
 

 
DEPARTMENT OF INFORMATICS 

 

 

 

 

                    November 2012  

 
 

Collecting, identifying and classifying the Greek Twitter Community 
 
 

Athanasios Rebelos 
R.N. Μ4090045 

 

 

 Supervisor: Assistant Professor, Martha Sideri 
 Reviewer: Lecturer, Vangelis Markakis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THESIS 



 

ii 

Prologue 

 

This paper engages the problem of identifying users’ nationality in the social network Twitter.  

We address the problem properly, and suggest algorithms and tools to provide an accurate 
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Abstract 

We have created methods for collecting data from Twitter users from the Greek community. 

The algorithms include classifiers and graph-theoretic properties of the user graph. We have 

evaluated our results in our collections of tweets and found the most influential users, for non-

overlapping sets of users per region. 

 

 

Keywords: Location Identification in Twitter, Language Identification in Twitter, Nationality 

Identification in Twitter, Greeklish Classifier, Most Influential Twitter users 
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1   

Introduction 

1.1 Scope 

Identifying users’ nationality is one of hottest open issues in social networks.  It is easy to 

identify them using their personal information (location, place of birth etc.), but not all users 

fill in those fields and many of them even if they provide this information they do not belong 

in the scope of influence of that group.  The language that the users use in their texts in posts 

can also be used for categorizing them in nationality groups, when this language is used only 

in one country.  But also in this occasion we have to keep in mind that many languages when 

are used in the web might have a different alphabet.  It is common for users to write in their 

native language using the English alphabet instead of their language’s alphabet (i.e. 

Greek/Greeklish).  Also users can be identified from their current location point that is used in 

their posts, a feature that was introduced by the use of social networks from smartphones.  

Finally, we can derive information from the users’ connections to other already categorized 

users.  It is safe to say that the group of users with which a user has more connection than 

others, it more probable to be the group that the user belongs. 

In this paper we combine all the above characteristics of the social network Twitter to create 

algorithms and tools to provide an accurate prediction of user nationality. 
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1.2 Chapters 

In the second chapter the data extraction process for Twitter Social Network is analyzed.  We 

present all Twitter APIs and the processes needed to pull data.  Also we provide with an 

overview of the platform that was developed for the data extraction.  

 

In the third chapter we illustrate the classification methods that were developed for the 

identification of Greek Twitter users.  We present two classifiers: one based on a Greeklish 

translator, and one using Weka machine learning software, and then their results. 

 

In the fourth chapter, we analyze the “Most Influential Users” algorithm.  We test the 

algorithm on a specific user set and we display the results. 

 

In the fifth chapter, a metric for unidentified users is introduced, the “Following Metric”.  

After the analysis, the metric is tested on sets of identified and unidentified users to measure 

the effectiveness of the metric.  

 

Finally in the sixth chapter, we conclude by summarizing our results and present open 

problems and future work. 
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2  

Data Extraction from Twitter 

2.1 Twitter – Social Network  

Twitter is a real-time information network that connects you to the latest stories, ideas, 

opinions and news that the user finds interesting.  The user simply selects the accounts he 

finds most compelling and follows their conversations.  This micro−blogging service has 

quickly become the social media service that is most often used in strategic communication 

campaigns. 

At the heart of Twitter are small bursts of information called Tweets. Each Tweet is 140 

characters long.  The user can share and see photos, videos and conversations directly in 

Tweets to get the whole story at a glance, and all in one place. Twitter allows users from 

across the globe to share information through private and public. The site−imposed character 

limit allows users’ updates, or tweets, to be sent to cellular phones and other mobile devises 

as a text message. 

The idea behind Twitter is that you broadcast to anyone who chooses to follow you simple 

messages also known as Tweets. The message could be as simple as what you are doing right 

now or just a quick question to your followers. Likewise you can choose to follow people and 

receive their messages. 

Twitter also gives the ability to send direct messages to users instead of broadcasting to 

everyone and to search other Twitter users near your location. Twitter’s API allows 3rd party 
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developers to develop applications and upload them and, finally, by using mobile options 

someone can send and receive tweets via SMS messaging on his cell phone. 

 

Twitter actions are:  

• Tweet,  as described above 

• Follow a user, receive all Tweets from this user 

• Mention a user, using @ and the username of the user to reply/interact/attach this user 

with a tweet 

• Retweet a Tweet, broadcast usually another user’s Tweet to the re-tweeters’ followers 

• Hashtag, the # symbol is used to mark keywords or topics in a Tweet. It was created 

organically by Twitter users as a way to categorize messages.  

• Trends, words or hashtags that are hot at any time in the Twitter network 

• Geolocation [G2], adding the location where the user is tweeting to your tweet 

• Search, using a string (word, sentence, hashtag, username) to search in Twitter’s data. 

 

The REST [G] API enables developers to access some of the core primitives of Twitter 

including timelines, status updates, and user information. If you’re building an application 

that leverages core Twitter objects, then this is the API for you. Imagine building a profile of 

a user: their name, their Twitter handle, their profile avatar, and the graph of people that they 

are following on Twitter - all with a few RESTful API calls. In addition to offering 

programmatic access to the timeline, status, and user objects, this API also enables developers 

a multitude of integration opportunities to interact with Twitter. Through the REST API, the 

user can create and post tweets back to Twitter, reply to tweets, favorite certain tweets, re-

tweet other tweets, and more. 

 

2.2 Twitter’s Attractive Features  

The reason why Twitter was chosen for this thesis is that it has many attractive features that 

facilitate academic research.  

Twitter is considered as the public social network.  First of all, its data consist only text.  

Tweets are the only way to communicate with other users, and even though they can contain 

images or videos, they are embedded in tweets only as links. Given that, it has been proved 

that users of twitter have minor privacy concerns on using this social network. Most users 

keep their account public, as well as all their information.  
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Twitter data can easily be analyzed because of their length.  Users have to create small and 

comprehensive sentences in order to keep up with twitter’s length of text restrictions.   

The hashtags define the subject of a tweet.  Searching for a hashtag in a tweet is a 

straightforward way of categorizing tweets by subject.  The twitter search service using a 

hashtag will also provide all conservations on a subject globally.  

The @ mention feature can identify all users participating in conversation. 

The re-tweet feature of Twitter gives the option to users of sharing another user’s tweet.  In 

just a few steps of data requests, all users that re-tweeted a tweet can be parsed. 

The Geolocated tweets are available for all users.  The location information that can be 

embedded in tweet is very useful for location centric research.  

Twitter Trends are available to identify instant hot topics.  It is the easiest way to find out the 

most shared over twitter topics. 

Finally, Twitter provides APIs (application programming interface) that can be used primarily 

for third party applications but also for research. All twitter interactions and features can be 

accessed through the APIs that twitter has issued for general usage.  Their usage is subject to 

several rules and limitations, and their use should be careful to avoid IP or account locks 

(Rate Limits). 

 

2.3 Twitter APIs 

Twitter has two main categories of APIs: the Streaming API and the REST API [G6]. 

 

2.3.1 The Streaming APIs 

The set of streaming APIs offered by Twitter give developers low latency access to Twitter's 

global stream of Tweet data. A proper implementation of a streaming client will be pushed 

messages indicating Tweets and other events that have occurred, without any of the overhead 

associated with polling a REST endpoint. 

Twitter offers several streaming endpoints, each customized to certain use cases. 

• Public streams:  Streams of the public data flowing through Twitter. Suitable for 

following specific users or topics, and data mining. 

• User streams: Single-user streams, containing roughly all of the data corresponding 

with a single user's view of Twitter. 
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• Site streams: The multi-user version of user streams. Site streams are intended for 

servers which must connect to Twitter on behalf of many users. 

 

     

Picture 2.1: Twitter Streaming API 

 

The endpoint that is more suitable for our research is the «Public Streams», because it 

provides us a constant connection to the Twitter public data stream.  The data stream can be 

filtered using keywords, hashtags, usernames, geographic location etc.  So we can set a 

geographic location by defining its borders with geographical coordinates (latitude/longitude).  

On this streaming endpoint some rate limits are applying.  Through the streaming API, only 

1% of all available data at any time is accessible.  Taking into account the previous limit, it is 

wise to access the streaming endpoint using always filters that will minimize the loss of data.  

To make it clearer, when a filter is applied to the data stream, and the results are up to 1% of 

all available twitter data at that time, all the data will be pushed to the streaming endpoint.  

Filters are also subject of limits and the number of keywords, users, locations etc. used in 

filters is a finite set.  Finally there are limitations associated with IP addresses; no more than 

one streaming endpoint can be used from a single IP address.   

At this point, we have to point out that an alternative to Streaming API exists, the Twitter 

Firehose.  “Firehose” is the name given to the massive, real-time stream of Tweets that flow 

from Twitter at any time.  It has no limitation at all and it is the Mecca for all twitter 

developers/analysts/researchers.  At some point in the past it was available for developers just 

by submitting a form to Twitter explaining the intended use.  Now, it is a commercial feature 



 

7 

that is only available for twitter partners.  Anyone can gain access by buying a license of use 

from those partners. 

 

2.3.2 The REST API 

The REST API enables developers to access some of the core primitives of Twitter including 

timelines, status updates, and user information. If you’re building an application that 

leverages core Twitter objects, then this is the API for you. Imagine building a profile of a 

user: their name, their Twitter handle, their profile avatar, and the graph of people that they 

are following on Twitter - all with a few RESTful API calls. In addition to offering 

programmatic access to the timeline, status, and user objects, this API also enables developers 

a multitude of integration opportunities to interact with Twitter. Through the REST API, the 

user can create and post tweets back to Twitter, reply to tweets, favorite certain tweets, 

retweet other tweets, and more [A1].  All twitter functions and information retrieval can be 

accessed using the REST API by making individual request to the server.  Requests to the 

Twitter core can be made not only from authenticated twitter users (authenticated requests), 

but also from unauthenticated users (unauthenticated requests). 

Rate limits are also applied to the REST API.   

 

 

Picture 2.2: Twitter REST API 

 

REST API version 1 

• 150 unauthenticated requests per hour can be made from a single IP address 

• 350 authenticated requests per hour can be made from a single IP address 

• Twitter search queries, 1 request per second from a single IP address 
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The first version of the API is now depreciated, and will cease functioning.  From now on the 

version 1.1 of the API will be used. 

 

 

Rest API version 1.1 

• 180 requests per bucket window from a single IP.  A bucket window for twitter 

applications is defined as 15 minutes. 

 

2.4 Getting the data 

In order to get Twitter data for our purposes, we have used a combination of all available 

APIs. 

• Streaming API with geolocation filter 

We have used a streaming endpoint to get tweets within the geographical location of 

Greece. Drawbacks: many of the fetched tweets were outside of the bounds that we 

have set. We had to refilter all tweet coming from this endpoint. 

• Search requests (REST API) for language specific tweets 

We made one request every second, to get language specific tweets (Greek Tweets).  

The rate limit was never excided, but the data response was limited.   

• REST requests for extra data 

To retrieve information (followers, friends etc.) about the users that have been fetched 

using the previous methods, to get the maximum available timeline for those users 

and to find the users that have retweeted tweets from our users, we have used REST 

requests.  We had issues with rate limits, since the data we were trying to access was 

huge, but we came up with a workaround solution, using the TOR Anonymity 

Network to make our requests. 

• Getting access to the Firehose 

We have to note here that we have tried to gain access to these features by contacting 

all Twitter partners, and even after explaining the purpose of use (academic research, 

not commercial), we have not been granted with one. The replies we got were that it 

is strictly for commercial use, and that the “regular” streaming API should be 

sufficient.  The only one that got interested in our project was Dr. Stuart W. Shulman, 

Assistant Professor at University of Massachusetts Amherst.  He is the Founder and 

CEO of Texifter (current name DiscoverText) that is a cloud-based, collaborative text 

analytics solution, generating insights about customers, products, employees, news, 
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citizens, and more using data from social networks and the web.  This service has 

access to the Twitter Firehose through GNIP, a Twitter partner.  He granted us a 60-

day access to GNIP using DiscoverText as a small sponsorship to our research.  Till 

this day, we have not used this grant, because of the time and data limitations. We are 

planning to use it on a specific experiment in which we could convert the limitations 

to our advantage. 

 

 

 

2.5 Tor – The Anonymity Network 

Tor (originally short for The Onion Router) is a system intended to enable online anonymity.  

Tor client software directs internet traffic through a worldwide volunteer network of servers 

to conceal a user's location or usage from anyone conducting network surveillance or traffic 

analysis.  Using Tor makes it more difficult to trace Internet activity, including "visits to Web 

sites, online posts, instant messages and other communication forms", back to the user and is 

intended to protect users' personal privacy, freedom, and ability to conduct confidential 

business by keeping their internet activities from being monitored. 

"Onion Routing" refers to the layered nature of the encryption service:  The original data are 

encrypted and re-encrypted multiple times, then sent through successive Tor relays, each one 

of which decrypts a "layer" of encryption before passing the data on to the next relay and, 

ultimately, its destination. This reduces the possibility of the original data being unscrambled 

or understood in transit. 

Tor was originally designed, implemented, and deployed as a third-generation onion routing 

project of the U.S. Naval Research Laboratory. It was originally developed with the U.S. 

Navy in mind, for the primary purpose of protecting government communications. Today, it is 

used every day for a wide variety of purposes by normal people, the military, journalists, law 

enforcement officers, activists, and many others. 

Tor is a network of virtual tunnels that allows people and groups to improve their privacy and 

security on the Internet. It also enables software developers to create new communication 

tools with built-in privacy features. Tor provides the foundation for a range of applications 

that allow organizations and individuals to share information over public networks without 

compromising their privacy. 

To create a private network pathway with Tor, the user's software or client incrementally 

builds a circuit of encrypted connections through relays on the network. The circuit is 
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extended one hop at a time, and each relay along the way knows only which relay gave it data 

and which relay it is giving data to. No individual relay ever knows the complete path that a 

data packet has taken. The client negotiates a separate set of encryption keys for each hop 

along the circuit to ensure that each hop cannot trace these connections as they pass through. 

Once a circuit has been established, many kinds of data can be exchanged and several 

different sorts of software applications can be deployed over the Tor network. Because each 

relay sees no more than one hop in the circuit, neither an eavesdropper nor a compromised 

relay can use traffic analysis to link the connection's source and destination. Tor only works 

for TCP streams and can be used by any application with SOCKS support. 

For efficiency, the Tor software uses the same circuit for connections that happen within the 

same ten minutes or so. Later requests are given a new circuit, to keep people from linking 

your earlier actions to the new ones. 

 

2.5.1 Using Tor for data extraction from Twitter 

As previously stated, we had rate limit problems using the Twitter REST API.  We have 

mainly used the REST API to pull more information about users that have already been 

identified as Greek.  For all users, we gathered the user list of followers and friends, their 

tweets (as many as twitter allows retrieving), their retweeters and those users they have 

retweeted.  For the returned data of these requests pagination occurs, so to get all the available 

information more than one request is necessary.  At this point, when using only one IP 

address to pull these data, the rate limit is always overpassed and we had to wait until more 

request were allowed.  There was also the danger of getting banned when persisting on 

making requests at a point when no more is allowed.   

In order to bypass this setback, we had to use Tor, as an intermediate network, to make our 

requests.  When connected to Tor, internet traffic is routed through its peers and all requests 

are made from other peers and its results are routed back to us.  It is an easy way to mask our 

IP address and use other peer’s IP address to pull the information we want.  At the time when 

the rate limit of our currently connected peer is approaching, we make a request at the Tor 

network to change our endpoint IP address.  This way we managed not only to get more data 

in less time but also not to get banned by Twitter. The average request rate we reached was 

526 requests per hour.  We have to note that when we measured this metric, the process of 

making the requests was not dedicated only on this task, but also did some data processing on 

our database, so we logically presume that higher request rate can be reached when using this 

method.  
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 Request Rate (request/hour) 

Unauthorized Requests 150 

Authorized Request 350 

Unauthorized Requests using Tor 526 

 

 

2.6 Getting and storing the data 

Retrieving and handling big loads of data, such as twitter data, in an efficient way requires a 

carefully designed platform.  The system should be consisted of two main modules: a data 

retrieving module and a data processing module. The first one will make requests to the 

Twitter server and the second one will process the fetched data and decide the order of future 

requests.  Every module should run on a different thread to ensure fast data retrieving and 

processing.  

 

2.6.1 Data retrieving module 

This module is responsible of getting the appropriate data from Twitter.  It is consisted of 

three threads: the first gets tweets using the streaming API, the second one using the REST 

API and the third using the Twitter Search.   

The streaming API thread collects all tweets broadcasted in the Greek geographical location, 

and pushes a new user item in the queue, so that all their information can be retrieved using 

REST requests.   

The REST API thread collects specific data (tweets, followers and friends user ids, retweters) 

by “consuming” items from the queue. 

The Search thread collects tweets in Greek using the Twitter Search and a language filter. 

 

2.6.2 Queue System and Data processing module 

The main feature of our platform is a queue in which all requests are stored.  The process that 

makes the requests to the twitter server uses this queue as input to determine what it should 

pull from twitter.  When the request is made, the process updates the status of the last request 

and if the data that was pulled is paged, it creates a new queue item to retrieve the next page. 
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We have also created flag items that define the last fetched data concerning any date entity on 

our queue.  This way we can keep track of the last inserted information. 

In short: 

• Each request is stored in a queue 

• Each queue row contains 

o User id 

o Type of request 

o Cursor – if necessary (cursors are used by twitter for the pagination of the 

results) 

• Keeping track of the newest inserted information using flags 

 

The data processing module in responsible for managing and distributing our database, and 

also for feeding the queue with new REST requests.  When a new user who fulfills the 

location/language criteria is found, the module pushes new items into the queue, so that their 

tweets etc. are retrieved.  The newly fetched tweets are stored in a temporary table, in order 

not to burden/overload with more processes the data-retrieving module, and this module 

parses all new tweet information. 

 

2.6.3 Platform’s Advantages and disadvantage 

Advantages: 

• At each time point the data retrieving module is designated to one task: to bring all 

available data suitable for our research.  It searches for suitable data and dumps them 

as quickly as possible to continue with its task.  The data processing is designated to 

the other module. 

• Using this queue system the twitter world is recreated uniformly in our database. The 

system does not fetch one available data for each user and then moves on to the next, 

but it fetches parts of their data, as provided from twitter’s pagination, according to 

the queue system.  For example, when the first page of a user’s tweets is fetched, then 

the new request for the second page of tweets is pushed into the queue, and is 

retrieved after all previously pushed requests are retrieved.  This way we prioritize to 

fetch some information for all identified users, and then slowly dig in for more 

information. 
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• Using flags to keep track of the latest information imported, the data that is collected 

can easily be compared with recent/real-time twitter data.  At any time point we can 

determine our data lagging from real time data. 

• Making requests that contain duplicate information are avoided (rate limits).  The use 

of the queue system combined with the flags of last inserted data, determines the data 

for request, without overlapping with already fetched data. 

 

The main disadvantage of out platform, which was intended, is that it is not suitable for rapid 

full data collection.  In cases when the dataset has to be complete (all user available data to be 

included) new processes have to run, bypassing the queue system, that will fetch all available 

data for a user and then move on to the next one. 

 

2.6.4 Our Twitter Collection 

Using the previously explained method, we have managed to create a very considerable 

twitter collection. It contains: 

• 1.324 users that tweeted in Greek 

• 2.264 users that tweeted using geolocation 

• 9.669 retweeters of our users 

• 17.014 users that have been retweeted by our users 

• 4.399 Candidate users 

• About 300.000 tweets containg Greek text 

• About 30.000 geolocated tweets 

• More than 17.000.000 following edges 

• More than 36.000 retweets 

 

2.6.5 Implementation Details 

The Twitter Collection System was implemented in PHP.  It is set on an Apache server with a 

MySQL server.  Those choices were driven from the fact that we wanted to create a fast 

online system.    
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3  

Identifying Greek Users 

3.1 It‘s all Greek to me 

In this section we will analyze all possible ways to identify Greek users from their tweets-

texts. Even though we cannot apply our own language identification algorithms directly to the 

twitter APIs to get more efficient results, we can use them on other twitter datasets to filter the 

information that we need from those datasets.  Also by analyzing the language-text relation it 

is the best way to get the bigger picture of our problem. 

Every language has its specificities many of those being common in more than one language.  

All these language features should be used properly in order to create better language 

identification mechanisms.  Another thing that we should always keep in mind is that, in 

terms of syntax, all languages are used differently in writing and differently on the internet.  

So we have to consider not only the standard features of a language, but also its internet 

features. 

The «official» internet/computer language (the most common one) is English.  That had as a 

result the creation of an internet version for many languages, which do not use the Latin 

alphabet.  Every new version of a language is the same with the original, but uses the Latin 

alphabet as a replacement of the original alphabet. 

More specifically, the ways of identifying texts from Greek users are the following: 
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1. Texts that contain the Greek alphabet.  The uniqueness of the Greek alphabet is a 

solid identification feature. 

2. Using language identificators.  The most common category of algorithms in language 

identification is the n-grams. 

3. Texts that are in Greeklish.  Greeklish is Internet language for Greek.  It is Greek, but 

instead of using the Greek alphabet, the Latin alphabet is used.   

 

To identify the third tweet category we had to develop Greeklish classifiers. 

 

3.2 “Greeklish Convertor” Classifier 

The «Greeklish Convertor» Classifier was the first Greeklish classification algorithm that we 

developed.  Its philosophy is simple: texts that we cannot determine the language used, we 

use a Greeklish Convertor to «translate» the text to Greek and depending on the number of 

words translated, we categorize it to Greeklish or Non-Greeklish.  The feature of the 

convertor that we use is that words that are not in Greeklish, remain the same after the 

translation.  The Greeklish convertor that we have used in our classifier, is the Greeklish 

Convertor developed by Vaggelis Pterneas and Giorgos Karakatsiotis [R7]. 

 

3.2.1 The algorithm 

1. Check if the text contains Greek characters.  In that case, the text is categorized as 

Greek, as well as the user.  If not, we proceed to the second step. 

2. Run two n-gram language identification algorithms using the text as input.  If both 

algorithms provide the same result, then the text is categorized as non-Greek, because 

the language scope of text identification algorithms is on official languages.  If the 

results differ we proceed to the third step. 

3. Use the Greeklish convertor to find the percentage of the words that can be 

"translated" from Greeklish to Greek.  If the number is bigger than the threshold that 

we have computed, the text is categorized as Greeklish. If not, the text is categorized 

as Non-Greeklish. 
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The “Greeklish Convertor” Classifier Flow Diagram 

 

3.2.2 Technology Used 

The n-gram language identification applications that we have chosen for the second step are 

the following: 

1. PEAR Language Detection Library [R3] 

PEAR is short for "PHP Extension and Application Repository" and is a structured 

library of open-source code for PHP.  The library we have used detects the language 

of a given piece of text.  The package attempts to detect the language of a sample of 

text by correlating ranked 3-gram frequencies to a table of 3-gram frequencies of 

known languages.  It implements a version of a technique originally proposed by 

Cavnar & Trenkle (1994): "N-Gram-Based Text Categorization". 

2. Xerox Language Detection API [R4] 

The Xerox language identifier tool mainly uses n-grams and word frequency to 

calculate the language probability. The n-gram and word frequency resources are 

based on larges corpus (http://open.xerox.com/Services/LanguageIdentifier). 

 

3.2.3 Classifier Tuning 

At the third and final step of the algorithm, we determine if a tweet is Greeklish or not based 

on the number of translated words.  This threshold cannot be arbitrary, so we had to create a 

tuning process for our algorithm to decide its value. 

Our tuning metric is the ratio of the number of converted words over the total number of 

words in a tweet: 
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 We created a baseline test on 13735 tweets of Greek users.  We manually classified these 

tweets to Greeklish or not: 

• 1673 tweets in Greeklish 

• 12062 tweets in other (not Greeklish) languages 

 

Then we run the Greeklish convertor on these tweets to see how the metric behaves: 

• On Greeklish tweets 

Mean Value (Average): 0.89383 

Standard deviation: 0.1601 

• On Other tweets 

Mean (Average): 0.51869 

Standard deviation: 0.22861 

 

These results do not provide an adequately safe threshold for the classifier.  But we have 

observed that non-Greeklish words with more than two characters are almost always 

translated to Greek.  So we had to turn this error in our advantage by removing all words with 

less than four letters from the original texts/tweets. 

Then we run again the Greeklish convertor on the new modified tweets and the results we got 

were: 

• On Greeklish tweets 

Mean Value (Average):  0.85772 

Standard deviation:  0.23026 

• On Other tweets 

Mean (Average): 0.31319 

Standard deviation: 0.2636 

 

As a result we significantly decreased the average of our tuning metric in non-Greeklish 

tweets.  Now we can set the threshold to 0.5 and classify the tweets that their metric is over 

0.5 as Greeklish and the ones that the metric is below 0.5 to non-Greeklish.  To do so, we 

have to add another step in the algorithm, step 2.5, in which all words with less than four 

letters are removed.  

 



 

18 

3.2.4 The final algorithm 

1. Check if the text contains Greek characters.  In that case, the text is categorized as 

Greek, as well as the user.  If not, we proceed to the second step. 

2. Run two n-gram language identification algorithms using the text as input.  If both 

algorithms provide the same result, then the text is categorized as non-Greek, because 

the language scope of text identification algorithms is on official languages.  If the 

results differ we proceed to the third step. 

3. Remove all (<=3) letter words to set a better threshold. 

4. Use the Greeklish convertor to find the percentage of the words that can be 

"translated" from Greeklish to Greek.  If the number is bigger than the threshold that 

we have computed, the text is categorized as Greeklish. If not, the text is categorized 

as Non-Greeklish. 

 

3.2.5 “Greeklish Convertor” Classifier Results 

The input data that was used for the classifier are from 273 Greek Twitter users.  Our corpus 

consists of 13740 tweets, from which 12368 tweets were used as training dataset and the 1372 

as test dataset.  

 

 

 Actual 

Greeklish Non Greeklish 

Predicted 

Greeklish 123 114 

Non Greeklish 38 1097 
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 Greeklish Non Greeklish 

accuracy 0.88 0.88 

precision 0.76 0.91 

F1 score 0.82 0.86 

 

 

 

 

3.3 Weka Classifier 

The Weka classifier is the second classifier that we have created to identify Greeklish tweets.  

The classifier uses the Weka machine learning software that is used for data analysis and 

predictive modeling. 

 

3.3.1 Weka 

Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning 

software written in Java, developed at the University of Waikato, New Zealand.  Weka is a 

collection of machine learning algorithms for data mining tasks.  The algorithms can either be 

applied directly to a dataset or called from your own Java code.  Weka contains tools for data 

pre-processing, classification, regression, clustering, association rules, and visualization.  It is 

also well suited for developing new machine learning schemes.   

Weka supports several standard data mining tasks, more specifically, data preprocessing, 

clustering, classification, regression, visualization, and feature selection. All of Weka's 

techniques are predicated on the assumption that the data is available as a single flat file or 

relation, where each data point is described by a fixed number of attributes (normally, 

numeric or nominal attributes, but some other attribute types are also supported).  Weka 

provides access to SQL databases using Java Database Connectivity and can process the 

result returned by a database query.  It is not capable of multi-relational data mining, but there 
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is separate software for converting a collection of linked database tables into a single table 

that is suitable for processing using Weka. 

Weka's main user interface is the Explorer, but essentially the same functionality can be 

accessed through the component-based Knowledge Flow interface and from the command 

line.  There is also the Experimenter, which allows the systematic comparison of the 

predictive performance of Weka's machine learning algorithms on a collection of datasets. 

Weka has also a java library from which all its features are accessible.  That is the main 

reason that we have selected to use Weka for our classifier.  Another attractive feature of 

Weka is that it is not only easy to use, but it is also fast.  The only real drawback is the 

complex input file formats, which are tricky to create. 

 

3.3.2 Selected Algorithms 

Weka has prebuilt many classification algorithms from which the user can select the 

appropriate for his problem.  We decided that we will create two versions of the classifier, one 

using the Naive Bayes algorithm [R8] and the second using the Sequential Minimal 

Optimization algorithm [R9].  The reason for our selection was that they fitted our 

prerequisites:  a very good and fast algorithm, Naive Bayes and the most powerful 

classification algorithms, Sequential Minimal Optimization. 

 

3.3.3 Data Preparation 

Weka uses as input a specific type of file:  Attribute Relationship File Format (ARFF, *.arff 

file).  The ARFF file contains two sections: the header and the data section. The first line of 

the header tells us the relation name.  Then there is the list of attributes (@attribute...). Each 

attribute is associated with a unique name and type.  The latter describes the kind of data 

contained in the variable and what values it can have.  The variables’ types are: numeric, 

nominal, string and date.  The class attribute is by default the last one on the list. In the header 

section there can also be some comment lines, identified with a '%' at the beginning, which 

can describe the database content or give the reader information about the author.  After that, 

there is the data itself (@data), where each line stores the attribute of a single entry separated 

by a comma. 

The tweets, as given, are not in a form amenable to feature extraction for classification (there 

is too much `noise'). In order to make tweets compatible with the ARFF file syntax and to 

sanitize them for data analysis, we have created some general specifications that will take a 

tweet in its provided form and convert it to a normalized form. 
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General Specifications 

1. All html tags and web page URLs are removed 

2. All punctuation symbols are removed 

3. Mention, retweet and hashtags symbols are removed 

4. Sequences of the same letter are removed 

5. Convert all text to lowercase 

 

3.3.4 Weka Classifier Results 

The input data that was used for the classifier are from 273 Greek Twitter users.  Our corpus 

consists of 13740 tweets, from which 12368 tweets were used as training dataset and the 1372 

as test dataset. 

 

3.3.4.1 Naïve Bayes Algorithm 

  Actual 

  Greeklish Non Greeklish 

Predicted 

Greeklish 116 29 

Non Greeklish 45 1182 

 

 

 Greeklish Non Greeklish 

accuracy 0.95 0.95 

precision 0.72 0.98 

F1 score  0.82 0.96 
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3.3.4.2 SMO Algorithm 

  Actual 

  Greeklish Non Greeklish 

Predicted 

Greeklish 142 0 

Non Greeklish 19 1211 

 

 

 Greeklish Non Greeklish 

accuracy 0.99 0.99 

precision 0.88 1 

F1 score 0.93 0.99 

 

 

 

3.4 Classification Results 

All classification algorithms we have created give very good results with high scores.  From 

the PivotTable we can conclude that the Sequential Minimal Optimization Classifier gives 

better results than all the others.  The «Greeklish Convertor» classifier has the lowest scores 

of all three, but the score is not a dissuasive for usage.  Finally the fastest classifier was the 

Naïve Bayes classifier.  Taking all parameters into consideration we can conclude that the 

overall better classifier was the Naive Bayes. 
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“Greeklish Convertor” Naive Bayes SMO 

Greeklish 
Non 

Greeklish 
Greeklish 

Non 

Greeklish 
Greeklish 

Non 

Greeklish 

accuracy 0.88 0.88 0.95 0.95 0.99 0.99 

precision 0.76 0.91 0.72 0.98 0.88 1 

F1 score 0.82 0.86 0.82 0.96 0.93 0.99 

 

 

 

3.5 Live Online Classifiers 

The Weka Naive Bayes Classifier can be tested live at the following link, 

http://195.251.252.39/rebelos/naivebayes.php or by using the following QR code: 

 

The Weka SMO Greeklish classifier can also be tested live at the following link, 

http://195.251.252.39/rebelos/smo.php or by using the folling QR code: 
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4  

The Most Influential Users 

 

4.1 Introduction 

In this section we are going to present an algorithm for finding the influential users among a 

community. We were motivated by the fact that advertisers want to find the set of users in a 

certain community who are much more capable of affecting the rest or even a satisfactory 

subset of the whole community.  This is a policy, which is adopted by an increasing number 

of advertising agencies in order to make their products known to the public with very low 

advertising cost.  The algorithm that we are going to present was introduced by Konstantina 

Galvogini in “Crawling and Analysis of Social Network data” [R5].  This algorithm presented 

promising results in defining the set of most influential users in a community. 

The only other paper [R6], which uses a definition of a user influence as a combination of the 

number of retweets and mentions to him and the number of his indegree has been made by 

Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto and Krishna P. Gummadi who 

measured user influence in Twitter using a large amount of data collected from Twitter.  They 

presented an in depth comparison of three measures of influence: indegree, retweets and 

mentions. Their observations were the following.  Firstly, popular users who have high 

indegree are not necessarily influential in terms of spawning retweets or mentions.  Secondly, 

most influential users can hold significant influence over a variety of topics.  And thirdly, 
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influence is not gained spontaneously or accidentally, but through concerted effort such as 

limiting tweets to a single topic. 

First of all, we are going to define the concept of influence that a user has in a community. 

Then, we will present the algorithm and its complexity in the worst case. Finally, we will 

discuss the results of our algorithm and we will compare them with other influence metrics. 

 

4.2 Algorithm Analysis  

Here, we present the definition of Influence using a different approach.  A user can affect 

those users who can read his tweets.  For each user we calculate his Influence set that consists 

of the users who he affects.  So someone’s Influence set is defined by the following sets: 

1. Followers 

2. Retweeters 

3. Followers of retweeters 

 

We calculate the Influence set for each user and we run a variation of Greedy Set Cover.  We 

have to remind that the previous algorithm is implemented upon a set of nodes, which is 

called universe, with each node having a cover set.  Its output is the minimum set of nodes 

that covers the entire universe.  In this case, the universe is the set of users and each node’s 

set is the influence set of each user. 

The Algorithm: 

1. Find the user with the greatest influence in the set of all our users 

2. Remove the users that this user influences 

3. Repeat the first step in the new user set, until a number of influential users or until an 

adequate cover of the graph 

 

Pseudocode of Algorithm for finding m Influential users: 

Sj: the influence set of node j where (1 ≤ j ≤ n) 

for (int i=1; i<m; i++){ 

find node j with largest influence set Sj  

for each k in Sj { 

/* remove k from influence sets of all other nodes */ 

for (inth=1; h<n; h++){ 

Sh = Shfflk; 

} 

} 

Outputj; 

 } 
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Next we are going to give a detailed interpretation of the pseudocode.  As mentioned above 

every user has his influence set, which is defined by subsets of the origin set of community.  

User’s influence set consists of three different subsets, the set of his followers, his retweeters 

and the followers of his retweeters.  Therefore, we first find the influence set for every user in 

the graph.  We check the first user with the biggest influence set and we keep him as the more 

influential user.  In order to find the rank of the rest users in the community we remove every 

user who exists in the first user’s influence set from the influence sets of the other users.  

When all the users of the first influence set are removed from the rest influence sets, we now 

find the user with the biggest influence set and we remove him from our universe.  Then we 

take his influence set and follow the same procedure as we did for the first user in rank.  Our 

algorithm is parametric, as the number of the first m influential users can be given as 

parameter.  Thus, the output of the algorithm is the rank of influential user in a certain 

community and the sets of users that they contribute to the final result. 

If we want to answer a question like: ”How many “advertising gifts” are needed to cover all 

users? ”, we have to take into account that it is a hard problem and it belongs to NP-Complete 

problems.  The algorithm is a greedy variation and more certain than the Greedy set cover 

algorithm. So, we know it cannot be worse than O (OPT*logn), where OPT is the minimum 

set of advertising gifts needed to cover all users. 

 

4.3 Results 

We decided to test the algorithm on a specific set of users to make the experiment more 

meaningful.  The feature of the user set that we are going to use is the geographic location.  

This information can be extracted from the user’s personal information or from user tweet’s 

location.  The user’s personal information is just a declaration, a field that the user fills in, but 

the location where the user tweets is more substantive.  That is the reason why we selected to 

set the user’s location by their tweet’s location. 
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Using the streaming API with the geo-location filter set on Greece, we have gathered users 

that tweeted in territorial Greece.  Then we partitioned the users according to geographical 

regions depending on their tweets’ location, and gathered all the necessary input data 

(followers, retweeters and followers of retweeters) for these users that are required to run the 

algorithm. 

The following table displays the algorithm’s results on users that have tweeted in the 

geographical region of Attica.  We have calculated their influence in this set of users and 

extracted the M influential users according to the method. We compare our influence metric 

against the widely accepted influence ranking system, Klout.  Klout is a service that provides 

social media analytics to measure a user's influence across his or her social network. The 

analysis is done on data taken from sites such as Twitter, Facebook, and Google+, and 

measures the size of a person's network, the content created, and purports to measure how 

other people interact with that content. 

 

RANK User ID User Name Influence Klout Rank User Category 

0 575558887 avraampapas 3793 58.3611 retweeter 

1 237719164 kanekos69 1312 60.6986 retweeter 

2 448264593 GOULIELMOS_ 727 40.9131 retweeter 

3 591744503 frerakos 465 61.9871 retweeter 

4 355422767 nikosp20 220 56.4131 retweeter 

5 15841461 prezatv 190 55.7631 geo + retweeter 

6 108365678 Nektarios_ 158 53.7477 geo 

7 56812543 dpapangel 123 57.5559 retweeter 

8 181698945 nikosofficiel 118 81.691 retweeter 

9 297049579 jonagiu12 107 49.8503 geo 
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From the results we can see that the in-group influence is not proportional with the Klout 

rank.  Also the two ranked influence metrics do not share a monotonic relationship.  This is 

the reason why this algorithm is important when trying to identify influential users in a 

specific group.  If we had selected the most influential users via the Klout rank, we would not 

have gotten as much coverage over the group that we were interested in, and the field of 

influence of the selected users would overlap. 

Another thing that is worthy of mentioning is the user category of most influential users.  We 

would have never guessed that retweeters would have that much of an influence on a selected 

group.  That is why research should direct towards redefining the influence calculation 

process, in such ways as to include the retweet action. 
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5  

Metric for Unidentified Users 

5.1 The Uncategorized User Problem 

In the previous sections we have analyzed ways to collect users from twitter that use the 

Greek language or Greeklish in the tweets, they use geolocation tagging when tweeting, but 

we haven’t found a way to collect those who tweet in another language and do not use 

geolocation in their tweets.  In order to complete our thesis subject we have to efficiently 

address that problem too.  We call it «the Uncategorized User Problem». 

 

5.2 The “Following” Metric 

Since there is not any other primal information that we can pump from twitter, from which the 

location of the user can be extracted, we had to find another way to assume the location of a 

user.  The idea is that the user’s "nationality" can be identified by the user’s connections to 

groups of already identified users.  In every user connection (followers, friends’ connections) 

underlies information about real life connections between users.  So, by identifying how much 

connected a user is to a specific group of users, in comparison to the connectivity that users of 

the group have with the whole group, will provide a meaningful metric about the “distance” 

of a user from a group. 
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The user connection we have selected for this metric is the friend connection.  Twitter friends 

are the users that a user chooses to follow.  This is a more powerful connection than the user’s 

followers, because users follow other users: 

•  when their tweets have value for them (twitter authority) 

• when they have a real life connection 

The “following” metric is defined as: 

 

 

 

The basic properties of this metric are: 

• As the number gets bigger, the user’s connection with a group gets stronger 

• It is a way to convert the following edges to a meaningful number 

• As the group of users gets bigger, the metric’s “value” gets stronger 

 

5.3 Testing the metric 

To test the validity of our new metric we had to use it on a real set of users.  First we have to 

see how this metric behaves for users that belong to a group, and then for the users outside a 

group.  This way we are going to set a threshold for the metric value that will determine if the 

user belongs to this group or not. 

 

5.3.1 Tuning 

For our tuning set we have used all the users that we have collected, which use the Greek 

language for tweeting and also tweet in Greece’s geographical area (geolocation).  

The metric for users that have already been classified as Greek (3630 users): 

• Average:  0.07154 

• Standard deviation:  0.0804 

 

For our test set we have used users that we had collected using geolocation, in places near 

Greece’s boarder.  We have selected this dataset to take advantage of Twitter’s API bug, 

through which not all of results using geolocated filter are in the filtered area.  For instance, 
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when collecting tweets from Rhodes island, many of the tweets that were pulled were located 

in Turkey. 

The metric for the “candidate” users (4339 users): 

• Average:  0.00091 

• Standard deviation:  0.00728 

 

At this point we made an observation to the candidate users’ metric:  in most of the non-

Greek users this metric’s value is zero.  We have used this value as our classification 

threshold: 

• When the metric is 0, classified as non-Greek user 

• When the metric is not 0, classified as Greek user 

 

5.3.2 Results 

  

 Actual 

Greek Non Greek 

Predicted 

Greek 86 42 

Non Greek 27 4184 

 

 

 Greek Non Greek 

accuracy 0.98 0.98 

precision 0.76 0.99 

F1 score 0.86 0.99 
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5.3.3 Conclusions 

For a preliminary test of the metric in small set, the classification results are very good.  The 

basic problem is that precision of detecting the Greek users is relatively low.  But we believe 

that in a larger Greek set of users, the precision results will possibly go better.  When the set 

of identified users with a common attribute gets bigger, so does the connectivity between the 

users.  A candidate user for this group, who belongs to this group, will have more connection 

to the group, as the group gets bigger. 
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6  

Conclusion 

6.1 Summary and Results 

In this paper we have combined all the characteristics of the Twitter social network to create 

algorithms and tools to provide an accurate prediction of a user’s nationality.  We presented a 

system that can collect twitter information from users depending on their nationality, that uses 

all Twitter APIs, and that its collect rate is amplified through the Tor network.  To identify 

users that tweet in informal languages like Greeklish (Greek language using the Latin 

alphabet), we developed three efficient classifiers, based either on a Greeklish Convertor 

either on the Weka machine learning software.  We have also tested the Konstantina 

Galbogini’s “M Influential Users” algorithm on a set of users from a specific geographic area, 

and validated the algorithm’s importance to determine the maximum field of influence to a set 

of users.  Finally we presented a new metric that defines a user’s distance from a group of 

users, in order to be able to categorize users that their information does not give out their 

nationality. We computed this metric and used it for classification of a set of users that are 

difficult to categorize, and through this process we explored some of its potentials.  
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6.2  Future work 

In this last section we will defile the future work that should be done, to expand our research.  

The future work can be divided in two main pillars:   

 

Advance the research work  

• Expand the tweets’ dataset, to create better Weka classifiers. 

As bigger as the training set gets, the more accurate results the clasiffier gives. 

• Test the influential algorithm in more geographical areas. 

• Test the “Following” metric’s value and it’s features in larger user sets, 

 

Upgrade the data collection system 

• Create a new queue system with which the graph's evolution in time would be easily 

represented when required. 

• Multithreading integration throughout the system, in order to make the system faster. 

• Integrate the Twitter REST API v1.1 to the system and explore ways to make the 

collection rate faster. 

 



 

35 

7  

Appendix 

[A1] REST API Resources 

 

It has many resources but we will show the most important for us that we used in crawling 

process. The categories are Timelines, Search, Tweets, Direct Messages, Friends & 

Followers, Users, Suggested Users, Favorites, Lists, Accounts, Notification, Saved Searches, 

Places & Geo, Trends, Block, Spam Reporting, OAuth, Help, Legal and Deprecated. 

 

Timelines 

Timelines are collections of Tweets, ordered with the most recent first. 

• GET statuses/home timeline:Returns the most recent statuses, including retweets if 

they exist, posted by the authenticating user and the users they follow. 

• GET statuses/mentions: Returns the 20 most recent mentions (status containing 

@username) for the authenticating user. 

• GET statuses/retweeted by me: Returns the 20 most recent retweets posted by the 

authenticating user 

• GET statuses/retweeted to me: Returns the 20 most recent retweets posted by users 

the authenticating user follow. 

• GET statuses/retweets of me: Returns the 20 most recent tweets of the authenticated 

user that have been retweeted by others. 
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• GET statuses/user timeline: Returns the 20 most recent statuses posted by the 

authenticating user. 

• GET statuses/retweeted to user: Returns the 20 most recent retweets posted by users 

the specified user follows. 

• GET statuses/retweeted by user: Returns the 20 most recent retweets posted by the 

specified user. 

 

Tweets 

Tweets are the atomic building blocks of Twitter, 140character status updates with additional 

associated metadata. People tweet for a variety of reasons about a multitude of topics. 

• GET statuses/s:id/retweeted by: Show user objects of up to 100 members who 

retweeted the status.  

• GET statuses/:id/retweeted by/ids: Show user ids of up to 100 users who retweeted  

the status. 

• GET statuses/retweets/:id: Returns up to 100 of the first retweets of a given tweet. 

• GET statuses/show/:id:Returns a single status, specified by the id parameter below. 

The status’s author will be returned inline. 

• POST statuses/destroy/:id: Destroys the status specified by the required ID parameter. 

• POST statuses/retweet/:id: Retweets a tweet. Returns the original tweet with retweet 

details embedded. 

• POST statuses/update: Updates the authenticating user’s status, also known as 

tweeting. 

• POST statuses/update with media: Updates the authenticating user’s status and 

attaches media for upload. 

• GET statuses/oembed: Returns information allowing the creation of an embedded 

representation of a Tweet on third party sites. 

 

Search 

Find relevant Tweets based on queries performed by your users. 

• GET search: Returns tweets that match a specified query. 

 

Friends & Followers 

Users follow their interests on Twitter through both one-way and mutual following 

relationships. 
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• GET followers/ids: Returns an array of numeric IDs for every user following the 

specified user. 

• GET friends/ids: Returns an array of numeric IDs for every user the specified user is 

following. 

• GET friendships/exists: Test for the existence of friendship between two users. 

• GET friendships/incoming: Returns an array of numeric IDs for every user who has a 

pending request to follow the authenticating user. 

• GET friendships/outgoing: Returns an array of numeric IDs for every protected user 

for whom the authenticating user has a pending follow request. 

• GET friendships/show: Returns detailed information about the relationship between 

two users. 

• GET friendships/no retweet ids: Returns an array of user ids that the currently 

authenticated user does not want to see retweets from. 

• POST friendships/create: Allows the authenticating users to follow the user specified 

in the ID parameter. Returns the befriended user in the requested format when 

successful. 

• POST friendships/destroy: Allows the authenticating users to unfollow the user 

specified in the ID parameter. Returns the unfollowed user in the requested format 

when successful. 

• GET friendships/lookup: Returns the relationship of the authenticating user to the 

comma separated list of up to 100 screen names or user ids provided. 

• POST friendships/update: Allows one to enable or disable retweets and device 

notifications from the specified user. 

 

 

[A2] n-Gram Language Models for Text Classification 

 

In the fields of computational linguistics and probability, an n-gram is a contiguous sequence 

of n items from a given sequence of text or speech.  An n-gram could be any combination of 

letters.  However, the items in question can be phonemes, syllables, letters, words or base 

pairs according to the application.  The n-grams typically are collected from a text or speech 

corpus. 

Human languages invariably have some words which occur more frequently than others. One 

of the most common ways of expressing this idea has become known as Zipf’s Law, which 

we can re-state as follows: 
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The nth most common word in a human language text occurs with a frequency inversely 

proportional to n. 

The implication of this law is that there is always a set of words which dominates most of the 

other words of the language in terms of frequency of use. This is true both for words in 

general, and for words that are specific to a particular subject. Furthermore, there is a smooth 

continuum of dominance from most frequent to least. The smooth nature of the frequency 

curves helps us in some ways, because it implies that we do not have to worry too much about 

specific frequency thresholds. This same law holds, at least approximately, for other aspects 

of human languages. In particular, it is true for the frequency of occurrence of N-grams, both 

as inflection forms and as morpheme-like word components which carry meaning. (See 

Figure 1 for an example of a Zipfian distribution of N-gram frequencies from a technical 

document.) Zipf’s Law implies that classifying documents with N-gram frequency statistics 

will not be very sensitive to cutting off the distributions at a particular rank. It also implies 

that if we are comparing documents from the same category they should have similar N-gram 

frequency distributions. 

An n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, a 

"digram"); size 3 is a "trigram".  Larger sizes are sometimes referred to by the value of n, e.g., 

"four-gram", "five-gram", and so on. 
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8  

Glossary 

[G1] API 

An application programming interface (API) is a protocol intended to be used as an interface 

by software components to communicate with each other.  An API is a library that may 

include specification for routines, data structures, object classes, and variables. 

 

[G2] Geolocation 

Geolocation is the identification of the real-world geographic location of an object, such as a 

radar, mobile phone or an Internet-connected computer terminal.  Geolocation may refer to 

the practice of assessing the location, or to the actual assessed location.  Geolocation is 

closely related to the use of positioning systems but can be distinguished from it by a greater 

emphasis on determining a meaningful location (e.g. a street address) rather than just a set of 

geographic coordinates. 

 

[G3] Accuracy 

In the fields of science, engineering, industry, and statistics, the accuracy of a measurement 

system is the degree of closeness of measurements of a quantity to that quantity's actual (true) 

value.  It is the proportion of true results (both true positives and true negatives) in the 

population.  
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[G4] Precision 

In the fields of science, engineering, industry, and statistics, the precision of a measurement 

system, also called reproducibility or repeatability, is the degree to which repeated 

measurements under unchanged conditions show the same results. Precision or positive 

predictive value is defined as the proportion of the true positives against all the positive 

results (both true positives and false positives). 

 

 

 

 

[G5] F1 score 

The F1 score (also F-score or F-measure) is a measure of a test's accuracy. It considers both 

the precision p and the recall r of the test to compute the score: p is the number of correct 

results divided by the number of all returned results and r is the number of correct results 

divided by the number of results that should have been returned. The F1 score can be 

interpreted as a weighted average of the precision and recall, where an F1 score reaches its 

best value at 1 and worst score at 0. 

The traditional F-measure or balanced F-score (F1 score) is the harmonic mean of precision 

and recall: 

 

. 

 

[G6] Representational state transfer 

Representational state transfer (REST) is a coordinated set of architectural constraints that 

attempts to minimize latency and network communication while at the same time maximizing 

the independence and scalability of component implementations. This is achieved by placing 

constraints on connector semantics where other styles have focused on component semantics. 

REST enables the caching and reuse of interactions, dynamic substitutability of components, 

and processing of actions by intermediaries, thereby meeting the needs of an Internet-scale 

distributed hypermedia system. 
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