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ABSTRACT

Theonymfi Boura

Testing for Non-Stationary Stochastic Seasonality with an
application to the Greek Inflation
September 2017

In Time Series Analysis, many processes apart from trend may display seasonality.
Although, the most famous and commonly used is the deterministic, there are two other
types of seasonality that differ significantly from this, the so-called non-stationary and
stationary stochastic seasonality.

With regard to the stochastic seasonality, we detect and differentiate the non-stationary
from the stationary stochastic seasonality by conducting seasonal Unit Root Tests.
Seasonal Unit Root Tests constitute the extension to seasonal models of the well-known
Unit Roots test for the null of a series being integrated (e.g. a random walk) versus it
being stationary. The main focus of this thesis is to present and discuss two such tests.
The first one is the seasonal Augmented Dickey Fuller test and the second one is the
so-called HEGY unit root test. Both of them test the null hypothesis of non-stationary
stochastic seasonality versus the alternative of stationarity stochastic seasonality. They
do however make different assumptions on the structure of the null and the alternative
and focus on somehow different aspects of it.

The use as well as the main characteristics of these tests are illustrated with an

application using the dataset of the Greek Inflation.
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HEPIAHYH

BOcovOpuen Mmovpa

"EAgyY0G Y10, U1 6TAGIUN GTOYOGTIKI] EMOYLKOTNTO UE EQUPNOYT
otov EAAnviko IIAn0@propno
YemtéuPpng 2017

v Avdivorn  Xpovooelp®v, TOAAEC Owadikaciec mEpa  oamd  Thom
nopovotdlovy kot emoykdtnTa. H vietepivioTikn enoyikdOtnta anoteAel tTnv
TLO YVOOTN LOPOY ETOYKOTNTAS KOl XPNCLULOTOEITAL GTOV peyaAvTepo Badpd.
Ev tovto1g, vdpyovv kar aAieg dVo popeéc emoywkdtntag. H un-otdoiun kot
N OTAGIUN GTOYACTIKY EXOYLKOTNTO.

AvVOQOoplKE LE TNV OTOYACTIKN ETOYLKOTNTO, TNV OLAKPIVOLUE KOl TAVTOYPOVA
dwaymwpifovope TN pN-otdclUn oamd T OTACIUY, TPAYULATOTOLOVTOS TOL
enoytkovg eAéyyovg Movadtaiog Pilag. O emoyikol édeyyolt Movadiaiog Pilac,
amoteAOVV TNV eMEKTACT TOV eAEYX®V Movadiaiag pilag ot omoiot €xovv ™G
unodevikn vmdheon 1 ypovocelpd va givar olokAnpopévn (m.y TvYaiog
nepinaTog) €vavtl NG €VOAAOKTIKNG TN YPOVOCEPE va gival GTAGLUN, oTO
povtéla mov mapovcidlovv emoyikotnta. H mapakdto dimAopoatikny epyacio
TOPOoLOLALEl KAl TPAYUATEVETAL OVO TETOLOVE EAEYYOVG.

O mpmdtog eivarl o emoyikdg avEnuévoc Dickey-Fuller éheyyoc kot o dedtepog
etvar o HEGY éleyyog povadiaiog pilag. Katr ot d00 €yovv ®g undevikn
vrobeon Vv OVmapEN  UN-OTAGLUN GTOYXOOTIKNG EMOYIKOTNTOG KAl  ©G
EVAALOKTIKN TNV VTapEN OTAGIUN GTOYAOTIKNG emoyikotTntag. [Mapor’ avtd
E€YOVV OlaPOPETIKEG LTOOEGELG OYETIKA He TN SOUN TNG UNOEVIKNG KOl TNG
EVOALOKTIKNG KOl £6TIAL0VV G€ dLOPOPETIKES TAEVPESG TOV TPOPANUATOG.

H ypnon xabdg «xar to kOpla YOAPOKTINPIOTIKA TOV EAEYYOV OQLTAOV
noapovoidlovtor oe  pia  epoppoyy upe to dgdopéva  tov  EAAnvikov

[MMbwpropod.

Vil
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CHAPTER 1

Introduction

A common assumption in many time series techniques as well as traditional
econometric methods require the data to fulfil stationarity. Most of the macroeconomics
time series though, do not satisfy stationarity conditions as they display trend,

seasonality or both.

Many stationarity tests exist in the literature. Pagan and Schewert (1990) proposed
several non-parametric tests such us the Cumulative Sum test (CUSUM) or Modified
scaled range test. Subsequently, Ahamada and Butahar (2002) proposed two other non-
parametric tests to examine covariance stationarity. See also Carlo De Michele and
Harry Pavlopoulos (2007) for an application to rainfall data and Priestley (1965) for an

approach based on evolutionary spectra.

In the present thesis though, we will concerned with testing for Non-stationarity
Stochastic Seasonality in the same sense as traditional testing for unit-roots: in these
approaches the null hypothesis is formulated the presence of a specific form of non-
stationarity, namely the presence of a root on the unit circle, which ios tested against
the alternative of stationarity. This is different from the approaches of testing for
stationarity in the previously mentioned papers in that in these papers the null
hypothesis is the one of stationarity which is tested against the alternative of non-

stationarity.

In the present thesis though, we will concerned with the so-called Non-stationarity

Stochastic Seasonality rather than the covariance Non-stationarity.

With regard to seasonal pattern, there are three different types of seasonality and there
are various models that display these types. The first one is the deterministic seasonality
which describes behavior in which the periodic pattern is due to the unconditional mean

of the time series.

Except for the deterministic seasonality that maintains a constant seasonal pattern and

is the most familiar in use in Time Series Analysis there are also the so-called stochastic



stationary and stochastic non-stationary seasonality that display a seasonal pattern

which will randomly vary from one cycle to the next.

Stochastic seasonality is often described by the mixed seasonal ARMA(P,Q)s which is
defined by the equation:

¢(B)®(B%) Y= 0(B)®(B%Z:, Z: ~ WN(0,5?)

where ¢(z), 0(z), ®(z) and O(z) are the seasonal and non-seasonal AR and MA
polynomials and P and Q are the orders of the non-seasonal polynomials and S is the
period of the seasonal pattern.

The stochastic stationary seasonality refers to the roots of ¢(z) and ®(z), which are all
assumed to lie outside the unit circle. Specifically, it is more pronounced when the roots
of the polynomial ®(z°) are close to the unit circle, but also when the roots of ¢(z) are
close to the unit circle too. The only difference between the roots of these polynomials
is that the roots of ®(z%) come in groups of S members with a specific structure and the

same modulus, whereas the roots of ¢(z) have their own flexibility.

Allowing for differencing the mixed seasonal ARMA(P,Q)s models lead us to the
models for nonstationary stochastic seasonality which are often described by the
Seasonal ARIMA(p,d,q)x(P,D,Q)s models:

If d and D are non-negative integers then Y: is said to be a seasonal
ARIMA(p,d,q)x(P,D,Q)s process with period S if the differenced series
X=(1-B)4(1-B%)PY. is a casual ARMA process. Thus we assume that satisfies:

¢(B)®(BS) (1-B)!(1-BS)°Y=0(B)O(B%)Z;, Z~WN(0,6?)

where ¢(z), 0(z), ®(z) and O(z) are the seasonal and non-seasonal AR and MA
polynomials. The letters p,q and P and Q are the orders of the non-seasonal and the

seasonal polynomials respectively and S is the period of the seasonal pattern.

Generalizing these models, let us consider the ARMA(p,q) model that satisfies the

equation below:

®(B)Y: = 0(B)Z:, Zt~WN(0,5?)

2



with d;E;) and (EZBd) some other polynomials. In this general case of an ARMA(p,q)

model, any root of @ (z)on the unit circle will result a non-stationary Y.

We detect and differentiate the non-stationary from the stationary stochastic seasonality
by conducting seasonal Unit Root Tests. Main focus of this thesis is to present and

discuss two such tests.

The first one is the seasonal Dickey Fuller (seasonal DF test) and Augmented Dickey
Fuller (seasonal ADF test) Unit Root Testing of Dickey, Hasza and Fuller (1984). These
tests examine the null hypothesis that all the roots of ®(BS) are on the unit circle versus
the alternative that the roots have the same modulus. They are the straight forward
extension of the simple Dickey Fuller and Augmented Dickey Fuller Unit Root test

proposed by Dickey and Fuller (1976).
Specifically, consider SARIMA model:
Yi=asYes+ & & ~ WN(0,6%)

The seasonal ADF test will test the null hypothesis of as being equal to unity (the null
of stochastic non-stationary seasonality) against the alternative hypothesis of as being

smaller than unity.

However, seasonal unit roots may be present at some, but not at all the frequencies.
Therefore, a joint test for all the seasonal frequencies simultaneously, such as the one
proposed by seasonal ADF test, will not provide the appropriate result. Therefore, we
demonstrate and describe the HEGY Unit Root test proposed by Hylleberg, Engle,
Granger and Yoo (1990) for quarterly data (S=4) and Beaulieu and Miron (1993) for
monthly data (S=12).

HEGY Unit Root test allows testing for individual roots as it has the benefit to look for
unit roots at any single seasonal frequency (as well as the zero frequency) without
imposing roots at other frequencies. The procedure of transforming the provided data
in order to present the final estimated equation as well as the total derivation of the
HEGY test are also explained in this thesis.



To sum up, in Chapter 1 is described the classical Unit root Dickey- Fuller and
Augmented Dickey Fuller test for trending models that do not display seasonality. In
Chapter 2 are defined the different types of seasonality as well as the models that we
use in order to describe them. Subsequently in the Chapter 3 is discussed in detail the
seasonal DF and the seasonal ADF Unit Root tests while the fourth contains the
description and the derivation of the HEGY Unit Root test. Finally, in Chapter 5 we
apply the seasonal ADF and HEGY Unit Root test to a dataset of the Greek Inflation
using the statistical package R. The purpose of this application is to detect seasonal and
non-seasonal unit roots and therefore examine the presence of stationary and non-

stationary stochastic seasonality in the Greek Inflation



CHAPTER 2

Unit Root and Stationary Processes

A common assumption in many time series techniques as well as traditional
econometric methods require the data to fulfil stationarity. Most of the macroeconomics
time series though, do not carry out stationary conditions as they display trend,
heteroscedasticity or both. A covariance-stationary process has the property that the
mean, variance and autocorrelation structure do not change over time. More
specifically, according to Wold’s Theorem all the covariance-stationary processes, can

be written in the form of:
Y= pt+ Yl o P &

Where &t is the white noise error one would make forecasting Yt as a linear function of

lagged Yt where .72, 4% < oo and yo=1.

2.1 Trending Time Series Models

In the case of a trending time series, some form of trend removal is required. There are
two popular “detrending” procedures, the time-trend removal and the first differencing.
The first one is suitable for trend-stationary or 1(0) processes and the second one is
suitable for unit root or 1(1) processes. The 1(0) processes are stationary after the trend
removal, while the I(1) processes are non-stationary and the stationarity is achieved by
applying first differences. To determine which “detrending” method is the appropriate,
we apply a Unit Root Test. The null hypothesis of this test indicates a process Y: to be
non-stationary (while the first difference AY: is stationary) and the alternative
hypothesis indicates the opposite (Yt to be stationary).

Therefore, a Unit Root Test examines the hypothesis of the following form:

Ho: 1(1) process- AY¢ is stationary
Ha: 1(0) process- Yi— E(Y?) is stationary

This form can be used in order to determine if trending data should be differenced or

regressed on deterministic functions of time to render the data stationary.



The equations below, which we will discuss in this chapter, are two popular processes
in which due to a trend in the data (upward or downward over time) the mean is not
constant. Although they both have a trend, the nature of their non-deterministic part is
different:

Yt=0+Ytr1+ & (1.1.1)
Y= a+ft +er (1.1.2)

where ¢ is white noise, iid(0,1). The process in equation (1.1.1), is known as a random
walk with drift 5 or a process with unit root which has a so-called stochastic trend
(beyond the linear). The generated process in equation (1.1.2) has an intercept o as well
as a deterministic (linear) time trend with slope equals to B. We will refer to the first
process as a Unit Root process with drift and to the second one as a Trend Stationary
Process. Trend Stationary and Unit Root processes are both trending over time, have
the same mean but conduct a different stochastic behavior. For the general definition
see below.

In the Trend Stationary Process, the mean is replaced by a linear function of the date t
and if one subtracts the deterministic trend a+ft, the result is a stationary process. On
the other hand, in the Unit Root Process the mean is a linear trend and its variance is
not constant. Thus, the Unit Root Process is nonstationary even after removing the
trend.

It is useful at this point to report the properties as well as the differentiation among
these processes. In order to define those properly, we will express the above models
using the form described in Chapter 3 and 15 of J.D.Hamilton’s book - Time Series
Analysis.

The general definition of these two models described above, is as follows.

Trend Stationary Model

The processes that include a deterministic time trend are defined as:

Y= a+pt +y(L)et = a+Pt + e+ yigr1+yoseot...

where y(z) is the polynomial 1+y1z+y,z2+ysz>+... and & - WN(0,62).



Unit Root Process

The unit root processes that shape a stochastic trend are defined as:

(1-L)Y=6 + y(L)&t=0 + &t yigr1ty2gr2t...

where y(z) is the polynomial 1+y1z+y2z%+ysz3+... | &~ WN(0,062)and wy(1)#0.

2.2 Trend Stationarity and Unit Root Processes

In this part we will point the main and very crucial differences between the

aforementioned models.

A. Forecasts

Trend-Stationary

To forecast a trend-stationary process we add the deterministic component a+pt to the
forecast of the stationary stochastic component. Therefore, the proper forecast is
?t+5|t =a+P(t+S)+ ysert Ys+1€r1t Ys+ogrot. .. . Furthermore, it is proven that as s reaches
the infinity the forecast tends to reach the initial line:
Yepsje— atPt as s— +oo

and the Mean Squared Error converges to zero:

E[Yessie-0-3(t+s)[P— 6’X 2 pf — 0 as s—+oo
Therefore, for large s the information we have until time T, is being lost and we

forecast the stationary process by using its expected value.

Unit Root
The forecast of a Unit Root process is:
YVersie = S8 +Yet(ystysat.tyn)ect (Wsrrtyst. ty2)e +..
For the special case of the random walk with drift 5, where y1=y>=..=0, the forecast
is:

?t+s|t = s6+Y1



In this case, the forecast moves parallel to the initial line. As a result, once a stochastic
disturbance extracts the time series from the initial line, the time series is not predicted
to reach the line again.

The exact proof of the forecast is being explained in the appendix-1a.

B. Comparison of forecasts errors and Variance

Trend-Stationary

The s-period-ahead forecast error for a trend stationary process is:
Yt+5'?t+s|t: {o+d(t+S) +etrstyietrsat. s 181 HYsEHYs+1Er 1t } -

{o+3(t+S)+ysertysrirtt Yseogtot... } = EtrsHY18tes1F Yobtrs2.. FYs-18t41

The Mean Squared Error is:
E[Y s -Yer s P={Lya?ryo?+ya?+. +ysi®}o?
and as s reaches the infinity (s—o0) it converges to the unconditional variance of the
stationary component y(L)et.
As we can see, as the length of the forecast horizon becomes large, the MSE of a

stationary process reaches a finite bound.

Unit Root

The s-period-ahead forecast error for a unit root process is:

Yirs-Yers)e= {AY st AY tisat A AY i+ Y} {A ey e+ AVpysqpet. . FA g o+ Yid=
= gus- {1y - {1+yityotemsot. H{LHyrtyotya+. Hysa bert

The Mean Squared Error is:

E[Ytrs -Prpse]?= {1+ (Lhyn)H(Lryaty) ..+ (Lhyrprys+. Hyst)}o?
As we can see the MSE of a unit root process, grows linearly as the forecast horizon
becomes large.

These results are illustrated in the figure below.
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Figure 2.1- Forecasts and 95% confidence intervals

C. Dynamic Multipliers

In the case of dynamic multiplier, we will assume the consequences on Yis if & were

to increase by one unit, with €’s for all other dates unaffected.

Trend-Stationary

aYt+s -
Ost

For a trend-stationary process, the limiting dynamic multiplier as s—+o0 is zero.

Therefore, the impact of any stochastic disturbance (shock), eventually disappear.

Unit Root

OYets_ a4‘Yt+s_|__._|_<341Yt+1_|_ﬂ
aSt ast aSt ast

= ystysat. Hyitl

For a unit-root process, the limiting dynamic multiplier as s—+oo is y(1). Therefore,

the effect of a great shock will retain.



D. Transformations to achieve stationarity

Trend-Stationary

In order to produce a stationary process, we simply subtract &t from the time series

equation.

Unit Root

The proper procedure to achieve stationarity is to difference the time series.

2.3 The Dickey-Fuller Unit Root Test

One of the most popular Unit Root tests, is the Dickey-Fuller test, which will be
described in this part. First, we will define the models listed below, with which this unit
root test will be presented:

e  Yi=pYritelthe AR(1) model) S AY=(p-1)Yr1+er (1.3.1)

o Yi=putpYrite @AY =pt+(p-1)Yeat+e (1.3.2)

o Yi=ot+Pt+tpYriter @AY= at+ft +(p-1)Yeat+er (1.3.3)

where - WN(0,6%).
According to David A. Dickey and Wayne A. Fuller (1979), in order to perform the

Dickey Fuller test, we need to compare the hypothesis presented below?:

Ho: Yt is random walk (pure, with drift or with linear term)
Ha: Yt-E(Y1) is stationary AR(1) (simple, with intercept or with linear term)

These hypotheses in the framework of equations (1.3.1)-(1.3.3), can be written
equivalently as:

Ho: p=1, {AY4} is a stationary process

! For a different approach to Unit root testing, see e.g. Phillips (1987)

10



Hi: p<l, Y:—E(Yy) isa stationary process AR(1)

Under the assumption of p=t1, Dickey and Fuller observed and computed the limiting

distribution of the OLS estimator of T(p — 1)2as well as the regression t=

p=1 statistic.
s.e(p)

Specifically, for each one of the models (1.3.1), (1.3.2) and (1.3.3), where Yo=0,

representations for the limiting distributions of the OLS estimator p and the regression

statistic Zwere derived. These representations were used for the construction of tables

of percentage points for these statistics. Having these tables at our disposal, we are able

to test the above hypothesis and perform the Dickey-Fuller test where we use the

T(p-1) statistic, as well as the Dickey-Fuller t test where we use the f:fe% statistic.

p)

In the table below, are being displayed the 5% percentage points of the estimators of

the three models for T=+oo0.

Estimated Equation 5% Percentage Points of p | 5% Percentage Points of
2
Yi=pYtiter -8.1 -1.95
Yt=p+pYritet -14.1 -2.86
Yt=p+pt+p Y tet -21.8 -3.41

Table 2.1-The 5% percentage points of the estimators for T=+w

As far as the expected value of the aforementioned models is concerned, we conclude
to the results below:

E(Y)=0ifp#1

. . VN
e |f the data generating process is the Yi=pYt.1+¢t then { E(Y,) = constant if p = 1

E(Y;) = constant if p # 1

. . b oYt
e If the data generating process is the Yi=p+pYt.1+&t then{ E(Y,) = linear if p = 1

E(Y;) = linear if p #1

i i =g+PBt+p Y1t
e |f the data generating process is the Y=o+Bt+pYr1tet then{ E(Y,) = quadratic if p = 1

DN 3 Y
——.
DHIRY (Y

2 In the case of the AR(1) model, the OLS estimator is thep=

11



Therefore, if we detect that the expected value E(Y?t) of the process Yt is constant then
we estimate the model Yi=p+pYr.1+e: in order to describe the trending behavior under
the null as well as the alternative hypothesis.(Ho: p=1 vs Hi: p#1).If E(Y¢) appears as
linear, we estimate the model Y=a+pt+pYr1t+er so that the trending behavior is
described under the two hypothesis. Correspondingly, if E(Yt) appears as quadratic we

estimate the model Y=a+pt+yt>+pYr1+erand so on.

Finally, the powers of these statistics were computed and compared with that of the
Box-Pierce Q® Statistic. It was concluded that the statistics proposed are uniformly
more powerful than the Q statistics

These conclusions as well as the Dickey Fuller test, concern the three aforementioned
models under the assumption of &’s to be White Noise. This hypothesis though, raise

the forthcoming question:

“What is the respective Unit Root Test and what are the arising results for

corresponding models in the presence of serial correlation of the errors?”
In other words, what is the extension of the Dickey Fuller Unit Root test and what are
the limiting distributions for the corresponding statistics for models which shape the

problem of serial correlation of the errors (&is not White Noise)?

2.4 The Augmented Dickey-Fuller Unit Root Test

In this part, we set u= Yt -rYw: (thus u= AYtunder r=1) and we generalizing by
allowing ur~ AR(p) while in 2.3 the corresponding u: is assumed as White Noise.
Therefore, we apply the Augmented Dickey Fuller test or ADF test.

The ADF test is the extension of the simple Dickey Fuller Test. Once the problem of
autocorrelation occurs (the errors &’s are not White Noise), there are included extra
lagged terms in the dependent variable in order to achieve the error term to be white
noise.

Specifically, consider the model where utis an AR(p), p>1 stationary process:

% The Box and Pierce test uses the statistic Qx=nY.X_, r# where rk:% and the &;’s are the residuals from the fitted

71.: éz
model. Under the null hypothesis, the Qy statistic is approximately distributed as a chi-squared random variable with K-p
degrees of freedom, where p is the number of parameters estimated. If Y, includes a unit root, then p=0 under the null
hypothesis and &;= YY1,

12



Y= rYe1+Us, Where Uy =pile1 + poUt2+paleat...+ pplepte; where e~ NID(0,6%) (1.4.1)

It is easy to observe that this equation is equivalent to (1-rL)Y: = u: and
(1-piL-  pol®- psl® -...- pplP)u=g;  (1.4.2),which may be written as
(1-rL)(1-p1L- p2L?- psl3-...- ppLP)Y = & where &~ NID(0,6°) (1.4.3).

We will now manipulate these equations, in order to bring them in a more convenient
form.,

Specifically,  setting the equations p=pi+ pot...tpp (1.43) and
Jj=-[pj+1 + pj+2+... pp] (1.4.5) for j=1,2,..,p-1, it is concluded that:

(1-pL)-(I1L+JoL 2+, +Jp 1 LPL)(1-L)= 1-psL- pol- psl3-.. .- ppLP

where L is the backshift operator.

Thus assuming that ut is an AR(p), the process can be written equivalently as:

(1-pL)-(J1L+J2L 2+, +Jp1LP 1) (1-L) Yi=¢: (1.4.6)
or
Yi= pYe1tJiAYe1t LAY o+, 4 JpaAYpe1 + € (1.4.7)

which can easily be transformed to the following equation:

AYt= (p-1)Yt1+J1AY it DAY 2+, .4+ Jp1AY 1 + € (1.4.8)

where p1=p+J1, pi=Ji-Ji-1, i=2,..,p and pp+1=-Jp

The form (1.4.8) is the most suitable in order to perform unit root testing and we will
refer to it as the ADF equation.

Deterministic terms as intercept and linear trend can be also added to the ADF equation.
This will give the opportunity to perform the ADF test for models with E(Y?) other than
zero. Therefore we define:

AYe=pt (p-1) YertJiAY et DAY o+, 4+ Jp1AYepr + & (1.4.9)

AY=atpt+ (p-1)Ye1+JiAY e+ 2AY 2+, .+ JpaAYeper + & (1.4.10)
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Taking into consideration the forms(1.4.8), (1.4.9) and (1.4.10), in order to test the
hypothesis that our process Ytis a random walk or stationary AR(p) and by extension

perform a unit root test, it is sufficiently equivalent to test the hypothesis below:

Ho: p=1, {AY4} is an AR(p) process (simple, with intercept or linear trend)
Ha: p<1, Yt is an AR(p+1) process (simple with intercept or linear trend)

The parameters p, Ji,... ,Jp-10f the ADF equation estimated with Ordinary Least Squares
and the distribution of the estimator pis not dependent on the Ji’s under the null
hypothesis. For the case of the simple ADF equation (1.4.8), we test for unit root by

using either of the two following statistics:

The statistic Z=—2-2_ and the t statistic @ which both have the same limiting
(1-¢1—-$p) 05

distribution as the corresponding statistics p and £ in the case of the first order models
(models where &t’s is white noise), discussed in the previous part. The same conclusions
also apply for the equations (1.4.9) and (1.4.10).

Correspondingly, the expected value of the aforementioned models arises as above.
Finally, as we notice, the equation that we estimate in order to perform the ADF test
has the same form as the estimated equation in the case of the simple DF test (1.3.1).
Their significant difference, is that extra lagged differences have been added in the ADF

equation to achieve the elimination of the autocorrelation in the utterms.
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CHAPTER 3

The Different Types of Seasonality

Seasonality in time series is the presence of variations that occur at specific regular
intervals such as weekly monthly or quarterly periods. Generally, any pattern in a time
series that recurs or repeats over a certain period can be said to be seasonal. Moreover,
in the ACF plot there is a repeating pattern which decays slowly. Seasonality, may be
caused by various factors such as weather, vacation and holidays consisting periodic
repetitive and generally regular and predictable patterns in the levels of a time series.

3.1 The Detection of Seasonality

It is important to consider and describe the effects of seasonality, in order to understand
the impact of this component upon a given series. For example, a business that presents
higher sales in certain seasons appear to be having significant profit during peak seasons
and significant losings during off-peak seasons. After detecting the seasonality and
establishing the seasonal pattern, specific techniques can be applied in order to
eliminate it from the time-series. This procedure is known as “de-seasonalizing”.
Furthermore, the past patterns of seasonal variations can be used to the forecasting and
the prediction of the future trends.

There are various graphical methods that can be used to detect seasonality. Some of

them are listed below:

1. The Run-Sequence Plot: It is an easy way to plot a univariate dataset. In the Run

Sequence plot, all the possible shifts in location and scale, as well as the outliers
are sufficiently obvious. The vertical axis contains the response variable Y

while the horizontal axis, contains the index i (i=1,2,3...).

2. The Autocorrelation Plot: It is the most commonly-used plots in time series

analysis. In the vertical axis is placed the autocorrelation coefficient rn*and in

the horizontal axis it is placed the time lag h.

“The autocorrelation coefficient is defined as rh:% where vy is the autocovariance function and vy, is the variance function.
0
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3. The Seasonal Subseries Plot: It is very popular tool for detecting seasonality in

time series. Although, it is only useful if the period of seasonality is already
known. The vertical axis, contains the response variable Ywhile the horizontal

axis is contains the time ordered by season.

At this point it is important to realize how we use these plots in order to detect
seasonality. For this purpose, we chose the dataset ‘nottem’ from the statistical package
R which is known as times series that displays seasonality. The dataset, contains the
Average Air Temperature at Nottingham Castle in degrees Fahrenheit for 20 years
(1920-1939). Subsequently, we applied the plots described above and we tried to detect
seasonal patterns.

It is enough evident from Figure 3.1 below that this time series dataset display
seasonality. The Run Sequence plot although it shows periodic behavior, we can hardly
say that seasonality is displayed, but observing the other two we conclude with certainty
that it really is. Specifically, the Autocorrelation plot depicts a strong seasonality
pattern while the Seasonal Subseries plot reveals that during the summer months the
average air temperature is remarkably higher than the one during autumn or spring.

If Seasonality is present and by extension, it must be incorporated in the time series
model.
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Figure 3.1-Plots for Seasonality Detection

3.2 The Different Types of Seasonality

As it was defined in the previous parts, by seasonality we mean the periodic patterns
that exist at regular intervals. However, there are different seasonal models that describe

seasonality and are divided in three different classes. These classes are:
e The Deterministic Seasonality

e The Stochastic Stationary Seasonality

e The Stochastic Non-Stationary Seasonality
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3.2.1 The Deterministic Seasonality

Deterministic Seasonality, is the first type of seasonality. It describes behavior in which
the periodic pattern is due to the unconditional mean of the time series, for example this
concept is applied to time constant seasonal mean that differ across quarters or months.
Deterministic seasonality, can be expressed by two alternative ways. The dummy
variable representation where means of seasonal dummy variables that are 1 in specific
quarters and O otherwise, are applied in the model, as well as the trigonometric
representation.

We will list these representations as they were defined in Eric Ghysel’s book, “The

Econometric Analysis of Seasonal Time Series”.

3.2.1.a The Dummy Variable Representation

The conventional dummy variable representation of seasonality can be written as:

Yt22§=1 YsO0s +2¢,t=1,2,.., T (2.3.1.8)

1,t = s(modS)

where z; is a stationary stochastic process with zero mean and 65t:{0 otherwise

s=1,2,..S are seasonal dummy variables.
Therefore, for season s of year tthe expected value is E(Yt)=ys, s=1,2,...S which implies

that the process has sifting mean and that’s the reason that Ytis not stationary. However,
by subtracting the mean of each season u:—l S_, vsthe deterministic seasonal effect is
S

ms=ys-u and stationarity is being achieved. Hence the deviations YE(Yt)=z; are

stationary.

The above definition though, implies that Y:5_, m,=0 with the interpretation that there
IS no deterministic seasonality when observations are summed over a year. When the
level of the series is separated from the seasonal component, then:

Yt=u+ 2521 ms(sst + Zt y t=1,2,..,T (231b)

Finally, when p is replaced by po+uait, the equation (2.3.1.b), can be generalized to

include a trend component.
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3.2.1.b The Trigonometric Representation

The deterministic seasonal process can be equivalently be written in terms of

trigonometric functions:
Ym0 2 [aicos(r)+Bisin(5)]+ 2, t21,2,.T (23.1.0)

This representation is equivalent to (2.3.1.b) and it is obvious that p is the overall mean.
For quarterly data where S=4, there are the following trigonometric components:
. cos(%):cos(”?t): 0,-1,0,1...
. cos(%):cos(nt): -1,+1,-1,...
e sin(E)=sin(3)=1,0,-10...
4Tt

 sin(=-)=0

According to the two representations described above, the seasonal dummy variable
coefficients are related to the deterministic components of the trigonometric

representation by the following equations:

o vi= ptfPi-oe
e vyo=p-o1ton
o y3=u-Pr-o2

®  ys/ptortor
The terms a1 and 1 denote the annual wave while a2 gives the half year component.

3.2.2 The Stochastic Stationary Seasonality

The Stochastic Stationary Seasonality, refers to the roots at seasonal frequencies and it

constitutes a whole different issue from deterministic seasonality. The deterministic
seasonality never changes its shape, as it maintains a constant seasonal pattern. On the

other hand, the stochastic stationary and (as we will explain in the next part of this
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chapter) the stochastic non-stationary seasonality display a random seasonal pattern
from one cycle to the next.

At this point it is necessary to define the models that display this type of seasonality,as
they were described in Peter J. Brockwell’s and Richard A. Davis’s book, “ Time Series
Theory and Methods”, in order to understand the definition of the stochastic stationary

seasonality in depth.

3.2.2.a The Seasonal ARMA and the mixed Seasonal ARMA model

Suppose we have r years of monthly data (S=12) tabulated below:

Month
Year 1 2 C 12
1 Yl Yz Y12
2 Y13 Y14 Y24
3 Y25 Yze Y36
r Y 1+12(r-1) Y 2+12(r-1) e Y 12412(r-1)

Table 3.1- Monthly Data

Each column of this table is considered as a realization of time series. Suppose that each
one of these time series is generated by the same ARMA(P,Q) models. The
corresponding to the j"month series Yj:12t, t=0,...,r-1 satisfies a difference equation of
the form:

Yijr2t= P1Yjsrot1) +... + OpYjrr2p) + Ujriat + O1Ujr12)t. ..+ OqUjr12t-0) ,(2.3.2.a.1)
where {Ujs12t, t=...,-1,0,1,...} ~ WN(0, 7).

Since the same ARMA(P,Q) models is assumed to apply each month, the

equation(2.3.2.a.i)can be written equivalently for all t as:

Yi= ®1Ye12+... + ®pYrazp + Ut O1Ur12+.. .+ OgUr120, (2.3.2.a.ii)
for each j=1,...12

Equation (2.3.2.a.ii)can be rewritten in the form of:

®(B%)Y: = O(B%)Ut, (2.3.2.a.iii)

20



where @(z) = 1- ®12-...- Ppz" , O(2) = 1 + O1z+...+ Ogz? and {Ujs12t, t=...,-1,0,1,...}
~ WN(O0, o) for each j. The model (2.3.2.a.iii) is the between-year model or the
seasonal ARMA(P,Q)s model and P and Q denote the seasonal AR and MA orders.
If the White Noise sequences {Uj+12t, t = ...,-1,0,1,...} ~ WN(0, ¢3) for different
months are uncorrelated with each other, then the columns itself are uncorrelated.
However, it is unlikely that the 12 series corresponding to the different months are
uncorrelated. To incorporate dependence between these series, we assume now that
{U3~ARMA(p,q) model:

¢(B)Ut = 0(B)Z:, Z: ~ WN(0,6%) (2.3.2.a.iv)
This non-zero correlation between the consecutive values of Ui implies a non-zero
correlation within the twelve sequences of {Uj+12t, t=...,-1,0,1,...}.
Combining the two models (2.3.2.a.iii) and (2.3.2.a.iv), lead us to the definition of the

general multiplicative mixed seasonal ARMA (p,q)x(P,Q)s process:

¢(B)®(B%)Y: = 0(B)®(B%)Z:, Zt ~ WN(0,6°) (2.3.2.a.v)

where  @(2)=1-91z-...- @pz°, 0(2)=1+01z+...+0q2% ®(2)=1-D1z-...-Dpz"’ and
0(2)=1+01z+...+0qz°

The seasonal ARMA(P,Q)s and mixed seasonal ARMA(p,q)x(P,Q)s models can be also
extended in quarterly data (S=4).

Examples
(1) A very common example of a seasonal ARMA(P,Q)s model is the first-order

seasonal Autoregressive. It is defined as:

Yi= DYt Z4 (2328.V|)

where Z~ WN(0,02). Using the lag operator B¥ Y=Y, the equation (2.3.2.a.vi) can
be written equivalently as:
(1-®B®) Y= Z;(2.3.2.a.vii)

If ®<1 and therefore the roots of the polynomial 1-®z° lie outside the unit circle, the

process (2.3.2.a.vi) is stationary.

21



The unconditional mean of the process is equal to zero. On the other hand, the

conditional mean on past Yt displays seasonal pattern if @is close to unity:
E(Y{Yts,...)=0Yts (2.3.2.a.viii)

and the autocorrelation is different from zero at lags that are multiples of S only and

this non-zero autocorrelation decays over time.

2 A very common example of mixed seasonal ARMA(p,q)x(P,Q)s model is the

ARMA(0,1)x(1,0)s. Such model has the following form:

(I)(BS)Yt = 0(B)Zi& (1-0°)Y:= (1+0) Zt> Y- @Yrs=Zi + 0Z1, (2.3.2.a.iX)
and Z: ~ WN(0,5?).

3.2.2.b —The Roots of the polynomials ¢(z) and ®(z) and the relation
with stochastic seasonality.

In the mixed seasonal ARMA(P,Q)s model the stochastic stationary seasonality is more
pronounced when the roots of the polynomial @®(z%) are close to the unit circle. The
roots of ®(z%) however follow forcefully a certain structure:

Specifically, let zo be a root of the seasonal polynomial @(z)of a seasonal ARMA(P,Q)s
model. Every zo root of d®(z)induces S roots of ®(z%).

If zos0 that ®(zo) = 0 =>there exists zo1,202,...,2055, such that (z§ ) = zofork = 1,2,...,S.

Thus, for each root of ®(z) there is a group of S roots of ®(z°) which all have the same

modulus and their angles differ by 2?”

Example

(1)  Assume the model Yi= ®Yr1+ & © (1-OB%) Yi =g, &~WN(0,6°) and ®(z)=1-

®z° is the polynomial of the seasonal part. Let zo = ®be the root of ®(z) then setting
1 . 2w

Zox = @55 we conclude that (23 ) = zo. Therefore,®(z0,’) = ®(z0) and thus oy,

k=1,...,S are all roots of ®(z5).

22



The table below shows the frequencies as well as the corresponding seasonal roots for

monthly and quarterly series.

Frequency Roots
Monthly Series
0 (@)1
i (@) (L3 )]
o (@752 [2(14V3)]
77 (07 5)(+ )
3 (@ T3y [~ 2(1+3i)]
e (@755 [~ 2(/3 )]
" (@77)(-1)
Quarterly Series
0 (@741
> (@3 i)
™ (@5 (1)

Table 3.2- Frequencies and Roots

At this point it must be emphasized that not only the roots of the seasonal polynomial
®(z) are responsible for the stochastic stationary seasonality but also those of the non-

seasonal polynomial ¢(z). If a root zo=pe™ of ¢(z) is close to the unit circle (p=1) then
the series will exhibit stochastic seasonality of period S:ZTE.The only difference to the

roots of ®(z5) is that the latter come in groups of S members with a specific structure.
Therefore, an ARMA(p,q) or a simple AR(p) model can also produce stochastic
stationary seasonality.

Examples
(1) Consider the AR(2) model:

Yi=p+ 1Y+ Yo+ &, e~WN(0,6%)
©e(B)Yi=p + &

where @(z) = 1- @1z - @2z is the corresponding characteristic polynomial.
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Let z;! the inverse root of the characteristic polynomial and z; = p*(cos(A)+ isin()))
its polar form. As p is denoted the radial coordinate and as A the angular coordinate.

Furthermore, we choose:
A= %”,Where d is the period and |zo|=p=1

The characteristic polynomial then can be written equivalently as:
0(2) = (1- 25 '2)(1-25 '2) = 1- (25 "+ 25 )z + |z5 22

where ¢1 = z5 1+ z5 T = 2Re(z5) = 2 plcos(r) and ¢z = - |z5 1A

Setting z; ! close to unity, the AR(2) model, produces stochastic stationary seasonality.

In order to illustrate that, we simulated data of an AR(2) model with z;* close to unity

and we created the figures below.

Time Series Plot

| fl
- | / \ . °\o\ / \ / ¥
\ I \/ \O\ [ f/ Y
7 \/ ¢ L \f
o O 0 20 30 40 0 60

Figure 3.2-Time series Plot

In the Figure 3.2 it is enough evident that the series produces stochastic seasonality

since its seasonal pattern is not deterministic and its changes over time.
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Figure 3.3-Plot of the Autocorrelation Function

Seasonality can be also be detected from the diagram of its autocorrelation function.

Inverse AR(2) roots

Imaginary
0
|

Real

Figure 3.4-The Inverse Roots

The Figure 3.4 shows the inverse roots of the characteristic polynomial of the AR(2)
that we simulated. We observe that both of them are on very close to the unit circle

which proves the presence of stochastic stationary seasonality.
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2 Below are also depicted the inverse roots of the ®(z°) and ¢(z) polynomials of
the mixed Seasonal ARMA(1,0)x(1,0)12 model:

Inverse AR roots

Imaginary
0
[ ]
[ ]
]

Figure 3.5-The Inverse Roots

We can see that all the seasonal roots are close to the unit circle.

3.2.3 The Stochastic Non-Stationary Seasonality

According to Ghysels, Osborn and Rodrigues (1999), the Nonstationary Stochastic
Process Y, observed at S equally lengths per year, is said to be Seasonally Integrated
of order D, denoted Y~ SI(D), if A2Y= (1-B%)PY:is a stationary invertible® ARMA
process.

The definition seasonal integration refers to the seasonal differencing of the process in
order to induce stationarity when unit roots occur. Consequently, if a first order seasonal
differencing makes Yta stationary and invertible process, then Y¢~SI(1). The simplest
case of such a process is the seasonal random walk.

We remark already at this point that Seasonal Integrated is not the only model
producing non-stationary stochastic seasonality and this issue will be discussed further
in 3.2.3.b.

©

5A linear process {X:} is invertible (an invertible function of {W.}) if there is a n(B)=no+m;B+m,B%+... with 2125 || <+o0 and
W= n(B) X

26



The Seasonal Differencing

In order to achieve stationarity, seasonal differencing is applied to the process.
Differencing the series {Yt} at lag S is a convenient way to eliminate a seasonal
component of period S. Specifically, a seasonal operator of order 1 for S=12 acts on Yt
as: (1-B¥)Yi=YYeroand for S=4as (1-B*) Y= Y-Yrs. Moreover, a seasonal operator
of order D is defined as: (1-B%)PY:. It is common though that D=1 is sufficient to obtain

seasonal stationarity.

3.2.3.a The Seasonal ARIMA(p,d.g)x(P,D,Q)s models

At this point it is necessary to define the models that display this type of seasonality,(see
Peter J. Brockwell’s and Richard A. Davis’s book, “ Time Series Theory and Methods”)
in order to understand the definition of the stochastic non-stationary seasonality in
depth. Combining the two models (2.3.2.0.iii) and (2.3.2.a.iv) from the previous part
and allowing for differencing lead us to the definition of the general seasonal
multiplicative SARIMA process.

Definition of SARIMA(p.d.g)x(P,D,Q)s

If d and D are non-negative integers then X: is said to be a seasonal
ARIMA(p,d,g)x(P,D,Q)s process with period S if the differenced series
Y=(1-B)¥(1-B%)PX; is a casual ® ARMA process defined by:

¢(B)®(B°)Y=0(B)O(B*)Z;, Z~WN(0,6?) (2.3.3.3)

where  ¢(2)=1-@1z-...-¢pz°,  0(2)=1+01z+...+04z%, ~ ®(2)=1-D1z-...-®pz" and
0(2)=1+0O1z+...+Oqz°.

Model Identification

Because of its nature, identifying a SARIMA models can be quite complicated.
However, there is a general guideline for this identification. First of all, d and D should

be found:

5An ARMA (p,q) process defined by the equation ¢(B)X=0(B)Z; is said to be casual if there exists a sequence of constants {y;}
such that X5 [1; | < +o0 and X=X 159, Z,; t=0,£1,...
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e If there is seasonality and no trend in the data, take a difference of lag S
(seasonal differencing).

e |f there is linear trend and no obvious seasonality, take a first difference (non-
seasonal differencing).

e |If there is both trend and seasonality apply both seasonal and non-seasonal

difference to the data.

Obviously, if d=D=0 our process displays stochastic stationary seasonality. On the
other hand if d, D # 0 we have to deal with non-stationary stochastic seasonality and
we have to specify these parameters so as to make the differenced observations
Y=(1-B)4(1-B%)P stationary.

After that, it follows the examination of the sample autocorrelation and partial
autocorrelation functions of {Yt} at lags which are multiples of S in order to find the
orders P and Q. The orders P and Q should be chosen so that the autocorrelation
function p(ks), k=1,2,.. is compatible with the autocorrelation function of an
ARMA(P,Q) process (identification of the seasonal terms), while the orders p and g are
chosen so that p(1),...,p(s-1) match with the autocorrelation function of an ARMA(p,q)

process (identification of the non-seasonal terms).

3.2.3.b —The Roots of the polynomials ©(z) and ®(z) and the relation
with stochastic non-stationary seasonality.

For a SARIMA model of the form (2.3.3.a),0nce a seasonal root of ®(z°) lies very close
or on the unit circle, the rest S-1 roots lie very close/on the unit circle as well
(stationary/non-stationary stochastic seasonality). Correspondingly, if a root lies

outside the unit circle the rest S-1 will lie there too (stationarity). This is because all
these roots have the same modulus and their angles differ by multiples at 2?" Therefore,

for SARIMA models when stochastic non-stationary seasonality is detected, a whole
group of roots of the seasonal characteristic polynomial @(z°) are considered to be on
the unit circle.

However, stochastic non-stationary seasonality can be produced even a single root of
the @(z) polynomial lie on the unit circle. Specifically, any root of ¢(z) equal to unity
in absolute value (zero frequency) “contributes” to the production of stochastic non-

stationary seasonality.
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Therefore, a SARIMA(p,d,q)x(P,D,Q)s model:

e With all groups of roots of its seasonal polynomial ®(z%) lie outside the unit
circle and all roots of the non-seasonal polynomial ¢(z) lie outside the unit
circle, is considered stationary.

e With any roots of its seasonal polynomial ®(z°) lie on the unit circle or any root
of the non-seasonal polynomial ¢(z) lies on the unit circle is considered to
produce stochastic non-stationary seasonality.

Summarizing the above details, in the seasonal ARMA(P,Q)s and the mixed seasonal
ARMA(p,q)x(P,Q)s the stochastic non-stationary seasonality occurs when either
groups of roots of the polynomial ®(z°) are on the unit circle or any of the independent

roots of ¢(z) are on the unit circle.

Consider now the general Seasonal ARIMA(p,d,q)x(P,D,Q)s model in equation
(2.3.3.9):
o(B)®@(B®)(1-B)%(1-B%)PX=0(B)®(B®)z;, z~WN(0,5?)

This model can be written alternatively as:

®(B)X=0(B)zt, z~WN(0,6%)(2.3.3.b)

with @(2)=¢(2)®(z°)(1-2)%(1-z°P and O(B)=0(2)0(z°).
Seasonal Integration occurs when @(z) has a group of roots of multiplicity D zox =

eizT” , k=1,...,S at the seasonal frequencies. However, any (other) root of &(z) on the

unit circle will result in a non-stationary X:and will produce seasonal behavior of X;
with period S. We will speak in this case as well as non-stationary seasonality in the
next chapters.

Generallizing the aforementioned inference, let the ARMA(p,q) modelthat satisfies the

equation below:

@ (B)X=0"(B)zt, z~WN(0,6%)(2.3.3.)

with @7(z) and @°(z)some other polynomials.
In this general case of an ARMA(p,q) model, any root of @°(z) on the unit circle will

also result in a non-stationary X.
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3.2.3.c —-Examples of SARIMA models

(1)  The Seasonal Random Walk

The seasonal random walk of order 1 is defined by the following equation:
Yi=Yis+ e, t=1,2,...,T (2.3.3.b)
with &~ WN(0,6?).
It is obvious that the equation (2.3.3.a) is the generalization of the conventional
nonseasonal random walk. Setting st the season in which observation t falls as si= 1+(t-

1)modS, backward substitution for lagged Y+ in the process above, implies that

Yi= Yo, o205 £, (2.3.3.0)

where ne= 1+ [(t-1)/S].

There random walk described above, contains the disturbances for the season sqwith the
summation over the current disturbance & plus the disturbance for this season in the ni-
1 previous years of the observation period. Also, the equation (2.3.3.c) implies that
E(Y)=E(Y;,_,), so when E(Y;,_.) is nonzero and varies over s=1,...S, deterministic
seasonal effects are included in the equation (2.3.3.b).

In time series analysis, the common notation for a process is Yt, where Ytis the value
of the variable we interested in at the date t. However, for time series that display
seasonality the double subscript notation Ys: is being used. The subscript s denotes the
season of the year, s=1,2,..,S and S is the number of season per year (S=4 for quarterly
data and S=12 for monthly data). The subscript t is obvious that it refers to the year.
Hence, if s=4 then Ys.4:=Ys,-a.

Moreover, using the notation of the two subscripts described in the start of this chapter

the equation (2.3.3.b) can be written equivalently as:
st:Ys,O_ Z?:l Esjs Szl,. ..S and 1’121,. LN (233d)

with the assumption that observations are available for precisely N=T/S complete years.
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2 The model SARIMA(0,0,1)x(0,0,1)12 includes non-seasonal MA(1) and a
seasonal MA(1) term, no differencing terms, no AR terms and its span seasonality is
S=12. The non-seasonal MA(1) polynomial is the 6(B)=1+0:B while the seasonal
MA(1) polynomial is ®(B!%)=1+®:B*2. Since there is no differencing term the model

will have intercept and the equation will be:

(X-p)= O(B*?) (B)zt , z~WN(0,6?)

which is equivalent to X¢-pu=(1+01B)( 1+01B*?)z<> Xi-pu=(1+ ©1B*? + 6:B + 0:0:B¥)z..
Thus the true model has MA terms at lags 1,12 and 13.

3) The model SARIMA(1,0,0)x(1,0,0)12 includes non-seasonal AR(1) and a
seasonal AR(1) term, no differencing and MA terms and S=12. The model is (1-
®1B?)(1-¢1B)(Xt-p)=2t , z~WN(0,6?). Let W= Xi-p then W= 1w +®1Wi-12 - 9101 Wi
13+ zt. This is an AR model with predictors at lags 1,12 and 13.

4) The model SARIMA(0,1,1)x(0,1,1)12 includes non-seasonal MA(1),seasonal
MA(1), the differencing terms d=1 and D=1, no AR terms and its span seasonality is
S=12. Since there are differencing terms, the model will not have an intercept and the

equation will be:

(1-B)(1-B*?)X; = (1+01B)( 1+@1B'?)z;, z~WN(0,6?)
SXi= Xe12 — X1 — Xeaz + (1+01B)( 1+01BY?)z;.

(5) Below are illustrated the inverse roots of the polynomials ®(z% and ¢(z) of the
SARIMA(1,0,1)x(1,1,1)1o. We can see the seasonal inverse roots lie on the unit circle.
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Inverse AR roots
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Figure 3.6-The Inverse Roots

3.2.3 “Assuming the correct vs the wrong type of seasonality”: An
illustration example

In this part, we illustrate the results of modelling three different types of data generating
processes, fitting on the one side the dummy variable representation and on the other
side the Seasonal ARIMA models. Specifically, we simulated data that follow the
models:

e  Yi=Yiste

o Yt Yoo mebgt &

d Yi= pt Yist Zgzl ms6st+ &t
Where s~WN(0,6%).
Then, we estimated each one of them with the models:

o Y =p + asYtist & (2348.)
* Yi=pt Zgzl ms 85+ e(2.3.4.b)
o Y =p + osYist Z§=1 m555t+at (2340)
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The purpose of this test is to note all the possible consequences of modelling a process

that displays deterministic seasonality with SARIMA models and vice versa, the

consequences of modelling a process that displays stochastic (stationary of non-

stationary) seasonality with the dummy variable representation (deterministic

seasonality). The table below represents the results in the estimations, the residuals as

well as the ACF and PACF plots of the residuals of modelling these three data

generating processes with these three different types of models.

True Model

Yi=Yist &

YEu+Yoo, Mebgt &

YiEpt+Yes+Y s mgSee+ &t

Yi=p + osYest &

— S
Yi= pt Zs:l msast"' &t

The residuals are
correlated. ACF plot: We can
see peaks at lags that are
multiples of 6. PACF plot:
Peaks at lags
1,2,3,6,7,8,9,10,11 and 12.
After lag 12, the residuals are
within the limits and they
finally wear off.

The ACF and PACF plot
shows that the residuals are
almost white noise.

The residuals are correlated.
ACEF plot: We can see peaks at

various lags. PACF plot:
Peaks at lags

1,2,3,6,7,8,9,10,11 and 12.
After lag 12, the residuals are
within the limits and they
finally wear off.

YimptosYest s, mgbete

The estimation of o is very
close to unity and the ACF
and PACF plots indicate that
& ~WN(0,6%). The estimation
of dummy coefficients are
significant.

The ACF and PACF plot
shows that the residuals are
almost white noise.

The estimation of o is very
close to unity and the ACF
and PACF plots indicate that
£ ~WN(0,02)

Table 3.3- Results of the Modelling

We can see from the table above that modelling a seasonal random walk Y¢=Yts+ &

(non-stationary stochastic seasonality) as a process that displays deterministic

seasonality Yi = pu+ Y3_,m.8,+ &, are unable to obtain White Noise residuals.

Specifically, the corresponding plots shown in figure 3.7 illustrate peaks at lags




multiples of 6 in ACF plot and various peaks in PACF plot and therefore the residuals

are uncorrelated.

Furthermore, modelling the process Yi=p+Yts+Y5-; m s+ ras a model that displays
deterministic seasonality we are also unable to obtain White Noise residuals. The
corresponding results of the ACF and PACF plots are almost the same as those of figure
3.4

The code and the corresponding output in R, as well as the ACF and PACF plots are

listed in the Appendix (B. Code - Code, plotsand output in R of the Example)

Acf Residuals

1.0

ACF
o
I R
I

Lag

06

Partial ACF
02
I

02

Lag

Figure 3.7-The ACF and PACF plots of the Residuals
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CHAPTER 4

The Seasonal Dickey-Fuller and Augmented Dickey-Fuller Unit
Root test

Some of the most popular seasonal Unit Root tests, are the seasonal Dickey-Fuller test
(seasonal DF test) and the seasonal Augmented Dickey-Fuller test. Both of them will

be described in this part.

4.1 The seasonal Dickey-Fuller Unit Root test

First of all, assume the Seasonally Integrated model of order D model (SI(D) model)
described in part 3.2.3 in Chapter 3. In the framework of this model the hypotheses of
the seasonal DF test are formed as follows:

Ho: Y~ SI(D) <> 42Y= (1-B%)P-Y:is a stationary process
Hai: Yiis stationary

More specifically, let the model Yi= os'Yis + &, &~ WN(0,62) (3.1.1.a) which is the
model (2.3.4.a) of the previous part with mean equal to zero. The corresponding
hypothesis of the seasonal DF test for the model (3.1.1.a) are the following:

Ho:as=1
Hi:as< 1

Therefore, in general under the null hypothesis of the seasonal DF test the
Autoregressive polynomials of a model contains all the roots 1, +i for quarterly data
and all the roots £1, =i, %(\/§i i), %(lix/gi), - %(lix/gi), - %(\/gi i) for monthly data. In
other words under the null hypothesis all roots of the of the Autoregressive polynomials
are on the unit circle and under the alternative all roots of polynomial have the same
modulus smaller than unity.

In order to describe the seasonal DF test, we will use the zero mean and the seasonal

means model, as well as the single mean model, defined by the following equations:
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e Yi=o0sYist e, &~ WN(0,6%) , the Zero Mean Model (3.1.1.a)
o Y= 0sYestYoog YsOseter, &t~ WN(0,6%) , the Seasonal Means Model (3.1.1.b)
e Yi=p+ asYist &, &~ WN(0,6%) , the Single Mean Model (3.1.1.c)

For these three models Dickey, Hasza and Fuller (1984), described the original least
squares estimators of their coefficients as well as the corresponding Studentized
regression statistics. For the Zero Mean Model the ordinary least square estimator of

asis the @SZM and the Studentized statistic is the s = [(X™,V2s)7t-

n
i=1"t-S

1
5,°]72 (@s-1) where ;2= (n-1)"1-37_, (Y, - @s' Yts)?. For the Seasonal Means Model,
regressing Yt on 6;¢,02¢,..., st , Yesfort=1,2,....n, yields the coefficients 73, v5,....7s,

and a5 , as well as the Studentized statistic Z,s. Finally, for the Single Mean Model the
results are similar to the previous and p and &E denote the estimated coefficients of the

model and TAS* is the corresponding Studentized statistic.

Extending the approach of Dickey (1976) who computed the percentiles of the limit
distributions of n-(@1-1), 71 and T, to the models with S>1, Dickey, Hasza and Fuller
obtained the limit percentiles of the limit distributions of the statistics described above.
(see Theorem 1- Dickey, Hasza and Fuller, 1984). Monte Carlo integration and other
techniques were used for the computation of the percentiles of distributions for time
series that all of its roots are on the unit circle (under the null hypothesis). The provided
tabled distributions are used to test the hypothesis listed above.
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Estimated Equation 5% Percentage points of the OLS estimator 5% Percentage p&?{it?g the Studentized
S=4 -9.16 S=4 -1.90
S=12 -11.58 S=12 -1.80
S=4 -27.88 S=4 -4.04
S=12 -59.45 S=12 -5.82
S=4 -12.62 S=4 -2.38
S=12 -13.65 S=12 -2.06

Table 4.1-The 5% percentage points of the estimators for T=+w

These conclusions as well as the Dickey Fuller test, concern the three aforementioned

models under the assumption of &t’s to be White Noise.

4.2 The seasonal Augmented Dickey-Fuller Unit Root test

In the presence of the serial correlation of the residuals, the extension of the seasonal
Dickey-Fuller Unit root test is the seasonal Augmented Dickey-Fuller Unit root test
(seasonal ADF test).
Let the multiplicative model:

(1-0sBS)-(1-01B-.....-0,B)- Y= & (3.2.1.0)

where & is a sequence of iid (0,6%) random variables. The equation (3.2.1.«) is the
SARIMA(p,0,0)x(1,0,0)s model with mean equal to zero and it defines the errors &; as
a nonlinear function of (as,0), where 0°=(01,6-,...,0p).

The estimator as-1 will arise from a procedure named the two-step regression and it can

be used to test the hypothesis Ho: as=1 versus Hi:os#1.
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The two-step reqgression procedure

Note that in the framework of equation (3.2.1.a) and satisfy Y,= Yi-Yt.s corresponds to
the initial estimate that as=1. This suggests the following procedure:
(1) Regress Y, on Y,_1,Y;_,,...,Y,_,to obtain an initial estimator of 6 =

(01,02,...,0p) that is consistent for@ under the null hypothesis that as=1.

(2) Compute the residuals :(1,8) and regress &(1,8) on [(1-81B-.....-
6pBP)-Yts, Y;_1,Y;—5,...,Y,_p] to obtain the estimators (as-1,0-0).

As it is subsequently explained in a Theorem 5 (see Dickey, Hasza, Fuller-1984) the
limit percentiles obtained for the first order models can be extended to the multiplicative
model. Specifically, if as=1 in model (3.2.1.a), the two-step regression procedure
results in an estimator asand a corresponding Studentized statistic with the same limit
distribution as that of the statistic one would obtain by regressing Zi-Zis=Z: on
Zrswhere Zi=Y+01Yt1-....- 0pYp. The estimators 6i, obtained by adding the estimates
of 0i-8, tof, have the same asymptotic distribution as the coefficients in a regression
of ,onY,_, Y, ,....Y, .

The Theorem 5 implies that the tabulated limit percentiles of estimators in the Zero
Mean Model are also applicable in the multiplicative model for large sample sizes.
Therefore, the estimator (as-1) and the corresponding Studentized statistic will have the
percentiles with those of the Zero Mean Model.

As far as the seasonal means and the single mean models are concerned, the extension

of the theorem is immediate. Specifically, let
yt=Yi- Yo i 1(3.2.1.b)

Replacing Y¢ by y: in the two-step regression procedure results in the regression of the
errors &(1,0) on [(1-81B-.....-8pBP)yis, Y;_1,Y,—2..... Y p).
Using these arguments, it follows that the first coefficient a,sand its Studentized

statistic converge to the limit distribution of the corresponding estimators of the Zero

Mean model.
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CHAPTER 5

The HEGY Unit Root test

In the previous part, it was described the seasonal unit root test by Dickey, Hasza and
Fuller (1984). Specifically, it was listed the asymptotic distribution of the least-square
estimators for three different models and these results were extended to the case of high-
orders stationary dynamics. A crucial disadvantage of the seasonal ADF unit root test
is that the null hypothesis implies that all roots of d@(B®) are on the unit circle while the

alternative restricts the roots to have the same modulus.

5.1 The HEGY Unit Root test for quarterly data (S=4)

To begin with, we will assume the general autoregressive model
(p(B)(Yt-}Lt) = &t (4.1.1.8.)
where ¢(B) is the autoregressive polynomial, u:= p+ Y 5_, m.8, and & ~ WN(0,6?).

The equation (4.1.1.a) can be written equivalently as:

d(B)a(B)(Ye-p) = & (4.1.1.b)

where all the roots of d(z) =0 lie on the unit circle and therefore its roots 0 € {+1,-1,+i,-
i} for k<4 since we consider quarterly seasonality only. All the roots of a(z) =0 are
assumed to lie outside the unit circle and therefore all the stationary components are
absorbed into a(B) and finally p: describes the deterministic seasonality when there are
no seasonal unit roots in d(B).

In practice, unit roots may be present at some, but not at all the frequencies. Therefore,
a joint test at all seasonal frequencies (seasonal ADF test) simultaneously will not
provide the appropriate result. The benefit of HEGY unit root test, is that it can look
for unit roots at any single seasonal frequency (as well as the zero frequency) without
imposing roots at other frequencies.

Therefore, HEGY unit root test allows to test for individual roots. Specifically, they are

tested the following separate hypotheses:
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e Ho: 0:=1is root of the polynomial d(z) =0
H1: 61=1 is not root of the polynomial d(z) =0

e Ho: 02=-1is root of the polynomial d(z) =0
Hi: 62=-1is not root of the polynomial d(z) =0

e Ho: 03=i and 04 =-i are both roots of the polynomial d(z) =0
H1: 63=i and 64 =-i are not roots of the polynomial d(z) =0

We will show subsequently that the equation (4.1.1.a) can be also transformed to the

form
Q" (B)Yar = T1Y10-1 + T2Yat—1 + M3Y3e—z + MaY3e-1 + & (4.1.1.0)
where,
¢*(B)= 1-91B-¢2B?-...-ppBP and &, is white noise
and
y1e = (1+B+B?+B%)Y:
y,1= -(1-B+B%-B3)Y, (4.1.1.d)

Y3t— '(1'52)Yt
Yar= (1'84)Yt

and these y’s are asymptotically uncorrelated.

Moreover, it will be shown that 7k = 0 describes exactly the hypothesis that 6k is a root
of @(B). Thus, in order to conduct the test one will compute y,,= Yt— Y4 and will then

estimate the equation:

Yat = Q1YVat-1t "+ PpYar—p + T1Y1e-1 T T2YV2e—1 T T3Y30—2 + TyY3t-1 T &

with OLS to obtain the estimates @1, @3,...,0,, 71, T, T3,74. Here p has been selected
by criteria such as AIC, BIC e.t.c.

In order to test the hypothesis that ¢(6«) = 0 where 6kis either 1,-1, i, it is simply tested
that m,, is zero. Specifically, a test that 1 is a root of (4.1.1.c) is a test for m; = 0 and

correspondingly, a test for -1 is a test for =, = 0. For the complex roots iand -i it is
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suggested a joint test that 5 and m,are equal to zero. It is evident that a series has no
unit roots if each one of the n’s is different from zero.

Therefore, in the framework of the equation (4.1.1.c), in order to look for unit roots at
the zero frequency as well as the others seasonal frequencies, the following hypothesis
are being tested:

1) Ho: m =0, 1 isa root of the polynomial

Hi: <0, 1 is not a root of the polynomial

2) Ho: m2 =0, -1 is aroot of the polynomial

Hi: m2<0, -1 is not a root of the polynomial

3) Ho:ms=ms=0, +i are roots of the polynomial

Hi: m3# 0 and ms # 0, +i are not roots of the polynomial

The n’s as well as the @i’s are estimated with ordinary least squares. Hylleberg, Engle,
Granger and Yoo (1990) studied the asymptotic distribution of the appropriate t and F
statistics and computed by Monte Carlo integration the critical values for the one-sided
‘t’ tests on 11 and w2 as well as the critical values for the ‘F’ test on n3N7a=0. The first
ones are very close to the Monte Carlo values from Dickey-Fuller and Dickey-Hasza-
Fuller for the situations in which they tabulated the statistics. Below are tabulated the
5% percentage points of the nt1, m2 and mz and the 95% percentage points for mzNms for
T=200 of five different models.

41



Estimated Equation

‘2:m

‘: m

No intercept
No seas. Dummies
No trend

-1.94

-1.95

Intercept
No seas. Dummies
No trend

-2.87

-1.92

Intercept
Seas. Dummies
No trend

-2.91

-2.89

Intercept
No seas. Dummies
Trend

-3.44

-1.95

Intercept
Seas. Dummies
Trend

-3.49

-2.91

Table 5.1-The 5% percentage points of the estimators for T=200

Estimated Equation

‘F’: iz3Nma

No intercept
No seas. Dummies
No trend

3.16

Intercept
No seas. Dummies
No trend

3.12

Intercept
Seas. Dummies
No trend

6.61

Intercept
No seas. Dummies
Trend

3.07

Intercept
Seas. Dummies
Trend

6.57

Table 5.2-The 95% percentage points of the estimator for T=200
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Some notes about the aforementioned critical values is that:

1) Ifthe =’s are truly different from zero then the models has no unit roots at theses
frequencies and the corresponding y’s are stationary. As a result, the regression

is equivalent to a standard augmented unit-root test. If some of the «’s are zero,




the distribution of the others test statistics will not be affected since the y’s are
asymptotically uncorrelated. For example, the test for 71=0 will have the same

limiting distribution regardless of the presence of y. in the regression.

2) If deterministic components are added in the regression the distributions of the
n’s change. The intercept and a trend term affect only the distribution of 1 while
the intercept in combination with the three seasonal dummies influences the

distribution of 2, 3 and ma.

5.2 The derivation of HEGY Unit Root test for quarterly data

First of all we will list a Lagrange’s proposition that is useful in the description of the

HEGY test:

“Any (possibly infinite or rational) polynomial ¢(B), which is finite-valued at the
distinct, non-zero, possibly complex points 61, 6, ...,6,, can be expressed in terms

of elementary polynomials and a remainder as follows:

¢(B) = X¥=1 A, A(B)/8,(B) + A(B)¢™(B), (4.2.1.0)

where thed,are a set of constants, ¢~ (B) is a (possible infinite or

rational)polynomial and

6u(B)=1-5-B, A(B)=[1f=1 8c(B)

In the above, A, are defined as:
Ak = ©(0k) / Tk 6; (Bx), which always exists.
By adding and subtracting A(B)}: A, to (4.2.1.a) we get the following form:

¢(B) = X1 4A(B)(1 — 8,(B))/8k(B) + AB)@"(B), (4.2.1.b)
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whereg (B) = ¢™(B) + X 4.
Representation (4.2.1.b) indicates two major notes:
e The polynomial ¢(B) will have a root at 8y, if and only if A, = 0 and therefore,
e testing for unit roots can be performed equivalently by testing for parameters
M=0.
In order to test for seasonal unit roots in quarterly data Hylleberg, Engle, Granger and
Yoo, (1990) expanded a polynomial ¢(B) about the roots +1, -1 , i and —i as 8,
k=1,...,4. Then, from (4.1.1.b):
¢(B) = 1,B(1+B)(1+B?) + A,(-B)(1-B)(1+B?)
+ A5(-iB)(1-B)(1+B)(1-iB)
+ 1,(iB)(1-B)(1+B)(1+iB)
+ @"(B)(1-B*). (4.2.1.c)

Notice that since ¢(B) is real, A3 and 1, should be complex conjugates. More details of
this derivation are given in the appendix- 1b.
Replacing the equations n1 = - A, m2 = - A,, 243= -na+ing and 21, = -mz-ims, in the

(4.2.1.c), yields the following form:

¢(B)=-m;B(1+ B + B?> + B3) —m,(-B)(1 - B + B> — B3) — (m, + n3B)(—-B)(1 —
B*)+ ¢*(B)(1 — B*) (4.2.1.0)

More details of this derivation are given in the appendix- 1c

Let @(B)Yt = &t be the data generating process. Replacing the equation (4.2.1.d) to ¢(B),

gives,

@ (B)ysr = M1Y1¢-1 + MaYVoe1 + M3YV3¢-2 + MyY3e—1 + &

where

y1e = (1+B+B*+B3)Y;
y2:= -(1-B+B?-B3)Y;
3= -(1-B)Y:

yar= (1-BYY:
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5.3 The HEGY Unit Root test for monthly data (S=12)

Correspondingly with the previous, let @(B)Y+ = & be the data generating process. We
want to know if the polynomial ¢(B) has roots equal to 1 in absolute value at zero
frequency or seasonal frequencies. In order to test for non-seasonal and seasonal unit

roots in monthly data, J.J. Beaulieu and J. A. Miron(1993) expanded the polynomial
¢(B) about the roots of z!2-1=0 which are +1, =+i, %(\/51 i), %(liﬁi), - %(I:l:\/§i),

— %(\/gi 1) according to the Lagrange’s proposition we listed above. The aim is to test

the presence of a particular unit root without taking into consideration whether other
seasonal unit roots are present.

For monthly data, replacing (4.2.1.b) into @(B)Yt = &t yields to the following equation:

O (B)y13t = X321 Ty Vie—1+ &, (4.3.1.2)
where,
¢*(B)= 1-¢1B-2B?-...-9BP, and p can be chosen with criteria such as AIC, BIC e.t.c,
& IS white noise,
and
yit = (1+B+B2+B%+B*+B%+B5+B’+B%+B%*+B+B) Y,
yat = -(1-B+B2-B%+B*-B%>+B5-B"+B%-B*+B°-B1)Y;
yat = -(B -B*+B>-B’-B*-B1)Y;
yat = -(1-B*+B*-B%+B%-B0) Y,
Yst = -%(1+B-ZB2 +B%+B*-2B%+B%+B’-2B%+B%+B°-2B)Y;

Yot = \/2—5 (1-B+B3-B*+B5-B"+B%-B)Y;

Vit = %(1-8-282 -B3+B%+2B5+B6-B7-2B8-B%+BL0 +2B)Y,
Vot = — \/2_5 (14_B_Bs_|_3,4_|_|_3>6_'_|_3)7_Bg_Blo)Yt

Yor = -5(V3-B+BV3B*+2B%-V3B%+B7-B%+V3BY-2B1) Y,
yior = 2(1-V/3B +2B? -V3B%+B*B° +v/3B7-2B°+V3B*BY)Y,
yiit = %(\/§+B-B3-\/§ B*-2B%-\/3B%-B7+B%+V/3B+2B)Y;

Y12t = -%(1+\/§ B+2B2 +1/3B3+B*B%+/3 B7'258'\/§59-Blo)Yt
Y13t = (1‘812)Yt
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For the frequencies 0 and =, in order to test the hypothesis that ¢(6k) = 0 where 6k is
either 1,-1, k=1,2 it is simply tested that mx =0 against mk< 0. For the seasonal
frequencies we test if mk = k-1 =0 versus mw# 0 ormk-1 # 0 with a joint test or simply Todd
= Tleven =0 VErsUS Todd# O OF Teven #0 .

Therefore, in the framework of the equation, (4.3.1.a) the hypothesis for the detection

of unit roots at the zero as well as all the others seasonal frequencies are the following:

1. Ho: @ =0, 1isaroot of the polynomial

Hi: m1<0, 1 is not a root of the polynomial

2. Ho:m =0, -1is aroot of the polynomial

Hi: m2<0, -1 is not a root of the polynomial

3. Ho:m=mns=0, +i are roots of the polynomial
Hi: ma3# 0 orms # 0, +1 are not roots of the polynomial

4. Hoims=ms=0, -51( 1+V/3i ) are roots of the polynomial

Hi: 5% 0 or me £ 0, -;1( 1+/3i )are not roots of the polynomial

5. Hoimr=mg=0, ;1( 1+v/3i ) are roots of the polynomial

Hi: m7# 0 ormg # 0, ;1( 1:+v/3i )are not roots of the polynomial

6. Ho:mg=mo=0, -31(\/§i i) are roots of the polynomial

H1: me# 0 ormo # 0, -;1(\/§i i) are not roots of the polynomial

7. Homi=m2=0, 51(\/§i 1) are roots of the polynomial

Hi: mui# 0 ormiz # 0, ;1(\/51 i) are not roots of the polynomial
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The n’s as well as the @i’s are estimated with ordinary least squares. Beaulieu and Miron
computed by Monte Carlo integration the critical values for the one-sided ‘t’ tests on
w1 and 72 as well as the critical values for the ‘F’ test on mxN7k-1=0 for k=4,...12 . Below
are tabulated the 5% percentage points of the n; and mzand the 95% percentage points

for kN k-1 for T=+o0 of five different models.

Estimated Equation ‘:m ‘’: m2

No intercept
No seas. Dummies

No trend -1.95 -1.95

Intercept
No seas. Dummies

No trend -2.86 -1.95

Intercept
Seas. Dummies

No trend -2.86 -2.86

Intercept
No seas. Dummies

Trend -3.40 -1.95

Intercept
Seas. Dummies

Trend -3.40 -2.86

Table 5.3-The 5% percentage points of the estimators for T=+o
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Estimated

. ‘F’: moddN7e
Equatlon odd! 17Teven

No intercept
No seas. Dummies

No trend 3.10

Intercept
No seas. Dummies

No trend 3.10

Intercept
Seas. Dummies

No trend 6.67

Intercept
No seas. Dummies

Trend 3.10

Intercept
Seas. Dummies

Trend 6.67

Table 5.4-The 95% percentage points of the estimator for T=200
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CHAPTER 6

Application of the Seasonal Unit Root tests to the Greek
Inflation

In this part, we conduct the seasonal ADF and the HEGY unit root test in order to detect
seasonal and non-seasonal unit roots as well as to compare these two methods, using a
dataset in the statistical package R. The time series analyzed in this example is the
Greek inflation, labeled as infl91. Data are collected monthly from 1977.1 to 1991.12.
Since 1991, where the adjustment of the drachma-inflation to the Euro-inflation began,
the average inflation started to drop to an important extent. This fact results in a break
in the expected value of the time series. In order to avoid the presence of this break in
the data we analyzed’, the data collected until December 1991. The data we had at our
disposal is the Consumer Price Index in Greece, labeled as cpi. Taking the first
logarithmic differences we created the time series of the Greek inflation at the
corresponding period.

First, we will note the characteristics of our data.

0.04
|

inf1

001 |
|

—

-0.01

-0.02

I I I
1980 1985 1990

Time

Figure 6.1-Time Series Plot

" The inclusion of a dummy to capture this break might alter the distribution of the statistics
considered. This is a well-known fact for the classical Dickey-Fuller test.
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The above time series plot seems to have a seasonal path while the ACF (which does
not decrease exponentially). Moreover, the PACF plot indicates that an AR(12) would
be necessary to describe the data.

Series inf191

ACF
04 06 08 10
| |

02
|

02 00
|
!
N —

Figure 6.2-Autocorrelation Function Plot

In the ACF and PACF plots above, in the x-axis, the number 1.0 corresponds to the
twelfth lag.
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Figure 6.3-Partial Autocorrelation Function Plot
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Figure 6.4-The bbPlot

The graphic above is a bbplot and it is provided in the ‘uroot’ package in R. It illustrates
the 12 monthly paths of the series. The fact that these monthly paths are not parallel
suggests that the seasonal patterns are not constant and hence some stochastic

seasonality (stationary or non-stationary) will be present

51



7.1 The seasonal ADF unit root test: Application to the Greek Inflation

In this part, we performed the seasonal ADF using our data in the statistical package R.
In order to do that, we applied the procedure of the two-step regression described in
chapter 3. We remind that this procedure contains two regressions that finally give the
ols estimators (0s-1,0-0) of the multiplicative model
(1-0sB®)-(1-01B-.....-0,B")-(Yi-p)= &.

The order of p in the first step of the two-step procedure is chosen by AIC and is equal
to 19. The estimates of the coefficients with their standard errors and the t-statistics of

the second stage regression are given in table 6.1.

Estimates Std. Error t-Statistic

Intercept (u) 0.001 0.001 0.91
os- 1 -0.055 0.027 -2.05
01 0.022 0.087 0.26
02 0.003 0.086 0.04
03 -0.008 0.085 -0.10
04 0.005 0.084 0.07
05 -0.007 0.083 -0.09
06 -5.7-10° 0.084 -0.00
07 0.014 0.084 0.18
0g 0.003 0.077 0.03
09 -0.009 0.079 -0.12
010 0.001 0.080 0.01
011 -0.006 0.079 -0.07
012 0.005 0.079 0.06
013 0.014 0.088 0.16
014 -0.003 0.087 -0.04
015 -0.002 0.084 -0.03
016 0.017 0.085 0.21
017 -0.018 0.086 -0.21
018 -0.008 0.087 -0.09
019 0.018 0.086 0.21

Table 6.1-Seasonal ADF Statistics

We can see that the estimation of as-1 is not close to zero and from Table 4 we see in
the paper of Dickey, Hasza and Fuller (1984), the since our t-statistic is -2.05 the p-
value is smaller than 0.05. Therefore, the null hypothesis of the seasonal ADF test is

rejected in favor of stationarity of the series.

52



6.3 The HEGY unit root test: Application to the Greek Inflation

In this subsection, we performed the HEGY unit root and computed the corresponding
statistics using our data in the statistical package R. The purpose is to detect seasonal
unit roots in the period 1977.1-1991.12 of the Greek inflation at any single seasonal
frequency. To conduct this test and obtain the statistics we used the ‘uroot’ package and
specifically the function HEGY .test. As far as the deterministic components of the
model are concerned, we added the intercept as well as the eleven seasonal dummies,
while the order p was selected by the criterion of the significance of the ¢i’s.

In the table 6.2 are illustrated the indexes of the seasonal unit roots, the seasonal unit

roots as well as the corresponding frequencies.

Index Unit Roots Frequencies
1 1 0
2 -1 T
3,4 i m3n
2'2
5,6 _1 i 2m 4m
z(li\/gl) 3'3
7,8 1 i T 5m
2(1ﬂ:\/§|) 3" 3
9,10 _1 ; sm 7w
PR 5
11,12 1 i r um
z(ﬁi 1) 6' 6

Table 6.2-Seasonal Unit Roots and Frequencies

In the table 6.3 are presented the Hegy statistics with their corresponding p-values. We
remind that the null hypothesis of each test is the presence of unit root while the

alternative is stationarity.

Test Statistics P-Value
tpi_1 -2.321 0.100
tpi_2 -3.200 0.014
Fpi_3:4 12.751 0.010
Fpi_5:6 12.364 0.010
Fpi_7:8 9.362 0.010
Fpi_9:10 6.771 0.036
Fpi_11:12 5.109 0.100

Table 6.3-Hegy Statistics
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According to the table 6.3 the null hypothesis is not rejected in the zero frequency (t:-
2.32) as well as the seasonal frequencies % andllT" (F: 5.109) at the 5% level of
significance. Therefore, we consider the presence of the unit root 1 and the seasonal

unit roots ;1(\/§+i) and ;1(\/§-i).

Estimates Std.Error P-Value
Intercept 0.008 0.005 0.118
SeasDummy.1 -0.019 0.006 0.004
SeasDummy.2 0.011 0.007 0.115
SeasDummy.3 0.006 0.005 0.268
SeasDummy.4 -0.007 0.007 0.326
SeasDummy.5 0.008 0.007 0.209
SeasDummy.6 -0.021 0.004 0.000
SeasDummy.7 -0.020 0.006 0.002
SeasDummy.8 0.019 0.007 0.006
SeasDummy.9 0.006 0.005 0.251
SeasDummy.10 -0.009 0.007 0.185
SeasDummy.11 0.006 0.006 0.383

Table 6.4-Deterministic Regressors Estimates

In the table 6.4 are tabulated the estimates as well as the standard errors and the
corresponding p-values of the t-statistics of the deterministic regressors.

Estimates Std.Error
- 0.008 0.005
2 -0.019 0.006
3 0.011 0.007
— 0.006 0.005
s -0.007 0.007
. 0.008 0.007
7 -0.021 0.004
s -0.020 0.006
. 0.019 0.007
10 0.006 0.005
—_ -0.009 0.007
12 0.006 0.006

Table 6.5-Hegy Regressors Estimates

The Table 6.5 illustrates the estimates and the standard errors of the zi’sof the equation

(4.3.1.a) in the framework of the time series analyzed.
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If the seasonal ADF test did not reject the null hypothesis and thus all the seasonal
frequencies are considered non-stationary, we should apply twelve differences in order

to achieve stationarity. Therefore, for ¢(B) = (1-B*?), the series
¢(B)Yt would be stationary.

On the contrary, if the HEGY test indicates the presence of unit roots in the seasonal
frequencies xo:i% and at A=0, the form of the filter changes.
Let zo = e and z1 = 1 be the roots of the polynomial ¢(B), then:
9(B) = (1-B)(1- z5'B)(1-z, 'B) =
(1-B)(1- 2Re(z20)B + |z51[’B?) =
(1-B) ( 1- cos(ho)B + B?)

Therefore, for ¢(B) = (1-B) (1- cos(ko)B + B?), the series

¢(B)Ytwould be stationary.

6.5 Conclusions

From the aforementioned facts it appears that the seasonal ADF and the HEGY unit
root tests in the framework of the Greek inflation 1977.1-1991.12 conclude to different
results. On the one hand, the seasonal ADF test rejects the null that the roots of the
corresponding autoregressive polynomial ¢(B) are on the unit circle. Thus it rejects

non-stationary seasonality in favor of stationary seasonality. On the other hand, the
HEGY test rejects all seasonal unit roots except those at the frequencies %and 117” and

0 Thus HEGY does not reject the presence of non-stationary seasonality. It does,
however, indicate a filter to achieve stationarity which is different from the usually

employed twelfth-differences-filter.

55



CHAPTER 7

Appendix

7.1 Proofs

la. The change AY- s a stationary process that can be forecasting using the standard
method:
AVHS”E E[(Yers-Yers1]Ye, Yea,..)]= 8+ yssrt Wsrigra+ Wseoerot... (1)
Making the proper transformation, we note that the variable at the level t+s, is
the sum of the changes between the time t and t+s:
Y1+5=(Yers-Yers-1) H(Yirs-1- Yiws2) Ho.H(Yer1- Y)Yt = AV s +AY s
1+ FAY 1+ Y(2)
Therefore, taking into consideration the equation (2) and the forecast of the
change AYtin equation (1), it is concluded that the forecast of a unit root process
has the following form:
Yersie =AVpiget Alppsqjet. AA gt Vi
= {0+ ysert Ysr1er1t Yssogrot..} + {0+ Ys1&rt Wserat Ysrigrat. ) + {8+ ysoett

Ysagt1t Yserot. ) o+ {0+ yaiert yosrat yaerat. ) + Yt

Yersie = 56 +Yer(ystysat. tynect (Ysehyst. Hy2)ses +..

1b.For0:1=+1,0,=-1,03=iand 04 =-i ;

« 6u(B)=1--B:6,(B) = 1B
k
5,(B) = 1+B
5;(B)=1--B=1+iB

5,(B) = 1+§B = 1-iB

e A(B)=TI%_,6x(B)=(1-B)(1+B)(1 + iB)(1-iB) = (1-B?)(1+B?) = (1-B%
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o MAB)(1—6,(B))/5,(B):
For k=1, 2,(1 — B*)(1 — 1+ B)/(1 — B) = 4, (1+B)(1+B)B
For k=2, 1,(1 — B*)(1 — 1 — B)/(1 + B) = 2,(1+B)(1+B?)(-B)
For k=3, 15(1 — B*)(1 — 1 — iB)/(1 + iB) = A5(1+B)(1-B)(-iB)(1-iB)

For k=4, ,(1 — BY(1 — 1 + iB) /(1 — iB) = A,(1+B)(1-B)(iB)(1+iB)

* A(B)9'(B)=(1-B)¢p'(B)
Substituting the equations above in the equation (4.1.1.b) gives the equation

(4.1.1.c).

1c. 2,B(1+B)(1+B?) + 1,(-B)(1-B)(1+B?)
+15(-iB)(1-B)(1+B)(1-iB)
+ 2,(iB)(1-B)(1+B)(1+iB) =

= - ;B(1+B+B?+B®%) — mp(-B)(1-B+B3-B%)
# () CIB)(1-B)(L+B)(LB) + + (T )iB)(1-
B)(1+B)(1+iB)=

= - mB(1+B+B?+B%) — n2(-B)(1-B+B3-B3) +
—2X(1-B)(1+B)[(iB)(L+iB)+(-iB)(1-iB)] — %“i(l-B)(1+B) [(iB)(1-
iB)+iB(1+iB)]=

= - mB(1+B+B%+B3) — nx(-B)(1-B+B2-B?®) +
—2(1-B)[iB - BB - B?] —™{(1-B2)[iB + B? +iB -B?]=
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= - muB(1+B+B%*B?®) — m2(-B)(1-B+B%B3) +
—22(1-BY)(- 2B?) —(1-B?)(2iB) =
= -mB(1+B+B?+B?) — n2(-B)(1-B+B2-B%) + m3(1-B%)B? +ms(1-B%)B =

= - ;B(1+B+B?+B%) — n2(-B) (1-B+B2-B®) — (n3B + m4)(-B)(1-B?).

So,

¢(B) = 4, B(1+B)(1+B?) + 15(-B)(1-B)(1+B?) +5(-iB)(1-B)(1+B)(1-iB)
+ 24(iB)(1-B)(1+B)(1+iB) + ¢"(B)(1-Bf) =

= -mB(1+B+B2+B?) — m2(-B)(1-B+B?-B?) — (n3B + m1)(-B)(1-B?)+ ¢"(B)(1-B%).

7.3 Code

Code for the Figure 2.1

Simulate a random walk

n<-20

eps<- rnorm(n)

x0<- rep(0, n)

d<-0.2

for (i in seq.int(2, n))
XO[i] <- d+x0[i-1] + eps[i]

Simulate a trend Stationary process

innovs<- rnorm(20,0,1)
x<-1:20 #time variable
mu<-10+0.5*x+innovs #linear trend

library(forecast)
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par(mfrow=c(2,1))
plot.forecast(forecast(x0),xlab="Time",main="Forecast of a Unit Root Process")
abline(lsfit(1:20,ts(x0), intercept =TRUE ),col=2)

plot.forecast(forecast(mu),xlab="Time",main="Forecast of Trend Stationary Process"

)
abline(lsfit(1:20,ts(mu), intercept =TRUE),col=2)

Code for Figures 3.2-3.4
Simulation of AR(2) model with inverse root close to unity

pre.ss<-100
period<- 12
mod.inv<- 0.9
ss<- period *5

lamda<-2*pi/period
p<-2
fi<-c(2*mod.inv*cos(lamda ),-mod.inv/"2)

e <- rnorm(ss+pre.ss)
y.init<- rep(NA,ss+pre.ss)
for (iin 1:p)

{
y.init[i]<-e[i]
¥

for (i in (p+1):(ss+pre.ss))

{

y.init[i]<- fi[1]*y.init[i-1]+fi[2]*y.init[i-2]+e[i]
y <- rep(NA,ss)
y[1:ss] <- y.init[(pre.ss+1):(pre.ss+ss)]

Figure 3.2
ts.plot(y,type="b",main="Time Series Plot")

Figure 3.3
ts.plot(acf(y,lag.max=3*period))

Figure 3.4
fit<- Arima(y,order=c(2,0,0),seasonal=c(0,0,0))
plot(arroots(fit),main="Inverse AR(2) roots")
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Code for Figure 3.7

plot(nottem,type="0",col=4,pch=18,main="Run Sequence Plot",ylab="Average Air
Temperature”,xlab="Index")

plot(acf(nottem),col=3,main="Autocorrelation Plot™)
monthplot(nottem,col=4,main="Seasonal =~ Subseries  Plot",ylab="Average  Air
Temperature”,xlab="Month")

Code for Figure 3.4

Finding AR roots

arroots<- function(object)

{
if(1("Arima" %in% class(object)) & !("ar" %in% class(object)))
stop("object must be of class Arima or ar™)
if("Arima" %in% class(object))
parvec<- object$model$phi
else
parvec<- object$ar
if(length(parvec) > 0)

{
last.nonzero<- max(which(abs(parvec) > 1e-08))
if (last.nonzero> 0)
return(structure(list(roots=polyroot(c(1,-parvec[1:last.nonzero])),
type="AR"), class="armaroots’))

}

return(structure(list(roots=numeric(0),type="AR"),class="armaroots"))

Plot Inverse Roots

plot.armaroots<- function(x, xlab="Real",ylab="Imaginary",
main=paste("Inverse roots of" ,x$type,"characteristic polynomial"),

)
{
oldpar<- par(pty='s’)
on.exit(par(oldpar))
plot(c(-1,1),c(-1,1),xlab=xlab,ylab=ylab,
type="n" bty="n" xaxt="n",yaxt="n", main=main, ...)
axis(1,at=c(-1,0,1),line=0.5,tck=-0.025)
axis(2,at=c(-1,0,1),label=c("-i","0","i"),line=0.5,tck=-0.025)
circx<- seq(-1,1,1=501)
circy<- sgrt(1-circx”2)
lines(c(circx,circx),c(circy,-circy),col="gray’)

60



lines(c(-2,2),c(0,0),col="gray")
lines(c(0,0),c(-2,2),col="gray’)
if(length(x$roots) > 0) {
inside<- abs(x$roots) > 1
points(1/x$roots[inside],pch=19,col="black’)
if(sum(linside) > 0)
points(1/x$roots[!inside],pch=19,col="red")
}
}

Generating the SARIMA models

model <- Arima(ts(rnorm(100),freq=12), order=c(1,1,1), seasonal=c(1,1,1),
fixed=c(phi=0.5, theta=-0.4, Phi=0.99, Theta=-0.2))

foo<- simulate(model, nsim=1000)

fitl <- Arima(foo, order=c(1,1,1), seasonal=c(1,1,1))

model <- Arima(ts(rnorm(100),freq=12), order=c(1,1,0), seasonal=c(1,1,0),
fixed=c(phi=0.6, Phi=0.3))

foo<- simulate(model, nsim=1000)

fit2 <- Arima(foo, order=c(1,1,0), seasonal=c(1,1,0))

Plotting the Inverse Roots

par(mfrow=c(1,2))
plot(arroots(fitl),main="Inverse AR roots")
plot(arroots(fit2),main="Inverse AR roots")

Code, plots and output in R of the Example:

3.2.3 “Assuming the correct vs the wrong type of seasonality”: An illustration example

1) Modelling Yi=Ytqt+etas Yi=p + aYrd+ &

modell_datal<- Arima(datal, order=c(0,0,0), seasonal=c(1,0,0))
summary(modell_datal)

Series: datal

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean

Coefficients:

sarl intercept
0.9675 0.8922
s5.e.0.0090 0.8790
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Plots
par(mfrow=c(2,1))
acf(modell_datal$r

esiduals, main="Acf Residuals™)

pacf(modell_datal$residuals, main="Pacf Residuals")
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2) Modelling Yi=Yig+et as Yi= u+ B3, moSe,+ &

model2_datal<-Im(datal~ dummies)

summary(model2_datal)

Residuals:
Min
-7.8729 -1.6145 0.0

Coefficients:
Estimate

(Intercept) -2.95130.3942

dummiesJan2.3545
dummiesFeb4.1176
dummiesMar4.8632
dummiesApr0.5062
dummiesMay2.1116
dummiesJun-0.2775
dummiesJul6.4631

1Q Median

3Q Max
396 1.5569 6.9854

Std. Error tvalue Pr(>|t|)
-7.487 4.35e-13 ***
0.5536 4.253 2.61e-05 ***
0.5536 7.438 6.02e-13 ***
0.5574 8.724 <2e-16 ***
0.5574 0.908 0.364339
0.5574 3.788 0.000175 ***
0.5574 -0.498 0.618896
0.5574 11.594 < 2e-16 ***
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dummiesAug7.7878 0.5574 13.970 < 2e-16 ***
dummiesSep0.6601 0.5574 1.184 0.237071

dummiesOct9.4955 0.5574 17.034 < 2e-16 ***
dummiesNov7.4477  0.5574 13.360 < 2e-16 ***

Residual standard error: 2.332 on 410 degrees of freedom
Multiple R-squared: 0.6655, Adjusted R-squared: 0.6565
F-statistic: 74.16 on 11 and 410 DF, p-value: < 2.2e-16

3)ModellingY:=Yratet as Yi=u+aYegty s, moSetet

model3_datal<- Arima(datal, order=c(0,0,0), seasonal=c(1,0,0),xreg=dummies)

summary(model3_datal)
ARIMA(0,0,0)(1,0,0)[12] with non-zero mean

Sarl Inter | Jan Feb | Mar | Apr May Jun Jul Aug Sep Oct

Nov

estimate

0.9220 | -2.12 | 2.1 3.74 | 292 | 0470 |1586 |-1.078 |5.63 |6.606 |-0.080 |8.26

5.72

sigma”2 estimated as 0.9403: log likelihood=-590.59
AIC=1209.19 AICc=1210.22 BIC=1265.82

par(mfrow=c(2,1))
acf(model3_datal$residuals, main="Acf Residuals")
pacf(model3_datal$residuals, main="Pacf Residuals")
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4) Modelling Ye=ptYs_, m 8.+ e as Yi=Yrqtet
modell_data2<- Arima(data2, order=c(0,0,0), seasonal=c(1,0,0))

summary(modell_data?2)
ARIMA(0,0,0)(1,0,0)[12] with non-zero mean

Coefficients:

sarl intercept
-0.0254 0.0969

s.e. 0.0491 0.0496

sigma”2 estimated as 1.094: log likelihood=-616.7
AlIC=1239.4 AICc=1239.45 BIC=1251.53

par(mfrow=c(2,1))
acf(modell_data2$residuals, main="Acf Residuals")
pacf(modell_data2$residuals, main="Pacf Residuals")
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5)Modelling Yi=p+Y5_; mSg,+ eras Yisp+ds_, mobg+ &

model2_data2<-Im(data2~ dummies)
summary(model2_data2)
Im(formula = data2 ~ dummies)

Residuals:
Min 1Q Median 3Q Max
-2.81844 -0.72723 -0.02632 0.72704 2.91865

Coefficients:

Estimate Std. Error t value Pr(>[t])
(Intercept) -0.049362 0.176883 -0.279 0.7803
dummiesJan 0.004981 0.248408 0.020 0.9840
dummiesFeb 0.044578 0.248408 0.179 0.8577
dummiesMar 0.419974 0.250151 1.679 0.0939.
dummiesApr 0.057479 0.250151 0.230 0.8184
dummiesMay 0.327103 0.250151 1.308 0.1917
dummiesjun 0.133369 0.250151 0.533 0.5942
dummiesjul 0.118638 0.250151 0.474 0.6356
dummiesAug 0.110486 0.250151 0.442 0.6590
dummiesSep 0.317813 0.250151 1.270 0.2046
dummiesOct -0.113989 0.250151 -0.456 0.6489
dummiesNov 0.340994 0.250151 1.363 0.1736

Residual standard error: 1.046 on 410 degrees of freedom
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Multiple R-squared: 0.02325, Adjusted R-squared: -0.002955
F-statistic: 0.8872 on 11 and 410 DF, p-value: 0.553

Par(mfrow=c(2,1))
acf(model2_data2$residuals, main="Acf Residuals")
pacf(model2_data2$residuals, main="Pacf Residuals™)
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6) Modelling Y=u+Y'5_, m 8y, + e as YisptoYeatYs_, moSg,ter

model3_data2<- Arima(data2, order=c(0,0,0), seasonal=c(1,0,0),xreg=dummies)
summary(model3_data?2)

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean

Coefficients:
sarl intercept Jan Feb Mar Apr May Jun Jul Aug
-0.0464 -0.0511 0.0068 0.0476 0.4205 0.0621 0.3294 0.1368 0.1198
0.1143
s.e. 0.0490 0.1667 0.2340 0.2340 0.2357 0.2357 0.2357 0.2357 0.2357
0.2357
Sep  Oct Nov
0.3163 -0.1112 0.3409
s.e. 0.2357 0.2357 0.2357

sigma”2 estimated as 1.095: log likelihood=-611.42
AIC=1250.84 AlCc=1251.87 BIC=1307.47
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par(mfrow=c(2,1))
acf(model3_data2$residuals, main="Acf Residuals")
pacf(model3_data2$residuals, main="Pacf Residuals™)
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7) Modelling Yt:u+aYt-d+51§_1 MmO +er as Yi=Yigtet
modell_data3<- Arima(data3, order=c(0,0,0), seasonal=c(1,0,0))
summary(modell_data3)

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean

Coefficients:

sarl  intercept
0.9675 0.9001

s.e. 0.0090 0.8800

sigma”2 estimated as 0.9328: log likelihood=-599.61
AIC=1205.21 AICc=1205.27 BIC=1217.35

par(mfrow=c(2,1))
acf(modell_data33$residuals, main="Acf Residuals")
pacf(modell_data3$residuals, main="Pacf Residuals")
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Acf Residuals
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8)Modelling Yi=p+aYig+Y s, m.Os et asYi=u+Y s, mobo + &
model2_data3<-Im(data3~ dummies)
summary(model2_data3)

Residuals:
Min  1Q Median 3Q Max
-7.8729 -1.6145 0.0396 1.5569 6.9854

Coefficients:

Estimate Std. Error t value Pr(>[t|)
(Intercept) -2.9479 0.3942 -7.479 4.60e-13 ***
dummiesJan 2.3487 0.5536 4.243 2.73e-05 ***
dummiesFeb 4.1398 0.5536 7.478 4.61e-13 ***
dummiesMar 4.8735 0.5574 8.743 < 2e-16 ***
dummiesApr 0.5096 0.5574 0.914 0.361181
dummiesMay 2.1181 0.5574 3.800 0.000167 ***
dummiesdun -0.2934 0.5574 -0.526 0.598901
dummiesdul 6.4563 0.5574 11.582 < 2e-16 ***
dummiesAug 7.8098 0.5574 14.010 < 2e-16 ***
dummiesSep 0.6713 0.5574 1.204 0.229198
dummiesOct 9.5003 0.5574 17.042 < 2e-16 ***
dummiesNov 7.4565 0.5574 13.376 < 2e-16 ***

Residual standard error: 2.332 on 410 degrees of freedom
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Multiple R-squared: 0.6661, Adjusted R-squared: 0.6571
F-statistic: 74.35 on 11 and 410 DF, p-value: < 2.2e-16

par(mfrow=c(2,1))
acf(model2_data3$residuals, main="Acf Residuals")
pacf(model2_data3$residuals, main="Pacf Residuals™)

Acf Residuals
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9)Mode||inq Yt:u+(XYt-d+y.§_1 MmO e aSYt:Ll+OLYt-d+5:§—1 m.O . tet

model3_data3<- Arima(data3, order=c(0,0,0), seasonal=c(1,0,0),xreg=dummies)
summary(model3_data3)

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean

Coefficients:
sarl intercept Jan Feb Mar Apr May Jun Jul Aug

0.9220 -2.1126 2.0956 3.7627 2.9316 0.4737 1.5922 -1.0939 5.6264
6.6276
s.e. 0.0175 1.6025 2.2505 2.2509 2.2772 2.2597 2.2610 2.2627 2.2629
2.2662

Sep Oct Nov

-0.0689 8.2615 5.7243

s.e.2.2623 2.2669 2.2737

sigma”2 estimated as 0.9403: log likelihood=-590.59
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AlC=1209.19 AICc=1210.22 BIC=1265.82

par(mfrow=c(2,1))
acf(model3_data3$residuals, main="Acf Residuals")
pacf(model3_data3$residuals, main="Pacf Residuals")
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Code in R for time series plot and ACF/PACE plots using the dataset of the
inflation

##Setingwd##
setwd(""C:/Users/Georgia/Documents/thesis™)

##Read Data##
cpi<-read.table("cpi_gr.txt")
cpi_val<-ts(cpi[,2],start=c(1977,1),end=c(2012,2),freq=12)

##Creating Inflation Series##
infl<-log(cpi_val)-log(lag(cpi_val,-1))
inf<-ts(infl,start=c(1977,1),end=c(2012,2),freq=12)

#HFirstPart##
inf191<-ts(infl,start=c(1977,1),end=c(1991,12),freq=12)
plot(infl91,type="1")
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acf(inf191 ,lag.max =NULL)
pacf(infl91 ,lag.max =NULL)

Code in R of the seasonal ADF test using the dataset of the inflation-Chapter 6

(1)
modell<-ar(diff(infl91,12),aic="TRUE",order.max=24,method="0ls")
resid<-model1$res

)
#icreation of the first independent variable##

df<-NULL

for(i in 12:31){

k<-diff(infl91,i)

df<-cbind(df,k)
}

ncol(df)
nrow(df)

coefs<-as.matrix(c(1,-model1$ar))

ncol(coefs)
nrow(coefs)

Y dot<-df%*%coefs

Y<-NULL

for(i in 1:19){
k1<-diff(diff(infl91,12),i)
Y<-chind(Y k1)

¥

Y<-as.matrix(Y)

nrow(Y)

ncol(Y)
variab<-cbind(Ydot[-1],Y)

model2<-Im(resid[-1]~Vvariab)
model2$coef
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Code in R of the HEGY test using the dataset of the inflation

library(uroot)

hegy.out<-HEGY .test (infl91, itsd=c(1,0,c(1,2,3,4,5,6,7,8,9,10,11)), regvar=0,
selectlags=list(mode="signf", Pmax=NULL))

hegy.out

summary(hegy.out)
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