of results is a dendrogram. For a 

dendrogram of the example above see Diagram 1.1. 
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Diagram 1.1 – Clustering Tree of AGNES algorithm 

 

1.3.2 Hierarchical Divisive Clustering (DIANA) 

 

Hierarchical Divisive Algorithms starts with a single cluster of all the given 

objects and keep splitting the clusters based on a dissimilarity measure to obtain a 

partition of singleton clusters [6]. The algorithm can be described as follows: 

 

(a) Before starting the algorithm all objects in X are together in a single cluster. 

 

(b) At the first step, split the data set into two clusters. For this purpose, look for the 

object for which the average dissimilarity to all other objects is largest. The object 

with the largest dissimilarity initiate a new cluster, named the splinter group. 

 

(c) For each object in the larger group, compute the average dissimilarity with the 

remaining objects, and compare it to the average dissimilarity with the objects of the 

splinter group. The object in the larger group with the largest difference changes 
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sides; it is moved to the splinter group. Repeat the computations until all the 

differences are negatives. 

 

(d) At the next step, divide the biggest cluster, that is, the cluster with the largest 

diameter. The procedure is the same as in the previous step. 

 

(e) In the following steps, divide the biggest cluster following the previous step. 

 

(f) The process continues until all objects form a singleton. 

 

 

1.4 Partitioning Clustering Algorithms 

 

A partitioned clustering obtains a single partition of the dataset instead of a 

clustering structure, such as the dendrogram. The algorithm used in the Partitioning 

Clustering is based on the search of k representative objects among the objects of the 

data set. These k-representative objects should represent various aspects of the 

structure of the data, and are often called centrotypes. After finding a set of k 

representative objects, the k clusters are constructed by assigning each object of the 

dataset to the nearest representative object. Below we point out some of the 

advantages and disadvantages of partitioning clustering algorithms: 

Advantages  

� With a large number of variables, partitioning clustering algorithms may be 

computationally faster than hierarchical clustering (if k is small). 

� Partitioning clustering algorithms may produce tighter clusters than 

hierarchical clustering, especially if the clusters are globular.  
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Disadvantages  

� Difficulty in comparing quality of the clusters produced (e.g. for different 

initial partitions or values of K affect outcome). 

� Fixed number of clusters can make it difficult to predict what K should be.  

� Different initial partitions can result in different final clusters. It is helpful to 

rerun the program using the same as well as different K values, to compare the 

results achieved.  

In this section we discuss two portioning clustering algorithms: K-means and 
Partitioning Around Medoids.    

 

1.4.1 K-Means Clustering 

 

The K-means algorithm is a popular non-hierarchical technique. The algorithm 

proceeds as follows [10]: 

1. Select K – points as initial centroids.  

2. Assign each observation to its closest cluster centroid. That generates a new 

partition.  

3. Compute the centroid of the new partition.   

4. Recompute the centroid of each cluster until centroids do not change.  

 

Some important characteristics of the K-means algorithm are: (1) it is 

computationally fast, (2) it is sensible to outliers since an object with an extremely 

large value may substantially distort the distribution of data, and (3) can be performed 

with missing values. PAM that follows is a generalization of the K-means clustering 

algorithm.   

 

1.4.2. Partitioning Around Medoids 

 

PAM (Partitioning Around Medoids) was developed by Kaufman and 

Rousseeuw [6]. To find k clusters PAM’s approach is to determine a representative 

object for each cluster. This representative object, called a medoid, is meant to be the 

most centrally located object within the cluster. Once the medoids have been selected 

each non-selected object is grouped with the medoid to which it is the most similar.  



 

 -13-  

 The algorithm is divided into two phases. In the first phase, called BUILT, the 

k representative objects are chosen. The second phase, called SWAP, is attempted to 

improve the quality of the clustering. The algorithm is the following [6][7] : 

 

 

BUILT PHASE 

In this phase the first object chosen is the one for which the sum of the 

dissimilarities to the other objects is the smallest. This object is the most centrally 

located in the set of objects. At each step the object that decreases the objective 

function is selected.  

1. Consider an object i which has not yet been selected.  

2. Consider a non selected object j and calculate it’s dissimilarity ]� with the 

first object chosen and calculate it’s dissimilarity ���, �� with object i. 

Calculate the difference between ]� and. If the difference is positive, then 

object j will contribute in the selection of object i. Then calculate,  

 ��� � Q�/]� ! ���, ��, 00 

 

3. Calculate the total gain obtained if object i is selected,  

 � ����  

 

4. Choose the object that maximizes  � ����  

The process ends when the k representative objects have been found. Now, 

consider all the pair on objects (i, h) for which object i have been selected, but object 

h has not. The main objective is to determine if there is a positive effect when a swap 

is carried out, that is, when object i is no longer selected as a representative object, but 

object h is. 
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SWAP PHASE 

To calculate the effect of a swap between objects i and h the following 

calculations need to be completed. 

1. First, consider an object j that has not been selected. Then calculate its contribution ���^ to the swap: 

a. If j is near from one of the other representative objects than from both i and h 

then the contribution of object j to the swap is ���^ = 0. 

b. Consider this two situations if j is not further from i than from any other 

selected representative object/���, �� � ]�0. 

b1.   If j is closer to h that from any other representative object, that is, ���. O� _ �̀ where ̀ � is the dissimilarity between j and the second most 

similar representative object, then the contribution of object j to the swap is  

 ���^ � ���, O� ! ���, �� 

 

b2.    If j is at least as distant from h as from the second closest representative 

object, that is,          ���. O� a �̀ then the contribution of object j to the swap is ���^ � �̀ !  ���. �� 

 

c. If j is more distant from object i that from at least one of the other 

representative object the contribution to the swap is: ���^ � ���, O� !  ���. �� 

2. Secondly, add the contributions bcde to calculate the total result of the swap: 

fde � � bcdec  

3. The next step will be to select the pair �d. e� which minimizes. 

    The swap is carried out if minimum  is negative and the algorithm return to 

step1. If minimum is positive or zero then the swap is not carried out. 

 

1.4.3 Clustering Large Applications (CLARA) 

 

Instead of finding representative objects for the entire data set, CLARA draws 

a sample of the data set, applies PAM on the sample, and finds the medoids of the 
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sample. The point is that if the sample is drawn in a sufficiently random way, the 

medoids of the sample would approximate the medoids of the entire data set. To come 

up with better approximations, CLARA draws multiple samples and gives the best 

clustering as the output. The algorithm of CLARA is presented below [10]: 

 

1. For d � g to 5, repeat the following steps: 

2. Draw a sample of 40 + 2k objects randomly from the entire data set l, and call 

Algorithm PAM to find k medoids of the sample. 

3. For each object h�  in the entire data set, determine which of the k medoids the 

most similar is to h�. 

4. Calculate the average dissimilarity of the clustering obtained in the previous 

step. If this value is less than the current minimum, use this value as the 

current minimum, and retain the k medoids found in Step (2) as the best set of 

medoids obtained so far. 

5. Return to Step (1) to start the next iteration.  
 
Complementary to PAM, CLARA performs satisfactorily for large datasets. 
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Chapter 2 

 

2.1 Introduction 

 

Clustering algorithms generally rely on some prior knowledge of the structure 

present in a data set. Clustering applied to a data set with no naturally occurring 

clusters will impose artificial and meaningless structure. The procedure that consists 

in examining a data set to determine if structure is actually present and thus determine 

if clustering is worthwhile operation is a poorly investigated problem known as 

clustering tendency. 

Once we assume that � possesses a clustering structure we want to unreveal it. 

Since the clustering results are not completely reliable, it is necessary further 

evaluation of these resulting clustering. Cluster Validity is the procedure of 

evaluating, quantitatively, the results of a clustering algorithm [11]. 

The aim of the cluster validity is to find the partitioning that best fits the 

underlying data. Usually 2D data sets are used for evaluating clustering algorithms as 

the reader easily can verify the result. But in case of high dimensional data the 

visualization and visual validation is not a trivial task therefore some formal methods 

are needed [12]. 

The process of evaluating the results of a clustering algorithm is called cluster 

validity assessment. Two measurement criteria have been proposed for evaluating and 

selecting an optimal clustering scheme [12]: 

 

� Compactness: The member of each cluster should be as close to each other as 

possible. A common measure of compactness is the variance. 

 

� Separation: The clusters themselves should be widely separated. There are 

three common approaches measuring the distance between two different 

clusters: distance between the closest member of the clusters, distance 

between the most distant members and distance between the centers of the 

clusters. 
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In cases of biological data, the use of prior biological knowledge and 

assumptions may be necessary and important in the final interpretation of a cluster 

analysis. However, this process of data analysis is highly subjective, and may be a 

dangerous endeavor. In particular, researchers may unwittingly overrate clusters that 

reinforce their own assumptions, and ignore surprising or contradictory results. 

Therefore, it is not an acceptable means of replacing an unsupervised validation step, 

in which the significance of individual clusters in terms of the underlying data 

distribution is verified. 

The fact that a validation step is needed follows from the following two issues that 

arise when using clustering algorithms [13]: 

 

� Bias of clustering algorithms towards particular cluster properties. 

Clustering algorithms are biased towards partitions that are in accordance with 

their own clustering criterion. This is at the bottom of the fundamental 

discrepancies observable between the solutions produced by different 

algorithms. 

 

� Non-significance of results in the absence of natural clusters. Unsupervised 

classification relies on the existence of a distinct structure within the data. 

However, most clustering algorithms return a clustering even in the absence of 

actual structure, leaving it to the user to detect the lack of significance of the 

results returned. 

 

In General terms there are three approaches to investigate cluster validity [14]:  

 

� External Criteria : this implies that we evaluate the results of a clustering 

algorithm based on a pre-specified structure, which is imposed on a data set 

and reflects our intuition about the clustering structure of the dataset. It is 

applicable when external information like class labels are available.  

 

� Internal Criteria : we may evaluate results of a clustering algorithm in terms 

of quantities that involve the vectors of the dataset themselves. An internal 
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criteria is an independently meaningful measure of the cluster/validity, that 

can be computed given nothing but the data and the clustering.  

 

� Relative Criteria: the basic idea is the evaluation of a clustering structure by 

comparing it to other clustering schemes, resulting by the same algorithm but 

with different parameter values.  

 

Both internal and external criteria are based on statistical methods and they 

have high computation demand. The external validity methods evaluate the clustering 

based on some user specific intuition. The internal criteria are based on some metrics 

which are based on data set and the clustering schema. The main disadvantage of 

these two methods is its computational complexity. The basis of the relative criteria is 

the comparison of the different clustering schema. One or more clustering algorithms 

are executed multiple times with different input parameters on same data set. The aim 

of the relative criteria is to choose the best clustering schema from the different 

results. The basis of the comparison is the validity index. Several validity indices have 

been developed and introduced.  

 

2.2. Monte Carlo use in cluster validity 

 

When Hypothesis Testing is done in Cluster Validation, the null 

Hypothesis ij consists in testing whether the data of X possess a random structure or 

not. Thus, the null hypothesis should be a statement of randomness concerning the 

structure of X. 

 ij: ]QHQ � [NLLKLL  Q JQl�N LHJZMHZJK im: ]QHQ � �NKL lNH [NLLKLL Q JQl�N LHJZMHZJK 

 

Also let   ]no be the critical interval corresponding to significance level p of a 

test statisticq' and r the set of all possible values that s may take under 

hypothesis it. 

The power function of the test is defined as [7]: 



 

 -20-  

 u�s� � v/w 2 ]n,.s 2 r0 

 

For a specific s 2 r, u�s� is known as the test power under the alternative s. 

In words  is the probability that w lies in the critical region when the value of the 

parameter vector is s. This is the probability of making the correct decision when ij is rejected. The power function can be used for the comparison of two different 

statistical tests. The test whose power under the alternative hypotheses is greater is 

always preferred. 

There are two types of errors associated with a statistical test. 

 

� Type I Error :  Suppose that ij is true. If wA 2 ]n,, ij will be rejected even if 

it is true. The probability of such error is p. The probability of accepting ij 

when it is true is 1 ! p. 

� Type II Error : Suppose that  ij is false. If wA 2 ]n,, ij will be accepted even 

if it is false. The probability of such error is 1 ! u�s� and it depends on the 

specific value of s. 
 

The goal of using Monte Carlo techniques is the computation of the probability 

density function. First a large amount of datasets is generated by a normal 

distribution. For each one of the synthetic datasets called X', the value of the defined 

index denoted as q' is computed. Then based on the respective values of q' for each of 

the datasets X', we create a scatter plot. This scatter plot is an approximation of the 

probability density function of the index.  

We present here a Monte Carlo algorithm [15]: 

 

1. For � � 1 HN J do: 

2. Generate randomly from a distribution a data  X' with I vectors (points) in 

the area of � 

3. Assign each vector ��,� of  X' to the group that  xC 2 X belongs, according 

to the partition P.  

4. Run the same clustering algorithm used to produce �, for each  X' and let �� the resulting clustering structure.  
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5. Compute w���� value of the defined index w for P and ��. 
6. End for 

7. Create scatter plot of the r validity index values,. 

 

There are three different possible cases depending on the critical interval, 

corresponding to significant level p. The probability density function of a statistic 

index w, under ij has a single maximum and the ]n, region is either half line or a 

union of two half lines. Assuming that the scatter plot has been generated using J 

values of the indexw, called q', in order to accept or reject the null hypothesis we 

examine the following conditions: 

 

� If the shape is right tailed then Reject H0 else Accept 

 

� If the shape is left tailed then Reject H0 else Accept 

 

� If the shape is two tailed then Accept H0. 

 

 

Figure 2.1 – Probability Density Function [6] 
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2.3 External Criteria 

 

The clustering validation using external criteria is based on the null 

hypothesis, which represents a random structure of a dataset [16]. It evaluates the 

resulting clustering structure by comparing it to an independent partition of the data 

built according to the null hypothesis of the dataset. This kind of test leads to high 

computation costs. Generally the Monte Carlo techniques are suitable for the high 

computation problem and generate the needed probability density function.  

Let us define a clustering structure � and a defined partition, v, before we can 

apply the cluster validation technique. We consider a clustering,� that result from a 

specific clustering algorithm, and compare it with a independently drawn partition v 

of �. Suppose that  � � ���, … , ��
 and. The number of clusters in � and the partition 

in v do not need to be the same. 

Consider the following pair of vectors��y, �z�. Then we refer to it depending 

whether or not this pair of vectors belongs to the same cluster or partition.  

Let us define the following notation [12]: 

 

• {{ if both vectors belong to the same cluster in � and to the same group inv. 

 

• {] if both vectors belong to the same cluster in � and to different groups 

inv. 

• ]{ if both vectors belong to different clusters in � and to the same group 

inv. 

• ]] if both vectors belong to different clusters in � and to different groups 

inv. 

 

Then let’s define that Q, |, M and � are the numbers of {{, {], ]{ and ]] 

respectively, then Q < | < M < � � }  which is the maximum number of all pairs in 

the dataset.  Using the above we can define the following external indices to measure 

the degree of similarity between � andv.  
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2.3.1. Rand index 

 

The rand index R measures how closely the clusters created by the clustering 

algorithm match the ground truth. It produces measures with values in the interval 

[0,1] with 1 meaning a perfect match between the result of clustering algorithm and 

the real clustering pattern [17]. It is defined as [12]:  

 

R � a < dM  

 
 
where �Q <  �� is the sum of {{ pairs of vector plus the ]] pairs. The values of this 

index lie between 0 and 1, and values close to 1 indicates high agreement between � 

andv. 

However there are some known problems with Rand Index such as the fact 

that the expected value of the Rand Index of two random partitions does not take a 

constant value (say zero) or that the Rand index approaches its upper limit of unity as 

the number of clusters increases. In order to overcome these limitations Adjusted 

Rand Index has been created [18].  

In fact Adjusted Rand index became one of the most successful cluster 

validation indices and it is recommended as the index of choice for measuring 

agreement between two partitions in clustering analysis with different numbers of 

clusters.  Adjusted Rand Index can be computed as: 

 

��� � /	�0�Q < �� ! ��Q < |��Q < M� < �M < ���| < ���/	�0� ! ��Q < |��Q < M� < �M < ���| < ���  

 

2.3.2. Jaccard coefficient 

 

The Jaccard Coefficient measures the proportion of pairs that are in the same 

cluster and in the same partition from those that are either in the same cluster or in the 

same partition. In other words, it is the ratio of the number of positive matches to the 



 

 -24-  

total number of characters minus the number of negative matches. It is defined as 

follows [12]: 

 � � QQ < | < M 

where Q < | < M �  {{ < {] < ]{. As in the Rand Index, the values of this 

coefficient lie between 0 and 1, and values close to 1 indicate high agreement between � and v. 

 

2.3.3. Fowlkes and Mallow’s index 

 
The Fowlkes-Mallows Index is the geometrical mean of two probabilities: the 

probability that two random objects are in the same cluster given they are in the same 

group, and the probability that two random objects are in the same group given they in 

the same cluster [19]. The FM index is defined as below: 

 

 

�} � Q √��� � � QQ < | · QQ < M 

 

 

As in the Rand Index and Jaccard Coefficient, values close to 1 indicate high 

agreement between � and v. 

 

2.3.4. Hubert’s Γ Statistic 

 

The Hubert’s Γ Statistic measures the correlation between the matrices, � 

and � , of dimension I �  I, drawn independently of each other, where ���, �� equals 

to 1 if the pair of vectors ���, ��� belong to the same cluster in � and 0 otherwise, and � ��, �� equals to 1 if the pair of vector ���, ��� belongs to the same group in v and 0 

otherwise. The statistic is defined as follows [7]: 

 

� � �1 �⁄ � � � ���, �����, ���
�����

�+�
���  
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High values of this index indicate a strong similarity between � and �. 

 

It might be more useful to have values of -1 to 1 range and therefore Normalized Γ 

statistic is used [7]:  

 

�� � ��1 �⁄ � ∑ ∑ ����, �� ! >A��������+�?�� /���, �� ! >�0��A��  

 

 

where  ���, �� and ���, ��are the ��, �� elements of the matrices �, � respectively that 

we have to compare. Also >A,>�,�A,�� are the respective means and variances of �, � 

matrices. The last index takes values between -1 and 1.  

 

2.3.5 Example of External Criteria 

 

In order to show how these indices are calculated let us make an example. The general 

form of the example we will show is a contingency table: 

 

Class\Cluster �g �� ... �b Sums Z� l�� l�� … l�3 l�. 
. . . … . . 

. . .  . . 

. . .  . . Z�  l�� l�� … l�3  l�. 
Sums �.g �.� ... �.b �.. 

 

Table 2.1 –Contingency Table  

where n'C the number of objects that are in both cluster �g and class  u�. 
 
Table 2.2 is a contingency table in the same form as Table 2.1 [20]:  
 

Class\Cluster �g �� �� Sums Z� 1 1 0 2 �� 1 2 1 4 �9 0 0 4 4 

Sums 2 3 5 10 
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Table 2.2 – Contingency Table  

According to table we have: Q � 7  
| � 6 

M � 7 

� � 25 

Therefore we have: 

 

� Rand Index = 0.711 

� Adjusted Rand Index = 0.313 

� Jaccard = 0.35 

� Fowlkes and Mallows = 0.519 

� Hubert = 0.313 

 

 

2.4 Internal Criteria 

 

 Contrary to external criteria, internal validation is based on the information 

intrinsic to the data alone. We may evaluate the results of a clustering algorithm using 

information that involves the vectors of the datasets themselves. Internal criteria can 

roughly be subdivided into two groups: the one that assesses the fit between the data 

and the expected structure and others that focus on the stability of the solution [21].  

In the following section, we present an overview of internal validity indexes: 

 

 

 

2.4.1 Davies-Bouldin Algorithm 

 

 Let L� be measure of dispersion of cluster �� and �/��, ��0 � ��� the 

dissimilarity between two clusters. A similarity index ��� between �� and �� satisfy 

the following [3]:  
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� ��� a 0  
� ��� �  ��� 
� If L� � 0 and L� � 0 then ��� � 0 

� If L� � LF and ��� � ��F then ��� � ��F 

� If L� � LF and ��� _ ��F then ��� � ��F 

 

These conditions state that ��� is nonnegative and symmetric. A choice for a that 

satisfies these conditions is [6]: 

��� � L� < L����  

 

Then the Davies-Bouldin index is defined as: 

 

]�� � 1 � ��
�

���  

where �� � Q����,…,�� ���� , � � 1, … ,   
 

The dissimilarity between clusters ��  and ��, in a Y-dimensional space is defined as: 

 

��� � ¡�¢� ! �¢�¡ � &�.�¢�F ! �¢�F.�£
F��  

 

And the dispersion of a cluster  �� is defined as: 

 

L� � & 1l� � |� ! �¢�|�A234
 

 

The ]�� is the average similarity between each cluster and its most similar one. 

Small values of DB correspond to clusters that are compact, and whose centers are far 

away from each other. Consequently, the number of clusters that minimizes DB is 

taken as the optimal number of clusters. 



 

 -28-  

 

2.4.2 Dunn Index 

 

The Dunn index is defined as [22]: 

 

]� � min���,…,� ¤ min�����,…,� ¥ �/��, ��0maxF��,..,� ��Q��F�¦§ 
 

where the dissimilarity function between two clusters �� and �� is: 

 

�/��, ��0 � minA234,�235 ���, �� 

and the diameter of a cluster C is defined as : 

 

��Q��� � maxA,�23 ���, �� 

 

If X contains compact and well-separated clusters Dunn Index will be large and 

diameter of the cluster is expected to be small.  

 

2.4.3 Silhouette Index 

 

The silhouette index is useful when it is seeking compact and clearly separated 

clusters. In order to construct silhouettes we need a partition obtained by the 

application of some clustering algorithms, and the proximity matrix containing all the 

proximities between objects. 

For a given cluster, this method assigns to each object of the cluster a 

quantitative measure, known as the silhouette width [23]. The silhouette width 

indicates the membership of object � in the cluster it has been assigned. Let � any 

object in the data set, and denote by �� the cluster to which object � has been assigned. 

Let Q��� the average dissimilarity between � and all the other objects in cluster��. 

Consider any cluster �F different to cluster ��, and compute |��� � min ���, �F� , ¨ �1,2, … , M ; ¨ � �. Then the silhouette width is: 
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L��� � |��� ! Q���Q��Q���, |���
 
 

A neighbor of object � is the cluster �F for which the minimum is obtained, 

that is, ���, �F� � |���. Cluster �F represents the second best choice for object �. 
From the definition we can see that!1 _ L��� _  1. A value of L��� close to 1 

is obtained when the within dissimilarity Q��� is much smaller than the smallest 

between dissimilarity |���. Therefore we can say that object � is well clustered. On the 

other hand, if L��� take values close to −1 implies that Q��� is much larger that |���. In 

this case we can say that object � has been misclassified, so object � may be 

reassigned. If Q��� and |��� have similar values then L��� is about zero. In this 

situation object � lies equally far away from both cluster �� and �¨. 
  Having computed the silhouette width for each object we can construct a 

graphical display [24]. The silhouette shows which objects lie well within their 

cluster, and which one are merely somewhere in between clusters. A wide silhouette 

indicates large L��� values, and hence a pronounced cluster. The silhouette plot 

displays a measure of how close each point in one cluster is to points in the 

neighboring clusters. This measure ranges from +1, indicating points that are very 

distant from neighboring clusters, through 0, indicating points that are not distinctly in 

one cluster or another, to -1, indicating points that are probably assigned to the wrong 

cluster. Below there is an example of silhouettes width plot (Figure 2.2) [25]: 
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Figure 2.2 – Silhouette Width Plot 

From the silhouette plot, we observe that most points in the third cluster have a 

large silhouette value, greater than 0.6, indicating that the cluster is somewhat 

separated from neighboring clusters. However, the first cluster contains many points 

with low silhouette values, and the second contains a few points with negative values, 

indicating that those two clusters are not well separated.  

2.4.4 In Group Proportion Index (IGP) 

 

The In-Group Proportion is the proportion of observations in a cluster whose 

nearest neighbors are in the same cluster. IGP captures the idea of prediction accuracy 

and quantifies the degree to which points close to each other are predicted to belong 

to the same cluster. It is computed as [26]:  

 

�ªv��F� �  l��: � 2 �F Ql� �« 2 �F�l��F�  
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where �« � QJ¬�l ���, �� in which � is a distance function. IGP scores take values 

between 0 and 1 with larger scores indicating a better predictive ability.   

 

2.4.5 Comparison of Internal Indices 

 

After mentioning the most important of the internal indices for clustering 

validation, it is necessary to identify which one is more accurate and at the same time 

make a general comparison.  

The results from several experiments [27] have shown that the Silhouette 

index produces more accurate results than the Davies-Bouldin index. However, the 

time complexity of the Silhouette index computation is much greater than the time 

complexity of the Davies-Bouldin index computation. Thus the Davies-Bouldin index 

has a great advantage over the Silhouette index, regarding the overall performance. 

At the same time another experiment [28] shows that best results were 

obtained using the Silhouette Width followed by the Dunn-index and Davies-Bouldin 

index. Given the noisy nature of biological data, robust measures like the Silhouette 

Width are preferable to noise-sensitive measures like the Dunn index, which is 

instable against outliers due to the consideration of only two distances. The Davies-

Bouldin index requires the computation of the cluster centre, which cannot be 

achieved by average determination when dealing with binary data. An inappropriate 

choice of method for cluster center determination might have been one of the reasons 

for the insufficient clustering results obtained by this distance measure. 

If it is not so clear which index is the appropriate, then combination of these 

methods may be successfully used for the assessment of cluster validity [29]. 

Normalization and weighed voting techniques are proposed to improve the prediction 

of the number of clusters based on multiple indices. Normalization allows smoothing 

the effect of the highest values on the calculation of the average index values. 

Moreover, it effectively highlights the differences between the average index values 

from different clustering configurations. 

Finally, Kapp and Tibshirani in [30] propose that of the cluster quality 

measures considered, the IGP was the best at quantifying how likely a point was to be 

assigned to a different cluster. 
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2.5 Relative Criteria Measures 

The relative criteria does not involve statistical test as in the two criteria 

discussed above. In this case the main idea is to choose, from a set of clustering, the 

best one according to a pre-specified criterion. Let A be the set of parameter 

associated with a specific algorithm. For example, some algorithm has the number of 

cluster lM as a parameter. The problem can be stated as: Among the clustering 

obtained by a specific clustering algorithm, for different values of the parameter, 

choose the one that best fits the data set�. Consider the following cases [3]: 

 

� A does not contain the number of clusters,lM, as a parameter.  

The choice of the appropriate parameter values for this type of algorithm is 

based on the assumption that if � possesses a clustering structure, then a large 

range of values of the parameters in A can capture such a structure. Then, run 

the algorithm for a wide range of values for lM, and choose the largest range 

for which lM remains constant. The appropriate value for lM is the values that 

correspond to the middle to the range. 

 
 

� A contains the number of clusters, lM as a parameter.  

First select a suitable index w. Run the clustering algorithm for all values on lM between lMQ� and lM�l, chosen a priori. For each value of lM, run the 

algorithm n times, using different set of values for the parameters in A. Plot 

the best values of q, obtained for each lM, versus lM. The values of w in where 

a maximum and a minimum are obtained indicate good clustering. 
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Chapter 3 

 

3.1 Introductory Topics of Biology 

3.1.1 Genes 

 

A gene is a unit of heredity in a living organism. Living things depend on 

genes, as they specify all proteins and functional RNA chains. Genes hold the 

information to build and maintain an organism's cells and pass genetic traits to 

offspring. All organisms have many genes corresponding to many different biological 

traits, some of which are immediately visible, such as eye color or number of limbs, 

and some of which are not, such as blood type or increased risk for specific diseases, 

or the thousands of basic biochemical processes that comprise life. The vast majority 

of living organisms encode their genes in long strands of DNA.  

A modern working definition of a gene is “a locatable region of genomic 

sequence, corresponding to a unit of inheritance, which is associated with regulatory 

regions, transcribed regions, and or other functional sequence regions “. Colloquial 

usage of the term gene (e.g. "good genes", "hair color gene") may actually refer to an 

allele: a gene is the basic instruction, a sequence of nucleic acids (DNA or, in the case 

of certain viruses RNA), while an allele is one variant of that gene. Thus, when the 

mainstream press refers to "having" a "gene" for a specific trait, this is generally 

inaccurate. In most cases, all people would have a gene for the trait in question, but 

certain people will have a specific allele of that gene, which results in the trait variant. 

In the simplest case, the phenotypic variation observed may be caused by a single 

letter of the genetic code - a single nucleotide polymorphism [31]. 

3.1.2 Gene Expression 

 

Gene expression is the process by which information from a gene is used in 

the synthesis of a functional gene product. These products are often proteins, but in 

non-protein coding genes such as rRNA genes or tRNA genes, the product is a 

functional RNA. The process of gene expression is used by all known life - 

eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea) 

and viruses - to generate the macromolecular machinery for life [31]. Scientists study 
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the type and the quantity of mRNAs which are produced by one cell in order to learn 

which gene are expressed, fact that gives information on how a gene is responding to 

its needs. Gene expression is a very complex and strictly controlled process that 

allows to a cell to respond dynamically to its environmental needs. This mechanism 

performs as a switch on/off in order to control which genes will be expressed in the 

cell and whether the level of expression of certain genes needs to be increased or 

decreased.  

3.1.3 Analysis of Gene Expression 

 In genetics, gene expression is the most fundamental level at which the 

genotype gives rise to the phenotype. The genetic code stored in DNA is "interpreted" 

by gene expression, and the properties of the expression give rise to the organism's 

phenotype. Until 1990, scientists could only study a few genes each time. However, 

nowadays, the use of genetic mechanics made huge steps in the fields of genetic 

science. The new tool developed the last years is called microarray chip (Figure 3.1) 

and is known as DNA chip and promises to transfer the science of understanding 

genes in a new level with the expression of thousands of genes fast and accurately.   

 

 

Figure 3.1 – Microarray Chip 
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3.1.4 Microarrays – How do chips work  

The principal behind the analysis of gene expression is based on comparison 

of samples, for instance tissues – old and new ones -, as well as for the study of the 

development of healthy and unhealthy tissues of simple and more complex organisms. 

Figure 3.2 presents the creation of a microarray chip.  

 

 

Figure 3.2 – Creation of Microarray Chip 

 

When a gene is expressed in a cell, it generates messenger RNA (mRNA). 

Over expressed genes generate more mRNA than under expressed genes.  This can be 

detected on the microarray.  The first step in using a microarray is to collect healthy 

and cancerous tissue samples from the patient. This way, doctors can look at what 

genes are turned on and off in the healthy cells compared to the cancerous cells. Once 

the tissues samples are obtained, the messenger RNA (mRNA) is isolated from the 

samples. The mRNA is color-coded with fluorescent tags and used to make a DNA 
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copy (the mRNA from the healthy cells is dyed green; the mRNA from the abnormal 

cells is dyed red.)  

The DNA copy that is made, called complementary DNA (cDNA), is then 

applied to the microarray. The cDNA binds to complementary base pairs in each of 

the spots on the array, a process known as hybridization. Based on how the DNA 

binds together, each spot will appear red, green, or yellow (a combination of red and 

green) when scanned with a laser.  

 

� A red spot indicates that that gene was strongly expressed in cancer cells.  

 

� A green spot indicates that that gene was strongly repressed in cancer cells.  

 

�  If a spot turns yellow, it means that that gene was neither strongly expressed 

nor strongly repressed in cancer cells. 

 

� A black spot indicates that none of the patient’s cDNA has bonded to the DNA 

in the gene located in that spot. This indicates that the gene is inactive.  
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3.2 Characteristics of Microarray Data 

Studies that are usually done in genetics data use microarray experiments so 

that parallel comparison between the expressional behaviors of the genes can be 

made. A gene expression data set from a microarray experiment can be represented by 

a real valued expression matrix where the rows form the expression patterns of genes, 

the columns represent the expression profiles of samples, and each cell is the 

measured expression level of gene � in sample �[32]. Table 3.1 shows a gene 

expression matrix.  

 

 

 

Table 4.1 

 

In general, microarray data have the following characteristics [33]: 

 

� Dimensionality: the number of rows (genes) of the matrix can contain 

thousands genes, while the dimension of the columns (samples), is so much 

smaller. The cost for a microarray chip limits the number of experiments in a 

chip.  

 

� Noise: in a cDNA microarray experiment, the measurement gene expression 

level depends on the RNA extraction from a biological sample, the preparation 

of fluorescently labeled complementary DNA (cDNA) to the corresponding 

spot on the chip, and the image processing procedure to read out the 
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hybridization intensity. Each of these steps can introduce a considerable 

amount of noise into the final microarray data matrix.  

 
� Redundancy: The biological process under scrutiny in a microarray study is 

assumably a complicated process, which involves concerted gene reactions in 

different pathways. While some genes can even be involved in more than one 

pathway, some others, however, might not be relevant to the biological 

process. These genes usually show little variation over the different 

experiments under study. Genes that show little variation over the different 

experiments are called constitutive with respect to the biological process 

studied. Constitutive genes often contribute to a large proportion of the whole 

population of the genes included in a microarray study. 

 

Some problems of data preprocessing have become themselves an interesting research 

topic. Therefore, some actions must be taken before the analysis of such data. 

 

� Microarray data usually contain missing values. The inability of clustering 

algorithms to face such situation necessitates in the replacement of such 

values. Most of the times the replacement is done with 0 or with the average 

of the values. However, such methods can conclude to different clustering 

results.  

 

� Most of the times it is necessary to normalize data. In microarray data, many 

noise sources cause systematic sources of biases. A step of normalization 

may help to compute and remove the biases to correct the data.  

 
� After the normalization it is usual to pass the values of genes into a non linear 

transformation. This method fits in data with ratios of gene expression due to 

the fact that such ratios are not symmetrical. 
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3.3 Multivariate techniques in genetics.  

The clustering techniques have been proven to be useful to understand gene 

functions, cells’ functions and subcategories of cells. Co expressed genes can be 

classified with other cell functions. At the same time genes with similar form at the 

same cluster is possible to be combined with same cell functions.   

One of the characteristics of gene expression data is that it makes sense to 

cluster both genes and the samples. From one side, genes can be clustered in groups 

based on patterns that they form. On the other hand, samples can be divided in 

homogeneous groups each one of them will correspond to a particular phenotype, for 

example a type of cancer.  

Clustering techniques can be grouped in 3 forms: class comparison, class 

discovery and class prediction.  In class comparison we observe differences in a 

constant number of groups and we examine the genes that cause the discrimination. In 

class discovery we observe groups and patterns in genes.  

Finally, in class prediction, we predict the phenotype using the information 

from gene expression. 

 

3.4 Experimental Results 

One of the most important roles of the research of cancer is the development 

of an accurate classification of cancer cells and cancer tissues. In microarray studies, 

cluster analysis helps to identify gene groups as well as sample groups.  However, 

what is also important is to define if those clusters are accurate and reproducible as 

well as biologically significant.  

In the following analysis we have used three clustering algorithms, AGNES, 

DIANA and PAM that were described in the previous chapter. At the same time the 

algorithms were ran using possible combinations between metric and linkage 

methods. The combinations are presented in the Table Table 3.2.  
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Metric 
Linkage 
Method Notation 

Euclidean 

Average IndexName11 
Single IndexName12 

Complete IndexName13 
Ward  IndexName14 

Weighted IndexName15 

Manhattan  

Average IndexName21 
Single IndexName22 

Complete IndexName23 
Ward  IndexName24 

Weighted IndexName25 
 

Table 3.2 – Combinations of Methods used 

Divisive and Partitional Algorithms were run using both metric, the Euclidean 

and Manhattan Distance. The validation indices used were: 

 

� Davies-Bouldin Index 

� Silhouette Index  

� Dunn Index  

 

3.4.1. Data  

 

The data used in this analysis are DNA microarray data on primary breast 

tumors of 78 young patients [35]. We applied supervised classification to identify a 

gene expression signature strongly predictive of a short interval to distant metastases. 

At the same time, we checked if those clusters appearing were reproducible, with the 

methods described above.   

We selected 78 primary breast cancers: 34 from patients who developed 

distant metastases within 5 years and 44 from patients who continued to be disease – 

free after a period of at least 5 years. All patients were under 55 years of age at the 

time of diagnosis.  

From each patient, 5µg total RNA was isolated from snap – frozen tumor 

material and used to derive complementary RNA (cRNA). A reference cRNA pool 

was made by pooling equal amounts of cRNA from each of the sporadic carcinomas. 

Two hybridizations were carried out of each tumor using a fluorescent dye reversal 
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technique on microarrays containing 24,481 human genes synthesized by inkjet 

technology [34]. 

The criteria for the sporadic patients were primary invasive breast carcinoma 

less than 5cm (T1 or T2), no auxiliary metastases, age of diagnosis less than 55 years, 

calendar year of diagnosis 1983 – 1996, no previous malignancies; all patients were 

treated by modified radical mastectomy or breast-conserving treatment, including 

axillary lymph node dissection followed by radiotherapy. Five patients of the 

metastases group received adjuvant systemic therapy consisting of chemotherapy or 

hormonal therapy; all other patients did not receive additional treatment. All patients 

were followed at least annually for a period of at least 5 years. The criteria for 

hereditary patients were: carriers of a germline mutation in BRCA1 or BRCA2, and 

primary invasive breast carcinoma; no other selection criterion was applied. This 

study was approved by the Medical Ethical Committee of the Netherlands Cancer 

Institute [35].        

To gain insight into the genes of the dominant expression signatures, we 

associated them with hystopathological data; oestrogen receptor (ER) – α expression. 

We then selected only the genes that their difference in ER receptor was statistically 

significant.  

 In order to make all the calculations we used R packages for cluster analysis as 

well as packages for cluster validations from R project [36]. The packages that were 

used for the analysis were the following: Cluster, ClValid, ClusterSim, ClusterCons. 

Also, Bioconductor software for R was used which provides tools for the analysis and 

comprehension of genomic data. Missing values were replaced by the mean of the 

variable.  
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3.4.2 Clustering Algorithms Results 

 

An unsupervised, hierarchical clustering algorithm allowed us to cluster the 

tumors on the basis of their similarities measured over these significant genes.  

In Diagram 3.1 we can see a dendrogram produced by the clustering 

technique. The length and the subdivision of the branches display the relatedness of 

the breast tumor (right) and the expression of the genes (top).  

We can clearly observe two distinct groups of tumors that are the dominant 

feature in this two dimensional display, suggesting that the tumors can be divided into 

two types on the basis of this set. Notably in the upper group the patients were from 

group that developed distant metastasis within 5 years while the lower group shows 

the patients that were healthy until this time of the analysis.  

 In general we can see two clusters in genes, that show the distinguish between 

genes with ERP receptor and genes without. Samples, on the other hand, might also 

show three clusters but this might be due to the fact that there are some outliers as we 

can see, for example sample 54. Thus, using unsupervised clustering we can already, 

to some extent, distinguish between good prognosis and poor prognosis tumors.  

 Now that we have seen a first clustering of the samples as well as the genes, 

we can identify if this clustering is reproducible in a different sample.  In Diagram 3.2 

we selected only the patients that showed metastasis within 5 years while in Diagram 

3.3 we only selected patients that did not show any metastasis until that time. 

Unfortunately the statistically significant genes were only so few and the results were 

not accurate.  

 

 

 

 

 



 

 -43-  

Diagram 3.1 – Dendrogram for statistically significant genes 
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Diagram 3.2 – Dendrogram for patients with metastasis within 5 years 
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Diagram 3.3 – Dendrogram for patients without metastasis 
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At a second step we ran some possible clustering algorithms to check if we 

have different results. Below, we present some of those and discuss about their 

results.  

The Diagram 3.4 shows the hierarchical clustering based on Agnes 

Algorithm, manhattan distance and average method. We can clearly observe that 

there are two groups in samples as we noticed before and a possible third group 

appears. However, still we can see that sample 54 shows a different behaviour from 

the rest.  

 

 

 

Diagram 3.4 – Dendrogram for AGNES algorithm 
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If instead of manhattan distance we use euclidean then the results change only 

slightly.  

 

 

 

Diagram 3.5 – Dendrogram for AGNES algorithm 

 

The results change when we use the DIANA algorithm which creates more clearly 

three clusters instead of two. Diagrams 3.6 and 3.7 show the clustering of DIANA 

algorithm using euclidean and manhattan distance respectively.  
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Diagram 3.6 – Dendrogram for DIANA algorithm 
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Diagram 3.7 – Dendrogram for DIANA algorithm 
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3.4.3. Internal Criteria Results 

 

As we have already showed a visible pattern in the data it is necessary to 

understand if this pattern is reproducible in other datasets and which of the algorithms 

show more accurate results.  

The Davies – Bouldin Index measures how compact and well – separated the 

clusters are. To obtain clusters with these characteristics the dispersion measure for 

each cluster needs to be as small as possible, while the dissimilarity measure between 

clusters needs to be large. According to this, Davies Bouldin index would have small 

values if the clusters are compact and well separated. In several occasions zero values 

are obtained. This happens when the clustering algorithm assign one object to each 

cluster, except in one. That is if the data set consisting of n objects will be divided in 

three clusters, then two of them will contain only one observation, and one cluster 

with n-2 observations. Then this zero values are not going to be considerate as a 

minimum value, because having one object by cluster is not a good clustering result.  

Table 4.3 shows the DB index obtained from the data set. The minimum value 

among all the combinations using AGNES is obtained using Euclidean distance 

combined with Single method (DB12) for c = 2 clusters. Using DIANA the minimum 

occurs using Euclidean again for c = 4. Lastly for PAM the minimum occurs using 

Euclidean for c = 2 clusters. Therefore we conclude that Davies Bouldin index 

indicates that the best results occur when we have two clusters, as we already saw in 

the diagrams before. 
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Table 3.3 – Values of DB index for combinations of algorithms and methods 

 

Opposite to Davies- Bouldin index, the Dunn Index would have large values 

of the clusters are compact and well-separated.  

Dunn Index is presented in Table 3.4. The results here are not so similar. The 

maximum value among all the combinations using AGNES is obtained using 

Euclidean distance combined with Average method (DB11) and Complete method 

(DB13) and Weighted method (DB15) for c = 3 clusters. The same results appear when 

using Manhattan for c=3 clusters. Using DIANA the maximum occurs using 

Euclidean or Manhattan again for c = 3. Lastly for PAM the maximum occurs using 

Euclidean or Manhattan for c = 2 clusters. Therefore we conclude that Dunn index 

indicates mostly that the best results occur when we have three clusters. 
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Table 3.4 – Values of Dunn Index for combinations and methods 

 

Finally, the best results for clustering occur when we have maximum value of 

Silhouette index (Table 3.5). The maximum value for AGNES occurs when we have 

Euclidean or Manhattan distance with almost all methods for c = 2 clusters. For 

DIANA maximum value occurs again for c = 2 clusters using both distances. Lastly 

for PAM again c = 2 clusters maximize the Silhouette Index. It is clear that for 

Silhouette index the most well separated results are for two clusters.  

In general the best results seem to occur when we have two clusters as we also 

observed from the diagrams.  

 



 

 -53-  

 

 

Table 3.5 – Values of Silhouette Index for combinations and methods 

 

 

From the three measures that we used in this analysis, the best one appears to 

be AGNES. For Silhouette Index and Dunn Index, it gives the highest values, while 

for Davies – Bouldin index it gives the smallest values.  
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Diagram 3.8 – Diagram for Values of Silhouette Index 

 

 

Diagram 3.9 – Diagram for Values of DB Index 
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Diagram 3.10 – Diagram for Values of Dunn Index 
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Chapter 4 

 

4. Conclusion  

In this thesis the main objective was to compare some of the validation indices 

in order to detect the optimal number of classes a data set can have. 

The best results were obtained when using Complete and Ward Linkage 

Methods. In general PAM clustering results were not good. On the other hand, when 

using DIANA the results were similar to the ones obtained with AGNES, and there 

were no significant difference between using Euclidean or Manhattan Distance. In all 

cases, AGNES seems to do a better clustering task. 

In future studies we can include more validation indices as well as external 

validation metrics. This can be conducted with the inclusion of data from other 

sources so that we can validate our clustering results externally. Data sources such as 

genomic data obtained in molecular biology labs and family information collected 

from the siblings of the patients in this study can be used for the purpose of external 

validation. 
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