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CORRELATION MODELLING WITH APPLICATION TO 

RISK MANAGEMENT 

 

Abstract 

 

Accurate estimation and prediction of correlation is of paramount importance in 

asset allocation, risk management and hedging applications, particularly in light of recent 

studies that provide evidence of increased correlation during periods of high volatility, 

leading to diminishing diversification benefits in states of nature that are most needed. 

The time-variability of the correlation process has fuelled extensive literature on dynamic 

correlation modelling. In an attempt to depart from correlation estimation based on 

projections from historical data, two alternative measures of correlation, namely the 

implied and the realized correlation, have been proposed in the recent literature. 

Remarkably, in contrast to volatility estimates, existing studies on the informational 

efficiency and forecasting performance of respective correlation measures are rather 

limited. 

This thesis focuses on exploring the dynamics that govern the evolution of 

correlation risk premium and its components, namely implied and realized correlation, 

and assessing the impact of predictability to portfolio allocation, hedging and trading 

decisions. First, the time-variation and certain distribution characteristics of the 

correlation risk premium, defined as the difference of realized and implied correlation, 

are examined. The information content of market –specific and macroeconomic variables, 

which have been previously reported as proxies of the business cycles, in predicting 

future premium is also evaluated. Secondly, a model-free measure of implied correlation 

is proposed and the question of predictable dynamics in the evolution of the series is 

investigated both in statistical and economic terms. A trading strategy designed to exploit 

daily changes of the series sets the foundation for addressing the efficient market 

hypothesis. Finally, based on the distributional properties of realized volatility, 
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correlation and hedge ratio, an alternative forecasting methodology is applied to predict 

the realized hedge ratio and to explore the additive value of intraday data in a dynamic 

hedging context while the hedging performance is compared in terms of portfolio 

optimization and risk management.  

The thesis has reached a number of conclusions. First, correlation and correlation 

risk premium vary substantially over time and increase sharply during turbulent periods, 

while culminated during the Asian and Russian financial crisis in 1997-1998 and the 

subprime mortgage crisis of 2007-2009. The previously documented correlation risk 

premium is no longer significant during the recent 2007 – 2009 crisis, suggesting the 

disappearance of arbitrage opportunities. Secondly, the predictability of model-free 

implied correlation series suggested by statistical measures cannot be exploited in terms 

of economic gains, suggesting that the S&P 100 options market is efficient. Finally, 

forecasting the dynamics of the realized hedge ratio directly reveals predictable patterns 

in the evolution of the hedge ratio, resulting in improved hedging performance, in terms 

of both economics gains and risk measures. 
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  Chapter 1

Introduction 

1.1 Motivation of the Thesis 

Correlation is central to most financial applications, including asset and derivatives 

pricing, asset allocation, risk management and hedging. It is thus not surprising that 

significant research effort has been devoted in the modelling and the forecasting of the 

correlation distribution. The recent financial crisis, which inaugurated in the U.S.A in 

2007 and propagated globally the years that followed, has highlighted the vital 

importance of accurate estimation and forecasting of volatility and correlation. Although 

volatility has stirred the research interest, respective research in the correlation context is 

notably less intense. This thesis focuses on the modelling and predictability of alternative 

measures of correlation. 

While early studies considered the second moments of distribution to be constant 

over time, later advances recognized the time-variability of correlation. A number of 

studies have discussed the asymmetry in correlation distribution and provided evidence 

of increased correlation during periods of higher volatility resulting to an increase of the 

aggregate risk borne by investors and diminished diversification benefits. (See Erb et al. 

1994; Ang & Chen, 2002; Hong et al. 2007; Campbell, Koedijk and Kofman, 2002; 

Longin & Solnik, 2001, amongst others) 

It is therefore natural to consider that investors would desire to protect themselves 

from unexpected escalation of correlation and are willing to pay an additional premium 
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for the assets that perform well during high correlation and low diversification benefits 

states of nature. Correlation risk has been the subject of several recent studies that have 

unanimously provided evidence of a negative price, thus affecting the risk-return tradeoff 

and the market price of equity returns. Interestingly, market participants have recognized 

the possibility of trading correlation risk. The dispersion strategy and the correlation 

swap are two novel trading products, designed to exploit the differential pricing of index 

and individual options and the correlation risk premium. In response to the increased 

interest, the CBOE launched in July 2009 the S&P 500 Implied Correlation Index (ICI). 

The ICI is a measure of the average correlation of the S&P 500 index components, as 

implied by the option prices on the S&P 500 index options and the prices of the 50 

largest individual stock options based on their capitalization. 

Since correlation is an unobserved component of the asset return distribution, an 

important issue that arises is the modelling of correlation. In the univariate context, the 

seminal work of Engle (1982) on the autoregressive conditional heteroskedasticity 

(ARCH) model has laid the groundwork for the extensive volatility modelling literature 

that followed. Based on the ARCH specification, several alternative models that attempt 

to capture well-documented traits of the volatility process, for instance long-memory and 

asymmetry, have been proposed in the literature. More recently, researchers have focused 

on the extension of these models from the univariate to the multivariate dimension (see 

Bauwens et al., 2006 for a detailed review). However, the critical assumption of positive 

definiteness of the variance-covariance matrix along with imposed restrictions of the 

optimization of the log-likelihood function complicates the estimation procedure of these 

models. Moreover, stochastic and multivariate GARCH models rely on the use of 

historical information as the relevant information set to forecast future correlation.  

In an attempt to depart from model complexity and restrictions, the research 

interest has shifted to alternative approaches of modeling the second moment of asset 

distributions that do not rely on the historical dataset. Among the prevailing 

methodologies is the measure of implied correlation, deduced from currently traded 

option prices, and the measure of realized correlation, computed from high-frequency 

returns. 
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Inherently, option prices reflect the current market view of future price 

movements of the underlying stock thus containing valuable information regarding the 

market forecast of future correlation. In contrast to implied volatility, which has attracted 

vast research interest, implied correlation has received considerably less attention over 

the past years. Only a limited number of studies have examined the notion of implied 

correlation in the context of various asset classes
1
. Longstaff et al. (2001), De Jong et al. 

(2004) and Han (2007) derive interest rate correlations implied from options in fixed 

income markets. Skintzi & Refenes (2005) use option price data on the Dow Jones 

Industrial Average Index and component stocks to derive an ‘implied correlation index’ 

that measures the average portfolio diversification. 

In another stream of literature, the increased availability of multi-dimensional 

high frequency data has given rise to a new area of research in modeling and forecasting 

the realized volatility and covariance. Andersen and Bollerslev (1998) introduced the 

notions of realized volatility and covariance as model-free estimators of the true latent 

process. In essence realized volatility is defined as the sum of squared intraday asset 

returns and realized covariance as the cross product of returns. Realized correlation is 

directly deducted from realized covariance and volatility. Andersen, Bollerslev, Diebold 

and Labys (2001) (ABDL, hereafter), Andersen, Bollerslev, Diebold and Ebens (2001) 

(ABDE, hereafter) and Barndorff-Nielsen & Shephard (2002) showed that, according to 

the theory of quadratic variation, as the sampling frequency tends to infinity, the realized 

measures are unbiased and efficient estimators of the integrated processes, which 

essentially become observable, thus enabling direct estimation. The notable advantage of 

the realized measures is that they are essentially “model-free”, without relying on any 

parametric model that induces econometric or mathematical misspecification. Thereafter, 

the use of non-parametric measures of realized volatility and correlation in risk 

management, asset allocation and derivatives hedging applications has propagated.  

The information content of implied and realized correlation in providing accurate 

forecasts of future ex-post realized correlation has been at the core of several studies. 

                                                 
1
 See Christoffersen et al. (2012) for a review of studies using option-implied information 

to derive moments, correlation and density forecasts. 
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Siegel (1997), Campa & Chang (1998) and Lopez & Walter (2000) study the forecasting 

performance of implied correlations derived from foreign exchange options and find 

evidence of superior forecasting performance when compared to historical correlation. In 

a similar context, Pong et al. (2004) find that the forecasting performance of realized 

volatility is closely followed by the implied counterpart.  

An interesting question that arises, yet distinct from the previously mentioned, is 

whether the evolution of implied correlation per se is predictable. Forecasting the 

dynamics of correlation can be a useful tool in asset pricing and portfolio allocation. The 

presence of exploitable patterns in the dynamics of the series casts calls into question the 

efficient market hypothesis. In particular, the options market efficiency is addressed 

through either the assessment of the no-arbitrage principle or the exploitability of trading 

strategies in terms of economic gains (Jensen, 1978). The second approach has been 

widely used in the implied volatility context while the empirical results remain mixed. In 

particular, several studies (see Harvey & Whaley, 1992, Guo 2000, Brooks & Oozeer, 

2002 and Konstantinidi, Skiadopoulos and Tsagkaraki, 2008, amongst others) provide 

evidence of significant predictability in implied volatility using time-series models, 

which, however, cannot be exploited to achieve significant economic profits. In contrast, 

Chiras and Manaster (1978) and Goyal & Saretto (2009) provide evidence of statistically 

and economically significant predictability in the dynamics of volatility implied in at-the-

money stock option prices. Remarkably, despite the plethora of studies in the 

predictability of volatility, related literature in forecasting correlation dynamics is still in 

its infancy.  

From a risk management perspective, accurate correlation modelling and 

forecasting is of paramount importance for hedging decisions. While earlier studies 

considered the hedge ratio to be constant over time, following the recognition of time 

variability in the futures and spot returns distributions, a variety of models, from the 

generalized autoregressive conditionally heteroskedastic (GARCH) family as well as 

models that capture the long-run dependencies of the volatility process, have been 

employed to model the hedge ratio. Despite the well-documented superior forecasting 

ability of realized measures as opposed to estimators from daily or lower frequency data, 
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not much attention has been paid to the informational efficiency of high frequency 

dataset to forecast the hedge ratio. Among the limited amount of studies, Lai and Sheu 

(2008 and 2010) and Shen and Stoja (2010) have provided evidence of increased hedging 

effectiveness when intraday data are employed to model the hedge ratio. 

 

1.2 Contribution of the Thesis 

This thesis is primarily focused on the pricing of correlation risk and the information 

content of alternative correlation measures in optimizing portfolio allocation, risk 

management and hedging decisions. Firstly, the distributional characteristics of the 

correlation risk premium and the informational content of volatility risk premium and 

macroeconomic variables are assessed. Secondly, an improved, non-parametric measure 

of implied correlation measure inferred from options’ daily closing prices is proposed and 

the question of market efficiency is addressed. Thirdly, the superior informational content 

of high frequency data in optimizing hedging and risk management decisions is 

examined. 

A number of studies have provided evidence of increased correlation during 

periods of higher volatility and low returns. An increase of market-wide correlation 

affects the investors’ risk-return tradeoff, resulting in diminished diversification benefits 

in states of nature that are most needed. It is thus natural to consider that, depending on 

the relevant degree of risk aversion, an investor will require an additional compensation 

for undertaking the risk of correlation fluctuations. While a significant number of studies 

have focused on modelling the risk premium of volatility and examining the significance 

of several factors in forecasting it, understanding the dynamics of the risk premium of 

correlation is relatively poor, despite the fact that it is equally important.  

This thesis provides a thorough assessment of the distributional properties of the 

risk premium of correlation and the informational content of several macroeconomic and 

market-specific variables in forecasting the dynamic evolution of the series. In addition, 

the evolution of correlation risk premium has been examined for the presence of several 

stylized facts, previously documented to affect the correlation process. The correlation 

risk premium is defined as the difference of realized and implied correlation. The former 
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has been estimated from options’ daily closing prices. For the latter, I propose a model-

free estimate of market-wide correlation and diversification benefit. The Model-Free 

Implied Correlation (MFIC) is a refined estimate of implied correlation that, in contrast to 

previous studies and the official CBOE S&P 500 ICI, is firstly, derived from currently 

observed option prices without relying on any specific option valuation model and 

secondly, corrected for the early exercise premium. For comparison purposes, I also 

examine the evolution of the volatility risk premium for the index and the individual 

options and study the relationship with the correlation risk premium. An extensive dataset 

allows the evaluation of the time-varying characteristics of the correlation process during 

several periods of financial turmoil, and most importantly during the subprime mortgage 

crisis of 2007-2009 that was later transmitted globally.  

The second contribution of the thesis lies in the assessment of predictable patterns 

in the evolution of the model-free implied correlation series. Despite the significant 

amount of studies on evaluating the performance of option-implied information on 

various financial applications, only a limited number of studies have dealt with the 

predictability of option-implied measures, while the vast majority of those focus on 

volatility. From a practical perspective, the presence of predictability in the evolution of 

the series enables market participants to form profitable trading strategies, calling into 

question the market efficiency hypothesis.  

This thesis performs a comprehensive study of the dynamics and predictable 

patterns in the evolution of the implied correlation series per se. For this purpose, I 

propose the modelling of the correlation process evolution through alternative time-series 

specifications that capture different aspects of the distributional characteristics, for 

instance ARFIMA and HAR models are employed to model the long-memory properties 

while a regime switching attempt to capture the asymmetry in correlation. In addition, the 

study assesses the performance of alternative methods of combining forecasts, which 

essentially accumulate forecasts derived from the individual candidate models that have 

access to different information sets. I find that under several statistical measures, the 

evolution of the model-free implied correlation series is predictable, thus revealing 

exploitable inefficiency of the S&P 100 market. Finally, I develop a trading strategy that 
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exploits daily changes in the implied correlation series and I access the economic 

significance of obtained forecasts. I show that, in the absence of transaction costs, the 

existence of predictable patterns in the dynamics of the model-free implied correlation 

series, suggested by statistical measures, can be further exploited to generate abnormal 

profits. However, when market frictions are introduced, the profitability of the proposed 

trading strategy is eliminated, suggesting that the efficiency hypothesis fails be rejected 

for the S&P 100 options market.  

The third contribution of the thesis lies in the modelling and forecasting of 

realized hedge ratio from high frequency data and the assessment of comparative 

improvement over conventional methods that utilize daily data. The hedge ratio denotes 

the number of futures contracts that the hedger should hold in order to hedge one unit risk 

of the underlying spot market. The majority of the studies focus on the modelling of the 

variance-covariance matrix of spot and futures returns and ultimately, the estimation of 

the optimal hedge ratio. Andersen et al. (2006) defined realized beta as the ratio of 

realized covariance and variance and find that the well-documented long memory traits of 

the individual processes are eliminated when forming the beta ratio.  

The contribution of this thesis in the hedging context is threefold. First, motivated 

by the methodology and suggested findings on realized beta, I assess and analyze 

thoroughly the differential distributional properties of realized variance, covariance and 

hedge ratio. Second, intrigued by the findings of the distributional analysis, I propose the 

employment of alternative time-series specifications to model and forecast the evolution 

of the realized hedge ratio per se. The forecasting performance of employed econometric 

models is compared to the forecasts obtained from random walk. I find that the 

hypothesis of efficient spot and futures markets of the EUR/USD and the GBP/USD 

exchange rates as well as the S&P 500 and the FTSE 100 indices is strongly rejected. 

Finally, I compare the proposed modelling methodology of the realized hedge ratio to 

widely used methodologies of deriving hedge ratios from daily returns and I find superior 

forecasting performance of the proposed modelling approach in risk management and 

portfolio optimization decisions. Obtained results hold across different asset classes but 

are more conspicuous in the case of stock indices. 
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1.3 Overview of the Thesis 

A brief overview of the thesis is outlined below. Chapter 2 presents a thorough literature 

review on the modelling of the correlation process and its application on several aspects 

of financial theory, from the minimum-variance portfolio optimization theory and the 

Capital Asset Pricing Model (CAPM) to risk management, asset allocation and hedging 

decisions. To this end, the Chapter includes a detailed survey of econometric 

specifications that attempt to capture several aspects of the dynamics that govern the 

evolution of the process. In addition to traditional estimators, two alternative measures of 

correlation are presented, namely implied and realized correlation. A large body of 

literature supports the informational efficiency of the measures in option pricing, asset 

pricing and hedging applications. Secondly, the Chapter presents the fundamental 

concept of market efficiency and provides a detailed literature on relevant studies that 

have examined the efficiency of the options and the futures markets from alternative 

perspectives. Accurate correlation modelling and forecasting is of utmost importance in 

the hedging decisions, with the futures hedging being one of the most simple and 

widespread hedging strategies. A review of alternative hedge ratios and estimation 

methods is presented at the last Section of the Chapter.  

Chapter 3 discusses the distributional properties of the correlation risk premium 

and several stylized facts of correlation distribution. First, the methodology for the 

construction of the model-free implied correlation series and the estimation of the early 

exercise premium is thoroughly described. In addition, the presence of long memory and 

asymmetric response to equity returns in the correlation risk premium is examined. 

Moreover, a Granger causality test is applied to test whether correlation risk premium 

drives volatility risk premium of the index, or vice versa. Finally, the informational 

content of an economic determinants model in forecasting correlation risk premium is 

assessed. 

Chapter 4 examines the predictability of the proposed model-free implied 

correlation measure. A thorough evaluation of the time-series evolution of MFIC is 

performed and the existence of predictable patterns in the dynamics of the series is 

examined. The out-of-sample forecasts of the series are firstly assessed with statistical 
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measures that gauge the prediction error in terms of both magnitude and directional 

efficiency. The fundamental theoretical background of the proposed trading strategy and 

the implementation steps are described thoroughly in this Chapter. The statistical 

measures provide strong evidence in favour of existing predictable pattern in the S&P 

100 option market. However, results from the trading strategy suggest that statistically 

significant profits can be generated only in the absence of transaction costs. 

In Chapter 5, the dynamics of the realized hedge ratio and the hedging 

performance is examined. Initially, the distributional properties of realized variance, 

realized covariance and realized hedge ratio are examined in detail. Following the 

evidence provided from the statistical analysis, a number of econometric models 

employed to forecast directly the realized hedge ratio series are thoroughly discussed. 

Statistical measures are employed to assess the dynamic properties and predictability of 

the realized minimum variance hedge ratio series. The out-of-sample hedging 

effectiveness of the realized hedge ratio is compared to the hedge ratio estimated from 

daily returns, namely constant and rolling OLS, Error-Correction Model as well from a 

model where the returns follow a DCC-GARCH model. Finally, the impact of transaction 

costs in dynamic hedging strategy as well as of different sampling frequencies in the 

derivation of the realized hedge ratio is assessed. The main findings suggest that 

forecasting directly the realized hedge ratio leads to marginal increase of the percentage 

of risk reduction while the hedger’s benefit is substantial when both the average return 

and the variance of the hedge portfolio is taken into account (as measured by the Sharpe 

ratio and expected utility). The results hold across the different asset classes, although, as 

expected, the benefits are lower in the case of exchange rates. 

Section 6 summarizes the issues addressed along with the main conclusions of 

this thesis and discusses possible topics for future research. 
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  Chapter 2

Literature Review 

Understanding the dynamics that govern the evolution of correlation as the measure of 

dependence between financial instruments is of paramount importance in a number of 

financial applications including asset pricing, asset allocation and risk management. 

Accurate estimation and forecasting of correlation process can provide significant 

improvement in derivatives pricing and efficient asset allocation decisions within a 

trading and hedging framework. The first three Sections of this Chapter present the 

importance of correlation in the portfolio theory, studies that provided evidence of time-

variability in the correlation process and alternative estimators that have attracted the vast 

majority of existing studies on correlation modelling. In Section 4, a detailed literature of 

implied and realized correlation estimates in presented. The notion and the emergence of 

correlation risk as a priced risk factor is discussed in Section 5. The next Section reviews 

the efficient market hypothesis with a special view to the options and futures markets. 

The last Section discusses the alternative measures of hedge ratio and its properties. 
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2.1 Portfolio Theory and Diversification  

The fundamental principle underlying the mean – variance portfolio model (Markowitz, 

1952) is the optimization of the risk-return tradeoff associated with investment portfolio 

decisions. In essence, an investor will seek to maximize the expected portfolio return 

while minimizing the variance of the asset returns. The basic inputs for the model are the 

expected return, the standard deviation of each asset as well as the correlation matrix 

between the assets. The expected return 
,( )P tE R  and variance, 2

,P t , of the portfolio are 

defined as follows: 
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where, wi is the relative weight of asset i to the portfolio, E(Ri) and σi,t are the return and 

the variance of the asset i at time t, respectively, and ρij is the correlation of asset i and j.   

Correlation is a direct measure of the diversification benefit that derives from 

investing in two or more assets. A value of correlation coefficient equal to one signifies 

the perfect comovement of asset returns and elimination of diversification benefit. In this 

case, the portfolio variance is the weighted sum of individual assets’ variance, i.e. 
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In terms of portfolio optimization, an investor will always seek assets that are 

negatively correlated so as the loss from one asset is offset by the gain of the other asset. 

The maximum diversification benefit is obtained for a perfectly negative correlation 

value of -1. In that case, the portfolio variance eliminates to  

 2 2 2
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The Capital Asset Pricing Model (CAPM) laid the foundation to asset pricing 

theory. In essence, the model suggests that the equilibrium price of any asset is a function 
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of the time-value of money, represented by the risk – free rate, and the reward that the 

investor requires to uptake additional risk. The equilibrium relationship is as follows: 

 ( ) ( ( ) )i f i m fE R R E R R    (2.5) 

where Rf is the risk free rate, Rm is the return of the market and βi is the beta coefficient 

that represents the sensitivity of the asset to the market or systemic risk, defined as: 
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where 
,i M  is the correlation coefficient between asset i and the market portfolio returns, 

and i  and M  are the standard deviations of asset and market returns, respectively. 

Evidently, accurate correlation estimation is of utmost importance to the derivation of 

equilibrium market prices. 

 

2.2 Time variability and Asymmetry of Correlation 

One of the critical assumptions of the CAPM model is that the variance and covariance of 

the assets is time-invariant (Jobson and Korkie, 1981). Earlier studies assessed the time-

varying assumption of correlation structure over different sample periods and find 

evidence of stable correlation structure. Kaplanis (1988) examined the stability of 

correlation between returns of ten stock markets for the period of 1976-1982. Applying 

the test procedure suggested by Jenrich (1970) over adjacent sub-periods of 46 months, 

the null hypothesis of constant correlations fails to be rejected. Ratner (1992) utilizes a 

sample of international stock market indices during 1973-1989 and also rejects the null of 

unstable correlation coefficients. Finally, Tang (1995) uses data of 17 stocks traded in the 

Hong Kong stock market during 1981-1992 and finds that the covariance and correlation 

structures are stable over time with the latter being significantly more stable. 

In contrast, a plethora of studies provides evidence supporting the time-variation 

in the correlation structure. Early studies from Makridakis and Wheelwright (1974) and 

Bennett and Kelleher (1988) documented that co-movement of international stock 

markets are unstable over time. Koch and Koch (1991) provided evidence of growing 

market interdependence within the same region while the result is more pronounced in 
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1980 and 1987 as compared to 1972. Another approach adopted in the study of time-

varying correlation is based on the autoregressive conditional heteroskedasticity (ARCH) 

model developed by Engle (1982) and its variations. Longin and Solnik (1995) employ a 

bivariate GARCH model to the asset returns and use the Jenrich test for the null 

assumption of constant conditional correlation. Results for monthly excess returns of 

seven major countries over the period of 1960 – 1990 suggest that unconditional 

correlation matrix is unstable over time. Darbar and Deb (1997) employ a GARCH model 

and find that correlation of international equity markets changes over time.  

Additionally, there is a large body of previous research that has provided evidence 

of increased correlation during turbulent periods, associated with high volatility and low 

returns (e.g. Karolyi and Stulz 1996; Ang and Bekaert 2002; Longin and Solnik 2001; 

Ang and Chen 2002; Bae, Karolyi and Stulz 2003). As the correlation between assets that 

span the risk-return spectrum increases, the aggregate risk borne by investors will 

increase and the diversification benefit will eliminate. In particular, Longin and Solnik 

(2001) study the conditional correlation of international equity returns. To this end, they 

employ the notion of extreme value theory to model the distribution tails and find that 

correlation is mainly affected by the market trend, while high volatility per se does not 

necessarily lead to an increased correlation. More importantly, based on an empirical 

distinction of bull and bear markets, they find that correlation increases sharply only 

during bear markets. Campbell, Koedijk and Kofman (2002) use VaR-based conditional 

correlation estimators for international stock index returns during 1990-1999 and reach 

the sample conclusion of increased correlation in financial turmoil periods, suggesting 

that downward movements induce financial contagion across markets. Garcia and 

Tsafack (2011) study the co-movement in international equity and bond markets and find 

that strong dependence between the same asset classes at an international level, especially 

after accounting for asymmetry. Finally, Amira, Taamouti and Tsafack (2011) find 

evidence of asymmetric effect of volatility on correlation, which however fades out when 

market returns are included as an explanatory factor, thus proposing that the correlation 

increase is mainly driven by past returns and market direction.  
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Turning to the economic significance of asymmetry considerations, Ang and 

Chen (2002) employ several statistical tests and find that a two-regime switching model 

is able to capture and explain the correlation asymmetry. Additionally, they provide 

evidence of increased correlation between stock portfolios and US market returns during 

periods of negative market return while the results are more pronounced in the case of 

small or value firms. Hong et al. (2007) suggest a model-free test of asymmetric 

correlation and, similarly to Ang and Chen (2002), find that asymmetry holds across 

alternative Fama and French portfolios. In addition, they augment the optimal portfolio 

framework to account for asymmetric dynamics and find that the net utility benefit for a 

mean-variance investor reaches 2% on an annual base. The economic gains arising from 

the inclusion of asymmetries in a portfolio allocation decisions is further supported by 

Das and Uppal (2003) and Patton (2004).  

Furthermore, the recent financial turmoil shed light on the notion of financial 

contagion, or else the transmission of financial distress across assets and countries 

interpreted as increased correlation. Although, given the recency of the crisis, little 

empirical evidence is available, obtained results consent on the increased importance of 

financial contagion. Longstaff (2010) finds that financial contagion was mainly 

disseminated through correlated liquidity and risk premium channels rather than 

information channel. Dungey et al. (2010) consider a dataset of stock and bond markets 

of six countries and study the effect of financial contagion during five major worldwide 

crises; namely, the Russian and Brazilian crisis in 1998 and 1999, respectively, the 

internet bubble burst in 2000, the Argentinian crisis in 2002-2005 and finally, the 

subprime mortgage crisis of 2007-2009. They find that financial crises are identical while 

the contagion effect is more pronounced in the case of Russian and subprime crises. In 

addition, Syllignakis and Kouretas (2011) apply the Dynamic Conditional Correlation 

(DCC) multivariate GARCH model to study the contagion effects of US, German and 

Russian markets to seven emerging markets in Europe and find that correlation increased 

drastically. The increase can be explained by several macroeconomic determinants, 

domestic and foreign monetary variables, as well as exchange rate movements. Cheung, 

Fung and Tsai (2010) suggest that the TED spread, defined as the difference of three-

months futures contracts on US T-bills and Eurodollars has explanatory power for the 
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contagion effect across major financial markets. Finally, Tacchella et al. (2012) examine 

the time evolution of correlation coefficients for 494 stocks listed in the S&P 500 index 

and observe an increase in correlations, which however, varies across economic sectors. 

In a similar context, Bekaert et al. (2012) suggest that contagion between the US equity 

market and equity market in 55 other countries are significant, yet small. In contrast, they 

provide evidence of increased correlation between domestic equity market and domestic 

individual equity portfolios. 

 

2.3 Correlation Modelling 

Expected return is directly observable whereas the second moments of the distribution, 

i.e. volatility and correlation, need to be estimated within the context of a particular 

model. Correlation modelling has stimulated the research interest over the past years, 

although admittedly, the relevant studies in the volatility context are more plentiful. 

While earlier estimators treated correlation as a constant variable, later studies on 

correlation modelling were intrigued by the empirical findings on time-variation of 

correlation structure. To this end, several models, from naïve to moving average and 

GARCH-type models have been proposed in the literature.  

 

22..33..11  Simple Historical and Moving Average models 

The simplest correlation estimator is the historical correlation defined as the ratio of 

covariance and sum product of assets’ standard deviations. The implicit assumption is 

that correlation matrix remains unchanged over time and past distributional properties 

will be similar in the future. In essence, historical correlation is defined as: 
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where Ri, Rj are the asset returns with mean value of 
iR  and 

jR  and standard deviation 

(or volatility) equal to i  and 
j , respectively. 
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The simple historical model assigns equal weight to past-observed values. A 

widely used alternative method was proposed by JP Morgan RiskMetrics
TM

. The model 

introduces a smoothing parameter, called lambda, which assigns more weight to recent 

observations. The Exponentially Weighted Moving Average (EWMA) model is defined 

as: 

 

1
1

1
,

1 1
1 2 1 2

1 1

( )( )

( ) ( )

T
T t

it i jt j

t T n
ij t

T T
T t T t

i i j j

t T n t T n

R R R R

R R R R





 


 

  

 
   

     

 



 



 

 (2.8) 

where λ determines the weighting of returns and takes a value between 0 and 1, with a 

value closer to 1 denoting that the change in weights between time periods is small. The 

Risk Metrics database proposes λ to be equal to 0.94. 

 

22..33..22  GARCH-type models 

Following the recognition of time-varying traits of the volatility, the seminal work of 

Engle (1982) introduced the Autoregressive Conditional Heteroskedastic (ARCH) model, 

that was later generalized by Bollerslev (1986) to the GARCH model to model the 

evolution of volatility process. The main advantage of the specification is that the 

conditional variance is an autoregressive function of past information contained in the 

information set It. A GARCH(p,q) model is defined as follows: 
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 (2.9) 

where p is the number of lags of the error terms, ε, and q is the number of lags of 

conditional variance. 

Volatility modelling has attracted the vast majority of previous studies. Apart 

from the simple GARCH models, several extensions have also been developed so as to 

account for asymmetry (Exponential GARCH - EGARCH, Glosten-Jagannathan-Runkle 

GARCH - GJR-GARCH, and Asymmetric Power ARCH - APARCH) and degree of 

integration (Integrated GARCH – IGARCH, Fractionally Integrated GARCH – 

FIGARCH among others).  
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The extension of above mentioned univariate models in the multivariate context 

allows the investigation of comovement of financial returns. Multivariate GARCH 

(MGARCH) models have been employed in the relevant literature of volatility spillover 

and correlation transmission, i.e. contagion. The main issue to be addressed during the 

estimation of MGARCH models is the high dimensionality, while maintaining the 

positive definiteness of the variance-covariance matrix.  

The VEC-GARCH model, developed by Bollerslev et al. (1988), was the first 

multivariate extension of the simple GARCH model. The model parameterizes every 

variance and covariance as a function of lagged returns and lagged cross-product of 

returns. The model may be written as follows: 
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where Ht is variance-covariance matrix of returns, c is a N(N+1)/2 + 1 vector of 

parameters, vech(·) is a column stacking operator of the lower triangular part of the 

argument square matrix and Aj and Bj are N(N+1)/2 × N(N+1)/2 parameter matrices. 

Despite the flexibility in use, the VEC model suffers from the dimensionality problem as 

the total number of parameters to be estimated equal to (p+q)×N(N + 1)/2)
2
 + N(N + 

1)/2. In addition, the conditions imposed to ensure the positive definiteness of the VCV 

matrix are rather restrictive. 

The BEKK model, introduced in Engle and Kroner (1995), is a restricted version 

of the VEC model, in which the conditional covariance matrices are positively defined by 

construction. The model is given by: 
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where Akj, Bkj and C are N×N parameter matrices and C is lower triangular. 

The conditional correlation at time t is derived as the ratio of estimated 

covariance, hij,t, and product of estimated standard deviations, hi and hj, where each 

distribution moment is estimated independently from any the above-mentioned GARCH-

type models: 
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In a first attempt to model directly the correlation matrix, Bollerslev (1990) 

introduced the Constant Correlation model (CCC-GARCH) which is essentially a 

nonlinear combination of univariate GARCH processes. The correlation is considered 

constant over time while covariances are time varying. They basic concept is that the 

conditional variance-covariance matrix (Ht) is decomposed into conditional volatilities 

(Dt) and correlations (R) matrices as follows: 

 t t tH D RD  (2.13) 

A direct interpretation of the above equation suggests that each correlation 

estimator of the conditional correlation matrix equals to ρij=hij,t/(hii,t× hjj,t), where hij,t can 

be estimated from univariate GARCH processes and ρij is time-invariant.  

Engle (2002) extended the CCC-GARCH model to the Dynamic Conditional 

Correlation (DCC) model, by allowing the correlation matrix of returns to be time 

varying, i.e. 

 t t t tH D R D  (2.14) 

The estimation procedure is as follows. Firstly, a univariate GARCH process is 

fitted to model the volatilities, hi,t, of the k assets. The standardized residuals, zt, later 

used to model the correlation of returns, are obtained by dividing the error terms, εt, with 

ht. The DCC-GARCH model is then given by: 
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where Q  is the unconditional correlation matrix and a, b are scalars. 

 

2.4 Alternative measures of correlation 

In the previous Section, the dominant and most widespread methodologies of modelling 

volatility and correlation have been presented. Elton and Gruber (1973) were the first to 

emphasize and address the complexities involved in the calculation of correlation. The 
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main difficulty arises from the dimensionality problem. Essentially, the number of 

pairwise correlation coefficients, for a portfolio of N assets, escalates up to N(N-1)/2. As 

an example, for a portfolio consisting of 100 assets, 4.950 would have to be produced.  

In an attempt to depart from the complexities arising from the modelling of the 

correlation process, over the last decades, alternative measures of the second moment of 

distribution have been presented in the literature and attracted the interest of both 

academics and practitioners. The first one, implied volatility and implied correlation, is 

derived from option prices while the second, the realized counterpart, takes advantage of 

the availability of high-frequency data and provides a straightforward measurement of 

volatility and correlation. 

 

22..44..11  Implied Correlation 

The concept of extracting moments of asset return distribution from option prices has 

been central to an enormous number of studies over the last years. By definition, 

moments of distribution implied from observed option prices reflect the market 

expectation of future asset price changes and the subsequent indisputable valuation of 

said uncertainty that is driven by the market forces without relying on any specific 

econometric modelling specification. The estimation of distribution moments of stock 

price from option prices, as forward-looking measures, is widely considered to 

outperform historical correlation measures in terms of informational efficiency. 

Thereafter, conditioned on the market efficiency and the precision of the option-pricing 

model, measures deduced from option prices subsuming the information set available at 

any time t, are expected to be efficient and unbiased estimators of the true realized 

processes. Bates (1991) suggests that option prices reflect the market participants’ 

expectations by giving a direct indication of the aggregate subjective distributions of 

investors. 

Despite the numerous studies on implied volatility, implied correlation has 

received notably less attention in the literature. Earlier studies from Campa and Chang 

(1998) and Lopez and Walter (2000) show that correlation implied from options on 

foreign exchange rates demonstrate superior forecasting ability of future realized 



Chapter 2: Literature Review 

 

31 

correlation. For comparison purpose, they also derive the historical correlation, EWMA 

as well as correlations based on GARCH models and find that implied correlation 

forecasts dominates the more traditional approaches. Castrén and Mazzotta (2005) 

conduct a comparative study of the forecasting ability of FX options implied correlation 

and return-based correlation measures and find mixed results across currencies. However, 

when they combine the information set of alternative estimators, they obtain the highest 

R-squared.  

Skintzi and Refenes (2005) were the first to derive option-implied measure of 

correlation from equity data. Using data from the Dow Jones Industrial Average Index, 

the Implied Correlation Index (ICX) is defined as the average correlation coefficient that 

captures the difference between implied volatility of an index option and the weighted 

average of implied volatility of the constituent stocks. They assess the statistical 

properties and the forecasting performance of the Index and find that ICX provides 

accurate forecasts of realized correlation. Driessen, Maenhout and Vilkov (2009) obtain 

the implied correlation from option prices on the S&P 100 index and constituent stocks 

and provide evidence of high predictive power of future realized correlation. In a more 

recent paper, Driessen, Maenhout and Vilkov (2012) find that the predictive power is 

higher for 6-month and 1-year forecast horizon.  

The usefulness of option-implied measures to portfolio allocation applications has 

been the subject of limited recent studies. Kostakis, Panigirtzoglou, and Skiadopoulos 

(2011) use data on the S&P 500 index and construct a portfolio consisting of a risky and 

a risk-free asset. Results from the evaluation of out-of-sample portfolio performance 

under several statistical and economic functions suggest that use of option implied 

information provide significant improvement of investors’ risk-adjusted returns. 

DeMiguel et al. (2012) apply option-implied information in a mean-variance portfolio 

selection context and examine the improvement in terms of Sharpe ratio, portfolio 

volatility, certainty-equivalent return, and turnover. They find that implied volatility 

reduces the volatility but does not contribute to the improvement of the Sharpe ratio. In 

contrast, the inclusion of option implied skewness information increases both the Sharpe 

ratio and the expected returns.  
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The usefulness of implied measures has also been examined within a dynamic 

hedging context. Christoffersen, Jacobs, and Vainberg (2008) expanded existing literature 

on implied volatility and correlation and proposed a methodology to derive a forward-

looking measure of beta from option prices. They find evidence of forecasting superiority 

of implied beta when compared to historical or return-based estimates. Buss and Vilkov 

(2012) propose a parametric solution to the calculation of implied correlation, compute 

option-implied betas and test their accuracy as realized beta predictors. Results suggest 

that, in line with Christoffersen, Jacobs, and Vainberg (2008), implied betas are accurate 

predictors of realized beta. 

Interestingly, the Chicago Board Options Exchange (CBOE), having recognized 

the increased interest on correlation as a driver of diversification benefit, launched the 

CBOE S&P 500 Implied Correlation Index in July 2009. Essentially, the index is a 

measure of the average correlation between the S&P 500 index options and the basket of 

options, consisting of the largest 50 stocks. However, the construction of the index has 

several drawbacks. First, the options used for the derivation of the index are not filtered 

to eliminate microstructure and liquidity issues. Second, the implied volatility of the 

options is model-based; the Black-Scholes and the Barone-Adesi Whaley option 

valuation models are used for the index and stock options, respectively. To address these 

drawbacks, I develop a model-free alternative of the implied correlation index in Chapter 

3 of this thesis.  

 

22..44..22  Realized Correlation 

The forecasting performance of correlation estimators, analyzed extensively in Section 

2.3, rely heavily on the implicit assumption on asset returns distribution. Although 

several steps are taken forward the reduction of the dimensionality curse, the practical 

application of multivariate models remains feasible for very low dimensions. The 

increased availability of high-frequency data has set the foundations for a new area of 

research that involves estimating, modeling and forecasting conditional volatility and 

correlation from intraday data.  
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Realized Volatility (RV) is obtained by summing the squared intraday returns 

whereas Realized Covariance (RCov) is the cross product of intraday returns. It follows 

that Realized Correlation (RC) is obtained by dividing realized covariance by realized 

volatility. Based on the theory of quadratic variation, Andersen, Bollerslev, Diebold, & 

Labys, henceforth ABDL, (2001, 2003) and Andersen, Bollerslev, Diebold, & Ebens, 

henceforth ABDE (2001), showed that, as the sampling frequency tends to infinity, the 

realized measures are consistent estimators of the true latent processes. Realized 

measures are essentially “model-free” thus exhibiting notably advantageous properties 

over previously reported estimators that rely on parametric models that induce 

econometric or mathematical misspecification.  

Similar to the measure of implied correlation, realized covariance and correlation 

have been studied in a remarkably less extent. To fix ideas, consider that the two assets 

{Xt} and {Yt} follow a standard Brownian motion B
X
 and B

Y
 with a drift X

t  and Y

t  and 

instantaneous variance 2,X

t  and 2,Y

t , respectively. The integrated covariance is then 

given by:  
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Under the limit theorem for stochastic processes, the realized covariance, defined below 

as the sampling frequency tends to infinity, is a consistent estimator of the true latent 

process (see Barndorff-Nielsen and Shepherd, 2002; Mykland and Zhang, 2006). 
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It follows that the realized correlation is obtained by dividing the realized covariance by 

the product of variances of assets X and Y as follows: 
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In practice, the estimation of realized covariance encounters several problems. 

The first, also present in the calculation of realized volatility, is the market microstructure 

noise that arises from price discreteness, bid-ask spreads or the lack of liquidity. Aït-
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Sahalia et al. (2005) and Zhang et al. (2005) showed that the bias increases as the 

sampling frequency increases. Thereafter, the optimal sampling frequency has been at the 

core of several studies that discuss the trade-off between market microstructure effects 

and loss of information from sampling too sparsely (see Zhou, 1996; Bandi and Russell, 

2008; Oomen, 2006 and De Pooter, Martens, and van Dijk, 2008). The second problem 

stems from the asynchronous trading of the assets included in the covariance matrix. The 

so called “Epps effect” (Epps, 1979) states that realized covariance tends to zero as 

sampling frequency increases. Barndorff-Nielsen et al. (2011) proposed the use of 

realized kernels and utilized the refresh time to synchronize the timing of observations 

while also incorporated leads and lagged autocovariance terms. Alternative methods of 

addressing the two problems include subsampling (Zhang et al., 2005) and pre-averaging 

(Jacod et al., 2009). Zhang et al. (2005) proposed the two-time scales estimator that 

essentially utilizes realized variance estimates from a low and a higher frequency 

sampled returns and applies the subsampling method to reduce the variance of the low 

frequency realized variance. 

Several studies have assessed the information content of realized measures within 

a portfolio optimization and hedging allocation context. Fleming, Kirby and Ostdiek 

(2003) examine the use of intraday data in the context of tactical asset-allocation 

decisions and suggest that the improvement in terms of economic gains can be 

substantial. Yeh, Huang and Hsu (2008) suggest that trading strategies based on intraday 

returns result to an almost perfect hedge, with the risk reduction being equal to nearly 100 

percent. In contrast, Liu (2009) show an investor who aims to track the S&P 500 index 

with 30 stocks of the Dow Jones Industrial Average Index shall switch from daily to 

intraday data only when the investment horizon is shorter than six months or portfolio 

rebalance occurs on a daily basis. 

Following the proliferation of alternative measures of volatility and correlation, 

namely realized, implied and conditional measures, a number of studies compare the 

informational efficiency and forecasting accuracy. Martens (2002) uses data on the S&P 

500 futures markets and find that when overnight returns are excluded, realized volatility 

is the best proxy of daily volatility. Martens and Zein (2004) compare the three 
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alternatives measures of volatility on the S&P 500 index, the YEN/USD FX rate and the 

Crude Oil and provide evidence of better forecasting performance of the realized 

alternative. Koopman, Jungbacker, and Hol (2005) attain similar results for the S&P 100 

index. Pong et al. (2004) conduct the same comparative analysis for foreign exchange 

rates and find that realized volatility, closely followed by the implied measure, yield 

better forecasting performance for one-month and three-month horizons.  

Andersen et al. (2006), extended their previous work on realized volatility and 

correlation, and defined realized beta as the ratio of realized covariance and variance. 

They find that, in contrary to the highly persistent and fractionally integrated variance 

and covariances series, realized betas are significantly less persistent and best modeled as 

stationary processes. Morana (2007) also uses daily returns to estimate factor betas. The 

findings of the study support the time-variability and the predictability of the series, 

especially in the short run. Patton and Verrado (2012) examine the information flow and 

beta reaction to earnings announcements. They show that realized betas increase 

significantly on announcement days while the days that follow they revert to their long-

run average levels. 

 

2.5 Correlation risk 

Correlation risk arises from fluctuations in the correlation structure between assets or 

across countries. As discussed in Section 2.2, correlation is expected to increase during 

periods of high volatility and low returns, resulting in moderated diversification benefits 

when they are most needed. It is therefore natural for investors to seek protection and to 

pay an extra premium for obtaining assets that perform well and offer higher payouts in 

states of high correlation.  

Krishnan, Petkova and Ritchken (2009) analyze the inter-asset correlation 

structure of 25 Fama and French portfolios for an extended period and examine whether 

pairwise correlation is priced in the cross section of returns. They find significant 

evidence of negatively priced correlation risk even after controlling for macroeconomic 

factors, higher moments and different test assets. Results suggest that investors are 

willing to pay an extra premium for stocks that are performing well in states of 



Chapter 2: Literature Review 

 

36 

diminished diversification; thus increasing the demand and diminishing the expected 

returns. Mueller, Stathopoulos and Vedolin (2012), using data on FX rates and options, 

also find that correlation risk is a significant factor that carries a negative premium, while 

currency portfolios with low or negative exposure to correlation risk perform well. In an 

asset allocation context, Buraschi, Porchia and Trojani (2010) suggest that the hedging 

demand for correlation risk substantially affects the optimal portfolio weights. 

Prompted by the seminal paper of Driessen, Maenhout and Vilkov (2009), several 

studies have investigated the pricing of correlation risk through the decomposition of the 

variance risk premium of the index into the variance risk premium of the constituent 

stocks and the correlation structure. In specific, Driessen, Maenhout and Vilkov (2009) 

provide evidence of priced volatility risk premium on the index options in contrast to 

individual options where the price is not significant. They argue that the differential 

pattern is mainly attributed to the negative price of correlation risk that is only present in 

the index options. Intuitively, index options are expensive and earn lower returns because 

they offer a valuable hedge against correlation increases and insure against diminished 

diversification benefits. Schürhoff and Ziegler (2010) and Chen and Petkova (2012) 

extend the analysis and decompose the volatility risk premium in systematic and 

idiosyncratic components. Schürhoff and Ziegler (2010) find that systematic 

(idiosyncratic) risk is negatively (positively) priced whereas Chen and Petkova (2012) 

find that only systematic risk carries a significant price. In a similar context, Cosemans 

(2011) further decomposes the volatility and correlation risk premia into the short and 

long run components. In line with previous literature, he finds that, on market level, both 

components obtain a negative price whereas in case of individual options, the short (long) 

term component is positively (negatively) priced.  

The Volatility Risk Premium (VRP), defined as the difference of implied and 

realized volatility, is often regarded a measure of market-implied risk aversion while 

several studies have provided evidence of negatively priced premium. Jackwerth and 

Rubinstein (1996) provided evidence that at-the-money Black–Scholes implied 

volatilities are systematically and consistently higher than realized volatilities measured 

as the square root of the empirical quadratic variations of the price sampled intradaily at 
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small time intervals. Duarte and Jones (2007) observed that the volatility risk premium 

varies positively with the implied volatility of the S&P 500 index options. Bakshi and 

Kapadia (2003a) provided evidence of negative volatility risk premium in index option 

markets by creating a delta hedged portfolio and observed that volatility affects delta 

hedges gains even after controlling for jump fears. In their work that followed, Bakshi 

and Kapadia (2003b) also show that the volatility risk premium embedded in individual 

options is negatively priced, though much smaller to index VRP. 

The information content of volatility and correlation risk premia for future market 

returns has been at the core of limited studies. Bollerslev, Tauchen, and Zhou (2009) 

measure the volatility risk premium as the difference of implied volatility (following the 

model-free methodology suggested by Britten-Jones and Neuberger, 2000) and realized 

volatility, from high-frequency intraday data, and find that the VRP is able to predict 

future equity premium. Cosemans (2011) finds that the predictive power of market VRP 

might be attributed to the correlation risk premium and to the market component of the 

VRP in individual stock options. Driessen, Maenhout and Vilkov (2012) assess the 

predictive power of option-implied correlation for future aggregate stock returns and find 

that, when combined with the VRP, they jointly explain 15% of future market variance. 

Evidence of priced correlation risk induced academics and practitioners to 

develop trading strategies that exploit directly the correlation risk. Intrigued by the 

finding that the premium of the index is relatively higher than the premia of constituent 

stocks, Nelken (2006) introduced the “dispersion strategy”, usually implemented through 

options and straddles or variance swaps. The strategy involves short/(long) positions in 

index and long/(short) positions in the constituent stocks,. The strategy will result in 

profits when either the difference of implied volatility of the index and individual stocks 

eliminates or the options expire and the earnings from written stocks are greater than the 

loss from the long positions. Jacquier and Slaoui (2010) suggest that the profit/(loss) of 

the dispersion trading strategy is equal to the spread between implied and realized 

correlation. 

Two alternative lines of reasoning have been set forward to explain the 

profitability of the dispersion trading strategy. The first one is based on the extensively 
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discussed price of correlation risk that induces index options to be more expensive than 

individual options. The second hypothesis is related to market demand and supply forces 

that lead option prices to deviate from their theoretical values. Deng (2008) uses data on 

the S&P 500 options and studies the period of late 1999 and 2000 when the options 

market has undergone structural changes (e.g. cross-listing of options and reduced bid-

ask spreads amongst others). He finds that the profitability of the dispersion trading 

strategy eliminated in 2000, suggesting market inefficiency as the institutional changes 

should not have affected the pricing of correlation risk. In contrast, Härdle and Silyakova 

(2012) employ the dynamic semiparametric factor model (DSFM) to model the implied 

correlation of options on the DAX index and find that a dispersion trading strategy with 

variance swaps outperforms alternative strategies.  

 

2.6 Market efficiency and predictability of moments 

An enormous literature has been devoted in examining the ability of alternative measures 

of volatility and correlation to provide accurate forecasts of future realized moments. In 

Sections 2.3 and 2.4, various studies that address that issue are presented. Another stream 

of research that has received notably less attention is the predictability of the moments 

per se, i.e. whether the dynamics that govern the evolution of the series contain any 

predictable pattern. The above question constitutes a direct test of the efficient market 

hypothesis. 

 Efficient Market Hypothesis (EMH) evolved as a fundamental concept of modern 

finance. Fama (1970) was the first to provide a rather vague definition of market 

efficiency as follows: “A market in which prices at any time “fully reflect” available 

information is called efficient”. Some years later, Jensen (1978) followed and different 

approach and defined a market as efficient “[…] with respect to information set θt if it is 

impossible to make economic profits by trading on the basis of information set θt”.  

A significant amount of studies has assessed the efficiency of option markets 

through the predictability of the volatility dynamics while the results remain mixed. 

Chiras and Manaster (1978) conclude that the Black-Scholes implied variance, compared 

to historical variance, is a better predictor of future realized variance. Consecutively, they 
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employ a trading strategy that yields significant abnormal returns suggesting that the 

CBOE market was inefficient. Galai (1978) assesses the hypothesis of options market 

efficiency through the investigation of boundary conditions of the options and underlying 

spot market and finds that positive profits can be attained. Goyal and Saretto (2009) find 

evidence of economically significant predictability in the cross-section of stock options 

returns.  

In contrast, several studies find evidence of a statistically significant 

predictability, which however cannot be economically exploited. Harvey and Whaley 

(1992) use near-the-money options on the S&P 100 market and find that implied 

volatility fails to produce significantly positive profits when transaction costs are taken 

into account. Noh, Engle and Kane (1994) compare implied volatility forecasts to those 

obtained from a GARCH model and find that the latter results in greater profits. 

Additionally, Gonçalves and Guidolin (2006), Bernales and Guidolin (2010) and 

Chalamandaris and Tsekrekos (2010) study the predictability in the implied volatility 

surface and find conclude that the predictability supported by the statistical measures 

cannot to attain abnormal profits. Konstantinidi, Skiadopoulos and Tsagkaraki (2008) 

reach the same conclusion for several European and US indices volatility indices. Finally, 

Neumann & Skiadopoulos (2013) discuss the predictability of higher-order moments and 

find that economic gains, after transaction costs, are eliminated thus suggesting that the 

efficient market hypothesis for the S&P 500 market holds.  

To the best of my knowledge, despite the extensive literature on the predictability 

of volatility, the predictability of correlation has remained unexplored. Buraschi, Trojani 

and Vedolin (2013) provide a theoretical explanation of why correlation process might 

contain predictable patterns. In specific, they develop an equilibrium model of two 

heterogeneous agents with different beliefs and study the effect of aggregate economic 

uncertainty and diversity in beliefs across investors on volatility and correlation risk 

premia. Chapter 4 addresses the issue of predictability of options-implied correlation.  

Market efficiency in futures markets has been initially assessed through 

regression analysis, which however produces unreliable results if the series are non-

stationary, a common trait of equity returns. To overcome the ambiguities deriving from 
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such an assumption, an alternative approach based on the cointegrating relationship of the 

spot and the futures markets has emerged (see for example MacDonald and Taylor, 1988; 

Baillie, 1989; Chowdhury, 1991; Lai and Lai, 1991; Brenner and Kroner, 1995). Based 

on the fundamental principles underlying the pricing of futures, it is expected that the 

spot and the futures market co-move closely. Divergence from the long-run cointegrating 

relationship calls the market efficiency hypothesis into question.  

The predictability of futures prices may derive from several types of risk premia. 

Bessembinder and Chan (1992) find that the several macroeconomic factors have limited 

predictive power over movements in agricultural, metal, and currency futures prices. Kho 

(1996) and Hong and Yogo (2012) suggest that the predictability of foreign exchange rate 

and commodity futures prices, respectively, is mainly attributed to time-varying risk 

premia. Miffre (2001) finds that time-varying risk premia, driven by investors’ expected 

returns along with variation in betas eliminate the predictability of the FTSE 100 Index 

futures. Recently, Szymanowska et al. (2014) identified spot returns premium and term 

structure premia related to changes of the basis can account for the commodities futures 

risk premia.  

From an economic perspective, several papers have provided evidence of 

exploitable patterns that can yield profit to market participants (indicatively, Yoo and 

Maddala, 1991 for commodity and currency futures; Klitgaard and Weir, 2004; and 

Wang, 2004 for currency markets). In contrast, Konstantinidi and Skiadopoulos (2011) 

employ a trading strategy to explore the predictability on futures of the VIX index and 

find that no abnormal returns can be attained.  

 

2.7 Optimal Hedge Ratio 

A trader is willing to enter a transaction with derivatives products in order to minimize 

the risk deriving from changes in the spot market or to enhance plausible profits. Hedging 

with futures is among the most widespread risk management practices. The hedge ratio 

denotes the number of futures contracts that the investor holds in order to offset changes 

in the underlying spot market. The prevailing methodology of obtaining the hedge ratio 

originates in minimizing the portfolio risk (Johnson, 1960; Ederington, 1979). The basic 
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underlying assumption is that all investors embrace the minimum variance scope and take 

positions accordingly. In contrast, another stream of literature has recognized the 

discrepancy of investors’ risk aversion. A number of alternative hedge ratios that seek to 

maximize the risk-return function have been developed. Cheung, Kwan and Yip (1990), 

Lien and Luo (1993), Kolb and Okunev (1993) and Shalit (1995) and introduced the 

Mean-Extended-Gini-coefficient (M-MEG) that considers the investor’s level of risk 

aversion. In the same context, the Mean Generalized Semivariance (M-GSV) focuses on 

the downside risk, i.e. returns falling below a target level (De Jong, De Roon, and Veld, 

1997; Lien and Tse, 1998, 2000; Chen et al. 2001;).  

However, due to the simplicity of calculation, the minimum variance hedge ratio 

has been at the core of the hedging problem and has attracted the vast majority of 

research interest. Several methods of estimating the minimum variance hedge ratio have 

been proposed. The first method, the naïve hedge ratio, has considered the hedge ratio to 

be equal to unity during the entire investment horizon, assuming that spot and future 

returns are perfectly correlated. Ederington (1979) suggested that the optimal hedge ratio 

could be obtained from regressing the spot and the futures returns via Ordinary Least 

Squares (OLS). The static OLS method recognizes the imperfect correlation but accepts 

that the joint distribution remains constant. The OLS static hedge ratio is defined as 

follows: 

 t t tS F        (2.19) 

where the slope of the regression, β, is the minimum variance hedge ratio.  

Nevertheless, the above-mentioned methods fail to consider the widely 

documented time variation of the asset returns, and, consequently of the hedge ratio. In 

an attempt to depart from the constant hedge ratios and following the emergence of the 

GARCH family models, several studies supported the time variability of the hedge ratio 

and introduced the GARCH models in the estimation procedure of the spot and futures 

(co)variance matrix. For example, the estimation procedure of obtaining a hedge ratio 

from a GARCH (1,1) model is outlined below. First, the spot and futures variance, hss and 

hff, are modelled from a GARCH(1,1) model as follows: 
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where hsf is the covariance and ρ is the correlation coefficient assumed constant. The 

optimal GARCH(1,1) hedge ratio is then calculated as 
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Despite the well-documented time variation of the covariance matrix, several 

studies suggest that the simple OLS model continues to yield at least equal or superior 

hedging effectiveness when compared to more sophisticated GARCH models. Myers 

(1991) employ rolling moving average estimates of variance and covariance, and a 

GARCH model for modelling the spot and futures returns and find only marginal 

improvement over the traditional constant methods of hedge ratio estimation. Miffre 

(2004) introduce a conditional OLS model than incorporates a set of informational 

variables and test whether the basis risk is reduced. They find that, especially traders with 

long-term horizon, gain substantial benefit in terms of portfolio risk reduction, and the 

conditional OLS model performs better than the naïve, the static OLS and the 

GARCH(1,1) model. Cotter and Hanley (2012) compare the out-of-sample hedging 

performance of the GARCH and Asymmetric GARCH with the OLS hedge ratio and find 

that the latter perform consistently well. In contrast, the integration of regime switching 

dynamics in the GARCH process has been documented to yield better results. Lee (2009) 

develops a GARCH model that incorporates the impact of jumps and regime switching 

states in the evolution of the variance process and suggests that the out-of-sample 

hedging effectiveness is significantly improved. Lee and Yoder (2007) suggest a Markov 

Regime Switching time-varying correlation GARCH model and find similar results.  

More recently, the availability of high-frequency data has enabled the direct 

estimation of the variance and covariance processes, which essentially become 

observable. Additionally, it has been well documented that, the realized measures exhibit 

superior forecasting ability when compared to estimators from daily or lower frequency 

data. While the notions of realized variance and covariance have been extensively 
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studied, not much attention has been paid on the properties, forecasting performance and 

hedging effectiveness of the realized hedge ratio, while the empirical evidence is mixed. 

Lai and Sheu (2008; 2010) argue that the use of realized volatility measures provides 

substantial benefit to the hedger in terms of risk reduction and economic value. Harris, 

Shen and Stoja (2010) employ four models of conditional variance (namely, the 

exponentially weighted moving average, EWMA, the Diagonal VECH, the constant 

correlation and the S-GARCH models) and one dynamic model of the realized hedge 

ratio. They use data on three foreign exchange rates and find that the realized hedge ratio 

yields superior hedging effectiveness whereas the conditional models provide only 

marginal improvement over the unconditional equivalent. In contrast, McMillan & Garcia 

(2010) advocate that the portfolio variance is minimized when the hedge ratio is 

estimated from daily returns while the realized hedge ratio yields superior Sharpe ratio. 
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  Chapter 3

The Dynamic Evolution of the Correlation Risk 

Premium 

Chapter Abstract: In this Chapter, I study the distributional properties of the 

Correlation Risk Premium (CRP), defined as the difference of realized and implied 

correlation. To this end, an improved model-free measure of implied correlation is 

proposed. The new measure is firstly inferred from currently observed option prices 

without relying on any specific option pricing model, and secondly, corrected for the 

early exercise premium of the American options. An extensive dataset of fifteen years, 

from 1996 to 2010 is used to investigate potential differential properties during 

alternative periods of financial distress. Results from the distributional analysis of CRP 

suggest that the series are far from normal while exhibit high persistence and long 

memory. Interestingly, the negative correlation risk premium is no longer significant 

during the subprime mortgage crisis suggesting that the investors were not able to exploit 

previously reported arbitrage opportunities, arising from the discrepant pricing of options 

on the index and options on the constituent stocks. Finally, a set of macroeconomic and 

market-specific variables fails to provide accurate forecasts of the CRP series. However, I 

find that forecasting ability of the volatility risk premium of the index for future CRP 

levels is significant.  
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3.1 Introduction 

Understanding the dynamics of risk, embodied in the time-variation of price returns, is of 

paramount importance for investors when managing risk, allocating assets, pricing and 

hedging derivative securities. The importance of correlation as a priced risk factor has 

been the subject of only a few recent studies. Krishnan, Petkova and Ritchken (2009) use 

historical prices of US stocks and, after controlling for asset volatility, risk factors and 

higher-order moments, find a significant correlation risk premium tested under different 

specifications. Driessen, Maenhout and Vilkov (2009) create a correlation trading 

strategy that aims to exploit the correlation risk premium and find that the compensation 

for bearing correlation risk is substantial. The strategy sells index straddles and buys 

individual straddles and stocks in order to hedge individual variance risk and stock 

market risk, respectively. In a similar context, Mueller et al. (2012) provide evidence of 

priced correlation risk in currency markets using option-implied correlations. Pollet & 

Wilson (2010) examine correlation risk using historical price data and find that 

differences in exposures to correlation risk justify differences in expected returns, while 

volatility risk is negatively related or unrelated to the stock market risk premium. Kelly, 

Lustig, and Nieuwerburgh (2011) examine the differential pricing of put options on the 

finance sector index and the individual firms of the sector during the recent financial 

turmoil, through the price of correlation risk and find that the industry specific risk has 

been partially eliminated by the government bailout guarantee.  

While volatility risk premium has stimulated the academic interest over the past 

years, correlation risk premium has attracted less attention. The few relevant studies have 

been intrigued by prior empirical findings that the volatility risk premium of an index 

option is higher than the corresponding premium of a portfolio consisting of the options 

on the constituent stocks of the index. The discrepancy has been initially attributed to 

market frictions and specifically, the differential demand and supply dynamics for the 

index and individual stocks. Bollen and Whaley (2004) proved that daily changes of 

implied volatility can be attributed to increased buying pressure, especially in OTM puts 

for the index options and in, much less extent, for calls options on the individual stocks. 

Gârleanu, Pedersen, and Poteshman (2009) model the option equilibrium prices as a 
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function of demand pressure and find that end users take long (short) positions in index 

(individual) options, leading the options’ price to increase (decrease). From an alternative 

perspective, Driessen, Maenhout and Vilkov (2009) provided a risk-based explanation for 

the contrast of volatility risk premium between index and individual options. Essentially, 

they argue that index options are expensive and earn low returns, unlike individual 

options, because they offer a valuable hedge against correlation increases and insure 

against the risk of a loss in diversification benefits. 

Motivated by the initial finding of Jackwerth and Rubinstein (1996) that at-the-

money implied volatility is higher than its realized counterparty, volatility risk premium 

has stimulated the interest of the academics and practitioners over the past years, with the 

vast majority of the studies focusing on the study of index options. Negative price of 

volatility risk premium suggests that investors are willing to pay an extra premium so as 

to be hedged against downward market movements in stock returns. Bakshi and Kapadia 

(2003a) amongst others, provide evidence of negatively priced volatility risk, suggesting 

that investors are willing to pay an increased premium for the options, to protect 

themselves from increased volatility and lower returns in the market. On the contrary, 

only a few papers study the pricing of individual equity options. Bakshi and Kapadia 

(2003b) noted that individual equity option prices embed a negative market volatility risk 

premium, although much smaller than for the index option.  

Driessen, Maenhout and Vilkov (2009) have provided evidence of negatively 

priced volatility risk premium in index options, whereas no such evidence is found for 

individual options. He suggested that the discrepancy is triggered by the fact that, by 

definition, index options are exposed to a risk factor lacking in the individual process, 

namely correlation risk. To this end, they provided solid theoretical background by 

decomposing the volatility risk premium of the S&P 100 index into individual stocks’ 

volatility risk premium and inter-asset correlation structure and, through the 

implementation of a dispersion trading strategy provide empirical evidence of priced 

correlation risk. Additionally, Cosemans (2011) shows that the aggregate volatility risk 

premium is driven by the changes in the correlation risk premium structure as well as the 

market risk component inherited in the idiosyncratic risk. Moreover, both volatility and 

correlation processes are separated into short and long run components and finds that 
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even after accounting for size, value, momentum, and liquidity factors, the price remains 

significant.  

In this Chapter, the distributional properties of the correlation risk premium, 

defined as the difference of implied and realized correlation, are examined. The first 

contribution of the Chapter lies in the derivation of the Model-Free Implied Correlation 

measure. In specific, an adjustment of the model-free implied volatility, firstly proposed 

by Britten-Jones and Neuberger (2000), is proposed so as to account for the Early 

Exercise Premium inherent in the American options. An extensive dataset of fifteen years 

is used, from 1996 to 2010, which allows the examination of the time series behavior 

during several recent periods of financial distress with scrutiny. Motivated by the 

decomposition proposed by Driessen, Maenhout and Vilkov (2009), the distributional 

properties of the alternative measures of volatility and correlation, namely implied and 

realized, along with the properties of the volatility risk premia for the S&P 100 Index and 

the portfolio of constituent stocks and correlation risk premia are presented. Following, 

prompted by several stylized facts about correlation, reported in the literature, and 

analyzed extensively in Chapter 2, the distribution of the correlation risk premium is 

investigated for long memory and asymmetric traits. Finally, Intrigued by previous 

studies that have documented superior information content of economic and financial 

variables in shaping equity returns, the importance of macroeconomic and market-

specific variables in modelling and forecasting the correlation risk premium is examined.  

The remaining Chapter is organized as follows: Section 2 describes thoroughly 

the methodology followed for the derivation of the Model-Free Implied Correlation 

series. Section 3 and 4 present the data and discuss the time evolution of the series. In 

Section 5, the CRP series is examined for seasonality patterns, long memory and 

asymmetric response to index returns and volatility risk premium. Section 6 examines the 

informational content of several variables in forecasting the CRP. Section 7 concludes. 
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3.2 Construction of Model-Free Implied Correlation Index – 

Methodology 

Intuitively, fluctuations of the index options’ prices are associated with fluctuations of 

prices of individual options as well as fluctuations in the correlation structure. Thus, the 

variance of an index, consisting of N stocks, can be defined as follows:  
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where 
p  is the variance of the index, i  is the standard deviation of the asset i, 

ij  is 

the correlation between asset i and j, and iw  is the relative weight of each constituent 

asset on the portfolio. 

The correlation measure examined in this study is a weighted average of all pair-

wise correlations of the constituents of the index and an average measure of the degree of 

diversification in the market represented by the index (see Skintzi and Refenes, 2005), 

defined as follows: 
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Historical volatility and correlation estimators rely on the assumption that the 

future dynamics of the series will be similar to the past. To overcome the ambiguities 

deriving from the above assumption, stock return moments are inferred from currently 

traded option prices. Naturally, option prices reflect the current market view of future 

price movements of the underlying stock. Therefore, the estimation of stock price 

distribution moments from option prices is widely considered to outperform the 

estimation based on historical performance in terms of informational efficiency. 

Unlike the traditional, model-based Black-Scholes implied volatility, Britten-

Jones and Neuberger (2000) have developed a non-parametric specification of implied 

variance under the assumption that price process is continuous while the volatility is 

stochastic. Jiang and Tian (2005) extended the methodology so as to account for the 
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presence of jumps in the price process of the underlying asset. Specifically, they provided 

evidence that, under the risk-neutral measure, Q, the integrated variance between T1 and 

T2 is fully specified by a set of call options, expiring on the specified dates: 
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where ( , )F

i iC T K is the forward price of a call option, with a strike price equal to iK  

expiring at time iT , 0F  is the forward asset price, max min( )K K K m   and 

miniK K i K   , for 0 i m  . Assuming deterministic interest rates and dividends, the 

forward option price is the future value of an option expiring at time iT , defined as 

( , ) ( , ) irTF

i i i iC T K C T K e  . Accordingly, the forward asset price is equal to 1
0 0

rT
F S e  , 

where 0S is the current asset price minus the present value of all the expected dividends 

within the time-to-maturity of the option, iT .  

The above equation gives rise to two main implementation issues. First, the 

trapezoid rule for numerical integration leads to discretization errors. However, according 

to Jiang and Tian (2005), the choice of a large number of integral points, m, leads to 

negligible errors. Second, only a finite number of strike prices, [Kmin, Kmax], is available 

within a trading date. In order to overcome the limitations, following Jiang and Tian 

(2005), a fine grid, of m=1000 points, with option prices within the moneyness range of 

[0.3, 3] is created. Tests under alternative number of integral points, m, and moneyness 

range, have produced insignificant changes.  

In detail, the implementation procedure is as follows. First, the moneyness level 

for every option in the dataset is calculated. Taking into account that the options of the 

constituent stocks of the S&P100 index are American style, the current underlying stock 

price is adjusted by subtracting the present value of known dividends due to payment 

within the expiration of the option. In case of duplicate moneyness levels, i.e. a call and a 

put option with the same strike price, the average of implied volatilities is computed. In 
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order to calculate the mode-free implied volatility every day, at least three unique implied 

volatility points of an option with a specific time-to-maturity are required. In the next 

step, I fit a Piecewise Cubic Hermite Interpolating Polynomial to create a fine grid of 

implied volatilities corresponding to the range of moneyness previously defined. For any 

moneyness level beyond the existing bounds, the last known implied volatility value on 

this boundary is used. Thereafter, 1000 points of implied volatility are translated into call 

prices using the Black-Scholes model and the equation (3.3) is applied. Finally, model-

free implied volatility is annualized on a 30/365 basis. 

The model-free implied volatility methodology, as developed by Britten-Jones 

and Neuberger (2000), relies on the assumption of European style options. In contrast, the 

dataset consists of the options on the S&P 100 index as well as the options on the 

constituent stocks, all of which are American style, thus, their incorporating the Early 

Exercise Premium (EEP). Among the prevailing methodologies of extracting the EEP is 

the Barone-Adesi and Whaley (1987) approximation. However, their methodology could 

be only applied to the options on the S&P100 index, which have a continuous dividend 

yield. Recently, Tian (2011) proposed a methodology of extracting the risk-neutral 

density and, subsequently, the EEP from American options with either discrete or 

continuous dividends. He proposed an iterative Implied Binomial tree (iIB), as a 

modification of the standard implied binomial tree proposed by Jackwerth and Rubinstein 

(1996). The main steps of the methodology are outlined below. 

At the first step, the European option price is considered equal to the observed 

American prices. Next, a standard implied binomial tree is built and the ending nodal 

probabilities are calibrated to the initial option prices. Due to the limited availability of 

strike prices from traded options and with the view of maintaining the non-parametric 

feature of the methodology, I follow Jackwerth and Rubinstein (1996) and choose the 

ending nodal probabilities through the following optimization procedure that maximizes 

the smoothness of the implied risk-neutral density.  

 
1

2 mod m 2

1 1

1 1
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n m

el kt

j j j i i
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j i
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 

 

      (3.4) 

subject to: 
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

     (In case of the options of the constituent stocks that 

pay discrete dividends equal to 0D  ) 

where  
jP  is the ending nodal probability, model

iV  is the price of the option calculated 

from the implied binomial tree model, mkt

iV is the observed option price, r  is the risk-free 

rate, 
0S and 

jS is the current asset price and the asset price at the ending node, 

respectively. 

After the refined European option price from the implied binomial tree is 

obtained, the early exercise premium is calculated as the difference of the American and 

the European option price. Next, the refined estimate of European option price is defined 

as the difference between the initial European price and the early exercise premium, and 

used as an input for the second iteration where the above optimization procedure is 

replicated. The iterative procedure continues until the early exercise premium converges.  

Additionally, a daily average realized correlation measure based on equation (3.2) 

using forward-looking realized volatility estimates for i , at time t is calculated. 

Realized volatility is calculated as a simple measure of standard deviation of squared 

returns, calculated from closing prices, as follows: 

 
2

,

1 1

365
log( )

T
t

t T

t t

S
RV

T S 

   (3.5) 

where 
,i tS is the closing price of asset i, i = 1, 2, …, N, I on day t and T is set equal to 30 

calendar days so as to match the time horizon of model-free implied volatility. 
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The Variance Risk Premium (VRP) is defined as the raw difference between the 

model-free implied volatility, a proxy for risk-neutral measure, and realized volatility, the 

volatility under the physical measure, i.e. 

 
, , ,t i t i t iVRP MFIV RV   (3.6) 

where MFIV is the Model-Free Implied Volatility, as computed from equation 3.3, and 

RV is the Realized Volatility, computed from equation 3.5. 

By analogy, the Correlation Risk Premium (CRP) is thus defined as: 

 t t tCRP RC MFIC   (3.7) 

where tRC  is the Realized Correlation at day t calculated from equation (3.2) using 

realized volatility estimates and tMFIC  is the Model-Free Implied Correlation at day t 

calculated also from equation (3.2) using model-free implied volatility estimates. 

 

3.3 Data….. 

For the purposes of the study, daily closing quotes for the S&P100 index options and for 

the constituent stocks index are retrieved from OptionMetrics. As a subset of S&P 500, 

S&P 100 is a capitalization-weighted index including the largest and most established 

companies across several industries with traded options. Additions/deletions to the index 

occur on an as-needed basis, whenever any of the S&P’s inclusion criteria are violated. 

Data on underlying asset price and company distributions is obtained from OptionMetrics 

database. The zero-coupon interest rate curve, also provided by OptionMetrics database, 

is used as the risk-free interest rate. For the purpose of calculating the realized volatility, 

which requires stock prices adjusted for splits and distributions, stock adjusted closing 

prices are obtained from Datastream. The sample extends from January 1996 to October 

2010. The list of constituents stocks is retrieved from Datastream and the composition of 

the S&P 100 Index is replicated on a daily basis; thus, the sample includes 148 stocks 

throughout the fifteen years of the sample. On each day, the actual daily weight of stock i 

is calculated based on its daily market capitalization divided by the total market 

capitalization of the N stocks included in the index.  
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During the sample period, the world economy experienced several periods of 

financial turmoil. Starting with the Asian and Russian crisis in late 1997 and 1998, 

respectively, the 9/11, the Argentina financial turmoil and the “dot.com” bubble followed 

during the first years of the decade. The next and far more severe period of financial 

distress that the global economy experienced was the subprime mortgage crisis that 

started in 2007. The partition of the whole sample period of fifteen years into three 

subsets of five years each, allows the study of differential pattern of VRP and CRP across 

distinct periods. To this end, the three sub-periods extends from 1996 to 2000, from 2001 

to 2005 and from 2006 to 2010.  

Several filtering rules are applied. First, in order to ensure trading activity, options 

with bid price greater than zero and positive open interest are selected. Second, options 

with less than one-week remaining time to maturity are eliminated; such options are more 

vulnerable to liquidity and microstructure issues. Third, options with implied volatility 

either greater than one or missing implied volatility are discarded
2
. Additionally, in order 

to eliminate options with extreme moneyness levels, only call options with delta greater 

than 0.15 and smaller than 0.5 and put options with delta greater than -0.5 and less than -

0.05 are included in the analysis. Finally, any option that violates arbitrage bounds is 

excluded. 

Before proceeding with the properties of the correlation risk premium, Table 3.1 

reports the average values of early exercise premium throughout the sample period, as 

derived from the methodology outlined in Section 3.2. I find that the average EEP is 

equal to 0.51%, while put option report an average value of EEP equal to 0.6%. Obtained 

results are consistent with previous literature that suggests that options with longer 

maturity incorporate large value of early exercise premium. Dueker and Miller (2003) 

record the early exercise premium for a period of 02/04/1986, through 20/06/1986 and 

find evidence of a substantial early exercise premium, with an average value of 5% for 

                                                 
2
 OptionMetrics does not report implied volatility for an option in case of a special 

settlement, failure of the implied volatility process to convergence, unavailability of the 

underlying asset price, vega value being below 0.5 or in cases where the midpoint of bid/ask price 

is below intrinsic value. 
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calls and 9.5% for put options. The pronounced discrepancy with results of this analysis 

may be stemming from the different periods of the employed dataset. 

Table 3.1: Early Exercise Premium (EEP)  

 
T<=30 T<=60 T<=180 T<=365 Total 

Put options 0.23% 0.31% 0.43% 0.49% 0.60% 

Call options 0.28% 0.32% 0.33% 0.34% 0.36% 

All options 0.24% 0.31% 0.39% 0.43% 0.51% 

Note: The Columns present the Early Exercise Premium during the whole sample period for call and put 

options of different maturity (T=30, 60, 180, 365). 

 

3.4 Time evolution and statistical properties 

In this Section, the time evolution of Model-Free Implied Correlation (MFIC), Realized 

Correlation (RC) and Correlation Risk Premium (CRP) for the whole sample period 

spanning from January 1996 to October 2010 is presented. Figure 3.1 plots the risk 

neutral (model-free) and physical (realized) measures of correlation in conjunction with 

the S&P 100 index returns. Notably, the risk-neutral correlation trends higher than the 

realized correlation. Consistent with the well-documented fact of increased correlation 

during bear markets, both series present several spikes throughout the whole sample 

period coinciding with periods of high volatility markets, though MFIC presents greater 

jumps. Specifically, resulting from the Asian and the Russian financial crises, the MFIC 

series reached the value of 0.9, in late 1997 and later in August 1998, while the RC was 

significantly lower, around 0.65. During the first years of the ‘00s, the low returns market 

stemming from the 9/11 terrorist attack, the South-American financial turmoil and the 

internet bubble burst, resulted in increased levels of correlation, though lower than the 

aforementioned spikes of the 90s. Over the subsequent years, MFIC trended lower, with 

the exception of the period of the multi-market sell-off in May 2006. Finally, the MFIC 

presents several peaks from 2007 until the end of the sample, as a result of the global 

financial crunch, which commenced in 2007 and culminated in September 2008 with the 

announcement of the bankruptcy of Lehman Brothers. MFIC series reached the highest 

value of 0.97 on October 24, 2008, while RC reached its peak of 0.77 on November 11, 

2008.  
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Figure 3.1: Time evolution of Model-Free Implied Correlation, Realized Correlation 

and S&P 100 Index Returns 

 

Table 3.1 reports the summary statistics of the model-free implied and realized 

correlation series for three sample periods described above. First, a significant difference 

between the value of correlation estimates under the risk-neutral and the physical 

measure is apparent. Over the first sub-sample, the average MFIC is substantially greater 

than the realized correlation, resulting in a significant value of correlation risk premium 

(CRP) equal to -0.11. Over the subsequent period, Realized Correlation increased sharply 

and reached the value of 0.37, while the average value of MFIC did not change 

substantially. The MFIC and the RC series are positively skewed with fat tails in contrast 

to the CRP that is negatively skewed, except the sub-period of 2006-2010. Additionally, 

the first-order autocorrelation for the CRP is significantly high and above 90%. However, 

the coefficients for the tenth and the fifteenth lag indicate rather fast decaying 

persistence, in contrast to MFIC and RC series where the coefficients decay slower. 

Further investigation of the autocorrelation pattern is conducted in the Section that 

follows. 

The higher moments and the Jarque-Bera test reject the hypothesis of normality 

for the MFIC series for all the periods under consideration. Table 3.1 also reports the test 

statistics of the Augmented Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test and 

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test statistic. According to the PP and 

the ADF test, the null hypothesis of unit root is strongly rejected for all three subsets at a 

significance level of 1%. In contrast, the KPSS test provides evidence of non-stationary 

time series for all three periods under consideration. These mixed results, along with the 
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slow decaying and significant autocorrelation coefficients, suggest the existence of long 

memory properties in the CRP similar to model-free implied volatility (see Brooks & 

Oozeer, 2002; Ahoniemi, 2008). To formally test the existence of long memory 

properties an ARFIMA model is employed. The detailed specification and results are 

provided in Section 3.5.2. Results suggest that the fractional differencing parameter is 

significant and within the range of [0, 0.5] only for the whole sample period indicating 

that the CRP is stationary for the three sub-periods while exhibiting long-memory traits 

during the extended sample period of fifteen years. 

Panel B of Table 3.2 displays the cross-correlation structure between the changes 

in the Correlation Risk Premium and the log returns of the S&P 100 Index. To simplify 

the practical interpretation of the negative price of Correlation Risk Premium, an increase 

(decrease) of the returns signifies that the premium becomes more negative (positive), i.e. 

the difference between realized and model-free implied correlation widens (narrows). All 

cross-correlation coefficients are significant for the first lagged and the contemporaneous 

return. Additionally, the negative relationship for the lagged CRP and index returns 

suggests that a decrease in index returns at time t-1 will induce CRP to increase. 

Interestingly, the relationship reverses in the contemporaneous setting. To fix ideas, an 

observed decrease of the index return at t-1 will result in a decrease of the CRP at time t, 

whereas a decrease of the index returns at time t will induce the CRP at time t to decline. 

The positive relationship for the contemporaneous returns is in line with previous 

literature of volatility risk premium with the following line of reasoning: an increase of 

index returns will decrease volatility (and correlation) based on the long documented 

leverage effect, which will in turn, increase the volatility risk premium, i.e. become more 

negative. By analogy, consider that the investors pay a negative price for the correlation 

risk premium as an insurance against unexpected correlation increases, while, they 

capitalize their gains during states that correlation is low. Given that an increase of index 

returns will decrease correlation, the investors are willing to uptake an extra 

compensation so as to benefit from the low correlation state. Finally, the CRP will 

increase and obtain values that are more negative.  

Turning the focus to the Correlation Risk Premium, as defined in Equation 3.7, it 

is noteworthy that the difference of correlation under the two measures is eliminated 
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leading the CRP to its minimum value during the period that encompasses the subprime 

mortgage crisis. Moreover, the last row of the Table reports the p-values for the null 

hypothesis that implied and realized correlation are on average equal, i.e. CRP is zero. 

Importantly, the correlation risk premium is significant only in the first period of 1996-

2000 and the whole sample period of 1996-2005, whereas it is insignificant for the two 

sub periods that encompass the South-American crisis, the internet bubble burst and the 

subprime crisis. The finding is not surprising. As outlined above, correlation is expected 

to increase during periods of financial distress whereas the Correlation Risk Premium is 

expected to decrease and reach less negative values.  
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Table 3.2: Descriptive Statistics of Model-Free Implied Correlation (MFIC), Realized Correlation (RC) and Correlation Risk 

Premium (CRP)  
 1996 – 2000  2001 – 2005  2006 - 2010  1996 - 2010 

  MFIC   RC   CRP     MFIC   RC   CRP     MFIC   RC   CRP     MFIC   RC   CRP   

Mean 0.360   0.248   -0.111     0.341   0.337   -0.004     0.419   0.415   -0.002     0.373   0.332   -0.040   

Median 0.349   0.239   -0.104     0.334   0.311   0.001     0.420   0.422   -0.011     0.356   0.304   -0.034   

Maximum 0.907   0.677   0.324     0.662   0.644   0.250     0.977   0.774   0.446     0.977   0.774   0.446   

Minimum 0.106   0.021   -0.602     0.126   0.084   -0.295     0.132   0.117   -0.335     0.106   0.021   -0.602   

Std. Dev. 0.135   0.114   0.126     0.112   0.102   0.096     0.167   0.156   0.128     0.143   0.143   0.128   

Skewness 0.808   1.091   -0.245     0.393   0.534   -0.214     0.167   0.037   0.560     0.594   0.571   -0.090   

Kurtosis 3.868   5.097   3.965     2.581   2.799   3.010     2.276   2.239   3.811     3.043   2.887   4.069   

Jarque-Bera 176.120 *** 479.859 *** 61.375 ***   41.530 *** 61.902 *** 9.556 ***   32.182 *** 29.065 *** 95.027 ***   219.376 *** 203.281 *** 181.558 *** 

ρ1 0.949 *** 0.976 *** 0.926 ***   0.964 *** 0.977 *** 0.931 ***   0.959 *** 0.982 *** 0.919 ***   0.960 *** 0.984 *** 0.937 *** 

ρ10 0.778 *** 0.725 *** 0.490 ***   0.847 *** 0.747 *** 0.558 ***   0.834 *** 0.819 *** 0.544 ***   0.836 *** 0.831 *** 0.607 *** 

ρ15 0.701 *** 0.571 *** 0.252 ***   0.821 *** 0.599 *** 0.413 ***   0.789 *** 0.688 *** 0.360 ***   0.792 *** 0.723 *** 0.443 *** 

ADF -3.167 ** -3.894 *** -5.859 ***   -1.897   -3.776 *** -5.472 ***   -3.350 ** -2.999 ** -5.225 ***   -4.410 *** -5.393 *** -8.847 *** 

PP -4.964 *** -4.460 *** -7.001 ***   -3.341 ** -4.169 *** -6.315 ***   -3.869 *** -3.655 *** -6.199 ***   -7.477 *** -6.244 *** -10.346 *** 

KPSS 1.192 *** 0.613 ** 0.424 *   1.702 *** 0.783 *** 0.837 ***   2.818 *** 1.356 *** 1.070 ***   0.767 *** 2.391 *** 2.424 *** 

D         0.243             0.000             0.040             0.224 *** 

p-value for 

H0: CRP= 0 
        0.000 *** 

  
  
  

  
  

0.797 
    

  
  

  
  

0.901 
    

  
  

  
  

0.002 *** 

Panel B                                                       

  CRP Difference 

S&P 100 Log Returns                                                   

-2         -0.004 *           -0.057             -0.011             -0.020   

-1         -0.165 **           -0.114 *           -0.125 *           -0.135 * 

-0         0.436 ***           0.304 **           0.356  **           0.368 ** 

-1         -0.014             -0.016             -0.054             -0.032   

-2         0.015            -0.002 

 

          -0.054             -0.018   

Note. The Table reports summary statistics of the MFIC, RC and CRP for three subsets defined in the first row and the whole sample period. The values ρ1, ρ10 

and ρ15 are the autocorrelation function (ACF) coefficients for the 1
st
, 10

th
 and the 15

th
 lag. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) test for 

the presence of unit root. The parameter d refers to the fractional integration parameter form the ARFIMA specification. The p-value is for the null hypothesis of 

CRP=RV – MFIV = 0 estimated with Newey-West autocorrelation consistent standard errors where the number of lags is automatically selected according to the 

Schwarz criterion. One, two and three asterisks denote rejection of the null hypothesis at 10%, 5% and 1%, respectively. 
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To analyze further the CRP, I take an insight view at the volatility risk premium 

embedded in individual and index options. Figure 3.2 depicts the time series of the cross-

sectional weighted average of implied and realized volatility for the individual equity 

options while Figure 3.3 plots the implied and realized volatility for the S&P 100 index 

options. The well-established fact that implied volatility is higher than realized volatility 

also holds throughout the sample. Visual inspection also suggests that the difference of 

the two volatility measures is more pronounced for the index returns. 

Figure 3.2: Time evolution of Weighted Average MFIV and RV of individual stocks. 

 

Figure 3.3: Time evolution of Weighted Average MFIV and RV of the S&P 100 

Index. 

 

Table 3.3 reports the average value of the model-free implied volatility and 

realized volatility for the S&P 100 as well as the average values for the cross-sectional 

weighted average of the model-free implied and realized volatility of the individual 
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stocks. During the first part of the sample, the difference between realized and implied 

volatility for the index options and the weighted average of the individual options is equal 

to -2.9% and -3.1%, respectively. During the second sub-period of 2001 – 2010, the 

realized correlation of the portfolio of individual options decreased by 20% while the 

changes in the index volatility measures are less pronounced. Turning to the weighted 

average of the individual stock options over the period of 2001 – 2010, the average 

implied and realized volatility reduced to the level of 32.5% and 28.8%, respectively. 

Although the volatility of individual options, under both measures, increased drastically 

during the last quarter of 2008 reaching a maximum value of approximately 100%, the 

diminished average value suggests that the jump in the series stemming from the 

turbulent times of 2007-2009, faded out quickly. 

In line with the obtained results of Bakshi & Kapadia (2003b), a lower value for 

the volatility risk premium of the individual options when compared to the index 

volatility risk premium is observed. Consistent with the findings for the CRP, the null 

hypothesis of equal implied and realized volatility of the portfolio of individual options is 

accepted during the subprime mortgage crisis period, both for the index and the 

individual equity options. Interestingly, the null hypothesis of zero risk premium is also 

accepted for the individual options during the first sub-period 

Table 3.3: Volatility Risk Premium 

  1996 - 2000 2001-2005 2006 - 2010 1996 - 2010 

IVm 0.215 0.200 0.213 0.210 

RVm 0.187 0.170 0.201 0.186 

VRPm -0.029 -0.030 -0.013 -0.024 

p-value H0: VRPm = 0 0.000 0.000 0.415 0.000 

IVi 0.356 0.331 0.317 0.335 

RVi 0.359 0.282 0.295 0.312 

VRPi -0.031 -0.049 -0.027 -0.045 

p-value H0: VRPi = 0 0.736 0.000 0.198 0.003 

Note: Subscript m denotes the S&P 100 index and subscript i the weighted average of the constituent 

stocks. The reported p-values are for the null hypothesis of zero volatility risk premium, and have been 

estimated with Newey-West autocorrelation consistent standard errors where the number of lags is 

automatically selected according to the Schwarz criterion. One, two and three asterisks denote rejection of 

the null hypothesis at 10%, 5% and 1%, respectively. 
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3.5 Distributional properties of CRP 

33..55..11  Intraweek patterns 

The intraweek variation has been a well-documented pattern for the returns and implied 

volatilities. It is thus natural to examine the presence of such patterns in the evolution of 

the correlation risk premium. To this end, the following specification is employed, where 

one lag of CRP has been added to control for autocorrelation.  

 
4

, 1

1

t i i t t t

i

CRP c a D CRP 



     (3.8) 

Results reported in Table 3.4 provide evidence of strong intraweek pattern for 

every sub-period under examination, although less intense during the period of 2006 – 

2010. 

Table 3.4: Intraweek patterns of CRP  

 
1996 - 2000 2001 - 2005 2006 - 2010 1996 - 2010 

Constant 0.007 ** 0.011 *** -0.005 * 0.007 *** 

Monday -0.038 *** -0.026 *** 0.006   -0.019 *** 

Tuesday -0.013 *** -0.013 *** 0.007 * -0.008 *** 

Wednesday -0.010 ** -0.009 *** 0.002   -0.006 *** 

Thursday -0.011 ** -0.008 *** 0.008 * -0.004 * 

CRPt-1 0.931 *** 0.936 *** 0.924 *** -0.146 *** 

Note: The regression has been estimated with Newey-West autocorrelation consistent standard errors where 

the number of lags is automatically selected according to the Schwarz criterion. One, two and three 

asterisks denote rejection of the null hypothesis at 10%, 5% and 1%, respectively. 

 

33..55..22  Long Memory 

Results from the ADF, PP and KPSS test have provided indirect evidence of long 

memory in the CRP series. In addition, several studies have suggested the presence of 

persistence and long-memory in correlation (see Dacorogna, 1999; ABDL, 2001; ABDE, 

2001). To this end, an ARFIMA (p,d,q) model suggested by Granger and Joyeux (1980) 

is implemented. The specification is as follows: 

 
1 1

(1 )(1 ) ( ) (1 )
r m

r d m

r t m t

r m

L L y L   
 

       (3.9) 



Chapter 3: The Dynamic evolution of the Correlation Risk Premium 

 

62 

The model is estimated for all plausible combination of AR and MA terms up to 

lag five. The ARFIMA (1,d,1) model, for all subsets and the whole sample period, is the 

best performing model that minimizes the BIC criterion. The fractional differential 

parameter is significant only for the whole sample period, with the value lying between 

[0, 0.5], thus signifying the presence of long-memory and positive dependence between 

distant observations. In the case of sub-periods, d is not significantly different from zero 

suggesting that the series is stationary and a simple ARMA model is able to accurately 

model the short-run dynamics of the series. For the rest of the Chapter, the notation 

“CRP” will refer to the first difference, in case of the whole sample period, and to the 

levels, for every sub-period.  

As an additional test, I also plot the autocorrelation function for the first 100 lags 

in Figure 3.4. The long-term persistence is confirmed by the high and significant 

autocorrelation coefficients that, although decaying fast up to the 30
th

 lag, remain stable 

for the lags that follow. A possible explanation for the significant ACF values for the first 

almost 30 lags is that by construction, the model-free implied correlation and the realized 

correlation, are annualized on a calendar month basis.  

Figure 3.4: Autocorrelation function of CRP (level) 

 

Note: The Figure plots the autocorrelation function for the CRP for the entire sample period (1/1/1996 – 

29/10/2010). The dotted lines represent the upper and lower bound of the Bartlett confidence interval, at 

95% confidence level. 
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Based on the findings from the ARFIMA model, I also plot the autocorrelation 

function for the first difference of the CRP. Figure 3.5 confirms that the first differencing 

eliminates the persistence and the long run dependence of the series. 

Figure 3.5: Autocorrelation function of CRP (first difference) 

 

Note: The Figure plots the autocorrelation function for the first difference of the CRP for the entire sample 

period (1/1/1996 – 29/10/2010). The dotted lines represent the upper and lower bound of the Bartlett 

confidence interval, at 95% confidence level. 

 

33..55..33  Asymmetry 

A number of studies have provided evidence of asymmetric response of correlation to 

positive and negative returns (see Section 2.2 for the relevant literature). To assess the 

impact of positive and negative returns to the correlation risk premium the following 

specification is employed: 
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where Rt+k is the lagged index return and |Rt+k| is the absolute index return over the same 

time interval. The lagged values of CRP are included to account for remaining 

autocorrelation.  
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Table 3.5: Asymmetric Relationship of CRP and S&P 100 Index Returns 

  1996 - 2000  2001 - 2005  2006 - 2010  1996 - 2010 

c 0.0021   0.0105 *** 0.0074 *** 0.0086 *** 

β1 0.8560 *** 0.8942 *** 0.8399 *** -0.1284 *** 

β2 0.1175 *** 0.0495   0.0889 * -0.0265   

β3 -0.0120   0.0068   0.0318   0.0056   

γ0 0.0027 *** 0.0017 *** 0.0025 *** 0.0024 *** 

γ1 -0.0006 *** -0.0005 *** -0.0004 * -0.0005 *** 

γ2 -0.0003 ** -0.0005 *** -0.0002   -0.0003 ** 

γ3 -0.0001   -0.0003 ** -0.0002   -0.0002 * 

δ0 -0.0001   -0.0004 * -0.0002   -0.0003 * 

δ1 -0.0021 *** -0.0025 *** -0.0024 *** -0.0023 *** 

δ2 0.0000   0.0004 * 0.0007 ** 0.0004 ** 

δ3 0.0009 *** 0.0002   0.0004   0.0005 *** 

Adj. R
2
 0.8898   0.8952   0.8839   0.2322   

LL 2201.2067   2581.2833   2053.5159   6713.7470   

BIC -3.4452   -4.0421   -3.3714   -3.6005   

DW 2.0073   2.0132   2.0046   2.0102   

Note: The Table reports results from equation 3.10, estimated with a Newey-West heteroskedasticity and 

autocorrelation consistent standard errors. The last four rows report the adjusted R
2
, the Log Likelihood 

(LL), the Schwarz criterion (BIC) and the Durbin-Watson statistic. One, two and three asterisks denote 

rejection of the null hypothesis at 10%, 5% and 1%, respectively. 

Consistent with the results from the cross-correlogram reported in Panel B of 

Table 3.2, the contemporaneous coefficient γ0 has a statistically significant positive in 

contrast to the lagged index returns that carry a negative sign. The contemporaneous 

coefficient of absolute returns is insignificant and negative in almost all subsamples 

suggesting that the size of market return does not affect the CRP.  

 

33..55..44  Correlation and Volatility Risk Premia 

A number of studies have provided evidence of positive relationship between volatility 

and correlation (ABDL 2001; ABDE 2001). The analysis is extended to study the 

relationship between the correlation and the volatility risk premium as well as between 

the CRP and the VIX, which is widely acknowledged as the “investor fear gauge”. The 

scatterplots in Figure 3.6 provide an initial estimate of the expected relationship between 

CRP, VIX and the Variance Risk Premium of the S&P 100 Index (VRPm). Consistent 
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with previous findings, visual inspection of scatterplot suggests that the CRP is 

negatively related to VIX and positively related to VRP of the index. 

Figure 3.6: Scatterplot of changes in CRP against changes in VIX and the Variance 

Risk Premium (VRP) of the index options 

 

Note: Both variables are in first differences.  

To formally test the relationship between the three variables, first, the equations 

3.11 and 3.12 are employed to assess the impact of each variable on CRP separately, 

while, equation 3.13 estimates the joint information content of VIX and VRP on the CRP. 
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Results from Table 3.6 suggest that concurrent values of CRP and VIX are 

negatively correlated while for greater lags of VIX, an increase of VIX result in increase 

in CRP, suggesting that the negative effect is absorbed within the certain timeframe. 

Notably, compared to the regression that includes VIX as an independent variable, the 

specification with the Volatility Risk Premium obtains significantly greater values of 

adjusted R
2
 and log likelihood (LL), suggesting greater explanatory power of VRP for the 

CRP. 
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Table 3.6: Relationship of CRP and VIX changes 

 
1996 - 2000 2001 - 2005 2006 - 2010 1996 - 2010 

c 0.000   0.000   0.000   0.000   

β1 -0.142 *** -0.062 ** -0.153 *** -0.132 *** 

β2 -0.040   -0.033   -0.079 ** -0.053 ** 

β3 0.024   -0.013   0.005   0.007   

γ0 -0.022 *** -0.015 *** -0.011 *** -0.014 *** 

γ1 0.001   0.001   0.000   0.000   

γ2 -0.002   0.002 ** -0.001   -0.001   

γ3 0.000   0.000   0.000   0.000   

Adj. R
2
 0.408   0.263   0.276   0.298   

LL 2334.896   2612.866   2064.557   6862.289   

BIC -3.711   -4.115   -3.414   -3.700   

DW 1.994   2.003   1.999   1.998   

Note: The regression has been estimated with Newey-West autocorrelation consistent standard errors where 

the number of lags is automatically selected according to the Schwarz criterion. The last four rows report 

values for the Adjusted R
2
, the Log Likelihood (LL), the Schwartz criterion (BIC) and the Durbin-Watson 

(DW) statistic. One, two and three asterisks denote rejection of the null hypothesis at 10%, 5% and 1%, 

respectively. 

Consistent with previous literature that suggests positive relationship of 

correlation and volatility, I find that the relationship also holds for the respective risk 

premia. Throughout the sample and for every sub-period, the correlation risk premium is 

significantly and positively correlated with the volatility risk premium while the obtained 

coefficients suggest strong relationship. This finding might be also attributed to the 

decomposition of the correlation risk premium into the variance risk premium of the 

index and the individual stocks, suggested by Driessen, Maenhout and Vilkov (2009). 

Table 3.7: Relationship of CRP and Index VRP changes 

 
1996 - 2000 2001 - 2005 2006 - 2010 1996 - 2010 

c 0.000   0.000   0.000   0.000   

β1 -0.115 *** -0.048 * -0.108 *** -0.095 *** 

β2 -0.104 *** -0.099 *** -0.112 *** -0.109 *** 

β3 -0.032   -0.074 ** 0.006   -0.026   

γ0 2.118 *** 1.614 *** 1.400 *** 1.649 *** 

γ1 -0.003   -0.126 * -0.049   -0.054   

γ2 0.194 ** 0.115 * 0.190 ** 0.196 *** 

γ3 0.017   0.066   0.009   0.025   

Adj. R
2
 0.654   0.499   0.501   0.542   

LL 2687.892   2855.018   2286.348   7668.079   

BIC -4.245   -4.501   -3.785   -4.125   

DW 1.998   2.002   1.998   1.999   
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Note: The Table presents the estimated coefficients from Equation 3.12. The regression has been estimated 

with Newey-West autocorrelation consistent standard errors where the number of lags is automatically 

selected according to the Schwarz criterion. One, two and three asterisks denote rejection of the null 

hypothesis at 10%, 5% and 1%, respectively. 

Finally, equation 3.13 allows testing the joint effect of VIX and VRP on CRP 

changes. By adding the VIX in the specification, current values of VIX are no longer 

significant whereas current and lagged values of VRP maintain their statistical 

significance. Notably, the adjusted R
2
 and the value of log likelihood value are 

marginally increased when compared to equation 3.12 indicating that the addition of VIX 

does not provide any additional useful information.  

Table 3.8: Relationship of CRP, VIX and Index VRP changes 

 
1996 - 2000 2001 - 2005 2006 - 2010 1996 - 2010 

c 0.000   0.000   0.000   0.000   

β1 -0.120 *** -0.053 * -0.109 *** -0.100 *** 

β2 -0.103 *** -0.094 *** -0.112 *** -0.111 *** 

β3 -0.006   -0.071 ** 0.006   -0.020   

γ0 1.800 *** 1.503 *** 1.493 *** 1.597 *** 

γ1 0.107   -0.075   -0.029   0.002   

γ2 0.229 *** 0.241 *** 0.235 *** 0.271 *** 

γ3 0.124   0.187 *** 0.088   0.113   

δ0 -0.007 *** -0.002   0.001   -0.001   

δ1 0.002 *** 0.001   0.000   0.001   

δ2 0.000   0.003 *** 0.001   0.001 *** 

δ3 0.003 *** 0.002 ** 0.001   0.002 *** 

Adj. R
2
 0.680   0.508   0.502   0.545   

LL 2718.539   2868.129   2289.736   7663.610   

BIC -4.305   -4.499   -3.767   -4.125   

DW 2.009   2.014   1.996   2.003   

Note: The Table presents the estimated coefficients from Equation 3.13. The regression has been estimated 

with Newey-West autocorrelation consistent standard errors where the number of lags is automatically 

selected according to the Schwarz criterion. One, two and three asterisks denote rejection of the null 

hypothesis at 10%, 5% and 1%, respectively. 

Finally, I apply a Granger causality test to address the question of intertemporal 

causality relationship between the variables under examination. According to the test, a 

significant Granger causality implies that the variable driving the changes contains 

information that could be useful in forecasting the “dependent” variable. 
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 (3.14) 

Obtained results in Table 3.9 suggest an interesting change of causality direction 

over the subsamples. For the first two sub-periods, in essence from 1996 – 2005, the 

Volatility Risk Premium of the Index was driving the Correlation Risk Premium whereas 

the relationship reversed for the remaining years until 2010 as well as the whole sample 

period. The hypothesis of CRP driving the changes in the VRP of the index is in line with 

the proposition set forward by Driessen, Maenhout and Vilkov (2009) who explain that 

the index options are more expensive because they offer a valuable hedge against 

correlation.  

Table 3.9: Granger causality test for changes in CRP and Index VRP 

Coefficient Null Hypothesis: 1996 - 2000 2001 - 2005 2006 - 2010 1996 - 2010 

γ1 
 VRP Index changes does not 

Granger Cause CRP changes 
2.043 * 2.293 ** 1.364   0.641 

  

γ2 
 CRP changes does not Granger 

Cause VRP Index changes 
1.035   1.671   2.510 ** 5.506 *** 

Note: For every sub-period and the whole sample period, the F-statistic is reported in the respective 

column. The lag length is selected using the Schwartz criterion and set to five. One, two and three asterisks 

denote rejection of the null hypothesis at 10%, 5% and 1%, respectively. 

 

3.6 Economic Determinants and Time Variation of CRP 

A number of studies have examined the predictive power of several economic variables 

for equity returns and second moment of distribution (e.g. Harvey and Whaley, 1992 for 

the S&P 100 market; Schwert, 1989, Glosten, Jagannathan and Runkle, 1993, Perez-

Quiros and Timmermann, 2001 for the volatility; Bakshi and Madan, 2006, Konstantinidi 

and Skiadopoulos, 2013  and Feunou et al., 2014 for the volatility risk premium; 

Sheppard, 2008 and Palandri, 2009 for correlations). Based on these findings, the ability 

of factors related to general macroeconomic as well as stock market specific conditions to 

explain the time variation and predict the correlation risk premium is explored. The first 

set of factors, which capture the broad economic conditions, are the default spread 
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(DEF), defined as the difference of an Aaa bond yield from a Baa bond yield, the yield 

curve (TERM), calculated as the difference 10-year US government bond and the yield of 

the 3-month Treasury bill, and the three-month USD Libor (Libor). Additionally, the 

vector of factors that are closely related to the stock market conditions is the return of the 

S&P 100 Index (R) as well as the trading volume of the S&P 500 Index (Vol), considered 

as a proxy for the information flow in the financial markets. All variables are obtained 

from Datastream. Konstantinidi and Skiadopoulos (2013) propose the incorporation of 

the TED spread measured as the difference of the three-month Libor and the three-month 

Treasury bill. However, tests for multicollinearity of dependent values have suggested, as 

expected, high correlation of the TED spread with the yield curve slope and the Libor. In 

addition, the VIX and the Model Free Implied Volatility of the S&P 100 Index are found 

to exhibit multicollinearity with the dependent variables. I thus refrain from including 

these variables in the specification. Finally, with a view to out-of-sample forecasting, the 

lagged values of independent variables are used and the specification is augmented with 

lagged values of the CRP to account for autocorrelation.  

 1 1 1 1 1 1t t t t t t t tCRP c CRP R TERM Vol DEF Libor               (3.15) 

The equation 3.15 is estimated with a stepwise regression, which allows only the 

variables with some explanatory power to the dependent variable to be included in the 

proposed specification. For every sub-period of the analysis, I keep the first two years for 

the in-sample analysis and produce one-step forecasts using a rolling window for the 

following three years for out-of-sample evolution. Respectively, for the whole sample 

period, the in-sample analysis is based on evidence from the period of 1996 – 2000 while 

the rest ten years are maintained for the out-of-sample evaluation.  

Table 3.10: In-sample evidence of the Economic Determinants model 

 
1996 - 1997 2001 - 2002 2006 - 2007 1996 - 2000 

C -0.007 *** 0.000   0.001   -0.001   

CRPt-1 0.950 *** 0.946 *** 0.953 *** -0.146 *** 

Rt-1 2.058 *** 0.741 *** 3.606 *** 1.716 *** 

TERMt-1 9.368 ** -1.815   3.698 * - - 

Volt-1 0.015 * 0.007   - - 0.009   

Deft-1 26.858   - - - - - - 

Libort-1 - - 0.230 ** - - - - 
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Adj. R
2
 0.894   0.892   0.875   0.212   

LL 831.379   986.664   901.769   2173.032   

BIC -3.231   -3.872   -3.543   -3.440   

DW 2.003   2.111   2.185   1.921   

Note: The Table reports results from the in-sample estimation of equation 3.15 using a stepwise regression. 

“-” indicates that the variable does not augment the explanatory power of the model and thus, has not been 

added to the proposed specification. The last four rows report values for the Adjusted R
2
, the Log 

Likelihood (LL), the Schwartz criterion (BIC) and the Durbin-Watson (DW) statistic. One, two and three 

asterisks denote rejection of the null hypothesis at 10%, 5% and 1%, respectively. 

Notably, the only variable that has consistently significant explanatory power to 

the CRP is the S&P 100 index returns. The yield curve, TERM, is significant and positive 

for the first and the third sub-period. The term structure is related to short term business 

cycles, signaling information for the general economic activity (see Chordia and 

Shivakumar, 2002; Fernandes, 2014); small values of term structure (i.e. more flat term 

structure) is also considered a proxy for recession. The positive sign indicates that an 

increase in the term spread, coinciding with bull markets, will increase the CRP, leading 

to values that are more negative. Similarly, the increase of the interest rate, LIBOR, has a 

positive effect on the CRP. The default risk premium is not significant in any period 

under examination whereas the trading volume is only significant in the first period. 

Finally but of outstanding importance, for the last in-sample period of 1996 – 2000 none 

of the macroeconomic variables are significant.  

 

Out-of-sample evaluation 

In this Section, the forecasting performance of the economic determinants model, 

as presented in equation 3.15, is presented. For the out-of-sample forecasting, only the 

variables found significant at 10% significance level shall be used. Table 3.11 presents 

the root mean squared error (RMSE) and the mean absolute error (MAE). RMSE is 

calculated as the square root of the average squared deviations of the forecasted values 

from the actual series, while MAE is measured by the average of the absolute value of 

forecast errors. For comparison purposes, the respective statistical measures for the 

random walk model for the CRP are calculated. Notably, the obtained statistics do not 
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vary substantially between the two models, while the forecasting error is always smaller 

in the case of random walk.  

Additionally, for the purposes of directly testing the presence of market 

efficiency, the forecasting accuracy of the alternative model to forecasts obtained from a 

benchmark model, the random walk is compared. To this end, the Modified Diebold-

Mariano test (see Harvey et al. 1997) is employed. The loss differential function is 

defined as 
0[ ( ) ( )]jt jt td g e g e  , where ( )jtg e is the loss function, for the economic 

determinants model, and 0( )tg e  is the loss function for the benchmark model of random 

walk. The null hypothesis of equal forecasting accuracy is tested against the alternative 

that the forecasting model performs better than the benchmark model, i.e. ( ) 0jtE d  . 

The loss function is computed both in terms of the mean square error of the forecast and 

of the mean absolute error. The Diebold-Mariano test statistic is defined as:  

 ~ (0,1)
ˆ2 (0)d

d
DM N

f

T


  (3.16) 

where d  is the sample average of the loss differential, ˆ (0)df is the estimate of the 

spectral density at frequency zero and T is the number of observations. For h-step-ahead 

forecasts, the Modified Diebold-Mariano test statistic corrects for small sample sizes and 

autocorrelation of the loss differential following a Student-t distribution with T-1 degrees 

of freedom and equals to 

 
mod

1 2 ( 1) /T h h h T
DM DM

T

    
  
 

 (3.17) 

Implementation of the DM test to the sample suggests that, both under the RMSE 

and the MAE metrics, the null hypothesis is strongly accepted for the three sub-periods, 

proposing that the random walk model produce smaller forecasting error compared to the 

economic determinants model.  
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Table 3.11: Out-of-sample performance 

 
1996 - 2000 2001 - 2005 2006 - 2010 1996 - 2010 

  RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Economic 

Variables 
0.1144 0.0901 0.0901 0.0716 0.1298 0.1060 0.1276 0.0978 

Random Walk 0.1139 0.0899 0.0876 0.0698 0.1292 0.1029 0.0684 0.0532 

DM test statistic 2.1724 1.0338 3.2321 2.2475 -0.6167 0.9018 21.1645 25.5733 

3.7 Conclusions 

Extending the methodology proposed by Britten-Jones and Neuberger (2000) on model-

free implied volatility and correcting for the early exercise premium inherent in American 

option prices I propose a new correlation index, as a modification to the misspecified 

S&P 500 ICI published by the CBOE. The new measure is inferred by prices of currently 

traded options, thus providing a model-free estimate of market-wide correlation and 

diversification benefit. An extensive dataset allows assessing the impact of periods of 

financial turbulence associated with lower asset returns and increased volatility. First, this 

study contributes to the existing literature of volatility and correlation risk premium. 

Additional evidence of a negatively priced volatility risk premium, both for the index and 

the constituent individual stocks is provided for the entire sample period. In addition, 

model-free implied correlation is consistently higher than realized correlation resulting in 

a negative price of correlation risk premium throughout the sample period. Nevertheless, 

the correlation risk premium is no longer statistically significant during turbulent periods, 

and the correlation under the risk neutral and the physical measure do not differ 

substantially. A plausible explanation for the decreased negative value of correlation risk 

premium is that the market dynamics during the crisis period eliminated any previous 

mispricing of index options, which was mainly attributed either to investors’ irrationality 

or to lack of arbitrage opportunities due to increased transaction costs and margin 

requirements.  

Understanding the dynamics of correlation risk premium is of paramount 

importance in asset pricing theory and other financial applications. The study of the time 

series dynamics during alternative sample periods suggest that the distribution is far from 

normal, leptokurtic and negatively skewed. Over the entire sample period, the CRP 

exhibits strong positive persistence and long memory traits along with strong intraweek 
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pattern. Furthermore, the asymmetric response to positive and negative returns of the 

S&P 100 is examined. Results suggest that CRP and index returns are positively 

correlated, suggesting that an increase in returns will induce CRP to more negative 

values. Finally, as expected, the volatility and correlation risk premia are positively 

correlated and interestingly the direction of causality changes during the last five years of 

the sample  

Finally, the informational content of several market-specific and macroeconomic 

variables on future changes of the CRP is assessed. To this end, variables that capture the 

wide economic state, namely the term structure, the default spread structure and the USD 

Libor, along with market-specific variables, namely the S&P 100 index returns and the 

trading volume of the S&P 500 index are employed. The in-sample evidence suggest that 

the index return are consistently significant throughout the alternative sample periods 

while the term structure obtains a significant value only for the periods of 1996 – 2000 

and 2006 – 2010. The out-of-sample evaluation suggests that the proposed model fails to 

produce superior forecasting performance when compared to the benchmark model of 

random walk. 
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  Chapter 4

On the predictability of model-free implied 

correlation 

Chapter abstract. In this Chapter, the existence of predictable patterns in the 

dynamic evolution of the model-free implied correlation is assessed. To this end, 

alternative time-series specifications are employed to capture different aspects of series 

distribution. The out-of-sample significance of obtained forecasts is examined through 

statistical and economic criteria. Combination forecasts obtain the minimum forecast 

error and the maximum efficiency in terms of predicting accurately the direction of 

change of the actual series. The statistical measures provide strong evidence in favour of 

existing predictable pattern in the S&P 100 option market. The economic significance of 

the out-of-sample forecasts is assessed based on their ability to yield abnormal profits. To 

this end, I employ an innovative trading strategy that exploits daily changes of the MFIC 

series. Obtained results suggest that the existence of predictable patterns in the evolution 

of the series, supported by statistical measures, can be further exploited to attain trading 

profits. The proposed trading strategy yields significant economic gains, with the 

AR(I)MA-GARCH model and the combination forecasts of implied correlation 

generating significant profits. However, when transaction costs are considered, 

profitability is eliminated suggesting that the efficient market hypothesis cannot be 

rejected. The results remain robust across different sample windows and forecast periods. 
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4.1 Introduction 

Existing literature has focused its attention mainly on the ability of risk-neutral moments, 

extracted from option prices, to provide accurate forecasts of the corresponding realized 

moments or to improve asset allocation and pricing decisions
3
. An equally important yet 

distinct question is whether risk-neutral moments are predictable per se. The existence of 

predictable patterns in the dynamics of risk-neutral moments raises questions on the 

efficiency of the option markets and provides opportunities for profitable trading 

strategies. Thus far, only a limited number of studies have dealt with the predictability of 

option-implied measures, and mainly volatility. This Chapter fills this gap by undertaking 

a comprehensive study of the dynamics and unexplored predictable patterns in the 

evolution of the implied correlation series per se. 

Understanding the dynamics of risk-neutral correlation is important for both 

academics and practitioners. In this study, implied correlation is derived from observed 

prices of index and individual equity options without assuming any implicit option-

pricing model. Inherently, implied correlation is a forward-looking measure of the 

aggregate stock market diversification while, according to Skintzi and Refenes (2005), it 

also quantifies the difference of portfolio variance from its minimum and maximum 

values. Apparently, the risk neutral measure of correlation is of paramount importance in 

an asset-pricing and asset allocation framework. Cosemans (2011) and Driessen, 

Maenhout and Vilkov (2012) provide evidence that risk-neutral correlation measures can 

explain how expected returns change over time. From a more practical perspective, 

forecasts of risk-neutral correlation can be used by market participants to form profitable 

trading strategies. Volatility and correlation trading strategies have stimulated the interest 

of investors, especially after the dramatic increase in stock market volatilities and 

correlations, following the 2008 financial crisis. Interestingly, in July 2009, the CBOE 

                                                 
3
 Several studies have used implied correlation measures to forecast information on 

expected correlations for various asset classes (e.g. Campa & Chang, 1998, and Lopez & Walter, 

2000, for exchange rates, Han, 2007, for interest rates, Skintzi & Refenes, 2005, for equities). 

Moreover, DeMiguel et al. (2012) examine whether option-implied correlations can improve 

asset allocation decisions, while Chang et al. (2012) and Buss & Vilkov (2012) use option-

implied information to derive equity betas. 
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launched the S&P 500 implied correlation index to measure the expected average 

correlation of price returns of index components implied through S&P 500 index option 

prices and prices of options on the 50 largest components of S&P 500.
4
  

In the context of volatility, David & Veronesi (2002) and Guidolin & Timmerman 

(2003) provide a theoretical explanation why implied volatility may by predictable by 

linking option prices and implied volatility to economic uncertainty. In the context of 

correlation, Buraschi, Trojani and Vedolin (2013) develop a structural equilibrium model 

that links the differential pricing of index and individual equity options to aggregate 

economic uncertainty and diversity in beliefs across investors.  

A number of studies have investigated whether predictable dynamics exist in the 

dynamics of implied volatility. Harvey & Whaley (1992), Guo (2000), Brooks & Oozeer 

(2002) and Konstantinidi et al. (2008) provide evidence of significant predictability in 

implied volatility using time-series models and economic determinants as predictors. 

However, trading strategies designed to exploit predictable patterns do not achieve 

significant economic profits. In contrast, Goyal & Saretto (2009) provide evidence of 

statistically and economically significant predictability in the dynamics of volatility 

implied in at-the-money stock option prices. Goncalves & Guidolin (2006) and Bernales 

& Guidolin (2010) address the question of whether the implied volatility surface contains 

any exploitable patterns. They both find evidence of statistically significant predictable 

patterns that, however, do not yield significant trading profits when transaction costs are 

taken into account. Neumann & Skiadopoulos (2013) exploit predictable patterns in the 

dynamics of higher-order moments. To the best of my knowledge, the only related study 

that also explores the dynamics of risk-neutral correlation is conducted by Härdle & 

Silyakova (2012). However, Härdle & Silyakova use only one model, a dynamic semi-

parametric factor model, to capture the dynamics of the implied correlation surface and 

forecast future implied correlation for the German market. 

                                                 
4
 The CBOE S&P500 Implied Correlation Index was not used in this study, as it is a 

constant maturity index, based on specific option pricing model. Moreover, it suffers from 

liquidity and microstructure issues since no filtering rules are applied on the options involved in 

its calculation. Similar studies resort also to the construction of the implied correlation index from 

scratch (e.g. Driessen et al, 2012). 
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This study makes a number of important contributions on the predictability of 

risk-neutral correlation. Firstly, I examine whether the dynamics of the implied 

correlation series, as a measure of market-wide correlation, contain any predictable 

pattern. To this end, I fit alternative time-series specifications to model and forecast the 

dynamics of the series. Out-of-sample forecasts are obtained and their forecasting 

performance is assessed based on a variety of statistical evaluation criteria. Secondly, I 

investigate whether the predictability of the implied correlation series can be exploited in 

the context of a correlation trading strategy. Based on the notion of dispersion trade, 

implemented by practitioners to trade correlation risk, I build a trading strategy exposed 

to correlation risk that trades inverse positions in index options and stock component 

options. Thirdly, an extensive dataset consisting of the S&P 100 index options and of the 

individual options of the S&P 100 constituent stocks for an extended period is used. The 

sample period extends from January 1996 to October 2010, thus encompassing several 

turbulent periods associated with high volatility and low returns, such as the 9/11 

subsequent increased market volatility conditions as well as the U.S. subprime mortgage 

crisis that resulted in the on-going global financial turmoil.  

The risk-neutral implied correlation measure examined in this study is based on 

the notion of ‘equicorrelation’, i.e. constant correlations for each pair of assets. Although 

this assumption may appear too restrictive, it has a number of important advantages. In an 

early study of asset allocation, Elton & Gruber (1973) found that the assumption of 

equicorrelation reduces estimation error and provides superior portfolio selection. More 

recently, Pollet & Wilson (2010) provide a theoretical explanation and empirical 

evidence that average realized stock market correlation predicts future stock market 

returns. Furthermore, Engle & Kelly (2012) show that multivariate models based on the 

equicorrelation assumption improve portfolio allocation compared to unrestricted models. 

In the context of implied correlation, Skintzi & Refenes (2005) interpret the implied 

correlation index as the market view of future stock market diversification and provide 

evidence that implied correlation measures outperform historical ones in predicting future 

correlation. Moreover, Driessen, Maenhout and Vilkov (2012) find that average implied 

correlation has significant predictive power for future stock market returns.  
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The empirical results of this study, based on alternative time-series specifications, 

suggest the existence of a strong predictability pattern in the implied correlation structure. 

Turning the attention to the economic significance of the resulting forecasting values, I 

find that the implemented trading strategy can yield abnormal profits. The existence of 

profitable trading patterns raises doubt on the efficiency of the index and stock option 

market. However, after accounting for transaction costs, the abnormal profits fade out. 

The reported results are robust across different in-sample sizes and forecast periods. 

The remainder of this Chapter is organized as follows: Section 2 describes the 

Model-Free Implied Correlation (MFIC), the dataset used for the calculation of MFIC 

series along with the descriptive statistics of the series under examination. Section 3 

presents the alternative model specifications used for forecasting purposes. Finally, 

Sections 4 and 5 discuss the in sample and the out-of-sample evidence from the models 

under consideration and the trading strategy, respectively. The robustness of the results to 

different sample sizes and forecasting horizons and the findings are presented in Section 

6. Section 7 concludes. 

 

4.2 Methodology and data  

Intuitively, index variance is associated with the variance of the constituent stocks as well 

as the pairwise correlations. Thus, the variance of an index, consisting of N stocks, is 

defined as follows:  

     
 
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where 2

,I t  is the index variance, σi,t is the standard deviation of the asset i, i = 1,...,N, ρij,t 

is the correlation between assets i and j, and wi,t is the relative weight of each index 

component i, all variables at time t. 

Assuming stable correlation across assets, the average correlation measure t  is 

defined as a factor that captures any arising difference between the variance of the index 

and the variance of a portfolio, formed as a weighted average of the constituent stocks of 

the index (see Skintzi & Refenes, 2005).  



Chapter 4: On the predictability of model-free implied correlation 

 

79 

 

2 2 2

, , ,

1

1

, , , ,

1

2

N

I t i t i t

i
t N

i t j t t j t

i j i

w

w w 

 



 





 







 (4.2) 

As Engle & Kelly (2012) pointed out, since equal pair-wise correlations are 

assumed, the average correlation measure will lie in the [-1/(n-1), 1] interval. Historical 

volatility and correlation estimators rely on the assumption that the future dynamics of 

the series will be similar to the past. To overcome the ambiguities deriving from the 

above assumption, stock return moments are inferred from currently traded option prices.  

The Model-Free Implied Volatility (MFIV) measure proposed in the recent 

literature (e.g. Jiang and Tian, 2005) is employed to compute the Model-Free Implied 

Correlation from equation 4.2. The implementation procedure is thoroughly described in 

Section 3.2.  

For the purposes of this study, daily closing quotes for options on the S&P 100 

index and the constituent stocks are obtained from OptionMetrics. The sample extends 

from January 1996 to October 2010, thus including 179 stocks.
5
 On each day, the actual 

daily weight of stock i is computed based on its daily market capitalization divided by the 

total market capitalization of the 100 stocks included in the index, at the specific day. The 

subset of 04/01/1996 to 31/12/2000 shall be used for the in-sample estimation, whereas 

the remaining period will be retained for the out-of-sample evaluation of forecasting 

methods. As in Chapter 3, the calculation of model-free implied volatility is based on 

observed prices from currently traded options. Data on option prices, underlying asset 

prices, and company distributions are obtained from OptionMetrics database. The zero-

coupon interest rate curve, provided by OptionMetrics database, is used as the risk-free 

interest rate. Several filtering rules are described in Section 3.3. 

                                                 
5
 The analysis does not suffer from survivorship bias since it does not include only 

options written on stocks that have been continuously traded throughout the sample period. 

Instead, the MFIC index, replicates the composition of the S&P100 index on a daily basis. The 

main criteria for a company to be included in the S&P 100 index are market capitalization, 

liquidity and the availability of individual stock options. As a result, heavily traded and liquid 

options introduced during the sample periods are expected to be included in the index. 
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Figure 1 shows the daily evolution of the Model-Free Implied Correlation (MFIC) 

from January 1996 to October 2010. Consistent with the well-documented fact of 

increased correlation during bear markets, the series present several spikes throughout the 

whole sample period coinciding with periods of low returns and high volatility. 

Specifically, resulting from the Asian and the Russian financial crises, the MFIC series 

reached the value of 0.9, in late 1997 and later in August 1998. During the first years of 

the ‘00s, the low returns market stemming from the 9/11 terrorist attack, the South-

American financial turmoil and the internet bubble burst, resulted in increased levels of 

correlation, though lower than the aforementioned spikes of the ‘90s. Over the 

subsequent years, MFIC trended lower, with the exception of the period of a multi-

market sell-off in May 2006. Finally, as a result of the global financial crunch, which 

commenced in 2007 and culminated in September 2008 with the announcement of the 

bankruptcy of Lehman Brothers, the MFIC presents several peaks, while reaching the 

highest value of 0.97 on October 24, 2008.  

Figure 4.1: Model-Free Implied Correlation (MFIC), Model-Free Implied Volatility 

(MFIV) series for the Index and the individual stocks. 

 

Table 4.1 reports the summary statistics of the model-free implied correlation 

series for three sample periods. The first period of 1996 – 2000 corresponds to the later 

used in-sample estimation period; the second is the out-of-sample period January 2001 – 

December 2010 while the last includes the whole sample period. The higher moments 

and the Jarque-Bera test reject the hypothesis of normality for the MFIC series for all the 

periods under consideration. Table 4.1 also reports the test statistics of the Augmented 
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Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test, and the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test statistic. According to the PP test, the null hypothesis of unit 

root is strongly rejected for all three subsets at a significance level of 1%. Comparably, 

the ADF test suggests that the existence of unit root shall be rejected throughout the 

whole sample period. In contrast, the KPSS test provides evidence of non-stationary time 

series for all three periods under consideration. These mixed results, along with the slow 

decaying and significant autocorrelation coefficients, suggest the existence of long 

memory properties in the MFIC similar to model-free implied volatility (see Brooks & 

Oozeer, 2002). These features are further discussed in the following Section. 

Table 4.1: Summary Statistics 

 1996 - 2000 2001 – 2010 1996 - 2010 

 MFIC Logit MFIC MFIC Logit MFIC MFIC Logit MFIC 

Mean 0.360   -0.617   0.379   -0.537   0.373   -0.564   

Median 0.349   -0.622   0.359   -0.578   0.356   -0.594   

Max 0.907   2.281   0.977   3.756   0.977   3.756   

Min 0.106   -2.132   0.126   -1.934   0.106   -2.132   

Std. Dev. 0.135   0.622   0.147   0.672   0.143   0.656   

Skewness 0.808   0.609   0.492   0.396   0.594   0.468   

Kurtosis 3.868   4.192   2.746   3.509   3.043   3.698   

JB 176.12 *** 152.062 *** 106.372 *** 91.298 *** 219.376 *** 211.625 *** 

ρ1 0.949 *** 0.944 *** 0.964 *** 0.961 *** 0.96 *** 0.956 *** 

ρ10 0.778 *** 0.777 *** 0.857 *** 0.853 *** 0.836 *** 0.832 *** 

ρ15 0.701 *** 0.699 *** 0.824 *** 0.823 *** 0.792 *** 0.789 *** 

ADF -3.167 ** -3.129 ** -3.07 ** -3.077 ** -4.41 *** -4.06 *** 

PP -4.964 *** -5.129 *** -5.389 *** -5.571 *** -7.477 *** -7.88 *** 

KPSS 1.192 *** 1.277 *** 1.477 *** 1.408 *** 0.767 *** 0.72 ** 

Note: The Table reports summary statistics for the Model-Free Implied Correlation (MFIC) and the inverse 

logistic transformation (transformed MFIC). In addition, the autocorrelation coefficient (ρ) for the 1
st
, 10

th
 

and 15
th

 lag of the autocorrelation structure as well as the Augmented Dickey-Fuller (ADF), Phillips-Perron 

(PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test statistics are reported. The number of lags for 

the ADF test is selected according to the modified Schwarz criterion. The bandwidth for the PP and KPSS 

tests is automatically selected using the Newey-West lag selection parameter. One, two and three asterisks 

denote rejection of the null hypothesis at 10%, 5% and 1%, respectively. 
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4.3  Forecasting models 

As previously documented, by definition, MFIC is bounded within the range of [-1/(n-1), 

1]. With the main goal of this study lying within the area of predictability of the MFIC 

series, and to alleviate arising issues in the forecasting procedure, the inverse of the logit 

transformation of the original correlation series is employed and defined as 

 
 

* 1 1 1
(1 )

1 1 1 exp
t

tn n



   

   
 (4.3) 

where *

t  is the MFIC series, n is the sample size and ρt is the logit transformation of the 

series. The logit transformation ensures that the series will lie at the interval [-1/(n-1),1].  

Table 4.1 also presents the summary statistics for the logit transformation of the 

series. Unit root (ADF and PP) and stationarity tests (KPSS) provide mixed results 

regarding the stationarity of the logit transformation, similar to those obtained for the 

original MFIC series. To further investigate the stationarity and long memory properties 

of the series, an ARFIMA (p,d,q) model to the logit transformation is estimated. A 

statistically significant estimate of d equal to 0.5 is obtained, thus supporting the non-

stationarity of the series. Thus, the econometric analysis that follows will be conducted 

on the differentiated logit transformation of the MFIC series. In the rest of the Chapter, 

for notation reasons, I will refer to the first difference of the logit transformation as the 

MFIC series. 

Stock returns and implied volatility have been extensively examined for the 

presence of seasonality effects. Monday (Friday) tends to be a day in which traders open 

(close) positions for the week and excess buying (selling) pressure may result in higher 

(lower) implied volatility (see Harvey & Whaley, 1992). To this end, the presence of day-

of-the-week effects is examined through the following regression.  

 
5

, 1

1

t i i t t t

i

MFIC D MFIC u  



    (4.4) 

where i takes values from 1 to 5 for Monday to Friday, respectively.  

Additionally, the presence of the January effect on the MFIC is tested by the 

following specification: 
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where i takes values from 1 to 12 for January to December, respectively. A lagged term 

of the dependent variable is included in both equations (4) and (5) to eliminate the effect 

of autocorrelated errors.  

Following, the modelling of the evolution and the time series properties of the 

MFIC under different forecasting models is described. 

 

AR(I)MA, AR(I)MA - GARCH and ARFIMA models 

First, an autoregressive moving average process (AR(I)MA) is fitted to the evolution of 

the series by adding lags of the error term as well as lags of the series under examination. 

The AR(I)MA(r,d,m) model can be specified by: 

 ( ) ( ) ( )d

t tL X L u     (4.6) 

where   and   are polynomials of order r and m respectively, such that 
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L L L L , and        2
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( ) 1 m

m
L L L L , Xt is the MFIC, μ is 

the expectation of Xt, εt is the white noise error term,   is the difference operator and d is 

equal to one, representing the order of integration. 

Furthermore, an AR(I)MA(r,d,m) – GARCH(p,q) model is employed to account 

for the remained heteroskedasticity in the error terms,. The error terms are assumed to 

follow a normal distribution with zero mean and variance equal to 2

th , where: 
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Taking the AR(I)MA model one step forward by allowing d to take fractional 

values, the specification extends to an ARFIMA (r,d,m) model, given by:  

 ( )(1 ) ( ) ( )d

t tL L X L u     (4.8) 

where (1 )dL is the fractional integration operator. The ARFIMA model captures both 

the short-run component of the series, through the autoregressive and the moving average 

terms, and the long-run dependence through the fractional differencing parameter d. The 

process is stationary under the condition that −0.5 < d < 0.5. The series exhibits long 
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memory if 0 < d < 0.5, suggesting positive dependence between distant observations, 

while in case of -0.5 < d < 0, the series presents negative dependence between distant 

observations, known as anti-persistence. Finally, for d= 0 (the general AR(I)MA process) 

the process exhibits short memory. 

The AR(I)MA, AR(I)MA-GARCH and ARFIMA models have been estimated for 

all plausible combinations of autoregressive (AR) and moving average (MA) order terms 

both in the mean and the variance specification, where applicable, up to the fifth lag. The 

model selection is based on the Schwarz information criteria, which in contrast to Akaike 

information criteria, includes an extra term that penalizes data over fitting.  

 

Regime Switching Model 

In order to capture potential asymmetries in the correlation process a dynamic Regime 

Switching (RS) model is employed. More specifically, the transition between the regimes 

is governed by a Markov chain, two regimes are assumed and the coefficient on the 

lagged dependent variable is allowed to be regime-varying, i.e. 
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The transitions between the regimes st = 1 and st = 2 are given by a Markov chain with 

transition probabilities pij= P(st=j|st-1 = i) for i, j = 1,2 and 



2

1

1ij

j

p  for i=1,2. The 

selection of the lag order is based on the Schwarz information criterion. 

 

Heterogeneous Autoregressive (HAR) Model 

The theory of heterogeneous market hypothesis is based on the empirical finding that 

volatility dynamics are affected by the different investment horizons of traders. 

Specifically, traders with short-term investment horizon rapidly incorporate any arriving 

information in their strategy, thus affecting directly the shorter-term volatility. In 

contrast, longer-term investors rebalance their position less frequently, disregarding daily 

information flow, thus empowering the long memory characteristic of volatility. Corsi 
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(2009) identified and modelled this asymmetry through an autoregressive process by 

aggregating daily, weekly and monthly volatilities.  

The heterogeneous autoregressive (HAR) model is employed to capture the long-

memory property of the model-free implied correlation. The model is given by:  
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   is the lagged monthly MFIC.  

Economic determinants  

A number of studies have examined the role of economic variables in determining asset 

return correlations (see Erb et al., 1994, Moskowitz, 2003, Sheppard, 2008, Palandri, 

2009, amongst others). Based on their findings, financial and macroeconomic variables, 

such as the short-term interest rates or the slope of the term structure, are expected to 

determine the systematic risk of equity portfolios and, consequently affect the time 

variation of equity correlations. Data on economic variables are obtained from 

Datastream. 

Following Harvey & Whaley (1992) and Sheppard (2008), three interest rate 

variables, which have been widely used in predictability studies and are documented to 

influence the volatility and correlation process, are included in the specification; namely, 

the one-month USD LIBOR interest rate (INTt), the slope of the yield curve (or else the 

term structure, TERMt) defined as the difference between the yield of the 10-year US 

government bond and the yield of the 3-month Treasury bill as well as the slope of the 

junk bond spread (JUNKt) defined as the difference of an Aaa bond yield from a Baa 

bond yield. The short-term interest rate is considered to accurately proxy the shocks to 

expected real economic activity. The junk bond spread and the term structure have been 

previously documented to capture the long-term and the short-term business cycle 

conditions, respectively. The lagged return and the trading volume (VOLt) of the 

underlying security are included as control variables for leverage and information flow 

effects (see Bollen & Whaley, 2004). Two dummy variables are ealso included to assess 
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the asymmetric response of the MFIC to positive (
tR ) and negative index returns (

tR ). 

Increased trading volume signals arrival of information to investors, thus inducing 

fluctuations on both returns and implied volatility. In addition, the Brent Crude Oil price 

(WTIt) has been considered as a proxy for the fluctuations of an alternative asset class 

market. Furthermore, dividend yield of the S&P 100 index (DIVt), as a proxy of time 

varying expected returns, and the EURO/USD exchange rate (FXt) are included as 

explanatory variables. Each of the aforementioned variables is first differenced to 

represent innovations, and ensure stationarity. 

Additionally, I have tested the economic variables model for a number of 

inference issues that also arise when regressing returns and volatility on macroeconomic 

variables (see Paye, 2008). Firstly, the MFIV changes of the index are not included to 

avoid multicollinearity issues based on the correlation matrix of the dependent variables. 

Secondly, the model has been tested for endogeneity due to reverse causality between the 

dependent and independent variables using Granger causality tests. The only dependent 

variable that exhibits reverse causality with the dependent variable is the trading volume. 

However, no significant contemporaneous correlation between MFIC and trading volume 

is found. With a view to minimizing bias of the forecasted values, the lagged values of 

the macroeconomic variables are used. Finally, the specification is supplemented with the 

inclusion of lagged values of model-free implied correlation so as to account for 

autocorrelation patterns. The model has been estimated with the inclusion of up to three 

lags of the MFIC series. Finally, the model that minimizes the Schwarz information 

criterion is selected. 
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Table 4.2 presents summary statistics for the economic determinants. While 

stationarity is rejected when variables are measured in levels (Panel A), unit root tests on 

the first difference indicate that all series are stationary (Panel B). The first order 

autocorrelation coefficient is significant for all variables measured in levels, whereas in 

most of the cases, no evidence of significant autocorrelation is found when variables are 

measured in first differences. 
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Table 4.2: Descriptive statistics for the economic determinants 

Panel A: Raw series 

 

Pi 

 

DIV  Volume (VOL)  FX  JUNK  Libor (r)  TERM  WTI  

Mean 544.85 

 

0.015         864,752,943.52   1.103  0.007  0.057  0.009  21.361  

Median 531.97 

 

0.014         860,160,000.00   1.103  0.007  0.056  0.009  20.68  

Maximum 832.65 

 

0.022     2,405,100,000.00   1.312  0.011  0.068  0.019  37.22  

Minimum 285.77 

 

0.01         136,580,000.00   0.825  0.005  0.049  -0.007  10.82  

Std. Dev. 166.758 

 

0.004         208,760,374.44   0.118  0.001  0.005  0.006  5.885  

Skewness 0.088 

 

0.33  0.38  -0.258  0.956  0.82  -0.464  0.42  

Kurtosis 1.636 

 

1.731  5.313  2.437  3.437  3.111  2.592  2.554  

Jarque-Bera 99.091 *** 107.097 *** 310.45 *** 30.532 *** 201.575 *** 141.573 *** 53.77 *** 47.419 *** 

ρ1 0.998 *** 0.997 *** 0.727 *** 0.997 *** 0.993 *** 0.994 *** 0.991 *** 0.995 *** 

ADF test -1.272 

 

-1.487  -3.087  -1.16  -1.879  -1.108  -0.713  -1.644  

Panel B: First difference of the series  

 

PI 

 

DIV  Volume (VOL)  FX  JUNK  Libor (r)  TERM  WTI  

Mean 0.001 

 

0.000  0.000  0.000  0.000  0.000  0.000  0.000  

Median 0.001 

 

0.000  0.001  0.000  0.000  0.000  0.000  0.001  

Maximum 0.056 

 

0.001  2.031  0.042  0.001  0.144  0.005  0.145  

Minimum -0.075 

 

-0.001  -1.917  -0.023  -0.001  -0.108  -0.004  -0.150  

Std. Dev. 0.012 

 

0.000  0.221  0.006  0.000  0.008  0.001  0.026  

Skewness -0.331 

 

-0.020  0.290  0.615  -0.750  2.713  0.859  -0.148  

Kurtosis 6.299 

 

20.352  27.379  5.781  11.537  183.555  12.764  7.172  

Jarque-Bera 592.631 *** 15757.618 *** 31121.145 *** 483.816 *** 3931.412 *** 1707612.708 *** 5143.726 *** 915.461 *** 

ρ1 -0.018 
 

-0.002  -0.360 *** -0.039  -0.056 ** 0.027  0.021 *** -0.002  

ADF test -35.973 *** -35.479 *** -49.516 *** -6.664 *** -6.523 *** -7.108 *** -34.683   -35.237 *** 

Note: PI, DIV and VOL refer to the closing price, the dividend yield and the trading volume of the S&P 100 Index, correspondingly. FX is the EUR/USD 

exchange rate, JUNK is the slope of the junk bond spread defined as the difference of an Aaa bond yield from a Baa bond yield, Libor (r) is the one-month USD 

LIBOR interest rate, TERM is the slope of the yield curve (or else the term structure) defined as the yield of the 10-year US government bond minus the yield of 

the 3-month Treasury bill, and WTI is the price of the Brent Crude Oil. In addition, the autocorrelation coefficient (ρ) for the 1st lag of the autocorrelation 

structure as well as the Augmented Dickey-Fuller (ADF) test statistics are reported. The number of lags for the ADF test is selected according to the modified 

Schwarz criterion. The null hypothesis of the ADF test and the Jarque-Bera test is the presence of the unit and normal distribution, respectively. One, two and 

three asterisks denote rejection of the null hypothesis at 10%, 5% and 1%, respectively. 
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Combination forecasts 

Each different forecasting model captures different dynamics of the underlying asset 

properties, based on alternative information sets. Empirical results from previous studies 

(see Becker & Clements, 2008) suggest that linear combinations of individual forecasts 

may produce superior forecasts compared to the individuals. In the present Section, a 

comparative analysis of the various methods of combining forecasts proposed to the 

literature is proposed. 

Denoting by j

tf , (where j=1 for AR(I)MA, 2 for AR(I)MA – GARCH, 3 for 

ARFIMA, 4 for Regime Switching model, 5 for the HAR and 6 for the economic 

determinants model), six different forecasted values of MFIC at time t are obtained, 

based on the time-series models described above. For notation reasons, superscripts of 

forecasting models are kept the same throughout the methods described below.  

The simplest method is to combine forecasts by assigning equal weight to each 

individual forecast. Thus, the equally weighted combination forecast is a simple average 

of the individual forecasts, i.e. 

 
6

1

1

6

EW j

t t

j

f f


   (4.12) 

In addition, existing literature proposes the usage of the Schwarz model selection 

criterion as an alternative approach for obtaining combination weights. The methodology 

suggests that each model should be weighted according to the difference of its Schwarz 

criterion value with the “best” model, which attains the minimum value of the criterion. 

Following the methodology of Kolassa (2011), the Schwarz weighted combination 

forecast is obtained by the following equation 

 
6

1

( )BIC j

t BIC t

j

f w j f


   (4.13) 

where 
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
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

 
,   ( ) ( ) ( )

BIC
j BIC j BIC k , BIC (j) is the Schwarz 

criterion of the j
th

 model, j =1,2,…,6, and BIC (k) is the minimum Schwarz criterion 

associated with model k. 
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Above mentioned forecasts are calculated with constant weights throughout the 

out-of-sample period, thus failing to capture the dynamics of the series under 

consideration. To overcome this restriction, I also consider the derivation of combined 

forecasts, where the weights are time varying. In essence, the weights are obtained by 

minimizing the mean squared error of the following regression: 

 
1 2 3 4 5 6

0 1 | 1 2 | 1 3 | 1 4 | 1 5 | 1 6 | 1t t t t t t t t t t t t tMFIC f f f f f f                   (4.14) 

where MFICt is the actual value of the model-free implied correlation series and | 1

j

t t
f

are 

the forecasted values of individual models at time t, calculated at time t-1. Consequently, 

the combination forecast value is given by: 

 1 2 3 4 5 6

1| 0 1 1| 2 1| 3 1| 4 1| 5 1| 6 1|
ˆ ˆ ˆ ˆ ˆ ˆ ˆW

t t t t t t t t t t t t t tf f f f f f f                    (4.15) 

The implementation of this two-step approach to obtain the weighted combination 

forecasts over the out-of-sample period, extending from January 2001 to October 2010, is 

described below. First, data covering the period from January 1996 until June 1998 is 

employed to estimate the various models under consideration. Next, one-step-ahead 

rolling forecasts over the “pseudo” out-of-sample period commencing on July 1998 and 

ending on December 2000 are obtained. These forecasts are used to obtain the weights by 

estimating the regression specification described in equation 4.14.  

Following Aksu & Gunter (1992), equation 4.14 is estimated under four 

alternative approaches, by imposing alternative restrictions to the coefficients and the 

constant term of the regression. As a first test, a constant term is not included, whereas no 

restriction is applied on the value of the weights (Method A). Next, I estimate the 

regression again without a constant term but restrict the weights to sum to unity, without 

imposing any restriction on the sign (Method B). Alternative specification of equation 

(14) includes a constant term, whereas no restriction is applied on the value of the 

weights (Method C). Finally, I estimate the equation with a constant term and with 

imposed restriction on the weights so as to sum to unity and to obtain only positive values 

(Method D). 
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Finally, the out-of-sample weighted combination forecasts are obtained by 

substituting the previously estimated weights and the out-of-sample forecasted values of 

individual models to equation 4.15. 

 

4.4 In-sample estimation results 

Table 4.3 and Table 4.4 present the results from estimated regressions 4.4 and 4.5 

employed to test the existence of intra-week and monthly seasonality, respectively. The 

series clearly present a strong intra-week pattern, as the Monday, and Friday dummy 

variables are strongly significant. As expected, the Monday (Friday) dummy variable has 

a significant positive (negative) coefficient, consistent with reported increased buying 

(selling) activity on the specific days of the week. Obtained estimates from Table 4 

suggest that there is no evidence of monthly seasonality for the MFIC series. 

Table 4.3: Intra-week pattern of MFIC series 

 

Coefficient  t-statistic 

Monday 0.082 *** 6.999 

Tuesday 0.010   0.886 

Wednesday -0.015   -1.61 

Thursday -0.005   -0.357 

Friday -0.067 *** -5.426 

MFICt-1 -0.203 *** -4.819 

 

Table 4.4: Monthly seasonality of MFIC series 

 

Coefficient  t-statistic 

January -0.001  -0.036 

February -0.002  -0.140 

March 0.013  0.831 

April -0.011  -0.732 

May 0.005  0.433 

June -0.015  -1.222 

July 0.022  1.279 

August 0.004  0.264 

September -0.003  -0.198 

October 0.006  0.260 

November -0.012  -0.695 

December -0.005  -0.292 

MFICt-1 -0.222 *** -4.811 
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Note: Reported t-statistics have been calculated with Newey-West autocorrelation consistent standard 

errors where the number of lags is automatically selected according to the Schwarz criterion. One, two and 

three asterisks indicate the rejection of the null hypothesis at 10%, 5% and 1% significance level, 

respectively 

Next, the four tables that follow present the in-sample estimation results from the 

AR(I)MA, ARFIMA and AR(I)MA-GARCH, the Regime Switching, the Heterogeneous 

Autoregressive (HAR) and the economic determinants model, correspondingly. The 

AR(I)MA(2,1), the ARFIMA(1,d,3), the AR(I)MA(3,5)-GARCH(5,4) and the Regime 

Switching (4,0) were found to minimize the Schwarz criterion. The previously reported 

significant day-of-the-week variables are also included in every specification. 

Several diagnostic tests are employed to test the goodness-of-fit from the various 

models. The log likelihood value, the adjusted R
2
, the Schwarz criterion, the Ljung-Box 

statistic for the 20
th

 lag of squared residuals as well as the F-statistic of the ARCH test for 

remained heteroskedasticity up to the 5
th

 lag are reported. The addition of GARCH 

specification in the residuals corrects for remained serial autocorrelation and 

heteroskedasticity. The AR(I)MA-GARCH specification presents the lowest value of the 

Schwarz criterion and the maximum log-likelihood value, whereas the ARFIMA model 

produces the highest value of R
2
. Both the null hypothesis of no serial autocorrelation and 

no heteroskedasticity effects are strongly rejected for the AR(I)MA and the ARFIMA 

model. The value of the fractional differencing parameter d in the ARFIMA specification 

is not significantly different from zero suggesting that the series does not exhibit long 

memory features and a simple ARMA (1,3) model is able to capture the dynamics of the 

series. 
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Table 4.5: In-sample evidence from the AR(I)MA, ARFIMA and AR(I)MA-

GARCH models 

  
AR(I)MA  ARFIMA  

AR(I)MA-

GARCH  

Constant -0.008 * -0.008 * -0.012 *** 

d  -   0.000   -   

φ1 0.685 *** 0.901 *** 0.760 *** 

φ2 0.118 ** -   -0.980 *** 

φ3 -   -   0.771 *** 

θ1 -0.934 *** -1.144 *** -0.956 *** 

θ2 -   0.139 *** 1.075 *** 

θ3 -   0.027   -0.992 *** 

θ4 -   -   0.075 *** 

θ5 -   -   -0.040 *** 

b0 -   -   0.003 *** 

b1 -   -   0.075 *** 

b2 -   -   0.291 *** 

b3 -   -   0.197 *** 

b4 -   -   -0.211 ** 

b5 -   -   -0.193 *** 

c1 -   -   -0.999 *** 

c2 -   -   0.939 *** 

c3 -   -   0.887 *** 

c4 -   -   -0.065 *** 

Monday dummy 0.101 *** 0.100 *** 0.104 *** 

Friday dummy -0.053 *** -0.055 *** -0.046 *** 

Log likelihood 293.341   299.442   465.785   

Adj. R
2
 0.122   0.132   0.125   

BIC criterion -0.434   -0.426   -0.624   

Q
2
(20) 258.043 *** 237.270 *** 13.300   

ARCH test (5) 154.488 *** 146.620 *** 2.571   

Note: The t-statistics of the AR(I)MA model have been estimated with HAC estimates of standard errors. 

One, two and three asterisks indicate the rejection of the null hypothesis at 10%, 5% and 1% significance 

level, respectively. 

Table 4.6 presents the results from the estimated Regime Switching model. The 

results from the two regimes differ significantly. The conditional mean term in the first 

regime is significantly different from zero and equal to 0.87 while the conditional mean 

in the second regime is not significantly different from zero. The first regime is 

characterized by high MFIC changes while the second regime is characterized by low 

MFIC changes and negative mean reversion. Moreover, there is high persistence in the 



Chapter 4: On the predictability of model-free implied correlation 

 

93 

first regime (p22=0.99) while the persistence in the second regime is significantly lower 

(p11=0.46). 

Table 4.6: In-sample evidence from the Regime Switching model. 

  Coefficient t-Statistic 

1  0.870 *** 11.967 

1
1  -1.513 *** -17.239 

2

1  0.868 *** 3.740 

3
1  1.161 *** 6.141 

4

1  0.728 *** 4.935 

2  -0.008 
 

-1.367 

1
2  -0.142 *** -5.212 

2

2  -0.081 *** -3.174 

3
2  -0.091 *** -3.535 

4

2  -0.011  -0.425 

log(σ) -1.791 *** -85.421 

Monday dummy 0.082 ***  6.421 

Friday dummy -0.057 *** -4.505 

Log likelihood 418.623     

Adj. R
2
 -0.079     

BIC criterion -0.583     

Q
2
(20) 527.506 ***   

ARCH test (5) 377.959 ***   

Note: One, two and three asterisks indicate the rejection of the null hypothesis at 10%, 5% and 1% 

significance level, respectively. 

Table 4.7 presents the results from the Heterogeneous Autoregressive (HAR) 

model. The coefficients of all three estimates of implied correlation, corresponding to 

different time-horizons, are highly significant and negative. The impact of lagged 

correlation strengthens as the time-horizon of aggregation increases. 
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Table 4.7: In-sample evidence from the Heterogeneous Autoregressive (HAR) Model 

  Coefficient t-statistic 

0
  -0.024 *** -3.430 

( )d
  -0.129 ** -2.534 

( )w
  -0.307 ** -2.456 

( )m
  -0.902 *** -2.694 

Monday dummy 0.017   1.296 

Friday dummy 0.108 *** 7.774 

Log likelihood 276.132     

Adj. R
2
 0.109     

BIC criterion -0.413     

Q
2
(20) 264.281 ***   

ARCH test (5) 163.561 ***   

Note: The t-statistics of the model have been estimated with HAC estimates of standard errors. One, two 

and three asterisks indicate the rejection of the null hypothesis at 10%, 5% and 1% significance level, 

respectively. 

Table 4.8 reports the estimation results from the economic determinants model. 

The addition of three lags of the MFIC series minimizes the Schwarz criterion. 

Interestingly, at 10% significant level, the only statistically significant variables are the 

first and the second lagged values of MFIC, the lagged negative index returns, the lagged 

junk spread, the lagged volume of the S&P 100 index and the dummy variables 

representing the Monday and the Friday effect. Moreover, unreported results confirm the 

asymmetric response of the MFIC series to negative and positive contemporaneous index 

returns. The negative coefficients of the lagged default spread and trading volume 

suggest that an increase in the variables at time t-1 will actually reduce the current MFIC 

series level. This is in contrast with the widely reported positive contemporaneous 

relationship between the above-mentioned variables and volatility. A possible 

explanation for the decreasing effect of the variables to the series might stem from the 

information flow and their use. Specifically, an increase in the variables under 

consideration will increase market uncertainty directly and investors will shift their 

attention on information at the market level, resulting in an increase of the 

contemporaneous stock market correlations. At the subsequent period, investors will shift 

their attention on asset specific news and equity correlations are expected to decrease. 

The attention shift hypothesis has been proposed by Peng (2005) and Peng and Xiong 
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(2006) while Peng et al (2007) study the effect of this hypothesis on stock return 

comovements. One-step-ahead forecasts will be obtained from the estimation of the 

economic determinants model with only the variables that are significant at 10% 

significance level. 

Table 4.8: In-sample evidence from the economic determinants model 

  Coefficient t-statistic 

C 0.017  1.498 

1tR

  3.336 *** 3.391 

1tR


 -1.452  -1.405 

FXt-1 -1.055  -1.321 

rt-1 -0.038  -0.049 

DIVt-1 8.983  0.211 

TERMt-1 -11.194  -1.415 

JUNKt-1  -80.318 * -1.932 

WTIt-1 -0.033  -0.196 

VOLt-1 -0.050 * -1.714 

MFICt-1 -0.181 *** -3.322 

MFICt-2 -0.088 ** -2.246 

MFICt-3 -0.007  -0.123 

Monday dummy 0.084 *** 5.705 

Friday dummy -0.062 *** -4.067 

Log likelihood 298.16  

 Adj. R
2
 0.122  

 BIC criterion -0.391  

 Q
2
(20) 222.427 *** 

 ARCH test (5) 117.069 ***   

Note: Two lagged values of the MFIC series are also included. The t-statistics of the model have been 

estimated with HAC estimates of standard errors. One, two and three asterisks indicate the rejection of the 

null hypothesis at 10%, 5% and 1% significance level, respectively.  

 

4.5 Evaluation of out-of-sample forecasting performance 

44..55..11  Statistical measures 

In this Section, results on the constructed out-of-sample forecasts under the models 

presented above are presented and their forecasting performance is assessed. For the first 

out-of-sample forecast, corresponding to 02/01/2001, the model is estimated over the 

sample period of 04/01/1996 – 29/12/2000, and subsequently, the relevant forecasted 
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value for the following day is obtained. One-step-ahead forecasting values for the out-of-

sample period are obtained by employing a rolling sample window. 

Panel A of Table 4.9 presents the performance of AR(I)MA, AR(I)MA-GARCH, 

ARFIMA, Regime Switching, HAR and economic determinants models, while the last 

three columns present the results from the alternative combination methods employed. 

Equal and Schwarz weighted combination forecasts are obtained from equations (4.12) 

and (4.13), respectively. Combination forecasts with time varying weights have been 

formulated under four alternative approaches described at Section 3. Consistent with the 

findings of Aksu & Gunter (1992), the obtained forecasts from equation (4.14), estimated 

with a constant term and under the restriction of positive weights to sum to unity, are 

found to minimize the RMSE and, thereafter, are chosen to compete with the other 

specifications. For the rest of the Chapter, I shall refer to the results and the forecasting 

performance of the weighted combination forecast from Method D as the time varying 

weighted combination forecast.  

To compare the predictive ability of the alternative forecasting models a number 

of statistical evaluation criteria are used. The accuracy of forecasts is initially evaluated 

based on the root mean squared error (RMSE) and the mean absolute error (MAE). 

RMSE is calculated as the square root of the average squared deviations of the forecasted 

values from the actual series, while MAE is measured by the average of the absolute 

value of forecast errors. Notably, the obtained results for the RMSE and the MAE do not 

vary substantially across the employed models. In terms both of RMSE and MAE, the 

minimum value is attributed to the Schwarz Weighted combination model, however 

being only 0.0005% and 0.0012% lower than the respective values for the equal weighted 

combination forecast. The results are in agreement with existing literature suggesting that 

combination forecasts are able to outperform single models. 

The comparison of the forecasting accuracy of each individual model with the 

benchmark model of random walk, substitutes a direct test for the presence of market 

efficiency. Taking into account that the random walk model is nested to all alternative 

models, the McCracken (2007) test statistic, which is valid for comparison of nested 

models, is employed. The t-statistic is defined as below: 
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 ( 1) N A

A

MSE MSE
MSE F T h

MSE


     (4.16) 

where T is the number of out-of-sample forecasts, h=1 is the h-step ahead forecasts, 

MSEN is the MSE of the nested model (i.e. the random walk model) and MSEA is the 

MSE of the alternative models. The calculated McCracken t-statistics are reported in 

Panel A of Table 4.9. Results suggest that the null hypothesis of equal forecasting 

accuracy is strongly rejected proposing that each alternative model produce smaller 

forecasting error when compared with the benchmark model. 

The above-mentioned tests address the question of forecasting accuracy in terms 

of correct magnitude prediction. However, practitioners, and especially traders, are 

mostly interested in correctly predicting the direction of change of their portfolio so as to 

maintain accordingly the appropriate positions. First, the directional predictability of the 

various models employed is assessed under the mean correct prediction (MCP) measure. 

The MCP is computed as the percentage of observations for which the forecasting model 

correctly predicted the realized direction of change of MFIC (see Goncalves & Guidolin, 

2006). Secondly, I employ the non-parametric market-timing test introduced by 

Timmerman & Pesaran (1992), or the PT test. For the purpose of the PT test, a 

contingency table of realized and forecasted values is created. 

  Actual value ( 1
ˆ

ty  ) 

  Up ( 1
ˆ

ty  =1) Down ( 1
ˆ

ty  =0) 

Forecasted 

value 

( 1
ˆ

ty  ) 

Up ( 1
ˆ

ty  ) Hits (Nuu) False Alarms (Nud) 

Down  ( 1
ˆ

ty  =0) Misses (Ndu) Correct Rejections (Ndd) 

 

They showed that the PT test statistic could be expressed as:  

 
( )

ˆ ˆ(1 )

ˆ ˆ(1 )

f f

T H F
PT

 

 

 








 (4.17) 
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where T is the sample size, H = Nuu / (Nuu + Ndu) is the portion of correctly predicted 

“Up” moves, F = Nud / (Nud + Ndd) is the portion of “false alarms”, ˆ
 = (Nuu + Ndu) / T  is 

the probability that the actual series will move upwards and ˆ
f = (Nuu + Nud) / T is the 

probability that the forecasted series will move upwards. The PT test follows the standard 

normal distribution under the null hypothesis of independence between the actual and 

forecasted values, i.e. forecasted series are not able to predict the sign of the actual series. 

Panel B of Table 4.9 reports the results from the tests of directional accuracy. 

Remarkably, the obtained MCP values do not vary significantly among competing 

models, with the equal and the Schwartz combination forecasts successfully predicting 

the direction of forecasted value 60.54% times within the out-of-sample dataset. The PT 

test, or the market-timing test, suggests that, in all cases, the forecasted and the actual 

series are not independently distributed and in fact, there is a predictable pattern in the 

direction of changes in the MFIC series.  
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Table 4.9: Evaluation of the out-of-sample performance 

Panel A           

  

AR(I)MA 
AR(I)MA - 

GARCH 
ARFIMA 

Regime 

Switching 
HAR E.D. 

Equal 

Weighted 

combination 

Time 

varying 

Weighted 

combination  

Schwarz 

Weighted 

combination 

Random 

walk 

RMSE 17.828% 17.905% 18.010% 17.976% 17.943% 17.960% 17.716% 17.907% 17.715% 18.578% 

MAE 11.851% 11.882% 12.132% 12.005% 12.125% 12.004% 11.804% 11.891% 11.803% 12.468% 

McCracken  

t-statistic 212.427*** 189.389*** 158.358*** 168.501*** 177.996*** 173.101*** 246.508*** 188.671*** 246.676***   

Panel B           

  AR(I)MA 

AR(I)MA - 

GARCH ARFIMA 

Regime 

Switching HAR E.D. 

Equal 

Weighted 

combination 

Time 

varying 

Weighted 

combination  

Schwarz 

Weighted 

combination  

MCP 59.773% 59.976% 56.860% 59.409% 57.345% 58.357% 60.542% 59.733% 60.542%  

PT test 9.585*** 9.728*** 6.587*** 9.199*** 7.452*** 8.208*** 10.372*** 9.64*** 10.369***   

Note: Panel A presents the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) in percentage terms, corresponding to the AR(I)MA, 

AR(I)MA-GARCH, ARFIMA, Regime Switching, HAR, Economic Determinants (E.D.) and the random walk model as well as to the combination forecasts 

obtained with equal, time varying and Schwarz weights. The null hypothesis that the model produces equal forecasting accuracy with the random walk model is 

tested against the alternative of a better forecasting accuracy of the model with the McCracken test for MSE. Panel B presents the directional forecasting 

accuracy of the models under consideration. The Mean Correct Prediction (MCP) measure represents the number of times that the actual change in MFIC is 

correctly predicted by the forecasted series. The PT test is employed to test the independence between the actual and forecasted values. One, two and three 

asterisks indicate the rejection of the null hypothesis at 10%, 5% and 1% significance level, respectively. 
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Additionally, for the purposes of pairwise comparison of the forecasting accuracy 

of the alternative specifications, the Modified Diebold-Mariano test is employed. The 

loss differential function is computed both in terms of the mean square error of the 

forecast and of the mean absolute error and is defined as [ ( ) ( )],
jt jt it

d g e g e i j   , where 

( )
jt

g e is the loss function, and i , j = 1 for AR(I)MA, 2 for AR(I)MA – GARCH, 3 for 

ARFIMA, 4 for Regime Switching, 5 for HAR, 6 for the economic determinants model, 7 

for the Schwarz weighted combination forecast, 8 for the equal combination forecast and 

9 for the time varying combination forecast. The null hypothesis of equal forecasting 

accuracy is tested against the alternative that the forecasting model performs better than 

the benchmark model, i.e. E(djt) < 0. The Diebold-Mariano test statistic is defined as:  

 ~ (0,1)
ˆ2 (0)d

d
DM N

f

T


  (4.18) 

where d  is the sample average of the loss differential, ˆ (0)
d
f is the estimate of the spectral 

density at frequency zero and T  is the number of observations. For h-step-ahead 

forecasts, the Modified Diebold-Mariano test statistic corrects for small sample sizes and 

autocorrelation of the loss differential following a Student-t distribution with T-1 degrees 

of freedom and equals to 

 mod

1 2 ( 1) /T h h h T
DM DM

T

    
  
 

 (4.19) 

Table 4.10 reports the t-statistics for the null hypothesis that, in terms of root 

mean squared error (RMSE), the model in row i performs equally well with model in 

column j
6
. The null hypothesis of equal errors is principally accepted for the majority of 

pairwise comparisons. Interestingly, however, at 95% confidence level, equal and 

Schwarz weighted combination forecasts are better than all models except for the 

AR(I)MA - GARCH, while the AR(I)MA model also outperforms the ARFIMA model. 

                                                 
6
 When the lost function is defined with regard to the Mean Absolute Error, test results 

are similar. 
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Table 4.10: Modified Diebold-Mariano tests 

  AR(I)MA  

AR(I)MA-

GARCH ARFIMA 

Regime 

Switching HAR E.D. Equal Schwarz 

Time -

varying 

AR(I)MA     -0.503 -2.216 ** -1.181   -0.896   -0.663   1.944 1.986 -0.904   

AR(I)MA-

GARCH 0.503     -0.588   -0.334   -0.166   -0.178   1.122 1.143 -0.025   

ARFIMA 2.216   0.588     0.266   0.529   0.245   4.137 4.150 0.871   

Regime 

Switching 1.181   0.334 -0.266       0.186   0.075   2.375 2.400 0.461   

HAR 0.896   0.166 -0.529   -0.186       -0.112   2.359 2.309 0.199   

E.D. 0.663   0.178 -0.245   -0.075   0.112       1.482 1.463 0.218   

Combination Forecasts 

Equal   -1.944 ** -1.122 -4.137 *** -2.375 *** -2.359 *** -1.482 *   0.177 -1.848 ** 

Schwarz  -1.986 ** -1.143 -4.150 *** -2.400 *** -2.309 ** -1.463 * -0.177   -1.897 ** 

Time varying  0.904   0.025 -0.871   -0.461   -0.199   -0.218   1.848 1.897     

Note: The Table presents the t-statistics for the Modified Diebold-Mariano test. The null hypothesis that the model in rows performs equally well with the model 

in columns is tested against the alternative of a better forecasting accuracy of the model in rows. One, two and three asterisks indicate the rejection of the null 

hypothesis at 10%, 5% and 1% significance level, respectively 
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44..55..22  Economic significance 

In addition to the statistical evaluation measures, I investigate whether the predictability 

of MFIC is significant enough to generate abnormal profits. Following Harvey & Whaley 

(1992), Guo (2000) and Goncalves & Guidolin (2006), the out-of-sample forecasting 

performance of different forecasting models is evaluated based on the profitability of a 

trading strategy. The trading strategy is based on the idea of ‘dispersion trading’ but, in 

contrast to relevant studies (e.g. Driessen et al., 2009), is focused on exploiting the daily 

changes in MFIC (i.e. daily changes in implied volatilities of stock and index options) 

rather than differences between implied and realized volatilities of stock and index 

options. A long (short) dispersion trade involves short (long) position on near ATM 

straddles on S&P 100 index and long (short) position on a portfolio of near ATM 

straddles on S&P 100 component stocks. Straddles involve buying or selling equal 

amount of call and put options with the same maturity and strike price and provide an 

effective way of trading changes in implied volatility (see Guo 2000; Brooks & Oozeer, 

2002; Ni et al., 2008). A long dispersion trade will generate profits if the change in the 

implied volatilities of the stock options is higher than the change in the index option 

implied volatility i.e. if MFIC decreases.  

In detail, the correlation trading strategy proceeds as follows: if on a given day, 

MFIC is expected to increase/(decrease) on the following day, the investor goes 

short/(long) the dispersion trade. In order to build the dispersion trade portfolios, on each 

day for each asset and the index, I choose calls and puts of the shortest maturity with at 

least one call and one put with the same strike price. If more than one pair satisfies the 

criterion, I choose the one with moneyness closest to 1. Options with maturity less than 7 

days, ask price lower than the bid price, non-positive bid price, moneyness levels higher 

than 1.15 or lower than 0.85 and zero open interest are discarded. Each day $1,000 worth 

of options are always bought and sold and the position is liquidated the next day. The 

funds may be freely invested at the riskless interest rate while the profits are not 

reinvested next day. The trading exercise is repeated every day in the out-of-sample 

period. 
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The value of a portfolio unit at day t is computed as follows: 
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where Ci,t is the call price on stock i, Pi,t is the put price on stock i, CI,t is the call price on 

the index, PI,t is the put price on the index, , ,

,

, ,

1

i t I t

i t N

i t i t

i

N S
n

N S





, Si,t is the closing price of stock 

i, SI,t is the closing price of the index, Ni,t is the number of shares outstanding in stock i, 

all variables at day t. I assume that each day $1000 are invested in the portfolio i.e. Xt = 

1000 / |Vt| portfolio units are bought/sold. If the portfolio requires funds for its initiation 

(i.e. Vt>0), the net gain of the portfolio is:  

 1 1( )t t t tNG X V V    (4.21) 

If the portfolio generates inflows at is initiation (i.e. Vt<0), the net gain of the 

portfolio is: 
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In order to avoid noisy signals, the weakest signals by applying the following filters: 

trading occurs only if the forecasted change in MFIC is higher than 0.1%, 0.5% and 1%. 

Table 4.11 reports out-of-sample average returns, annualized Sharpe ratio and 

Leland’s alpha. While Sharpe’s ratio is an appropriate measure of profitability in the case 

of normal returns, Leland’s alpha allows for non-normal trading strategy returns by 

taking into account higher-order moments of the return distribution. Using Rubinstein 

(1976) asset pricing model it is assumed that the returns on the market portfolio are i.i.d. 

over time and the agent has power utility characterized by a constant risk aversion 

coefficient γ. Under these assumptions, a marginal utility-adjusted abnormal return 

measure for the trading strategy is derived as follows: 
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where rm,t is the return on the market portfolio, 
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daily USD Libor and S&P 100 returns are used as the risk-free rate and the market 

returns, respectively. Finally, since the trading strategy returns are found to be stationary 

and non-normal (based on unreported results) the statistical significance of the results 

using bootstrapped 95% confidence intervals is assessed based on Politis & Romano 

(1994) method. The average block size is set equal to ten and 1000 bootstrap repetitions 

are used. 

The reported results with no filter indicate that the trading strategy based on the 

AR(I)MA-GARCH, equal and Schwarz weighted combination forecasts produce 

significant positive average returns over the out-of-sample period. The highest return, 

Sharpe ratio and Leland’s alpha is accomplished by the AR(I)MA-GARCH model. 

Moreover, when filters are applied, these three models yield significant positive returns 

across all filters.  

Results below question the efficiency of the S&P100 index and stock option 

market but neglect the effect of transaction cost. Therefore transaction costs are 

incorporated in the analysis of the profitability of the trading strategies by using bid and 

ask quotes instead of the mid quotes. More specifically, I assume that the investor buys 

the options at the ask price and sells at the bid price. Table 4.12 reports out-of-sample 

average returns, annualized Sharpe ratio and Leland’s alpha and the corresponding 

bootstrapped confidence intervals for the correlation trading strategy based on alternative 

forecasting models and filters after incorporating transaction cost. Not surprisingly, 

transactions costs have a major impact on the profitability of the trading strategies. The 

average daily return, Sharpe ratio and Leland’s alpha are significantly negative across all 

forecasting models and filters applied. The results extend the findings of Driessen, 

Maenhout and Vilkov (2009), Goyal & Saretto (2009) and Neumann & Skiadopoulos 

(2013) who also report a significant economic impact of bid-ask spreads in option 

trading. 
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Table 4.11: Trading strategy based on out-of-sample forecasts – without transaction costs 

Panel A 

  No filter   Filter 0.1% 

Model 
Average Daily 

Return   Sharpe Ratio   Leland's alpha   

Average Daily 

Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  0.195%   0.425   0.002   0.192%   0.417   0.002   

C.I. (95%) (-0.008%,0.401%)   (-0.092,0.918)   (0.000,0.004)   (-0.021%,0.407%)   (-0.073,0.911)   (0.000,0.004)   

AR(I)MA-

GARCH  0.335% * 0.746 * 0.003 * 0.335% * 0.746 * 0.003 * 

C.I. (95%) (0.108%,0.582%)   (0.229,1.197)   (0.001,0.006)   (0.109%,0.560%)   (0.274,1.218)   (0.001,0.006)   

ARFIMA  0.188%   0.408   0.002   0.186%   0.405   0.002   

C.I. (95%) (-0.037%,0.399%)   (-0.111,0.973)   (0.000,0.004)   (-0.037%,0.408%)   (-0.094,0.977)   (-0.001,0.004)   

RS 0.201%   0.438   0.002   0.193%   0.420   0.002   

C.I. (95%) (-0.055%,0.441%)   (-0.097,1.037)   (-0.001,0.004)   (-0.042%,0.433%)   (-0.099,0.997)   (-0.001,0.004)   

E.D. 0.181%   0.393   0.002   0.177%   0.382   0.002   

C.I. (95%) (-0.054%,0.398%)   (-0.107,0.955)   (0.000,0.004)   (-0.047%,0.378%)   (-0.084,0.966)   (0.000,0.004)   

HAR  -0.009%   -0.042   0.000   -0.008%   -0.040   0.000   

C.I. (95%) (-0.240%,0.236%)   (-0.553,0.531)   (-0.002,0.002)   (-0.248%,0.222%)   (-0.562,0.489)   (-0.003,0.002)   

Combination Forecasts   

Schwarz  0.271% * 0.600 * 0.003 * 0.273% * 0.604 * 0.003 * 

C.I. (95%) (0.061%,0.471%)   (0.119,1.105)   (0.001,0.005)   (0.053%,0.470%)   (0.139,1.095)   (0.001,0.005)   

Equal  0.268% * 0.593 * 0.003 * 0.272% * 0.602 * 0.003 * 

C.I. (95%) (0.061%,0.490%)   (0.116,1.090)   (0.001,0.005)   (0.060%,0.484%)   (0.109,1.086)   (0.001,0.005)   

Time varying  0.060%   0.115   0.000   0.058%   0.110   0.000   

C.I. (95%) (-0.157%,0.292%)   (-0.348,0.684)   (-0.002,0.003)   (-0.159%,0.275%)   (-0.419,0.631)   (-0.002,0.003)   
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Panel B 

  Filter 0.5% Filter 1% 

Model 
Average Daily 

Return   Sharpe Ratio   Leland's alpha   

Average Daily 

Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  0.191%   0.417   0.002   0.188%   0.409   0.002   

C.I. (95%) (-0.029%,0.394%)   (-0.051,0.887)   (0.000,0.004)   (-0.024%,0.382%)   (-0.087,0.898)   (0.000,0.004)   

AR(I)MA-

GARCH  0.329% * 0.735 * 0.003 * 0.336% * 0.755 * 0.003 * 

C.I. (95%) (0.105%,0.576%)   (0.204,1.218)   (0.001,0.006)   (0.100%,0.573%)   (0.263,1.230)   (0.001,0.006)   

ARFIMA  0.211%   0.463   0.002   0.219%   0.485   0.002   

C.I. (95%) (-0.009%,0.434%)   (-0.038,1.054)   (0.000,0.004)   (-0.005%,0.439%)   (-0.033,1.112)   (0.000,0.004)   

RS 0.194%   0.424   0.002   0.154%   0.336   0.001   

C.I. (95%) (-0.047%,0.425%)   (-0.143,1.003)   (-0.001,0.004)   (-0.096%,0.374%)   (-0.206,0.958)   (-0.001,0.004)   

E.D. 0.161%   0.347   0.002   0.179%   0.390   0.002   

C.I. (95%) (-0.057%,0.364%)   (-0.177,0.857)   (-0.001,0.003)   (-0.037%,0.398%)   (-0.142,0.951)   (-0.001,0.004)   

HAR  -0.042%   -0.121   -0.001   -0.042%   -0.122   -0.001   

C.I. (95%) (-0.286%,0.200%)   (-0.695,0.456)   (-0.003,0.002)   (-0.298%,0.197%)   (-0.642,0.460)   (-0.003,0.002)   

Combination Forecasts   

Schwarz  0.284% * 0.631 * 0.003 * 0.265% * 0.591 * 0.002 * 

C.I. (95%) (0.073%,0.502%)   (0.144,1.119)   (0.001,0.005)   (0.036%,0.469%)   (0.072,1.096)   (0.000,0.005)   

Equal  0.276% * 0.613 * 0.003 * 0.265% * 0.590 * 0.002 * 

C.I. (95%) (0.076%,0.499%)   (0.143,1.131)   (0.000,0.005)   (0.055%,0.480%)   (0.109,1.093)   (0.000,0.005)   

Time varying  0.056%   0.106   0.000   0.058%   0.111   0.000   

C.I. (95%) (-0.177%,0.283%)   (-0.416,0.633)   (-0.002,0.003)   (-0.171%,0.278%)   (-0.378,0.632)   (-0.002,0.003)   

Note: The Table reports the average daily return, the annualized Sharpe ratio, and Leland's alpha corresponding to MFIC forecasts from the models as well as to 

the combination forecasts obtained with the Schwarz, equal and time varying weights. Results are reported for the trading strategy without filter and with 0.1% 

(Panel A), 0.5% and 1% (Panel B) filters. The bootstrapped 95% confidence intervals (C.I.) are reported in parentheses. One asterisk indicates the rejection of the 

null hypothesis of zero average return, Sharpe Ratio or Leland's alpha at significance level 5%. 
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Table 4.12: Trading strategy based on out-of-sample forecasts with transaction cost 

Panel A 

  No filter Filter 0.1% 

Model Average Daily Return   Sharpe Ratio   Leland's alpha   Average Daily Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  -12.531% * -8.530 * -0.125 * -12.528% * -8.524 * -0.125 * 

C.I. (95%) (-13.910%,-11.288%)   (-10.987,-7.007)   (-0.138,-0.114)   (-13.870%,-11.322%)   (-10.973,-6.931)   (-0.139,-0.113)   

AR(I)MA-

GARCH  -12.234% * -9.889 * -0.123 * -12.253% * -9.889 * -0.122 * 

C.I. (95%) (-13.456%,-11.223%)   (-11.095,-8.852)   (-0.134,-0.112)   (-13.344%,-11.232%)   (-11.184,-8.870)   (-0.133,-0.112)   

ARFIMA  -13.362% * -3.692 * -0.134 * -13.311% * -3.672 * -0.133 * 

C.I. (95%) (-16.158%,-11.218%)   (-10.836,-2.716)   (-0.162,-0.112)   (-16.163%,-11.230%)   (-10.801,-2.680)   (-0.163,-0.112)   

RS -13.684% * -3.774 * -0.137 * -13.693% * -3.767 * -0.137 * 

C.I. (95%) (-16.475%,-11.546%)   (-10.804,-2.757)   (-0.167,-0.116)   (-16.600%,-11.484%)   (-10.807,-2.727)   (-0.165,-0.115)   

E.D. -12.930% * -7.700 * -0.129 * -12.903% * -7.683 * -0.129 * 

C.I. (95%) (-14.409%,-11.571%)   (-10.869,-6.046)   (-0.146,-0.116)   (-14.408%,-11.604%)   (-10.821,-6.146)   (-0.144,-0.115)   

HAR  -13.178% * -7.701 * -0.132 * -13.128% * -7.664 * -0.131 * 

C.I. (95%) (-14.898%,-11.786%)   (-10.671,-6.130)   (-0.148,-0.117)   (-14.770%,-11.736%)   (-10.581,-6.219)   (-0.149,-0.116)   

Combination Forecasts 

Schwarz  -12.585% * -8.451 * -0.126 * -12.551% * -8.426 * -0.125 * 

C.I. (95%) (-14.065%,-11.354%)   (-10.813,-6.930)   (-0.140,-0.114)   (-13.967%,-11.322%)   (-10.801,-6.856)   (-0.139,-0.114)   

Equal  -12.583% * -8.451 * -0.126 * -12.569% * -8.435 * -0.126 * 

C.I. (95%) (-14.028%,-11.392%)   (-10.851,-6.885)   (-0.138,-0.114)   (-13.896%,-11.348%)   (-10.808,-6.954)   (-0.141,-0.113)   

Time varying  -12.966% * -8.326 * -0.130 * -12.954% * -8.308 * -0.129 * 

C.I. (95%) (-14.518%,-11.709%)   (-10.683,-6.867)   (-0.145,-0.117)   (-14.311%,-11.690%)   (-10.675,-6.934)   (-0.144,-0.117)   
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Panel B 

  Filter 0.5% Filter  1% 

Model Average Daily Return   Sharpe Ratio   Leland's alpha   Average Daily Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  -12.412% * -8.470 * -0.124 * -12.336% * -8.418 * -0.123 * 

C.I. (95%) (-13.863%,-11.167%)   (-10.953,-6.755)   (-0.138,-0.113)   (-13.694%,-11.171%)   (-10.844,-6.913)   (-0.136,-0.111)   

AR(I)MA-

GARCH  -12.141% * -9.826 * -0.122 * -11.996% * -9.726 * -0.120 * 

C.I. (95%) (-13.238%,-11.055%)   (-11.035,-8.835)   (-0.133,-0.111)   (-13.131%,-10.892%)   (-10.972,-8.706)   (-0.132,-0.109)   

ARFIMA  -13.034% * -3.607 * -0.131 * -12.823% * -3.551 * -0.128 * 

C.I. (95%) (-15.992%,-11.107%)   (-10.754,-2.690)   (-0.158,-0.110)   (-15.663%,-10.749%)   (-10.617,-2.637)   (-0.156,-0.107)   

RS -13.521% * -3.730 * -0.136 * -13.400% * -3.697 * -0.134 * 

C.I. (95%) (-16.500%,-11.446%)   (-10.623,-2.774)   (-0.165,-0.113)   (-16.511%,-11.220%)   (-10.587,-2.722)   (-0.163,-0.114)   

E.D. -12.819% * -7.634 * -0.128 * -12.645% * -7.541 * -0.126 * 

C.I. (95%) (-14.428%,-11.490%)   (-10.761,-6.128)   (-0.144,-0.115)   (-14.183%,-11.274%)   (-10.615,-6.058)   (-0.142,-0.112)   

HAR  -13.022% * -7.616 * -0.130 * -12.859% * -7.525 * -0.129 * 

C.I. (95%) (-14.785%,-11.650%)   (-10.600,-6.165)   (-0.147,-0.115)   (-14.478%,-11.407%)   (-10.421,-5.987)   (-0.146,-0.115)   

Combination Forecasts 

Schwarz  -12.373% * -8.365 * -0.124 * -12.218% * -8.285 * -0.122 * 

C.I. (95%) (-13.632%,-11.171%)   (-10.827,-6.859)   (-0.138,-0.112)   (-13.635%,-11.087%)   (-10.702,-6.691)   (-0.135,-0.111)   

Equal  -12.369% * -8.362 * -0.124 * -12.210% * -8.280 * -0.122 * 

C.I. (95%) (-13.755%,-11.168%)   (-10.810,-6.873)   (-0.137,-0.112)   (-13.475%,-11.070%)   (-10.717,-6.807)   (-0.136,-0.111)   

Time varying  -12.740% * -8.213 * -0.128 * -12.530% * -8.116 * -0.125 * 

C.I. (95%) (-14.048%,-11.498%)   (-10.544,-6.860)   (-0.142,-0.115)   (-13.928%,-11.325%)   (-10.512,-6.723)   (-0.139,-0.113)   

Note: The Table reports the average daily return, the annualized Sharpe ratio, and Leland's alpha corresponding to MFIC forecasts from the models as well as to 

the combination forecasts obtained with the Schwarz, equal and time varying weights, after accounting for transaction cost. Results are reported for the trading 

strategy without filter and with 0.1% (Panel A), 0.5% and 1% filters (Panel B). The bootstrapped 95% confidence intervals (C.I.) are reported in parentheses. One 

asterisk indicates the rejection of the null hypothesis of zero average return, Sharpe Ratio or Leland's alpha at significance level 5%. 
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Most importantly, results imply that only investors who face zero or limited 

transaction costs (e.g. market makers) can generate abnormal profits by correctly 

predicting the change in MFIC. The elimination of profitability when accounting for 

transactions costs can be attributed to the simultaneous trading position of the investor to 

all constituent stocks of the index. An alternative strategy could be to hold long/short 

positions on options only on some representative stocks of the index (e.g. those 

representing the 75% of the index market capitalization). This strategy could significantly 

reduce transaction costs and enhance profitability. 

4.6 Robustness checks 

Previous analysis is based on an extensive dataset that covers the period of 1996-2010. 

To assess the robustness of the results across different samples, I use expanding in-

sample windows of three, six, nine and twelve years and produce out-of-sample forecasts 

for the following three years. In that way, a series of non-overlapping forecasted values is 

created. Specifically, the in-sample periods are: 01/01/1996 – 12/31/1998, 01/01/1996 – 

12/31/2001, 01/01/1996 – 12/31/2004, 01/01/1996 – 12/31/2007 corresponding to out-of-

sample forecasting periods: 01/01/1999 – 12/31/2001, 01/01/2002 – 12/31/2004, 

01/01/2005 – 12/31/2007 and 01/01/2008 – 10/29/2010, respectively.  

 

44..66..11  Evaluation of out-of-sample performance 

Table 4.13 presents the forecasting performance of the models during the different 

sampling periods as well as the average values throughout the out-of-sample period 

(01/01/1999 – 10/29/2010). Notably, the RMSE and the MAE do not vary significantly 

across models in the same period but do vary across the different sampling schemes. 

Specifically, when compared with the main estimation window results, RMSE is lower 

during the first two forecasting periods, while the last forecast period that includes the 

2008 crisis attains the largest values in terms of both the RMSE and the MAE. In terms of 

directional accuracy, the results do not vary significantly among the different sample 

windows and the main estimation window. The PT test across all periods and models, 

with the exception of the AR(I)MA-GARCH model for the last forecasting period that 
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includes the 2008 crisis, suggests that the direction of the change of the MFIC series can 

be predicted. 

The last column of Table 4.13 presents the average values of the statistical 

measures for evaluation of the out-of-sample performance of the competing models for 

the out-of-sample period of 1999-2010, where the forecasted values are obtained as 

described above. The minimum RMSE and MAE values are obtained from the time 

varying and the Schwartz combination forecast, respectively. In terms of the best 

performing model on average, the weighted combination forecast produces superior 

forecasts throughout the different sample periods, while the Schwarz and the equal 

combination forecast were the best performing models for the main estimation window. 

Obtained results are in agreement with vast literature that suggests that combination 

forecasts produce better forecasting accuracy than individual model specifications.  

Obtained t-statistics from the McCracken (2007) test suggest that the null 

hypothesis of equal forecasting accuracy with the random walk is strongly rejected for all 

models, except for the Regime Switching model where the null hypothesis is rejected 

only at 10% significance level. In contrast, the PT test suggests that the models are able 

to track a predictable pattern in the directional changes of the MFIC series. Overall, 

results across different forecasting periods suggest the existence of predictability in the 

MFIC series, consistent with results obtained from the main estimation window. 
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Table 4.13: Robustness checks. Evaluation of the out-of-sample performance 

 

1999-2001 2002-2004 

  RMSE MAE MSE-F MCP PT test RMSE MAE MSE-F MCP PT test 

ARMA 14.618% 11.191% 74.092*** 60.347% 5.620 *** 12.462% 9.515% 100.880*** 61.772% 6.396 *** 

ARMA-GARCH 14.536% 11.096% 83.411*** 61.148% 6.247 *** 12.423% 9.470% 106.243*** 62.566% 6.828 *** 

ARFIMA 15.290% 11.743% 3.256*** 54.206% 2.312 ** 13.040% 10.022% 26.579*** 54.630% 2.532 ** 

RS 14.624% 11.178% 73.359*** 58.611% 4.668 *** 16.408% 12.415% -261.749 56.878% 3.740 *** 

HAR 15.087% 11.601% 23.681*** 56.208% 3.434 *** 12.998% 10.004% 31.599*** 56.349% 3.517 *** 

E.D. 15.040% 11.459% 28.512*** 59.680% 5.296 *** 18.206% 12.284% -354.536 60.847% 5.869 *** 

Equal   14.559% 11.110% 80.716*** 60.881% 5.933 *** 12.593% 9.567% 83.172*** 60.317% 5.606 *** 

Time-varying  14.608% 11.139% 75.130*** 60.214% 5.562 *** 12.459% 9.525% 101.241*** 61.376% 6.196 *** 

Schwarz  14.552% 11.104% 81.570*** 60.881% 5.931 *** 12.601% 9.570% 82.021*** 60.582% 5.749 *** 

Random Walk 15.324% 11.753%         13.267% 10.219%         

 

 2005 - 2007 2008 - 2010 

  RMSE MAE MSE-F MCP PT test RMSE MAE MSE-F MCP PT test   

ARMA 18.189% 12.212% 74.417*** 61.406% 6.064 *** 22.978% 14.685% 42.599*** 54.278% 2.375 ** 

ARMA-GARCH 18.251% 12.245% 68.795*** 60.743% 5.642 *** 23.336% 14.933% 19.579*** 53.156% 1.586   

ARFIMA 18.271% 12.461% 67.035*** 59.284% 5.097 *** 22.784% 14.506% 55.509*** 56.522% 3.428 ** 

RS 22.836% 15.548% -228.420 58.090% 4.398 *** 30.053% 20.792% -271.291 55.259% 2.757 *** 

HAR 18.294% 12.395% 64.934*** 60.477% 5.841 *** 22.665% 14.491% 63.629*** 56.522% 3.653 *** 

E.D. 18.206% 12.284% 72.862*** 60.477% 5.682 *** 23.138% 14.778% 32.189*** 55.680% 2.973 *** 

Equal   18.347% 12.328% 60.210*** 61.671% 6.335 *** 22.921% 14.697% 46.373*** 55.259% 2.853 *** 

Time-varying  18.117% 12.227% 81.029*** 60.875% 5.787 *** 22.946% 14.572% 44.699*** 56.381% 3.553 *** 

Schwarz  18.363% 12.340% 58.754*** 61.538% 6.267 *** 22.940% 14.719% 45.106*** 55.400% 2.924 *** 

Random Walk 19.066% 12.918%         23.654% 15.046%         
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Table 4.13: Robustness checks. Evaluation of the out-of-sample performance (cont’d) 

 Average 

  RMSE MAE MSE-F MCP PT test 

AR(I)MA 17.434% 11.862% 64.727*** 59.5222% 10.527 *** 

AR(I)MA-

GARCH 17.540% 11.894% 54.927*** 59.4886% 10.754 *** 

ARFIMA 17.647% 12.150% 45.263*** 56.1575% 6.124 *** 

RS 18.183% 12.118%    -0.909* 57.2342% 10.422 *** 

HAR 17.564% 12.090% 52.776*** 57.4024% 7.692 *** 

E.D. 17.604% 12.002% 49.097*** 59.2194% 9.895 *** 

Equal   17.418% 11.809% 66.255*** 59.5895% 10.799 *** 

Time varying  17.387% 11.810% 69.142*** 59.7577% 10.827 *** 

Schwarz  17.420% 11.809% 66.045*** 59.6568% 10.918 *** 

RW 18.172% 12.444%         

Note: Panel A presents the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) in percentage terms. The t-statistic of the McCracken test for 

MSE is also reported. The null hypothesis that the model produces equal forecasting accuracy with the random walk model is tested against the alternative of a 

better forecasting accuracy of the model. The Mean Correct Prediction (MCP) measure represents the number of times that the actual change in MFIC is 

correctly predicted by the forecasted series. The PT test is employed to test the independence between the actual and forecasted values. The results are reported 

across different forecast periods and on average. One, two and three asterisks indicate the rejection of the null hypothesis at 10%, 5% and 1% significance level, 

respectively. 
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44..66..22  Economic significance 

Table 4.14 presents the results from the correlation trading strategy during the four out-

of-sample periods without accounting for transaction cost. During all the forecast periods, 

except the last one, there is at least one model that produces significantly positive returns 

although these models differ during the various sub-periods. It is interesting that most of 

the models attain significant positive returns when forecasting the period before the 2008 

crisis while none of the models attains significant returns during the last forecast period 

that includes the 2008 crisis. The last column in Table 4.14 presents the average return, 

Sharpe ratio and Leland alpha across the four out-of-sample periods. The highest return is 

attained by the AR(I)MA-GARCH specification consistent with the results from the main 

estimation window. The second, third and fourth model with the highest average return 

are the ARFIMA, the equally weighted and the Schwarz weighted combination forecasts. 

When transaction cost is taken into account, all of the models produce significant 

negative returns during the four out-of-sample periods (Table 4.15) similar to the results 

in Table 4.12 for the main estimation window. Overall, the main economic result 

supporting the existence of profitable correlation trading strategies based on MFIC 

forecasts that fade out when transaction costs are taken into account is robust across 

different in-sample sizes and forecast periods with the exception of the after crisis 

forecast period. 
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Table 4.14: Robustness checks. Trading strategy based on out-of-sample forecasts – without transaction costs 

  1999 – 2001 2002 – 2004  

Model 

Average Daily 

Return   Sharpe Ratio   Leland's alpha   

Average Daily 

Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  -0.191%   -0.797   -0.002   -0.009%   -0.044   0.000   

C.I. (95%) (-0.472%,0.101%)   (-1.951,0.256)   (-0.005,0.001)   (-0.310%,0.307%)   (-1.014,0.869)   (-0.004,0.003)   

AR(I)MA-

GARCH  0.162%   0.532   0.001   0.172%   0.506   0.002   

C.I. (95%) (-0.097%,0.428%)   (-0.415,1.525)   (-0.001,0.004)   (-0.118%,0.471%)   (-0.395,1.418)   (-0.001,0.005)   

ARFIMA  0.277%   0.965   0.003   0.563% * 1.705 * 0.006 * 

C.I. (95%) (-0.031%,0.585%)   (-0.168,2.088)   (0.000,0.006)   (0.231%,0.928%)   (0.632,2.673)   (0.002,0.009)   

RS -0.137%   -0.591   -0.002   -0.055%   -0.184   -0.001   

C.I. (95%) (-0.400%,0.118%)   (-1.610,0.379)   (-0.004,0.001)   (-0.333%,0.238%)   (-0.954,0.728)   (-0.003,0.002)   

E.D. 0.439% * 1.580 * 0.004 * 0.122%   0.355   0.001   

C.I. (95%) (0.140%,0.759%)   (0.442,2.687)   (0.001,0.007)   (-0.173%,0.419%)   (-0.522,1.325)   (-0.002,0.004)   

HAR  -0.197%   -0.819   -0.002   -0.016%   -0.067   0.000   

C.I. (95%) (-0.467%,0.041%)   (-1.718,0.145)   (-0.005,0.000)   (-0.290%,0.249%)   (-0.892,0.778)   (-0.003,0.003)   

Combination Forecasts   

Schwarz  -0.064%   -0.320   -0.001   0.144%   0.419   0.001   

C.I. (95%) (-0.325%,0.201%)   (-1.379,0.720)   (-0.003,0.002)   (-0.119%,0.412%)   (-0.420,1.301)   (-0.001,0.004)   

Equal  -0.065%   -0.322   -0.001   0.148%   0.432   0.001   

C.I. (95%) (-0.343%,0.211%)   (-1.353,0.621)   (-0.004,0.002)   (-0.109%,0.422%)   (-0.392,1.267)   (-0.001,0.004)   

Time varying  0.134%   0.426   0.001   -0.044%   -0.152   0.000   

C.I. (95%) (-0.136%,0.381%)   (-0.491,1.370)   (-0.001,0.004)   (-0.335%,0.243%)   (-1.140,0.694)   (-0.003,0.002)   
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Table 4.14: Robustness checks. Trading strategy based on out-of-sample forecasts – without transaction costs (cont’d) 

  2005 - 2007 2008 – 2010 

Model 

Average Daily 

Return   Sharpe Ratio   Leland's alpha   

Average Daily 

Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  0.493% * 1.394 * 0.005 * -0.048%   -0.086   -0.001   

C.I. (95%) (0.175%,0.840%)   (0.639,2.072)   (0.002,0.009)   (-0.641%,0.532%)   (-0.997,0.888)   (-0.006,0.005)   

AR(I)MA-

GARCH  0.585% * 1.666 * 0.006 * 0.318%   0.525   0.003 
  

C.I. (95%) (0.261%,0.951%)   (0.932,2.295)   (0.003,0.009)   (-0.211%,0.910%)   (-0.459,1.340)   (-0.002,0.009)   

ARFIMA  0.204%   0.545   0.002   -0.051%   -0.092   -0.001   

C.I. (95%) (-0.097%,0.487%)   (-0.198,1.761)   (-0.001,0.005)   (-0.601%,0.511%)   (-1.001,0.907)   (-0.006,0.005)   

RS 0.436% * 1.226 * 0.004 * -0.094%   -0.163   -0.001   

C.I. (95%) (0.106%,0.836%)   (0.259,1.961)   (0.001,0.008)   (-0.673%,0.511%)   (-1.045,0.893)   (-0.007,0.004)   

E.D. 0.218%   0.584   0.002   -0.310%   -0.524   -0.003   

C.I. (95%) (-0.057%,0.493%)   (-0.172,1.702)   (-0.001,0.005)   (-0.876%,0.284%)   (-1.415,0.406)   (-0.009,0.003)   

HAR  0.372% * 1.037 * 0.004 * -0.018%   -0.036   0.000   

C.I. (95%) (0.048%,0.715%)   (0.158,1.789)   (0.001,0.007)   (-0.620%,0.587%)   (-0.955,1.058)   (-0.007,0.005)   

Combination Forecasts   

Schwarz  0.500% * 1.415 * 0.005 * 0.030% 

 

0.044 
 

0.000   

C.I. (95%) (0.195%,0.873%)   (0.619,2.128)   (0.002,0.009)   (-0.525%,0.593%)   (-0.867,0.996)   (-0.006,0.006)   

Equal  0.514% * 1.458 * 0.005 * 0.020% 

 

0.026 
 

0.000   

C.I. (95%) (0.188%,0.910%)   (0.659,2.144)   (0.002,0.009)   (-0.534%,0.566%)   (-0.812,1.120)   (-0.006,0.006)   

Time varying  0.483% * 1.364 * 0.005 * -0.158%   -0.271   -0.002   

C.I. (95%) (0.159%,0.843%)   (0.514,2.067)   (0.001,0.008)   (-0.751%,0.440%)   (-1.187,0.774)   (-0.008,0.004)   
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Table 4.14: Robustness checks. Trading strategy based on out-of-sample forecasts – without transaction costs (cont’d) 

 
Average 

 Model 

Average Daily 

Return 

Annualized Sharpe 

Ratio 

Leland's 

alpha 

AR(I)MA  0.061% 0.117 0.000 

AR(I)MA-

GARCH  0.309% 0.807 0.003 

ARFIMA  0.248% 0.781 0.002 

RS 0.038% 0.072 0.000 

E.D. 0.117% 0.499 0.001 

HAR  0.035% 0.029 0.000 

Combination Forecasts 

Schwarz  0.152% 0.390 0.001 

Equal  0.154% 0.399 0.001 

Time varying  0.104% 0.342 0.001 

Note: The Table reports the average daily return, the annualized Sharpe ratio, and Leland's alpha corresponding to MFIC forecasts from the models as well as to 

the combination forecasts obtained with the Schwarz, equal and time varying weights. Results are reported for the trading strategy without filters. The 

bootstrapped 95% confidence intervals (C.I.) are reported in parentheses. The results are reported across different forecast periods and on average. One asterisk 

indicates the rejection of the null hypothesis of zero average return, Sharpe Ratio or Leland's alpha at significance level 5%. 
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Table 4.15: Robustness checks. Trading strategy based on out-of-sample forecasts with transaction cost. 

 1999 – 2001 2002 – 2004 

Model Average Daily Return   Sharpe Ratio   Leland's alpha   Average Daily Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  -10.398% * -12.336 * -0.104 * -14.339% * -12.375 * -0.143 * 

C.I. (95%) (-11.562%,-9.272%)   (-12.904,-11.847)   (-0.117,-0.093)   (-15.626%,-13.166%)   (-13.384,-11.523)   (-0.158,-0.132)   

AR(I)MA-

GARCH  -9.713% * -12.434 * -0.097 * -13.872% * -12.606 * -0.139 * 

C.I. (95%) (-10.899%,-8.651%)   (-12.995,-11.944)   (-0.108,-0.087)   (-15.156%,-12.803%)   (-13.432,-11.885)   (-0.151,-0.128)   

ARFIMA  -9.591% * -12.144 * -0.096 * -13.123% * -13.216 * -0.131 * 

C.I. (95%) (-10.769%,-8.514%)   (-12.821,-11.662)   (-0.108,-0.085)   (-14.038%,-12.271%)   (-13.934,-12.537)   (-0.140,-0.123)   

RS -10.242% * -12.454 * -0.102 * -14.341% * -12.330 * -0.143 * 

C.I. (95%) (-11.421%,-9.214%)   (-12.990,-12.006)   (-0.115,-0.093)   (-15.784%,-12.998%)   (-13.113,-11.669)   (-0.157,-0.131)   

E.D. -9.615% * -12.327 * -0.096 * -14.320% * -12.172 * -0.143 * 

C.I. (95%) (-10.765%,-8.620%)   (-12.981,-11.794)   (-0.108,-0.086)   (-15.806%,-13.011%)   (-13.168,-11.412)   (-0.158,-0.130)   

HAR  -10.298% * -12.228 * -0.103 * -14.265% * -12.435 * -0.143 * 

C.I. (95%) (-11.456%,-9.059%)   (-12.849,-11.698)   (-0.116,-0.092)   (-15.623%,-12.960%)   (-13.219,-11.804)   (-0.156,-0.130)   

Combination Forecasts 

Schwarz  -10.192% * -12.354 * -0.102 * -14.049% * -12.560 * -0.141 * 

C.I. (95%) (-11.505%,-9.114%)   (-12.952,-11.862)   (-0.114,-0.091)   (-15.237%,-12.921%)   (-13.348,-11.909)   (-0.153,-0.130)   

Equal  -10.197% * -12.362 * -0.102 * -14.041% * -12.553 * -0.140 * 

C.I. (95%) (-11.388%,-9.082%)   (-12.962,-11.912)   (-0.114,-0.092)   (-15.285%,-12.959%)   (-13.344,-11.887)   (-0.152,-0.129)   

Time varying  -9.787% * -12.491 * -0.098 * -14.443% * -12.474 * -0.144 * 

C.I. (95%) (-10.847%,-8.765%)   (-13.020,-12.033)   (-0.109,-0.088)   (-15.905%,-13.230%)   (-13.312,-11.812)   (-0.158,-0.133)   
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Table 4.15: Robustness checks. Trading strategy based on out-of-sample forecasts with transaction cost (cont’d) 

  2005 – 2007 2008 – 2010  

Model Average Daily Return   Sharpe Ratio   Leland's alpha   Average Daily Return   Sharpe Ratio   Leland's alpha   

AR(I)MA  -8.853% * -9.261 * -0.089 * -16.496% * -7.335 * -0.165 * 

C.I. (95%) (-10.461%,-7.182%)   (-10.452,-8.100)   (-0.106,-0.071)   (-20.562%,-13.378%)   (-11.552,-5.936)   (-0.205,-0.134)   

AR(I)MA-

GARCH  -8.597% * -9.516 * -0.086 * -15.392% * -9.827 * -0.154 * 

C.I. (95%) (-10.205%,-6.953%)   (-10.702,-8.308)   (-0.104,-0.069)   (-18.257%,-12.941%)   (-11.398,-8.900)   (-0.181,-0.130)   

ARFIMA  -9.042% * -9.160 * -0.091 * -16.153% * -7.340 * -0.162 * 

C.I. (95%) (-10.958%,-7.341%)   (-10.409,-8.072)   (-0.109,-0.072)   (-19.813%,-13.359%)   (-11.279,-5.957)   (-0.196,-0.132)   

RS  -9.104% * -9.029 * -0.091 * -20.396% * -3.096 * -0.205 * 

C.I. (95%) (-10.840%,-7.226%)   (-10.259,-7.835)   (-0.110,-0.071)   (-30.058%,-13.554%)   (-10.451,-2.614)   (-0.298,-0.137)   

E.D. -9.110% * -9.214 * -0.091 * -17.385% * -6.584 * -0.174 * 

C.I. (95%) (-10.919%,-7.178%)   (-10.445,-8.074)   (-0.109,-0.073)   (-22.255%,-13.677%)   (-11.208,-5.457)   (-0.221,-0.140)   

HAR  -9.096% * -9.017 * -0.091 * -19.937% * -3.036 * -0.200 * 

C.I. (95%) (-10.989%,-7.360%)   (-10.295,-7.833)   (-0.109,-0.072)   (-29.766%,-13.380%)   (-10.803,-2.563)   (-0.300,-0.136)   

Combination Forecasts 

Schwarz  -9.024% * -9.121 * -0.090 * -16.280% * -7.326 * -0.163 * 

C.I. (95%) (-10.816%,-7.087%)   (-10.402,-8.023)   (-0.107,-0.073)   (-20.292%,-13.250%)   (-11.304,-6.039)   (-0.201,-0.131)   

Equal  -9.014% * -9.115 * -0.090 * -16.310% * -7.336 * -0.163 * 

C.I. (95%) (-10.769%,-7.323%)   (-10.345,-8.034)   (-0.108,-0.073)   (-20.000%,-13.168%)   (-11.176,-6.020)   (-0.204,-0.134)   

Time varying  -8.943% * -9.237 * -0.090 * -20.174% * -3.073 * -0.203 * 

C.I. (95%) (-10.712%,-7.179%)   (-10.413,-8.069)   (-0.108,-0.071)   (-30.511%,-13.594%)   (-11.138,-2.591)   (-0.289,-0.137)   
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Table 4.15: Robustness checks. Trading strategy based on out-of-sample forecasts with transaction cost (cont’d) 

 
Average 

 Model 

Average Daily 

Return 

Annualized Sharpe 

Ratio 

Leland's 

alpha 

AR(I)MA  -12.522% -10.327 -0.125 

AR(I)MA-

GARCH  -11.894% -11.096 -0.119 

ARFIMA  -11.977% -10.465 -0.120 

RS -13.521% -9.227 -0.136 

E.D. -12.607% -10.074 -0.126 

HAR  -13.399% -9.179 -0.134 

Combination Forecasts 

Schwarz  -12.386% -10.340 -0.124 

Equal  -12.390% -10.341 -0.124 

Time varying  -13.337% -9.319 -0.134 

Note: The Table reports the average daily return, the annualized Sharpe ratio, and Leland's alpha corresponding to MFIC forecasts. Results are reported for the 

trading strategy without filters. The bootstrapped 95% confidence intervals (C.I.) are reported in parentheses. The results are reported across different forecast 

periods and on average. One asterisk indicates the rejection of the null hypothesis of zero average return, Sharpe Ratio or Leland's alpha at significance level 5%. 
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4.7 Conclusions 

Understanding the dynamics that govern the evolution of correlation is of vital 

importance in asset pricing theory and other financial applications. An extensive dataset 

allows assessing the impact of periods of financial turbulence associated with lower asset 

returns and increased volatility.  

First, this study contributes to the existing literature on the predictability of 

option-implied measures. Specifically, the predictability of the MFIC series is assessed 

under alternative specifications (AR(I)MA, AR(I)MA-GARCH, ARFIMA, Regime 

Switching, Heterogeneous Autoregressive and Economic Determinants models). 

Additionally, combination forecasts with constant and time varying weights have been 

estimated. The forecasting performance has been investigated for constructed out-of-

sample forecasts, both in terms of statistical and economic significance. The Schwartz 

combination forecasting values is found to outperform the competing models, in terms of 

correct magnitude forecast, whereas the equal and Schwartz combination models have the 

greatest predictive power in terms of successful correct direction prediction. When 

compared to the random walk model, used as the benchmark, all models produce better 

forecasting accuracy. Turning to the economic significance of the obtained forecasts, the 

AR(I)MA-GARCH and combination forecasts of implied correlation are successful at 

generating profitable strategies. However, when transaction cost is taken into account, no 

economically significant profits can be attained. The results are robust across different in-

sample windows and forecast periods.  

In conclusion, the existence of predictable patterns in the S&P 100 market, 

supported by statistical measures, cannot be confirmed by the implemented trading 

strategy, and thus, the efficiency of the S&P100 index and stock option market cannot be 

rejected. Results imply that only investors who face zero or limited transaction costs (e.g. 

market makers) can generate abnormal profits by correctly predicting the change in 

MFIC. The elimination in the correlation trading strategy costs can be attributed to the 

simultaneous trading position of the investor to all constituent stocks of the index. 
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  Chapter 5

Realized Hedge Ratio:  

Predictability and Hedging Performance 

Chapter Abstract: In this Chapter, I explore the dynamic properties and 

predictability of the Realized Minimum Variance Hedge Ratio (RMVHR), constructed 

from five-minute spot and future returns of two stock indices and two exchange rates. 

Based on previous findings on the realized beta framework, the distributional properties 

of the RMVHR are compared to realized variance and covariance. The long memory 

traits of the individual series are less pronounced in the realized hedge ratio series 

suggesting that common distribution traits of the realized variance and covariance 

process are neutralized when the realized hedge ratio is deducted. Triggered by the 

findings, I propose the direct modelling of the RMVHR series under a number of 

econometric models and assess the out-of-sample performance with statistical measures 

and economic significance criteria. Results from statistical measures provide evidence of 

predictable dynamics in the evolution of the realized hedge ratio series, thus suggesting 

that the efficient market hypothesis for the spot and futures market of the S&P 100 and 

FTSE 100 indices, as well as for the EUR/USD and GBP/USD foreign exchange rate 

markets is rejected. In terms of risk reduction, the realized hedge ratio forecasts dominate 

conventional methods that use daily data while the benefit is pronounced when economic 

gains are considered. The superior performance of RMVHR methods holds across 

different asset classes but is more conspicuous in the case of stock indices. Finally, 

results remain robust for alternative sampling frequencies and the inclusion of transaction 

costs.  
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5.1 Introduction 

The increased availability of high-frequency data has stimulated the interest of 

practitioners and academics, giving rise to a new area of research in financial modeling 

where multi-dimensional high-frequency data are utilized to estimate, model and forecast 

the second moments of asset returns. Andersen et al. (1998) introduced the notions of 

realized volatility and covariance as model-free estimators of the true latent process, 

computed from intraday return data. ABDL (2001), ABDE (2001) and Barndorff-Nielsen 

& Shephard (2002) proved that, according to the theory of quadratic variation, by 

allowing the sampling frequency to tend to zero, the realized measures are unbiased and 

efficient estimators of the integrated processes, which essentially become observable, 

thus enabling direct estimation. In the forecasting context, Koopman, Jungbacker, and 

Hol (2005) and Blair et al. (2010) amongst others have provided evidence of superior 

informational content of the realized measures when compared to estimators derived 

from daily closing prices.  

Andersen et al. (2006) extended their previous work on realized volatility and 

correlation, and defined realized beta as the ratio of realized covariance between asset 

and market returns to market variance. Under continuous-time stochastic volatility 

diffusion process of the price, the realized beta is a consistent estimator of the true 

integrated beta. Additionally, they advocate that any common persistence trait of the 

covariance and variance processes could be neutralized when forming the beta ratio. In 

addition, the study assesses the comparative predictability of realized beta versus the 

(co)variance predictability and finds that the former is much smaller. Notably, the 

predictability of the short-run beta, modelled through a simple autoregressive process, is 

much higher than the predictability of the long-run beta estimated from an ARFIMA 

specification. 

In a similar context, the Realized Minimum Variance Hedge Ratio (RMVHR, 

hereafter) is defined as the ratio of the realized covariance of futures and spot returns 

divided by the futures realized variance. This study is motivated by the findings of 

Andersen et al. (2006) on the differential distribution properties of the realized 

(co)variance and beta, and the additive value of utilizing intraday information in dynamic 
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hedging. More specifically, I address the question whether forecasting the dynamics of 

the RMVHR per se results in substantial benefit to the hedger in terms of risk reduction 

and economic value while the results are compared with those obtained from 

conventional models that use daily data. The methodology is in contrast to previous 

studies that employ econometric specifications on daily returns to model the variance-

covariance matrix, construct out-of-sample forecasts and ultimately, calculate the hedge 

ratio.  

Only a limited number of studies have examined the information content of 

intraday data in a dynamic hedging context. Lai and Sheu (2008; 2010) use data on the 

S&P 500 index and argue that encompassing realized volatility measures in Generalized 

Conditional Heteroskedasticity (GARCH) models provides substantial benefit to the 

hedger in terms of risk reduction and economic value. Moreover, Yeh, Huang and Hsu 

(2008) provide evidence of superior hedging performance of ARMA(1,1) forecasts of 

realized hedge ratio for the S&P 500 index. Based on intraday data on currency futures, 

Harris, Shen and Stoja (2010) indicate that, when compared to the RMVHR used as 

benchmark, the parametric variance-covariance models based on daily data perform 

poorly in terms of hedging effectiveness. They attribute the low hedging performance of 

the conditional daily models to the low persistence and, hence, the unpredictability of the 

RMVHR. Lastly, McMillan & Garcia (2010) utilize data on the Spanish IBEX 35 Index 

and advocate that the portfolio variance is minimized when the hedge ratio is estimated 

from daily returns while the realized hedge ratio yields superior Sharpe ratio. 

The study in this Chapter makes three contributions to the ongoing discussion 

about the value of employing high-frequency data to the estimation of the hedge ratio. 

First, a thorough evaluation of the time-series characteristics of the realized volatility, 

realized covariance and RMVHR is performed and the differential properties of the 

distributions are assessed. Second, a horse race among alternative model specifications is 

performed and the statistical significance of the predictability of the RMVHR series per 

se is evaluated. Third, I examine the improvement in hedging performance against 

conventional modelling and forecasting techniques. To this end, one-step-ahead forecasts 

of the RMVHR under various econometric processes are generated. Finally, an extensive 
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dataset of equity indices and foreign exchange rates is used and differentiated patterns 

across asset classes are examined.  

Overall, empirical results from alternative time-series specifications provide 

evidence of predictability in the dynamics of  the RMVHR series per se. Statistical 

evaluation criteria suggest that the time-varying weighted combination forecasts and 

forecasts based on the Heterogeneous Autoregressive model (HAR) are the best 

performing forecasts for the stock indices and exchange rates, respectively. In addition, 

alternative econometric specifications predict successfully the directional change of the 

series approximately 70% of the times throughout the out-of-sample period, while results 

do not vary significantly across models.  

Importantly, the direct forecast of the RMVHR series, based on intraday data, 

improves hedging portfolio performance in terms of risk reduction, Sharpe ratio and 

mostly in terms of economic gains. In specific, results from the percentage risk reduction 

metric suggest that, the improvement, when switching from daily to intraday returns, 

ranges within 0.1% and 0.6%. Notably, the hedger’s benefit is substantial when taking 

into account both the average return and the variance of the hedge portfolio. In the 

majority of cases, the use of intraday returns and the direct forecast of the series results in 

substantial improvement of the Sharpe ratio and economic gains. The results hold across 

the different asset classes, although the benefits are lower in the case of exchange rates. 

Lastly, the main results are relatively robust for a range of sampling frequencies and the 

incorporation of transaction cost. 

The remaining Chapter is organized as follows. Section 2 presents the 

methodology for the derivation of the Realized Minimum Variance Hedge Ratio and the 

econometric models employed to forecast the hedge ratio. Section 3 describes the dataset 

used in the study along with the descriptive statistics of realized variance, covariance and 

hedge ratio. Sections 4 and 5 present the in-sample estimation results and the out-of-

sample forecast evaluation under statistical and economic metrics, respectively. At 

Sections 6 and 7, the effect of alternative sampling frequencies and transaction costs to 

the out-of-sample economic significance of employed models is assessed. Section 8 

concludes. 
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5.2 The Realized Minimum Variance Hedge Ratio and the 

Forecasting Models  

Consider an investor with a long (short) position in the spot market. The hedge ratio 

denotes the number of futures contracts that the investor is willing to sell (buy) in order to 

offset the risk deriving from fluctuations of the spot market. The return of the hedged 

portfolio at time t is given by: 

 
, , ,p t s t t f tr r r   (5.1) 

where 
,s tr  and 

,f tr  are the logarithmic returns, from t-1 to t, of the cash position in the 

spot and the futures market, respectively, and t  is the hedge ratio. The optimal hedge 

ratio is obtained by minimizing the variance of the portfolio and equals to: 
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where 
,sf t  and 

,f t  are the spot and futures returns covariance and futures variance, 

respectively, conditional on the information set Ω, available at time t-1.  

The vast majority of previous studies estimate the variance-covariance matrix 

using daily closing prices. Andersen and Bollerslev (1998) show that the Realized 

Volatility (RV), defined as the sum of squared intraday returns, sampled at non-

overlapping intervals of frequency Δ, is a consistent and efficient estimator of the true 

latent volatility. In essence, RV is defined as follows: 
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where i=s,f for the spot and futures returns, respectively and 1/Δ is the number of 

intraday intervals.  

Similarly, the Realized Covariance (RC) can be defined as the cross-product of 

squared intraday returns. 
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Andersen et al. (2006) introduced the notion of realized beta, while Harris, Shen 

and Stoja (2010) defined the Minimum Variance Hedge Ratio as the optimal hedge ratio 

calculated from intraday data. For the purposes of this study, the Realized Minimum 

Variance Hedge Ratio (RMVHR) is defined as follows: 

 
,

,

sf t

t

f t

RC
RMVHR

RV
  (5.5) 

Forecasting Models 

Vast majority of existing literature supports the presence of intraweek and seasonality 

patterns in the dynamics of the return distribution from closing prices. With the main 

purpose of this study laying in the predictability of the daily RMVHR, the impact of such 

regularities on the evolution of the series is assessed. First, I examine the presence of the 

day-of-the week effect through the specification: 
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where y is the RMVHR and Di are the dummy variables corresponding to the five days of 

the week. A dummy variable, Droll, taking a value of 1 at the day the futures series is 

rolled to the next contract and 0 otherwise, is added to the specification to control for the 

possible effects of futures contract rollover.  

Moreover, the so-called month effect is assessed through the statistical 

significance of the obtained parameters from the following regression. 
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where y is the RMVHR and Mi is a dummy variable that equals to 1 for month i, where 

i=1,2,…,12 for each month of the year, and 0 otherwise. Equations 5.6 and 5.7 have been 

augmented with the inclusion of the lagged value of RMVHR to account for the effects of 

autocorrelation. 

Several econometric specifications that capture different traits of the dynamics of 

the series are employed to model the evolution of the series per se. For notation reasons, 
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in paragraphs that follow, the Realized Minimum Variance Hedge Ratio is represented by 

the variable y. 

 

ARMA, ARFIMA and ARMA- GARCH models 

The ARMA and ARFIMA models are employed to investigate the presence of short and 

long memory dynamics of the hedge ratio series, respectively. The following 

ARMA(r,m) model is estimated: 
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where φ and θ are the autoregressive and moving average parameters, respectively. The 

ARFIMA model is an extension of the ARMA model by allowing the integration order to 

take fractional values. The specification of the ARFIMA(r,d,m) model is as follows:  
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where d is the differencing order, L is the backward-shift operator, μ is the expectation of 

yt, and εt is the white noise error term. In the case of 0 < d < 0.5 (-0.5 < d < 0), the process 

is stationary while exhibiting long memory characteristics, with positive (negative) 

dependence.  

Furthermore, the ARMA specification is augmented so as to allow time variation 

in the variance structure of the residuals. The error terms of the resulting ARMA-

GARCH model follow a normal distribution with zero mean and variance 2

th equal to: 
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Regime Switching Model 

In order to capture potential asymmetries in the RMVHR process, a dynamic Regime 

Switching (RS) model is employed. More specifically, the transition between the regimes 

is governed by a Markov chain, two regimes are assumed and the coefficient on the 

lagged dependent variable is allowed to be regime-varying, i.e.  
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The transitions between the regimes st = 1 and st = 2 are given by a Markov chain with 

transition probabilities pij= P(st = j|st-1 = i) for i, j = 1,2. 

 

Heterogeneous Autoregressive Model 

Based on the theory of heterogeneous market hypothesis, Corsi (2009) developed the 

Heterogeneous Autoregressive (HAR) model. The fundamental underlying concept is 

induced by the empirical finding that investors’ investment horizon affect different 

components of the volatility structure. In other words, dealers and market makers trade 

on a notable high intraday frequency, whereas, institutional investors have a longer-term 

investment horizon and rebalance their position less frequently. The HAR model aims to 

gauge persistence through a simple autoregressive representation, which aggregates daily 

(d), weekly (w) and monthly (m) information sets. In an attempt to capture the long run 

dynamics of the RMVHR, the HAR specification is applied as below described.  
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where ( )

1

w

ty 
 and ( )

1

m

ty 
 is the lagged aggregated RMVHR over weekly and monthly 

horizon. 

 

Combination Forecasts 

In addition to the forecasts based on the above-mentioned models, I assess the forecasting 

accuracy of combination forecasts, which in essence, accumulate the information 

provided by individual models. Three alternative methods of combining forecasts are 

applied. The first, and simplest, method of combining is the arithmetic average of the 

forecasts from individual models, E

tf  
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where j

tf , is the forecasted values based on the time-series models described above 

(where j = 1 for ARMA, 2 for ARMA – GARCH, 3 for ARFIMA, 4 for regime switching 
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model and 5 for HAR model). For notation reasons, the superscripts of forecasting 

models are maintained throughout the methods described below. 

Instead of equal weighting across all models, the theory of combination 

forecasting suggests that assigning heavier weight to the best performing models can 

produce better results than the equal counterpart. Following Kolassa (2011), the model 

with the minimum Schwarz criterion is defined as the best performing model, while the 

weights of the other models are determined as below. 
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BIC j kBIC BIC   , BIC(j) is the Schwarz criterion of 

the j
th

 model, and BIC(k) is the minimum Schwarz criterion of model k. 

Both of the methods described above assign constant weights to the alternative 

models throughout the out-of-sample period. As an alternative approach, the weights can 

be time-varying and chosen to minimize the mean forecast error of the following 

regression.  
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The two-step implementation procedure is described thoroughly in Section 4.3.  

 

5.3 Data Description 

The predictability and hedging performance of the RMVHR is empirically assessed for 

two asset classes, namely equity indices and foreign exchange rates. Intraday data for the 

S&P 500 and the FTSE 100 indices as well as the EUR/USD and the GBP/USD foreign 

exchange rates were obtained from Olsen & Associates. Following ABDL (2001) and 

ABDE (2001), who study the distribution of the exchange rate and the stock return 

volatility, the analysis is based on five-minute return series while results from alternative 

sampling frequencies are discussed in Section 6. The sample period spans from January 
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01, 2009 to December 31, 2012. Excluding weekends and holidays, the sample size for 

the S&P 500, the FTSE 100 and the foreign exchange rates is 987, 992 and 982 days, 

respectively. For forecasting purposes, the in-sample estimation period runs from 

1/1/2009 to 30/6/2010 and the out-of-sample forecasting period extends from 1/7/2010 to 

31/12/2012. In the case of combination forecasts, the “new” in-sample period runs from 

1/1/2009 to 30/09/2009 and the “pseudo” out-of-sample period from 1/10/2009 to 

30/06/2010. Continuous futures series are obtained from the nearest-to delivery contract 

and rolled to the next month contract on the 10
th

 day of the delivery month of the current 

contract.  

Following ABDL (2001), several filtering rules are applied. First, weekend and 

holidays observations according to the trading calendar of the each exchange are 

excluded. For FX rates in specific, the weekend period is defined from Friday, 21:05 

GMT until Sunday 21:00 GMT while, in case of holidays, observations from 21:05 GMT 

of the previous day to 21:00 GMT on the same day are excluded. Secondly, series of ten 

zero or constant returns are removed to avoid thin trading effects or possible lapses in the 

Reuter’s data feed that Olsen uses to extract the return series. Finally, quotes of the first 

15 minutes every day are filtered out to remove the open auction effects. The Flash Crash 

day, May 6, 2010, has also been removed from the S&P 500 series.  

Table 5.1 exhibits the descriptive statistics for the realized variance of the spot 

and futures returns along with the realized covariance measured as the cross-product of 

the returns. Notably, the equity markets exhibit higher volatility and covariance 

compared to the foreign exchange rate markets. The distributions are leptokurtic and 

positively skewed while the Jarque-Bera (JB) statistic also suggests that the normality 

assumption is strongly rejected. As manifested by the autocorrelation function (ACF) 

statistic, the serial autocorrelation of the series is high and significant up to the 10
th

 lag, 

displaying high levels of persistency. According to the Augmented Dickey-Fuller (ADF) 

and the Phillips–Perron (PP) test statistics, the null hypothesis of unit root is rejected for 

all series across all assets.  
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Table 5.1: Summary Statistics of the Spot and Futures (Co)Variance 

 S&P 500  FTSE 100  EUR/USD  GBP/USD 

 
Spot 

Variance 

Futures 

Variance 
Covariance  

Spot 

Variance 

Futures 

Variance 
Covariance  

Spot 

Variance 

Futures 

Variance 
Covariance  

Spot 

Variance 

Futures 

Variance 
Covariance 

Mean 0.896   0.928   0.881    0.915   0.987   0.908    0.501   0.511   0.498    0.498   0.504   0.490   

Std. Dev. 1.198   1.263   1.205    0.907   0.961   0.898    0.341   0.344   0.340    0.475   0.486   0.468   

Skewness 3.999   4.289   4.108    2.631   2.584   2.662    2.285   2.266   2.277    3.262   3.383   3.345   

Kurtosis 27.736   33.072   29.731    12.239   11.899   12.600    9.866   9.752   9.819    18.448   19.831   19.503   

JB 2.769 *** 4.015 *** 3.209 ***  0.467 *** 0.438 *** 0.498 ***  0.278 *** 0.271 *** 0.275 ***  1.151 *** 1.346 *** 1.297 *** 

ρ1 -0.111 *** -0.111 *** 0.797 ***  0.004 *** -0.010 *** 0.763 ***  0.001 *** 0.003 *** 0.755 ***  -0.001 *** 0.005 *** 0.848 *** 

ρ10 0.002 *** 0.000 *** 0.499 ***  -0.048 *** -0.054 *** 0.582 ***  -0.011 *** -0.009 *** 0.517 ***  -0.095 *** -0.097 *** 0.695 *** 

ADF -22.266 *** -22.282 *** -4.640 ***  -12.282 *** -31.756 *** -3.969 ***  -6.291 *** -6.266 *** -4.973 ***  -7.490 *** -7.492 *** -6.727 *** 

PP -35.023 *** -35.053 *** -10.432 ***  -31.309 *** -31.759 *** -14.662 ***  -31.257 *** -31.208 *** -13.568 ***  -31.384 *** -31.184 *** -8.628 *** 

Note. The Table reports summary statistics of the daily spot and futures (co)variance, constructed from five-minute intraday returns, for the whole sample period 

of January 1, 2009 to December 31, 2012. It is noted that for obtaining the covariance matrix, the futures returns after the closure of the spot market are dropped. 

The Jarque-Bera (JB) tests for normality and the critical value, at 5% significance level, is 5.99. The values ρ1 and ρ10 are the autocorrelation function (ACF) 

coefficients for the 1
st
 and the 10

th
 lag. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) test for the presence of unit root. One, two and three 

asterisks denote rejection of the null hypothesis at 10%, 5% and 1%, respectively. The mean and standard deviation have been scaled by 10
4 

and the Jarque-Bera 

statistic by 10
-4

. 
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Table 5.2 displays the descriptive statistics of the RMVHR while Figure 5.1 plots 

the series over the whole sample period. On average, the RMVHR for the equity indices 

are smaller in absolute values while displaying greater volatility compared to the 

RMVHR of FX rates. The distributions are negatively skewed while the normality 

assumption is strongly rejected in all cases. The Phillips-Perron and the ADF test of 

stationarity indicate that the unit-root hypothesis is strongly rejected. Furthermore, the 

ACF values suggest that autocorrelation is present in the RMVHR series, although the 

values obtained are significantly lower and decay faster than the corresponding values for 

the covariance of the series. Moreover, an ARFIMA(p,d,q) model is employed so as to 

test for the presence of long memory in the series. The estimated fractional differential 

parameter d is in the range of [0.38, 0.47] for realized variances and covariances (with the 

exception of GBP/USD) and in the range of [0, 0.32] for realized hedge ratio. Results are 

in accordance with the findings of Andersen et al. (2006), suggesting lower persistence 

and lower degree of fractional integration for the ratio series. 

Table 5.2: Summary Statistics of Realized Minimum Variance Hedge Ratio 

(RMVHR) 

 S&P 500 FTSE 100 EUR/USD GBP/USD 

Mean 0.934   0.914   0.969   0.972   

Std. Dev. 0.058   0.058   0.024   0.020   

Skewness -3.232   -2.673   -2.623   -0.956   

Kurtosis 31.737   25.048   16.049   5.880   

JB 3.563 *** 2.127 *** 0.809 *** 0.049 *** 

ρ1 0.171 *** 0.126 *** 0.414 *** 0.282 *** 

ρ10 0.148 *** 0.008 *** 0.332 *** 0.140 *** 

ADF -4.280 *** -4.280 *** -4.280 *** -4.280 *** 

PP -30.044 *** -30.044 *** -30.044 *** -30.044 *** 

Note. The Table reports the summary statistics for the RMVHR, for the whole sample period of January 1, 

2009 to December 31, 2012. The Jarque-Bera (JB) tests for normality and the critical value, at 5% 

significance level, is 5.99. The values ρ1 and ρ10 are the autocorrelation function (ACF) coefficients for 

the 1st and the 10th lag. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) test for the 

presence of unit root. One, two and three asterisks denote rejection of the null hypothesis at 10%, 5% and 

1%, respectively. The Jarque-Bera statistic has been scaled by 10
-4

. 
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Figure 5.1: Time Evolution of Realized Minimum Variance Hedge Ratio for the 

S&P 500 and the FTSE 100 Indices, the EUR/USD and the GBP/USD FX Rates  
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5.4 In-Sample Estimation Results 

Table 5.3 reports the estimated in-sample model parameters for the ARMA, ARMA-

GARCH, and ARFIMA models, employed on the RMVHR, for the two stock indices and 

the two foreign exchange rates. Table 5.4 and 5.5 report the estimated in-sample model 

parameters for the regime switching and the HAR model, respectively. All tables also 

report a number of goodness-of-fit tests, namely the log-likelihood value, the adjusted R
2 

and the Schwarz criterion. The forecasting models have been augmented with the 

significant dummy variables from the seasonality tests discussed in Section 2, e.g. M3 and 

M10 take a value of 1 in March and October, respectively, and 0 otherwise. The rollover 

dummy (Roll D) takes the value of 1 on a futures rollover day, and 0 otherwise. One, two 

and three asterisks denote rejection of the null hypothesis at 10%, 5% and 1%, 

respectively. Where applicable, the models have been estimated for all plausible 

combinations of autoregressive and moving average order terms up to the fifth lag and 

finally, the number of lags is selected based on the minimum Schwartz criterion. 

A noteworthy result in Table 5.3 is the value of the fractional differential 

parameter d in the ARFIMA specification being significantly different from zero and 

within the range of (0,0.5) in all series, except the S&P 500 index, thus indicating that 

realized hedge ratio is stationary while exhibiting long memory and positive dependence 

between distant observations.  

The regime switching model attains the maximum log-likelihood value for all 

assets, except GBP/USD, and the lowest Schwartz criterion for the FTSE 100 index and 

the EUR/USD. The ARMA-GARCH and ARMA models produce the lowest Schwartz 

criterion for S&P 500 and GBP/USD realized hedge ratio series, respectively. The 

ARMA specification attains the highest adjusted R
2
 for both stock indices and GBP/USD.  
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Table 5.3: In-Sample Evidence from the ARMA, ARMA-GARCH and ARFIMA   Models 

 ARMA  ARMA - GARCH  ARFIMA 

 S&P 500 FTSE 100 EUR/USD GBP/USD  S&P 500 FTSE 100 EUR/USD GBP/USD  S&P 500 FTSE 100 EUR/USD GBP/USD 

c 0.955 *** 0.902 *** 0.977 *** 1.001 *** 

 

0.959 *** 0.913 *** 0.977 *** 0.990 *** 

 

0.956 *** 0.899 *** 0.978 *** 0.957 *** 

φ1 -0.126 
 

-0.075 
   

1.313 *** 

 
  

0.981 *** 
  

0.994 *** 

 

-0.114 
     

1.000 *** 

φ2 -0.770 *** -0.036 
   

-0.314 *** 

 
        

 
        

φ3 -0.449 ** 0.927 *** 
    

 
    

0.125 *** 
  

 
        

θ1 0.103 
 

0.168 *** 0.060 
 

-1.168 *** 

 

0.064 
 

-0.944 *** 
  

-0.825 *** 

 
  

-0.082 
 

-0.078 
 

-0.970 *** 

θ2 0.935 *** 0.125 ** 
  

0.153 *** 

 
      

-0.149 *** 

 
        

θ3 0.465 
 

-0.932 *** 
    

 
        

 
        

θ4 0.091 
       

 
        

 
        

θ5 -0.036 
       

 
        

 
        

d 
        

 
        

 

0.099 
 

0.157 *** 0.126 ** 0.109 *** 

b0         
 

0.000 *** 0.000 
 

0.000 ** 0.000 *** 

 
        

b1         
 

0.050 *** -0.022 *** -0.027 *** -0.026 *** 

 
        

c1         
 

1.941 *** 1.020 *** 1.024 *** 
  

 
        

c2         
 

-2.053 *** 
      

 
        

c3         
 

1.783 *** 
      

 
        

c4         
 

-0.738 *** 
      

 
        

M3     
-0.002 

   
 

    
-0.003 

   
 

    
-0.002 

   
M4     

-0.007 *** 
  

 
    

-0.010 *** 
  

 
    

-0.008 ** 
  

M6     
-0.003 

   
 

    
-0.004 ** 

  
 

    
-0.005 ** 

  
M7     

-0.008 *** 
  

 
    

-0.010 *** 
  

 
    

-0.009 *** 
  

M8     
-0.007 

   
 

    
-0.007 *** 

  
 

    
-0.006 

   
M10     

-0.002 
   

 
    

-0.003 
   

 
    

-0.002 
   

M12 -0.059 *** 
  

-0.012 ** 
  

 

-0.080 *** 
  

-0.005 
   

 

-0.057 *** 
  

-0.013 *** 
  

Mon 
    

-0.002 
   

 
    

0.000 *** 
  

 
    

-0.003 
   

Tue 
  

0.018 ** 
    

 
  

0.021 *** 
    

 
  

0.025 *** 
    

Wed 
  

0.025 *** 
    

 
  

0.027 *** 
    

 
  

0.030 *** 
    

Thu 
  

0.013 
     

 
  

0.026 *** 
    

 
  

0.030 *** 
    

Roll D  -0.064 
       

 

0.030 *** 
      

 

-0.069 
       

Adj.R
2
 0.230 

 
0.140 

 
0.025 

 
0.294 

 
 

0.083 
 

0.048 
 

0.008 
 

0.274 
 

 

0.136 
 

0.057 
 

0.046 
 

0.248 
 

LL 678.971 
 

525.441 
 

957.697 
 

967.339 
 

 

685.337 
 

557.137 
 

990.653 
 

966.147 
 

 

667.206 
 

515.414 
 

973.248 
 

969.627 
 

BIC -3.552 
 

-2.688 
 

-5.114 
 

-5.249 
 

 

-3.620 
 

-2.876 
 

-5.247 
 

-5.226 
 

 

-3.520 
 

-2.645 
 

-5.097 
 

-5.189 
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The reported mean coefficients of the regime switching model in Table 5.4 

indicate that the realized hedge ratio is higher in regime 1 than in regime 2. In the case of 

FTSE 100 series, the maximum difference between the mean coefficients in the two 

regimes reaches 0.4. For all assets, the estimates of the transition probabilities imply that 

there is high persistence in the first regime and low persistence in the second regime. The 

estimated coefficients from the Heterogeneous Autoregressive (HAR) model reported in  

Table 5.5, are not significant in almost all cases (except for the GBP/USD 

realized hedge ratio series), suggesting a poor in-sample performance of the specific 

model.  

Table 5.4: In-Sample Evidence from the Regime Switching Model 

 S&P 500 FTSE 100 EUR/USD GBP/USD 

Regime 1 
        

C 0.958 *** 0.909 *** 0.979 *** 0.974 *** 

φ1 0.054 
 

0.184 *** 0.108 *** 0.350 *** 

φ2       
0.199 *** 

Regime 2 
        

C 0.824 *** 0.513 *** 0.940 *** 0.923 *** 

φ1 -0.229 
 

0.880 
 

-2.865 *** 0.709 
 

φ2       
-0.380 

 
Common 

        
M3     

-0.003 
   

M4     
-0.009 *** 

  
M6     

-0.005 ** 
  

M7     
-0.010 *** 

  
M8     

-0.008 *** 
  

M10     
-0.003 

   
M12 -0.028 *** 

  
-0.012 *** 

  
Mon     -0.001    

Tue 
  

0.015 *** 
    

Wed 
  

0.019 *** 
    

Thu 
  

0.019 *** 
    

Roll D  -0.051 *** 
      

Log(Sigma) -3.389 *** -3.079 *** -4.266 *** -4.140 *** 

Transition Matrix Parameters 

P11-C 3.703 *** 4.515 *** 4.344 *** -3.532 *** 

P21-C 1.505 ** 8.682   1.307   -7.530 *** 

Adj.R
2
 0.131 

 
0.049 

 
0.028 

 
0.242 

 
LL 687.376 

 
597.207 

 
1025.185 

 
960.603 

 
BIC -3.591 

 
-3.043 

 
-5.345 

 
-5.104 

 
 

Table 5.5: In-Sample Evidence from the HAR Model 
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 S&P 500 FTSE 100 EUR/USD GBP/USD 

0
   0.802 *** 0.495 *** 0.023 

 
0.149 ** 

( )d
   -0.014 

 
0.045 

 
0.066 

 
0.179 *** 

( )w
   0.046 

 
0.116 

 
0.352 

 
-0.033 

 

( )m
   0.131 

 
0.299 

   
0.702 *** 

M3     
-0.004 

   
M4     

-0.005 ** 
  

M6     
-0.005 

   
M7     

-0.004 ** 
  

M8     
-0.006 

   
M10     

0.000 
   

M12 -0.062 *** 
  

-0.011 
   

Mon 
    

-0.002 
   

Tue 
  

0.011 ** 
    

Wed 
  

0.009 
     

Thu     -0.026 **         

Roll D  -0.032 ** 
      

Adj.R
2
 0.131 

 
0.049 

 
0.028 

 
0.242 

 
LL 617.584 

 
476.255 

 
906.792 

 
913.734 

 
BIC -3.468 

 
-2.597 

 
-5.054 

 
-5.229 

 
 

5.5 Out-Of-Sample Estimation Results  

In this Section, I present the out-of-sample forecast evaluation results for the models 

described in Section 2, in terms of statistical and economic significance. Each of the 

competing models is estimated using a rolling window of observations (starting with the 

in-sample period from 01/01/2009 to 30/06/2009) and one-day-ahead forecasts of the 

hedge ratio for the out-of-sample period are generated. At each iteration, the specification 

chosen for each model is maintained but the model parameters are re-estimated. 

Combination forecasts with time-varying weights have been formulated under 

four alternative approaches described at Section 4.3. Across all assets, the obtained 

forecasts from equation (15), estimated with a constant term and under the restriction of 

positive weights to sum to unity (namely method D), are found to minimize the RMSE 

and are, thereafter, chosen to compete with the other specifications. For the rest of the 
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Chapter, the results and the forecasting performance of the weighted combination 

forecast from method D will be referred as the time-varying combination forecast.  

 

55..55..11  Statistical Evaluation 

An out-of-sample statistical evaluation of the ARMA, ARMA-GARCH, ARFIMA, 

regime switching, HAR and combination forecast models is presented in Table 5.6. The 

statistical evaluation criteria used to assess the correct magnitude prediction of the 

models are the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and 

the McCracken test for equal RMSE in nested models. The results from the random walk 

model are reported in the last column for comparison purposes. In terms of the RMSE, 

the best performing model is the time-varying combination forecast for the two stock 

indices and the HAR model for the two exchange rates. For the S&P 500 index and the 

two exchange rates, the lowest MAE is attained by the HAR forecast while, for the FTSE 

100 index, by the time-varying combination forecast. I further evaluate the predictability 

of the RMVHR series by comparing the forecasting accuracy of each model to the 

benchmark model of random walk. To this end, and taking into consideration that all 

abovementioned models nest the random walk, the McCracken (2007) test is employed 

(analysis of the test is provided in Section 4.5.1). The estimated McCracken test statistics 

suggest that all models produce smaller forecasting errors compared to the random walk. 

The rejection of the null hypothesis of equal forecasting accuracy for all models across all 

assets suggests the existence of predictable patterns in the evolution of the RMVHR 

series.  

Next, all the forecasts obtained from the alternative models are jointly compared 

against the forecasted values obtained from the random walk model. To this end, the test 

proposed by White (2000) test is used. Let j

tf  indicate loss function, defined as 

0[ ( ) ( )]j

t t jtf g e g e  , where ( )jtg e  is the loss function, RMSE, of obtained forecasts 

from the j
th

 model described in Section 2, and 0( )tg e  is the loss function for the 

benchmark model of random walk. Under the null hypothesis, no model exhibits superior 
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forecasting performance over the benchmark model. The White test-statistic is then 

defined as: 

  
1

2

1,...,

max j

t

j n

V T f



  (5.16) 

where 
1

1T
j j

t t

t

f f
T

 and j=1,…,n are the competing forecasting models. Following the 

implementation procedure described thoroughly in White (2000), the obtained p-values 

for the S&P 500, the FTSE 100 and the GBP/USD are zero while for the EUR/USD is 

equal to 0.088, suggesting that the forecasting ability of the benchmark model of random 

walk is inferior to any other model employed. 

The correct prediction of the directional change of the RMVHR is of crucial 

importance for the asset allocation decision and the adjustment of the existing position of 

an investor. To this end, the directional forecasting accuracy of the employed models is 

examined using the Mean Correct Prediction (MCP) measure and market-timing test (PT 

test) suggested by Timmerman and Pesaran (1992), analyzed explicitly in Section 4.5.1. 

The results of the PT test, reported in Table 5.6, suggest that the null hypothesis is 

rejected in almost all cases, i.e. there is a predictable pattern in the direction of changes in 

the realized hedge ratio series for all assets.  

To complete the statistical evaluation of the competing models a pairwise 

comparison based on the Modified Diebold-Mariano test is conducted. In specific, the 

null hypothesis of equal forecasting accuracy is compared against the alternative that the 

forecasts from model i performs better than model j forecasts. Further description of the 

test statistic is provided in Section 4.5.1. Table 5.7 reports the t-statistics for the null 

hypothesis that, in terms of RMSE, the model in row i performs equally well with model 

in column j against the alternative that the model in rows i outperforms the model in 

column j. In most of the cases combination forecasts outperform ARMA, ARFIMA and 

Regime Switching models. Interestingly, in almost all cases, all models outperform the 

Regime Switching model while none of the models outperforms the time-varying 

combination forecast. 
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Table 5.6: Evaluation of the Out-Of-Sample Performance: Statistical Measures 

 ARMA 

ARMA- 

GARCH ARFIMA RS HAR Equal Schwarz Time-varying 

Random 

Walk 

S&P 500 

                 MAE 4.321% 

 

4.236% 

 

4.175% 

 

4.424% 

 
4.143% 

 

4.149% 

 

4.150% 

 

4.146% 

 

5.567% 

RMSE 6.428% 

 

6.374% 

 

6.474% 

 

7.184% 

 

6.312% 

 

6.348% 

 

6.351% 

 
6.233% 

 

8.409% 

MCP 70.665% 

 

71.475% 

 

72.609% 

 

71.961% 

 

72.447% 

 

72.771% 

 
73.420% 

 

72.771% 

  McCracken test 439.596% *** 457.446% *** 424.495% *** 228.573% *** 478.669% *** 466.487% *** 465.432% *** 506.801% *** 

 PT test -1.730% * -2.794% *** -3.102% *** 5.040% *** -7.044% *** -3.025% *** -2.785% *** -3.102% *** 

 FTSE 100 

                 MAE 3.664% 

 

3.671% 

 

3.812% 

 

4.050% 

 

3.585% 

 

3.650% 

 

3.657% 

 
3.556% 

 

4.604% 

RMSE 5.460% 

 

5.428% 

 

5.506% 

 

5.811% 

 

5.416% 

 

5.395% 

 

5.401% 

 
5.383% 

 

7.105% 

MCP 69.692% 

 

68.882% 

 

69.206% 

 

68.071% 

 

68.071% 

 

68.395% 

 

69.044% 

 

68.558% 

  McCracken test 428.632% *** 441.012% *** 411.280% *** 305.949% *** 445.884% *** 453.819% *** 451.615% *** 458.866% *** 

 PT test -0.921% 

 

-2.044% ** -6.159% *** 6.081% *** -6.157% *** -2.450% ** -1.964% ** -3.500% *** 

 EUR/USD 

                 MAE 1.595% 

 

1.689% 

 

1.625% 

 

1.812% 

 
1.564% 

 

1.567% 

 

1.573% 

 

1.566% 

 

1.963% 

RMSE 2.495% 

 

2.669% 

 

2.434% 

 

3.179% 

 
2.254% 

 

2.407% 

 

2.422% 

 

2.327% 

 

2.800% 

MCP 71.289% 

 

70.962% 

 

70.636% 

 

71.941% 

 

71.452% 

 

72.431% 

 

71.778% 

 
72.594% 

  McCracken test 159.643% *** 61.758% *** 198.573% *** -137.478% *** 333.599% *** 217.048% *** 206.764% *** 275.409% *** 

 PT test -3.774% *** -4.216% *** -5.740% *** 3.289% *** -7.341% *** -3.552% *** -3.705% *** -5.263% *** 

 GBP/USD 

                 MAE 1.472% 

 

1.454% 

 

1.472% 

 

1.563% 

 
1.448% 

 

1.450% 

 

1.450% 

 

1.469% 

 

1.897% 

RMSE 1.986% 

 

1.967% 

 

1.972% 

 

2.127% 

 
1.955% 

 

1.969% 

 

1.969% 

 

1.968% 

 

2.489% 

MCP 71.452% 

 

71.615% 

 

71.778% 

 
73.246% 

 

71.941% 

 

71.452% 

 

72.920% 

 

71.452% 

  McCracken test 350.789% *** 369.546% *** 364.575% *** 226.905% *** 381.013% *** 367.098% *** 367.670% *** 368.489% *** 

 PT test -4.644% *** -5.937% *** -6.101% *** 6.907% *** -7.067% *** -5.129% *** -5.209% *** -5.694% *** 

 
Note. The Table reports the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE) and the Mean Correct Prediction (MCP) in percentage terms for 

all econometric specifications. The out-of-sample window extends from July 1, 2010 to December 31, 2012. The McCracken statistic for the RMSE tests for the 

null hypothesis that the model produces equal forecasting accuracy with the random walk model against the alternative of a better forecasting accuracy of the 

model. The critical values of the test are provided in McCracken (2007). Under the null hypothesis of the PT test, the actual and forecasted values are 

independent. Bold values indicate the best performing model for each asset and each criterion. One, two and three asterisks indicate rejection of the null 

hypothesis at 10%, 5% and 1% significance level, respectively. 
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Table 5.7: Pairwise Modified Diebold-Mariano Tests 

 

S&P 500 ARMA 

 

ARMA-

GARCH 

 

ARFIMA 

 

RS 

 

HAR 

 

Equal 

 

Schwarz 

 

Time-

varying 

ARMA 

  

0.954 

 

-0.286 

 

-1.076 

 

0.803 

 

0.702 

 

0.672 

 

1.994 

ARMA-GARCH -0.954 

   

-0.681 

 

-1.169 

 

0.486 

 

0.295 

 

0.259 

 

1.652 

ARFIMA 0.286 

 

0.681 

   

-1.014 

 

1.846 

 

1.098 

 

1.053 

 

2.245 

RS 1.076 

 

1.169 

 

1.014 

   

1.212 

 

1.319 

 

1.318 

 

1.338 

HAR -0.803 

 

-0.486 

 

-1.846 ** -1.212 

   

-0.315 

 

-0.336 

 

0.924 

Equal -0.702 

 

-0.295 

 

-1.098 

 

-1.319 * 0.315 

   

-1.235 

 

1.291 

Schwarz -0.672 

 

-0.259 

 

-1.053 

 

-1.318 * 0.336 

 

1.235 

   

1.299 

Time-varying -1.994 ** -1.652 ** -2.245 ** -1.338 * -0.924 

 

-1.291 * -1.299 * 

 

FTSE 100 ARMA 

 

ARMA-

GARCH 

 

ARFIMA 

 

RS  

 

HAR 

 

Equal 

 

Schwarz 

 

Time-

varying 

ARMA 

  

0.735 

 

-0.766 

 

-3.489 *** 0.785 

 

1.620 

 

1.437 

 

1.786 

ARMA-GARCH -0.735 

   

-1.455 * -4.202 *** 0.273 

 

1.144 

 

0.927 

 

1.187 

ARFIMA 0.766 

 

1.455 

   

-2.754 *** 1.841 

 

2.438 

 

2.209 

 

2.513 

RS 3.489 

 

4.202 

 

2.754 

   

4.208 

 

5.228 

 

5.326 

 

4.204 

HAR -0.785 

 

-0.273 

 

-1.841 ** -4.208 *** 

  

0.622 

 

0.429 

 

0.933 

Equal -1.620 * -1.144 

 

-2.438 *** -5.228 *** -0.622 

   

-1.922 ** 0.363 

Schwarz -1.437 * -0.927 

 

-2.209 ** -5.326 *** -0.429 

 

1.922 

   

0.496 

Time-varying -1.786 ** -1.187 

 

-2.513 *** -4.204 *** -0.933 

 

-0.363 

 

-0.496 

  

EUR/USD ARMA 

 

ARMA-

GARCH 

 

ARFIMA 

 

RS  

 

HAR 

 

Equal 

 

Schwarz 

 

Time-

varying 

ARMA 

  

-4.703 *** 0.836 

 

-2.489 *** 2.134 

 

2.392 

 

2.016 

 

1.496 

ARMA-GARCH 4.703 

   

2.843 

 

-1.962 ** 3.089 

 

5.059 

 

4.991 

 

2.624 

ARFIMA -0.836 

 

-2.843 *** 

  

-2.580 *** 2.146 

 

0.568 

 

0.243 

 

1.159 

RS 2.489 

 

1.962 

 

2.580 

   

2.943 

 

2.811 

 

2.789 

 

3.216 

HAR -2.134 ** -3.089 *** -2.146 ** -2.943 *** 

  

-1.599 * -1.708 ** -1.032 

Equal -2.392 *** -5.059 *** -0.568 

 

-2.811 *** 1.599 

   

-3.926 *** 0.832 

Schwarz -2.016 ** -4.991 *** -0.243 

 

-2.789 *** 1.708 

 

3.926 

   

0.976 

Time-varying -1.496 * -2.624 *** -1.159 

 

-3.216 *** 1.032 

 

-0.832 

 

-0.976 

  

GBP/USD ARMA 

 

ARMA-

GARCH 

 

ARFIMA 

 

RS  

 

HAR 

 

Equal 

 

Schwarz 

 

Time-

varying 

ARMA 

  

2.291 

 

1.155 

 

-4.190 *** 2.484 

 

1.890 

 

2.004 

 

1.386 

ARMA-GARCH -2.291 ** 

  

-0.449 

 

-4.671 *** 1.154 

 

-0.300 

 

-0.237 

 

-0.107 

ARFIMA -1.155 

 

0.449 

   

-4.222 *** 1.812 

 

0.230 

 

0.288 

 

0.362 

RS 4.190 

 

4.671 

 

4.222 

   

4.749 

 

5.573 

 

5.535 

 

4.146 

HAR -2.484 *** -1.154 

 

-1.812 ** -4.749 *** 

  

-1.352 * -1.328 * -1.113 

Equal -1.890 ** 0.300 

 

-0.230 

 

-5.573 *** 1.352 

   

1.775 

 

0.105 

Schwarz -2.004 ** 0.237 

 

-0.288 

 

-5.535 *** 1.328 

 

-1.775 ** 

  

0.063 

Time-varying -1.386 * 0.107 

 

-0.362 

 

-4.146 *** 1.113 

 

-0.105 

 

-0.063 

  
Note: The Table presents the test statistics for the Modified Diebold-Mariano test. The null hypothesis that 

the model in rows performs equally well with the model in columns is tested against the alternative of a 

better forecasting accuracy of the model in rows. One, two and three asterisks indicate rejection of the null 

hypothesis at 10%, 5% and 1% significance level, respectively. 
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55..55..22  Economic Evaluation 

Having established the existence of predictability in the evolution of the RMVHR series 

through the means of statistical measures, I now turn to evaluate the forecasting 

performance of the competing models in economic terms. For each day of the out-of-

sample period, the investor rebalances the position according to the forecasted hedge 

ratio. The realized variance of the constructed portfolios,
2

,p t , is based on the intraday 

data so as to be directly related with the realized hedge ratio methodology (similar to Lai 

& Sheu, 2008; Sheu & Lai, 2013), thus defined as follows:  

 2 2 2 2

, , , ,
ˆ ˆ2p t s t t sf t t f t         (5.17) 

where 2

s , 
2

f  and sf  are the sum and the cross product of squared intraday five 

minutes returns, respectively, and ˆ
t  is the forecasted value of the RMVHR at time t with 

the information set of t-1. 

For comparison purposes, I also evaluate the performance of hedge ratios derived 

by models that use daily returns, namely the naïve hedge ratio equal to 1, the static and 

the rolling OLS method, the Error Correction Model and the Dynamic Conditional 

Correlation (DCC) GARCH model. For the rest of the Chapter, the hedge ratios derived 

from the above-mentioned models will be referred as conventional hedge ratios.  

The widely used for the estimation of hedge ratio Error Correction Model (ECM) 

takes into account the cointegrating relationship of the spot and futures prices. Following 

Juhl et al. (2012), the standard ECM approach is augmented with a lagged error 

correction term ( 1, 1t  ) along and lagged values of both spot, ,s tr , and futures, ,f tr , returns,
 

where the number of lags is selected to minimize the Schwartz criterion. In specific, 

 , 0 1 1, 1 , , ,

1 1

I J

s t t ECM f t i f t i j s t j t

i j

r b r r r       

 

        (5.18) 

Furthermore, the DCC-GARCH(1,1) specification is defined as follows:  
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 (5.19) 

while the conditional variance Ht is equal to  

 

1/2 1/2
, , ,, ,

1/2 1/2
, , ,, ,

10 0

10 0

s t sf t sf ts t s t

t t t t

sf t f t sf tf t f t

h h qh h
H D R D

h h qh h

      
             
      

  

where Dt is the diagonal matrix of time-varying standard deviations from univariate 

GARCH processes and Rt is the conditional correlation matrix of the standardized 

disturbances εt. The correlation structure is identical to a univariate GARCH model with 

the following dynamics: 

 1 1 1(1 )t t t t        
      (5.20) 

where   is the unconditional correlation of the spot and the futures returns and α and β 

are scalars with α+β<1. 

The hedging effectiveness of each method is assessed by the percentage of risk 

reduction attained by the hedged portfolio compared to the unhedged portfolio and is 

defined as follows: 

 

2

,

2

,

1
UP t

HP t

HE



   (5.21) 

where 
2

,UP t  is the realized variance of the unhedged portfolio, i.e. the variance of the spot 

position, and 
2

,HP t  is the realized variance of the hedged portfolio returns. 

Results, reported in Table 5.8, indicate that, in terms of hedging effectiveness, the 

time-varying combination and the HAR forecast of the RMVHR achieve the highest 

improvement compared to the unhedged positions for the two stock indices and the two 

currencies, respectively. Overall, the hedging models based on intraday returns attain a 

higher risk reduction compared to the hedging models based on daily data. The 
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improvement is within the range of 0.1% and 0.6% and is higher in the case of stock 

indices than foreign exchange rates. 

The performance of the competing models is further evaluated in terms of the 

Sharpe ratio, the Value-at-Risk (VaR) and the Expected Shortfall (ES). The Sharpe ratio 

is a typical measure of portfolio performance evaluation expressing the average return per 

unit of risk. The maximum Sharpe ratio is attained by the HAR model for the S&P 500, 

the ARFIMA model for the FTSE 100, the ARMA-GARCH for the EUR/USD and the 

regime switching model for the GBP/USD. Coinciding with results from the hedge 

effectiveness criterion, the comparative improvement of the RMVHR models, in term of 

the Sharpe ratio, is more pronounced in the case of the stock indices. The highest Sharpe 

ratio for the conventional hedge ratios is achieved by the DCC model for the two stock 

indices, being approximately equal to 0.25%, while the highest Sharpe ratio achieved by 

the realized hedge ratio models is significantly higher and reaches 1.3%.  

Value-at-Risk (VaR) is defined as the portfolio loss over a specific time horizon 

that is not expected to be exceeded with probability α and is calculated as 

1

, 1( ) ( ; )p tVaR F r 

   where F
-1

 is the inverse of the empirical cumulative distribution 

function of portfolio returns. The standard normality assumption is adopted and the 

variance-covariance method is used to compute VaR. An alternative risk measure that 

satisfies the axiom of a coherent risk measure is Expected Shortfall (ES). The ES 

measures the expected loss given that the portfolio returns have exceeded the α
th

 

empirical percentile i.e. 
1

, 1 , 1( ) ( | ( ))p t p tES F r r VaR 

    7
. Results indicate that 

modeling directly the RMVHR outperforms conventional daily-return based methods in 

managing portfolio risk. In addition, the HAR model and the time-varying combination 

forecasts of realized hedge ratio are the best performing models that minimize the VaR 

and ES. 

                                                 
7
 Table 5.8 reports the VaR and ES for 95% confidence level. For 99% confidence level, 

the empirical findings remained unchanged. 
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To explore further the economic significance of the results, the forecasting models 

are compared in terms of a mean-variance utility function. I assume that an investor faces 

the mean-variance expected utility function, 

 
, 1 1, , 1 1 , 1 1

ˆ ˆ;  ;  –) ;( ( ) ( )p t t p t t p t tEU r E r Var r          (5.22) 

where rp,t+1 is the portfolio return and γ is the degree of risk aversion. Based on the 

relative literature (Sheu & Lai, 2013; Park & Switzer, 1995), different levels of risk 

aversion, γ=1,3,4,7,10,15,20 are considered. Results are similar for the different levels of 

risk aversion, thus, for brevity, Table 5.8 reports the average utility levels only for γ=3. 

First, in almost all cases (except from the regime switching model for S&P 500 and 

EUR/USD) the models based on intraday returns substantially outperform the 

conventional models based on daily returns. Moreover, the net utility benefit from 

hedging with the best model based on intraday returns compared to the best model based 

on daily returns ranges from 0.002 to 0.84. These results are in line with empirical 

evidence of Sheu and Lai (2013) and Lai and Sheu (2010); thus supporting and enhancing 

the findings that exploiting intraday price information can increase hedging performance 

and utility gains. Results are similar across different degrees of risk aversion implying 

that the gains from forecasting directly the realized hedge ratio do not differentiate across 

hedgers with different risk aversions. Moreover, there is no single winner across assets; 

however, one notable finding is that combination forecasts are always outperformed by at 

least one of the other models employed to the RMVHR series. For the two stock indices 

and the GBP/USD foreign exchange rate, the best realized hedge ratio forecast attain 

positive economic gains, whereas the economic gains of the daily return based methods 

are negative for all models and assets. To conclude, empirical evidence indicate that 

forecasting directly the realized hedge ratio based on intraday data improves hedging 

portfolio performance in terms of risk reduction, managing portfolio risk, Sharpe ratio 

and markedly, in terms of economic gains. 
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Table 5.8. Out-Of-Sample Hedging Performance Net of Transaction Costs: Economic Evaluation 

 Conventional Hedge Ratio  RMVHR 

 
Naïve 

Static 

OLS 

Rolling 

OLS 
ECM DCC  ARMA 

ARMA- 

GARCH 
ARFIMA RS HAR Equal Schwarz 

Time-

varying 

S&P 500 

     

 

        HE  89.923% 89.955% 89.955% 89.933% 89.912%  90.313% 90.327% 90.334% 90.240% 90.334% 90.332% 90.331% 90.334% 

Sharpe Ratio -0.064% -0.011% -0.021% -0.026% 0.244%  0.992% 0.843% 1.209% 0.087% 1.337% 0.894% 0.886% 0.983% 

VaR  0.372% 0.372% 0.371% 0.372% 0.372%  0.365% 0.365% 0.365% 0.366% 0.365% 0.365% 0.365% 0.365% 

ES  0.467% 0.466% 0.466% 0.466% 0.467%  0.458% 0.458% 0.457% 0.459% 0.457% 0.457% 0.457% 0.457% 

Expected Utility -0.201% -0.187% -0.190% -0.191% -0.124%  0.064% 0.028% 0.117% -0.158% 0.148% 0.040% 0.038% 0.062% 

FTSE 100 
     

 
        

HE  90.220% 90.650% 90.480% 90.497% 90.307%  90.988% 90.992% 90.970% 90.953% 90.992% 90.993% 90.993% 90.994% 

Sharpe Ratio -0.084% 0.262% 0.298% 0.211% 0.249%  0.727% 0.843% 1.155% 0.822% 0.899% 0.890% 0.885% 0.900% 

VaR  0.361% 0.352% 0.354% 0.355% 0.360%  0.346% 0.346% 0.346% 0.347% 0.345% 0.346% 0.346% 0.345% 

ES  0.453% 0.441% 0.444% 0.445% 0.451%  0.434% 0.433% 0.434% 0.435% 0.433% 0.433% 0.433% 0.433% 

Expected Utility -0.216% -0.121% -0.115% -0.137% -0.130%  -0.002% 0.027% 0.103% 0.021% 0.040% 0.038% 0.037% 0.041% 

EUR/USD 
     

 
        

HE  96.385% 96.375% 96.392% 96.397% 96.382%  96.479% 96.473% 96.484% 96.444% 96.486% 96.483% 96.482% 96.484% 

Sharpe Ratio 0.035% 0.019% -0.033% -0.024% -0.139%  0.227% 0.247% 0.062% -0.327% -0.062% 0.029% 0.024% -0.114% 

VaR  0.196% 0.196% 0.196% 0.196% 0.196%  0.193% 0.194% 0.193% 0.194% 0.193% 0.193% 0.193% 0.193% 

ES  0.246% 0.246% 0.245% 0.245% 0.246%  0.243% 0.243% 0.243% 0.243% 0.243% 0.243% 0.243% 0.243% 

Expected Utility -0.042% -0.044% -0.050% -0.049% -0.064%  -0.017% -0.015% -0.037% -0.086% -0.053% -0.041% -0.042% -0.059% 

GBP/USD 
     

 
        

HE  95.868% 95.824% 95.841% 95.845% 95.788%  95.937% 95.938% 95.937% 95.932% 95.938% 95.938% 95.938% 95.937% 

Sharpe Ratio -0.050% -0.134% -0.385% -0.135% -0.550%  0.071% 0.154% 0.155% 0.339% 0.164% 0.176% 0.174% 0.141% 

VaR  0.174% 0.175% 0.175% 0.175% 0.176%  0.173% 0.173% 0.173% 0.173% 0.173% 0.173% 0.173% 0.173% 

ES  0.219% 0.220% 0.219% 0.219% 0.221%  0.217% 0.217% 0.217% 0.217% 0.217% 0.217% 0.217% 0.217% 

Expected Utility -0.041% -0.051% -0.078% -0.051% -0.098%  -0.028% -0.019% -0.019% 0.001% -0.018% -0.016% -0.016% -0.020% 

Note: The Table reports the Hedge Effectiveness (HE), the Sharpe Ratio, the Value-at-Risk (VaR), the Expected Shortfall (ES), both at 95% confidence level, 

and the expected utility levels (γ=3). Bold values indicate the best performing model for each asset and each criterion. 



Chapter 5: Realized Hedge Ratio: Predictability and Hedging Performance 

 

147 

5.6 Sampling Frequency  

The dynamic properties of realized volatilities and covariances are likely to be influenced 

by the sampling frequency employed (see Lai & Sheu 2008, 2010). To this end, I study 

the statistical and economic performance of various hedging models against various 

sampling frequencies. Results from the statistical and economic criteria are reported in 

Table 5.9 and Table 5.10. 

Obtained results from the statistical measures lead to a number of conclusions. 

Firstly, the ordering of the models based on the RMSE and MAE changes as a function of 

the sampling frequency. Second, the sampling frequency influences the magnitude of the 

MAE and the RMSE; however, an overall conclusion across assets and models on 

whether the two measures increase or decrease as the sampling frequency increases 

cannot be reached. The rejection of the null hypothesis of equal forecasting accuracy, 

based on the estimated McCracken test statistics, remains valid across the various 

sampling frequencies suggesting that all models produce smaller forecasting errors 

compared to the random walk.  

Turning to the economic loss functions described thoroughly in Section 5, results 

from the 15-minute and 30-minute returns indicate that, with only a few exceptions, the 

models based on intraday data yield better performance when compared to models based 

on daily data across all frequencies, consistent with the results for the 5-minute returns. 

However, the best performing model for each asset varies across the different sampling 

frequencies. Thereafter, it is concluded that previously reported results from the statistical 

and economic measures are robust to the sampling frequency used in the derivation of 

realized variance and covariance.  
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Table 5.9: Evaluation of the out-of-sample performance for alternative sampling frequencies – Statistical Measures 

  

ARMA 

 

ARMA - 

GARCH 

 

ARFIMA 

 

RS 

 

HAR 

 

Equal 

 

Schwarz 

 

Time-

varying 

 S&P500 

                 15min MAE 3.787% 

 

3.839% 

 

3.709% 

 

3.707% 

 

3.708% 

 

3.698% 

 

3.702% 

 
3.661% 

 

 

RMSE 4.994% 

 

5.090% 

 

4.974% 

 

4.970% 

 

4.951% 

 

4.938% 

 

4.942% 

 
4.885% 

 

 

McCracken test 207.325 *** 191.856 *** 210.656 *** 211.392 *** 214.530 *** 216.766 *** 216.074 *** 225.859 *** 

30 min MAE 3.859% 

 

3.829% 

 

3.819% 

 

3.836% 

 

3.842% 

 

3.816% 

 

3.816% 

 
3.799% 

 

 

RMSE 5.437% 

 

5.447% 

 

5.416% 

 

5.415% 

 

5.438% 

 

5.410% 

 

5.410% 

 
5.372% 

 

 

McCracken test 232.076 *** 230.493 *** 235.326 *** 235.552 *** 231.839 *** 236.341 *** 236.305 *** 242.366 *** 

FTSE 100 

                 15min MAE 3.658% 

 

3.665% 

 

4.214% 

 

3.695% 

 

3.660% 

 

3.664% 

 

3.649% 

 
3.610% 

 

 

RMSE 5.395% 

 

5.421% 

 

5.851% 

 

5.480% 

 

5.482% 

 

5.414% 

 

5.406% 

 

5.442% 

 

 

McCracken test 188.593 *** 184.754 *** 125.732 *** 176.055 *** 175.756 *** 185.761 *** 187.008 *** 181.616 *** 

30 min MAE 3.612% 

 

3.527% 

 

3.511% 

 

3.614% 

 
3.505% 

 

3.524% 

 

3.528% 

 

3.585% 

 

 

RMSE 5.117% 

 

5.038% 

 

5.036% 

 

5.295% 

 
5.018% 

 

5.043% 

 

5.046% 

 

5.100% 

 

 

McCracken test 232.415 *** 245.779 *** 246.153 *** 203.812 *** 249.216 *** 244.888 *** 244.294 *** 235.279 *** 

EUR/USD 

                 15min MAE 1.539% 

 

1.448% 

 

1.485% 

 

1.527% 

 

1.439% 

 

1.435% 

 
1.433% 

 

1.458% 

 

 

RMSE 2.724% 

 

2.612% 

 

2.663% 

 

3.155% 

 
2.579% 

 

2.619% 

 

2.631% 

 

2.608% 

 

 

McCracken test 131.139 *** 162.953 *** 148.329 *** 29.357 *** 173.175 *** 160.862 *** 157.529 *** 164.210 *** 

30 min MAE 1.478% 

 

1.571% 

 

1.505% 

 

1.526% 

 

1.458% 

 
1.456% 

 

1.456% 

 

1.485% 

 

 

RMSE 2.362% 

 

2.555% 

 

2.412% 

 

2.555% 

 
2.345% 

 

2.361% 

 

2.367% 

 

2.482% 

 

 

McCracken test 197.294 *** 136.048 *** 180.405 *** 136.068 *** 203.263 *** 197.710 *** 195.725 *** 158.209 *** 

GBP/USD 

                 15min MAE 1.456% 

 

1.443% 

 

3.933% 

 

1.455% 

 

1.443% 

 

1.434% 

 

1.434% 

 
1.433% 

 

 

RMSE 2.049% 

 

2.030% 

 

10.701% 

 

2.042% 

 

2.037% 

 

2.023% 

 

2.024% 

 
2.020% 

 

 

McCracken test 214.543 *** 222.536 *** -455.335 *** 217.566 *** 219.591 *** 225.124 *** 224.871 *** 226.531 *** 

30 min MAE 4.341% 

 

4.243% 

 
1.910% 

 

5.352% 

 

4.443% 

 

4.257% 

 

4.396% 

 

4.363% 

 

 

RMSE 10.266% 

 

10.245% 

 
2.437% 

 

12.694% 

 

10.388% 

 

10.352% 

 

10.515% 

 

10.293% 

 

 

McCracken test 274.657 *** 276.467 *** 3130.217 *** 104.724 *** 264.206 *** 267.293 *** 253.663 *** 272.362 *** 

Note: Bold values indicate the best performing model for each asset and each criterion. 
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Table 5.10: Evaluation of the out-of-sample performance for alternative sampling frequencies – Economic Measures 

  Conventional Hedge Ratios Realized Hedge Ratio 

 

  
Naïve 

Static 

OLS 

Rolling 

OLS 
ECM DCC ARMA 

ARMA- 

GARCH 
ARFIMA RS HAR Equal Schwarz 

Time-

varying 

S&P500 

              15 min HE 96.215% 96.230% 96.229% 96.220% 96.191% 96.305% 96.303% 96.311% 96.309% 96.314% 96.312% 96.312% 96.313% 

 

S.R. -0.105% -0.018% -0.036% -0.043% 0.403% 0.985% 1.196% 0.878% 1.261% 1.429% 1.151% 1.177% 1.174% 

 

VaR 0.221% 0.220% 0.220% 0.221% 0.221% 0.218% 0.218% 0.218% 0.218% 0.218% 0.218% 0.218% 0.218% 

 

ES 0.277% 0.276% 0.276% 0.277% 0.278% 0.273% 0.274% 0.273% 0.273% 0.273% 0.273% 0.273% 0.273% 

 

Utility -8.325% -6.986% -7.254% -7.380% -0.724% 8.009% 11.136% 6.428% 12.099% 14.583% 10.458% 10.845% 10.811% 

FTSE 100 

              15 min HE 95.846% 96.038% 95.976% 95.982% 95.872% 96.070% 96.072% 96.012% 96.061% 96.063% 96.067% 96.069% 96.064% 

 

S.R. -0.130% 0.409% 0.466% 0.329% 0.388% 0.285% 0.234% 1.453% 0.711% 0.614% 0.662% 0.610% 0.393% 

 

VaR 0.230% 0.224% 0.226% 0.226% 0.230% 0.224% 0.224% 0.226% 0.224% 0.224% 0.224% 0.224% 0.224% 

 

ES 0.289% 0.281% 0.283% 0.283% 0.288% 0.281% 0.281% 0.284% 0.281% 0.281% 0.281% 0.281% 0.281% 

 

Utility -10.160% -1.124% -0.281% -2.472% -1.645% -3.061% -3.862% 15.584% 3.717% 2.163% 2.931% 2.118% -1.344% 

30 min HE 97.443% 97.563% 97.525% 97.534% 97.435% 97.559% 97.563% 97.563% 97.543% 97.564% 97.564% 97.563% 97.555% 

 

S.R. -0.172% 0.540% 0.615% 0.435% 0.510% 1.020% 0.967% 0.615% 1.067% 0.796% 0.894% 0.917% 0.684% 

 

VaR 0.169% 0.164% 0.165% 0.165% 0.169% 0.165% 0.164% 0.164% 0.165% 0.164% 0.164% 0.164% 0.165% 

 

ES 0.212% 0.206% 0.207% 0.207% 0.212% 0.206% 0.206% 0.206% 0.207% 0.206% 0.206% 0.206% 0.206% 

 

Utility -6.739% 2.140% 3.036% 0.849% 1.709% 7.953% 7.303% 3.050% 8.535% 5.235% 6.425% 6.701% 3.881% 

EUR/USD 

              15 min HE 98.428% 98.424% 98.431% 98.434% 98.425% 98.444% 98.450% 98.447% 98.430% 98.450% 98.449% 98.448% 98.449% 

 

S.R. 0.054% 0.029% -0.051% -0.036% -0.215% -0.191% 0.233% 0.095% 0.199% -0.034% 0.061% 0.060% 0.035% 

 

VaR 0.124% 0.124% 0.123% 0.123% 0.124% 0.123% 0.123% 0.123% 0.123% 0.123% 0.123% 0.123% 0.123% 

 

ES 0.155% 0.155% 0.155% 0.155% 0.155% 0.154% 0.154% 0.154% 0.154% 0.154% 0.154% 0.154% 0.154% 

 

Utility -1.510% -1.716% -2.356% -2.230% -3.681% -3.459% -0.053% -1.162% -0.339% -2.193% -1.435% -1.437% -1.643% 

30 min HE 98.947% 98.944% 98.949% 98.951% 98.945% 98.956% 98.950% 98.955% 98.950% 98.957% 98.956% 98.956% 98.953% 

 

S.R. 0.066% 0.036% -0.063% -0.044% -0.263% -0.229% -0.098% 0.301% 0.015% 0.000% -0.002% -0.042% 0.177% 

 

VaR 0.098% 0.099% 0.098% 0.098% 0.099% 0.098% 0.098% 0.098% 0.098% 0.098% 0.098% 0.098% 0.098% 

 

ES 0.123% 0.124% 0.123% 0.123% 0.124% 0.123% 0.123% 0.123% 0.123% 0.123% 0.123% 0.123% 0.123% 

 

Utility -0.859% -1.064% -1.707% -1.582% -3.029% -2.782% -1.933% 0.685% -1.191% -1.282% -1.297% -1.558% -0.131% 
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GBP/USD 

              15 min HE 98.121% 98.092% 98.102% 98.106% 98.052% 98.143% 98.143% 98.143% 98.143% 98.143% 98.144% 98.144% 98.144% 

 

S.R. -0.075% -0.202% -0.581% -0.838% -0.827% 0.230% 0.265% 0.227% 0.235% 0.259% 0.243% 0.245% 0.216% 

 

VaR 0.114% 0.114% 0.114% 0.114% 0.115% 0.113% 0.113% 0.113% 0.113% 0.113% 0.113% 0.113% 0.113% 

 

ES 0.142% 0.143% 0.143% 0.143% 0.145% 0.142% 0.142% 0.142% 0.142% 0.142% 0.142% 0.142% 0.142% 

 

Utility -2.112% -3.068% -5.811% -3.067% -7.715% 0.102% 0.354% 0.083% 0.140% 0.311% 0.198% 0.214% 0.001% 

30 min HE 93.744% 93.653% 93.705% 93.701% 93.652% 94.134% 94.122% 93.980% 93.595% 94.056% 94.072% 94.045% 94.092% 

 

S.R. -0.041% -0.112% -0.322% -0.113% -0.462% 0.476% 0.179% 0.233% 0.373% 0.133% 0.282% 0.297% 0.341% 

 

VaR 0.147% 0.148% 0.147% 0.147% 0.149% 0.146% 0.146% 0.146% 0.151% 0.146% 0.146% 0.146% 0.146% 

 

ES 0.184% 0.185% 0.185% 0.185% 0.186% 0.183% 0.183% 0.183% 0.189% 0.183% 0.183% 0.183% 0.183% 

 

Utility -5.683% -6.690% -9.398% -6.661% -11.304% 1.218% -2.554% -1.960% -0.317% -3.187% -1.283% -1.097% -0.521% 

Note: The Table reports the hedge effectiveness (HE), the Sharpe Ratio, the Value-at-Risk, the Expected Shortfall (ES), both at 95% confidence level, and the 

average utility levels (γ=3). Bold values indicate the best performing model for each asset and each criterion. 
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5.7 Transaction Costs 

So far, the evaluation of the hedging performance of the competing models ignores the 

impact of transaction costs on the profitability of the hedging strategy. All models (except 

for the naïve and the constant OLS, for which only the cost of opening the position is 

relevant) require daily rebalancing of the hedged portfolio, thus entailing large 

transaction cost that could diminish any economic gains. The expected utility for each 

hedging model assuming an investor with a mean-variance utility is reevaluated taking 

into consideration transaction costs. Following Lee (2009), I assume transaction cost of 

0.02%, which is typical for a round-trip transaction. The aggregate realized utility with 

transaction cost during the out-of-sample period for each competing model is presented in 

Table 5.11 assuming a degree of risk aversion equal to three.  

Notably, for all four assets, the best performing model is one of the models that 

forecast directly the RMVHR. Moreover, when transaction costs are taken into 

consideration, the best performing model, in terms of the highest utility gains, remains 

unchanged. Models on realized hedge ratio do not outperform all of the conventional 

daily models only for a limited number of cases e.g. the regime switching model for S&P 

500 index. Interestingly, in the case of EUR/USD, none of the dynamic conventional 

hedging models based on daily data outperforms the constant hedge ratio models, namely 

the naïve and the constant static OLS, and only the ARMA and ARMA-GARCH models 

on RMVHR outperform the constant hedge ratio. 
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Table 5.11: Out-Of-Sample Hedging Performance: Average Daily Utility with Transaction Costs 

 

 Conventional Hedge Ratio  RMVHR 

 
Naïve 

Static 

OLS 

Rolling 

OLS 
ECM DCC  ARMA 

ARMA- 

GARCH 
ARFIMA RS HAR Equal Schwarz 

Time-

varying 

S&P 500 -0.204 -0.190 -0.194 -0.195 -0.137  0.026 0.003 0.095 -0.182 0.129 0.020 0.018 0.040 

FTSE 100 -0.220 -0.124 -0.121 -0.140 -0.162  -0.038 -0.001 0.086 -0.007 0.023 0.022 0.021 0.020 

EUR/USD -0.045 -0.047 -0.055 -0.052 -0.076  -0.031 -0.027 -0.048 -0.102 -0.062 -0.051 -0.051 -0.069 

GBP/USD -0.045 -0.054 -0.084 -0.055 -0.121  -0.038 -0.028 -0.029 -0.009 -0.027 -0.024 -0.024 -0.029 

Note. The Table presents the expected utility with transaction cost during the out-of-sample period for the hedge ratio forecasts. The transaction cost is assumed 

equal to 0.02% for a round-trip transaction while the degree of risk aversion is equal to 3. Bold values indicate the best performing model for each asset. 
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5.8  Conclusions 

In this Chapter, I study the distributional properties of the realized variance, covariance 

and hedge ratio and find that the long-memory traits of the individual processes is 

eliminated in the case of the Realized Minimum Variance Hedge Ratio series, calculated 

from high-frequency data as the ratio of realized spot and futures covariance to futures 

variance. To this end, I propose the direct modelling of the evolution of the series 

RMVHR under alternative econometric specifications. The economic significance of the 

obtained forecasts is compared to traditional techniques of estimating and forecasting the 

optimal hedge ratio such as the OLS or GARCH-based hedge ratio. Data on two equity 

indices and two foreign exchange rates are used to study any differential pattern across 

different asset classes. 

Several statistical measures suggest the presence of predictable pattern in the 

evolution of the realized hedge ratio series. The findings suggest that, in terms of correct 

magnitude prediction, and in specific RMSE, the time-varying combination forecast for 

the two stock indices and the HAR model for the two exchange rates outperform the 

competing models. Employed models correctly predict the directional change of the 

hedge ratio approximately 70% of times, throughout the out-of-sample period.  

From an economic perspective, empirical results suggest that forecasting directly 

the evolution of the realized hedge ratio, calculated from informative intraday returns, 

results in substantial improvement of hedging performance, in terms of risk reduction, 

Sharpe ratio, expected utility and Value-at-Risk, while being magnified in the case of 

stock indices. When transaction costs from daily rebalancing are taken into account or the 

data frequency is changed, the hedging performance superiority of RMVHR forecasts is 

maintained for almost all models and assets. The results of the analysis suggest that 

forecasting the realized hedge ratio directly can provide substantial benefits to risk 

managers and hedgers.  
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  Chapter 6

Conclusions & Suggestions for Future Research 

Estimates and forecasts of correlation are key inputs in a number of financial 

applications. This thesis contributes to the discussion of correlation modelling and 

especially to the information content of alternative correlation measures in optimizing 

portfolio allocation, risk management and hedging decisions. Overall, findings of the 

thesis show that understanding and modelling the dynamics that govern the evolution of 

alternative measures of correlation results in optimized portfolio allocation, risk 

management decisions as well as to substantially enhanced hedging and arbitrage trading 

strategies. 

The purpose of Chapter 2 has been twofold. First, an extensive literature review 

of advances in correlation modelling and relevant applications is presented. The main 

reason behind the tremendous evolution of research focusing on the second moments of 

distribution is that volatility and correlation cannot be directly observed and should thus, 

be modelled within a specific econometric specification. On an attempt to overcome the 

ambiguities arising from inherent assumptions of every model, the measures of implied 

correlation, inferred from option prices, and realized correlation, computed from high-

frequency intraday returns, have stimulated the research interest. Several studies have 

focused on the information content of above-mentioned measures in forecasting the latent 

process, optimizing asset allocation and forming profitable strategies, thus providing a 

direct test of the market efficiency hypothesis.  

Chapter 3 discusses the statistical properties and the information content of 

macroeconomic and other market-specific variables in predicting the correlation risk 

premium, considered as an insurance premium that investors require to hedge against 
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correlation increase. Correlation risk premium is defined as the difference of risk neutral 

correlation, the realized correlation, and correlation under the physical measure, implied 

correlation. A model-free measure of implied correlation, inferred from currently 

observed option prices and adjusted to account for the early exercise premium inherent in 

the American options, is proposed. Previous studies have provided evidence of a 

negatively priced correlation risk premium, in the sense that assets that capitalize their 

gains in high correlation market conditions earn negative excess returns. Based on the 

decomposition of volatility risk premium of the index into individual stocks’ volatility 

risk premium and inter-asset correlation structure, the significance of the volatility risk 

premium is also assessed. The statistical analysis is performed on an extensive dataset of 

fifteen years, while the robustness of the results is also assessed for different sample 

sizes, thus allowing the examination of the time series behavior during several recent 

periods of financial distress with scrutiny.  

Consistent with previous literature, both implied correlation and realized 

correlation increase substantially during periods of financial turmoil. Both correlation 

measures culminated during the Asian (July 1997) and Russian (August 1998) financial 

crises, the devaluation of local currencies flowing the great depression in Brazil (early 

1999) and Argentine (1998 - 2002), the dot-com bubble in 2001, and the global financial 

crisis of 2007 – 2009. Interestingly, during the subprime mortgage crisis the implied 

correlation reached a maximum value of 0.97, indicating almost perfect correlation and 

zero diversification benefit.  

The empirical analysis provides evidence in favor of a negatively priced volatility 

risk premium, both for the index and the constituent individual stocks as well as a 

negative price of correlation risk premium throughout the sample period. However, 

during turbulent periods, implied and realized correlations do not differ substantially and 

the null hypothesis of zero correlation risk premium cannot be rejected. A plausible 

explanation might stem either from investors’ irrationality or from increased transaction 

costs and margin requirements that eliminated any arbitrage opportunities between the 

index and the individual options. The statistical analysis suggests that the distribution of 

the correlation risk premium is leptokurtic and negatively skewed while exhibits strong 

persistence. Furthermore, index returns, variance risk premium of index options and 



Chapter 6: Conclusions and Suggestions for Future Research 

 

156 

correlation risk premium are positively correlated suggesting that a decrease in returns 

will decrease the negative price of correlation risk premium, i.e. CRP will be forced to 

less negative values, coinciding with the empirical finding of zero CRP during the 

subprime mortgage crisis. Finally, macroeconomic variables, e.g. the term structure, the 

default spread structure and the USD Libor, fail to provide accurate forecasts of the CRP. 

In contrast, the volatility risk premium of the index and the index returns embed 

significant information content of future CRP. 

Chapter 4 of the thesis is concerned with the existence of predictable dynamics in 

the evolution of the model-free implied correlation measure derived in Chapter 3. To this 

end, several time-series econometric specifications that gauge alternative dynamics of the 

series, including combination forecasts, are employed to model and forecast the evolution 

of the series. The out-of-sample performance of the models is initially assessed with 

statistical measures that estimate both the magnitude of forecast error and the directional 

efficiency of obtained forecasted values. Secondly, a trading strategy that exploits daily 

changes of the implied correlation is employed to assess the economic significance of 

predictable patterns. Finally, the robustness of obtained results with regard to transaction 

costs and across different sampling periods is examined. 

The empirical results suggest that combination forecasts, which essentially 

accumulate the obtained forecasts of several econometric models, provide superior 

forecasting performance, both in terms of correct magnitude forecast and directional 

prediction. The comparison of forecasting performance with the benchmark model of 

random walk constitutes a direct test of the efficient market hypothesis. Both on 

individual and on aggregate level, all models produce superior forecasting accuracy, thus 

providing strong evidence in favour of predictable patterns and against the market 

efficiency of the S&P 100 option market. In economic terms, results from a trading 

strategy designed to exploit daily changes of correlation, suggest that modelling the 

implied correlation process under specific econometric specifications is able to generate 

abnormal profits, which however disappear when transaction costs are taken into account. 

To conclude, although statistical measures favoured the rejection of market efficiency 

hypothesis, results from the trading strategy suggest that, by virtue of transaction costs, 

investors cannot attain significant economic profits and thus, the efficiency of the S&P 
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100 options market cannot be rejected. Obtained results remain robust across different in-

sample windows and forecast periods.  

Chapter 5 is concerned with the dynamic evolution of the Realized Minimum 

Variance Hedge Ratio (RMVHR). In this study, four issues are addressed. First, the 

RMVHR is constructed from intraday returns for two asset classes, namely stock indices 

and exchange rates, and the distributional properties are compared to the time-series 

characteristics of the realized volatility and covariance processes. Second, instead of 

forecasting the variance-covariance matrix of the spot and future returns, a number of 

time-series models are employed to capture the dynamic evolution of the RMVHR series 

per se. Third, the predictability of the series is assessed based on statistical measures. 

Finally, obtained forecasts from a number of econometric models are compared to 

traditional methods of deriving hedge ratios that use daily data.  

The comparative statistical analysis of realized volatility, covariance and hedge 

ratio suggest that long memory and persistence is less pronounced in the case of the 

hedge ratio. Moreover, equity markets are far more volatile than the FX markets; a 

finding that is also present in the realized hedge ratio series. With regard to the 

predictability of the realized hedge ratio series, empirical evidence suggests the superior 

forecasting performance of combination forecasts. Interestingly, the forecasting 

performance of the random walk model is inferior to any other econometric specification 

employed to forecast the realized hedge ratio, thus providing evidence of predictable 

dynamics in the evolution of the series and challenging the hypothesis of market 

efficiency. The out-of-sample hedging effectiveness of the realized hedge ratio is 

compared to the hedge ratio estimated from daily returns. Specifically, the hedging 

performance is evaluated with a view to risk management and portfolio optimization 

applications. To this end, the percentage of portfolio risk reduction, the Sharpe ratio and 

the expected utility, the Value-at-Risk (VaR) and the Expected Shortfall (ES) measures 

are employed. Main findings suggest that, the proposed methodology of directly 

forecasting the RMVHR results in considerable improvement in terms of portfolio risk 

and expected utility, risk-return tradeoff and Value-at-Risk. The results hold across the 

different asset classes, although the benefits are lower in the case of exchange rates, 
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which are considerably more liquid. The superior forecasting performance of the realized 

hedge ratio series remains robust to transactions costs and sampling frequency.  

 Several research questions arise from this thesis. In Chapter 3, the information 

content of the most widely spread macroeconomic variables in predicting the correlation 

risk premium is found to be rather limited. The information content and the anticipated 

economic significance of alternative macroeconomic and market specific variables in 

forecasting the correlation risk premium can be further explored and discussed. 

Moreover, it would be interesting to assess the information content of macroeconomic 

variables in forecasting long run component of the correlation risk premium. As an 

alternative course of future research, econometric specification can be applied to examine 

the presence of predictable dynamics in the evolution of the correlation risk premium.  

In Chapter 4, the statistical measures provided evidence of market inefficiency 

whereas the inclusion of transaction costs in the employed trading strategy eliminates any 

profitability. Future work could further investigate the profitability of correlation trading 

strategies using different datasets, alternative model specifications and longer forecast 

horizons. Alternatively, an interesting exercise would be to assess the profitability of the 

trading strategy for different levels of transaction costs. Taking into consideration that the 

implemented trading strategy requires transactions on the index and the 100 constituent 

stocks, an alternative approach would include the construction a mimicking portfolio that 

tracks closely the basket of individual options, e.g. including representative liquid stocks 

of the index (e.g. those representing the 75% of the index capitalization). This strategy 

could significantly reduce transaction costs and enhance profitability. Additionally, 

institutional investors typically face smaller transaction costs. It would be thus interesting 

to examine the profitability for different types of investors. 

Finally, in Chapter 5, the hedging effectiveness of the realized minimum variance 

hedge ratio, is assessed. An interesting extension would be to apply the methodology to 

alternative hedge ratios that seek to maximize the risk-return function, e.g. M-MEG and 

M-GSV. Additionally, improving the realized hedge ratio estimates and forecasts by 

accounting for microstructure noise and non-synchronous trading is an interesting topic 

for future research.  
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