
  

 
 

ATHENS UNIVERSITY 
OF ECONOMICS AND BUSINESS 

DEPARTMENT OF STATISTICS 
 

POSTGRADUATE PROGRAM 
 
 

Stochastic Ananlysis in Hilbert Space and Application 
to Interest Rate Theory 

 
 
 
 

By 

Maria E. Giouvanelli 
 
 

A THESIS 

Submitted to the Department of Statistics 

of the Athens University of Economics and Business 

in partial fulfilment of the requirements for 

the degree of Master of Science in Statistics 

 
 

Athens, Greece 
January, 2013



  



  

 
 

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 
ΑΘΗΝΩΝ 

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ 
 
 
 

Στοχαστική Αναάλυση σε χώρους Hilbert και 
Εφαρμογές στη Θεωρία Επιτοκίων 

 
Μαρία Ε. Γιουβανέλλη 

 
 
 

ΔΙΑΤΡΙΒΗ 

Που υποβλήθηκε στο Τμήμα Στατιστικής 

του Οικονομικού Πανεπιστημίου ΑΘηνών 

ως μέρος των απαιτήσεων για την απόκτηση  

Μεταπτυχιακού Διπλώματος Ειδίκευσης στη Στατιστική  

 
 
 

Αθήνα 
Ιανουάριος, 2013



  



  

DEDICATION 

 
This thesis is dedicated to my family… 

 

 

 

 



  



  

ACKNOWLEDGEMENTS 

 

 

 

I am very grateful my supervisor Professor Athanasios Yannacopoulos, whose 

experience and knowledge led me to the completion of my thesis. 

 

 

Ι 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΙΙ 



  

VITA 

 

 

I started my studies in 2007 at the University of Athens, Department of 

Mathematics. I completed it in 2011 and I started my postgraduate studies at 

Athens University Economics and Business in Statistical Division. These 

studies are completed with the preparation of my diploma thesis with 

supervisor Professor Athanasios Yannakopoulos 

 

 

III 



  

 

IV 



  

ABSTRACT 

 

 

Maria Giouvanelli 

 

Stochastic Analysis in Hilbert Space and Applications in Rate’s 

Theory  
    January,2013 

 

 

 

This thesis is in bond market modeling using the theory of infinite dimensional 

stochastic analysis. We start with a presentation of fundamental concepts such 

as the theory of canonical measures, the Wiener process in ,  and infinite 

dimensional Hilbert space and continue with the construction of the Itô 

integral, the stochastic convolution and their applications in the theory of 

infinite dimensional S.D.E. Finally, we present applications of this theory in 

bond market modelling through the framework of the Heath Jarrow Morton 

model. 

 

 

 

 

 

  

 

 

 

V 



  VI 



  

ΠΕΡΙΛΗΨΗ 

 

Μαρία Γιουβανέλλη 

 

Στοχαστική Ανάλυση σε Χώρους Hilbert και Εφαρμογές στη Θεωρία 

Επιτοκίων 

Ιανουάριος, 2013 

 

Στην εργασία αυτή θέλουμε να παρουσιάσουμε την βασική εξίσωση στη 

θεωρία των επιτοκίων γνωστή ως Heath Jarrow Morton και ορμόμενοι αυτής 

ξεκινάμε μία μελέτη της στοχαστικής ανάλυσης σε χώρους Hilbert. Αρχικά 

παρουσιάζουμε τα κανονικά μέτρα, την θεωρία τελεστών και την θεωρία της 

διαδικασίας Wiener, τόσο στο χώρο ,  όσο και σε απειροδιάστατους 

χώρους Hilbert. Ακόμα, παρουσιάζουμε το στοχαστικό ολοκλήρωμα Itô και 

την έννοια της στοχαστικής συνέλιξης, μαζί με την μορφή της και τις 

ιδιότητες της. Ολοκληρώνοντας αυτήν την εργασία εισάγουμε την έννοια των 

επιτοκίων και παρουσιάζουμε μοντέλα επιτοκίων τα οποία βασίζονται στην 

θεωρία των στοχαστικών διαφορικών εξισώσεων σε απειροδιάστατους χώρους 

Hilbert. 
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Chapter 1

Introduction

The aim of this thesis is an introduction to stochastic analysis in infinite di-
mensional Hilbert spaces, and the theory of stochastic differential equations
in this setting. As an application we discuss the use of these mathematical
techniques to bond market modelling, in mathematical finance. We start
with a presentation of fundamental concepts such as the theory of some ba-
sic concepts of Hilbert space properties,the Riesz representation theorem,the
theory of nuclear, trace class, Hilbert Schmidt and shift operators. Also we
present the Bochner integral and theory about Sazonov’s topology, martin-
gales and Schwarz space.
At the first chapter we present theory of Gaussian measures, their properties
and the covariance operator of Gaussian measures in Hilbert space.
The next chapter is about the Wiener process in R, Rn and infinite dimen-
sional Hilbert space, we present the properties of Wiener process like Markov
property, strong Markov property and martingale property. Also, we study
the characterization of Brownian motion which is based on fundamental re-
sult of Levy, properties of Wiener trajectories and a Wiener process con-
struction using Haar functions.At next we will see the theory of Q−Wiener
and weak Wiener process.
In the following chapter we present theory of the construction of the Ito in-
tegral,the lemma Ito and and its properties in R and Rn with examples and
theorems.Also, we present the ito integral in Hilbert space, where we have
the stochastic integral for Q-Wiener process.
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In the next chapter we will see the theory for well posed of the equation:

WA(t) :=

∫ t

0

S(t− s)BdW (s), t ǫ [0, T )

which called stochastic convolution and the theory of semigroups, its prop-
erties and their applications in the theory of infinite dimensional S.D.E.
In the end, we present applications of the theory that we present to you
before in bond market modelling through the HJM equation:

dft(x) =

(
∂

∂x
ft(x) + at(x)

)

dt+
∞∑

i=1

σi
t(x)ds

i
t

of the Heath Jarrow Morton models, which are based on theory of infinite
dimensional Hilbert space.
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Chapter 2

Basic concepts

2.1 Hilbert spaces

A Euclidean space Rn is a vector space endowed with the inner product
< x, y >= xTy, norm ||x|| =

√
xTX =

√
< x, x > and associated metric

||x− y||, such that every Cauchy sequence obtains a limit in Rn. This makes
Rn a Hilbert space:

Definition 2.1. A Hilbert space H is a vector endowed with an inner product
and associated norm and metric, such that every Cauchy sequence in H has
a limit in H.

A Hilbert space is also a Banach space:

Definition 2.2. A Banach space B is a normed space with associated metric
d(x, y) = ||x− y|| such that every Cauchy sequence in B has a limit in B.

Definition 2.3. A norm on a vector space V is a mapping ||.|| : V → [0,∞)
such that for all x and y in V and all scalars c, the following:
(i) < x, y >=< y, x >
(ii)< cx, y >= c < x, y >
(iii)< x+ y, z >=< x, z > + < y, z >
(iv)< x, x >> 0 when x 6= 0
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hold. A vector space endowed with a norm is called a normed space.

The difference between a Banach space and a Hilbert space is the source of
the norm. In the Hilbert space case the norm is defined via the inner prod-
uct ||x|| = √

< x, x >, whereas in the Banach space case the norm is defined
directly, by Definition (2.3). Thus, a Hilbert space is Banach space, but the
other way around may not be true, because in some cases the norm cannot
be associated with an inner product.

Example of Hilbert space are Rn, Cn, L2, L2.

The space of random variables X which satisfies: {EP [|X|p]}1/p <∞ is vec-
tor space and symbolized as Lp.
Now, the space L2(Ω, F0, P ) or simply L2 is the space of square integrable
random variables.

Let now X and Y be Banach spaces. As usual, we denote by L(X, Y ) the
space of all bounded linear operators from X into Y endowed with the norm

||A|| := inf{C : ||Ax||Y ≤ C||x||X , x ǫ X}, A ǫ L(X, Y ).

So, the space LN(X, Y ) of all nuclear operators from X into Y endowed with
the norm

||A||N := inf{
∞∑

j=1

||yj||Y · ||φj||X∗ : Ax =

∞∑

j=1

yjφj(x)}

is a Banach space.

2.2 Riesz representation theorem

Let H 6= {0} Hilbert space. We will see that H∗ has a lot of functionals,
which representated with a specific way from the elements of H.
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Lemma 2.1. For all a ǫ H, the fa : H → R with fa(x) = 〈x, a〉 belongs to
H∗, and ||fa||H∗ = ||a||H.

Proof. We have

fa(λx+ µy) = 〈λx+ µy, a〉 = λ < x, a > +µ < y, a >=

λfa(x) + µfa(y),

and

|fa(x)| = | < x, a > | ≤ ||a|| ||x||.
So, fa ǫ H

∗ and ||fa|| ≤ ||a||. Finally, if a 6= 0,

||fa|| ≥
|fa(a)
||a|| =

| < a, a > |
||a|| = ||a||.

If a = 0, then ||fa|| = 0 (fa ≡ 0).
So, we finish our proof.

Representation theorem Riesz tell us that every f ǫ H∗ represented as f = fa
for any a ǫ H :

Theorem 2.1 (Representation Theorem Riesz). Let H be a Hilbert space,
and f ǫ H∗. There exists a unique a ǫ H such that f = fa.

Proof. We consider M = Kerf = {x ǫ H : f(x) = 0}. The M is a linear
subspace of H.
If M = H, then f ≡ 0 and f = fo.
If M 6= H, then there exists z 6= 0, z ǫ H which is vertical to M. Then, for
any y ǫ H we have

f(f(z)y − f(y)z) = f(z)f(y)− f(y)f(z) = 0.

So, f(z)y − f(y)z ǫ M, and because z ⊥M we obtain

〈f(z)y − f(y)z, z〉 = 0 ⇒ f(z) < y, z >= f(y) < z, z >
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⇒ f(y) =

〈

y,
f(z)z

||z||2
〉

= fa(y),

where a = f(z)z/||z||2. The uniqueness of a is simply. If f(y) =< y, a >=<
y, a′ > for all y ǫ H, then a− a′ ⊥ y, ∀ y ǫ H. So, a = a′.

2.3 Nuclear , Trace Class, Hilbert Schmidt

and Shift Operators

Consider two separable Hilbert spaces U and V and denote by L(U, V ) the
space of bounded linear operators A : U → V . The adjoint operator A∗ is
an element of L(U, V ) such that

(Ax, y) = (x,A∗y), ∀xǫU, yǫV

Two important classes of compact operators are given in the following.

Definition 2.4. An operator QǫL(U, V ) is called a nuclear operator if there
exists a sequence {vn}ǫV and a sequence {un}ǫU such that

Qx =

∞∑

n=1

vn(un.x)U ∀xǫU , and

∞∑

n=1

‖vn‖V ‖un‖U <∞.

Definition 2.5. Let U = V . A nuclear operator Q that is non-negative (i.e
(Lu, u) ≥ 0 for all uǫU) and symmetric (i.e. (Lu, v) = (u, Lv) for all u, vǫU)
is called a trace class operator.

The following is a very usefully property of nuclear operators.

Proposition 2.1. Let Q : U → U be a nuclear operator and let {en} be
an orthonormal basis of U. Define the trace of the operator Q as the infinite
series Tr(Q) :=

∑∞
n=1(Qen, en). Then Tr(Q) is a well-defined finite quantity

and independent of the choice of the orthonormal basis {en}.
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Trace class operators are interesting from the point of view of infinite-dimensional
stochastic analysis since they can be considered the generalisation of the co-
variance matrix in infinite dimensions. The solution of the eigenvalue prob-
lem for a trace class operators provides us with an orthonormal basis for the
Hilbert space U . An interesting subclass of nuclear operators consists of the
Hilbert-Schmidt operators.

Definition 2.6. A bounded linear operator Q : U → V is called a Hilbert-
Schmidt operator if

∑∞
n=1‖Qen‖2 < ∞, where {en} is an orthonormal basis

of U.We will denote the space of al Hilbert-Schmidt operators from U to V
by L2(U, V ).

The space of Hilbert Schmidt operators can be turned into a separable Hilbert
space by defining the inner product

(Q1, Q2)L2(U,V ) =

∞∑

n=1

(Q1en, Q2en).

The following proposition helps us to define the ”square root” of trace class
operator.

Proposition 2.2. If Q : U → U is a trace class operator, then there exists
a unique Hilbert-Schmidt operator R such that R ◦ R = Q. We will use the
notation R = q

1
2 . Furthermore, ‖Q‖2L2(U) = Tr(Q).

The operator Q
1
2 has the usefully property that L ◦ Q 1

2 ǫL2(U, V ) for any
L ǫL(U, V ).

Definition 2.7. The shift operator or translation operator is an operator
that takes a function f(·) to it translation f(·+ a).

Shift operators are examples of linear operators, important for their simplic-
ity and natural occurrence. The shift operator action on functions of a real
variable plays an important role in harmonic analysis.
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The shift operator acting on real or complex valued functions or sequences is
a linear operator which preserves most of the standard norms which appear
in functional analysis.

Example 2.1. Space ℓ2(Z) is the set of functions x : Z → C. which sat-
isfies

∑

n ǫ Z |x(n)|2 < ∞. It has orthonormal basis {en : n ǫ Z}, where
en(m) = δnm(m ǫ Z). Specially are important shift operators which defined
as:

Uen = en+1 right shift

U∗en = en+1 left shift.

Definition 2.8. If T, S ǫ Bh(H), we define T ≥ S if 〈Tx, x〉 ≥ 〈Sx, x〉 for
any x ǫ H, if i.e. T − S ǫ B+(H).

2.4 Bochner integral

Definition 2.9. A function f : A → E is µ-Bochner integrable if there ex-
ists a sequence of µ-simple funtions fn : A → E such that the following two
conditions are met:
(i) limn→∞ fn = f µ-almost everywhere
(ii) limn→∞

∫

A
||fn − f ||dµ = 0.

We obtain that every µ-simple function is µ-Bochner integrable. For f =
∑N

n=1 1An
xn we put

∫

A

fdµ :=
N∑

n=1

µ(An)xn.

This definition is independent of the representation of f . If f is µ-Bochner
integrable, the limit ∫

A

fdµ := lim
n→∞

∫

A

fndµ

8



exists in E and is called the Bochner integral, of f with respect to µ. It
is easy to check that this definition is independent of the approximating se-
quence (fn)

∞
n=1.

If f is µ-Bocner integrable and g is a µ-version of f, then g is µ-Bochner
integrable and the Bochner integrals of f anf g agree. In particular, in the
definition of the Bochner integral the function f need not be everywhere de-
fined: it suffices that f be µ-almost everywhere defined.

If f is µ-Bochner integrable, then for all x∗ ǫ E∗ we have the identity

〈∫

A

fdµ, x∗
〉

=

∫

A

〈f, x∗〉 dµ.

For µ-simple functions this is trivial, and the general case follows by approx-
imating f with µ simple functions.

Definition 2.10. A function f : A → E is strongly A -measurable if there
exists a sequence of A -simple functions fn : A→ E such that limn→∞ fn = f
pointwise on A.

Proposition 2.3. A strongly µ-measurable function f : A→ E is µ-Bochner
integrable if and only if

∫

A

||f ||dµ <∞,

and in this case we have

∣
∣
∣
∣

∣
∣
∣
∣

∫

A

fdµ

∣
∣
∣
∣

∣
∣
∣
∣
≤
∫

A

||f ||dµ.

Theorem 2.2 (Dominated Convergence Theorem). Let fn : A → E be a
sequence of functions, each of which is µ-Bochner intagrable. Assume that
there exists a function f : A→ E and a µ-Bochner function g : A→ K such
that:
(i) limn→∞ fn = f µ-almost everywhere
(ii) ||fn|| ≤ |g| µ-almost everywhere.

9



Then f is µ Bochner integrable and we have

lim
n→∞

∫

A

||fn − f ||dµ = 0.

In particular we have

lim
n→∞

∫

A

fndµ =

∫

A

fdµ.

It is immediate from the definition of the Bochner integral that if f : A→ E
is µ-Bochner integrable and T is a bounded linear operator from E into
another Banach space F, then Tf : A→ F is µ-Bochner integrable and

T

∫

A

fdµ =

∫

A

Tfdµ.

This identity has a useful extension to a suitable class of unbounded opera-
tors. A linear operator T , defined on a linear subspace D(T ) of E and taking
values in another Banach space F , is said to be closed if its graph

G(T ) := {(x, Tx) : x ǫ D(T )}

is a closed subspace of E × F. If T is closed, then D(T ) is a Banach space
with respect to the graph norm.

2.5 Sazonov’s topology

Definition 2.11. Let X locally convex random vector space and X’ is dual.
τS(X’,X) is called Sazanov’s topology of X’ and produced by the family semi-
norm {qR, R ǫ R} where qr(x

′) =
√
< Rx′, x′ >, x′ ǫ X ′. The random vector

space (X ′, τS(X
′, X)) is Hausdorff locally convex.

Theorem 2.3 (Sazonov). Let X hilbert space. A function X : H → C

is characterized function of a normal measure probability µ on (X,BX) if
and only if X is positive defined with X (0) = 1 and continuous for Sazonov
topology τS(X).
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2.6 Martingales

In this section we will see the martingale processes which is very important
for the stochastic analysis.

Definition 2.12. A filtration is a family of σ-algebras Ft such that

s ≤ t ⇒ Fs ⊂ Ft

The σ-algebra can be consider as an information which is known until the
time t.

Definition 2.13. A family of random variables Xt is called adapted to fil-
tration Ft, if Xt is Ft- measurable for any t.

I.e. all the information of the stochastic variable Xt until the time t contains
to σ-algebra Ft.

Definition 2.14. Let (Ω,F , P ) a probability space, Ft a filtration to F (Ft ⊂
F) and Xt a family of real, integrable (E[|Xt|] <∞) random variables which
is adapted to filtration Ft.
(i) The family Xt is martingale if

E[Xt|Fs] = Xs mboxa.s. s ≤ t.

(ii) The family Xt is supermartingale if

E[Xt|Fs] ≤ Xs mboxa.s. s ≤ t.

(iii)The family Xt is submartingale if

E[Xt|Fs] ≥ Xs a.s s ≤ t.

Martingales have also the following property:
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Theorem 2.4. If Xt is a martingale, then

(i)E[Xt] = E[X0]

(ii)E[Xt −X0] = 0

Now we discuss about optional stopping times. The optional stopping in-
forms us about what can be happen if we stop a martingale or a super(sub)martingale
to a stopping time T . It is a useful method for stochastic analysis.

Definition 2.15. If T is a stopping time, then we can define the stopping
process XT

t := Xt∧T .

Theorem 2.5. (i) If Xt is a martingale to filtration Ft and T is a stopping
time to the same filtration, then the stopping process XT

t = Xt∧T is also mar-
tingale to the same filtration.So, it holds that E[Xt∧T ] = E[X0].
(ii)If Xt is a super(sub)martingale, then the stopping process is also a su-
per(sub)martingale. It holds also E[Xt∧T ] ≤ (≥)E[X0].

2.7 Schwarz space

Consider the Euclidean space Rn, n ≥ 1 with x = (x1, ..., xn) ǫ R
n and with

|x| =
√

x21 + ... + x2n and scalar product (x, y) =
∑n

j=1 xjyj. The open ball
of radius δ > 0 centered at x ǫ Rn is denoted by

Uδ(x) := {y ǫ Rn : |x− y| < δ}.

Recall the Cauchy-Bunjakovsky inequality

|(x, y)| ≤ |x||y|.
Following L.Schwartz we call an n-tuple a = (a1, ..., an), aj ǫ N ∪ {0} ≡ N0

an n-dimensional multi-index. Denote

|a| = a1 + ...+ an, a! = a1! · · · an!

12



and xa = xa11 · · ·xann , 00 = 1, 0! = 1. Moreover, multi-indices a and β can
be ordered according to

a ≤ β

if and only if aj ≤ βj for all j = 1, 2, ..., n. Let us also introduce a shorthand
notation

∂a = ∂a11 · · ·∂ann , ∂j =
∂

∂xj
.

Definition 2.16. The Schwarz space S(Rn) of rapidly decaying functions is
defined as

S(Rn) = {f ǫ C∞(Rn) : |f |a,β := sup
x ǫ Rn

∣
∣xa∂βf(x)

∣
∣ <∞ for any a, β ǫ Nn

0 .}

The following propetries of S = S(Rn) are readily verified.

(i) S is a linear space.

(ii) ∂a : S → S for any a ≥ 0.

(iii) xβ : S → S for any β ≥ 0.

(iv) If f ǫ S(Rn) then |f(x)| ≤ cm(1 + |x|)−m for any m ǫ N. The con-
verse is not true.

(v) It follows that S(Rn) ⊂ Lp(R
n) for any 1 ≤ p ≤ ∞.

Example 2.2. 1) f(x) = e−a|x|2 ǫ S for any a > 0.

2) f(x) = e−a(1+|x|2)a ǫ S for any a > 0.

3) f(x) = e−|x| /∈ S.

13



4) C∞
0 (Rn) ⊂ S(Rn), where C∞

0 (Rn) = {f ǫ C∞(Rn) : suppf is compact in Rn}
and suppf = {x ǫ Rn : f(x) 6= 0}.

Definition 2.17. The space of Schwartz test function of rapid decrease con-
sists of those φ : Rn → C such that for every a, β ǫ Nn

0

sup
xǫRn

|xβDaφ(x)| <∞ (2.1)

it is the space S(Rn).

From (2.2) we construct norms on S(Rn) :

||φ||k = max
|a|+|β|≤k

sup
xǫRn

|xaDβφ(x)|. (2.2)

It is straightforward to check the conditions for a norm:
(i) ||φ||k ≥ 0, ||φ||k = 0 ⇔ φ ≡ 0
(ii) ||tφ||k = |t|||φ||k, t ǫ C
(iii) ||φ+ ψ||k ≤ ||φ||k + ||ψ||k ∀ φ, ψ ǫ S(Rn)

The space S(Rn) is not a normed space because |f |a,β is only a semigroup
for a ≥ 0 and β > 0 i.e. the condition

|f |a,β = 0 if and only if f = 0

fails to hold for e.g. constant function f . But the space (S, ρ) is a metric
space if the metric ρ is defined by

ρ(f, g) =
∑

a,β≥0

2−|a|−|β| · |f − g|a,β
1 + |f − g|a,β

Theorem 2.6 (Completeness). The space S(Rn) is a complete space i.e. ev-
ery Cauchy sequences converges.
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Proof. Let {fk}∞k=1, fk ǫ S, be a Cauchy sequence, that is, for any ε > 0
there exists n0(ε) ǫ N such that

ρ(fk, fm) < ε, k,m ≥ n0(ε).

It follows that
sup
xǫK

∣
∣∂β(fk − fm)

∣
∣ < ε

for any β ≥ 0 and for any compact set K in Rn. It means that {fk}∞k=1 is a
Cauchy sequence in the Banach space C |β|(K). Hence there exists a function
f ǫ C |β|(K) such that

lim
k→∞

fk = f.

That’s why we may conclude that our function f ǫ C∞(Rn). It only remains
to prove that f ǫ S. It is clear that

sup
xǫK

|xa∂βf | ≤ supxǫK|xa∂β(fk − f)|+ sup
xǫK

|xa∂βfk|

≤ Ca(K) sup
xǫK

|∂β(fk − f)|+ sup
xǫK

|xa∂βfk|.

Taking k → ∞ we obtain

sup
xǫK

|xa∂βf | ≤ lim sup
k→∞

|fk|a,β <∞

The last inequality is valid since {fk}∞k=1 is a Cauchy sequence, so that |fk|a,β
is bounded. The last inequality doesn’t depend on K either. That’s why we
may conclude that |f |a,β <∞ or f ǫ S.
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Chapter 3

Gaussian Measures in Hilbert

Spaces

3.1 Gaussian Measures and Properties

Definition 3.1. A measure µ on (Rn,Bn) is called a Gaussian measure on
Rn with parameters a ǫ Rn and non negative symmetric n × n matrix Σ if
defined by the

µ(B) = ρ(T−1(B)), BǫBn

where

T (x) = a+ Σ
1
2x, xǫRn and ρ(B) =

∫

B

(2π)−
n
2 e−

1
2
|x|2dx ,

B ǫ Bnnormal probability measure.

It is obvious that the measure ρ is Gaussian with parameters a = 0 and Σ = I.

When Σ is a positive defined matrix, then the function T is 1 − 1 and so
T−1(B) = Σ− 1

2 (B − a).

In this case with the transform x = Σ− 1
2
(y−a) follows that:

µ(B) =

∫

T−1(B)

(2π)−
n
2 e−

1
2
|x|2 dx =

∫

B

(2π)−
n
2 (detΣ)−

1
2 e−

1
2
(Σ−1(y−a),y−a) dy

17



so, when Σ is positive defined,the Gaussian measure with parameters a and
Σ has density:

d(y) =
1

(2π)
n
2 (detΣ)

1
2

e−
1
2
(Σ−1(y−a),y−a), yǫRn

When Σ is degenerated (i.e. (Σx, x) = 0 for somebody x 6= 0), the Gaussian
measure does not have density to Lebesgue measure. (We can find set A
with A

⋂
T (Rn) = ∅ and positive Lebesgue measure, so µ(A) = ρ(T−1(A)) =

ρ(∅) = 0)

If we consider now the function φ which defined by Σ
1
2 and with the suitable

change of variable we have

∫

R

eit·(φ(z)+a)d(ρ(z)) =

∫

eit·ydµ(y) = µ̂(t), t ǫ Rn

Also, we know that t · φ(z) = zφT (t) and now the first integral is

eit·a
∫

Rn

eit·φ(z)dρ(z) = eit·a
∫

Rn

eiz·φ
T (t)dρ(z).

Hence, µ̂(t) = eit·aρ̂
(
φT (t)

)
, t ǫ Rn.

However, ρ̂
(
φT (t)

)
= e−

1
2
|φT (t)| = e−

1
2
(Σt,t), t ǫ Rn.

This form for the characteristic function of Gauss measure always applies ,
even when Σ is degenerated.
Particularly, when n = 1 is Σ = (σ) with σ ≥ 0 and for any a ǫ R the
Gaussian measure with parameters a, σ is

µ(B) =

{

δa(B) if σ = 0
∫

B
1√
2πσ

e−
1
2σ

(x−a)2dx if σ > 0

In this case, for n = 1

∫

R

ydµ(y) = a ,

∫

R

y2dµ(y)− a2 = σ.

18



Definition 3.2. A measure µ on (H,B(H)) is called a Gaussian measure if
for any h ǫ H, there exists mh ǫ R and qh > 0 such that :

µ{xǫH : 〈h, x〉H ǫF} = N (mh, qh)(F ), F ǫB(R)

If for any h ǫ H, mh is equal to zero, then µ is called a symmetric Gaussian
measure.

Proposition 3.1. For a Gaussian measure µ on (H,B(H)) , there exists
mǫH and a symmetric non-negative bounded operator QǫL(H) such that

〈m, h〉H =

∫

H

〈h, x〉H µ(dx), hǫH, (3.1)

〈Qh1, h2〉H =

∫

H

〈h1, x〉H µ(dx)− 〈m, h1〉H 〈m, h2〉H , h1, h2ǫH. (3.2)

Proof. We show that the functionals

h 7→
∫

H

< h, x >H µ(dx), h ǫ H,

< Qh1, h2 >H=

∫

H

< h1, x >H< h2, x >H µ(dx) on H × H,

are well defined and continuous. It follows from the definition of a Gaussian
measure that for any h ǫ H, the mapping v(x) =< h, x >h is a real-valued
Gaussian variable on H with the law Lv = N (mh, qh).
In particular, it is integrable and

∫

h

< h, x >H µ(dx) =

∫

R

ydN (mh, qh)(y) = mh.

Therefore, the first functional is well defined. taking into account the in-
equality

| < h1, x >H < h2, x >H | ≤ | < h1, x >H |2 + | < h2, x >H |2, h1, h2, x ǫ H,
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and the integrability of | < h, x >H |2 for any h ǫ H, we obtain that the
second functional is also well defined.
Let us study properties of the introduced transformations. Let n ǫ N and
k = 1, 2. We set

Uk
n = {h ǫ H :

∫

H

| < h, x >H |k µ(dx) ≤ n}.

Then H =
⋃∞

n−1U
k
n , k = 1, 2.Since H is a complete metric space, by the

Baire category argument, there exists n0 ǫ N , h0 ǫ U
k
n0
, and r0 > 0 such that

B(h0, r0) ⊂ Uk
n0
. Hence,

∫

H

| < h0 + y, x >H |kµ(dx) ≤ n0, e ǫ B(0, r0),

and for any y ǫ B(0, r0),

∫

H

| < y, x >H |kµ(dx) ≤ 2k
∫

H

| < h0+y, x >H |kµ(dx)+2k
∫

H

| < h0, x >H |kµ(dx) ≤ 2k+1n

Let h ǫ H.From the last estimate for y = r0h/||h||H, we have that these
functionals are k-linear symmetric continuous forms:

∫

H

| < h, x >H |kµ(dx) ≤ 2k+1

rk0
||h||kH, k = 1, 2.

Therefore, by the Riesz representation theorem, the existence of the vector
m and the bounded symmetric operator Q for the introduced functionals is
proved. Finally, the obvious inequality

(∫

H

< h, x >H µ(dx)

)2

≤
∫

H

< h, x >2
H µ(dx)

and the representation

< Qh, h >H=

∫

H

< h, x >2
H µ(dx)−

(∫

H

< h, x >H µ(dx)

)2

imply the non negativity of Q.
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3.2 Covariance operator of Gaussian measures

If µ is a Gaussian measure on (H,B(H)), then m defined by (2.1) is called
the mean of µ, and Q defined by (2.2) is called the covariance operator
of µ. The characteristic function of a Gaussian measure µ on (H,B(H)) is
µ̂ : H → R and given by

µ̂(λ) =

∫

H

ei(λ,m)H e−
1
2
(Qλ,λ)H , λǫH. (3.3)

This formula for the characteristic function of a Gaussian measure µ formally
looks like the characteristic function in the Rn-valued case, but it turns out
that not every bounded operator Q can be the covariance operator of an H-
valued Gaussian measure. In particular, we demonstrate that an H-valued
Gaussian measure cannot have the characteristic function with Q = I. Let
{λn} be an orthonormal basis in H and let Q = I; then

∫

H

ei〈λn,x〉Hµ(dx) = ei〈λn,x〉He−
1
2
‖λn‖2H . (3.4)

Since the Fourier coefficients 〈λn, x〉H → 0 as n→ ∞, in the left-hand side
of (2.4) we have µ̂(λn) → 1, but in the right-hand side,

ei〈λn,x〉He−
1
2
‖λn‖2H → e−

1
2 as n→ ∞.

This contradiction takes place for any Q such that 〈Qλn, λn〉 does not tend
to zero.
The following proposition describes the structure of covariance operator of a
Gaussian measure on a Hilbert space.

Proposition 3.2. The covariance operator of a symmetric Gaussian mea-
sure on (H,B(H)) is a trace class operator.

21



Proof. Let µ be a symmetric Gaussian measure with covariate operator Q.
In this case, the characteristic function of µ has the form

µ̂(h) =

∫

H

e〈h,x〉Hµ(dx) = e−
1
2
〈Qh,h〉H , h ǫ H.

For an arbitary c > 0, we consider

1− e−
1
2
〈Qh,h〉H =

∫

H

(1− cos 〈h, x〉H µ(dx) = 2

∫

H

sin2 〈h, x〉H
2

µ(dx) ≤

1

2

∫

‖x‖H≤c

〈h, x〉2H µ(dx) + 2µ{x ǫ H : ‖x‖H > c}, h ǫH.

The bounded linear operator Qc defined by

〈Qch, h〉H =

∫

‖x‖H≤c

〈h, x〉2H µ(dx), h ǫ H,

is a trace class operator:

Tr(Qc) =

∞∑

j=1

〈Qcej , ej〉H =

∞∑

j=1

∫

‖x‖H≤c

〈ej, x〉2H µ(dx) =
∫

‖x‖H≤c

‖x‖2Hµ(dx),

where {ej} an orthonormal basis in H .Therefore, for any h ǫ H and c > 0,

1− e−
1
2
〈Qh,h〉H ≤ 1

2
〈Qch, h〉H + 2µ{x ǫ H : ‖x‖H > c}. (3.5)

To prove that Q is a trace class operator, we first find β > 0 such that the
fulfillment of the condition

〈Qh1, h1〉H ≤ β (3.6)

Therefore, let 〈Qch1, h1〉H = 1.Then we have from (2.5) that

e
1
2
〈Qh1,h1〉H ≤

(
1

2
− 2µ{x ǫ H : ‖x‖H > c}

)−1

= a;

therefore,(2.6) holds with β = 2lna provided that µ{x ǫ H : ‖x‖H > c} < 1
4
.

Now, let h be an arbitrary element of H . From (2.6) , for
h1 =

h√
〈Qch,h〉h

= h√
ah

we obtain

〈Qh, h〉H = ah 〈Qh1, h1〉H ≤ ahβ 〈Ach1, h1〉H = β 〈Qch, h〉H .
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Therefore, Q ≤ βQc and Q is a trace class operator.

The following theorem demonstrates a relationship between a Gaussian mea-
sure on (H,B(H)) and an H-valued Gaussian random variable.

Theorem 3.1. For any positive symmetric trace-class operator Q in H and
m ǫ H, there exists an H-valued Gaussian random variable with expectation
m and covariance operator Q. Its distribution law is a Gaussian measure on
(H,B(H)) with mean m and covariance operator Q.

Proof. Let (Ω,F , P ) be a probability space and ξj be a sequence of indepen-
dent real-valued random variables distributed by N (0,1). Consider

u = m+

∞∑

j−1

√

λjξjcj,

where {ej} is an orthonormal basis in H and λj = 〈Qej , ej〉H . This series is
convergent in L2(Ω,F , P ;H), since

E

( ∞∑

j−1

(
√

λjξj)
2

)

= lim
n→∞

E

n∑

j−1

(
√

λjξj)
2 = lim

n→∞

n∑

j−1

λjE(ξj)
2 =

∞∑

j−1

λj = Tr(Q).

Let h ǫ H . Consider

E(e
i〈h,u〉H
H ) = ei〈h,m〉H lim

n→∞
E

(

ei
∑n

j=1

√
λjξj〈h,ej〉H

)

= ei〈h,m〉H lim
n→∞

e−
1
2

∑n
j=1 λj〈h,ej〉2H = ei〈h,m〉H− 1

2
〈Qh,h〉H

Thus, u is a Gaussian random variable, E(u) = m, and for any h1, h2 ǫ H ,

〈Cov(u)h1, h2〉H = lim
n→∞

E

(
n∑

j−1

√

λjξj 〈cj , h1〉H
n∑

k−1

√

λkξk 〈ck, h2〉H

)

=

〈Qh1, h2〉H .
Let us show that the distribution law of the H-valued Gaussian random
variable u is a Gaussian measure on (H,B(H)).The distribution law of any
random variable u defines a measure µ on (H,B(H)) :

µ(G) = Lu(G) = P{ω : u(ω) ǫ G}, G ǫ B(H).
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Therefore,we have constructed a Gaussian random variable by a sequence of
independent real-valued Gaussian random variables distributed by N (0, 1).

The following theorem characterizes completely the functions which can be
the characteristic function for a Gaussian measure in Hilbert space .
First, we will see a useful lemma.

Lemma 3.1. Let µ be a normal probability measureoin Hilbert space X, such
that

∫

X
‖x‖2dµx < +∞. Then the correlation operator S for measure µ is

positive, continuous and nuclear.

Theorem 3.2 (E.Mourier). Let X be a Hilbert space and µ probability mea-
sure on (X,B(X)). Then the measure µ is a normal Gaussian measure if
and only if the characteristic function µ̂ is of the form :

X (x) = ei(m,x)− 1
2
(Rx,x), x ǫ X (3.7)

where, m ǫ X and R is a symmetric, positive nuclear operator on X.

Proof. (⇒)Let µ be a normal Gaussian measure. The characteristic function
is of the form (2.7), where m ǫ X and R is its covariance operator.It suffices
to prove that the operator R is nuclear.
According to Sazonov theorem () the characteristic function µ̂ is continuous
at x = 0 for Sazonov topology τS(X). So, for an arbitrary ǫ > 0 there exists

an operator S ǫ S(X) such that:|1− µ̂(x)| < 1− e−
1
2 ǫ when x ǫ X with

(Sx, x) < 1.However, 1 − Reµ̂(x) ≤ |1 − µ̂(x)| and Reµ̂(x) ≤ e−
1
2
(Rx,x) so,

1− e−
1
2
(Rx,x) < 1− e−

1
2
ǫ when (Sx, x) < 1 and finally

(Rx, x) < ǫ, x ǫ X with (Sx, x) < 1 (3.8)

Now,for an arbitrary x0 ǫ X and an arbitrary d >
√

(Sx0, x0) we have
(
S x0

d
, x0

d

)
= 1

d2
(Sx0, x0) < 1 ,so from (2.8) we have (Rx0, x0) < ǫ and

(Rx0, x0) < ǫd2 for an arbitrary d >
√

(Sx0, x0).
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Hence, for an arbitrary x0 ǫ X

(Rx0, x0) ≤ ǫ(Sx0, x0) (3.9)

and for any orthonormal basis {ej , j ǫ I} and for any subsystem {ejn , n ǫ N}
we have ∑

n

(Rejn , ejn) ≤ ǫ
∑

n

(Sejn, ejn) <∞

because the operator S is nuclear.
However, from Lemma 2.1 we have that (Rej , ej) > 0 up to countable num-
ber of indicators j ǫ I. So, from (3.9) we have

∑

j(Rej , ej) < +∞ (S nuclear)
and R also nuclear.

(⇐) Let a function X be of the form (3.7). According to Theorem 3.1 it
suffices to prove that exists normal measure µ for which µ̂ = X .
We set h(x) = e−

1
2
(Rx,x). It is obvious that h(0) = 1 and is positive definite.

We will now show that it is continuous for Sazonov’s topology τS(X) on
x = 0. Actually, for an arbitrary ǫ > 0 we consider the ”region”
V = {x : (Rx, x) < −2ln(1 − ǫ)} and it is easy to see that |1− h(x)| < ǫ for
all x ǫ V . So as, h satisfies the requirements of Sazonov’s theorem and exists
unique normal measure v such that v̂ = h.
We define now the measure µ on (X,B(X)) with µ(B) = v(φ−1(B)) where
φ(x) = x+m or else µ(B) = v(B−m). The measure µ is normal and applies:

µ̂(x) =

∫

X

ei(x,y)dµ(y) =

∫

X

ei(x,y+m)dv(y) = ei(x,m)v̂(x) = X (x) ∀ x ǫ X

Hence, X satisfies the properties of a normal Gaussian measure.
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Chapter 4

Wiener Process in Hilbert

Space

4.1 Basic facts on Wiener Process in Rn

One of more important stochastic process is the Wiener process. The Wiener
process, which can somebody find as Brownian motion, has a very important
role for the finance mathematics, for models in sontinuous time.

Definition 4.1. The Wiener proces is an R-valued stochastic process Wt

with the following properties :

(i)If t0 < t1 < ... < tn then the random variables Wt0 ,Wt1 −Wt0 , ...,Wtn −
Wtn−1 are independent

(ii)If s,t ≥ 0 ,then

P (Ws+t −Ws ǫ A) =

∫

A

1

(2πt)1/2
exp

(

−|x|2
2t

)

,

where A is a Borel set , i.e. increments of Wiener process follow the Gaus-
sian distribution.

(iii)Trajectories of Wiener process are continuous with probability 1, i.e.
t→Wt is continuous function.
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These three properties define one unique stochastic process. Furthermore,
for these properties, can we deduce the properties of measure µ, i.e. the
Wiener measure is a measure on path space, i.e. a measure on the space of
continuous functions. The equation is the finite dimensional distribution.

µt1,t2,...,tn(A1×A2×...×An) =

∫

A1

dx1

∫

A2

dx2...

∫

An

dxn

n∏

i=1

p(ti−ti−1, xi−1, xi)

where x0 = x, t1 = 0, and

p(t, x, y) =
1

(2πt)1/2
exp

(

−|x− y|2
2t

)

(4.1)

(3.1) help us to find the probability a stochastic process for time points ti
be at subsets Ai ǫ B(R).We can imagine these subsets as intervals in R, so
(3.1) is the probability of being Wiener process at specific intervals in R at
specific time point ti. The equation

µt1,t2,...,tn(A1 ×A2 × ...× An) = P (Wt1ǫA1,Wt2ǫA2, ...,WtnǫAn)

is called finite dimensional distribution and is very useful for the construction
of measure µ. The distribution of Wt depends on the initial point at which
it begins its, i.e. the point W0. If W0 = x, then the distribution function is
defined by Px(Wt ǫ A) for a Borel set A.The mean value or conditional mean
value for this measure will be denoted Ex or Ex[·] respectively.

Definition 4.2. An Rn-valued stochastic process satisfying the following con-
ditions

(i)P (ω :W (0, ω) = x) = 1,that is ,process W (t)starts at point x a.s.;

(ii)W (t) has independent increments, that is, for any 0 ≤ t1 < ... < tk,
the random values W (t1),W (t2) −W (t1), ...,W (tk) −W (tk−1) are indepen-
dent with respect to P;

(iii) W (t) is a Gaussian process, that is, for any 0 ≤ t1 ≤ ... ≤ tk,the
random variable (W (t1), ...,W (tk))is an Rnk-valued Gaussian random vari-
able. The expectation of this vector is equal to m = (x, ..., x)ǫRnk, and the
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covariance matrix is equal to

Qt1,...,tk =










t1In t1In t1In · · · t1In
t1In t2In t2In · · · t2In
t1In t2In t3In · · · t3In
...

...
...

. . .
...

t1In t2In t3In · · · tkIn










,

where Inis the identity matrix on Rn;

(iv)W (t) has continuous trajectories a.s., that is, the mapping t→ W (t, ω), t ≥
0 is continuous for almost all ω ǫ Ω. is called the Rn-valued Wiener process
started at point x.

Example 4.1. The characteristic function of Wiener process

The properties of Wiener process help us to find its characteristic function
and the characteristic function of its change.
First, we calculate the characteristic function of its changes:

φWt−Ws
(λ) = E[exp(iλ(Wt −Ws))] =

∫ ∞

−∞

1
√

2π(t− s)
exp

(

− x2

2(t− s)

)

exp(iλx)dx

For calculating this interval, it suffices to write the inner quantity completely
squared

iλx− x2

2(t− s)
= −(x− iλ(t− s))2

2(t− s)
− λ2(t− s)

2

After this we have:

φWt−Ws
(λ) = exp

(

−λ
2(t− s)

2

)

(4.2)

This we can calculate all polynomial moments of variables of Wiener process.
This can be done by taking the higher derivatives of φBt−Bs

(λ) to λ and taking
λ = 0. For example:

E[(Wt −Ws)
4] = 3(t− s)2
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So, if we take s = 0 to (3.2) we have:

φWt
(λ) = exp

(

−λ
2

2

)

Example 4.2. Now we want to find the joint distribution for random vari-
ables Wt and Ws using expectation E[WtWs].
We consider without loss of generality s < t.Using properties of Wiener pro-
cess (i) and (ii) we have:

fWtWs
(x, y) = p(s, 0, x)p(t−s, x, y) = 1

2π
√

s(t− s)
exp

(

−x
2

2s

)

exp

(

−(x− y)2

2(t− s)

)

The mean value of WtWs can be an interval of joint distribution:

E[WtWs] =

∫ ∞

−∞

∫ ∞

−∞
xyp(s, 0, x)p(t− s, x, y)dxdy

=

∫ ∞

−∞
xp(s, 0, x)

(∫ ∞

−∞
yp(t− s, x, y)dy

)

dx

=

∫ ∞

−∞
x2p(s, 0, x)dx = s

So, we conclude to E[WtWs] = s ∧ t = min(s, t)

Definition 4.3. We say that u(t) is
(i)measurable if the mapping u(·, ·) : T × Ω → H is B(T )× F measurable;
(ii)stochastically continuous at t0, t0 ǫ T , if for any positive numbers ε and
δ, there exists a positive number ρ such that

P (||u(t)− u(t0)||H ≥ ε) ≤ δ for any t ǫ[t0 − ρ, t0 + ρ] ∩ T ;

u(t) is stochastically continuous in T if it is stochastically continuous at each
point of T ;
(iii)mean square continuous at t0, t0 ǫ T , if

lim
t→t0

E[||u(t)− u(t0)||2H ] = 0;

u(t) is mean square continuous in T if it is mean square continuous at each
point of T ;
(iv) continuous with probability 1 (or continuous) if its trajectories u(·, ω)
are continuous almost everywhere with respect to P.
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4.2 Properties of Wiener process

4.2.1 Markov property

The fact that Wiener process has the Markov property means that if we take
an arbitrary s ≥ 0, then Wt+s−Ws is a Wiener process which is independent
of what happened before the time point s. So, Wiener process forgets its
past fully and what happened for the time point s and after depends only
from the final value of Wiener process, i.e. Ws. Furthermore, Wt+s −Ws is
also a Wiener process with mean value 0 and variance (t + s) − s = t, i.e.
the process Wt+s −Wt is a Wiener process which starts at 0 and is running
for time t.
Let Fs = σ(Wu, u ≤ s) the sigma-algebra which produced by Wiener process
until the time point s. This sigma-algebra is the smallest sigma-algebra
which make the random variable Wr, r ≤ s measurable.Then, Fs has all the
information about what happened to Wiener process up to the time point s.
If f is bounded function, then ∀ x ǫ Rd it holds that

Ex[f(Wt+s −Ws)|Fs] = Ex[f(Wt+s −Ws)]]

∫ ∞

−∞
f(y)

1√
2πt

exp

(

−y
2

2t

)

dy

because of the independence of Wiener process increments. So,we obtain :

Ex[f(Wt+s −Ws)|Fs] = Ex[f(Wt+s −Ws +Ws)|Fs]

and because of independence of Wt+s−Ws from algebra Fs and the Ws fully
known up to the time point s, can we consider that we have Ws = z, so:

Ex[f(Wt+s −Ws +Ws)|Fs] = Ex[f(Wt+s −Ws + z)]

However,is Wt+s−Ws also a Wiener process which starts at 0 and is running
for time t+s−s = t. So, the processWt+s−Ws+z has the same distribution
with a Wiener process which starts at point z and is running for time t.So,

Ex[f(Wt+s −Ws + z)] =

∫ ∞

−∞
f(y + z)

1√
2πt

exp

(

−y
2

2t

)

dy

=

∫ ∞

−∞
f(y)

1√
2πt

exp

(

−(y − z)2

2t

)

dy = Ex[f(Wt)] = EWs
[f(Wt)]
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And now we have :

Ex[f(Wt+s)|Fs] = EWs
[f(Wt)] =

∫ ∞

−∞
f(y)

1√
2t
exp

(

−(y −Ws)
2

2t

)

dy (4.3)

This property is Markov property for the Wiener process.
We can also write the Markov property with probabilities.For example:

Px[Wt+sǫ A|Fs] = PWs
(Bt ǫ A)

for a Borel set A.
A equivalent form of this Markov property is

Ex[f(Wt)|Fs] = EWs
[f(Wt−s)], s ≤ t

i.e. if we take the condition expectation for a function of Wiener process at
the time point t and we know the history of Wiener process until time point
s , it suffices to calculate the same in a new Wiener process which starts at
the position where the first Wiener process is at time point s,i.e. Ws and is
running for time length t− s. The full history of Wiener process before the
time point s is not pay at all.

Theorem 4.1 (Markov property). Let Y a bounded measurable function and
θs the shift operator which has the following property:(θsω)(t) = ω(t+s). Then

Ex[Y ◦ θs|Fs] = EBs
[Y ].

We give here the Markov property with this form, because Y can be a vari-
able which depends from Wt but not necessarily from f(Wt).

Example 4.3. We define the function u(x, t) = Ex[
∫ t

0
g(Wr)dr], where g is a

bounded function. Using the Markov property we can obtain that if 0 < s < t
then

Ex[

∫ t

0

g(Wr)dr|Fs] =

∫ s

0

g(Wr)dr + u(t− s,Ws).

First, we write the left side in the form:

Ex[

∫ s

0

g(Br)dr|Fs]+Ex[

∫ t

s

g(Wr)dr|Fs] =

∫ s

0

g(Wr)dr+Ex[

∫ t

s

g(Wrdr|Fs)]

(4.4)
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where we use the fact that
∫ s

0
g(Wr)dr is Ft-measurable and also properties

of conditional expectation.
We define now Y =

∫ t−s

0
g(Wr)dr and we can see that

Ex[

∫ t

s

g(Wr)dr|Fs] = Ex[Y ◦ θs|Fs]

and using the Markov property we obtain

Ex[

∫ t

s

g(Wr)dr|Fs] = EBs
[Y ] = EBs

[

∫ t−s

0

g(Wr)dr] = u(t− s,Ws).

Replacing this form to (4.4) we obtain the result.

4.2.2 Strong Markov property

The strong Markov property is the fact that Markov property apply also for
a specific class random time points,called the stopping times .

Remark :
(a) An increasing family of σ-fields {Ft, t ǫ T } on Ω is called filtration. A
filtration {Ft, t ǫ T } is said to be normal if

{G ǫ F : P (G) = 0} ⊂ F0 and Ft =
⋂

s>t

Fs ∀ t ǫ T .

(b)If, for any t ǫ T , a random variable u(t) is Ft-measurable, then the process
{u(t), t ǫ T } is said to be adapted (to the family {Ft, t ǫ T }).

Definition 4.4. Let (Ft)tǫ I a filtration on a set Ω, where I is a set of in-
dicators (not necessarily discrete). A stopping time about this filtration is a
function T : Ω → I such that

{T ≤ t}ǫ Ft, ∀ t ǫ I
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The independence of Wiener process increments applies also for stopping
times.

Definition 4.5. The σ-algebra FT where τ is a stopping time defined as

Fτ = Aǫ F∞ : A ∩ τ ≤ t ǫFt, ∀t > 0

Theorem 4.2. Let Wt a Wiener process and τ a finite stopping time for Wt.
Then it holds that Wt+T −WT is a Wiener process independent of algebra FT .

Proof. We take for this proof an approximation by T with a sequence of

stopping times Tn which defined as Tn = k
2n
, if T (ω) ǫ

[
(k−1)
2n

, k
2n

)

. This

sequence convergences monotically to stop time T,Tn ↓ T .It suffices to prove
that

Ex

[
eiv(WT+t−WT )eiλWT−τ

]
= Ex

[
eiv(WT+t−WT )

]
Ex

[
eiλWT−τ

]

The stopping time τ consider bounded, so we can write

Ex

[
eiv(WTn+t−WTn )eiλWTn−τ

]
=

∞∑

k=1

Ex

[

eiv(WTn+t
−WTn )eiλWTn−τ ; {Tn =

k

2n
}
]

=

∞∑

k=1

Ex

[

eiv(WTn+t
−WTn )

]

Ex

[
eiλWTn−τ

]
1{Tn=

k
2n

} = Ex

[

eiv(WTn+t
−WTn )

]

Ex

[
eiλWTn−τ

]

We use here the independence of W k
2n

+t −W k
2n

and W k
2n

−τ , ∀ k. We can

take the limit at n → ∞ and from the Theorem Dominated Converges we
can interchange with the expectation and finally have the result.
So, now we prove the independence and we have to prove that WT+t−WT is
a Brownian motion and have the same distribution with the Wt. It suffices
to calculate the characteristic function of random variable WT+t −WT . We
use the same approach process of stop time T.

Ex[e
iλ(WTn+t

−WTn)] =

∞∑

k=1

Ex

[

e
iλ(WTn+t

−WTn)1{Tn= k
2n

}
]
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=

∞∑

k=1

Ex

[

e
iλ(W k

2n
+t

−W k
2n

)
1{Tn=

k
2n

}

]

=

∞∑

k=1

e−
λ2t
2 1{Tn=

k
2n

} = e−
λ2t
2 1{T<∞}

Now, we take the limit as n → ∞ and using the Theorem Dominated Con-
verges we have

Ex[e
iλ(WT+t−WT )] = e−

λ2t
2

which show us that WT+t −WT is a Wiener process.

Also, we can prove after that, the following theorem.

Theorem 4.3. Let θs the shift operator, Y a bounded measurable function
and T is a stop time. Then,

Ex[f(Y ◦ θT )|FT ] = EWT
Y

Proof. For this proof we take the approximation of stopping time T by the
sequence Tn. It suffices to prove that:

Ex[f(WT+t)|FT ] = EWT
[f(Wt)]

for f continuous and bounded.
If A is a set which belongs to σ-algebra FTn

, we can write

Ex[f(WTn+t);A ∩ {Tn =
k

2n
}] = Ex[f(Bt+ k

2n
);A ∩ {Tn =

k

2n
}]

Ex[EW k
2n
f(Wt);A ∩ {Tn =

k

2n
}] = Ex[EWTn

f(Wt);A ∩ {Tn =
k

2n
}]

where we use the Markov property for the Wiener process at time k
2n
. Based

on this calculation we have

Ex[f(WTn+t);A ∩ {T <∞}] =
∞∑

k=1

Ex[f(WTn+t);A ∩ {Tn =
k

2n
}]
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=

∞∑

k=1

Ex[EWTn
f(Wt);A ∩ {Tn =

k

2n
}] = Ex[EWTn

f(Wt);A ∩ {T <∞}]

Now we obtain the limit n → ∞ and using the Theorem Dominated Con-
verges we have

Ex[f(WT+t);A ∩ {T <∞}] = Ex[EWTn
[f(Wt)];A ∩ {T <∞}]

From the definition of conditional expectation we obtain finally

Ex[f(WT+t)|FT ] = EWT
[f(Wt)]

General Y can be approximated as
∏n

i=1 fi(Wti) in the limit n→ ∞.

An interesting particular case is

Ex[f(Wt+T )|FT ] = EWT
[WT ],

where f is a bounded function. This property informs us that the conditional
expectation of function f calculated at position where the Wiener process
arrived at time point t+T given the information of Wiener process until
stopping time T, is the expectation of the same on a Wiener process which
starts at time T and is running for time length t. If as f we chose the
indicator function from a set, then the Markov property can be written as:

Px[Wt+T ǫ A|FT ] = PWT
(Wt)

Example 4.4. We want to find the distribution of random times τa. First,
we have that

P (τa ≤ t) = P (Sa ≥ a) = P (St ≥ a,Wt ≤ a) + P (St ≥ a,Wt > a).

We wrote this using
(i) the fact that the facts {τa ≤ t} and {St ≥ a} is identical
and
(ii)the fact that {St ≥ a} can happen with two ways: either Wiener process
came out of set x ≤ a before the time point t and the time point t has returned
again into this set, or came out of this set before time point t and at time t

36



continue to be out of this set. These two facts exclude one another.
However, because of {Bt > a} ⊂ {St ≥ a} holds that:

P (St ≥ a, Bt > a) = P (St > a).

Also, because of P (St ≥ a, Bt ≤ a−y) = P (Bt ≥ a+y), for y = 0 we obtain:

P (St ≥ a, Bt <≤ a) = P (Bt ≥ a)

So, P (τa ≤ t) = P (St ≥ a) = 2P (Bt ≥ a) = 2√
2πt

∫∞
a

exp
(

−x2

2t
dx
)

=
√

2
π

∫∞
a√
t

exp
(

−y2

2
dy
)

.

Now we can calculate the distribution of τa and the result is:

fτa(t) =
a√
2π
t−

3
2 exp

(

−a
2

2t

)

So, we find the distribution.

Example 4.5. With this example we want to find the probability of Wiener
process to have at least a zero point on set [t0, t1], conditional W0 = 0.

We can write

P [min0≤u≤tWu ≤ 0|W0 = a] = P [max0≤u≤tWu ≥ 0|W0 = −a]
= P [maxo≤u≤tWu ≥ a|W0 = 0] = P (τa ≤ t)

=
a√
2π

∫ t

0

1

s3/2
exp

(

−a
2

2s
ds

)

, a > 0.

We use here the symmetry of Wiener process around to 0 and the space ho-
mogeneity of Wiener process.

To calculate the probability of Wiener process to be zero once on set (t0, t1)
conditional W0 = 0 we bind on every value Wt0. If Wt0 = a the probability
of Wt to be zero on set (t0, t1) is equal to P (a). So,

p =

∫ ∞

−∞
P (a)P [Wt0 = a|W0 = 0]da =

√
2

πt0

∫ ∞

0

P (a) exp

(

− a2

2t0
da

)

We calculate the integral and finally we have:

p =
2

π
arctan

√
t1 − t0
t0

=
2

π
arccos

√
t0
t1
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4.2.3 Martingale property

The theory of Wiener process can be developed by using the results of
martingale theory.We will prove that Wiener process is a martingale. First,
we will see the following theorem.

Theorem 4.4. LetWt a Wiener proces and Fs = σ(Wu, u ≤ s).The following
stochastic processes are martingale for the filtration Fs:
(i)Wt

(ii)(Wt)
2 − t

(iii)Mλ
t = exp

(

λWt − λ2t
2

)

.

Proof. (i)We know that E[|Wt|] <∞ because the integral
∫ +∞
−∞ |x|exp{−x2/2t}dx

converges . So,it holds that

E[Wt|Fs] = E[Wt−Ws+Ws|Fs] = E[Wt−Ws|Fs]+E[Ws|Fs] = E[Wt−Ws]+Ws =Ws

We use here the independence of Wt −Ws from Fs and that the expectation
is 0.

(ii)We obtain now

E[W 2
t −W 2

s |Fs] = E[(Wt−Ws)
2|Fs]+2WsE[Wt−Ws|Fs] = E[W 2

t−s|Fs] = t−s

So, E[W 2
t − t|Fs] =W 2

s − s

(iii)We now recall that if g is a standard normal random variable, we know
that E(eλg) =

∫∞
−∞ eλxe−x2/2 dx√

2π
.

On the other hand, if s < t, E

(

eσWt−σ2t/2|Fs

)

= eσWs−σ2t/2E
(
eσ(Wt−Ws)|Fs

)

because Ws is Fs-measurable. Since Wt −Ws is independent of Fs, it turns
out that

E
(
eσ(Wt−Ws)|Fs

)
= E

(
eσ(Wt−Ws)

)
= E

(
eσWt−s

)
= E

(

eσg
√
t−s
)

= exp

(
1

2
σ2(t− s)

)
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Example 4.6 (Law of exit time of Wiener process). Using Theorem 4.4 we
will find a different way for the distribution of τa = inf{t : St ≥ a}, where
St = sups≤tWs and W is dimensional Wiener process which starts at 0.

From Theorem 4.4 we can see that for λ ≥ 0, the stochastic process Mλ
t

is martingale. Let, consider the stopping martingale Mλ
t∧τa . This is a martin-

gale, which is bounded from eλa and so using the theorem of optimal stopping
we can see that:

E[Mλ
τa ] = E[Mλ

0 ] = 1.

Also,

E

[

exp

(

λa− λ2τa
2

)]

= 1

So,

E

[

exp

(

−λ
2τa
2

)]

= exp(−λa).

Now, we consider s = λ2

2
and we obtain

E(esτa) = e−
√
2sa

However, if f(t) is probability density of τa, then

E(esτa) =

∫ ∞

0

e−stf(t)dt

so, E(esτa) is Laplace transform of probability density of τa.Inverting Laplace
transform and using typical methods we obtain:

f(t) =
a√
2πt3

exp

(

−a
2

2t

)

.

4.2.4 Characterization of Brownian Motion

We will show a way to check a stochastic process is a Wiener process or not.
This way is based on a fundamental result of Paul Lévy and characterized
the Wiener process using martingale property.
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Theorem 4.5 (Lévy). Let Xt, t ≥ 0 a stochastic process and Gt = σ(Xs, s ≤
t) the filtration which produced by it. Xt is a Wiener process if and only if
the following hold:

(i) X0 = 0 a.s.

(ii)The trajectories of Xt are continuous functions of time.

(iii) Xt is a martingale to filtration Gt = σ(Xs, s ≤ t).

(iv)X2
t − t is a martingale with the respect to filtration Gt = σ(Xs, s ≤ t).

Proof. (⇒) This side is simple to prove and in fact is similar with the proof
of theorem (3.3)
(⇐)Here we will use the characteristic function.If Xt has these four proper-
ties, then we can prove that the stochastic processMt = exp

(
iλXt∧T + 1

2
λ2(t ∧ T )

)

is martingale ∀ λ, where T is a (bounded) stop time and the arrangement
i2 = −1. For a random A ǫ Fs, s < t < T we have

E[1AMt|Fs] = 1AMs

where with the suitable organise we finally take

E[1Ae
iλ(Xt−Xs)] = P (A)e−

λ2

2
(t−s)

From this we obtain that Wt −Ws is independent of Fs and follows the dis-
tribution of normal N(0, t− s). So, Xt is a Wiener process.

Example 4.7. Using Lévy theorem we prove that stochastic process Xt =
Wt+T −WT , where Wt is Wiener process and T a deterministic time, is also
a Wiener process.

The filtration Gt which produces the stochastic process Xt associated with
filtration Ft which produce the Wiener process. Actually,

Gt = σ(Xs, s ≤ t) = σ(Bs+T − BT , s ≤ t) = σ(Bs, s ≤ t + T ) = Ft+T
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The properties (i) and (ii) of Lévy theorem is obvious from the definition of
Wiener process.

We check now the (iii) property

E[Xt|Gs] = E[Xt −Xs +Xs|Gs] = Xs + E[Xt −Xs|Gs]

= E[Wt+T −Ws+T |Fs+T ] +Xs = E[Wt+T −Ws+T ] +Xs = Xs

And now we check the (iv) property

E[X2
t − t|Gs] = E[(Xt −Xs +Xs)

2 − t|Gs]

= E[(Xt −Xs)
2|Gs]− t+X2

s

= E[(Wt+T −Ws+T )
2|Fs+T ]− t+X2

s

= (t + T − (s+ T ))− t+X2
s = X2

s − s

where we use the property E[Xt −Xs|Gs] = 0.

So, the stochastic process Xt is a Wiener process.

4.3 Properties of trajectories

The trajectories of Wiener process have some characteristic properties, which
we will see in this section.

Theorem 4.6. Let 0 < ǫ < 1
2
and 0 < T < ∞. Then, there is a random

variable N , which depends from ǫ and T, such that E[Np] <∞ ∀ p, 0 < p <
∞ and for this we have also:

|Wt(ω)−Ws(ω)| ≤ N(ω)|t− s| 12−ǫ, ∀ s, t ǫ [0, T ]

Kintchin has prove on another result of Wiener process trajectories , which
gives us a better bound.
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Theorem 4.7 (Law of the Iterated Logarithm). For a Wiener process holds
the followings with probability 1:

lim sup
t↓0

Wt
√

lnln
(
1
n

) = lim sup
t↑∞

Wt
√

lnln(t)
= 1

lim inf
t↓0

Wt
√

lnln
(
1
t

) = lim inf
t↑∞

Wt
√

lnln(t)
= −1

With this property we have in fact that the limit Wt
√

lnln( 1
t )

for t = 0 doesn’t

exist. This idea can be proved with the following theorem.

Theorem 4.8. Let Wt is a Wiener process. Then the stochastic processes

(i)Xt =
1
c
Wc2t

(ii)Yt = tW 1
t

is also Wiener process.

Finally, on more characteristic property of Wiener process is that t is not
differentiable nowhere a.s. I.e. is a continuous function but not differen-
tiable.This result had be proved by Paley, Wiener and Zygmund.

Theorem 4.9. The Wiener process Wt is not differentiable a.s. at point t,
∀ t ≥ 0.

The quadratic variation of Wiener process is equal to t. For the other side,
Wiener process has infinite variation.

Theorem 4.10. The Wiener process has the following properties:

(i) The quadratic variation in [0,t] is equal to t.

(ii)Wiener process has infinite variation.
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4.4 Wiener’s process construction

We show now a representation of Wiener process using suitable functions of
bases. We first, insert a base of the space of the continuous functions, the
base of Haar functions.

Definition 4.6. Functions φij(t) : [0, 1] → R which defined as

φij(t) =







2(i−1)/2, 2j−2
2i

≤ t < 2j−1
2i

−2(i−1)/2, 2j−1
2i

≤ t < 2j
2i

0, for any else t

for i = 1, 2, ... and j = 1, 2, ..., 2i−1 is called Haar functions.

The Haar functions have some useful properties:

(i) The Haar functions is rectangular on [0,1] to < f, g >=
∫ 1

0
ḡfdt

(ii)The Haar functions is a fully orthonormal system on
L2[0, 1] = {f :< f, f ><∞}.

(iii)Linear combinations of Haar functions is thick to set of continuous func-
tions.So, because the set of continuous functions is thick on L2[0, 1], linear
combinations of Haar functions are thick on L2[0, 1].

So, we can see that every continuous function on [0,1] and every function
which belong on L2[0, 1] can be approximated as linear combination of Haar
function. So, Wiener process is also a case of this and can be represented
with these functions.

Approach to Wiener Process

We consider

ψij(t) =

∫ t

0

φij(s)ds
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and also a sequence from independent with same distribution normal vari-
ables Yij with E[Yij ] = 0 and E[Y 2

ij ] = 1.
We write the sums:

V0(t) = Y00ψ00(t)

Vi(t) =
2i−1
∑

j=1

Yijψij(t), i ≥ 1.

The sum

Xt =
∞∑

i=0

Vi(t) =
∞∑

i=0

2i−1
∑

j=1

Yijψij(t), ; i ≥ 1

is an approach of Wiener process on [0,1].

For the approach of Wiener process on any set, it suffices to use the property
of Wiener process, that ifWt is a Wiener process, then B̂t = tB1/t is a Wiener
process. This property extend the Wiener process for t ǫ [0, 1] to any t.

The well defined for this construction of Wiener process proved with the
following theorem:

Theorem 4.11. The series
∑∞

i=0 Vi(t) converges uniformly at t, a.s. If
Xt =

∑∞
i=0 Vi(t), then the Xt is Wiener process which satisfies X0 = 0.

Remark: The domination of Wiener process using the Haar functions is not
the only one domination. One famous domination is when Wiener process
is as a Fourier series with arbitrary coefficients. This domination is called
”spread Karhunen-Loéve”. According to this domination:

Xt(ω) =
∞∑

n=0

Zn(ω)Φn(t), 0 ≤ t ≤ T

where

Φn(t) =
2
√
2T

(2n+ 1)π
sin

(
(2n+ 1)πt

2T

)

, n = 0, 1, ...

and {Zi}, i = 0, 1, ... is independent normal random variables with E[Zi] =
0 and E[Z2

i ] = 1, converges on L2 to a Wiener process on [0,T].
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4.5 Q-Wiener process

Now we want to generalize a real-valued Wiener process to a Hilbert space
valued process.

Definition 4.7. Let U a Hilbert space. A U-valued Stochastic process {u(t), t >
0} is called Gaussian process if for any n ǫ N and arbitrary positive numbers
t1, t2, ..., tn, the U

n-valued random variable (u(t1), ..., u(tn)) is Gaussian.

I.e. {u(t), t > 0} is a Gaussian process if and only if for any n ǫ N, the
real-valued random variable

〈(u(t1), ..., u(tn)), (h1, ..., hn)〉Un =

n∑

i=1

< u(ti), hi >U

is Gaussian for any choice of positive numbers t1, t2, ..., tn and elements
h1, ..., hn ǫ U.Equivalently, the vector (< u(t1), h1 >U , ..., < u(tn), hn >U)
is an Rn-valued Gaussian random variable.
A Gaussian variable cannot have the covariance operator equal to the identity
operator on a Hilbert space. Hence, we cannot use the definition of a Wiener
process for U -valued stochastic process. Taking into account Definition 4.2
of the Rn-valued Wiener process, we consider an important class of stochas-
tic process, the Q-Wiener processes, with Q being a trace class operator on U.

Definition 4.8. Let Q be a symmetric nonnegative trace class operator in U.
A U-valued stochastic process {W (t), t ≥ 0} is called a Q-Wiener process,
if

(i)W (0) = 0 P a.s.

(ii)W(t) has independent increments

(iii)L|W (t)−W (s)| = N (0, (t− s)Q), a ≤ s ≤ t

(iv)W(t) has continuous trajectories P a.s.

Since Q is a non negative symmetric trace-class operator, it is compact and

45



there exists an orthonormal basis {ej} of eigenvectors of Q and λj eigenvalues
of the space U . Then

TrQ :=

∞∑

j=1

< Qej , ej >U=

∞∑

j=1

λj .

We now consider some properties of the introduced process, in particular,
the connection of properties (i)-(iv) of the Q Wiener process with properties
(i)-(iv) of the Wiener process.

Proposition 4.1. Let {W (t), t ≥ 0} be a Q-Wiener process on U. Then it
is a Gaussian process and

E(W (t)) = 0 , Cov(W (t)) = tQ, t ≥ 0 (4.5)

Furthermore, for any t ≥ 0, the random variable W(t) has the following
expansion in L2(Ω,F , P ;U):

W (t) =
∞∑

j=1

√

λjwj(t)ej, (4.6)

where

wj(t) =
1
√
λj

< W (t), ej >U , t ≥ 0, j = 1, 2, ... (4.7)

are independent real-valued Wiener processes on (Ω,F , P ).

Proof. Property (iii) of Definition 4.7 implies that for s = 0 and any fixed
t ≥ 0,W (t) is a Gaussian U -valued random variable with the law N (0, tQ);
therefore,(4.4) holds.
To show that {W (t), t ≥ 0} is a Gaussian process we take arbitrary 0 ≤
t1 < ... < tn and h1, ..., hn ǫ U and consider the real-valued random variable

Z =

n∑

j=1

〈W (tj), hj〉U ,

which can be written in the form

Z =

〈

W (t1),

n∑

j=1

hj

〉

U

+

〈

W (t2)−W (t1),

n∑

j=2

hj

〉

U

+ ...
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+ 〈W (tn)−W (tn−1), hn〉U .

Since the increments of W (t), t ≥ 0 are independent random variables dis-
tributed according to the Gaussian law (properties (ii) and (iii) of Defini-
tion 4.7) the products on the right-hand side are independent real-valued
Gaussian variables. Consequently, their sum Z is Gaussian and the process
W (t), t ≥ 0 is Gaussian by definition.
For any t ≥ 0 and j ǫ N, the random variable wj(t) defined by (4.6) is
Gaussian and satisfies:

E(wj(t)) = E

(

1
√
λj

〈W (t), ej〉U

)

=
1
√
λj

〈E(W (t)), ej〉U = 0,

Cov(wj(t)) = E(w2
j (t)) =

1

λj
E(〈W (t), ej〉2U) =

1

λj
〈Cov(W (t)ej , ej)〉U = t;

therefore, wj(t), j ǫ N, are Gaussian with the law N (0, t).We now show that
they are independent. For 0 ≤ s ≤ t, let us consider

E(wi(t)wj(s)) =
1

√
λiλj

E
(
〈W (t), ei〉U 〈W (s), ej〉U

)

=
1

√
λiλj

[
E
(
〈W (t)−W (s), ei〉U 〈W (s), ej〉U

)
+ E

(
〈W (s), ei〉U 〈W (s), ej〉U

)]
.

Taking into account the independence of the random variables W (t)−W (s)
and W (s) for t > s , we have also

E[wi(t)wj(s)] =
s

√
λiλj

〈Qei, ej〉U = sδij , i, j ǫ N.

Hence, wi(t), i ǫ N, are uncorrelated. Since, wi(t) are Gaussian, this implies
that they are independent.
To prove representation (4.5), we show that the series is convergent in L2(Ω,F , P ;U).
It is enough to prove that is partial sums form a fundamental sequence in
the complete space L2(Ω,F , P ;U). For 1 ≤ n ≤ m, we have

E

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

m∑

j=n

√

λjwj(t)ej

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

U

= t

m∑

j=n

λj .
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To complete the proof, we note that

∞∑

j=1

λj = TrQ <∞.

Thus, we have proved that for any Q-Wiener process, there exists a sequence
of independent real-valued Wiener processes. The converse follows from the
proof of the next theorem.

Theorem 4.12. For an arbitrary trace class, symmetric, non negative oper-
ator Q on a Hilbert space U, there exists a U-valued Q-Wiener process.

Proof. Let {wj(t), t ≥ 0}, j ǫ N, be a sequence of independent real-valued
Wiener processes on (Ω,F , P ). Consider series (4.5) with λj being the eigen-
values of Q. Since

E

(

‖
m∑

j=n

√

λjwj(t)ej‖2U

)

= t
m∑

j=n

λj||ej||2U = t
m∑

j=n

λj

for any 1 ≤ n ≤ m, series (4.5) is convergent in L2(Ω,F , P ;U). The obtained
process is a Q-Wiener process. Indeed, without loss of generality, we may
assume that wj(0) = 0, j ǫ N. thenW (0) = 0, that is, property (i) holds. We
note for any 0 ≤ s ≤ t, W (t) −W (s) is a Gaussian random variable, since
it is the mean square limit of the sequence of Gaussian random variables
Wn(t)−Wn(s), where

Wn(t) =

n∑

j=1

√

λjwj(t)ej .

Therefore, the increments of W (t) are independent if and only if they are
uncorrelated. Let 0 ≤ t1 < t2 < ... < tn. Set

∆Wi =W (ti+1)−W (ti), i = 1, 2, ..., n− 1.

Obviously, E(∆Wi) = 0, and hence

〈Cor(∆Wi,∆Wk)h1, h2〉U = E [〈(∆Wi ⊗∆Wk)h1, h2〉U ] = E [〈∆Wi, h1〉U 〈∆Wk, h2〉U ]
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= E





〈 ∞∑

j=1

√

λj[wj(tj+1)− wj(ti)]ej , h1

〉

U

〈 ∞∑

l=1

√

λl[wl(tk+1)− wl(tk)]el, h2

〉

U





=
∞∑

j=1

∞∑

l=1

√

λj
√

λlE[wj(ti+1)− wj(ti)][wl(tk+1)− wl(tk)] 〈ej , h1〉U 〈el, h2〉U .

The independence of increments of the Wiener process and the independence
of wj(t) and wl(t) for j 6= l imply

〈Cor(∆Wi,∆Wk)h1, h2〉U = 0

for i 6= k. Therefore, (ii) holds. For any 0 < s ≤ t, the covariance operator
of W (t)−W (s) is defined by

〈Cov(W (t)−W (s))h, g〉U = E(〈h,W (t)−W (s)〉U , 〈g,W (t)−W (s)〉U)

= E





〈

h,

∞∑

j=1

√

λj(wj(t)− wi(s))ej

〉

U

〈

g,

∞∑

j=1

√

λj(wj(t)− wj(s))ej

〉

U





= (t− s)

∞∑

j=1

λj 〈h, ej〉U 〈g, ej〉U = (t− s)

∞∑

j=1

〈Qh, g〉U ,

that is, (iii) holds. Since wj(t), j ǫ N are continuous, (iv) also holds.

Remark : Let H be a Hilbert space and h1, h2 ǫ H, the linear operator
h1 ⊗ h2 is defined by

(h1 ⊗ h2)h := h1 〈h2, h〉H , h ǫ H.

4.6 Weak Wiener process

We now consider the general case of Q being a bounded operator in U (TrQ ≤
∞). If Q is not a trace class operator. then series (4.5) can be divergent in U.
We dive two ways of avoiding the difficulties that arise and of generalizing the
Wiener process to a Hilbert space. The first way is to construct a Q1 Wiener
process in an appropriate space U ⊂ U1. The second way is to construct a
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Wiener process in U in a weak sense. We begin with the construction of the
space U1. To do this, we need the following definition 2.6 of Hilbert Schmidt
operator.
Recall the space LHS(U,H) of Hilbert Schmidt operators with norm

||A||HS =

( ∞∑

j=1

||Aej||2H

)1/2

is a Hilbert orthonormal generated by:

< A,B >HS=
∞∑

j=1

< Aej , Bej >H .

The following connection between nuclear and Hilbert Schmidt operators
holds.

Proposition 4.2. Let U, H and E be Hilbert spaces. For any A ǫ LHS(U,H)
and B ǫ LHS(H,E), the operator BA ǫ LN(U,E) and

||BA||N ≤ ||A||HS · ||B||HS.

Proof. If {ej} is a basis of H , then

Ax =

∞∑

j=1

〈Ax, ej〉H ej, x ǫ U,

and, therefore, we have the representation

BAx =
∞∑

j=1

〈Ax, ej〉H Bej, x ǫ U.

Hence, the operator BA is nuclear from U to E. It also follows from the
definition of nuclear operators that

||BA||N ≤
∞∑

j=1

||A∗ej ||U · ||Bej ||E ≤
( ∞∑

j=1

||A∗ej||∗U

)1/2( ∞∑

j=1

||Bej||2E

)1/2

.
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We now consider the Q where TrQ = ∞

Definition 4.9. Define the space U0 := Q1/2(U) equipped with the inner
product 〈u, v〉U)

:=
〈
Q−1/2u,Q−1/2n

〉

U
. Define the Hilbert space U1 such that

the embedding J of U in U1 is a continuous operator and the embedding J0
of U0 in U1 is a Hilbert-Schmidt operator.

Obviously, U0 is a subspace of U.

Theorem 4.13. Let Q be a bounded self-adjoint positive operator on U with
TrQ = ∞. Let {wj(t), t > 0, j ǫ N} be a family of independent real-valued
Wiener processes and {gj} be an orthonormal basis on U0. Then the series

W (t) =

∞∑

j=1

wj(t)gj, t ≥ 0, (4.8)

defines a U1-valued Q1-Wiener process with zero expectation and the covaria-
tion operator Q1 := J0J

∗
0 , where J0 is the embedding J0 : U0 → U1. Moreover,

Q
1/2
1 (U1) = U0 and ||h||U0 = ||Q−1/2

1 h||U1.

Proof. To show that series (4.7) is convergent in L2(Ω,F , P ;U1), we note
that for any 1 ≤ n ≤ m,

E





∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

m∑

j=n

wj(t)gj

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

U1



 =

m∑

j=n

||gj||2U1
=

m∑

j=n

||J0gj ||2U1
.

Since the embedding J0 is a Hilbert Schmidt operator, we have
∑∞

j=1 ||J0gj||2U1
<

∞. The fact that obtained process is a Q1-Wiener process can be proved by
a similar argument as in the previous theorem. We define the covariance
operator Q1 of {W (t), t ≥ 0}. Let 0 ≤ s ≤ t. We have

〈Cov(W (t)−W (s))h, g〉U1
= E

(
〈h,W (t)−W (s)〉U1

〈g,W (t)−W (s)〉U1

)

= E





〈

h,

∞∑

j=1

(wj(t)− wj(s))gj

〉

U1

〈

g,

∞∑

j=1

(wj(t)− wj(s))gj

〉

U1
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= (t− s)

∞∑

j=1

〈h, gj〉U1
〈g, gj〉U1

= (t− s)

∞∑

j=1

〈h, J0gj〉U1
〈g, J0gj〉U1

= (t− s)

∞∑

j=1

〈J∗
0h, gj〉U0

〈J∗
0g, gj〉U0

= (t− s) 〈J∗
0h, J

∗
0g〉U0

= (t− s) 〈J0J∗
0h, g〉U1

for any h, g ǫ U1.

It follows from Definition 4.7 that Q1 = J0J
∗
0 . The definition of Q1 implies

that it is a self-adjoint and positive operator. It follows from Proposition 4.2
that is nuclear. Next, ImQ

1/2
1 =ImJ∗

0 = U0, and the operator Q
−1/2
1 J0 from

U0 onto U1 is bounded. For t − s = 1 and g = h, we obtain from the last
equality that

||Q1/2
1 h||2U1

= 〈J0J∗
0h, h〉U1

= ||J∗
0h||2U0

, h ǫ U1. (4.9)

Since, J∗
0Q

−1/2
1 is an isometry, Q

−1/2
1 J0 is also an isometry. Therefore,

||Q−1/2
1 h||U1 = ||Q−1/2

1 J0h|| = ||h||U0.

We now consider the second approach to a Wiener process in a Hilbert space
U in the case where Q is not a trace-class operator.

Proposition 4.3. Let {wj(t), t ≥ 0} j ǫ N, be a family of independent
real-valued Wiener processes. For an arbitrary h ǫ U, the process defined by

〈h,W (t)〉U =
∞∑

j=1

wj(t) 〈h, gj〉U , t ≥ 0, (4.10)

is a real-valued process in R with zero expectation, {gj} be an orthonormal
basis and the covariance tQh = t < Qh, h >U . Furthermore,

E (〈h,W (t)〉U 〈g,W (s)〉U) = (t ∧ s) 〈Qh, g〉U , h, g ǫ U

Proof. For arbitrary h ǫ U and 1 ≤ n ≤ m, consider

E

(

|
m∑

j=n

wj(t) 〈h, gj〉U |2
)

=
m∑

j=n

| 〈h, gj〉U |2

52



≤ ||h||2U
m∑

j=n

||gj||2U ≤ C||J ||2L(U,U1)||h||2U
m∑

j=n

||gj||2U1
.

Since, J0 is a Hilbert-Schmidt operator, we have

∞∑

j=1

||J0gj||2U1
=

∞∑

j=1

||gj||2U1
<∞.

Hence, the series defining the random variable 〈h,W (t)〉U is convergent in
L2(Ω,F , P ). If 0 ≤ s ≤ t, then

E(〈h,W (t)〉U 〈g,W (s)〉U) = E(〈h,W (s)〉U 〈g,W (s)〉U)

= s
∞∑

j=1

〈h, gj〉U 〈g, gj〉U = s
∞∑

j=1

〈
q1/2h,Q−1/2gj

〉

U

〈
Q1/2g,Q−1/2gj

〉

U

s

∞∑

j=1

〈Qh, gj〉U0
〈Qg, gj〉U0

= s 〈Qh,Qg〉U0
= s 〈Qh, g〉U0

for any h, g ǫ U.

Proposition 4.3 loads the following definition:

Definition 4.10. For any h ǫ U, let a real-valued process {〈h,W (t)〉U , t ≥
0} be Gaussian with independent increments and a continuous version. Let

E(〈h,W (t)〉) = 0 and Cov(〈h,W (t)〉) = t 〈Qh, h〉U
for all t ≥ 0, h ǫ U. Then we say that {W (t), t ≥ 0} is a weak Wiener
process in U.

Also, because we consider that U ⊂ H ⊂ U∗ we can say that {W (t), t ≥ 0}
is also a weak Wiener process in U∗.
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Chapter 5

Stochastic integral in Hilbert

Space

5.1 Itô integral in R

We consider also that (Ω,F , P ) is a probability space.

Definition 5.1. We consider the partition a = t0 < t1 < ... < tn = b for the
interval [a, b] and that we approximate the function f(t, ω) as

f(t, ω) ≃
n−1∑

i=0

f(ti, ω)1[ti,ti+1)(t).

The Itô integral can be defined as a limit in L2, because it is adapted. In
particular

∫ b

a

f(t, ω)dWt(ω) = lim
n→∞

n∑

i=1

f(ti, ω)[Wti+1
−Wti ](ω)

which is measurable with respect to {Ft, Ft = σ(W (t), t ≥ 0)}

The Wiener process is a function which is nowhere differentiable, but never
can be used as an integrator. These integrators are very useful in stochastic
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analysis.In this chapter we will present the construction of the Itô integral.
We consider a random function f which depends on a Wiener process and
we want to define the integral of increments of the Wiener process. I.e. we
want to define ∫ b

a

f(t, ω)dWt(ω)

where Wt is one-dimensional Wiener process which starts at 0, while f is a
function f : (0,∞)× Ω → R.

Example 5.1. This example, illustrates the usefulness of a possible applica-
tion. We consider that an investor can invest some money on a title where
rate of return St, is a stochastic process. Assume the St is a model of the
Wiener process i.e. Wt = St. At each time the investor decides on how her
position ht on the esser. This is allowed of change over time, and is mod-
elled as an adapted stochastic process; h(t, ω) is the position of the investor
held in [t, t + dt] on the esser, given the realisation ω of the ...... . The
gain or loss of the investor form this position on the interval [t, t + dt] is
ht(St+1 − St) = ht(W (t + 1)−W (t)). The all wealth, Vt, at time point t, or
after N time periods, will be the sum of these changes, i.e.

Vt = V0 +
N∑

i=1

hti(Wti+1
−Wti)

where tN = t.

Now we want to define step processes.

Definition 5.2. A stochastic process f which can be written in the form

f(t) =

n−1∑

j=1

ηj1[tj ,tj+1)(t) (5.1)

for any partition a = t0 < t1 < ... < tn = b of the space [a, b] where ηj
are random variables which are Ftj measurable and E[η2j ] <∞ is called step
function. We will symbolize with Mstep([a, b]) the set of step functions in
space [a, b].
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So, the function I : M2
step → L2(Ω,F , P ) which satisfies the Proposition 5.1

is also continuous. This function is the stepfunction which we use in Itô
integral.

Definition 5.3. If the stochastic process f is a step function of the form (5.1)
then its stochastic integral of Wiener process defined as

∫ b

a

f(t)dWt =

n−1∑

j=0

ηj(Wtj+1
−Wtj )

Proposition 5.1. The function I : M2
step → L2 is an isometry, hence is

continuous. This property called Itô isometry. I.e.

||I(fstep)||2L2
= E[|I(fstep)|2] := E

[∣
∣
∣
∣

∫ b

a

fstep(t)dWt

∣
∣
∣
∣

2
]

= E

[∫ b

a

|fstep(t)|2dt
]

Proof. We consider the step function

fstep(t) =
n−1∑

j=0

ηj1[tj ,tj+1)(t)

which has the stochastic integral

I(fstep) :=

∫ b

a

fstep(t)dt ≡
n−1∑

j=0

ηj(Wtj+1
−Wtj ).

We can calculate the expectation of the square of this form. So, we obtain

|I(fstep)|2 =
n−1∑

j=0

η2j (Wtj+1
−Wtj )

2 + 2
∑

k<j

ηj(Wtj+1
−Wtj )ηk(Wtk+1

−Wtk)

The increments of Wiener process (Wtj+1
−Wtj ) are independent from the

facts before the time tj . So, because of the random variable ηj is Ftj measur-
able, the random variables (Wtj+1

−Wtj ) and the ηj are independent. The
same is true and for any function of these variables. Hence,

E[η2j (Wtj+1
−Wtj )

2] = E[η2j ]E[(Wtj+1
−Wtj )

2] = E[η2j ](tj+1 − tj)
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because of E[(Wtj+1
− Wtj )

2] = (tj+1 − tj) by the Wiener’s process prop-
erties. Furthermore, because k < j the arbitrary variables ηk, Wtk+1

−
Wtk , ηj , Wtj+1

−Wtj are independent of each and so,

E[ηj(Wtj+1
−Wtj )ηk(Wtk+1

−Wtk)] = E[ηj(Wtk+1
−Wtk)ηk]E[Wtj+1

−Wtj )] = 0

because E[Wtj+1
−Wtj )] = 0 from the Wiener’s process properties. Using all

of these, we have that

||I(fstep)||2L2
= E[I(fstep)

2] =
n−1∑

j=0

E[η2j ](tj+1 − tj).

From this we can obtain

E

[∫ b

a

|fstep(t)|2dt
]

= E





∫ b

a

∣
∣
∣
∣
∣

n−1∑

j=0

ηj1[tj ,tj+1)

∣
∣
∣
∣
∣

2

dt



 .

Actually, we have

|fstep|2 =
n−1∑

j=0

η2j1[tj ,tj+1) +
∑

k<j

ηkηj1[tj ,tj+1)1[tk,tk+1) =
n−1∑

j=0

η2j1[tj ,tj+1)

because 1[tj ,tj+1)1[tk,tk+1) = 0 for k < j2, and so we obtain

E

[∫ b

a

|fstep(t)|2dt
]

= E





∫ b

a

∣
∣
∣
∣
∣

n−1∑

j=0

ηj1[tj ,tj+1)

∣
∣
∣
∣
∣

2

dt



 =

n−1∑

j=0

E[η2j ](tj+1 − tj).

So, we prove that step functions have the property of Itô isometry.

Now, we define a general doss of stochastic processes for which we can define
the stochastic integral.
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Definition 5.4. A stochastic process f, which is continuous, belongs to space
M2([a, b]) if is adapted to filtration Ft = σ(Bs, s ≤ t) and satisfies the fol-
lowing:

||f ||M2([a,b]) := E

[∫ b

a

|f |2dt
]

<∞

Often we can write M2 instead to M2([a, b]).

The stochastic processes which belong to space M2 can be approximated
from step functions according to the following theorem.

Remark : I :M2
step → L2 is a continuous mapping hence it can be uniquely

extended to M2
step as M2. This extension is the Itô integral. The following

theorem characterizes M2
step as M2 given by Definition 5.4.

Theorem 5.1. For all a ǫ M2 exists a sequence of step functions fstep,n,
such that

lim
n→∞

||f(t)− fstep,n(t)||M2([a,b]) = lim
n→∞

E

[∫ b

a

|f(t)− fstep,n(t)|2dt
]

= 0

Proof. First, we consider a function f ǫ M2([a, b]). We define the sequence
of stochastic processes φn(t) = [−n ∨ f(t)] ∧ n. We can easily prove that the
sequence φn(t) is bounded and that φn(t) ǫ M

2([a, b]) for any n. Furthermore,
limn→∞ φn(t) = f(t). So, from the Theorem of Dominated Convergence we
have

lim
n→∞

E

[∫ b

a

|f(t)− φn(t)|2dt
]

= 0.

Now, we consider that φ(t) ǫ M2([a, b]) is bounded. We can make the se-
quence ψn(t) in this way:

For any n we consider ρn : R → R+ a continuous function such that ρn(t) = 0
for t ≤ − 1

n
and t ≥ 0 and

∫∞
−∞ ρn(t)dt = 1. We define

ψn(t) =

∫ b

a

ρn(s− t)φ(s)ds
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The sequence ψn(t) is a sequence of stochastic processes because φ(s) is
also a stochastic process. The integral which defined ψn is a typical Riemann
integral. From Riemann’s integral properties and because of ψ(t) is bounded,
we obtain that the process ψn(t) consists from continuous functions and so
is bounded. Also, belongs to M2([a, b]). From the Theorem of Bounded
Convergence we have that:

lim
n→∞

E

[∫ b

a

|f(t)− ψn(t)|2dt
]

= 0

Finally, if ψ(t) ǫ M2([a, b]) and is bounded and continuous we can make a
sequence of step functions fstep,n in this way:

fstep,n(t) = ψ(a)1[a,a+ b−a
n

](t) +

n−1∑

i=1

ψ

(

a + i
b− a

n

)

1(a+i b−a
n

,a+(i+1) b−a
n

](t)

This sequence is bounded, so from Theorem of Bounded Convergence we can
obtain that

lim
n→∞

E

[∫ b

a

|ψ(t)− fstep,n(t)|2dt
]

= 0.

So, using all of these facts and triangle inequality we have:

lim
n→∞

E

[∫ b

a

|f(t)− fstep,n(t)|2dt
]

= 0

With this we have finish the proof.

Now, we have approximate any stochastic process f ǫ M2([a, b]) with a se-
quence of step functions fstep,n and because the stochastic integral is well
defined for a stochastic step function we can define the Itô stochastic inte-
gral with the following way.

Definition 5.5. Let f ǫ M2([a, b]). The Itô integral of f is defined as the
following limit

I(f) :=

∫ b

a

f(t)dt = lim
n→∞

I(fstep,n) := lim
n→∞

∫ b

a

fstep,n(t)dWt
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where fstep,n is a sequence of step functions which approximates in L2 the

function f and the integrals
∫ b

a
fstep,n(t)dWt := I(fstep,n) defined according to

Definition 5.2.

This definition makes sense only if the sequence I(fstep,n) := limn→∞ fstep,n(t)dBt

converges. This is the main result of the following theorem.

Theorem 5.2. Let f ǫ M2([a, b]) and fstep,n is a sequence of step functions
which approximated in L2 the function f. Then, the sequence I(fstep,n) =
∫ b

a
fstep,ndWt where the Itô stochastic integral had defined according to Defi-

nition 5.3 converges as n→ ∞ to a random variable which belongs in L2.

Proof. Because of the completeness of L2 it suffices to prove that the sequence
rn := I(fstep,n) is a Cauchy sequence i.e. ||rn − rm||L2 := E[|rn − rm|2] →
0 as n,m→ ∞.
To prove the Cauchy property we use the fact that the sequence fstep,n ap-
proximate in L2 the function f , i.e.

lim
n→∞

E

[∫ b

a

|f(t)− fstep,n(t)|2dt
]

= 0

and the property of Itô stochastic integral for step functions,

E

[∣
∣
∣
∣

∫ b

a

fstep,n(t)dWt

∣
∣
∣
∣

2
]

= E[|fstep,n(t)|2dt].

Also, we use the linear property of Itô integral for step functions.Using all
of these we have

E[|rn − rm|2] = E

[∣
∣
∣
∣

∫ b

a

fstep,n(t)dt−
∫ b

a

fstep,m(t)dt

∣
∣
∣
∣

2
]

= E

[∣
∣
∣
∣

∫ b

a

(fstep,n(t)− fstep,m(t))

∣
∣
∣
∣

2
]

= E

[∫ b

a

|fstep,n(t)− fstep,m(t)|2dt
]
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= E

[∫ b

a

|fstep,n(t)− f(t) + f(t)− fstep,m(t)|2dt
]

≤ E

[∫ b

a

|fstep,n(t)− f(t)|2dt
]

+ E

[∫ b

a

|fstep,m(t)− f(t)|2dt
]

Because the fstep,n approximate well in L2 the function f(t) we can see that
the right side tends to 0 as m→ ∞ and n→ ∞. So, we end the proof.

Example 5.2. We want to prove that

I(Wt) =

∫ T

0

WtdWt =
1

2
W 2

T − T

2
.

The stochastic process which is under integration is f(t, ω) = Wt. We take
the partition 0 < tn1 < tn2 < ... < tnn = T, tnj = jT

n
and the approximation of

the stochastic process

fstep,n(t) =

n∑

j=0

Wtnj
1[tnj ,t

n
j+1)

(t).

We take the sequence of the random variables

I(fstep,n) =

n−1∑

j=0

Wtnj
(Wtnj+1

−W n
tj
),

and its limit in L2 is the stochastic integral which we want. To calculate this
limit we use the identity

a(b− a) =
1

2
(b2 − a2)− 1

2
(a− b)2

with a = Wtnj
, b =Wtnj+1

. So, we have

Wtnj
(Wtnj+1

−Wtnj
) =

1

2
(W 2

tnj+1
−W 2

tnj
)− 1

2
(Wtnj+1

−Wtnj
)2.

Summing on all j from j = 0 until j = n− 1 we obtain

I(fstep,n) =
1

2
W 2

T − 1

2

n−1∑

j=0

(W n
tj+1

−W n
tj
)2.
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Since,

E





∣
∣
∣
∣
∣

n−1∑

j=0

(W n
tj+1

−W n
tj
)− 1

2
T

∣
∣
∣
∣
∣

2


 = 0

as n→ ∞.

With this example we can see that the Itô stochastic integral has some dif-
ferent properties of Riemann integral. This is obvious from

∫ T

0
WtdWt =

1
2
W 2

T − 1

2
T

︸︷︷︸

.

Because, a Riemann integral given by
∫ T

0
fdt = f2(T )

2
− f2(0)

2
.

Now, we will see some properties of Itô integral.

Theorem 5.3. The Itô integral has the following important properties:

(i) For two stochastic processes f1 and f2 is true that I(λ1f1 + λ2f2) =
λ1I(f1) + λ2I(f2), where λ1, λ2 ǫ R.

(ii) E
[∫ b

a
fdWt

]

= 0

(iii) E

[∣
∣
∣

∫ b

a
f(t, ω)dWt

∣
∣
∣

2
]

= E

[∫ b

a
|f(t, ω)|2dt

]

(Itô isometry)

On all of these we consider that the function in the integral belongs to the
suitable space M2.

Now, we can see one more example.

Example 5.3. We prove now that for any f, g ǫ M2 it holds that

E[I(f)I(g)] = E

[∫ T

0

f(t)dWt

∫ T

0

g(t)dWt

]

E

[∫ T

0

f(t)g(t)dt

]

For this proof we use the identity

ab =
1

4
(|a+ b|2 − |a− b|2)

63



where a = I(f) and b = I(g). So, using this identity for the expected value
we have

E[I(f)I(g)] =
1

4
(E[|I(f)+I(g)|2]−E[|I(f)−I(g)|2]) = 1

4
(E[|I(f+g)|2]−E[|I(f−g)|2])

where we use also the linear property of stochastic integral. However,

E[|I(f + g)|2] = E

[∫ T

0

|f + g|2dt
]

and from the Itô isometry

E[|I(f − g)|2] = E

[∫ T

0

|f − g|2dt
]

So, using these and the linear property of expected value we have

E[I(f)I(g)] = E

[∫ T

0

1

4
(|f + g|2 − |f − g|2)dt

]

E

[∫ T

0

f(t)g(t)dt

]

and now we end the proof.

5.2 Itô integral as a stochastic process

In this section we consider that the indefinite Itô integral, where the lower
limit is fixed but the upper limit is allowed to take values t ǫ [a, b], i.e.
we write

∫ t

0
f(t)dWt where 0 ≤ t ≤ T. All these properties are fine

if f ǫ M2
step, hence to prove that any f ǫ M2, we use an approximation

sequence fn ǫ M
2
step, fn → f and go to the limit. So, for any value of t we

obtain a random variable which is square integrable and its value is equal to
integral

∫ t

0
f(t)dWt. Therefore, we construct the stochastic process

It :=

∫ t

0

f(t)dWt

This stochastic process is called the indefinite Itô integral. This stochastic
process can also be defined as the stochastic integral from 0 to T of f(t)1[0,t]

i.e. ∫ t

0

f(s)dWs =

∫ T

0

f(s)1[0,t](s)dWs (5.2)
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The following theorem present basic properties of the indefinite Itô integral.

Theorem 5.4. Let f ǫ M2([0, T ]), 0 ≤ t ≤ T and It =
∫ t

0
f(s)dWs.

The following are true:
(i)The stochastic process It is a square integrable martingale.
(ii)The bracket process of It is

< I >t=

∫ t

0

|f(s)|2ds

Proof. (i) To prove that It is square integrable it suffices to use the Itô
isometry and modelled f ǫ M2([0, T ]). We can also see that It is adapted to
Ft, from the definition of the stochastic integral. So, we have to prove only
that E[It|Fs] = Is, 0 ≤ s ≤ t ≤ T. To prove this we have to see that

It = Is +

∫ t

s

f(r)dWr

and remember that the cause of the independence of
∫ t

s
f(r)dWr from Fs

E

[∫ t

s

f(r)dWr|Fs

]

= E

[∫ t

s

f(r)dWr

]

= 0

To obtain this result we use Theorem 5.3. We can also obtain that

E[It|Fs] = E[Is|Fs] + E

[∫ t

s

f(r)dWr|Fs

]

= Is

So, It is martingale.
(ii)To prove that the bracket process of It is < I >t=

∫ t

0
|f(s)|2ds it suffices

to prove that Mt = I2t − < I >t is a continuous martingale which is equal to
zero for t = 0. Actually,

E[Mt|Fs] = E

[

I2t −
∫ t

0

|f(r)|2dr|Fs

]

= E

[

(Is +

∫ t

s

f(r)dWr)
2 −

∫ s

0

|f(r)|2dr −
∫ t

s

|f(r)|2dr|Fs

]
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= I2s −
∫ s

0

|f(r)|2dr + 2IsE

[∫ t

s

f(r)dWr|Fs

]

+E

[∣
∣
∣
∣

∫ t

s

f(r)dWr

∣
∣
∣
∣

2

|Fs

]

− E

[∫ t

s

|f(r)|2dr|Fs

]

Using the properties of Itô integral we can see that

E

[∫ t

s

f(r)dWr|Fs

]

= 0

and also

E

[∣
∣
∣
∣

∫ t

s

f(r)dWr

∣
∣
∣
∣

2

|Fs

]

= E

[∣
∣
∣
∣

∫ t

s

f(r)dWr

∣
∣
∣
∣

2
]

E

[∫ t

s

|f(r)|2dr
]

= E

[∫ t

s

|f(r)|2dr|Fs

]

So, we finally obtain

E

[

I2t −
∫ t

0

|f(r)|2dr|Fs

]

= I2s −
∫ s

0

|f(r)|2dr

and from the definition of square integrable process for a martingale we end
the proof.

5.3 Itô processes

Using the Itô stochastic integral we can define a new group of stochastic
processes from Wiener process, the Itô processes.

Definition 5.6. An Itô process is a stochastic process of Xt such that

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dWs (5.3)

where u, v satisfy the properties:
∫ t

0

v2(s, ω)ds <∞ a.s.,

∫ t

0

u(s, ω)ds <∞ a.s.
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This process can be written as

dXt = udt+ vdWt

We can see from this that an Itô process can be broken in two pieces: The
Mt :=

∫ t

0
vdWt which is a martingale and the At :=

∫ t

0
uds which is a process

of finite variation.

Example 5.4 (A model of stock prices with Itô process). The stochastic
process

Xt = X0 +

∫ t

0

(

µ(s)− σ2(s)

2

)

ds+

∫ t

0

σ(s)dWs

where µ(t) and σ(t) satisfy the properties of the Definition 5.6. In differential
form we can write this process as

dXt =

(

µ(t)− σ2(t)

2

)

dt+ σ(t)dWt

If we take Xt = lnSt then St is also an Itô process which used in finance for
modelling of stock prices. If µ and σ are fixed, St is called geometric Wiener
process.

Example 5.5 (A model for interest rates with Itô processes). The stochastic
process

Xt = X0 + aµ

∫ t

0

easds+ σ

∫ t

0

easdWs

is an Itô process which can be written in the differential form

dXt = aµeatdt+ σeatdWt

If we take Xt = eatrt we will see that it is an Itô process which called Ornstein
Uhlenbeck. We can see that

E[rt] = e−atX0 + µ(1− e−at) → µ, as t→ ∞
The expected value depends on time, and for long time tends to µ. Further-
more, using properties of Itô integral we can calculate the variation of rt
which is

V ar(rt) =
σ2

2a
(1− e−2at)
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Example 5.6. We use now (5.3) in the function g(t, x) = 1
2
x2 to calculate

the integral I =
∫ t

0
WsdWs.

Let Yt = g(t,Wt) =
1
2
W 2

t . Using (5.3) in this function we obtain

1

2
W 2

t =

∫ t

0

WsdWs +
1

2

∫ t

0

dt =

∫ t

0

WsdWs +
1

2
t

so,

I =
1

2
W 2

t − 1

2
t.

An interesting equation is which is the form of an Itô function and if this is
also an Itô process, and if is true for Riemann’s sums and Itô integrals.
So, we can see the next theorem and we have the answer.

Theorem 5.5 (Itô′s lemma). We consider that Xt is an Itô process which
can be written as

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dWs.

Then, anyone function of Xt which is of the form g(t, x) ǫ C1,2 can be written
as a stochastic integral

g(t, Xt) = g(0, X0) +

∫ t

0

(
∂g

∂t
+ u

∂g

∂x
+

1

2
v2
∂2g

∂x2

)

dt+ v
∂g

∂x
dWt

With C1,2 we symbolize the space of g(t, x) functions which have continuous
the first derivative to the first variable and continuous second derivative to
the second variable.

Proof. We present here the basic steps for the proof of Itô′s lemma.
Let consider the partition tj =

jt

n
for the interval [0, t] and let write

g(t, Xt)− g(0, X0) =
n−1∑

j=0

[g(tnj+1, Xtnj+1
)− g(tnj , Xtnj

)] =

n−1∑

j=0

g(tnj+1, Xtnj+1
)− g(tnj , Xtnj+1

)
︸ ︷︷ ︸

−
n−1∑

j=0

g(tnj , Xtnj+1
− g(tnj , Xtnj

))
︸ ︷︷ ︸
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The first doss of underline terms consists of terms which are calculate for the
same value of Itô process, but for different times. In first doss terms we use
Taylor analysis for t. The second doss consists of terms which are calculate
for the same value of time but for different values of X. In the second doss
we use also Taylor analysis for variable X. We use ∆tj = tnj+1 − tnj and
∆Xj = Xtnj+1

−Xtnj
.

• Taylor for t: Exists tj ǫ [t
n
j , t

n
j+1] such that

g(tnj+1, Xtnj+1
)− g(tnj , Xtnj+1

) =
∂g

∂t
(tj , Xtnj+1

)∆tj

Using the continuity of derivatives for t of the function g we can prove that

lim
n→∞

n−1∑

j=0

∂g

∂t
(tj, Xtnj+1

)∆tj =

∫ t

0

∂g

∂s
(s,Xs)ds a.s.

• Taylor analysis for x: Exists Xj ǫ [Xtnj
, Xtnj+1

], such that

g(tnj , Xtnj+1
)− g(tnj , Xtnj

) =
∂g

∂x
(tnj , Xtnj

)∆Xj +
1

2

∂2g

∂x2
(tnj , Xj)∆X

2
j

This second doss needs more attention. First we obtain the approximation

∆Xj = u(tj , ω)∆tj + v(tj , ω)∆Bj

where ∆Bj = Btnj+1−Bn
t
and as tj we can choose tj = tnj . Using this approxi-

mation in Taylor for x we obtain

g(tnj , Xtnj+1
)− g(tnj , Xtnj

) =
∂g

∂x
(tnj , Xtnj

)u(tj , ω)∆tj +
∂g

∂x
(tnj , Xtnj

)u(tj, ω)∆Bj

+
1

2

∂2g

∂x2
(tnj , Xj)v(tj , ω)

2∆B2
j +

1

2

∂2g

∂x2
(tnj , Xj)u(tj, ω)∆t

2
j

︸ ︷︷ ︸

+
∂2g

∂x2
(tnj , Xj)u(tj , ω)v(tj, ω)∆tj,∆Bj

︸ ︷︷ ︸

The sum of the two underlined terms can be proved that tends to zero in L2

as n→ ∞. From the other terms we can see that

n−1∑

j=0

∂g

∂x
(tnj , Xtnj

)u(tj, ω)∆tj →
∫ t

0

∂g

∂x
(s,Xs)u(s,Xs)ds, n→ ∞
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and

n−1∑

j=0

∂g

∂x
(tnj , Xtnj

)u(tj, ω)∆Bj →
∫ t

0

∂g

∂x
(s,Xs)v(s,Xs)dBs, n→ ∞

where the limit is always in L2. The final term must be write as

1

2

∂2g

∂x2
(tnj , Xj)v(tj , ω)

2∆B2
j =

1

2

1

2

∂2g

∂x2
(tnj , Xj)v(tj , ω)

2∆tj

+
1

2

∂2g

∂x2
(tnj , Xj)v(tj , ω)

2(∆B2
j −∆tj)

+
1

2

(
∂2g

∂x2
(tnj , Xj)−

∂2g

∂x2
(tnj , Xtnj

)v2∆Bn
j

)

The sum of the semifinal term is zero because in L2 the limit of ∆B2
j −∆tj

is zero and the sum of final term is also zero because of the continuity of the
second derivatives of the function g as x. The sum of the first term is

n−1∑

j=0

1

2

∂2g

∂x2
(tnj , Xtnj

)v(tnj , ω)
2∆tj →

1

2

∫ t

0

∂2g

∂x2
(s,Xs)v(s, ω)

2dt

With this interval we and the proof.

Itô′s lemma is a very important result for stochastic analysis and is very
useful in many applications. Also, this Lemma applies in case when t is a
stopping time and is bounded. Finally, there are other forms of this Lemma
in which the function can satisfy weaker conditions than C1,2.

5.4 Itô processes on Rn

In this section we want to see Itô integral and processes on Rn, i.e. when
Wiener process is on Rn and the elements in integral are possible a vector
function.
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First, we will see the Itô integral on a multidimensional Wiener process.

Definition 5.7. Let consider Wt = (W1,t, ...,Wd,t)
T a d-dimensional Wiener

process and f ǫ Rn×d a family of adapted stochastic processes on filtration
Ft = σ(Ws, s ≤ t) which take values on space of matrices n× d. Equivalent
we can consider that f = {fij}, i = 1, ...n, j = 1, ..., d where fij ǫ R

are dimensional stochastic processes which are adapted on filtration Ft =
σ(Ws, s ≤ t). The Itô integral

∫ t

0
fdWs is a stochastic process It ǫ Rn×1

which has the form It = (I1,t, ..., In,t)
T where

Ii,t =
d∑

j=1

∫ t

0

fi,jdWj,s, i = 1, ..., n

and
∫ t

0
fijdWj,s is the dimensional integral of Itô.

So, we can write using matrices

∫ t

0

fdWs =

∫ t

0






f11 · · · f1d
...

...
fn1 · · · fnd











dW1,s
...

dWd,s




 =






∑d
j=1

∫ t

0
f1jdWj,s

...
∑d

j=1

∫ t

0
fnjdWj,s






The multidimensional Itô integral satisfies the properties of dimensional Itô
integral and for the proof use the properties of the dimensional Itô integral.

We want also see the Itô processes on Rn. Using the multidimensional Itô
integral we can define these.

Definition 5.8. Xt is a dimensional Itô process if

Xt = X0 +

∫ t

0

u(s, ω)ds+

d∑

i=1

∫ t

0

vi(s, ω)dWi,s
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where u and vi are adapted on Ft for all i and satisfies the next:

∫ T

0

|u(s, ω)|ds <∞,

∫ T

0

|vi(s, ω)|2ds <∞ a.s. 1 ≤ i ≤ d.

In differential form we can write

dXt = u(t, ω)dt+

d∑

i=1

vi(s, ω)dWi,t

Now we can define the n-dimensional Itô process.

Definition 5.9. A n-dimensional Itô process is a stochastic process Xt =
(X1,t, ..., Xn,t) where any Xi,t, i = 1, ..., n is an Itô process. More specifi-
cally, a n-dimensional Itô process is a stochastic process in the form Xt =
(X1,t, ..., Xn,t)

T where

Xi,t = Xi,0 +

∫ t

0

ui(s, ω)ds+

d∑

i=1

∫ t

0

vij(s, ω)dWj,s

The most simple multidimensional Itô process is a n-dimensional Wiener
process Wt = (W1,t, ...,Wn,t)

T .

5.5 Stochastic integral for Q-Wiener and Weak

Wiener processes

In this section, we define the integral

∫ t

0

Ψ(s)dWs, t ǫ [0, T ],

of an operator-valued stochastic process {Ψ(t), t ≥ 0} with respect to a Q-
Wiener processWt, t ≥ 0 (TrQ <∞),which is called the stochastic integral.
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Integrals of such form will be used for constructing solutions to stochastic
Cauchy problems in Hilbert spaces.
Let (Ω,F , P ) be a probability space and U and H be Hilbert spaces. Let us
discuss some properties of stochastic processes, which are essential for con-
structing the stochastic integral.

In this section, we assume that T is equal to [0,∞) or [0, T ]. Let us introduce
the notation

Ω∞ = [0,∞)× Ω, ΩT = [0, T ]× Ω.

On Ω∞, we introduce the σ-field B∞ generated by sets of the form

(s, t]× F, F ǫ Fs, 0 ≤ s < t <∞,

{0} × F, F ǫF0.

Denote by P∞ the product of the Lebesgue measure on [0,∞) with the prob-
ability measure P on Ω. Denote by BT the σ-field that is a restriction of B∞
to ΩT . It is easy to see that BT is generated by sets of the form

(s, t]× F, F ǫ Fs, 0 ≤ s < t < T, {0} × F, F ǫF0. (5.4)

Denote by PT the product of the Lebesgue measure on [0, T ] by the proba-
bility measure P on Ω.

Definition 5.10. (a) A measurable mapping from (Ω∞,P∞) or (ΩT ,PT )
into U,B(U) is said to be predictable.
(b)If, for any t ǫ T , the mapping u : (·, ·) : [0, t] × Ω → U is B([0, t]) × Ft-
measurable, then the process {u(t), t ǫ T } is said to be progressively measur-
able.

Proposition 5.2. An adapted and stochastically continuous process on an
interval [0, T ] has a progressively measurable and predictable version.
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We assume that (Ω,F , P ) is a probability space with a given normal filtra-
tion {Ft, t ≥ 0}.

Definition 5.11. An L(U,H)-valued process {Φ(t), t ǫ [0, T ]} is called step
if there exists a set 0 = t0 < t1 < ... < tk = T and L(U,H)-valued random
variables Φ0,Φ1, ...,Φk−1 such that Φm is Ftm-measurable and

Φ(t) = Φm, t ǫ (tm, tm+1],

for any m = 0, ..., k − 1.

Here and in what follows, the measurability of an L(U,H)-valued random
variables means the strong measurability.

Definition 5.12. A function Φ : Ω → L(U,H) is called to be strong mea-
surable if for any u ǫ U, Φ(·)u is measurable as a mapping from (Ω,F) into
(H,B(H)).

Let {Wt, t ≥ 0} be a Q-Wiener process with values in U. We assume that
Wt, t ≥ 0 is a process with respect to {Ft}, t ≥ 0, i.e.
(i) the random variable Wt is Ft-measurable for any t ≥ 0;
(ii) the increment Wt+h −Wt is independent of Ft for all t, h ≥ 0.
For an elementary process {Φ(t), t ǫ [0, T ]}, the stochastic integral with
respect to W (·), denoted by Φ ·W (·), is defined as follows:

∫ t

0

Φ(s)dWs :=

k−1∑

m=0

Φm(Wtm+1∧t −Wtm∧t), t ǫ [0, T ] (5.5)

Further, we indicate the class of L(U,H)-valued process for which the stochas-
tic integral can be defined as the mean-square limit(Definition 4.3) of sums
of the form (5.5).
Since Q is the covariance operator of {Wt, t ≥ 0}, it is a symmetric nonneg-
ative trace class operator, and there exists an orthonormal basis of eigenvec-
tors of Q {ej} in U. In the previous section, we introduce the Hilbert space
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U0 = Q1/2U with the norm ||u||U0 = ||Q−1/2u||U (Definition 4.9). It follows
from the definition that the system {gj} = {

√
λjej}, where λjej = Qej ,

forms an orthonormal basis in U0. Consider LGS(U0, H)-the space of Hilbert-
Schmidt operators mapping U0 into H.

Proposition 5.3. For any Ψ ǫ LGS(U0, H), the operators ΨΨ∗ and ΨQ1/2(ΨQ1/2)∗

act on H and
Tr[ΨΨ∗] = ||Ψ||2GS = Tr[ΨQΨ∗].

Proof. Let {fk}∞k=1 be an orthonormal basis in H. Using the definition of
adjoint operator, we obtain

Tr[ΨΨ∗] =
∞∑

k=1

〈ΨΨ∗fk, fk〉H =
∞∑

k=1

〈Ψ∗fk,Ψ
∗fk〉U0

=

∞∑

k=1

〈 ∞∑

j=1

〈Ψ∗fk, gj〉U0gj
,

∞∑

j=1

〈Ψ∗fk, gj〉U0gj

〉

U0

=

∞∑

k=1

∞∑

j=1

〈Ψ∗fk, gj〉U0
〈Ψ∗fk, gj〉U0

=

∞∑

k=1

∞∑

j=1

〈fk,Ψgj〉2H

=

∞∑

k=1

∞∑

k=1

〈fk,Ψgj〉2H =

∞∑

j=1

||Ψgj||2H = ||Ψ||2GS.

By the definition of the inner product in U0, for all h1, h2 ǫ U0, we have

〈h1, h2〉U0
=
〈
Q1/2h1, Q

1/2h2
〉

U
.

Taking into account that Q1/2 is self-adjoint in U0, we obtain

||Ψ||2GS =
∞∑

k=1

〈Ψ∗fk,Ψ
∗fk〉U0

=

∞∑

k=1

〈
Q1/2Ψ∗fk, Q

1/2Ψ∗fk
〉

U
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=

∞∑

k=1

〈ΨQΨ∗fk, fk〉H = Tr[ΨQΨ∗].

The following proposition shows that an operator from L(U,H) can be re-
garded as an element from LGS(U0, H).

Proposition 5.4. If Ψ ǫ L(U,H), then Ψ0 := Ψ|U0 belongs to LGS(U0, H)
and

Tr[ΨQΨ∗] = ||Ψ0||2GS = Tr[Ψ0Ψ
∗
0]. (5.6)

Proof. First, we show that Ψ0 ǫ LGS(U0, H). We have

||Ψ0||2GS =

∞∑

j=1

||Ψ0gj||2H =

∞∑

j=1

∣
∣
∣

∣
∣
∣Ψ
(√

λjej

)∣
∣
∣

∣
∣
∣

2

H
=

∞∑

j=1

λj||Ψej||2H ≤ ||Ψ||2
∞∑

j=1

λj <∞.

The second equality in (5.6) is valid by the previous proposition. We show
the first one. For the orthonormal basis {fk}∞k=1 in H , using the definiton of
adjoint operator, we obtain

Tr[ΨQΨ∗] =

∞∑

k=1

〈ΨQΨ∗fk, fk〉H =

∞∑

k=1

〈QΨ∗fk,Ψ
∗fk〉U

=

∞∑

k=1

〈 ∞∑

j=1

Q 〈Ψ∗fk, ej〉U ej,
∞∑

j=1

〈Ψ∗fk, ej〉U ej
〉

U

=
∞∑

k=1

〈 ∞∑

j=1

λj 〈Ψ∗fk, ej〉U ej,
∞∑

j=1

〈Ψ∗fk, ej〉U ej
〉

U

=
∞∑

k=1

∞∑

j=1

λj 〈Ψ∗fk, ej〉2U =
∞∑

k=1

∞∑

j=1

〈

Ψ∗fk,
√

λjej

〉2

U
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=

∞∑

k=1

∞∑

j=1

〈Ψ∗fk, gj〉2U =

∞∑

k=1

∞∑

j=1

〈fk,Ψgj〉2H

=
∞∑

j=1

∞∑

k=1

〈fk,Ψ0gj〉2H =
∞∑

j=1

||Ψ0gj ||2H = ||Ψ0||2GS.

The following theorem states a fundamental relation, which will be used in
the definition of the stochastic integral and in the description of the class of
integrable process. First, we will see another useful proposition.

Proposition 5.5. Let (H,B(H)) and (U,B(U)) be measurable spaces and
ψ : U × H → R be a bounded measurable function. Let u and w be two
random variables on (Ω,F , P ) assuming values in U and H, respectively, and
let G be a σ-field contained in F . Assume that w is G-measurable and u is
independent of G. Then

E(ψ(u, w)|G) = E(ψ(u, w)) P a.s.

Theorem 5.6 (Itô isometry). If {Φ(t), t ≥ 0} is an elementary process with
values in LGS(U0, H), and for some T ≤ ∞,

{

E

[∫ T

0

||Φ(s)||2GSds

]}1/2

<∞, (5.7)

then

E[||Φ ·Wt||2H] = E

[∫ t

0

||Φ(s)||2GSds

]

, 0 ≤ t ≤ T. (5.8)

Proof. Let t ǫ [0, T ]. For definiteness, we assume that t ǫ (tm, tm+1]. Denote,
∆Wj,t =Wtj+1∧t −Wtj∧t, j = 1, ..., m. Then

E[||Φ ·Wt||2H] = E





∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

m∑

j=0

Φj∆Wj,t

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

H





= E

[
m∑

j=0

||Φj∆Wj,t||2H

]

+ 2E

[
m∑

j=0

j−1
∑

i=0

〈Φi∆Wi,t,Φj∆Wj,t〉H

]

.
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For any 0 ≤ j ≤ m,

E[||Φj∆Wj,t||2H ] = E

[ ∞∑

k=1

〈Φj∆Wj,t, fk〉2H

]

=
∞∑

k=1

E[
〈
∆Wj,t,Φ

∗
jfk
〉2

H
].

By the definition of the elementary process, for any u ǫ U, the random
variable Φju is Ftj -measurable with respect to B(H). Therefore, 〈Φju, h〉H
is Ftj measurable with respect to B(R) for all h ǫ H. Hence

〈
u,Φ∗

jh
〉

U
is Ftj

measurable with respect to B(R) for all u ǫ U ; this implies that Φ∗
jh is Ftj

measurable with respect to B(U). This and the fact that ∆Wj,t is independent
of Ftj imply

E[||Φj∆Wj,t||2H ] =
∞∑

k=1

E[E[
〈
∆Wj,t,Φ

∗
jfk
〉2

U
|Ftj ]],

where, by Proposition 5.4 and the definition of the covariance operator,

E[
〈
∆Wj,t,Φ

∗
jfk
〉2

U
|Ftj ] = E[

〈
∆Wj,t,Φ

∗
jfk
〉2

U
]

=
〈
Cov[∆Wj,t]Φ

∗
jfk,Φ

∗
jfk
〉2

U
= (tj+1 − tj)

〈
QΦ∗

jfk,Φ
∗
jfk
〉

U
.

Hence,

∞∑

k=1

E[E[
〈
∆Wj,t,Φ

∗
jfk
〉2

H
|Ftj ]] =

∞∑

k=1

E[
〈
(tj+1 − tj)QΦ

∗
jfk,Φ

∗
jfk
〉

U
]

= (tj+1 − tj)

∞∑

k=1

E[
〈
ΦjQΦ

∗
jfk, fk

〉

H
] = (tj+1 − tj)E

[ ∞∑

k=1

〈
ΦjQΦ

∗
jfk, fk

〉

H

]

= (tj+1 − tj)E[Tr[ΦjQΦ
∗
j ]].

For j = m, the increment ∆Wm,t = Wt −Wtm is independent of Ftm since
t > tm. The same argument yields

E[||Φm∆Wm,t||2H ] = (t− tm)E[Tr[ΦmQΦ
∗
m]].

Therefore,

E

[
m∑

j=0

||Φj∆Wj,t||2H

]

=
m∑

j=0

((tj+1 ∧ t)− (tj ∧ t))E[||Φj ||2GS]
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= E

[
m∑

j=0

((tj+1 ∧ t)− (tj ∧ t)) ||Φj ||2GS

]

= E

[∫ t

0

||Φ(s)||2GSds

]

.

For j 6= i, we have E[〈Φi∆Wi,t,Φj∆Wj,t〉H ] = 0.

Finally we obtain (5.8).

Now we are ready to define the stochastic integral with respect to a Q-Wiener
process.However, we will see first one more proposition.

Proposition 5.6. For a Hilbert space H (a separable metric space (H, ρ))
and an H-valued random variable u, there exists a sequence of simply H-valued
random variables {un} such that ρ(u(ω), un(ω)) decreases monotonically to
zero for any ω ǫ Ω.

Theorem 5.7. The following statements hold:
(i)if a mapping of the set ΩT into L(U,H) is L(U,H)-predictable, then it is
LGS(U0, H)-predictable. In particular, elementary process are LGS(U0, H)-
predictable;
(ii) if {Ψ(t), t ǫ [0, T ]} is an LGS(U0, H)-predictable process with property
(5.7), then there exists a sequence {Ψn(t), t ǫ [0, T ]} of elementary processes
such that

E

[∫ T

0

||Ψ(s)−Ψn(s)||2GSds

]

→ 0 as n→ ∞. (5.9)

Proof. It is proved that for any set from a σ-field on LGS(U0, H), its inverse
image G is measurable in ΩT , which is due to the fact that G can be approx-
imated by sets of the form (5.4). Hence, by Proposition 5.4, {Ψ(t), t ≥ 0} is
LGS(U0, H)-predictable.
By Proposition 5.4, the space L(U,H) is densely embedded into LGS(U0, H).
Next, by Proposition 5.6, there exists a sequence {Ψn} of elementary L(U,H)-
valued predictable processes on [0,T] such that

||Ψ(ω, t)−Ψn(ω, t)||GS → 0 as n→ ∞
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for all (ω, t) ǫ ΩT . Consequently, (5.9) holds.

Thus, we can introduce the class of stochastically integrable processes. It fol-
lows from Theorem 5.7 that under condition (5.7) they are L(U,H)-predictable
processes.
We note that the integral is constructed with respect to a Q-Wiener pro-
cess. However, as was shown in the previous section, a weak Wiener process
can also be regarded as a Q1-Wiener process in the Hilbert space U1. There-
fore, the above definition is applicable to integrals with respect to Q-Wiener
processes and also those with respect to weak Wiener processes.
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Chapter 6

Stochastic Convolution

Let (Ω,F , P ) be a probability space with a given normal filtration
{Ft, t ≥ 0}, and let U and H be a separable Hilbert spaces.
In this chapter we consider the stochastic Cauchy problem:

du(t) = Au(t)dt+BdW (t) , t ǫ [0, T ), T ≤ ∞, u(0) = ξ, (6.1)

with A being the generator of a strongly continuous semigroup of operators
{S(t), t ≥ 0} in H.

Definition 6.1. Let T be a semigroup. The generator of T, denoted by A,
is given by the equation:

Af = lim
t→0+

Atf = lim
t→0+

T (t)− f

t

where the limit is evaluated in terms of the norm on H and f is in the domain
of A if and only if this limit exists.

Definition 6.2. A one parameter family of bounded linear operators
{S(t), t ≥ 0} on H is called a strongly continuous semigroup (or a semi-
group of class C0) if the following conditions hold:
(i) the semigroup property:S(t+ s) = S(t) + S(s), t, s ≥ 0
(ii) S(0) = I
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(iii) the operator function S(t) is strongly continuous with respect to t ≥ 0.

We assume that {W (t), t ≥ 0} is a Q-Wiener process with respect to
{Ft, t ≥ 0} with values in U,B is a bounded linear operator from U into H ,
and ξ is an F0-measurable H-valued random variable.

6.1 C0-semigroups and well-posedness of the

deterministic Cauchy Problem

Before defining solutions of the stochastic Cauchy problem (6.1), we turn to
the deterministic problems

u′(t) = Au(t) + f(t), tǫ [0, t), T ≤ ∞, u(0) = x ǫ D(A) ⊂ H, (6.2)

u′(t) = Au(t), t ǫ [0, T ), T ≤ ∞, u(0) = x ǫ D(A) ⊂ H, (6.3)

and recall the conditions for their well-posedness. The results on the well-
posedness of problems (6.2) and (6.3) given here are valid in an arbitrary
Hilbert space H.

Remark : The IVP given by

d

dt
u(t) = a[u(t)], t ≤ 0, u(0) = f

with A being linear, is well posed if and only if A is the generator of a semi-
group T.

This turns out to be quite important as it provides both necessary and suf-
ficient conditions to determine if a problem is well-posed.
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Definition 6.3. A solution of the deterministic Cauchy problem (6.2) is
a function u(·) ǫ C([0, T );D(A)) ∩ C1([0, T );H∗), satisfying the initial con-
dition and Eq. (6.2)

Definition 6.4. The homogeneous deterministic Cauchy problem (6.3) is
said to be uniformly well posed if for any x ǫ D(A), if there exists a unique
solution to (6.3) such that for all t ǫ [0, T ),

||u(t)||H ≤ C||x||H,

for some constant C > 0.

Owing to the differential operator structure of the equation, the well-posedness
of (6.2), (6.3) is closely to the theory of semigroups of operators.

The operator A in Definition 6.2 defined by

Ax := S ′(0)x = lim
t→0

t−1(S(t)− I)x,

with the domain

D(A) = {x ǫ H : lim
t→0

t−1(S(t)− I)x exists},

is called the generator of the semigroup {S(t), t ≥ 0}.

The generator of a strongly continuous semigroup is a closed densely defined
operator commuting with the semigroup on its own domain, and

S(t)Ax = AS(t)x = S ′(t)x, t ≥ 0, x ǫ D(A). (6.4)

A strongly continuous semigroup is exponential bounded:

||S(t)||H ≤ Ceat, t ≥ 0,

for some constants C > 0 and a ǫ R. Owing to this property, the Laplace
transform of the semigroup is well defined and gives an equivalent definition
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of the generator as an operator A satisfying the relation

(λI − A)−1x =

∫ ∞

0

e−λtS(t)xdt, x ǫ H, Reλ > a.

This relation obviously implies that the domain of the generator coincides
with the range of its resolvent:D(A) = ran(λI −A)−1.

Remark :[Hille-Yosida Theorem]
A linear unbounded operator A is the generator of a C0 semigroup if and
only if:
(i) A is a closed operator,
(ii) A has dense domain (D(A)),
(iii) for each λ > 0, λ ǫ ρ(A), and
(iv) ||R(λ,A)|| ≤ 1

λ
.

The Hille-Yosida Theorem is very powerful as it gives us both necessary and
sufficient conditions.

One of the main well-posedness results for the deterministic Cauchy problem
can be formulated as follows.

Theorem 6.1. Let A be a linear operator with nonempty resolvent set
(ρ(A) 6= ∅). Then the following assertions are equivalent:
(i) the homogeneous Cauchy problem (6.3) is uniformly well posed;
(ii) the operator A is the generator of the strongly continuous semigroup
{S(t), t ≥ 0} in H;
(iii) the resolvent of A satisfies the Hille-Yosida type conditions: there exists
constants C > 0 and a ǫ R such that

∣
∣
∣
∣

∣
∣
∣
∣

dk

dλk
(λI − A)−1

∣
∣
∣
∣

∣
∣
∣
∣
L(H)

≤ Ck!

(Reλ− a)k+1
, k = 0, 1, 2, ... (6.5)

for all λ ǫ C with Reλ > a.
In this case, for any x ǫ D(A), the solution to the problem (6.3) is given
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by u(t) = S(t)x, t ≥ 0. If, moreover, f ǫ C([0, T ), D(A)), then for any
x ǫ D(A),

u(t) = S(t)x+

∫ t

0

S(t− s)f(s)ds, t ǫ [0, T ), (6.6)

is a solution to (6.2).

6.2 Solution to the stochastic Cauchy prob-

lem

We now discuss the notion of solutions to the stochastic Cauchy problem
(6.1).

Definition 6.5. An H-valued predictable process {u(t), t ǫ [0, T )} is said to
be strong solution to (6.1) if
(i)u(t) takes values in D(A) PT a.s.

(ii)
∫ T

0
||Au(t)||Hdt <∞ P a.s.

(iii) for any t ǫ [0, T ),

u(t) = ξ +

∫ t

0

Au(s)ds+BW (t), P a.s.

In other words, a strong solution is a predictable process {u(t), ǫ [0, T )}
taking values in D(A) for almost all t ǫ [0, T ) and ω ǫ Ω such that the tra-
jectories of the process {Au(t), t ǫ [0, T )} are integrated for almost ω ǫ Ω, it
satisfies the integrable equation (6.1) and are called mild solution.

Note that the definition of a strong solution implies that the process
{BW (t), t ≥ 0} should be well defined as an H-valued stochastic process.
Therefore, this definition has a sense for a Q-Wiener process {W (t), t ≥ 0}
only if TrBQB∗ <∞, where B is a bounded operator U into H.

We will show that the requirement that a solution belong to D(A) is a strong
restriction on the class of admissible processes (Theorem 6.6). For this rea-
son, we introduce one more definition of a solution to (6.1).
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Definition 6.6. An H-valued predictable process {u(t), t ǫ [0, T )} is said to
be a weak solution to (6.1) if

(i)
∫ T

0
||u(t)||Hdt <∞ P a.s.

(ii)for any y ǫ D(A∗) and t ǫ [0, T ).

〈u(t), y〉H = 〈ξ, y〉H +

∫ t

0

〈u(s), A∗y〉H ds+ 〈BW (t), y〉H , P a.s. (6.7)

Similarly to the solution (6.6) of the deterministic Cauchy problem, we show
that any solution to the stochastic problem (6.1) is the sum of the pro-
cess {S(t)ξ, t ≥ 0} and a special kind of the stochastic integral, called the
stochastic convolution :

WA(t) :=

∫ t

0

S(t− s)BdW (s), t ǫ [0, T ) (6.8)

that is, we show that the process

u(t) = S(t)ξ +

∫ t

0

S(t− s)BdW (s), t ǫ [0, T ) (6.9)

gives a solution to (6.1). it is easy to see that {S(t)ξ, t ≥ 0} is the
adapted process as an action of deterministic process {S(t), t ≥ 0} on the
F0-measurable random variable ξ. For the same reason, it is stochastically
continuous, and hence, by Proposition 5.2, it has a predictable version. The
expectation of the process is

E(S(t)ξ) = S(t)E(ξ), t ≥ 0.

Let us find its covariation operator. For all h1, h2 ǫ H and t ≥ 0,

〈Cov(S(t)ξ)h1, h2〉H = E 〈S(t)ξ − S(t)E(ξ), h1〉H 〈S(t)ξ − S(t)E(ξ), h2〉H
= E 〈S(t)ξ, h1〉H 〈S(t)ξ, h2〉H − E 〈S(t)E(ξ), h1〉H 〈S(t)(ξ), h2〉H
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−E 〈S(t)ξ, h1〉H 〈S(t)E(ξ), h2〉H + E 〈S(t)E(ξ), h1〉H 〈S(t)E(ξ), h2〉H

= E

∞∑

j=1

〈S(t)ξ, ej〉2H 〈h1, ej〉H 〈h2, ej〉H − 〈S(t)ξ, h1〉H 〈S(t)E(ξ), h2〉H .

By the definition of the adjoint operator and the covariance of a real-valued
random variable, we obtain

〈Cov(S(t)ξ)h1, h2〉H

=

∞∑

j=1

〈h1, ej〉H 〈h2, ej〉H E 〈ξ, S(t)∗ej〉2H − 〈S(t)E(ξ), h1〉H 〈S(t)E(ξ), h2〉H

=
∞∑

j=1

〈h1, ej〉H 〈h2, ej〉H 〈Cov(ξ), S(t)∗ej〉H −〈S(t)E(ξ), h1〉H 〈S(t)E(ξ), h2〉H

∞∑

j=1

〈h1, ej〉H 〈h2, ej〉H 〈S(t)Cov(ξ), ej〉H − 〈S(t)E(ξ), h1〉H 〈S(t),E(ξ), h2〉H

= 〈S(t)Cov(ξ)h1, h2〉H − 〈S(t)E(ξ), h1〉H 〈S(t)E(ξ), h2〉H
and all h1, h2 ǫ H and t ≥ 0. In particular, if E(ξ) = 0, then

Cov(S(t)ξ) = S(t)Cov(ξ), t ≥ 0.

Let us study the properties of the stochastic convolution.

Theorem 6.2. Let B be a bounded operator from U into H and A be the
generator of a strongly continuous semigroup {S(t), t ≥ 0} in H such that
S(t)B ǫ LHS(U,H) for all t ≥ 0. Let

∫ T

0

||S(t)B||2GSdt <∞ (6.10)

for some T ≤ ∞. Then the stochastic convolution WA(t), t ǫ [0, T ) is an
H-valued Gaussian process with a predictable version and mean square con-
tinuous on [0, T ) with the characteristics

E(WA(t)) = 0, Cov(WA(t)) =

∫ t

0

S(t− s)BQB∗S∗(t− s)ds, t ǫ [0, T ).

(6.11)
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Proof. We note that S(t)B, t ≥ 0 is LHS(U,H) predictable as a deterministic
process, and hence

E

∫ t

0

||S(r)B||2GSdr =

∫ t

0

||S(r)B||2GSdr, t ǫ [0, T ).

By Theorem 5.7, it follows from (6.10) and the above relation that the
stochastic convolution is well defined. By definition, the stochastic convolu-
tion is the limit of integrals of elementary processes approximating the de-
terministic process S(t)B, t ≥ 0. Taking into account that {∆W (t), t ≥ 0}
are Gaussian processes, we obtain that the process {WA(t), t ≥ 0} is also
Gaussian. To show its mean-square continuity, we take 0 ≤ s ≤ t < T ; then

E[||WA(t)−WA(s)||2H ] = E

[∣
∣
∣
∣

∣
∣
∣
∣

∫ t

0

S(t− r)BdW (r)−
∫ s

0

S(s− r)BdW (r)

∣
∣
∣
∣

∣
∣
∣
∣

2

H

]

= E

[∣
∣
∣

∣
∣
∣

∫ t

0
S(t− r)BdW (r)−

∫ t

t−s
S(t− r)BdW (r)

∣
∣
∣

∣
∣
∣

2

H

]

E

[∣
∣
∣

∣
∣
∣

∫ t−s

0
S(t− r)BdW (r)

∣
∣
∣

∣
∣
∣

2

H

]

.

Itô′s isometry (Theorem 5.6) implies

E[||WA(t)−WA(s)||2H ] = E

[∫ t−s

0

||S(t− r)B||2GSdr

]

=

∫ t−s

0

||S(t−r)B||2GSdr,

which proves the mean-square continuity. To prove (6.11), we recall that
S(t)B ǫ LHS(U,H) for all t ǫ [0, T ). Therefore, S(t)BQ1/2 ǫ LHS(U,H) and
(S(t)BQ1/2)∗ ǫ LHS(H,U). Then by Proposition 4.2, the operator
S(t)BQB∗S∗(t) ǫ LN(H,U) and

||S(t)BQB∗S∗(t)||N ≤ ||S(t)BQ1/2||HS · ||S(t)BQ1/2||HS, t ǫ [0, T ).

Hence the integral in (6.11) is well defined as a Bochner integral. Now con-
sider the moments of stochastic convolution. We have

E(WA(t)) = E

(∫ t

0

S(t− s)BdW (s)

)

=

∫ t

0

S(t− s)BE(dW (s)) = 0
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For the covariance operator, we obtain

〈Cov(WA(t))h1, h2〉H = E 〈WA(t), h1〉H 〈WA(t), h2〉H

= E

〈∫ t

0

S(t− s)BdW (s), h1

〉

H

〈∫ t

0

S(t− s)BdW (s), h2

〉

H

= E

n∑

k=1

〈S(t− sk)B∆Wk, h1〉H
n∑

k=1

〈S(t− sk)B∆Wk, h2〉H

= E

n∑

0

〈∆Wk, (S(t− sk)B)∗h1〉H
n∑

k=1

〈∆Wk, (S(t− sk)B
∗)h2〉H

= E

n∑

k=1

〈

∆Wk,
∞∑

j=1

〈(S(t− sk)B)∗h1, ej〉 ej
〉

H

n∑

k=1

〈

∆Wk,
∞∑

j=1

〈(S(t− sk)B)∗h2, ej〉 ej
〉

H

= E

n∑

k=1

∞∑

j=1

〈∆Wk, ej〉2H 〈(S(t− sk)B)∗h1, ej〉H 〈(S(t− sk)B)∗h2, ej〉H

=

n∑

k=1

∞∑

j=1

〈∆skQej , ej〉H 〈(S(t− sk)B)∗h1, ej〉H 〈(S(t− sk)B)∗h2, ej〉H

=
n∑

k=1

∞∑

j=1

λj 〈(S(t− sk)B)∗h1, ej〉H 〈(S(t− sk)B)∗h2, ej〉H ∆sk

n∑

k=1

∞∑

j=1

〈
(S(t− sk)B)∗h1, Q

1/2ej
〉

H

〈
(S(t− sk)B)∗h2, Q

1/2ej
〉

H
∆sk

n∑

k=1

〈
Q1/2(S(t− sk)B)∗h1, Q

1/2(S(t− sk)B)∗h2
〉

H
∆sk

=

∫ t

0

〈S(t− s)BQB∗S(t− s)∗h1, h2〉H ds

for all h1, h2 ǫ H.
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Remark :[Fubini’s Theorem]

An always important tool for the computation of integral on product spaces
is Fubini’s theorem. We consider first the case of non-negative functions.

Let (E, ε) be a measureble space and let Φ : (t, ω, x) → Φt(ω, x) be a measur-
able mapping from (R+×Ω×E,P ⊗E) into (L0

2(H),B(L0
2(H))). In addition

let µ denote a finite positive measure on (E, E).
Fix T > 0. By localization we get the following version of

Theorem (The Stochastic Fubini Theorem). Assume that

∫ T

0

∫

E

||Φt(x)||2L0
2(H)µ(dx)dt <∞, P− a.s.

Then there exists an FT ⊗ E -measurable version ξ(ω, x) of the stochastic

integral
∫ T

0
Φt(x)dWt which is µ-integrable P-a.s. such that

∫

E

ξ(x)µ(dx) =

∫ T

0

(∫

E

Φt(x)µ(dx)

)

dWt, P− a.s.

Theorem 6.3. Under the conditions of Theorem 6.2 , the process

u(t) = S(t)ξ +

∫ t

0

S(t− s)BdW (s), t ǫ [0, T )

is a weak solution to

du(t) = Au(t) +BdW (s), t ǫ [0, T ), T ≤ ∞, u(0) = ξ

Proof. We note that process (6.9) is predictable with integrable trajectories
as a sum of processes with these properties. To prove (6.7), we take arbitrary
t ǫ [0, T ) and y ǫ D(A∗) and consider the integral

∫ t

0

〈u(s), A∗y〉H ds =
∫ t

0

〈S(s)ξ, A∗y〉H ds+
∫ t

0

〈WA(s), A
∗y〉H ds. (6.12)

Since A generates the strongly continuous semigroup {S(t), t ≥ 0} in H , its
dual A∗ generates the strongly continuous semigroup {S∗(t), t ≥ 0} in H∗.
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Therefore, for y ǫ D(A∗), property (6.4) of a strongly continuous semigroup
implies

∫ t

0

〈S(s)ξ, A∗y〉H ds =
∫ t

0

〈ξ, S∗(s)A∗y〉H ds =
〈

ξ,

∫ t

0

S∗(s)A∗yds

〉

H

=

〈

ξ,

∫ t

0

d

ds
(S∗(s)y)ds

〉

H

= 〈ξ, (S∗(t)− S∗(0)y)〉H

= 〈S(t)ξ − ξ, y〉H = 〈S(t)ξ, y〉H − 〈ξ, y〉H
for the first term in (6.12). we apply the stochastic Fubini theorem to the
second term in (6.12) and obtain

∫ t

0

〈WA(s), A
∗y〉H ds =

∫ t

0

〈∫ s

0

S(s− r)BdW (r), A∗y

〉

H

ds

=

〈∫ t

0

∫ t

r

S(s− r)BdsdW (r), A∗y

〉

H

.

By the definition of the stochastic integral and using the properties of the
adjoint operator and the continuity of inner product, we have

∫ t

0

〈WA(s), A
∗y〉H ds =

〈

lim
n→∞

n−1∑

m=0

(∫ t

rm

S(s− rm)Bds

)

(W (rm + 1)−W (rm)), A
∗y

〉

H

= lim
n→∞

n−1∑

m=0

〈

W (rm+1)−W (rm),

(∫ t

rm

S(s− rm)Bds

)∗
A∗y

〉

H

= lim
n→∞

n−1∑

m=0

〈

W (rm+1)−W (rm),

(∫ t

rm

B∗S∗(s− rm)ds

)

A∗y

〉

H

= lim
n→∞

n−1∑

m=0

〈

W (rm+1)−W (rm),

∫ t

rm

B∗S∗(s− rm)A
∗yds

〉

H

= lim
n→∞

n−1∑

m=0

〈

W (rm+1)−W (rm),

∫ t

rm

d

ds
(B∗S∗(s− rm)y)ds

〉

H
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= lim
n→∞

n−1∑

m=0

〈
W (rm+1)−W (rm), [B

∗S∗(s− rm)y]
t
rm

〉

H

= lim
n→∞

n−1∑

m=0

〈(S(t− rm)B − B)(W (rm+1)−W (rm)), y〉H

=

〈∫ t

0

(S(t− r)B −B)dW (r), y

〉

H

= 〈WA(t), y〉H − 〈BW (t), y〉H .

Substituting the above expressions in (6.12), we obtain

∫ t

0

〈u(s), A∗y〉h ds = 〈S(t)ξ, y〉H − 〈ξ, y〉H + 〈WA(t), y〉H − 〈BW (t), y〉H

= 〈u(t), y〉H − 〈ξ, y〉H − 〈BW (t), y〉H
which proves (6.7).

To prove that the solution (6.9) is unique we need the following result.

Lemma 6.1. Let u(t), t ǫ [0, T ) be a weak solution to (6.1) with ξ = 0. Then
for arbitrary y(·) ǫ C1([0, T ); dD(A∗)) and t ǫ [0, T ) we have the representa-
tion

〈u(t), y(t)〉H =

∫ t

0

〈u(s), y′(s) + A∗y(s)〉H ds+
∫ t

0

〈BdW (s), y(s)〉H . (6.13)

Proof. First, let us consider the function y(·) of the form y(t) = f(t)y0, t ǫ [0, T ),
where y0 ǫ D(A∗) and f(·) ǫ C1([0, T )). For any t ǫ [0, T ), we have

〈u(t), y0〉H =

∫ t

0

〈u(s), A∗y0〉H ds+ 〈BW (t), y0〉H .
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For the real-valued process 〈u(s), y0〉H f(s), s ǫ [0, T ), Itô′s formula gives

d(〈u(s), y0〉H f(s)) = f(s)d 〈u(s), y0〉H + f ′(s) 〈u(s), y0〉H ds.
Hence,

〈u(t), y0〉H f(t) =
∫ t

0

f(s) 〈u(s), A∗y0〉H ds+
∫ t

0

〈BdW (s), f(s)y0〉H+
∫ t

0

f ′(s) 〈u(s), y0〉H ds,

which implies (6.13) for the functions y(·) considered. Since these functions
form a dense subset in C1([0, T );D(A∗)), the proof is completed.

Theorem 6.4. The weak solution (6.9) to the problem (6.1) is unique.

Proof. By the properties of the well-posed deterministic abstract Cauchy
problem, it suffices, to prove that the weak solution (6.9) corresponding to
ξ = 0 is unique. Let y0 ǫ D(A∗) and t ǫ [0, T ). We apply Lemma 6.1 to
y(s) = S∗(t − s)y0, s ǫ [0, t]; using the properties of strongly continuous
semigroups, we obtain

〈u(t), y(t)〉H = 〈u(t), S∗(0)y0〉H = 〈u(t), y0〉H

=

∫ t

0

〈u(s), y′(s)〉H ds+
∫ t

0

〈u(s), A∗y(s)〉H ds+
∫ t

0

〈y(s), BdW (s)〉H

=

∫ t

0

〈

u(s),
d

ds
S∗(t− s)y0

〉

H

−
∫ t

0

〈

u(s),
d

ds
S∗(t− s)y0

〉

H

+

∫ t

0

〈y(s), BdW (s)〉H

∫ t

0

〈y(s), BdW (s)〉H =

∫ t

0

〈S∗(t− s)y0, BdW (s)〉H =

∫ t

0

〈y0, S(t− s)BdW (s)〉H .

Since D(A∗) is defined in H , we conclude that u(t) =WA(t), t ǫ [0, T ).
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The following result is devoted to the continuity of the obtained weak solu-
tion to (6.1).

Theorem 6.5. Assume that U = H, B = I, and for some a > 0,

∫ T

0

s−a||S(s)||2GSds <∞.

Then the weak solution to (6.1) has a continuous version.

Thus, we have discussed weak solutions to (6.1). For strong solutions, the
following result holds.

Theorem 6.6. Let Q be a trace class operator in U, U = H, and A ǫ LGS(H).
Let ξ ǫ D(A), P a.s. Then (6.9) is a strong solution to (6.1).

In accordance with this theorem, the existence of a strong solution to (6.1)
is not guaranteed even for a bounded operator A. A strong solution exists
only for Hilbert-Schmidt operators. This condition on A is connected with
requirements (i) and (ii) of Definition 6.4 : the stochastic convolution should
take values in D(A) and trajectories of the process {AWA(t), t ǫ [0, T )}
should be integrated almost surely. The lack of smoothness of a Wiener
process implies a stronger requirement as compared with the requirements
on A in the deterministic case. Therefore, the existence of weak solutions
is more interesting from the applied point of view. The regularity for the
deterministic problem u′(t) ǫ Au(t) + f , we need A be a bounded generator
for strongly semigroup and also f ǫ C1([0, T ];H), where f has a form
f = BdW (t).
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Chapter 7

The Heath Jarrow Morton

Model

We now present the stochastic model of a bond market riskless zero coupon
bonds, and we take advantage of our short excursion in the world of infinite
dimensional stochastic analysis to generalized the HJM model.

We introduce the time value of money by valuing the simplest possible fixed
income instrument. Like for all the other financial instruments considered in
this book, we define it by specifying its cash flow. In the present situation,the
instrument provides a single payment of a fixed amount (the principal or
nominal value X) at a given date in the future. This date is called the
maturity date. If the time to maturity is exactly n years, the present value
of this instrument is:

P (X, n) =
1

(1 + r)n
X.

This formula gives the present value of a nominal amount X due in n years
time. Such an instrument is called a discount bond or a zero coupon bond
because the only cash exchange takes place at the end of the life of the
instrument, i.e. at the date of maturity. The positive number r is referred to
as the annual discount rate or spot interest rate for time to maturity n since
it is the interest rate which is applicable today on an n-year loan.
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7.1 The Bond Market

Throughout this chapter we assume the existence of a frictionless market
(in particular we ignore transaction costs) for riskless zero coupon bonds of
all maturities. As before, we follow the convention in use in the financial
mathematics literature and we denote by P (t, T ) the price at time t of a zero
coupon bond with maturity date T and nominal value 1 euro. So we assume
the existence of a filtered probability space (Ω,F , {Ft}t≥0,P) and for each
T > 0, of a non-negative adapted process {P (t, T ); 0 ≤ t ≤ T} which satisfies
P (T, T ) = 1. We shall specify the dynamics of the bond prices in an indirect
way, namely through prescriptions for the instantaneous forward rates, but
as explained earlier, this is quite all right. We assume that our bond prices
P (t, T ) are differentiable functions of the maturity date T, so we define the
instantaneous forward rates as:

f(t, T ) = −∂ logP (t, T )
∂T

in such a way that:

P (t, T ) = exp

(

−
∫ T

t

f(t, s)ds

)

.

We shall use also Musiela’s notation:

Pt(x) = P (t, t+ x) and ft(x) = f(t, t+ x), t, x ≥ 0.

7.2 The HJM Evolution Equation

One of the goals of this chapter is to analyse the HJM equation:

dft(x) =

(
∂

∂x
ft(x) + at(x)

)

dt+

∞∑

i=1

σi
t(x)dw

i
t (7.1)

where {w(i)}i are independent scalar Wiener processes, and where the drift
is given by the famous HJM no-arbitrage condition

at(x) =

∞∑

i=1

σi
t(x)

(∫ x

0

σi
t(u)du+ λit

)

. (7.2)
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The theory of financial mathematics is based upon the assumption of (long
term) arbitrage opportunities. This Assumption is compatible with the the-
ory of generator function in financial mathematics.
An arbitrage opportunity is a portfolio that generates a certain process.

We would like to think of the forward rate curve x 7→ ft(x) as an Ft measur-
able random vector taking values in a function space F. Once we choose an
appropriate space F, we will interpret Eq. (7.1) by rewriting it as a stochastic
evolution equation in F.

We consider w = {w(i)} a cylindrical Wiener process. The cylindrical Wiener
process is a generalization of the Q-Wiener process.

Definition 7.1. A cylindrical Wiener process on a Hilbert space V is a fam-
ily of mappings W̌ (t, ω) : V → L2(Ω,F , P ;R) such that for every u ǫ V, the
real-valued random variable W̌ (t, ω)(v) :=

〈
W̌ (t, ω), v

〉
follows the centered

normal distribution N(0, t) and E[W̌ (t, ω)(v1)W̌ (t, ω)(v2)] = t(v1, v2)V .

We would also like to think of our Wiener process as a cylindrical Wiener
process defined on a real separable Hilbert space G.
We do not even need any special features of the space G except that it is
infinite dimensional. Because the eigenvalues of a HilbertSchmidt operator
must decay fast enough for the sum of their squares to be finite, assuming
that G is infinite dimensional does not disagree with the principal component
analysis, used to justify the introduction of models with finitely many factors
or HJM models with finite rank volatility. No generality would be lost letting
G = ℓ2 and the reader is free to substitute ℓ2 everywhere G appears in what
follows. Of course, choosing G = ℓ2 is equivalent to fixing a basis for G and
working with the coordinates of vectors expressed in this basis. We prefer,
though, to keep our presentation free of coordinates whenever possible. Also,
keeping G unspecified allows for the possibility that the Wiener process takes
values in a function space. Equivalently, the infinite dimensional Wiener pro-
cess may be viewed as a two parameter random field with a tensor covariant
structure. In any event, we pick our favorite G once and for all, and fix it for
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the remainder of the chapter. To simplify the presentation, we will always
identify G with its dual G∗.

7.2.1 Function Spaces for Forward Curves

The first ask is term structure modelling is to choose the state space F for the
forward rate dynamics in such a way that the mathematical analysis of Eq.
(7.1) is clean. However this space should be general enough to accommodate
as large a family of models as possible. We now list the assumptions that we
use to carry out this analysis.

Assumption 7.1. 1. The space F is a separable Hilbert space and the
elements of F are continuous, real-valued functions. The domain χ of these
functions is either a bounded interval [0, xmax] or the half-line R+. We also
assume that for every x ǫ χ, the evaluation functional:

δx(f) = f(x)

is well-defined, and is in fact a continuous linear function on F, i.e. an ele-
ment of the dual space F ∗.

2. The semigroup {St}t≥0 where {St} is the left shift operator , is strongly
continuous and defined by:

(Stf)(x) = f(t+ x) (7.3)

The generator of {St}t≥0 is the (possibly unbounded) operator A.

3. The map FHJM is measurable from some non-empty subsetD ⊂ LHS(G,F )
into F where the HJM map FHJM is defined by

FHJM(σ)(x) = 〈σ∗δx, σ
∗Ix〉G

for each σ ǫ LHS(G,F ), where G is a given real separable Hilbert space and
The definite integration functional Ix defined by

Ix(f) =

∫ x

0

f(s)ds
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is continuous on F for each x ǫ χ since
∣
∣
∣
∣

∫ x

0

f(s)ds

∣
∣
∣
∣
≤ x sup

sǫ[0,x]

|f(x)| ≤ x sup
sǫ[0,x]

||δs||F ∗||f ||F

and supsǫ[0,x] ||δs||F ∗ is finite by the Banach-Steinhaus theorem.

Let us remark on these assumptions. The most important property that
the space F should have is that elements of F should be locally integrable
functions indeed, the formula for the bond price:

P (t, T ) = exp

(

−
∫ T−t

0

ft(s)ds

)

,

should make sense. For instance, the classical Lebesgue spaces Lp(R+) have
this property. Recall, however, that space Lp(R+) is in fact a space of equiv-
alent classes of functions. As such, its elements are only defined almost
everywhere, and they cannot be evaluated on a set of measure zero.
In our analysis, we will find it necessary to be able to evaluate a forward
curve (i.e. an element of the space F ) at a given time to maturity.
Fortunately, almost everyone working with the term structure of interest
rates would agree that the forward curves should be smooth functions of the
time to maturity. Hence our Assumption 7.1.1 is reasonable. Of course, the
elements of F are locally integrable, but more is true.

Remark : Let X, Y be normed spaces and let S ⊂ B(X, Y ). Assume that

D := {x ǫ X| sup
TǫS

||Tx|| <∞}

is fat in X. In particular, D = X.

The financial implication of Assumption 7.1.1 is that the short interest rate
rt is well-defined as:

rt = ft(0)

Once the short rate is defined, the money-market account is defined by:

Bt = exp

(∫ t

0

rsds

)
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It is the solution of the ordinary differential equation dBt = rtBtdt which
satisfies the initial condition B0 = 1. It is a traded asset that pays the floating
interest rate rt continuously compounded. We shall use it as a numeraire,
i.e. the unit in which the prices of all the other assets are expressed. Prices
expressed in units of the numeraire are denoted with a tilde and are called
discounted prices:

P̃ (x) = B−1
t Pt(x) = exp

(

−
∫ t

0

rsds−
∫ x

0

ft(y)dy

)

. (7.4)

We should mention that the assumption that F has the structure of a sep-
arable Hilbert space is motivated rather by mathematical convenience than
financial considerations.

The left shift operator {St}t≥0 defined in Assumption 7.1.2 allows us to pass
from the time of maturity notation f(t, T ) to Musielas time to maturity nota-
tion ft(x) where ft(x) = f(t, t+x). Note that all of the evaluation functionals
δx = S∗

xδ0 can be recovered by a left shift of the functional δ0. The connection
between the shift operators and the presence of enough smooth functions re-
lies on the fact that the shift operators form a semigroup of operators whose
infinitesimal generator A should be the operator of differentiation, in the
sense that one should have Af = f whenever f is differentiable.
Assumption 7.1.3 is intimately related to the no-arbitrage principle. In par-
ticular, we will need the function FHJM in order to define the drift term of
an abstract HJM model.

Note that since the elements of F are continuous, the function x 7→ FHJM(σ)(x)
is continuous for all σ ǫ LHS(G,F ). However, it is not necessarily true that
FHJM(σ) is an element of F. In fact, for the spaces we shall consider, it is
generally false that FHJM(σ) is an element of F unless the operator σ is an
element of a proper subset D ⊂ LHS(G,F ).
Assumption 7.1.]3) is usually hard to check in practice. We give a sufficient
condition.
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Assumption 7.2 The space F satisfies Assumption 7.1.1 and 7.1.2. Fur-
thermore, there exists a subspace F 0 ⊂ F such that the binary operator ⋆
defined by the formula

(f ⋆ g)(x) = f(x)

∫ x

0

g(s)ds

maps F 0×F 0 into F, and is such that for all f, g ǫ F 0 the following bounded
holds:

||f ⋆ g||F ≤ C||f ||F ||g||F
for some constant C > 0.

Proposition 7.1. Let the space F satisfy Assumption 7.2. Then the map
FHJM satisfies the local Lipschitz bound

||FHJM(σ1)− FHJM(σ2)||F ≤ C||σ1 + σ2||LHS(G,F )||σ1 − σ2||LHS(G,S)

for all Hilbert-Schmidt operators σ1, σ2 ǫ LHS(G,F
0) with ranges contained

in F 0. In particular, the map FHJM is measurable from D = LHS(G,F
0) into

F.

Proof. We have the simple estimate:

||f ⋆ f − g ⋆ g|| = 1

2
||(f − g) ⋆ (f + g) + (f + g) ⋆ (f − g)||

≤ C||f − g||||f + g||.
Notice that the HJM function FHJM is then recovered by the norm convergent
series

FHJM(σ) =

∞∑

i=1

(σgi) ⋆ (σgi)

for σ ǫ LHS(G,F
0), where {gi}iǫN is a complete orthonormal system for G.

The proof is now complete since we have

||FHJM(σ1)− FHJM(σ2)||F ≤
∞∑

i=1

||(σ1gi) ⋆ (σ2gi)− (σ2gi) ⋆ (σ1gi)||F
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= C

∞∑

i=1

||(σ1−σ2gi)||F ||(σ1+σ2)gi||F ≤ C||σ1−σ2||LHS(G,F )||σ1+σ2||LHS(G,F )

by the triangle and Cauchy-Schwarz inequalities.

In the same way that the short rate is defined as the value of the forward
rate curve at the left hand point of the time to maturity interval [0, xmax],
the long interest rate ℓt is defined as the value of the forward rate curve at
the right end point of the domain χ. This is possible when χ = [0, xmax] is
bounded, in which case:

ℓt = ft(xmax),

but it requires a special property of the space F when the domain χ = R+

is the halfline. Indeed, in order to define:

ℓt = ft(∞)

we need to make sure that, for all f ǫ F, the limit:

f(∞) = lim
x→∞

f(x)

exists.

7.3 The Abstract HJM Model

In this section, we formulate a precise definition of an HJM model in a func-
tion space F. We assume that F satisfies Assumption 7.1. We fix a complete
probability space (Ω,F ,P) with filtration {Ft}t≥0 satisfying the usual con-
ditions and such that there exists a Wiener process W defined cylindrically
on the separable Hilbert space G. Let P be the predictable sigma-field on
R+ × Ω. We now state a definition of an HJM model for the forward rate:
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Definition 7.2. An HJM model on F is a pair of functions (λ, σ) where:
(i) λ is a measurable function from (R+ × Ω× F,P ⊗ BF ) into (G,BG),
(ii) σ is a measurable function from (R+×Ω×F,P⊗BF ) into (D,BLHS(G,S)),
such that there exists a non-empty set of initial conditions f0 ǫ F for which
there exists a unique, continuous mild F-valued solution {ft}t≥0 of the HJM
equation:

dft = (Aft + a(t, ·, ft))dt+ σ(t, ·, ft)dWt (7.5)

where

a(t, ω, f) = FHJM ◦ σ(t, ω, f) + σ(t, ω, f)λ(t, ω, f).

If (σ, λ) is an abstract HJM model on the space F with initial condition
f0 ǫ F, then the forward rate process {ft}t≥0 satisfies the integral equation

ft = Stf0 +

∫ t

0

St−sa(s, ·, fs)ds+
∫ t

0

St−sσ(s, ·, fs)dWs. (7.6)

We now use the Proposition 7.1 to give a sufficient condition for the existence
of an HJM model.

Proposition 7.2. Suppose that the state space F satisfies Assumption 7.2,
and let the closed subspace F 0 ⊂ F be such that ||f ⋆ g||F ≤ C||f ||F ||g||F
for f, g ǫ F 0. Assume that for every (t, ω, f) ǫ R+ × Ω × F the range of the
operator σ(t, ω, f) is contained in the subspace F 0. If σ is bounded and if the
Lipschitz bounds

||σ(t, ω, f)− σ(t, ω, g)||LHS(G,F ) ≤ C||f − g||F

||σ(t, ω, f)λ(t, ω, f)− σ(t, ω, g)λ(t, ω, g)||F ≤ C||f − g||F
are satisfied for some constant C > 0 and all t ≥ 0, ω ǫ Ω and f, g ǫ F, then
the pair (λ, σ) is an HJM model on F. Furthermore, for any initial forward
curve f0 ǫ F there exists a unique, continuous solution to the Eq. (7.5) such
that E{suptǫ[0,T ] ||ft||pF} <∞ for all finite T ≥ 0 and p ≥ 0.
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7.3.1 Drift Condition and Absence of Arbitrage

We now fix an HJM model (σ, λ) with initial condition f0 ǫ F, and we denote
by {ft}t≥0 the unique solution to Eq. (7.5). To simplify the notation, let
λt = λ(t, ω, ft) and σt = σ(t, ω, ft).

Theorem 7.1. If we have

E{exp
(

−1

2

∫ t

0

||λs||2G +

∫ t

0

λsdWs

)

} = 1

and if
∫ t

0

E{
∫ t

0

||σ∗
sδs−u||2Gdu}1/2ds < +∞

for all t ≥ 0 then the market given by the HJM model (σ, λ) admits no arbi-
trage.

Proof. We compute the dynamics of the discounted bond price P̃ (t, T ) =
B−1

t P (t, T ). We will make use of the relation S∗
aIu = Iu+a − Ia, which is

revealed in the following calculation:

(S∗
aIu)g =

∫ u

0

(Sag)(s)ds =

∫ u

0

g(s+ a)ds

=

∫ u+a

a

g(s)ds = (Iu+a − Ia)g.

Let us compute the dynamics of the bond price:

− logP (t, T ) = IT − tft = IT−tStf0 +

∫ t

0

TT−tSt−sasds+

∫ t

0

σ∗
sSt−sIT−tdWs

= ITf0 − Itr0 +

∫ t

0

IT−tasds−
∫ t

0

It−sasds+

∫ t

0

IT−sσsdWs −
∫ t

0

σ∗
sIt−sdWs
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Now by the stochastic Fubini theorem and the assumption of the theorem
we have ∫ t

0

(∫ t

0

σ(s)∗δt−udWs

)

du =

∫ t

0

σ∗It−sdWs.

Using logP (0, t) = −Itf0 and
∫ t

0

rs(0)ds = Itf0 +

∫ t

0

It−sasds+

∫ t

0

σ∗
sIt−sdWs.

we conclude that

logP (t, T ) = logP (0, t) +

∫ t

0

(fs(0)− ITs
as)ds+

∫ t

0

σ∗
sITs

dWs.

Now in {P (t, T )}tǫ[0,T ] is in the form of an Itô process. Applying Itô′s formula
yields

P (t, T ) = P (0, T ) +

∫ t

0

P (s, T )

(

fs(0)− IT−sas +
1

2
||σ∗

sIT−s||2G
)

ds

−
∫ t

0

P (s, T )σ∗
sIT−sdWs

Finally, substituting as = FHJM(σs) + σsλs, the discounted bond prices are
given by

P̃ (t, T ) = P (0, T )−
∫ t

0

P (s, T )IT−sσsdW̃s

where W̃t = Wt +
∫ t

0
λsds. But the Cameron − Martin Girsanov theorem

says that there exists a measure Q, locally equivalent to P such that the
process W̃t = Wt +

∫ t

0
λsds defines a cylindrical Wiener process on G for the

measure Q. We will find that for each T > 0 the discounted bond prices are
local martingales under the measure Q. Hence, by the fundamental theorem,
there is no arbitrage.

The current framework may be too general for practical needs. At this level
of generality, we only know that the discounted bond prices are local mar-
tingales. They are bona-fide martingales if

EQ

[

exp

(

−1

2

∫ T

0

||σ∗
sIT−s||2G +

∫ t

0

σ∗
sIT−sdW̃s

)]

= 1.
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We can ensure that the discounted bond prices are martingales if we can
check the well-known Novikov condition

EQ

[

exp

(
1

2

∫ T

0

||σ∗
sIT−s||2G

)]

< +∞.

Alternatively, we can ensure the discounted bond prices are martingales if
the forward rates are positive almost surely, since if the rates are positive,
the discounted bond prices P̃ (t, T ) = exp(−

∫ t

0
fs(0)ds −

∫ T−t

0
ft(s)ds) are

clearly bounded by one.

7.3.2 Long Rates Never Fall

There are some differences in modeling the forward rate as a function on a
bounded interval [0, xmax] versus the half line R+. In particular, when we
work on the half-line and define the long rate by the limit ℓt = limx→∞ ft(x),
an unexpected phenomenon is found: The long rate never falls. We give an
account of this result in the context of the abstract HJM models studied in
this chapter.
Let F be the state space. Throughout this subsection, we grant Assumption
7.1, as well as one additional assumption

Assumption 7.3 Every f ǫ F is a function f : R+ → R such that the
limit f(∞) = limx→∞ f(x) exists, and the functional δ∞ : f →֒ f(∞) is an
element on F ∗.

Fix a probability space (Ω,F ,P), and let {ft}t≥0 be an F -valued forward
rate process given by an abstract HJM model, and let ℓt = ft(∞) be the long
rate. We prove that the long rate is almost surely increasing.

Theorem 7.2. For 0 ≤ s ≤ t, the inequality ℓs ≤ ℓt holds almost surely.
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Proof. We use the following observation: For fixed (t, ω) we have limT→∞ P̃ (t, T )1/T =
e−ℓt , where

P̃ (t, T ) = exp

(

−
∫ t

0

fs(0)ds−
∫ T−t

0

ft(x)ds

)

are the discounted bond prices. Since we are interested in an almost sure
property of the forward rate process, we may work with any measure which
is equivalent to the given measure P. In particular, from the discussion of
the previous section, there exists a measure Q equivalent to P such that the
discounted bond price processes {P̃ (t, T )}tǫ[0,T ] are local martingales simul-
taneously for all T > 0. All expected values will be calculated under this
measure Q.
Let ξ be a positive and bounded random variable. By the conditional versions
of Fatous lemma (Let fn ≥ 0, then

∫

D
lim inf fndµ ≤ lim infn

∫

D
fndµ)

and Holders inequality we have

E{e−ℓtξ} = E{ lim
T→∞

P̃ (t, T )1/T ξ} = E{E{ lim
T→∞

P̃ (t, T )1/T ξ|Fs}}

≤ E{lim inf
T→∞

E{P̃ (t, T )1/T ξ|Fs}} ≤ E{lim inf
T→∞

E{P̃ (t, T )|Fs}1/TE{ξT/(T−1)|Fs}(T−1)/T }

≤ E{lim inf
T→∞

P̃ (s, T )1/TE{ξT/(T−1)|Fs}(T−1)/T } ≤ E{e−ℓsξ}.

We have used the fact that {P̃ (t, T )}tǫ[0,T ] is a super-martingale for Q. Since
ξ is positive but arbitrary, the result follows.

Notice that the above proof needs very little of the structure of the abstract
HJM models introduced earlier. In fact, it is easy to see that the result holds
in discrete time and with models with jumps. All that is assumed is that
the long rate exists. We note that the popular short rate models produce
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constant long rates. For instance, for the Vasicek model the short interest
rate satisfies the SDE

drt = (a− βrt)dt+ σdwt

for a scalar Wiener process {wt}t≥0. The forward rates are given by

ft(x) = e−βxrt + (1− e−βx)
a

β
− a2

2β2
(1− e−βx)2

where ft(0) = rt. Note that not only the long rate is well-defined, but it is
explicitly given by the constant

ℓt =
a

β
− a2

2β2

independent of (t, ω). There do exist models for which the long rate is strictly
increasing. Consider an HJM model driven by a scalar Wiener process
{wt}t≥0 with a constant volatility function given by σ(x) = σ0(x + 1)1/2.

Since FHJM ◦ σ(x) = 2σ2
0(1(x+ 1)1/2) and

∫ t

0
(x+ t− s)−1/2dws converges to

zero a.s., it follows that the long rate for this model is the increasing process

ℓt = ℓ0 + 2σ2
0t.
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