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Abstract

The term cluster analysis encompasses a numbeffefedt algorithms and
methods for grouping objects of similar kind in&@spective categories. A general
guestion facing researchers in many areas of ingsiinow to organize observed data
into meaningful structures, that is, to developotaxmies. In other words cluster
analysis is an exploratory data analysis tool whaghs at sorting different objects
into groups in a way that the degree of associdigtween two objects is maximal if
they belong to the same group and minimal otherw@een the above, cluster
analysis can be used to discover structures in daithout providing an
explanation/interpretation. In other words, clustealysis simply discovers structures
in data without explaining why they exist.

While many clustering algorithms produce a can@igartitioning, relatively
few attach a measure of confidence to the propofestering. An ideal clustering
algorithm would do both; however, such a procedsraot always practical. As a
result, the field of cluster validation attemptsréonedy this by proposing methods to
assess how well a proposed clustering of a dateietts its intrinsic structure.

The main goal of this thesis is to use validatiotleixes along with clustering
algorithm using data from a microarray experim@&@nmce a clustering algorithm has
been applied, validation indices were computed rideo to conclude how many

clusters the data set will have.




Hepinyn

O 6pog avdivomn katd ocvoTAdeg eumePEXEl €vov aplOud SLPOPETIKMV
olyopifumv kot pefddwv Yoo opadomoinon  aviikeWEvov dov  eldovg o€
AVTIMTPOCHOTEVTIKEG  kKatnyopiec. 'Eva ocvyvo mpdfinua mov avtipetonilovv ot
EPELVNTEG €lval TO OGS OPIGHEVA OEdOUEVO UTOPOVV VO 0pYovmBoOV GE JOUES TTOV
Eyovv vonuo. Me dilo Adylo 1 avoAvon KoTd ocvotddeg elvar €va OVIVELTIKO
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neBddovg Yo T0 TOCO KOG pio. opadomoinon evog GeT Oed0UEVOV OVTAVOKAGL TNV
doun Tov.

O kbp1og oKomOC TNG EPYOCiag avTig ivat 1) ¥promn deKTdV Tekunpioong pall
pe aAyopiBuovg opadomoinong ce doedopéva omd HKPOGLOTOLYiES, LE OKOTO Vo
kataAnEovpe otov oplBud TV opddwv mov Ba pmopovioe va ywPloTeEl T0 GET

dedoUEVOV.
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Chapter 1

1.1 Introduction

Clustering may be defined as a process that ainfisdgpartitions of similar
objects. It is an unsupervised technique used twmrtogether objects which are
“close” to one another in a multidimensional featapace, usually for the purpose of
uncovering some inherent structure which the daiss@sses [1]. An effective
analysis should result in groups whose objecthiareogeneous but at the same time
objects of different groups should differ as musipassiblg?2].

This chapter provides an overview about how thestéhing Algorithms work
with examples and all the details needed to cora@etlustering task. In Section 1.2,
a mathematical definition for clustering is giv@nssimilarity measures are presented
in section 1.2.1. Also, since we have to calculhte distance of one group with
another group, we have to discuss about Linkagdddist The latter are presented in
Section 1.2.2.

There are two main types of clustering algorithrh}:Hierarchical and 2)
Partitioning discussed in Sections 1.3 and 1.4eetsely.

1.2 Cluster Definition

As a first approach, we need to define what a elust Let X be our data set,
that is,

X ={x;,x5, ..., x5} .

Now, let be the partitioR,, of X into m sets,C;, j=1,...,m. These sets are called

clusters and need to satisfy the following two atads [3]:

Ci * Q),i=1,...,m
Uﬁlci =X




It is important to say that the objects (vectorstained in a cluster;@re more
similar to each other and less similar to objeatsciors) contained in the other
clusters. In order to join or separate vectors itecessary to measure how similar, or
dissimilar, two objects are. This task is carrieadt through the use of distances
measures. Also we want to join, or separate, aisisteis can be done using Linkage
Methods. Several distances measures and Linkageollietare discussed in the next

section.

1.2.1 Dissimilarity Measures

Dissimilarity measure the discrepancy between the bbjects based on
several features. Dissimilarity may also be vievasdmeasure of disorder between
two objects. These features can be representesa@slimate of the object in the
features space. There are many types of distantesiamlarity. Each similarity or

dissimilarity has its own characteristics.

The dissimilarity coefficientd (i, j) are small when objecisand; are alike,
otherwise, d(i,j) become larger. The dissimilarity measures needatisfy the

following conditions:

0<d(@i,j) <1
d(i,)) =0
d(i,j) = d(j, i)

Most of the clustering algorithms use dissimilanityasures to join, or to separate,

objects. We will mention some of these measures:

City block Manhattan Distance
The taxicab metric is also known as city block alise, Manhattan distance, or
Manhattan length, with corresponding variationsthe name of the geometry. It

examines the absolute differences between cooedinat a pair of objects. The




taxicab distance,f between two vectors p,q in an n-dimensional veakor space
with fixed Cartesian coordinate system, is the sifirtine lengths of the projections of

the line segment between the points onto the coateliaxes. More formal,

n
dy(x,y) = Z|xl’ - yil
i=1

Wherex;, and y; are the i coordinates of x and y respectively, aadd y are objects
of X. The City block distance is always greaternthar equal to zero. The
measurement would be zero for identical points laigth for points that show little

similarity.
Euclidean Distance
The Euclidean Distance between poirts (x4, Xy, ..., X,) andy = (y1,¥2, -, Yn) IS

given by:

dl (X, Y) =

wherex;, and y; are the i coordinates of x and y respectively, am@hd y are objects
of X.

Mahalanobis Distance
Formally, the Mahalanobis distance of a multivaiaector from a group of values

with mean and covariance matrix S is definef4s

dxy) =V x—yTS1(x—y)

If the covariance matrix is the identity matrixethlahalanobis distance reduces to the
Euclidean distance. Mahalanobis distance is widedgd in cluster analysis and

classification techniques.

Minkowski Distance
The Minkowski distance is a metric on Euclideancepahich can be considered as a

generalization of both the Euclidean distance amel Manhattan distance. The




Minkowski distance between points = (x4, X3, ..., x,) @and y = (¥1, Y2, ..., V) IS
given by[2][5]:

d(x,y) =

Minkowski distance is typically used with p beingd 2. The latter is the Euclidean

distance, while the former is sometimes known adMAnhattan distance.

1.2.2 Linkage Methods

The Linkage methods are the quantitative measiged to join the two most
similar clusters in the agglomerative clusteringoaithm. In order to define the

Linkage Methods, lef;andC; be two clusters, and I¢€;] andC;| denote the number
of objects that each one have. B€C;, C;) denote the dissimilarity measures between
clustersC; andc; , andd (i, j) the dissimilarity measure between two objéctnd; d
wherei is an object ofC; andj is an object of; . Some of the most used linkage

methods are the following:

UPGMA

UPGMA (Unweighted Pair Group Method with ArithmetMean) is a simple

agglomerative or hierarchical clustering method duse bioinformatics for the

creation of phenetic phylogenetic trees (phenogyamise algorithm examines the
structure present in a pairwise distance matrix gosimilarity matrix) to then

construct a rooted tree (dendrogram). At each diep,nearest two clusters are

combined into a higher-level cluster. The distadéél-,Cj) between clusterg; and

C; is defined as the average of all dissimilariti&s, j). That is[6]:

5(C.C;) = mz d(i, )

1EC;
jECj




Single Linkage Clustering Method (SLINK)

SLINK is the short of single linkage clustering. @aas the UPGMA clustering
method defines the similarity between any two drtssias the arithmetic average of
the similarities between the objects in one cluatet the objects in the other, SLINK
does this differently. In SLINK, the distance betnetwo clusters is taken to be the
minimum of all the pairwise distances. Then, théNdLis defined as follows:

82(Cuv G;) = min d (i, )

jECj

Complete Linkage Clustering Method (CLINK)

The CLINK is exactly the opposite of the SLINK. TE&INK is the maximum of

all pairwise distances. It is defined as follows:

85(Cu, G ) = maxd(i, )

jECj

Ward’'s Minimum Variance

In the Ward’s Method the distance between two elssis defined as a weighted

version of the squared Euclidean distance of tneian vector. That is:

GG |

04(CuG) = Gl +|C;

||| ”J||

1 1
Whereui = _,ZxEC- x and Hi = _,ZxEC- X
ICil t ICil ¢

Weighted pair-group Method using Arithmetic Averages (WPGMA)

The WPGMA is a variant of the UPGMA. The distanastwieen clusters is

calculated as a simple average. One starts witlhotiggnal dissimilarities between




objects and at each merger of clustérsand;, forming some new clustéy , the

dissimilarities are updated Ip§]:

1 1
65(Ck1 Cm) = Ed(cl, Cm) + Ed(q, Cm)

When there are unequal numbers of objects in thstagls, the distances in the
original matrix do not contribute equally to théermediate calculations, and the final

result, is therefore, said to be weighted.

1.3 Hierarchical Clustering Algorithms

Hierarchical clustering groups data with a sequernfceested partitions, either
from singleton clusters to a cluster includingiadlividuals or vice versa. The former
is known as agglomerative hierarchical clusterimgl @he latter is called divisive
hierarchical clustering. Both agglomerative andsive clustering methods organize
data into the hierarchical structure based on tleximity matrix. An important
objective of hierarchical cluster analysis is toypde a picture of the data that can be
easily interpreted, such as a dendrogram. A demndnodjsts the clustering one after
another and cutting it at any level defines a elisyg and identifies clusters.

Hierarchical clustering algorithms involve N -1 et produces a hierarchy of
nested clustering. At each step t, a new elemeatsssgned to a cluster using the
information produced in the previous step. Two gates of these algorithms are
discussed: (1) Agglomerative (AGNES) and (2) Dwasi(DIANA) hierarchical
algorithms. Both algorithms have the disadvantagé @nce an element is assigned to

a cluster there is no way to recover it later.

1.3.1 Agglomerative hierarchical nesting algorithm (AGNES)

The AGNES algorithm works by assigning each wordhteeparate cluster,
and then iteratively joining together the most elgsrelated (i.e. least dissimilar)
clusters until a single super-cluster is formedfiist, each object is a small cluster by

itself. Clusters are merged until only one largestdr remains which contains all the




objects. At each stage the two “nearest” clusteescambined to form one larger

cluster. The method is described below:

Let d(Cl-,C]-) be a function that measures the proximity betw€emd’;, andt the

current level of hierarchy. Then, the general sahean be described as folloyw§:

At the beginning each of the objects in X formsrab cluster by itself.
At the first step, the two closest, or most similabjects are joined using a
dissimilarity measurel(C;, C;) .That is, find the smallest value of the dissinitya
matrix and join the corresponding objects.
In the second step we hale— 1 clusters. Now we will want to merge the closest
clusters using one of the linkage method previodsiscribed.
At stept we haveN — (t — 1) clusters, and we want to join the closest clusisrin
the previous step.
Repeat until all the vectors lie in a single cluste
The following exampl¢8] shows how the AGNES algorithm works:
In Table 1.1, a data set consisting of flowers ixemgy [6]. 8 variables have been
measured on these flowers: winters, shadow, tuloetsy, soil, preference, height,
and planting distance. Before we begin with th@staf the algorithm it is necessary
to standardize the data.
Flowers win shadow tuber color soil prefer height dist
Myosotis 0 1 0 5 2 2 20 15
Iris 1 1 1 5 3 8 45 10
Lily 1 1 1 1 2 9 90 25
Red Rose 1 0 0 4 2 18 200 60
Scotch Rose 1 0 0 2 2 17 150 60
Tulip 0 0 1 2 1 5 25 10
Table 1.1 — Standardized Data: Flowers
Step 1

Once the data has been standardized, the nexisstegind the Proximity Matrix in
order to find the nearest object among X. Thatingl the Euclidean Distance among

all the possible pairs of vectors (Table 1.2). Liagkat the Dissimilarity Matrix
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(Table 2.2) the nearest objects are Red Rose amidiSRose (d = 1.36). Then, we

join it and now we have five clusters: (1) {Red BoScotch Rose}, (2) Myosotis, (3)
Iris, (4) Lily and (5) Tulip.

Myosotis Iris Lily Red Rose  Scotch Rose Tulip
Myosotis 0
Iris 3.26 0
Lily 3.84 2.95 0
Red Rose 4.82 4.56 4.01 0
Scotch Rose 4.72 4.54 3.37 1.36 0
Tulip 3.53 4.52 3.39 5.01 451 0
Table 1.2 - Distances
Step 2

In this step we needed to join the nearest clusterdo this we will use a linkage

method, that is, find the distance between thetetas We will calculate the new

distances using equation of CLINK and will obtainew matrix. The new distances

are:

d({red, scotch}, myosotis) = max(d(red, myosotis), d(scotch, myosotis))
= max4.82,4.71) = 4.82

d({red, scotch},iris) = max(4.56,4.53) = 4.56
d({red, scotch}, lily) = max(4.01,3.37) = 4.01

d({red, scotch}, tulip) = max(5.01,4.51) = 5.01

The new proximity matrix is:

{Red,Scotch} Myosotis Iris Lily Tulip
{Red,Scotch} 0 4.82 456 4.01 5.01
Myosotis 4.82 0 3.26 384 353
Iris 3.26 3.26 0 295 452
Lily 3.84 2.95 2.95 0 3.39
Tulip 4.82 4.56 4.52 3.39 0

Table 1.3 - Distances

The nearest clusters are Iris and Lily and theesfbe new distances are:




d({iris, lily},{red, scotch}) = max(4.56,4.01) = 4.56
d({iris, lily}, {tulip}) = max(4.52,3.39) = 4.52
d({iris, lily}, {myosotis}) = max(3.84,3.26) = 3.84

Now the new proximity matrix is:

{Iris,Lily} {red,scotch} Myosotis Tulip

{Iris, Lily} 0 4.56 3.84 4.52
{red,scotch} 4.56 0 4.82 5.01
Myosotis 3.84 4.82 0 3.53
Tulip 4.52 5.01 3.53 0

Table 1.4 - Distances

As in the previous step we need to join the neanesters, that is, myosotis and tulip.
Then the new distances will be:
d({iris, lily}, {myosotis, tulip}) = max(3.84,4.52) = 4.52
d({{myosotis, tulip},{red, scotch}) = max(4.82,5.01) = 5.01

The last proximity matrix we have is:

{Iris,Lily} {red,scotch} {myosotis,tulip}

{lris,Lily} 0 4.56 5.01
{red,scotch} 4.56 0 4.52
{Myosotis, tulip} 5.01 4.52 0

Table 1.5 - Distances

The new clusters are now: (1) {red, scotch, myasatlip} and (2) {iris, lily}.

Step 4
This is the last step and the only thing to dooigoin the two clusters. Then, in the

last step all the vectors lie in a single clusiare to the fact that AGNES algorithm is
an hierarchical one, the only way to obtain a graphesults is a dendrogram. For a

dendrogram of the example above see Diagram 1.1.




TR

Scoteh_

Myosotis Tulip Iris Lily Red_Rose o

Moared Chesrabon o Custer

Diagram 1.1 — Clustering Tree of AGNES algorithm

1.3.2 Hierarchical Divisive Clustering (DIANA)

Hierarchical Divisive Algorithms starts with a slagcluster of all the given
objects and keep splitting the clusters based disgimilarity measure to obtain a

partition of singleton clustef§]. The algorithm can be described as follows:

(a) Before starting the algorithm all objects irad¢ together in a single cluster.

(b) At the first step, split the data set into talasters. For this purpose, look for the
object for which the average dissimilarity to ather objects is largest. The object

with the largest dissimilarity initiate a new cleisthamed the splinter group.

(c) For each object in the larger group, compute dlierage dissimilarity with the
remaining objects, and compare it to the averagsirdilarity with the objects of the

splinter group. The object in the larger group witle largest difference changes
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sides; it is moved to the splinter group. Repea tomputations until all the

differences are negatives.

(d) At the next step, divide the biggest clustégttis, the cluster with the largest

diameter. The procedure is the same as in theque\atep.
(e) In the following steps, divide the biggest thudollowing the previous step.

() The process continues until all objects forsirggleton.

1.4 Partitioning Clustering Algorithms

A partitioned clustering obtains a single partitiohthe dataset instead of a
clustering structure, such as the dendrogram. Tgeithm used in the Partitioning
Clustering is based on the search of k represgatabjects among the objects of the
data set. These k-representative objects shoultegept various aspects of the
structure of the data, and are often called ceyest After finding a set of k
representative objects, the k clusters are constiugy assigning each object of the
dataset to the nearest representative object. Belewpoint out some of the
advantages and disadvantages of partitioning clagtalgorithms:

Advantages
= With a large number of variables, partitioning ¢dusrg algorithms may be

computationally faster than hierarchical clusterifids is small).
= Partitioning clustering algorithms may produce tegh clusters than

hierarchical clustering, especially if the clustars globular.

-11-



Disadvantages

= Difficulty in comparing quality of the clusters mhoced (e.g. for different
initial partitions or values of K affect outcome).

» Fixed number of clusters can make it difficult regict what K should be.

= Different initial partitions can result in differefinal clusters. It is helpful to
rerun the program using the same as well as diffdfevalues, to compare the
results achieved.

In this section we discuss two portioning clustgrialgorithms: K-means and
Partitioning Around Medoids.

1.4.1 K-Means Clustering

The K-means algorithm is a popular non-hierarchteghnique. The algorithm
proceeds as followd.0]:
1. Select K — points as initial centroids.
2. Assign each observation to its closest clusterroghtThat generates a new
partition.
3. Compute the centroid of the new partition.

4. Recompute the centroid of each cluster until cessrdo not change.

Some important characteristics of the K-means dlgor are: (1) it is
computationally fast, (2) it is sensible to oudliegince an object with an extremely
large value may substantially distort the distribtof data, and (3) can be performed
with missing values. PAM that follows is a genezation of the K-means clustering

algorithm.

1.4.2. Partitioning Around Medoids

PAM (Partitioning Around Medoids) was developed Baufman and
Rousseeuw6]. To find k clusters PAM’s approach is to determaeepresentative
object for each cluster. This representative objeaited a medoid, is meant to be the
most centrally located object within the clustenc® the medoids have been selected

each non-selected object is grouped with the metorchich it is the most similar.
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The algorithm is divided into two phases. In thstfphase, called BUILT, the
k representative objects are chosen. The secorgkpballed SWAP, is attempted to

improve the quality of the clustering. The algamitis the following6][7]:

BUILT PHASE
In this phase the first object chosen is the orewhich the sum of the
dissimilarities to the other objects is the smalld@his object is the most centrally
located in the set of objects. At each step theeatbjhat decreases the objective
function is selected.
1. Consider an object i which has not yet been salecte
2. Consider a non selected object j and calculatedissimilarity D; with the
first object chosen and calculate it's dissimilarid(i,j) with object i.
Calculate the difference betweén and. If the difference is positive, then

object j will contribute in the selection of objecihen calculate,
Cij = max(D]- - d(l,]), 0)

3. Calculate the total gain obtained if object i ikested,
S
j

4. Choose the object that maximizes
S
J

The process ends when the k representative olj@ets been found. Now,
consider all the pair on objects (i, h) for whidhjext i have been selected, but object
h has not. The main objective is to determine éf¢his a positive effect when a swap
is carried out, that is, when object i is no longelected as a representative object, but

object his.
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SWAP PHASE
To calculate the effect of a swap between objecésxd h the following
calculations need to be completed.
1. First, consider an object j that has not beésctsd. Then calculate its contribution
Cjin to the swap:
a. If jis near from one of the other representatibpgeots than from both i and h
then the contribution of object j to the swagjis = 0.
b. Consider this two situations if j is not furtheoin i than from any other
selected representative objettj, i) = D;).
bl. If jis closer to h that from any other regmetative object, that is,
d(j.h) < E; whereE; is the dissimilarity between j and the second most

similar representative object, then the contributib object j to the swap is
Cjih = d(]r h) - d(], l)

b2. If jis at least as distant from h as frdra second closest representative

object, that is, d(j.h) = E; then the contribution of object j to the swap is

Ciin = Ej — d(j. 1)

c. If j is more distant from object i that from at &aone of the other
representative object the contribution to the sisap

Cin = d(,h) = d(j.0)

2. Secondly, add the contributioGgy, to calculate the total result of the swap:

Ty, = Z Cjin
Jj

3. The next step will be to select the fdith) which minimizes.
The swap is carried out if minimum is negatared the algorithm return to

stepl. If minimum is positive or zero then the sugapot carried out.

1.4.3 Clustering Large Applications (CLARA)

Instead of finding representative objects for theére data set, CLARA draws

a sample of the data set, applies PAM on the sgmapl finds the medoids of the
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sample. The point is that if the sample is drawraisufficiently random way, the
medoids of the sample would approximate the medufidise entire data set. To come
up with better approximations, CLARA draws multilamples and gives the best
clustering as the output. The algorithm of CLARAresented belo\ 0]:

1. Fori=1to 5, repeat the following steps:

2. Draw a sample of 40 + 2k objects randomly fromehgre data set |, and call
Algorithm PAM to find k medoids of the sample.

3. For each objeadd; in the entire data set, determine which of the kionds the
most similar is t@;.

4. Calculate the average dissimilarity of the clusigrobtained in the previous
step. If this value is less than the current mimmuwse this value as the
current minimum, and retain the k medoids foun8tep (2) as the best set of
medoids obtained so far.

5. Return to Step (1) to start the next iteration.

Complementary to PAM, CLARA performs satisfactofity large datasets.
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Chapter 2

2.1 Introduction

Clustering algorithms generally rely on some pkoowledge of the structure
present in a data set. Clustering applied to a datawith no naturally occurring
clusters will impose atrtificial and meaninglessusture. The procedure that consists
in examining a data set to determine if structsradtually present and thus determine
if clustering is worthwhile operation is a poorlgvestigated problem known as
clustering tendency.

Once we assume th#tpossesses a clustering structure we want to ualréve
Since the clustering results are not completelyaloéd, it is necessary further
evaluation of these resulting clustering. Clustealidity is the procedure of
evaluating, quantitatively, the results of a clusig algorithm[11].

The aim of the cluster validity is to find the p@ohing that best fits the
underlying data. Usually 2D data sets are use@Waluating clustering algorithms as
the reader easily can verify the result. But ineca$ high dimensional data the
visualization and visual validation is not a triviask therefore some formal methods
are needefl 2].

The process of evaluating the results of a clusgealgorithm is called cluster
validity assessment. Two measurement criteria baes proposed for evaluating and

selecting an optimal clustering schefh2]:

= Compactness The member of each cluster should be as closadb other as
possible. A common measure of compactness is tii@nee.

= Separation The clusters themselves should be widely separdtbere are
three common approaches measuring the distanceedetwvo different
clusters: distance between the closest member ef cthsters, distance
between the most distant members and distance &etiie centers of the

clusters.
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In cases of biological data, the use of prior kgatal knowledge and

assumptions may be necessary and important inirtaé ifhterpretation of a cluster

analysis. However, this process of data analyslksghly subjective, and may be a

dangerous endeavor. In particular, researchersunajttingly overrate clusters that

reinforce their own assumptions, and ignore surgisor contradictory results.

Therefore, it is not an acceptable means of repipan unsupervised validation step,

in which the significance of individual clusters terms of the underlying data

distribution is verified.

The fact that a validation step is needed follovesnf the following two issues that

arise when using clustering algorithfd8]:

Bias of clustering algorithms towards particular cluster properties.

Clustering algorithms are biased towards partititwas are in accordance with
their own clustering criterion. This is at the loott of the fundamental
discrepancies observable between the solutions upead by different

algorithms.

Non-significance of results in the absence of natar clusters Unsupervised

classification relies on the existence of a digtisitcucture within the data.
However, most clustering algorithms return a clasteeven in the absence of
actual structure, leaving it to the user to detbketlack of significance of the

results returned.

In General terms there are three approaches tstigaée cluster validitj14]:

External Criteria : this implies that we evaluate the results of astdring
algorithm based on a pre-specified structure, widgcimposed on a data set
and reflects our intuition about the clusteringustore of the dataset. It is

applicable when external information like classelalare available.

Internal Criteria : we may evaluate results of a clustering algorithrterms

of quantities that involve the vectors of the datakiemselves. An internal
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criteria is an independently meaningful measurehef cluster/validity, that

can be computed given nothing but the data andltistering.

= Relative Criteria: the basic idea is the evaluation of a clustestngcture by
comparing it to other clustering schemes, resulinghe same algorithm but

with different parameter values.

Both internal and external criteria are based atissical methods and they
have high computation demand. The external valisiethods evaluate the clustering
based on some user specific intuition. The intecnigdria are based on some metrics
which are based on data set and the clusteringre&ch&€he main disadvantage of
these two methods is its computational compleXite basis of the relative criteria is
the comparison of the different clustering sche@®ae or more clustering algorithms
are executed multiple times with different inputgraeters on same data set. The aim
of the relative criteria is to choose the best teliisg schema from the different
results. The basis of the comparison is the valididex. Several validity indices have

been developed and introduced.

2.2. Monte Carlo use in cluster validity

When Hypothesis Testing is done in Cluster Valmati the null
HypothesigH, consists in testing whether the data of X posaesmdom structure or
not. Thus, the null hypothesis should be a statéeraEnandomness concerning the

structure of X.

Hy: Data X possess a random structure

H,:Data X does not possess a random structure

Also let Ep be the critical interval corresponding to significa levelp of a
test statistigjand O the set of all possible values th& may take under
hypothesidi,.

The power function of the test is defined als
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W(6) =P(q € D,|6 € 6)

For a specifi®d € 0, W(0) is known as the test power under the alternative
In words is the probability that lies in the critical region when the value of the
parameter vector 8. This is the probability of making the correct g&mn when
H, is rejected. The power function can be used forcinparison of two different
statistical tests. The test whose power under lieenative hypotheses is greater is
always preferred.

There are two types of errors associated withteésstal test.

= Type | Error: Suppose thdi, is true. Ifg, € Bp, H, will be rejected even if
it is true. The probability of such errorgs The probability of accepting,
when it is true id — p.

= Type Il Error : Suppose thaH, is false. Ifq, € D,, H, will be accepted even
if it is false. The probability of such error 1s— W(6) and it depends on the

specific value o#f.

The goal of using Monte Carlo techniques is the matation of the probability
density function. First a large amount of datasetsgenerated by a normal
distribution. For each one of the synthetic datasatledX;, the value of the defined
index denoted ag; is computed. Then based on the respective valugsfor each of
the datasetX;, we create a scatter plot. This scatter plot isjgproximation of the
probability density function of the index.

We present here a Monte Carlo algoritfir]:

1. Fori=1tordo:

2. Generate randomly from a distribution a datawith N vectors (points) in
the area ok

3. Assign each vectoy;; of X; to the group that; € X belongs, according
to the partition P.

4. Run the same clustering algorithm used to prodyder eachX; and let

C; the resulting clustering structure.
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5. Computeq(C;) value of the defined indexfor P andc;.
6. End for
7. Create scatter plot of the r validity index values,

There are three different possible cases dependmgthe critical interval,
corresponding to significant level The probability density function of a statistic
indexq, underH, has a single maximum and tBg region is either half line or a
union of two half lines. Assuming that the scagot has been generated using
values of the index calledq;, in order to accept or reject the null hypotheses

examine the following conditions:
= |f the shape is right tailed then Rejectédse Accept
= If the shape is left tailed then Rejecs élse Accept

= |f the shape is two tailed then Accep H

Figure 2.1 — Probability Density Functi{s]
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2.3 External Criteria

The clustering validation using external criteria based on the null
hypothesis, which represents a random structura datase{16]. It evaluates the
resulting clustering structure by comparing it toiadependent partition of the data
built according to the null hypothesis of the dataghis kind of test leads to high
computation costs. Generally the Monte Carlo temphes are suitable for the high
computation problem and generate the needed pidpalgnsity function.

Let us define a clustering structufeand a defined partitior?,, before we can
apply the cluster validation technique. We cons@elustering; that result from a
specific clustering algorithm, and compare it watindependently drawn partitiah
of X. Suppose that = {C,, ..., C,,,} and. The number of clustersdnand the partition
in P do not need to be the same.

Consider the following pair of vectdps,, x,,). Then we refer to it depending
whether or not this pair of vectors belongs togame cluster or partition.

Let us define the following notatida?2]:

« SS if both vectors belong to the same clustef iand to the same groupAn

» SD if both vectors belong to the same clusteCimand to different groups

inP.

« DS if both vectors belong to different clustersGnand to the same group
inP.

* DD if both vectors belong to different clustersdnand to different groups
inP.

Then let's define thata,b,c and d are the numbers ofS,SD,DS and DD
respectively, them + b + c +d = M which is the maximum number of all pairs in
the dataset. Using the above we can define thenfislg external indices to measure

the degree of similarity betweé&handP.
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2.3.1. Rand index

The rand index R measures how closely the clustexated by the clustering
algorithm match the ground truth. It produces messwvith values in the interval
[0,1] with 1 meaning a perfect match between ttsilteof clustering algorithm and

the real clustering pattef7]. It is defined a$12]:

R_a+d
M

where(a + d) is the sum 08S pairs of vector plus thBD pairs. The values of this
index lie between 0 and 1, and values close talitates high agreement between
andP.

However there are some known problems with RanéXrglich as the fact
that the expected value of the Rand Index of twwloan partitions does not take a
constant value (say zero) or that the Rand indexaaghes its upper limit of unity as
the number of clusters increases. In order to @veecthese limitation@djusted
Rand Index has been creat¢i3].

In fact Adjusted Rand index became one of the nsosicessful cluster
validation indices and it is recommended as thesxndf choice for measuring
agreement between two partitions in clustering y@imslwith different numbers of

clusters. Adjusted Rand Index can be computed as:

(Da+d) —[(@a+b)(a+c)+(c+d)(b+d)]

ARI = >
3 —[a+b)a+c)+ (c+d)(b+d)]

2.3.2.Jaccard coefficient

The Jaccard Coefficient measures the proportigraoé that are in the same
cluster and in the same partition from those thatdther in the same cluster or in the
same partition. In other words, it is the ratidled number of positive matches to the
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total number of characters minus the number of inegyanatches. It is defined as
follows [12]:

_ a
]_a+b+c
wherea + b+ ¢ = SS+ SD + DS. As in the Rand Index, the values of this

coefficient lie between 0 and 1, and values closk indicate high agreement between
C andP.

2.3.3. Fowlkes and Mallow’s index

The Fowlkes-Mallows Index is the geometrical meabhwo probabilities: the
probability that two random objects are in the satoster given they are in the same
group, and the probability that two random objectsin the same group given they in

the same clustdfi9]. The FM index is defined as below:

, a a
FM = = [— ——
/\/mlmz a+b a+c

As in the Rand Index and Jaccard Coefficient, \&@lklese to 1 indicate high

agreement betweanhandP.

2.3.4. Hubert’s I' Statistic

The Hubert'sI" Statistic measures the correlation between theiceat X
andY , of dimensiorV x N, drawn independently of each other, wh¥(¢ j) equals
to 1 if the pair of vectorgx;, x;) belong to the same clusterdnand O otherwise, and
Y (i,j) equals to 1 if the pair of vectgx;, x;) belongs to the same groupknand 0O

otherwise. The statistic is defined as follgwk




High values of this index indicate a strong siniijabetweenX andY .

It might be more useful to have values of -1 tafge and therefordormalized I"
statistic is used7]:

[(1/M) BN SN (X)) — ) (YL ) — y)]

Ox 0y

=

where X(i,j) andY (i, j)are the(i,j) elements of the matricé§ Y respectively that
we have to compare. Algq.,u,,0,,0, are the respective means and variances bf

matrices. The last index takes values betweendIlan

2.3.5 Example of External Criteria

In order to show how these indices are calculagedd make an example. The general

form of the example we will show is a contingenallé:

Class\Cluster v; v, .. wv¢ | Sums
Uy Niyp M2 - Nqc ny.

2524 Ng1 Mgy . Npc | Mg

Sums n, n, .. N n.

Table 2.1 —Contingency Table

wheren;; the number of objects that are in both clusieaind classu;, .

Table 2.2 is a contingency table in the same famable 2.120]:

Class\Cluster vy v, wv3 | Sums
Uy 1 1 0 |2
VU, 1 2 1 |4
U3 0O 0 4 (4
Sums 2 3 5 |10
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Table 2.2 — Contingency Table

According to table we have:

a=7
b=6
c=7
d =725

Therefore we have:

» Rand Index = 0.711

» Adjusted Rand Index = 0.313
= Jaccard = 0.35

= Fowlkes and Mallows = 0.519
= Hubert=0.313

2.4 Internal Criteria

Contrary to external criteria, internal validati@based on the information
intrinsic to the data alone. We may evaluate tlselte of a clustering algorithm using
information that involves the vectors of the dataghemselves. Internal criteria can
roughly be subdivided into two groups: the one Hestesses the fit between the data
and the expected structure and others that focubestability of the solutiof21].

In the following section, we present an overviewndérnal validity indexes:

2.4.1 Davies-Bouldin Algorithm

Let s; be measure of dispersion of clustér and d(Cl-,Cj) =d;; the
dissimilarity between two clusters. A similaritydex R;; betweenC; and(; satisfy

the following([3]:
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u Ri]'ZO

= |f S = 0 ande =0 thenRi]' =0
= |f Sj > Sk anddi]' = dik thean’j > Rik

= |f Sj = Sk anddij < dik thean-j > Rik

These conditions state thAt; is nonnegative and symmetric. A choice for a that

satisfies these conditions[&:
_ S + Sj

Then the Davies-Bouldin index is defined as:

WhereRl’ = maszlmmjil-Ri]- ,(i=1,...,m

The dissimilarity between clustefs andC;, in al-dimensional space is defined as:

l
dy = ||x: - x| = Z|’7ik — Xjk ’
k=1

And the dispersion of a clustér; is defined as:

The DB,, is the average similarity between each cluster iadnost similar one.
Small values of DB correspond to clusters thatcarapact, and whose centers are far
away from each other. Consequently, the numberusiters that minimizes DB is

taken as the optimal number of clusters.

-27-



2.4.2 Dunn Index

The Dunn index is defined §22]:

| . d(¢ G)
D,, = min § min -
i=1,.m{j=i+1,.m krnlax dlam(Ck)
=1,.,m

where the dissimilarity function between two clustg andc; is:

d(C;, C;) = LJnin d(x,y)

and the diameter of a cluster C is defined as :

diam(C) = megéd(x, y)
xy

If X contains compact and well-separated clustetsrDIndex will be large and

diameter of the cluster is expected to be small.

2.4.3 Silhouette Index

The silhouette index is useful when it is seekiompact and clearly separated
clusters. In order to construct silhouettes we neegartition obtained by the
application of some clustering algorithms, andphaximity matrix containing all the
proximities between objects.

For a given cluster, this method assigns to eadecblof the cluster a
guantitative measure, known as the silhouette wi@®l. The silhouette width
indicates the membership of objecin the cluster it has been assigned. Leiny
object in the data set, and denotelhyhe cluster to which obje¢thas been assigned.
Let a(i) the average dissimilarity betweérand all the other objects in clusigr
Consider any clustef, different to clustet;, and computé (i) = mind(i, C) , k =

1,2,...,c; k # j. Then the silhouette width is:
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_ b® —al)
"~ max{a(i),b(i)}

s(i)

A neighbor of object is the clustelC, for which the minimum is obtained,
that is,d (i, C) = b(i). ClusterC, represents the second best choice for object

From the definition we can see thdt < s(i) < 1. A value ofs(i) close to 1
is obtained when the within dissimilarig(i) is much smaller than the smallest
between dissimilarity (i). Therefore we can say that objécs well clustered. On the
other hand, ik(i) take values close to —1 implies tlgt) is much larger thai(i). In
this case we can say that objebias been misclassified, so objeatay be
reassigned. l&(i) andb(i) have similar values thes(i) is about zero. In this
situation object lies equally far away from both clust&randCx.

Having computed the silhouette width for eacheobjwe can construct a
graphical display[24]. The silhouette shows which objects lie well withheir
cluster, and which one are merely somewhere indetvelusters. A wide silhouette
indicates larges(i) values, and hence a pronounced cluster. The sitteplot
displays a measure of how close each point in doster is to points in the
neighboring clusters. This measure ranges fromindicating points that are very
distant from neighboring clusters, through 0, iatileg points that are not distinctly in
one cluster or another, to -1, indicating points thre probably assigned to the wrong

cluster. Below there is an example of silhouettektwplot (Figure 2.2)25]:
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Figure 2.2 — Silhouette Width Plot

From the silhouette plot, we observe that mostigamthe third cluster have a
large silhouette value, greater than 0.6, indigpatihat the cluster is somewhat
separated from neighboring clusters. However, ifs¢ ¢luster contains many points
with low silhouette values, and the second contaifesv points with negative values,

indicating that those two clusters are not wellesafed.

2.4.4 In Group Proportion Index (IGP)

The In-Group Proportion is the proportion of obsgions in a cluster whose
nearest neighbors are in the same cluster. IGRiegpthe idea of prediction accuracy
and quantifies the degree to which points closeaith other are predicted to belong

to the same cluster. It is computed268]:

n(i:i € Cyand i* € Cy,)
n(Cy)
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wherei* = argmin d(i, x) in whichd is a distance function. IGP scores take values

between 0 and 1 with larger scores indicating tebetedictive ability.

2.4.5 Comparison of Internal Indices

After mentioning the most important of the internatlices for clustering
validation, it is necessary to identify which osemore accurate and at the same time
make a general comparison.

The results from several experimeny] have shown that the Silhouette
index produces more accurate results than the B&oeldin index. However, the
time complexity of the Silhouette index computatisnmuch greater than the time
complexity of the Davies-Bouldin index computatidius the Davies-Bouldin index
has a great advantage over the Silhouette indgardang the overall performance.

At the same time another experimg@8] shows that best results were
obtained using the Silhouette Width followed by Bwenn-index and Davies-Bouldin
index. Given the noisy nature of biological datahust measures like the Silhouette
Width are preferable to noise-sensitive measures the Dunn index, which is
instable against outliers due to the consideradioanly two distances. The Davies-
Bouldin index requires the computation of the austentre, which cannot be
achieved by average determination when dealing tiitlary data. An inappropriate
choice of method for cluster center determinatiaghinhave been one of the reasons
for the insufficient clustering results obtainedthis distance measure.

If it is not so clear which index is the appropeiathen combination of these
methods may be successfully used for the assessaientuster validity [29].
Normalization and weighed voting techniques arggpsed to improve the prediction
of the number of clusters based on multiple indidé&smalization allows smoothing
the effect of the highest values on the calculatidnthe average index values.
Moreover, it effectively highlights the differencestween the average index values
from different clustering configurations.

Finally, Kapp and Tibshirani if30] propose that of the cluster quality
measures considered, the IGP was the best at tyiragpthow likely a point was to be

assigned to a different cluster.
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2.5 Relative Criteria Measures

The relative criteria does not involve statistitast as in the two criteria

discussed above. In this case the main idea ikdose, from a set of clustering, the

best one according to a pre-specified criteriont BRebe the set of parameter

associated with a specific algorithm. For examgtene algorithm has the number of

clusternc as a parameter. The problem can be stated as: d\rtian clustering

obtained by a specific clustering algorithm, foffefient values of the parameter,

choose the one that best fits the dat&.s€bnsider the following cas¢3):

A does not contain the number of clustersas a parameter.

The choice of the appropriate parameter valueshigrtype of algorithm is
based on the assumption thakipossesses a clustering structure, then a large
range of values of the parameters in A can caucé a structure. Then, run
the algorithm for a wide range of values far, and choose the largest range
for whichnc remains constant. The appropriate valuentois the values that

correspond to the middle to the range.

A contains the number of clustens, as a parameter.

First select a suitable indgx Run the clustering algorithm for all values on
nc betweemcmax andncmin, chosen a priori. For each valuenaf run the
algorithm n times, using different set of values tlee parameters in A. Plot
the best values of g, obtained for eachversusic. The values off in where

a maximum and a minimum are obtained indicate gastering.
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Chapter 3

3.1 Introductory Topics of Biology

3.1.1 Genes

A gene is a unit of heredity in a living organishving things depend on
genes, as they specify all proteins and functidRBIA chains. Genes hold the
information to build and maintain an organism'sice&nd pass genetic traits to
offspring. All organisms have many genes correspantb many different biological
traits, some of which are immediately visible, sasheye color or number of limbs,
and some of which are not, such as blood type @eased risk for specific diseases,
or the thousands of basic biochemical processestmaprise life. The vast majority
of living organisms encode their genes in longrstsaof DNA.

A modern working definition of a gene is ‘locatable region of genomic
sequence, corresponding to a unit of inheritandeickvis associated with regulatory
regions, transcribed regions, and or other funcéibeequence regions Colloquial
usage of the termgene(e.g. "good genes"”, "hair color gene") may acyuadfer to an
allele: ageneis the basic instruction, a sequence of nucladsa@®NA or, in the case
of certain viruses RNA), while aallele is one variant of that gene. Thus, when the
mainstream press refers to "having" a "gene" fapacific trait, this is generally
inaccurate. In most cases, all people would hagere for the trait in question, but
certain people will have a specific allele of tgahe, which results in the trait variant.
In the simplest case, the phenotypic variation olesk may be caused by a single

letter of the genetic code - a single nucleotidgmorphism[31].

3.1.2 Gene Expression

Geneexpression is the process by which information frargene is used in
the synthesis of a functional gene product. Thesdyzts are often proteins, but in
non-protein coding genes such as rRNA genes or tRjgAes, the product is a
functional RNA. The process of gene expression seduby all known life -
eukaryotes (including multicellular organisms), kaoyotes (bacteria and archaea)

and viruses - to generate the macromolecular maghior life [31]. Scientists study
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the type and the quantity of mMRNAs which are praduby one cell in order to learn
which gene are expressed, fact that gives infoonain how a gene is responding to
its needs. Gene expression is a very complex amctlystcontrolled process that
allows to a cell to respond dynamically to its eamimental needs. This mechanism
performs as a switch on/off in order to control gthgenes will be expressed in the
cell and whether the level of expression of cerig@émes needs to be increased or

decreased.
3.1.3 Analysis of Gene Expression

In genetics, gene expression is the most fundahdetel at which the
genotype gives rise to the phenotype. The genetle stored in DNA is "interpreted"
by gene expression, and the properties of the sgjae give rise to the organism's
phenotype. Until 1990, scientists could only stadfew genes each time. However,
nowadays, the use of genetic mechanics made hegs st the fields of genetic
science. The new tool developed the last yearalisdccmicroarray chip (Figure 3.1)
and is known as DNA chip and promises to trandfier 4cience of understanding

genes in a new level with the expression of thodsari genes fast and accurately.

Figure 3.1 — Microarray Chip
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3.1.4 Microarrays - How do chips work

The principal behind the analysis of gene expressdased on comparison
of samples, for instance tissues — old and new gnas well as for the study of the
development of healthy and unhealthy tissues opleirand more complex organisms.

Figure 3.2 presents the creation of a microarray.ch

Cancer Cells Nornmal Cells

RMA Isolation

Reverse
Transcriptase
Labeling
- -»
[_cona [__cOnA

"Red Flourescent” Probos “Grean Fluorescoent™ Probes

Combine Targets

Hybridize to
Microarray

Figure 3.2 — Creation of Microarray Chip

When a gene is expressed in a cell, it generatassanger RNA (mMRNA).
Over expressed genes generate more mRNA than arge¥ssed genes. This can be
detected on the microarray. The first step in gigimmicroarray is to collect healthy
and cancerous tissue samples from the patient. Ways doctors can look at what
genes are turned on and off in the healthy cellspared to the cancerous cells. Once
the tissues samples are obtained, the messenger (RRAA) is isolated from the

samples. The mRNA is color-coded with fluorescagistand used to make a DNA
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copy (the mRNA from the healthy cells is dyed grebe mRNA from the abnormal
cells is dyed red.)

The DNA copy that is made, called complementary DRNA), is then
applied to the microarray. The cDNA binds to commpatary base pairs in each of
the spots on the array, a process known as hyhtidiz Based on how the DNA
binds together, each spot will appear red, greegelbow (a combination of red and

green) when scanned with a laser.

A red spot indicates that that gene was strongbyessed in cancer cells.

= A green spot indicates that that gene was stramgsessed in cancer cells.

= |f a spot turns yellow, it means that that gene waither strongly expressed

nor strongly repressed in cancer cells.

= A black spot indicates that none of the patienD&é& has bonded to the DNA

in the gene located in that spot. This indicates tihe gene is inactive.
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3.2 Characteristics of Microarray Data

Studies that are usually done in genetics datamisearray experiments so
that parallel comparison between the expressioelhViors of the genes can be
made. A gene expression data set from a microaxpgriment can be represented by
a real valued expression matrix where the rows fitrenexpression patterns of genes,
the columns represent the expression profiles ofipgss, and each cell is the
measured expression level of gehdan samplej[32]. Table 3.1 shows a gene

expression matrix.

sample s;
Wil Wia . Wim
- : :
gene g : W1 Waa rERr Woim
W3 W3o AL Wim
| ] L ]
n L |
n L |
Wh1 Wha LR Whm
S
Table 4.1

In general, microarray data have the following elotaristicd33]:

= Dimensionality: the number of rows (genes) of the matrix can a@ont

thousands genes, while the dimension of the colu{sasples), is so much
smaller. The cost for a microarray chip limits thenber of experiments in a

chip.

= Noise in a cDNA microarray experiment, the measurengarte expression
level depends on the RNA extraction from a biolaggample, the preparation
of fluorescently labeled complementary DNA (cDNA) the corresponding

spot on the chip, and the image processing proeedaorread out the
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hybridization intensity. Each of these steps camoduce a considerable

amount of noise into the final microarray data matr

Redundancy The biological process under scrutiny in a micray study is
assumably a complicated process, which involves@ded gene reactions in
different pathways. While some genes can even\m@ved in more than one
pathway, some others, however, might not be relevanthe biological
process. These genes usually show little variatawer the different
experiments under study. Genes that show littleatian over the different
experiments are called constitutive with respecttite biological process
studied. Constitutive genes often contribute targd proportion of the whole
population of the genes included in a microarraggt

Some problems of data preprocessing have becomeséives an interesting research

topic. Therefore, some actions must be taken béf@ranalysis of such data.

Microarray data usually contaimissing values The inability of clustering
algorithms to face such situation necessitateshe replacement of such
values. Most of the times the replacement is doitle &vor with the average
of the values. However, such methods can concladdifterent clustering

results.

Most of the times it is necessary to normalize ditanicroarray data, many
noise sources cause systematic sources of biasetepAofnormalization
may help to compute and remove the biases to ¢diredata.

After the normalization it is usual to pass theuesl of genes into a non linear
transformation. This method fits in data with ratmf gene expression due to
the fact that such ratios are not symmetrical.
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3.3 Multivariate techniques in genetics.

The clustering techniques have been proven to b&ulus understand gene
functions, cells’ functions and subcategories disceCo expressed genes can be
classified with other cell functions. At the sanmad genes with similar form at the
same cluster is possible to be combined with sati¢unctions.

One of the characteristics of gene expression dathat it makes sense to
cluster both genes and the samples. From one gathes can be clustered in groups
based on patterns that they form. On the other ,haamhples can be divided in
homogeneous groups each one of them will correspm@adparticular phenotype, for
example a type of cancer.

Clustering techniques can be grouped in 3 formassclcomparison, class
discovery and class prediction. In class comparis@ observe differences in a
constant number of groups and we examine the ghaesause the discrimination. In
class discovery we observe groups and patternsnasy

Finally, in class prediction, we predict the phepet using the information

from gene expression.

3.4 Experimental Results

One of the most important roles of the researcbaoicer is the development
of an accurate classification of cancer cells aacer tissues. In microarray studies,
cluster analysis helps to identify gene groups al as sample groups. However,
what is also important is to define if those clustare accurate and reproducible as
well as biologically significant.

In the following analysis we have used three chisgealgorithms, AGNES,
DIANA and PAM that were described in the previolmuter. At the same time the
algorithms were ran using possible combinationsweenh metric and linkage

methods. The combinations are presented in theeTididle 3.2.
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Linkage

Metric Method Notation
Average IndexNamell
Single IndexName12
Euclidean  Complete  IndexNamel3
Ward IndexNamel4

Weighted IndexNamel5
Average IndexName21

Single IndexName22
Manhattan Complete  IndexName23
Ward IndexName24

Weighted IndexName25

Table 3.2 — Combinations of Methods used
Divisive and Partitional Algorithms were run usibgth metric, the Euclidean

and Manhattan Distance. The validation indices wsea:

=  Davies-Bouldin Index
=  Sijlhouette Index

=  Dunn Index

3.4.1. Data

The data used in this analysis are DNA microarratacn primary breast
tumors of 78 young patienf85]. We applied supervised classification to idensfy
gene expression signature strongly predictive sli@t interval to distant metastases.
At the same time, we checked if those clusters anpg were reproducible, with the
methods described above.

We selected 78 primary breast cancers: 34 fromeipstiwho developed
distant metastases within 5 years and 44 from qatho continued to be disease —
free after a period of at least 5 years. All pasenere under 55 years of age at the
time of diagnosis.

From each patient, 5 total RNA was isolated from snap — frozen tumor
material and used to derive complementary RNA (cRN¥reference cRNA pool
was made by pooling equal amounts of cRNA from exdihe sporadic carcinomas.

Two hybridizations were carried out of each tumsing a fluorescent dye reversal
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technique on microarrays containing 24,481 humanegesynthesized by inkjet
technology[34].

The criteria for the sporadic patients were primamasive breast carcinoma
less than 5cm (T1 or T2), no auxiliary metastaags, of diagnosis less than 55 years,
calendar year of diagnosis 1983 — 1996, no previnakgnancies; all patients were
treated by modified radical mastectomy or breasseoving treatment, including
axillary lymph node dissection followed by radiatlyey. Five patients of the
metastases group received adjuvant systemic thexapsisting of chemotherapy or
hormonal therapy; all other patients did not reeedditional treatment. All patients
were followed at least annually for a period ofledst 5 years. The criteria for
hereditary patients were: carriers of a germlingation in BRCA1 or BRCA2, and
primary invasive breast carcinoma; no other sedactriterion was applied. This
study was approved by the Medical Ethical Committéehe Netherlands Cancer
Institute[35].

To gain insight into the genes of the dominant egpion signatures, we
associated them with hystopathological data; ogstraeceptor (ER) & expression.
We then selected only the genes that their difisan ER receptor was statistically
significant.

In order to make all the calculations we used &pges for cluster analysis as
well as packages for cluster validations freproject [36]. The packages that were
used for the analysis were the following: Clust@ialid, ClusterSim, ClusterCons.
Also, Bioconductor software for R was used whicbvtes tools for the analysis and
comprehension of genomic data. Missing values wepdaced by the mean of the

variable.
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3.4.2 Clustering Algorithms Results

An unsupervised, hierarchical clustering algoritaltowed us to cluster the
tumors on the basis of their similarities measureer these significant genes.

In Diagram 3.1 we can see a dendrogram producedhby clustering
technique. The length and the subdivision of trenbines display the relatedness of
the breast tumor (right) and the expression ofyirees (top).

We can clearly observe two distinct groups of tusnitrat are the dominant
feature in this two dimensional display, suggestirgg the tumors can be divided into
two types on the basis of this set. Notably in upeer group the patients were from
group that developed distant metastasis within &syevhile the lower group shows
the patients that were healthy until this timeta &nalysis.

In general we can see two clusters in genesstiat the distinguish between
genes with ERP receptor and genes without. Sampitethe other hand, might also
show three clusters but this might be due to toetfat there are some outliers as we
can see, for example sample 54. Thus, using unagpdrclustering we can already,
to some extent, distinguish between good prograsgispoor prognosis tumors.

Now that we have seen a first clustering of theas as well as the genes,
we can identify if this clustering is reproduciliea different sample. In Diagram 3.2
we selected only the patients that showed metastasiin 5 years while in Diagram
3.3 we only selected patients that did not show ametastasis until that time.
Unfortunately the statistically significant genesreronly so few and the results were

not accurate.
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At a second step we ran some possible clusteriggritims to check if we
have different results. Below, we present somehaofsé¢ and discuss about their
results.

The Diagram 3.4 shows the hierarchical clusteringseld on Agnes
Algorithm, manhattan distance and average methodWe can clearly observe that
there are two groups in samples as we noticed dedad a possible third group

appears. However, still we can see that samplenb&s a different behaviour from
the rest.
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Diagram 3.4 — Dendrogram for AGNES algorithm
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If instead of manhattan distance we use euclidé&m the results change only

slightly.
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Diagram 3.5 — Dendrogram for AGNES algorithm

The results change when we use the DIANA algorithihich creates more clearly
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three clusters instead of two. Diagrams 3.6 andsBdiv the clustering dDIANA
algorithm using euclidean and manhattan distance gpectively
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3.4.3. Internal Criteria Results

As we have already showed a visible pattern inda& it is necessary to
understand if this pattern is reproducible in otfheiasets and which of the algorithms
show more accurate results.

The Davies — Bouldin Index measures how compactvagil— separated the
clusters are. To obtain clusters with these charitics the dispersion measure for
each cluster needs to be as small as possibleg wigldissimilarity measure between
clusters needs to be large. According to this, EaBouldin index would have small
values if the clusters are compact and well sepdrah several occasions zero values
are obtained. This happens when the clusteringritigo assign one object to each
cluster, except in one. That is if the data sestimg of n objects will be divided in
three clusters, then two of them will contain oolye observation, and one cluster
with n-2 observations. Then this zero values areguing to be considerate as a
minimum value, because having one object by clusteot a good clustering result.

Table 4.3 shows the DB index obtained from the dataThe minimum value
among all the combinations using AGNES is obtainisthg Euclidean distance
combined with Single method (BB for ¢ = 2 clusters. Using DIANA the minimum
occurs using Euclidean again for ¢ = 4. Lastly &M the minimum occurs using
Euclidean for ¢ = 2 clusters. Therefore we conclddat Davies Bouldin index
indicates that the best results occur when we haweclusters, as we already saw in

the diagrams before.
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Index c=2 c=3 c=4

AGMES -
DB11 0,8721 0,7208 0,65944
DBiz 0,732 0,6318 0,6128
DBz 0,8721 0,7208 1,1271 ™ Euclidean
DBi1a 0,8721 1,7602 1,8963
DBis 0,5732 0,7208 1,2228 o
DBz21 0,8721 0,7208 0,6944
DBzz 0,5732 0,6318 0.7
DB23 0,8721 1,4626 1,1928 = Manhattan
DBza 0,8721 2,0253 2,1106
DBzs 0,732 0,7208 1,5319 i

DIAMNA
Eucl. 0,8721 0,7208 0,6944
Manh. 0,8721 0,7208 1,5759

FAM

Eucl. 0,9706 1,611 1,8245
Manh. 0,9706 1,8479 1,9112

Table 3.3 — Values of DB index for combinationslgforithms and methods

Opposite to Davies- Bouldin index, the Dunn Indesuld have large values
of the clusters are compact and well-separated.

Dunn Index is presented in Table 3.4. The resudte lare not so similar. The
maximum value among all the combinations using AGNE obtained using
Euclidean distance combined with Average method (PBnd Complete method
(DB13) and Weighted method (OB for ¢ = 3 clusters. The same results appear when
using Manhattan for c=3 clusters. Using DIANA theaximum occurs using
Euclidean or Manhattan again for ¢ = 3. Lastly F&M the maximum occurs using
Euclidean or Manhattan for ¢ = 2 clusters. Theefwe conclude that Dunn index

indicates mostly that the best results occur wherave three clusters.
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Index c=2 c=3 c=4
AGMNES
Da1 0,4495 05722 05722
Daz 0,5089 0,4299 0,3845
Daz 0,4495 05722 0,5250
Das 0,4495 0,3297 0,3297
Das 0,5089 05722 0,4145 L)
Dz1 0,4495 0,5722 0,5722
Dzz 0,5089 0,4299 0,3677
D23 0,4495 0,3452 04010
Dza 0,4495 0,3274 0,3274
Dazs 0,4495 05722 0,3620
DIAMNA
Eucl. 0,4495 05722 0,3830
Manh. 0,3803 0,5722  0,3803
PAM
Eucl. 0,4495 0,2996  0,2996
Manh. 0,4495 0,3339 0,3319

Table 3.4 — Values of Dunn Index for combinationd enethods

Finally, the best results for clustering occur wheshave maximum value of

Silhouette index (Table 3.5). The maximum valueAGNES occurs when we have

Euclidean

Manhattan

Euclidean or Manhattan distance with almost all hods for c

DIANA maximum value occurs again for ¢ = 2 clustasing both distances. Lastly
for PAM again ¢ = 2 clusters maximize the Silhoaettdex. It is clear that for

Silhouette index the most well separated resuéis@rtwo clusters.

In general the best results seem to occur whenawe two clusters as we also

observed from the diagrams.
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Index c=2 c=3 c=4

AGMNES
511 0,4862 0,4256  0,3879
512 0,3222 0,1962 0,1980
513 0,4862 0,4256 0,2351| = Euclidean
514 04862 0,1659 0,1466
515 03222  0,4256  0,2246||
521 04862 04256 0,3879
S22 0,3222 0,1962  0,1656
523 0,4862 00,1980 00,2165 = Manhattan
S24 0,4362 0,1465  0,1207
525 04862 04256 0,1739

DIAMNA
Eucl. 04862 04256 0,1826
Manh. 0,4362 0,4256 0,1768

PAM

Eucl. 0,4862  0,1658  0,1075
Manh. 04862 0,1502 0,1026

Table 3.5 — Values of Silhouette Index for comborag and methods

From the three measures that we used in this asatii#e best one appears to

be AGNES. For Silhouette Index and Dunn Index,veg the highest values, while

for Davies — Bouldin index it gives the smallesiues.
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Chapter 4

4. Conclusion

In this thesis the main objective was to comparaesof the validation indices
in order to detect the optimal number of classdata set can have.

The best results were obtained when using Comm@ete Ward Linkage
Methods. In general PAM clustering results were gad. On the other hand, when
using DIANA the results were similar to the onegsaniied with AGNES, and there
were no significant difference between using Ewdid or Manhattan Distance. In all
cases, AGNES seems to do a better clustering task.

In future studies we can include more validatiodices as well as external
validation metrics. This can be conducted with thelusion of data from other
sources so that we can validate our clusteringtsesuternally. Data sources such as
genomic data obtained in molecular biology labs #ardily information collected
from the siblings of the patients in this study ¢enused for the purpose of external

validation.
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