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Abstract: This study develops and implements methods for analyzing 
whether introducing new securities or relaxing investment constraints 
improves the investment opportunity set for risk averse investors. We 
develop a statistical test procedure for ‘stochastic spanning’ for two nested 
polyhedral portfolio sets based on subsampling and Linear Programming. 
The test is statistically consistent and asymptotically exact for a class of 
weakly dependent processes. Using this test, we accept market portfolio 
efficiency but reject two-fund separation in standard data sets of historical 
stock market returns. The divergence between the test results for the two 
hypotheses illustrates the role for higher-order moment risk in portfolio 
choice and challenges representative-investor models of capital market 
equilibrium. 
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1. INTRODUCTION 

Stochastic Dominance (SD) is a mathematical order on prospects based on 
general regularity conditions for decision making under risk (Quirk and 
Saposnik (1962), Hadar and Russell (1969), Hanoch and Levy (1969)). It can be 
seen as a model-free alternative to mean-variance (M-V) dominance that applies 
also for non-normal probability distributions and non-quadratic utility functions. 
SD is traditionally applied for comparing a pair of given prospects, for example, 
two income distributions or two medical treatments. Davidson and Duclos 
(2000), Barrett and Donald (2003) and Linton, Maasoumi and Whang (2005), 
among others, develop statistical tests for pairwise SD. 

A more general, multivariate problem is that of testing whether a given 
prospect is stochastically efficient relative to all mixtures of a discrete set of 
alternatives (Bawa et al. (1985), Shalit and Yitzhaki (1994), Post (2003), 
Kuosmanen (2004), Roman, Darby-Dowman and Mitra (2006)). This problem 
arises naturally in applications of portfolio theory and asset pricing theory, 
where the mixtures are portfolios of financial securities. Post and Versijp (2007), 
Scaillet and Topaloglou (2010) and Linton, Post and Whang (2014) address this 
problem using various statistical methods. Their stochastic efficiency tests can 
be seen as model-free alternatives to tests for M-V efficiency, such as Gibbons, 
Ross and Shanken (1989). 

This study introduces the related concept of ‘stochastic spanning’ and 
develops methods for implementing this new concept. Spanning occurs if 
introducing new securities or relaxing investment constraints does not improve 
the investment opportunity set for a given class of investors. Stochastic spanning 
can be seen as a model-free alternative to M-V spanning (Huberman and Kandel 
(1987)) that accounts for higher-order moment risk in addition to variance.  

Accounting for higher-order risk arguably is more relevant for analyzing 
spanning than for efficiency. Efficiency tests are typically applied to a given 
broad market index with limited higher-order moment risk (at the typical 
monthly to annual return frequency), in which case the arguments of Levy and 
Markowitz (1979) for the mean-variance approximation are compelling. By 
contrast, a spanning test evaluates all feasible portfolios, including those 
concentrated in a small number of assets, and can therefore be more strongly 
affected by higher-order moment risk.  

We propose a theoretical measure for stochastic spanning for two nested 
polyhedral investment opportunity sets and derive the exact limit distribution 
for the associated empirical test statistic for a general class of dynamic 
processes. In addition, we develop consistent and feasible test procedures based 
on subsampling and Linear Programming (LP). 

Spanning involves the comparison of two choice sets. Pairwise dominance 
analysis and portfolio efficiency analysis are special cases that assume that one 
or two of the choice sets is a singleton. In this respect, we expect that our 
inference and optimization methods have a wider applicability for SD analysis. 

Our focus is on the most common SD criterion of second-order stochastic 
dominance (SSD), the economic interpretation of which is well established in 
terms of expected utility theory and Yaari’s (1987) dual theory of risk. 
Extensions to the first-order rule (FSD) and third-order rule (TSD) would 
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require large-scale mixed-integer programs and quadratic programs, 
respectively, which are computationally demanding when embedded in re-
sampling routines. 

We apply the stochastic efficiency and spanning tests to standard data 
sets of historical stock returns from the empirical asset pricing literature, for 
which we accept market portfolio efficiency but reject two-fund separation. By 
Tobin’s (1958) separation theorem, these two concepts are equivalent under a 
multivariate normal distribution and therefore the divergence of our two sets of 
test results suggests an important role for higher-order moment risk in portfolio 
choice. The rejection of two-fund separation also casts doubt on representative 
investor models of capital market equilibrium.  

Furthermore, the application also illustrates that the proposed 
resampling scheme and mathematical programs are computationally feasible 
with modern-day computer hardware and solver software for the typical 
problem dimensions. The total run time of all computations for our application 
amounts to several working days on a standard desktop PC with a 2.93 GHz 
quad-core Intel i7 processor, 16GB of RAM and using MATLAB with the external 
Gurobi Optimizer solver. 

 
 

2. STOCHASTIC EFFICIENCY 

The investment universe consists of   assets with random investment returns 
  (     )     with compact support   , ,  -,         . The 

investment opportunity set is assumed to be an  -simplex   *      1    
1+. We may deal with a more general polytope       by replacing the convex 
hull of the assets with the convex hull of the vertices of   . To allow for dynamic 
intertemporal choice problems, the base assets could be periodically rebalanced 
portfolios of individual securities.  

Let      , ,1- denote the continuous joint c.d.f. of   and  ( ,  )  
∫1(     )  ( ) the c.d.f. for portfolio    . In order to define stochastic 
dominance and stochastic efficiency, we use the following integrated c.d.f.: 

 ( )( ,  )  ∫ ( ,  )   

 

  

 ∫(   )   ( ,  ) 

 

  

  (2.1) 

This measure corresponds to Bawa’s (1975) first-order lower-partial moment or 
expected shortfall for return threshold    . 

 
DEFINITION 2.1 (WEAK STOCHASTIC DOMINANCE): Portfolio     weakly second-
order stochastically dominates portfolio    , or     , if  
 

 ( ,  ,  ;  )        ; (2.2) 
 ( ,  ,  ;  )   ( )( ,  )   ( )( ,  ); (2.3) 

 
 

Weak stochastic dominance does not occur, or     , if  ( ,  ,  ;  )    for 
some    . 
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DEFINITION 2.2 (STRICT STOCHASTIC DOMINANCE): Portfolio     strictly second-
order stochastically dominates portfolio    , or     , if  
 

(    )  ( ( ,  ,  ;  )    for some    )  (2.4) 
 
Strict stochastic dominance does not occur, or     , if 
(    )  ( ( ,  ,  ;  )        )  
 
Stochastic dominance is a preorder rather than a partial order, because two 
distinct portfolios (   ) may be equivalent (             ), which 
violates the antisymmetric property; (    ) (    )     . Furthermore, 
dominance is not a total order, as a pair of portfolios may be incomparable, that 
is,  ( ,  ,  ;  )    for some     and  ( ,  ,  ;  )    for some other    . 
Strict dominance is the irreflexive part of the preorder, as a given portfolio does 
not strictly dominate itself (    ). 
  
DEFINITION 2.3 (STOCHASTIC EFFICIENCY): Portfolio     is second-order 
stochastically efficient if it is not strictly second-order stochastically dominated 
by any feasible portfolio:              Stochastic inefficiency occurs if 
          . 
 
We denote the set of all stochastically efficient portfolios by  ( )  
*                +. In mathematical order theory,  ( ) amounts to the set 
of maximal elements. 

 ( ) is a model-free generalization of the M-V efficient set, which is based 
on the assumption of a normal probability distribution or a quadratic utility 
function. For important families of parametric distributions,  ( ) is a proper 
subset of the M-V efficient set (Ali (1975)). For these distributions, the M-V set is 
larger than  ( ) because the M-V rule can assign an economically irrational 
weight to variance. In general, however, the two efficient sets are not nested, 
because the mean and the variance do not capture all lower partial moments 
 ( )( ,  ),    . 

The above definition of stochastic efficiency should not be confused with 
an alternative definition by Scaillet and Topaloglou (2010, henceforth ST2010), 
which we label here as ‘stochastic super-efficiency’  
 
DEFINITION 2.4 (STOCHASTIC SUPER-EFFICIENCY): Portfolio     is second-order 
stochastically super-efficient if it weakly second-order stochastically dominates 
all feasible portfolios, or              Stochastic super-efficiency does not 
occur if           . 
 
We denote all super-efficient portfolios by  ( )  *                +. In 
order theory,   ( ) amounts to the set of greatest elements rather than the set of 
maximal elements. Clearly, stochastic super-efficiency gives a sufficient condition 
for stochastic efficiency; (           )  (           ), or  ( )   ( ). 
The reverse is not true, as all superefficient portfolios must be equivalent and 
comparable, whereas efficient portfolios may be non-equivalent or 
incomparable.  
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The super-efficient set is either equal to the efficient set   ( ( )   ( )) or 

empty ( ( )   ). In our applications, the efficient set generally has non-
equivalent and incomparable elements, and therefore  ( )   . For example, an 
efficient portfolio that maximizes expected return generally takes a concentrated 
position in the individual asset with the highest mean. By contrast, an efficient 
portfolio that minimizes semi-variance generally takes a diversified position in 
multiple risky assets or a position in a risk-free asset. 

 
 

3. STOCHASTIC SPANNING 

Despite its restrictiveness, the notion of stochastic super-efficiency can be 
generalized to a useful notion of stochastic spanning for comparing two nested 
choice sets: 
 
DEFINITION 3.1 (STOCHASTIC SPANNING): Portfolio set   is second-order 
stochastically spanned by a non-empty polyhedral subset     if all portfolios 
    are weakly second-order stochastically dominated by some portfolios 
   : 
 

(         K)      
 (( ( ,  ,  ;  )        )     K)       

 
(3.1) 

 
Stochastic spanning does not occur if 
 

(          K)       
 (( ( ,  ,  ;  )       )      K)        

 
(3.2) 

 
We can view the spanning relation as an SSD order-preserving reduction of the 
portfolio opportunity set. We will let  ( )  *K    (         K)     + 
denote all relevant subsets that span  . Spanning occurs if and only if K   ( ). 
 ( ) is non-empty because it includes at least   ; a span K   ( ) may itself be 
spanned by another span K   (K)   ( ). This study analyzes a given subset 
K   . In other applications, it may be interesting to find an irreducible span  
   ( ), so that    (K).  However, there generally exist multiple irreducable 
spans due to the possibility that two distinct portfolios have equivalent returns. 
 The following result clarifies the relation between stochastic spanning 
and stochastic efficiency: 
 
PROPOSITION 3.1: Stochastic spanning occurs if the enlargement (  K) does not 
change the efficient set, that is,  
 

K   ( )   ( )  K  (3.3) 
 
The reverse relation generally does not hold, because the weak dominance 
relation does not possess the antisymmetric property. Specifically, the condition 
 ( )  K does not allow that two portfolios ( ,  )   ( )  (  K) are 
equivalent (       ), whereas the condition K   ( ) does allow 
equivalence. In other words,  ( ) always spans  , but it may be reducable by 
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excluding equivalent elements. Consequently,  ( )  K is a sufficient but not 
necessary condition for K   ( ). In addition, the sufficient condition  ( )  K 
is not practical, because  ( ) generally is non-convex and disconnected, which 
makes it difficult to identify all its elements and test the sufficient condition 
directly. On the contrary, a small polyhedral span K   ( ) could be used as a 
practical approximation to the intractable efficient set  ( ). 
 We use the following scalar-valued functional of the population c.d.f. as a 
degree measure for deviations from stochastic spanning: 
 

 ( )  sup
   
 inf
   
  sup
   
  ( ,  ,  ;  )  (3.4) 

 
The outer maximization searches for a feasible portfolio     that is not weakly 
dominated by a portfolio    . If  ( )   , then no such portfolio exists and   
spans  ; if  ( )   , then stochastic spanning does not occur.  
 
REMARK 3.1: Stochastic super-efficiency (           ) occurs as the special 
case of stochastic spanning with   * +,    . In this case, our degree measure 
reduces to 
 

 ( )  sup
   
 sup
   
  ( ,  ,  ;  )  (3.5) 

  
REMARK 3.2: Since  ( ,  ,  ;  )    ,       -, we find the following lower 
bound for the stochastic spanning measure: 
 

 ( )  sup
   
 inf
   
  ( ,  ,  ;  ) 

 sup
   
 inf
   
   ,       -  

 

(3.6) 

 
To further clarify the economic meaning of the notion of stochastic spanning, it is 
useful to formulate it in terms of expected utility:  
 
PROPOSITION 3.2: The stochastic spanning measure (3.4) can be reformulated as 
follows: 
 

 ( )  sup
   ;
   

 inf
   
  ( ,  ,  ;  ); (3.7) 

 ( ,  ,  ;  )  ∫  ( ) ( ,  ,  ;  )
 

 
  ; (3.8) 

  {    , ,1- ∫  ( )   1
 

 
}  (3.9) 

 
Alternatively, 
 

 ( )  sup
   2;
   

 inf
   
   , (   )   (   )-; (3.10) 
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    {      ( )  ∫  ( ) ( ;  )  
 

 
      } ; (3.11) 

 ( ;  )  (   )1(   ), ( ,  )   2  (3.12) 

 
In this formulation,    is a set of normalized, increasing and concave utility 
functions that are constructed as convex mixtures of elementary Russell and Seo 
(1989) ramp functions  ( ;  ),    . Stochastic spanning ( ( )   ) occurs if 
no non-satiable and risk-averse investor      benefits from the enlargement 
(  K). Put differently, the additional restrictions have a shadow price of zero 
for all relevant investors. The lower bound (3.6) represents the potential benefit 
of the enlargement to a risk-neutral investor with utility function  ( )  (   ). 
In addition to clarifying the economic meaning of stochastic spanning, 
Proposition 3.2 will also prove useful for developing a consistent and feasible 
test procedure below.  
 Stochastic spanning can also be formulated in terms of mutual fund 
separation; in portfolio theory,  -fund separation occurs if all rational risk 
averters combine at most      distinct mutual funds (see, for example, Ross 
(1978)). Stochastic super-efficiency is the extreme (and generally impossible) 
case with a single mutual fund (  1). If we assume a multivariate normal 
distribution and free portfolio formation, then two-fund separation arises 
(  2). Our definition of stochastic spanning however allows for non-normality 
and investment restrictions. Using the Minkowski-Weyl Theorem, the nested 
portfolio set     can be represented as the convex hull of its  (K)     
vertices. Hence, in case of stochastic spanning, rational investors can limit their 
attention to combining the  (K) vertices of K, and    (K). 
 
 

4. NUMERICAL EXAMPLE 

Figure 1 illustrates the relevant concepts using a numerical example based on a 
discrete probability distribution with two equiprobable states (  1,2). We use 
both state-space diagrams and mean-standard deviation diagrams, in order to 
illustrate the difference between the SD and M-V criteria.  

Panel A and B are based on a single risky asset (  1) with gross 
investment returns (  ; ,   ; )  (  8, 1 2). The clear area contains all inefficient 
return vectors, which are stochastically dominated by (  8, 1 2), the grey areas 
contain the efficient vectors, which are not stochastically dominated by (  8, 1 2) 
and the dark grey area contains the stochastically super-efficient vectors, which 
stochastically dominate (  8, 1 2). It is clear that many of the super-efficient 
vectors do not M-V dominate (0.8, 1.2). Since the feasible set includes only a 
single asset, it obviously coincides with the set of efficient portfolios and the set 
of super-efficient portfolios in this example:    ( )   ( )  *1+. 

Panel C and D include two additional assets (  3) with gross 
investment returns (  ; ,   ; )  (  8, 2) and (  ; ,   ; )  (1, 1 5). The set of 

efficient vectors (grey area) and the set of super-efficient vectors (dark grey 
area) shrink substantially. The black line represents the edges of the feasible 
portfolio set   *               1+. The set of stochastically efficient 
portfolios is now given by  ( )  *        + and is a proper subset of the 
M-V efficient set    ( )  *        + *        +. Clearly, no feasible 
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portfolio dominates all     in this example and hence the set of super-efficient 
portfolios is empty;  ( )   . 

By definition, every superset of the efficient set  ( )  *        + 
spans the entire portfolio set   (see Proposition 3.1); for example, K  *  
       5+ spans  , or K   ( ). Furthermore, in this simple example without 
equivalent portfolios, no proper subset of  ( ) spans  . For example, 
K  *        ,      5+ does not span  ; K   ( ). If we set K  K , then 
it is easy to verify that the optimal solution for the spanning measure (3.4) is 
given by    (    1) ,    (    5   5)  and    1.00. We therefore find 
expected shortfall levels of  ( )(  ,   )       and  ( )(  ,   )    1 , and the 
spanning measure amounts to  ( )   (  ,   ,   ;  )  (  1      )    1 . 
Clearly, spanning does not occur. In this case, the optimal utility function in 
(3.10) is simply   ( )   ( ; 1)  (  1)1(  1). 

[Insert Figure 1 about here.] 
 
 

5. SPANNING TEST STATISTIC 

In empirical applications, the c.d.f.   is latent and the analyst has access to a 
discrete time series of realized returns    (  )    ,     ,   1, ,  . We 
make the following general assumptions on the multivariate return process: 
 
ASSUMPTION 5.1: (i) The return sequence (  )     is  –mixing with mixing 

coefficients (  )     such that     (   ) for some   1. (ii) Furthermore, the 
covariance matrix  

  ,(     ,  -)(     ,  -) -  2∑  ,(     ,  -)(     ,  -) -
 

   

 

is positive definite. 
 
Let   ( )     ∑ 1(    ) 

    denote the empirical joint c.d.f. constructed 
from the sample   . The multivariate empirical process CLT for strongly mixing 

sequences implies that √ (    ) weakly tends to the Gaussian process 
       with covariance kernel given by 

   (  ( ),   ( ))  ∑    (1(    ), 1(    ))    and almost surely 
uniformly continuous sample paths defined on     (see Thm 7.3 of Rio (2000)). 

We consider the following scaled empirical analogue of (3.7) as a test 
statistic for stochastic spanning: 

 

   √  (  )  √ sup
   
 inf
   
  sup
   
  ( ,  ,  ;   ) (5.1) 

 √ sup
   ;
   

 inf
   
  ( ,  ,  ;   )  (5 1’) 

  
REMARK 5.1 If the portfolio set   is a singleton, or K  * +,    , then we obtain 
the super-efficiency test of ST2010;    √ sup

   
 sup
   
  ( ,  ,  ;   ). Our results 

below thus also apply to the ST2010 test.  



9 
 

 
REMARK 5.2 If the portfolio set   is a singleton, or   * +, then we obtain a test 
for stochastic efficiency that resembles the test of Linton et al. (henceforth 
LPW2014);    √ inf   

  sup
   
  ( ,  ,  ;   )  This is however not a proper spanning 

test statistic, as K   . 
 
We use the test statistic    to test the null hypothesis of stochastic spanning, 
    ( )   , against the alternative hypothesis of no stochastic spanning, 
    ( )   . To derive the limit distribution of the test statistic under the null, 
we first introduce some additional notation. Under the null, the set       
can be partitioned into the following two subsets: 
 

   {( ,  )    inf
   
  ( ,  ,  ;  )   } ; (5.2) 

   {( ,  )    inf
   
  ( ,  ,  ;  )   }  (5.3) 

 
Since    , we find     . In addition, for any ( ,  )   ,   can be decomposed 
into the following two subsets: 
 

K( , )
  *  K  ( ,  ,  ;  )   +   ( ,  )   ; (5.4) 

K( , )
  *  K  ( ,  ,  ;  )   +   ( ,  )     (5.5) 

 
Under the null, we have that (( ( ,  ,  ;  )        )     K) for all    , 

and hence K( , )
    for all ( ,  )   .  

 
PROPOSITION 5.1: Under Assumption 5.1,  
(i)  ( ,  ,  ; √ (    ))   ( ,  ,  ;    ); 
(ii) oper

( , )   
oper 
    

 ( ,  ,  ; √ (    ))  oper
( , )  

oper 
   

 ( ,  ,  ;    ), 

where   denotes weak convergence; oper and oper  are sup or inf;    and   are 
measurable subsets of  such that     ;     and B are measurable subsets of  K 
such that     . 
 
The following proposition establishes the asymptotic distribution of the test 
statistic    under the null: 
 
PROPOSITION 5.2: If Assumption 5.1 holds and    is true, then 
 

      sup
( , )   

 inf
   ( , )

 
  ( ,  ,  ;   )  (5.6) 

 
 
COROLLARY 5.1: For the case of super-efficiency, or K  * +,     , we obtain the 
exact limit distribution of the ST2010 test statistic as the law of 
sup

( , )   
 ( ,  ,  ;   )  

 
We were able to also derive asymptotic unbiasedness for a class of non-trivial 
local alternative hypotheses. For the sake of compactness, we do not report these 
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additional results here and we focus on testing the null hypothesis of stochastic 
spanning (    ( )   ). 

Given the asymptotic null distribution in Proposition 5.2, we can develop a 
test procedure for stochastic spanning based on    and   . Let  (  , 1   ) 
denote the (1   ) quantile of the distribution of    for any significance level 
  - ,1,. Our decision rule is to reject    against    if and only if     (  , 1  
 ). Clearly this rule is infeasible due to the dependence of  (  , 1   ) on the 
latent c.d.f.  , however feasible decision rules can be obtained by using re-
sampling procedures to estimate  (  , 1   ) from the data. The next section 
develops a consistent subsampling procedure for this task.  
 
 

6. SUBSAMPLING PROCEDURE 

This section develops a subsampling procedure to estimate the distribution of    
similar to that proposed by LPW2014. The following (non-trivial) properties of 
the limit distribution are essential to motivate our use of subsampling, by 
allowing us to invoke established results of Politis et al. (1999): 
 
PROPOSITION 6.1: Under Assumption 5.1, (i) the distribution of   has support 
, ,   ,; (ii) the c.d.f. of   may have a jump discontinuity with a size of at most 
(    ) at zero; (iii) the c.d.f. of   is continuous on - ,   ,. 
 
To implement the subsampling procedure we begin by generating (     1 ) 
maximally overlapping subsamples of       consecutive observations, 

   ; ,  (  )   
      ,   1, ,      1, and compute test scores    ; ,  

√   (   ; , ) for each subsample, where    ; ,  denotes the empirical joint c.d.f. 

constructed from    ; , ,   1, ,      1. The distribution of subsample test 

scores can be described by the following c.d.f. and quantile function: 
 

  ,  ( )  
1

     1
∑ 1(   ; ,   )

      

   

; (6.1) 

  ,  (1   )  inf {    ,  
( )  1   }  (6.2) 

 
The decision rule is to reject the null     ( )    against the alternative 
    ( )    at a significance level of   - ,1, if and only if      ,  (1   ), or, 

equivalently, 1    ,  (  )   . 

 To establish the statistical properties of this subsampling procedure, we 
assume that the subsample size    and significance level are selected 
appropriately:  
 
ASSUMPTION 6.1: The positive sequence (  ), possibly dependent on (  )    , 
obeys 
 

 (        )  1, (6.3) 
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where (  ) and (  ) are deterministic sequences of natural numbers such that 
1        for all  ,      and         as    .  
 
ASSUMPTION 6.2: Let      ,     ( ), denote the number of vertices of   that 
are also included in  . The significance level obeys   1  (    ). 
 
Since   is a proper subset of  , we can safely assume that     ( ). The 
smaller the overlap between   and  , the higher the significance level that we 
can employ under Assumption 6.2. 

The following proposition shows that our test based on the subsample 
critical value is asymptotically exact and consistent: 
 
PROPOSITION 6.2: If Assumption 5.1, Assumption 6.1 and Assumption 6.2 hold, 
then we find the following asymptotic size and power properties: 
 

lim 
   

 (     ,  (1   )   )   ; (6.4) 

lim 
   

 (     ,  (1   )   )  1  (6.5) 

 
Although the test has asymptotically correct size, simulation exercises show that 
the quantile estimates   ,  (1   ) may be biased and sensitive to the subsample 

size    in finite samples of realistic dimensions (  and  ). To correct for small-
sample bias and reduce the senstivity to the choice of   , we propose a 
regression-based bias-correction method that is motivated by our observations 
from simulation exercises.  

For a given significance level  , we compute the quantiles   ,  (1   ) for 

a ‘reasonable’ range of the subsample size   . Next, we estimate the intercept 
and slope of the following regression line using OLS regression analysis:  

 
  ,  (1   )    ; ,      ; ,    (  )

     ;   ,    (6.6) 

 
Finally, we estimate the bias-corrected (1   )-quantile as the OLS predicted 
value for     : 
 

    (1   )   ̂ ; ,     ̂ ; ,    ( )    (6.7) 

 
Since   ,  (1   ) converges in probability to  (  , 1   ) and (  )   converges 

to zero as    ,  ̂ ; ,    converges in probability to  (  , 1   ) and the 

asymptotic properties are not affected. However, computational experiments 
show that the bias-corrected method is more efficient and more powerful in 
small samples. 
 The (block) bootstrap is an obvious alternative to subsampling. 
Proposition 5.2 is based on the properties of the partitions of   and   in (5.2)-
(5.5) and the behavior of the degree measure  ( ) on these subsets. Our analysis 
does not directly apply to the bootstrap, because the bootstrap re-centering is 
not with respect to the degree measure  ( ), but instead its empirical 
counterpart  (  ), which does not have the same behavior on the relevant 
subsets. We expect that it is possible based on our Proposition 3.2 to construct a 
bootstrap critical value that allows for a consistent test procedure (in the spirit 
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of Prop. 3.1 of ST2010), but that the procedure would be asymptotically 
conservative and less powerful than the subsampling approach under local 
alternative hypotheses. On the other hand, we also envisage cases where the 
bootstrap is more efficient in finite samples than subsampling, since each 
pseudo-sample utilizes the full sample information, rather than a subset of the 
observations. We leave the further development of a bootstrap test procedure 
for stochastic spanning for further research. 
 
 

7. COMPUTATIONAL STRATEGY 

In general computing the test statistic    is a challenging global optimization 
problem, but depending on the application, there are various alternative 
computational strategies available. Below, we outline two possible strategies, 
one for a small enlargement (   ) and another for a limited return interval 
(   )  
 If the enlargement (   ) is small, we may perform a quasi-Monte Carlo 
simulation and solve an embedded LP problem for every simulated portfolio 
  (   ). Specifically, we can use the following reformulation of (5.1): 
 

    √ inf
  (   )

   ( ); (7.1) 

  ( )  sup
   
  inf
   
  ( ,  ,  ;   )  (7.2) 

 
The embedded statistic   ( ) can be computed by solving an LP problem:  
  
PROPOSITION 7.1: The embedded test statistic   ( ) equals the optimal value of the 
objective function of the following LP problem in canonical form: 
 

max√   (7.3) 

           ∑  , 

 

   

   
( )(   ,  ),   1, ,  ; 

   ,           ,  ,   1, ,  ; 

∑  

 

   

 1; 

  ,   ,  ,   1, ,  ; 
    ,   1, , ; 

  free  
 

The linear program is reminiscent of existing programs for testing whether a 
given portfolio     is SSD efficient relative to portfolio set  ; see Post (2003), 
Kuosmanen (2004) and Roman, Darby-Dowman and Mitra (2006), among 
others. However, we analyze whether a portfolio     K improves the 
investment possibilities relative to a portfolio set K that does not include that 
portfolio. In addition, we use a different objective function, a Kolmogorov-
Smirnov type test statistic, and we derive and formulate our program in terms of 
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the empirical shortfall measures that form the building blocks of that objective 
function. 

Although the problem has  (    ) variables and constraints, for a 
specific portfolio   the computational burden is perfectly manageable with 
modern-day computer hardware and solver software for the typical data 
dimensions in empirical asset pricing research. Nevertheless, we need to solve 
the LP problem for a sufficiently large number of portfolios   (  K) and the 
computational burden will therefore explode if the enlargement (  K) is large. 
For example, in our application in Section 8, K is a 2-simplex and   is a 11-
simplex; this enlargement is too large to allow for an accurate and manageable 
discrete approximation. 

An alternative strategy seems more approporiate when the enlargement 
(  K) is large but the return range (   ) is limited. Using (3.10) and (5.1’), 

we find 
 

   √ sup
    

 (sup
   
    , ( 

  )-  sup
   
    , ( 

  )-)  (7.4) 

 
The term in parentheses is the difference between the solutions to two standard 
convex optimization problems of maximizing a quasi-concave objective function 
over a polyhedral feasible set. The analytical complexity of computing    stems 
from the search over all admissible utility functions (  ). However, the utility 
functions are univariate, normalized, and have a bounded domain ( ). As a 
result, we can approximate    with arbitrary accuracy using a finite set of 
increasing and concave piecewise-linear functions in the following way.  

We partition   into    equally spaced values as             , 

where      
   
    

(   ),   1, ,  ;    2. Instead of an equal spacing, 

the partition could also be based on percentiles of the return distribution. 

Similarly, we partition the interval , ,1-, as    
    

       
    

 1,    2. 

Using this partition, let 
 

   √ sup
    

(sup
   
    , ( 

  )-  sup
   
    , ( 

  )-) ; (7.5) 

   {      ( )  ∑   ( ;   )

  

   

     W} ; (7.6) 

W  {  { ,
1

   1
, ,

   2
   1

, 1}
  
 ∑  

  

   

 1}  (7.7) 

 
Every element of      consists of at most    linear line segments with knots at 

   possible outcome levels. Clearly,       and    approximates    from 

below as we refine the partition (  ,     ). The appealing feature of    is that 

we can enumerate all    
 

(    ) 
∏ (     1)
(    )
    elements of     for a given 
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partition, and, for every     , solve the two embedded maximization problems 

in (7.5) using LP: 
 
PROPOSITION 7.2: Let 

  ,  ∑(  ,      , )  

  

   

; (7.8) 

  ,  ∑   

  

   

; (7.9) 

  *  1, ,       +  *  +  (7.10) 
 
For any given     , sup      , ( 

  )- is the optimal value of the objective 

function of the following LP problem in canonical form: 
 

max   ∑  

 

   

 (7.11) 

     ,        , ,   1, ,  ;    ; 

∑  

 

   

 1; 

    ,   1, , ; 
   free,   1, ,    

 
The LP problem always has a feasible and finite solution and has  (   ) 
variables and constraints, making it small for typical data dimensions. Our 
application in Section 8 is based on the entire available history of monthly 
investment returns to a standard set of benchmark assets (  11,   1, 62), 

and uses    1  and    5. This gives    
 
  
∏ (4   ) 
    715 distinct 

utility functions and 2   1,43  small LP problems, which is perfectly 
manageable with modern-day computer hardware and solver software.  
 An alternative computational approach could build on the sufficient 
condition  ( )  K of Proposition 3.1 and the linear Karush-Kuhn Tucker (KKT) 
portfolio optimality conditions of Post (2003). Specifically, we could enumerate 
all feasible rankings of investment returns to efficient portfolios in K and, for 
every feasible ranking, solve an LP problem that searches for an anti-monotonic 
utility gradient vector that obeys the KKT conditions for K but violates the KKT 
conditions for  . This approach would however require an adjustment of the 
spanning measure (based on violations of the KKT condition rather than 
improvements in expected utility) and the statistical theory for the spanning test 
statistic. We leave this route for future research. 
 
 

8. EMPIRICAL APPLICATION 

This section applies efficiency and spanning tests to a standard data set of 
historical investment returns from the online data library of Kenneth French. 
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The relevant investment universe consists of   11 distinct base assets: the 
one-month T-bill and ten stock portfolios that are formed by classifying stocks 
based on the four-digit SIC industry code. Our market portfolio is the CRSP all-
share index. We use monthly value-weighted total returns from July 1926 to 
December 2014 (  1, 62).  
 Several features of these data justify our model-free approach to account 
for higher-order moment risk and time-series dynamics. Firstly, the return 
distribution appears non-normal, witness, for example, the skewness of -/-0.511 
and excess kurtosis of 1.813 of the market returns. In addition, the data show 
clear dynamic patterns; for example, the first-order auto-correlation coefficient 
for the market returns is 8.52 percent. The dimensions of the data set 
(  11,   1, 62) also seem favorable for our model-free approach.  

We find similar results as reported below in two sub-periods of roughly 
equal length, as well as for a second data set of ten portfolios formed on 
estimated market beta and a third data set of ten portfolios formed on market 
capitalization of equity (ME). We deliberately do not consider data sets of equal-
weighted returns and/or double-sorted portfolios that are formed on ME and a 
second stock characteristic in order to avoid a bias towards micro-cap stocks 
that would lead to a predictable rejection of our hypotheses and make the test 
results uninformative. For the same reason, we do not consider data sets of 
portfolios that are formed on price reversal and momentum patterns. 
 

8.1 Market portfolio efficiency 

We first analyze whether the market portfolio is stochastically efficient. 
Representative-investor models of capital market equilibrium predict that the 
market portfolio is efficient as a result of risk sharing in sufficiently complete 
markets, or aggregation across sufficiently homogenous investors in incomplete 
markets. Alternatively, a market portfolio efficiency test can be interpreted as a 
revealed preference analysis of those individual investors who adopt a passive 
strategy of broad diversification. 
 In this application,   consists of all convex combinations of the 11 base 
assets. There is no need to explicitly allow for short selling in this application, 
because the market portfolio has no binding short-sales restrictions.  

To test market portfolio efficiency, we use the LPW2014 test and for the 
sake of comparability, we embed the LPW2014 test in the same subsampling 
procedure as our spanning test. The four panels of Figure 2 illustrate our results.  

The optimal solution      consists of large positions in the non-durables 
industry (46%) and energy industry (42%) and small positions in the health 
industry (6%), telecom industry (5%) and T-bill (1%). In Panel A of Figure 2, the 
return PDF of    appears less risky than that of the market portfolio. Panel B 

shows the difference function  ( ,  ,   ;   ) for every return level      
, 25 15, 42  7-, from which it is clear that the market portfolio has a strictly 
higher expected shortfall than the solution portfolio for every return level 

    ; it follows that       . The value of the LPW2014 test statistic is     

√ min     ( ,  ,  
 ;   )    114. 

Panel C shows the de-cumulative subsampling distribution of the test 
statistic for subsample sizes    12  and    48 . Clearly, large values of the 
test statistic occur more frequently in smaller subsamples, which reiterates the 
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need to correct the quantile estimates for bias. Panel D shows the estimated OLS 
regression line (6.6) based on the empirical quantiles   ,  (1   ) for 

significance levels of      1 and     1  using various subsample sizes 
   ,12 ,48 -. Using (6.7), the regression estimate for the critical value for    is 
    (  9 )    37 , more than three times the full-sample value      114. 
Hence, we cannot reject market portfolio efficiency at conventional significance 
levels. 

[Insert Figure 2 about here.] 
 

8.2 Two-fund separation 

Our second research hypothesis is two-fund separation: do all rational risk 
averters combine the T-bill and the market portfolio? For a multivariate normal 
distribution, two-fund separation is equivalent to market portfolio efficiency, as 
a result of Tobin’s (1958) separation theorem  Without normality, one generally 
needs to assume that preferences are sufficiently similar across investors in 
order to justify two-fund separation (see, for example, Cass and Stiglitz (1970)). 
Our stochastic spanning test can analyze two-fund separation without assuming 
a particular shape for the return distribution or utility function.  

We include a synthetic index futures contract as the 12th base asset to 
allow risk-tolerant investors to take leveraged equity positions. The futures 
contract is built using a short position of 100% in the T-bill and a long position of 
200% in the market portfolio. In this application,   consists of all convex 
combinations of the T-bill, ten stock portfolios and the index futures contract and 
K consists of all convex combinations of the T-bill and the index futures contract. 
For the computational strategy outlined in Section 7, our partition is based on 
  min , (  ; ),   max , (  ; ),    1  and    5. 

 Figure 3 illustrates the estimation results for the industry data set. The 
optimal solution    K consists of the T-bill (56%) and the index futures 
contract (44%). The optimal solution      consists of a large position in the 
non-durables industry (42%) and smaller positions in the health industry 
(26%), energy industry (20%) and telecom industry (12%). Panel B shows the 
difference function  ( ,   ,   ;   ) for every relevant return level    . Clearly, 
we find a strictly positive difference for large positive return levels and hence 
      

 ; stochastic spanning does not occur. We find max    ( ,   ,   ;   )  
  138 and the test statistic amounts to    4 48 . 

Panel C shows the de-cumulative subsampling distribution of the test 
statistic for    12  and    48  months, with large values of the test statistic 
again occurring more frequently in smaller subsamples. Panel D shows the 
estimated OLS regression line (6.6) for significance levels of      1 and 
    1  using various subsample sizes    ,12 ,48 -. Using (6.7), the 
regression estimate for the critical value for    at      1 is     (  99)  4 354, 
below the full-sample value    4 48 . Hence, we can reject two-fund 
separation with at least 99% confidence. 

[Insert Figure 3 about here.] 
 

8.3 Mean-Variance Analysis 

As a final step in our analysis, we test for two-fund separation using the M-V 
criterion rather than the SSD criterion. Clearly, our rejection of stochastic 
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spanning is less informative if we can also reject M-V spanning. We use the same 
methodology as for the above stochastic spanning test, but we restrict the utility 
functions to take a quadratic (rather than piecewise linear) shape. We solve the 
embedded expected-utility optimization problems (for every given quadratic 
utility function) using quadratic programming. Figure 4 summarizes the test 
results. In contrast to the stochastic spanning, we cannot reject M-V spanning at 
conventional significance levels. 

[Insert Figure 4 about here.] 
 

8.4 Conclusion 

The combined results of the efficiency and spanning tests suggest 
that  combining the T-bill and market portfolio is optimal for some risk averters 
(market portfolio efficiency) but suboptimal for other risk averters (no two-fund 
separation). Since market portfolio efficiency and two-fund separation are 
equivalent under a multivariate normal distribution, the results must reflect 
economically significant deviations from normality. 

Harvey and Siddique (2000) and Dittmar (2002) analyze the empirical 
explanatory power of skewness and kurtosis in cross-sectional regression tests 
for market portfolio efficiency. Their results, as the results of our structural 
efficiency test, seem consistent with the notion that the market portfolio is 
optimal for some utility functions with higher-order moment risk 
preferences. We caution however against interpreting these results as evidence 
for representative-investor models of capital market equilibrium. 
           If returns are not normally distributed, then aggregation across individual 
efficient risky portfolios may not produce an efficient market portfolio. Our 
spanning test results suggest that distinct risk averters will hold distinct risky 
portfolios. Since the SSD efficient set is generally non-convex, aggregation across 
distinct efficient risky portfolios unfortunately does not produce an efficient 
market portfolio. Hence, we caution against confusing market portfolio efficiency 
and market equilibrium models if two-fund separation is rejected. 

 
 

APPENDIX 

PROOF OF PROPOSITION 3.1: Our proof consists of the following arguments: 
 ( )  K  ((         K)      (  K))  (         K)      
K   ( )   
 
PROOF OF PROPOSITION 3.2: We use of the following chain of arguments: 

 ( )  sup
   
 inf
   
  sup
   
  ( ,  ,  ;  )  

 sup
   
 inf
   
  sup
   

 ∫  ( ) ( ,  ,  ;  )
 

 
   (3.A) 

 sup
   ;
   

 inf
   
 ∫  ( ) ( ,  ,  ;  )
 

 
   (3.B) 



18 
 

 sup
   ;
   

 inf
   
 ∫  ( ) . ( )( ,  )   ( )( ,  )/
 

 
   

 

 sup
   ;
   

 inf
   
 ∫  ( ) (∫ (   )   ( ,  )

 

 
 ∫ (   )   ( ,  )

 

 
)

 

 
   

 

 sup
   ;
   

 inf
   
 ∫  ( ) (∫ (   )   ( ,  )

 

 
 ∫ (   )   ( ,  )

 

 
)

 

 
   

 

 sup
   ;
   

 inf
   
 (∫ ∫  ( )

 

 
 ( ;  )     ( ,  )

 

 

 ∫ ∫  ( )
 

 
 ( ;  )     ( ,  )

 

 
) 

 

 sup
    ;
   

 inf
   
 (∫  ( )   ( ,  )

 

 
 ∫  ( )   ( ,  )

 

 
)  

 sup
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 (  , (   )   (   )-)   

Equality (3.A) makes the objective function upper semicontinuous and 
quasiconcave for every     and    , allowing us to invoke Sion’s (1958) 
Minimax Theorem to change the order of the optimization operators in Equality 
(3.B).   
 
PROOF TO PROPOSITION 5.1: We endow       with the metric  ( ,   )  
 sup  , ,  -  ( )    ( )               , with     sup   ,      
   diam( ),   ( ,  ,  ) and    (  ,   ,   ). For any ( ,  ,  ), 

  | ( ,  ,  ; √ (    ))|
 

 

   (∫ ∫ (     )  (      )   √ (    )  
  

 

 

)

 

 

 (   )
 (   )   ( ∫‖ ‖ √ (    )

  

)

 

  (5.A) 

The latter r.h.s. is bounded w.r.t.   due to Assumption 5.1. This result, along with 
Prop. 3.2 (a) of Jakubowski, Memin and Pages (1989) and Lemma 2.1 of ST2010, 

implies the fidi convergence of  ( ,  ,  ; √ (    )) to  ( ,  ,  ;    ). 
Furthermore,  

| ( ,  ,  ; √ (    ))   (  ,   ,   ; √ (    ))| 

 (   ) ( ,   ) ∫‖ ‖ √ (    )
  

, (5.B) 

where the r.h.s. follows from the Lipschitz continuity of ( ) . Notice that 

∫ ‖ ‖ √ (    )       ∑ (‖  ‖    ‖  ‖) 
     , which converges in 
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distribution to a normal random variable due to Assumption 5.1 and the CLT for 
 -mixing processes (see Corllary 4.1 of Rio (2000)). Hence, the above integral is 
uniformly (w.r.t.  ) tight due to Prokhorov’s Theorem (see Thm 18.12 in Van Der 
Vaart (1997)). This result, along with the total boundedness of       w.r.t. 
 , implies the second condition in Thm 18.14 of Van Der Vaart (1997), which 
establishes part (i) of our proposition. Part (ii) follows from the Continuous 
Mapping Theorem.   
 
PROOF OF PROPOSITION 5.2: Our proof uses a sequence of weak approximations of 

   under the null hypothesis. For     , √      as    , and     1, let 

    sup
( , )   

inf
   
  ( ,  ,  ; √   )  (5.C) 

    sup
( , )       

 
inf
   
 √  ( ,  ,  ;   ) ; (5.D) 

   
  {( ,  )    inf

   
  ( ,  ,  ;  )     }  (5.E) 

K( , )
    *  K  ( ,  ,  ;  )      +   ( ,  )     (5.F) 

Our strategy weakly approximates    by    , weakly approximates     by     and 
uses     as the weak limit of    . 

 For any ( ,  )     for which K( , )
   , 

inf
   
  ( ,  ,  ; √   )  min { inf

   ( , )
 
  . ,  ,  ; √ (    )/ ,   ( ,  )}, (5.G) 

where   ( ,  )  inf   ( , )   ( ,  ,  ; √   ). If the infimum is achieved on the 

boundary of K( , )
 , then   ( ,  )   . ,  ,  ; √ (    )/.  In any case, using a 

Skorokhod representation argument (see Thm 1.10.4 of van der Vaart and 

Wellner (1996)), the sequence (  ( ,  )) can be partitioned to subsequences 

which (if any) diverge to    , and to subsequences which (if any) converge to 

the limit of  . ,  ,  ; √ (    )/ evaluated on the boundary of K( , )
 . 

Consequently, the above minimum weakly converges to inf   ( , )   ( ,  ,  ;   ). 
The CMT and Proposition 5.1 then imply 

    sup
( , )   

 inf
   ( , )

 
  ( ,  ,  ;   )       (5.H) 

Furthermore, we can derive the following results: 
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  (sup
  
inf
 
 √  ( ,  ,  ;   )  sup

  
sup
 ( , )
   
 √  ( ,  ,  ;   ))  (5.I) 

 
The probability (5.I) can be shown to converge to zero. From (5.H), the l.h.s. of 
the inequality inside the probability (5.I) weakly converges to   . For the r.h.s., 
we obtain  

sup
  
sup
 ( , )
   
 √  ( ,  ,  ;   )   

sup
  
sup
 ( , )
   
  ( ,  ,  ; √ (    ))  sup

  
sup
 ( , )
   
 √  ( ,  ,  ;  )  (5.J) 

Due to Proposition 5.1, the first term on the r.h.s. of the last display weakly 
converges to sup

  
sup ( , )  ( ,  ,  ;   ) and the second terms diverges to    

due to the construction of K( , )
   . It follows that 

lim 
   

 (        )          (5.K) 

For any    , we can use the following arguments: 

lim sup
   

  (     )   (     ) 

 lim sup
   

| (     )   (sup
  
inf
 
  ( ,  ,  ; √   )   )|

 lim sup
   

 (sup
   
 
inf
 
  ( ,  ,  ; √   )   ) 

 lim sup
   

 (sup
 
 . ,  ,  ; √ (    )/    √   )           (5.L) 

The first inequality uses   (max ( ,  )   )   (   )   (   ). The final 
equality follows from Proposition 5.1 and the assumed properties of   . Clearly, 

  (     )   (     )     (5.M) 

Combining (5.H), (5.K) and (5.M) completes the proof.   
 
PROOF OF PROPOSITION 6.1: To prove part (i), notice that zero lies in the support of 
the distribution of   , witness, for example, the possible yet negligible event 
  ( )   ,      . Furthermore, due to the convexity of the sets *  
        +, *          + for all     and      and Assumption 
5.1.ii, we have that, excluding negligible events,  ( ,  ,  ;   ) equals zero, and 
thus has a degenerate variance, only if      . By generalizing Prop. 2.1.10 and 
2.1.11 of Nualart (2006) to our case (with his sup replaced by our sup inf), we 
can derive that the process     ( ,  ,  ;   ) has a square integrable Malliavin 
derivative. By Prop. 2.1.7 of Nualart (2006), we obtain that the support of    is 
connected and thereby via our earlier results, we obtain that the support is 
, ,  ,.  

To prove part (ii), we use that, by analogy to (3.6),  

       sup
   
    sup

   
   , (6.A) 
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where   follows a zero-mean  -variate normal distribution with non-singular 
variance matrix. The support of     is , ,   ,, which implies that the latter 
interval also includes the support of   . Inequality (6.A) implies that 
 (    )   (     ) and due to closeness and convexity of   , K and the non-
degeneracy of the distribution of  ,  (     ) equals the probability that the 
maximum of   occurs at a coordinate that corresponds to a common extreme 
point of   and K . Using Thm 2 of Sidak et al. (1999, p. 37), we find that 
 (     )  (    ). Hence, the distribution of    may have an atom at zero of 
probability at most (    ). 
 To prove part (iii), consider a restriction of the   process.   induces a 
Gaussian measure on the subspace of the continuous functions on     
equipped with the sup inf norm that attain the value zero if    . Let     denote 
the restriction of   to the elements of this function space for which the sup inf is 
strictly positive. The original Gaussian measure assigns a strictly positive 
probability to this set of functions, because  (     )  1. The (generalized) 
Nualart propositions apply also to   . In addition, the Malliavin derivative of 
  , in contrast to that of   , has a non-zero norm on the set  

{        ( )  sup
( , )   

 inf
   ( , )

 
   }  (6.B) 

Hence, the law of sup
( , )   

 inf   ( , )    , whose support is , ,   ,, is absolutely 

continuous w.r.t. the Lebesgue measure. Combining this results with the 
possibility of an atom at zero, we obtain the differentiability and hence 
continuity of the relevant c.d.f. on - ,   ,, as in Thm 3 of Lifshits (1983).   

 
PROOF OF PROPOSITION 6.2: The behavior under    follows by a direct application 
of Thm 3.5.1.i of Politis et al. (1999), which Proposition 6.1 allows us to use. The 
behavior under    follows from the following considerations. Proposition 5.1 
along with (3.A) - (3.B) imply that  

sup
 , , 

   ( ,  ,  ;   )   ( ,  ,  ;  ) 
 
  , (6.C) 

and thereby that 

  
 
 sup
   
 inf
   
  sup
   
  ( ,  ,  ;  )    ( )  (6.D) 

Using the Skorokhod Representation Theorem (see inter alia Thm 1.10.4 of van 
der Vaart and Wellner (1996), we may assume the existence of an enriched 

probability space that supports random variables   
 
  (  )   ( ) that a.s. 

converge to zero. Hence, for some     small enough, and any elementary event 
  in the enlarged space we can choose a   ( ) large enough so that, for any 
    ( ), under   , 

  √ ( ( )   )  √ ( ( )    ( ))  √ ( ( )   ), (6.E) 

which implies that √ ( ( )    ( )) diverges to    a.s. Hence, for any    , 

 (    (  , 1   )   )   (√ ( ( )    ( ))   (  , 1   )   )
 1  

(6.F) 
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The behavior under    now follows from   ,  (1   )
 
  (  , 1   ), 

Proposition 5.2 and Thm 3.5.1.i of Politis et al. (1999).   
 
PROOF OF PROPOSITION 7.1: We may linearize the empirical shortfall measures in 
the spirit of the analysis of Conditional Value-at-Risk by Rockafellar and Uryasev 
(2000): 

  
( )( ,  )  min
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|    (      );     ,   1, ,  }  (7.A) 

The functions   
( )( ,  )     ∑ (      )1(      ) 

    and   
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   ∑ (      )1(      ) 
    have an increasing and convex piece-wise linear 

shape with kinks at        and      ,   1, ,  , respectively. It follows 

that the minimization of  ( ,  ,  ;   )    
( )( ,  )    

( )( ,  ) over     always 

achieves an optimal solution at a sub-interval boundary point       , 
  1, ,  . Therefore, 
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 √ min
   , , 
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 √ max
 
 *     (   ,  ,  ;   )     1, ,  +  

Combining (7.A) and (7.B), we find the following linear problem in canonical 
form for pairwise comparison of two given portfolios: 

  ( ;  )   max√   (7.C) 

           ∑  , 
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   ,           ,  ,   1, ,  ; 
  ,   ,  ,   1, ,  ; 

  free  

 

This linear maximization problem can be embedded directly in the maximization 

over the portfolio weights   K to yield   ( )   max   
   ( ;  ), or the optimal 

value of the objective function of LP problem in canonical form (7.3).  

 
PROOF OF PROPOSITION 7.2: Any piecewise-linear function      consists of 

segments of     * + linear lines   ( )    ,    ,   that connect knots   , 

   . Since the piecewise-linear function is concave, it can equivalently be 
formulated as  ( )  min     ( ). Equipped with this result, our proof 
consists of the following arguments: 

sup
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 max
   ,
*  +

   {∑  |     ,    ,     ,    
 

   

}  

Bringing all model variables to the l.h.s. and coefficients to the r.h.s. gives the 
canonical form (7.11).   
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Figure 1: Numerical Example
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Figure 2: Empirical test for the hypothesis of stochastic efficiency 
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Figure 3: Empirical test for the hypothesis of stochastic spanning 
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Figure 4: Empirical test for the hypothesis of M-V spanning 
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