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ABSTRACT 

 

 

Theonymfi Boura 

 

 

Testing for Non-Stationary Stochastic Seasonality with an 

application to the Greek Inflation  

    September 2017 

 

 

 In Time Series Analysis, many processes apart from trend may display seasonality. 

Although, the most famous and commonly used is the deterministic, there are two other 

types of seasonality that differ significantly from this, the so-called non-stationary and 

stationary stochastic seasonality. 

With regard to the stochastic seasonality, we detect and differentiate the non-stationary 

from the stationary stochastic seasonality by conducting seasonal Unit Root Tests. 

Seasonal Unit Root Tests constitute the extension to seasonal models of the well-known 

Unit Roots test for the null of a series being integrated (e.g. a random walk) versus it 

being stationary. The main focus of this thesis is to present and discuss two such tests. 

The first one is the seasonal Augmented Dickey Fuller test and the second one is the 

so-called HEGY unit root test. Both of them test the null hypothesis of non-stationary 

stochastic seasonality versus the alternative of stationarity stochastic seasonality. They 

do however make different assumptions on the structure of the null and the alternative 

and focus on somehow different aspects of it. 

The use as well as the main characteristics of these tests are illustrated with an 

application using the dataset of the Greek Inflation.  
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ΠΕΡΙΛΗΨΗ 

 

Θεονύμφη Μπούρα 

 

Έλεγχος για μη στάσιμη στοχαστική εποχικότητα με εφαρμογή 

στον Ελληνικό Πληθωρισμό 

Σεπτέμβρης 2017 

 

 Στην Ανάλυση Χρονοσειρών, πολλές διαδικασίες πέρα από τάση 

παρουσιάζουν και εποχικότητα. Η ντετερμινιστική εποχικότητα αποτελεί την 

πιο γνωστή μορφή εποχικότητας και χρησιμοποείται στον μεγαλύτερο βαθμό. 

Εν τούτοις, υπάρχουν και άλλες δύο μορφές εποχικότητας. Η μη-στάσιμη και 

η στάσιμη στοχαστική εποχικότητα.  

Αναφορικά με την στοχαστική εποχικότητα, την διακρίνουμε και ταυτόχρονα 

διαχωρίζουμε τη μη-στάσιμη από τη στάσιμη, πραγματοποιώντας του 

εποχικούς ελέγχους Μοναδιαίας Ρίζας. Οι εποχικοί έλεγχοι Μοναδιαίας Ρίζας, 

αποτελούν την επέκταση των ελέγχων Μοναδιαίας ρίζας οι οποίοι έχουν ως 

μηδενική υπόθεση τη χρονοσειρά να είναι ολοκληρωμένη (π.χ τυχαίος 

περίπατος) έναντι της εναλλακτικής τη χρονοσειρά να είναι στάσιμη, στα 

μοντέλα που παρουσιάζουν εποχικότητα.  Η παρακάτω διπλωματική εργασία 

παρουσιάζει και πραγματεύεται δύο τέτοιους ελέγχους.  

Ο πρώτος είναι ο εποχικός αυξημένος Dickey-Fuller έλεγχος και ο δεύτερος 

είναι ο HEGY έλεγχος μοναδιαίας ρίζας. Και οι δύο έχουν ως μηδενική 

υπόθεση την ύπαρξη μη-στάσιμη στοχαστικής εποχικότητας και ως 

εναλλακτική την ύπαρξη στάσιμη στοχαστικής εποχικότητας. Παρόλ’ αυτά 

έχουν διαφορετικές υποθέσεις σχετικά με τη δομή της μηδενικής και της  

εναλλακτικής και εστιάζουν σε διαφορετικές πλευρές του προβλήματος.  

Η χρήση καθώς και τα κύρια χαρακτηριστικά των ελέγχων αυτών 

παρουσιάζονται σε μία εφαρμογή με τα δεδομένα του Ελληνικού 

Πληθωρισμού.   
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                                         CHAPTER 1 

 

Introduction 
 

A common assumption in many time series techniques as well as traditional 

econometric methods require the data to fulfil stationarity. Most of the macroeconomics 

time series though, do not satisfy stationarity conditions as they display trend, 

seasonality or both.  

Many stationarity tests exist in the literature. Pagan and Schewert (1990) proposed 

several non-parametric tests such us the Cumulative Sum test (CUSUM) or Modified 

scaled range test. Subsequently, Ahamada and Butahar (2002) proposed two other non- 

parametric tests to examine covariance stationarity. See also Carlo De Michele and 

Harry Pavlopoulos (2007) for an application to rainfall data and Priestley (1965) for an 

approach based on evolutionary spectra. 

In the present thesis though, we will concerned with testing for Non-stationarity 

Stochastic Seasonality in the same sense as traditional testing for unit-roots: in these 

approaches the null hypothesis is formulated the presence of a specific form of non-

stationarity, namely the presence of a root on the unit circle, which ios tested against 

the alternative of stationarity. This is different from the approaches of testing for 

stationarity in the previously mentioned papers in that in these papers the null 

hypothesis is the one of stationarity which is tested against the alternative of non-

stationarity. 

In the present thesis though, we will concerned with the so-called Non-stationarity 

Stochastic Seasonality rather than the covariance Non-stationarity. 

With regard to seasonal pattern, there are three different types of seasonality and there 

are various models that display these types. The first one is the deterministic seasonality 

which describes behavior in which the periodic pattern is due to the unconditional mean 

of the time series.  

Except for the deterministic seasonality that maintains a constant seasonal pattern and 

is the most familiar in use in Time Series Analysis there are also the so-called stochastic 
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stationary and stochastic non-stationary seasonality that display a seasonal pattern 

which will randomly vary from one cycle to the next. 

Stochastic seasonality is often described by the mixed seasonal ARMA(P,Q)S which is 

defined by the equation: 

φ(Β)Φ(ΒS)Yt = θ(Β)Θ(ΒS)Zt , Zt ~ WN(0,σ2) 

where φ(z), θ(z), Φ(z) and Θ(z) are the seasonal and non-seasonal AR and MA 

polynomials and P and Q are the orders of the non-seasonal polynomials and S is the 

period of the seasonal pattern. 

The stochastic stationary seasonality refers to the roots of φ(z) and Φ(z), which are all 

assumed to lie outside the unit circle. Specifically, it is more pronounced when the roots 

of the polynomial Φ(zS) are close to the unit circle, but also when the roots of φ(z) are 

close to the unit circle too. The only difference between the roots of these polynomials 

is that the roots of Φ(zS) come in groups of S members with a specific structure and the 

same modulus, whereas the roots of φ(z) have their own flexibility. 

Allowing for differencing the mixed seasonal ARMA(P,Q)S models lead us to the 

models for nonstationary stochastic seasonality which are often described by the 

Seasonal ARIMA(p,d,q)x(P,D,Q)S models: 

If d and D are non-negative integers then Yt is said to be a seasonal 

ARIMA(p,d,q)x(P,D,Q)S process with period S if the differenced series                      

Xt=(1-B)d(1-BS)DYt is a casual ARMA process. Thus we assume that satisfies: 

φ(Β)Φ(ΒS) (1-B)d(1-BS)DYt=θ(Β)Θ(BS)Zt, Zt~WN(0,σ2) 

where φ(z), θ(z), Φ(z) and Θ(z) are the seasonal and non-seasonal AR and MA 

polynomials. The letters p,q and P and Q are the orders of the non-seasonal and the 

seasonal polynomials respectively and S is the period of the seasonal pattern. 

Generalizing these models, let us consider the ARMA(p,q) model that satisfies the 

equation below: 

𝚽(Β)̈̃ Υt = 𝜣(Β)̈̃ Ζt , Ζt~WN(0,σ2) 
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with 𝚽(𝑧)̈̃  and 𝜣(Β)̈̃  some other polynomials. In this general case of an ARMA(p,q) 

model, any root of 𝚽(𝑧)̈̃ on the unit circle will result a non-stationary Yt. 

We detect and differentiate the non-stationary from the stationary stochastic seasonality 

by conducting seasonal Unit Root Tests. Main focus of this thesis is to present and 

discuss two such tests. 

The first one is the seasonal Dickey Fuller (seasonal DF test) and Augmented Dickey 

Fuller (seasonal ADF test) Unit Root Testing of Dickey, Hasza and Fuller (1984). These 

tests examine the null hypothesis that all the roots of Φ(ΒS) are on the unit circle versus 

the alternative that the roots have the same modulus. They are the straight forward 

extension of the simple Dickey Fuller and Augmented Dickey Fuller Unit Root test 

proposed by Dickey and Fuller (1976). 

Specifically, consider SARIMA model: 

Yt = αSYt-S + εt ,εt ~ WN(0,σ2) 

The seasonal ADF test will test the null hypothesis of αs being equal to unity (the null 

of stochastic non-stationary seasonality) against the alternative hypothesis of αs being 

smaller than unity.  

However, seasonal unit roots may be present at some, but not at all the frequencies. 

Therefore, a joint test for all the seasonal frequencies simultaneously, such as the one 

proposed by seasonal ADF test, will not provide the appropriate result. Therefore, we 

demonstrate and describe the HEGY Unit Root test proposed by Hylleberg, Engle, 

Granger and Yoo (1990) for quarterly data (S=4) and Beaulieu and Miron (1993) for 

monthly data (S=12). 

HEGY Unit Root test allows testing for individual roots as it has the benefit to look for 

unit roots at any single seasonal frequency (as well as the zero frequency) without 

imposing roots at other frequencies. The procedure of transforming the provided data 

in order to present the final estimated equation as well as the total derivation of the 

HEGY test are also explained in this thesis. 



4 

 

To sum up, in Chapter 1 is described the classical Unit root Dickey- Fuller and 

Augmented Dickey Fuller test for trending models that do not display seasonality. In 

Chapter 2 are defined the different types of seasonality as well as the models that we 

use in order to describe them. Subsequently in the Chapter 3 is discussed in detail the 

seasonal DF and the seasonal ADF Unit Root tests while the fourth contains the 

description and the derivation of the HEGY Unit Root test. Finally, in Chapter 5 we 

apply the seasonal ADF and HEGY Unit Root test to a dataset of the Greek Inflation 

using the statistical package R. The purpose of this application is to detect seasonal and 

non-seasonal unit roots and therefore examine the presence of stationary and non-

stationary stochastic seasonality in the Greek Inflation 
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CHAPTER 2 

 

Unit Root and Stationary Processes 
 

A common assumption in many time series techniques as well as traditional 

econometric methods require the data to fulfil stationarity. Most of the macroeconomics 

time series though, do not carry out stationary conditions as they display trend, 

heteroscedasticity or both. A covariance-stationary process has the property that the 

mean, variance and autocorrelation structure do not change over time. More 

specifically, according to Wold’s Theorem all the covariance-stationary processes, can 

be written in the form of: 

Yt= μ+ ∑ 𝝍𝒋
∞
𝒋=𝟎 𝜺𝒕−𝒋 

 

Where εt is the white noise error one would make forecasting Yt as a linear function of 

lagged Yt where ∑ 𝜓𝑗2 < ∞∞
𝑗=0  and ψ0=1. 

 

2.1 Trending Time Series Models 

 

In the case of a trending time series, some form of trend removal is required. There are 

two popular “detrending” procedures, the time-trend removal and the first differencing. 

The first one is suitable for trend-stationary or I(0) processes and the second one is 

suitable for unit root or I(1) processes. The I(0) processes are stationary after the trend 

removal, while the I(1) processes are non-stationary and the stationarity is achieved by 

applying first differences. To determine which “detrending” method is the appropriate, 

we apply a Unit Root Test. The null hypothesis of this test indicates a process Yt to be 

non-stationary (while the first difference ΔYt is stationary) and the alternative 

hypothesis indicates the opposite (Yt  to be stationary).  

Therefore, a Unit Root Test examines the hypothesis of the following form: 

 

H0: I(1) process- ΔYt is stationary 

                                          H1: I(0) process- Yt – E(Yt) is stationary 

 

This form can be used in order to determine if trending data should be differenced or 

regressed on deterministic functions of time to render the data stationary.  



6 

 

The equations below, which we will discuss in this chapter, are two popular processes 

in which due to a trend in the data (upward or downward over time) the mean is not 

constant. Although they both have a trend, the nature of their non-deterministic part is 

different: 

 

Υt=δ+Yt-1 + εt  (1.1.1) 

                                                    Yt= α+βt +εt    (1.1.2) 

 

 

where εt is white noise, iid(0,1). The process in equation (1.1.1), is known as a random 

walk with drift δ or a process with unit root which has a so-called stochastic trend 

(beyond the linear). The generated process in equation (1.1.2) has an intercept α as well 

as a deterministic (linear) time trend with slope equals to β. We will refer to the first 

process as a Unit Root process with drift and to the second one as a Trend Stationary 

Process. Trend Stationary and Unit Root processes are both trending over time, have 

the same mean but conduct a different stochastic behavior. For the general definition 

see below. 

In the Trend Stationary Process, the mean is replaced by a linear function of the date t 

and if one subtracts the deterministic trend α+βt, the result is a stationary process. On 

the other hand, in the Unit Root Process the mean is a linear trend and its variance is 

not constant. Thus, the Unit Root Process is nonstationary even after removing the 

trend. 

It is useful at this point to report the properties as well as the differentiation among 

these processes. In order to define those properly, we will express the above models 

using the form described in Chapter 3 and 15 of J.D.Hamilton’s book - Time Series 

Analysis. 

The general definition of these two models described above, is as follows. 

 

Trend Stationary Model 

The processes that include a deterministic time trend are defined as: 

 

Υt= α+βt +ψ(L)εt = α+βt + εt+ ψ1εt-1+ψ2εt-2+… 

 

where ψ(z) is the polynomial 1+ψ1z+ψ2z
2+ψ3z

3+… and εt ~ WN(0,σ2). 
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Unit Root Process  

The unit root processes that shape a stochastic trend are defined as:  

 

(1-L)Yt=δ + ψ(L)εt =δ + εt+ ψ1εt-1+ψ2εt-2+… 

 

where ψ(z) is the polynomial 1+ψ1z+ψ2z
2+ψ3z

3+… , εt ~ WN(0,σ2)and ψ(1)≠0. 

 

2.2 Trend Stationarity and Unit Root Processes 

In this part we will point the main and very crucial differences between the 

aforementioned models.  

 

A. Forecasts 

 

Trend-Stationary 

To forecast a trend-stationary process we add the deterministic component α+βt to the 

forecast of the stationary stochastic component. Therefore, the proper forecast is 

�̂�𝑡+𝑠|𝑡 =α+β(t+s)+ ψsεt+ ψs+1εt-1+ ψs+2εt-2+… . Furthermore, it is proven that as s reaches 

the infinity the forecast tends to reach the initial line:  

�̂�𝑡+𝑠|𝑡→ α+βt  as s→ +∞ 

and the Mean Squared Error converges to zero: 

E[�̂�𝑡+𝑠|𝑡-α-δ(t+s)]2→ σ2∑ 𝜓𝑗
2∞

𝑗=𝑠  → 0  as   s→+∞ 

Therefore, for large s the information we have until time T, is being lost and we 

forecast the stationary process by using its expected value.  

 

Unit Root 

The forecast of a Unit Root process is: 

�̂�𝑡+𝑠|𝑡 = 𝑠𝛿 +Yt +(ψs+ψs-1+..+ψ1)εt+ (ψs+1+ψs+..+ψ2)εt-1 +.. 

 For the special case of the random walk with drift δ, where ψ1=ψ2=..=0, the forecast 

is: 

�̂�𝑡+𝑠|𝑡 = 𝑠𝛿+Yt 
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In this case, the forecast moves parallel to the initial line. As a result, once a stochastic 

disturbance extracts the time series from the initial line, the time series is not predicted 

to reach the line again.  

The exact proof of the forecast is being explained in the appendix-1a.  

 

B.     Comparison of forecasts errors and Variance  

 

Trend-Stationary 

The s-period-ahead forecast error for a trend stationary process is: 

Yt+s-�̂�𝑡+𝑠|𝑡= {α+δ(t+s)+εt+s+ψ1εt+s-1+..+ψs-1εt+1+ψsεt+ψs+1εt-1+..} - 

                            {α+δ(t+s)+ψsεt+ψs+1εt-1+ ψs+2εt-2+…}= εt+s+ψ1εt+s-1+ ψ2εt+s-2..+ψs-1εt+1 

 

The Mean Squared Error is: 

E[Yt+s -�̂�𝑡+𝑠|𝑡]2={1+ψ1
2+ψ2

2+ψ3
2+..+ψs-1

2}σ2 

and as s reaches the infinity (s→∞) it converges to the unconditional variance of the 

stationary component ψ(L)εt.  

As we can see, as the length of the forecast horizon becomes large, the MSE of a 

stationary process reaches a finite bound.  

 

Unit Root 

The s-period-ahead forecast error for a unit root process is: 

Yt+s-�̂�𝑡+𝑠|𝑡= {ΔΥt+s+ΔYt+s-1+..+ΔΥt+1+Yt}- {Δ�̂�𝑡+𝑠|𝑡+ Δ�̂�𝑡+𝑠−1|𝑡+…+Δ�̂�𝑡+1|𝑡+ Yt }= 

= εt+s- {1+ψ1}+{1+ψ1+ψ2}εt+s-2+..+{1+ψ1+ψ2+ψ3+..+ψs-1}εt+1  

 

The Mean Squared Error is: 

E[Yt+s -�̂�𝑡+𝑠|𝑡]2= {1+ (1+ψ1)
2+(1+ψ1+ψ2)

2+...+ (1+ψ1+ψ2+ψ3+..+ψs-1)
2}σ2 

As we can see the MSE of a unit root process, grows linearly as the forecast horizon 

becomes large.  

These results are illustrated in the figure below.  
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Figure 2.1- Forecasts and 95% confidence intervals 

 

 

C. Dynamic Multipliers  

 

In the case of dynamic multiplier, we will assume the consequences on Υt+s if εt were 

to increase by one unit, with ε’s for all other dates unaffected.  

 

Trend-Stationary 

𝜕Y𝑡+𝑠

𝜕𝜀𝑡
 = ψs 

For a trend-stationary process, the limiting dynamic multiplier as s→+∞ is zero. 

Therefore, the impact of any stochastic disturbance (shock), eventually disappear.  

 

Unit Root 

𝜕Y𝑡+𝑠

𝜕𝜀𝑡
= 

𝜕𝛥Y𝑡+𝑠

𝜕𝜀𝑡
+..+

𝜕𝛥Y𝑡+1

𝜕𝜀𝑡
+

𝜕Y𝑡

𝜕𝜀𝑡
  = ψs+ψs-1+..+ψ1+1 

For a unit-root process, the limiting dynamic multiplier as s→+∞ is ψ(1). Therefore, 

the effect of a great shock will retain. 
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D. Transformations to achieve stationarity 

 

Trend-Stationary 

In order to produce a stationary process, we simply subtract δt from the time series 

equation.  

 

Unit Root 

The proper procedure to achieve stationarity is to difference the time series.  

 

2.3 The Dickey-Fuller Unit Root Test 

One of the most popular Unit Root tests, is the Dickey-Fuller test, which will be 

described in this part. First, we will define the models listed below, with which this unit 

root test will be presented: 

 

 Yt=ρYt-1+εt(the AR(1) model) ΔYt=(ρ-1)Yt-1+εt  (1.3.1) 

 

 Yt=μ+ρYt-1+εt ΔYt=μ+(ρ-1)Yt-1+εt (1.3.2) 

 

 Yt=α+βt+ρYt-1+εt ΔYt= α+βt +(ρ-1)Yt-1+εt (1.3.3) 

 

where εt ~ WN(0,σ2). 

According to David A. Dickey and Wayne A. Fuller (1979), in order to perform the 

Dickey Fuller test, we need to compare the hypothesis presented below1:   

 

                     H0: Yt is random walk (pure, with drift or with linear term) 

                  H1: Yt-E(Yt) is stationary AR(1) (simple, with intercept or with linear term) 

 

These hypotheses in the framework of equations (1.3.1)-(1.3.3), can be written 

equivalently as: 

 

 

 

 H0: ρ=1, {ΔYt} is a stationary process 

                                                           
1 For a different approach to Unit root testing, see e.g. Phillips (1987) 
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                                       H1: ρ<1,   Yt – E(Yt)  is a stationary process AR(1) 

 

Under the assumption of ρ=±1, Dickey and Fuller observed and computed the limiting 

distribution of the OLS estimator of T(�̂� − 𝟏)2as well as the regression t=
�̂�−1

𝑠.𝑒(𝜌)̂
 statistic. 

Specifically, for each one of the models (1.3.1), (1.3.2) and (1.3.3), where Y0=0, 

representations for the limiting distributions of the OLS estimator �̂� and the regression 

statistic �̂�were derived. These representations were used for the construction of tables 

of percentage points for these statistics. Having these tables at our disposal, we are able 

to test the above hypothesis and perform the Dickey-Fuller test where we use the       

T(�̂�-1) statistic, as well as the Dickey-Fuller t test where we use the �̂�=
�̂�−1

𝑠.𝑒(𝜌)̂
  statistic.  

In the table below, are being displayed the 5% percentage points of the estimators of 

the three models for T=+∞. 

 

Estimated Equation 5% Percentage Points of �̂� 5% Percentage Points of  

�̂� 

Yt=ρYt-1+εt -8.1 -1.95 

Yt=μ+ρYt-1+εt -14.1 -2.86 

Yt=μ+βt+ρYt-1+εt -21.8 -3.41 

 

Table 2.1-The 5% percentage points of the estimators for T=+∞ 

 

As far as the expected value of the aforementioned models is concerned, we conclude 

to the results below: 

 If the data generating process is the Yt=ρYt-1+εt  then {
𝐸(𝑌𝑡) = 0  𝑖𝑓 𝜌 ≠ 1

   𝐸(𝑌𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑓 𝜌 = 1
 

 

 If the data generating process is the Yt=μ+ρYt-1+εt  then {
𝐸(𝑌𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑖𝑓 𝜌 ≠ 1

   𝐸(𝑌𝑡) = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑓 𝜌 = 1
 

 

 If the data generating process is the Yt=α+βt+ρYt-1+εt  then {
𝐸(𝑌𝑡) = 𝑙𝑖𝑛𝑒𝑎𝑟  𝑖𝑓 𝜌 ≠ 1

   𝐸(𝑌𝑡) = 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑓 𝜌 = 1
 

 

                                                           
2 In the case of the AR(1) model, the OLS estimator is the�̂�=

∑ 𝑌𝑡𝑌𝑡−1
𝑛
𝑡=1

∑ 𝑌𝑡−1
2𝑛

𝑡=1
 . 
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Therefore, if we detect that the expected value E(Yt) of the process Yt is constant then 

we estimate the model Yt=μ+ρYt-1+εt  in order to describe the trending behavior under 

the null as well as the alternative hypothesis.(H0: ρ=1 vs H1: ρ≠1).If E(Yt) appears as 

linear, we estimate the model Yt=α+βt+ρYt-1+εt  so that the trending behavior is 

described under the two hypothesis. Correspondingly, if E(Yt) appears as quadratic we 

estimate the model Yt=α+βt+γt2+ρYt-1+εt and so on.  

 

Finally, the powers of these statistics were computed and compared with that of the 

Box-Pierce Q3 Statistic. It was concluded that the statistics proposed are uniformly 

more powerful than the Q statistics 

These conclusions as well as the Dickey Fuller test, concern the three aforementioned 

models under the assumption of εt’s to be White Noise. This hypothesis though, raise 

the forthcoming question: 

 

“What is the respective Unit Root Test and what are the arising results for 

corresponding models in the presence of serial correlation of the errors?” 

 

In other words, what is the extension of the Dickey Fuller Unit Root test and what are 

the limiting distributions for the corresponding statistics for models which shape the 

problem of serial correlation of the errors (εtis not White Noise)? 

 

2.4 The Augmented Dickey-Fuller Unit Root Test 

In this part, we set ut= Yt -rYt-1 (thus ut= ΔYt under r=1) and we generalizing by 

allowing ut~ AR(p) while in 2.3 the corresponding ut is assumed as White Noise. 

Therefore, we apply the Augmented Dickey Fuller test or ADF test.  

The ADF test is the extension of the simple Dickey Fuller Test. Once the problem of 

autocorrelation occurs (the errors εt’s are not White Noise), there are included extra 

lagged terms in the dependent variable in order to achieve the error term to be white 

noise.  

Specifically, consider the model where utis an AR(p), p>1 stationary process: 

 

                                                           
3 The Box and Pierce test uses the statistic Qk=n∑ 𝑟𝑘

2𝐾
𝑘=1  where rk=

∑ �̂�𝑡�̂�𝑡−𝑘
𝑛
𝑡=𝑘+1

∑ �̂�𝑡
2𝑛

𝑡=1
 and the 𝑒�̂�’s are the residuals from the fitted 

model. Under the null hypothesis, the Qk statistic is approximately distributed as a chi-squared random variable with K-p 

degrees of freedom, where p is the number of parameters estimated. If Yt  includes a unit root, then ρ=0 under the null 

hypothesis and 𝑒�̂�= Yt-Yt-1.  
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Yt = rYt-1+ut, where ut =ρ1ut-1 + ρ2ut-2+ρ3ut-3+…+ ρput-p+εt where εt~ NID(0,σ2)  (1.4.1) 

 

It is easy to observe that this equation is equivalent to (1-rL)Yt = ut and                                

(1-ρ1L- ρ2L
2- ρ3L

3 -…- ρpL
p)ut=εt (1.4.2),which may be written as                                          

(1-rL)(1-ρ1L- ρ2L
2- ρ3L

3 -…- ρpL
p)Yt = εt  where εt~ NID(0,σ2) (1.4.3). 

 

We will now manipulate these equations, in order to bring them in a more convenient 

form. 

Specifically, setting the equations ρ=ρ1+ ρ2+…+ρp (1.4.3) and                                                     

Jj = -[ρj+1 + ρj+2 +… ρp] (1.4.5) for j=1,2,..,p-1, it is concluded that: 

 

(1-ρL)-(J1L+J2L
2+..+Jp-1L

p-1 )(1-L)= 1-ρ1L- ρ2L
2- ρ3L

3 -…- ρpL
p 

where L is the backshift operator.  

 

Thus assuming that ut is an AR(p), the process can be written equivalently as: 

 

(1-ρL)-(J1L+J2L
2+..+Jp-1L

p-1 )(1-L)Yt=εt  (1.4.6) 

or 

   Yt = ρΥt-1+J1ΔYt-1+ J2ΔYt-2 +…+ Jp-1ΔYt-p+1 + εt (1.4.7) 

which can easily be transformed to the following equation: 

 

where ρ1=ρ+J1, ρi=Ji-Ji-1, i=2,..,p and ρp+1= -Jp 

The form (1.4.8) is the most suitable in order to perform unit root testing and we will 

refer to it as the ADF equation.  

Deterministic terms as intercept and linear trend can be also added to the ADF equation. 

This will give the opportunity to perform the ADF test for models with E(Yt) other than 

zero. Therefore we define: 

 

ΔYt=μ+ (ρ-1)Υt-1+J1ΔYt-1+ J2ΔYt-2 +…+ Jp-1ΔYt-p+1 + εt   (1.4.9) 

 

ΔYt=α+βt+ (ρ-1)Υt-1+J1ΔYt-1+ J2ΔYt-2 +…+ Jp-1ΔYt-p+1 + εt   (1.4.10) 

ΔYt = (ρ-1)Υt-1+J1ΔYt-1+ J2ΔYt-2 +…+ Jp-1ΔYt-p+1 + εt (1.4.8) 
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Taking into consideration the forms(1.4.8), (1.4.9) and (1.4.10), in order to test the 

hypothesis that our process Yt is a random walk or stationary AR(p) and by extension 

perform a unit root test, it is sufficiently equivalent  to test the hypothesis below:  

 

H0: ρ=1, {ΔYt} is an AR(p) process (simple, with intercept or linear trend) 

H1: ρ<1, Yt is an AR(p+1) process (simple with intercept or linear trend) 

 

 

The parameters ρ, J1,… ,Jp-1of the ADF equation estimated with Ordinary Least Squares 

and the distribution of the estimator �̂�is not dependent on the Ji’s under the null 

hypothesis. For the case of the simple ADF equation (1.4.8), we test for unit root by 

using either of the two following statistics: 

The statistic Z=
𝑇(�̂�−1)

(1−𝜁1̂−..𝜁�̂�)
 and the t statistic 

�̂�−1

𝜎�̂̂�
 which both have the same limiting 

distribution as the corresponding statistics �̂�  and �̂� in the case of the first order models 

(models where εt’s is white noise), discussed in the previous part. The same conclusions 

also apply for the equations (1.4.9) and (1.4.10). 

Correspondingly, the expected value of the aforementioned models arises as above.  

Finally, as we notice, the equation that we estimate in order to perform the ADF test 

has the same form as the estimated equation in the case of the simple DF test (1.3.1). 

Their significant difference, is that extra lagged differences have been added in the ADF 

equation to achieve the elimination of the autocorrelation in the ut terms.  
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CHAPTER 3 

 

The Different Types of Seasonality 
 

Seasonality in time series is the presence of variations that occur at specific regular 

intervals such as weekly monthly or quarterly periods. Generally, any pattern in a time 

series that recurs or repeats over a certain period can be said to be seasonal. Moreover, 

in the ACF plot there is a repeating pattern which decays slowly. Seasonality, may be 

caused by various factors such as weather, vacation and holidays consisting periodic 

repetitive and generally regular and predictable patterns in the levels of a time series.  

 

3.1 The Detection of Seasonality 

It is important to consider and describe the effects of seasonality, in order to understand 

the impact of this component upon a given series. For example, a business that presents 

higher sales in certain seasons appear to be having significant profit during peak seasons 

and significant losings during off-peak seasons. After detecting the seasonality and 

establishing the seasonal pattern, specific techniques can be applied in order to 

eliminate it from the time-series. This procedure is known as “de-seasonalizing”. 

Furthermore, the past patterns of seasonal variations can be used to the forecasting and 

the prediction of the future trends.  

There are various graphical methods that can be used to detect seasonality. Some of 

them are listed below: 

 

1. The Run-Sequence Plot: It is an easy way to plot a univariate dataset. In the Run 

Sequence plot, all the possible shifts in location and scale, as well as the outliers 

are sufficiently obvious. The vertical axis contains the response variable Yt 

while the horizontal axis, contains the index i (i=1,2,3…). 

 

2. The Autocorrelation Plot: It is the most commonly-used plots in time series 

analysis. In the vertical axis is placed the autocorrelation coefficient rh
4and in 

the horizontal axis it is placed the time lag h.  

                                                           
4The autocorrelation coefficient is defined as rh=

𝛾ℎ

𝛾0
 where γh is the autocovariance function and γ0 is the variance function. 
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3. The Seasonal Subseries Plot: It is very popular tool for detecting seasonality in 

time series. Although, it is only useful if the period of seasonality is already 

known. The vertical axis, contains the response variable Yt while the horizontal 

axis is contains the time ordered by season.  

 

At this point it is important to realize how we use these plots in order to detect 

seasonality. For this purpose, we chose the dataset ‘nottem’ from the statistical package 

R which is known as times series that displays seasonality. The dataset, contains the 

Average Air Temperature at Nottingham Castle in degrees Fahrenheit for 20 years 

(1920-1939). Subsequently, we applied the plots described above and we tried to detect 

seasonal patterns.  

It is enough evident from Figure 3.1 below that this time series dataset display 

seasonality. The Run Sequence plot although it shows periodic behavior, we can hardly 

say that seasonality is displayed, but observing the other two we conclude with certainty 

that it really is. Specifically, the Autocorrelation plot depicts a strong seasonality 

pattern while the Seasonal Subseries plot reveals that during the summer months the 

average air temperature is remarkably higher than the one during autumn or spring. 

If Seasonality is present and by extension, it must be incorporated in the time series 

model. 
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Figure 3.1-Plots for Seasonality Detection 

 

 

3.2 The Different Types of Seasonality 

As it was defined in the previous parts, by seasonality we mean the periodic patterns 

that exist at regular intervals. However, there are different seasonal models that describe 

seasonality and are divided in three different classes. These classes are: 

 

 The Deterministic Seasonality 

 The Stochastic Stationary Seasonality 

 The Stochastic Non-Stationary Seasonality 
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3.2.1 The Deterministic Seasonality 

Deterministic Seasonality, is the first type of seasonality. It describes behavior in which 

the periodic pattern is due to the unconditional mean of the time series, for example this 

concept is applied to time constant seasonal mean that differ across quarters or months. 

Deterministic seasonality, can be expressed by two alternative ways. The dummy 

variable representation where means of seasonal dummy variables that are 1 in specific 

quarters and 0 otherwise, are applied in the model, as well as the trigonometric 

representation. 

We will list these representations as they were defined in Eric Ghysel’s book, “The 

Econometric Analysis of Seasonal Time Series”. 

 

3.2.1.a The Dummy Variable Representation 

 

The conventional dummy variable representation of seasonality can be written as: 

 

Yt=∑ 𝛾𝑠𝛿𝑠𝑡
𝑆
𝑠=1  + zt , t=1,2,..,T (2.3.1.a) 

where zt is a stationary stochastic process with zero mean and 𝛿𝑠𝑡={
1, 𝑡 = 𝑠(𝑚𝑜𝑑𝑆)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

s=1,2,..S are seasonal dummy variables.  

Therefore, for season s of year τthe expected value is E(Υt)=γs, s=1,2,…S which implies 

that the process has sifting mean and that’s the reason that Yt is not stationary. However, 

by subtracting the mean of each season μ=
 1

𝑠
∑ 𝛾𝑠

𝑆
𝑠=1 the deterministic seasonal effect is 

ms=γs-μ and stationarity is being achieved. Hence the deviations Yt-E(Yt)=zt are 

stationary.  

 

The above definition though, implies that ∑ 𝑚𝑠
𝑆
𝑠=1 =0 with the interpretation that there 

is no deterministic seasonality when observations are summed over a year. When the 

level of the series is separated from the seasonal component, then: 

 

Yt=μ+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1  + zt , t=1,2,..,T (2.3.1.b) 

 

Finally, when μ is replaced by μ0+μ1t, the equation (2.3.1.b), can be generalized to 

include a trend component. 
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3.2.1.b The Trigonometric Representation 

 

The deterministic seasonal process can be equivalently be written in terms of 

trigonometric functions: 

 

Yt=μ+∑ [𝛼𝑘
𝑆/2
𝑘=1 cos(

2𝜋𝑘𝑡

𝑆
)+𝛽𝑘sin(

2𝜋𝑘𝑡

𝑆
)]+ zt ,   t=1,2,..T (2.3.1.c) 

 

This representation is equivalent to (2.3.1.b) and it is obvious that μ is the overall mean. 

For quarterly data where S=4, there are the following trigonometric components: 

 cos(
2𝜋𝑡

4
)=cos(

𝜋𝑡

2
)= 0,-1,0,1… 

 cos(
4𝜋𝑡

4
)=cos(πt)= -1,+1,-1,… 

 sin(
2𝜋𝑡

4
)=sin(

𝜋𝑡

2
)= 1,0,-1,0… 

 sin(
4𝜋𝑡

4
)=0  

 

According to the two representations described above, the seasonal dummy variable 

coefficients are related to the deterministic components of the trigonometric 

representation by the following equations: 

 

 γ1= μ+β1-α2 

 γ2=μ-α1+α2 

 γ3=μ-β1-α2 

 γ4=μ+α1+α2 

 

The terms α1 and β1 denote the annual wave while α2 gives the half year component.  

 

3.2.2 The Stochastic Stationary Seasonality 

The Stochastic Stationary Seasonality, refers to the roots at seasonal frequencies and it 

constitutes a whole different issue from deterministic seasonality. The deterministic 

seasonality never changes its shape, as it maintains a constant seasonal pattern. On the 

other hand, the stochastic stationary and (as we will explain in the next part of this 
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chapter) the stochastic non-stationary seasonality display a random seasonal pattern 

from one cycle to the next.  

At this point it is necessary to define the models that display this type of seasonality,as 

they were described in Peter J. Brockwell’s and Richard A. Davis’s book, “ Time Series 

Theory and Methods”, in order to understand the definition of the stochastic stationary 

seasonality in depth.  

 

3.2.2.a The Seasonal ARMA and the mixed Seasonal ARMA model 

 

Suppose we have r years of monthly data (S=12) tabulated below: 

 
Month 

Year 1 2 . . . 12 

1 Y1 Y2 . . . Y12 

2 Y13 Y14 . . . Y24 

3 Y25 Y26 . . . Y36 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

. 

. 

. 

r Y1+12(r-1) Y2+12(r-1) . . . Y12+12(r-1) 

 

 

Table 3.1- Monthly Data 

 

Each column of this table is considered as a realization of time series. Suppose that each 

one of these time series is generated by the same ARMA(P,Q) models. The 

corresponding to the jthmonth series Yj+12t , t=0,…,r-1 satisfies a difference equation of 

the form:  

Yj+12t = Φ1Yj+12(t-1) +… + ΦPYj+12(t-P) + Uj+12t + Θ1Uj+12(t-1)+…+ ΘQUj+12(t-Q) ,(2.3.2.a.i) 

where {Uj+12t , t = …,-1,0,1,…} ~ WN(0, 𝜎𝑈
2).  

Since the same ARMA(P,Q) models is assumed to apply each month, the 

equation(2.3.2.a.i)can be written equivalently for all t as: 

 

Yt = Φ1Yt-12 +… + ΦPYt-12P + Ut+ Θ1Ut-12+…+ ΘQUt-12Q, (2.3.2.a.ii) 

 for each j=1,…12 

 

Equation (2.3.2.a.ii)can be rewritten in the form of: 

 

Φ(ΒS)Yt = Θ(ΒS)Ut , (2.3.2.a.iii) 
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where Φ(z) = 1- Φ1z-…- ΦPzP , Θ(z) = 1 + Θ1z+…+ ΘQzQ and {Uj+12t , t = …,-1,0,1,…} 

~ WN(0, 𝜎𝑈
2) for each j. The model (2.3.2.a.iii) is the between-year model or the 

seasonal ARMA(P,Q)s model and P and Q denote the seasonal AR and MA orders.  

If the White Noise sequences {Uj+12t , t = …,-1,0,1,…} ~ WN(0, 𝜎𝑈
2) for different 

months are uncorrelated with each other, then the columns itself are uncorrelated. 

However, it is unlikely that the 12 series corresponding to the different months are 

uncorrelated. To incorporate dependence between these series, we assume now that 

{Ut}~ARMA(p,q) model:  

φ(Β)Ut = θ(Β)Zt ,  Zt ~ WN(0,σ2) (2.3.2.a.iv) 

This non-zero correlation between the consecutive values of Ut implies a non-zero 

correlation within the twelve sequences of {Uj+12t , t = …,-1,0,1,…}.  

Combining the two models (2.3.2.a.iii) and (2.3.2.a.iv), lead us to the definition of the 

general multiplicative mixed seasonal ARMA (p,q)x(P,Q)s process: 

 

φ(Β)Φ(ΒS)Yt = θ(Β)Θ(ΒS)Zt ,  Zt ~ WN(0,σ2) (2.3.2.a.v) 

 

where φ(z)=1-φ1z-…- φpz
p, θ(z)=1+θ1z+…+θqz

q, Φ(z)=1-Φ1z-…-ΦPzp and 

Θ(z)=1+Θ1z+…+ΘQzQ
.  

The seasonal ARMA(P,Q)S and mixed seasonal ARMA(p,q)x(P,Q)S models can be also 

extended in quarterly data (S=4).  

 

Examples 

(1) A very common example of a seasonal ARMA(P,Q)S model is the first-order 

seasonal Autoregressive. It is defined as: 

 

Yt = ΦYt-s+ Zt (2.3.2.a.vi) 

 

where Zt~ WN(0,𝜎𝑧
2). Using the lag operator Bk Yt=Yt-k, the equation (2.3.2.a.vi) can 

be written equivalently as: 

(1-ΦBs)Yt = Zt (2.3.2.a.vii) 

 

If Φ<1 and therefore the roots of the polynomial 1-ΦzS lie outside the unit circle, the 

process (2.3.2.a.vi) is stationary.  
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The unconditional mean of the process is equal to zero. On the other hand, the 

conditional mean on past Yt displays seasonal pattern if φis close to unity: 

E(Yt|Yt-1,…)=φYt-s   (2.3.2.a.viii) 

and the autocorrelation is different from zero at lags that are multiples of S only and 

this non-zero autocorrelation decays over time.  

(2) A very common example of mixed seasonal ARMA(p,q)x(P,Q)s model is the 

ARMA(0,1)x(1,0)s . Such model has the following form: 

 

Φ(ΒS)Yt = θ(Β)Zt (1-Φs)Yt = (1+θ) ZtYt- ΦYt-S = Zt + θZt-1 ,  (2.3.2.a.ix) 

and Zt ~ WN(0,σ2).  

 

3.2.2.b –The Roots of the polynomials φ(z) and Φ(z) and the relation 

with stochastic seasonality. 

 

In the mixed seasonal ARMA(P,Q)S model the stochastic stationary seasonality is more 

pronounced when the roots of the polynomial Φ(zS) are close to the unit circle. The 

roots of Φ(zS) however follow forcefully a certain structure:  

Specifically, let z0 be a root of the seasonal polynomial Φ(z)of a seasonal ARMA(P,Q)S 

model. Every z0 root of Φ(z)induces S roots of Φ(zS). 

 

 

Thus, for each root of Φ(z) there is a group of S roots of Φ(zS) which all have the same 

modulus and their angles differ by 
2𝜋

𝑆
.  

 

Example 

(1) Assume the model Yt = ΦYt-1+ εt  (1-ΦΒs) Yt =εt, εt~WN(0,σ2) and Φ(z)=1-

ΦzS is the polynomial of the seasonal part. Let z0 = Φ-1be the root of Φ(z) then setting 

z0,k = 𝛷−
1

𝑆𝑒𝑖𝑘
2𝜋

𝑆  we conclude that (𝑧0,𝑘
𝑆 ) = z0 .  Therefore,Φ(z0,k

S) = Φ(z0) and thus z0,k, 

k=1,…,S are all roots of Φ(zS). 

 

 

If z0 so that Φ(z0) = 0 =>there exists z0,1,z0,2,…,z0,S, such that (𝑧0,𝑘
𝑆 ) = z0 for k = 1,2,…,S. 
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The table below shows the frequencies as well as the corresponding seasonal roots for 

monthly and quarterly series. 

 

Frequency Roots 

Monthly Series 

0 
(𝛷−

1

12)∙1 
𝜋

6
, 

11𝜋

6
 (𝛷−

1

12)∙[
1

2
(√3± i)] 

𝜋

3
, 

5𝜋

3
 (𝛷−

1

12)∙[
1

2
(1±√3i)] 

𝜋

2 
,
3𝜋

2
 (𝛷−

1

12)∙(± i) 

2𝜋

3
, 

4𝜋

3
 (𝛷−

1

12)∙[−
1

2
(1±√3i)] 

5𝜋

6
,
7𝜋

6
 (𝛷−

1

12)∙[−
1

2
(√3± i)] 

π 
(𝛷−

1

12)∙(-1) 

Quarterly Series 

0 (𝛷−
1

4)∙1 
𝜋

2
, 

3𝜋

2
 (𝛷−

1

4)∙(± i) 

π (𝛷−
1

4)∙(-1) 

 

Table 3.2- Frequencies and Roots 

 

 

At this point it must be emphasized that not only the rοοts of the seasonal polynomial 

Φ(z) are responsible for the stochastic stationary seasonality but also those of the non-

seasonal polynomial φ(z). If a root z0=ρeiλ of φ(z) is close to the unit circle (ρ≈1) then 

the series will exhibit stochastic seasonality of period S=
2𝜋

𝜆
.The only difference to the 

roots of Φ(zS) is that the latter come in groups of S members with a specific structure. 

Therefore, an ARMA(p,q) or a simple AR(p) model can also produce stochastic 

stationary seasonality.  

 

Examples 

(1) Consider the AR(2) model: 

Yt = μ + φ1Υt-1+φ2Υt-2+ εt , εt~WN(0,σ2) 

φ(Β)Yt = μ + εt 

where φ(z) = 1- φ1z - φ2z is the corresponding characteristic polynomial.  
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Let 𝑧0
−1 the inverse root of the characteristic polynomial and 𝑧0

−1= ρ-1(cos(λ)+ isin(λ)) 

its polar form. As ρ is denoted the radial coordinate and as λ the angular coordinate. 

Furthermore, we choose: 

λ= 
2𝜋

𝑑
,where d is the period and |z0|=ρ≈1 

The characteristic polynomial then can be written equivalently as: 

 

φ(z) = (1- 𝑧0
−1z)(1-𝑧0

−1̅̅ ̅̅ ̅z) = 1- (𝑧0
−1+ 𝑧0

−1̅̅ ̅̅ ̅)z + |𝑧0
−1|2z2 

 

where φ1 = 𝑧0
−1+ 𝑧0

−1̅̅ ̅̅ ̅ = 2Re(𝑧0
−1) = 2 ρ-1cos(λ) and φ2 = - |𝑧0

−1|2.  

 

Setting 𝑧0
−1 close to unity, the AR(2) model, produces stochastic stationary seasonality. 

In order to illustrate that, we simulated data of an AR(2) model with 𝑧0
−1 close to unity 

and we created the figures below. 

 

 

 

Figure 3.2-Time series Plot  

 

In the Figure 3.2 it is enough evident that the series produces stochastic seasonality 

since its seasonal pattern is not deterministic and its changes over time.  
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Figure 3.3-Plot of the Autocorrelation Function 

 

 

Seasonality can be also be detected from the diagram of its autocorrelation function. 

 

 

 

Figure 3.4-The Inverse Roots 

 

The Figure 3.4 shows the inverse roots of the characteristic polynomial of the AR(2) 

that we simulated. We observe that both of them are on very close to the unit circle 

which proves the presence of stochastic stationary seasonality.  
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(2) Below are also depicted the inverse roots of the Φ(zS) and φ(z) polynomials of 

the mixed Seasonal ARMA(1,0)x(1,0)12  model: 

 

   Figure 3.5-The Inverse Roots 

 

We can see that all the seasonal roots are close to the unit circle. 

 

3.2.3 The Stochastic Non-Stationary Seasonality 

According to Ghysels, Osborn and Rodrigues (1999), the Nonstationary Stochastic 

Process Yt, observed at S equally lengths per year, is said to be Seasonally Integrated 

of order D, denoted Yt~ SI(D), if 𝛥𝑆
𝐷Yt= (1-ΒS)DYt is a stationary invertible5 ARMA 

process.  

The definition seasonal integration refers to the seasonal differencing of the process in 

order to induce stationarity when unit roots occur. Consequently, if a first order seasonal 

differencing makes Yt a stationary and invertible process, then Yt~SI(1). The simplest 

case of such a process is the seasonal random walk.  

We remark already at this point that Seasonal Integrated is not the only model 

producing non-stationary stochastic seasonality and this issue will be discussed further 

in 3.2.3.b.  

 

                                                           
5A linear process {Xt} is invertible (an invertible function of {Wt}) if there is a π(Β)=π0+π1Β+π2Β

2+… with ∑ |𝜋𝑗|+∞
𝑗=0 <+∞ and 

Wt= π(Β)Χt.  
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The Seasonal Differencing 

In order to achieve stationarity, seasonal differencing is applied to the process. 

Differencing the series {Yt} at lag S is a convenient way to eliminate a seasonal 

component of period S. Specifically, a seasonal operator of order 1 for S=12 acts on Yt 

as: (1-B12)Yt = Yt-Yt-12 and for S=4 as   (1-B4)Yt = Yt-Yt-4. Moreover, a seasonal operator 

of order D is defined as: (1-BS)DYt. It is common though that D=1 is sufficient to obtain 

seasonal stationarity.  

 

3.2.3.a The Seasonal ARIMA(p,d,q)x(P,D,Q)S models 

 

At this point it is necessary to define the models that display this type of seasonality,(see 

Peter J. Brockwell’s and Richard A. Davis’s book, “ Time Series Theory and Methods”) 

in order to understand the definition of the stochastic non-stationary seasonality in 

depth. Combining the two models (2.3.2.α.iii) and (2.3.2.α.iv) from the previous part 

and allowing for differencing lead us to the definition of the general seasonal 

multiplicative SARIMA process.  

 

Definition of SARIMA(p,d,q)x(P,D,Q)S 

If d and D are non-negative integers then Xt is said to be a seasonal 

ARIMA(p,d,q)x(P,D,Q)S process with period S if the differenced series                      

Yt=(1-B)d(1-BS)DXt is a casual 6 ARMA process defined by: 

 

where φ(z)=1-φ1z-…-φpz
p, θ(z)=1+θ1z+…+θqz

q, Φ(z)=1-Φ1z-…-ΦPzp and 

Θ(z)=1+Θ1z+…+ΘQzQ
..  

 

 

Model Identification 

Because of its nature, identifying a SARIMA models can be quite complicated. 

However, there is a general guideline for this identification. First of all, d and D should 

be found: 

                                                           
6An ARMA (p,q) process defined by the equation φ(Β)Χt=θ(Β)Zt is said to be casual if there exists a sequence of constants {ψj} 

such that ∑ |𝜓𝑗
+∞
𝑗=0 | < +∞  and Xt = ∑ 𝜓𝑗

+∞
𝑗=0 𝑍𝑡−𝑗 t=0,±1,… 

 

 

                              φ(Β)Φ(Βs)Yt=θ(Β)Θ(Bs)Zt, Zt~WN(0,σ2) (2.3.3.a) 
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 If there is seasonality and no trend in the data, take a difference of lag S 

(seasonal differencing). 

 If there is linear trend and no obvious seasonality, take a first difference (non-

seasonal differencing). 

 If there is both trend and seasonality apply both seasonal and non-seasonal 

difference to the data. 

 

Obviously, if d=D=0 our process displays stochastic stationary seasonality. On the 

other hand if d, D ≠ 0 we have to deal with non-stationary stochastic seasonality and 

we have to specify these parameters so as to make the differenced observations        

Yt=(1-B)d(1-BS)D stationary.  

After that, it follows the examination of the sample autocorrelation and partial 

autocorrelation functions of {Yt} at lags which are multiples of S in order to find the 

orders P and Q. The orders P and Q should be chosen so that the autocorrelation 

function �̂�(ks), k=1,2,.. is compatible with the autocorrelation function of an 

ARMA(P,Q) process (identification of the seasonal terms), while the orders p and q are 

chosen so that �̂�(1),…,�̂�(s-1) match with the autocorrelation function of an ARMA(p,q) 

process (identification of the non-seasonal terms).  

 

3.2.3.b –The Roots of the polynomials φ(z) and Φ(z) and the relation 

with stochastic non-stationary seasonality. 

 

For a SARIMA model of the form (2.3.3.a),once a seasonal root of Φ(zS) lies very close 

or on the unit circle, the rest S-1 roots lie very close/on the unit circle as well 

(stationary/non-stationary stochastic seasonality). Correspondingly, if a root lies 

outside the unit circle the rest S-1 will lie there too (stationarity). This is because all 

these roots have the same modulus and their angles differ by multiples a𝑡
2𝜋

𝑆
. Therefore, 

for SARIMA models when stochastic non-stationary seasonality is detected, a whole 

group of roots of the seasonal characteristic polynomial Φ(zS) are considered to be on 

the unit circle. 

However, stochastic non-stationary seasonality can be produced even a single root of 

the φ(z) polynomial lie on the unit circle. Specifically, any root of φ(z) equal to unity 

in absolute value (zero frequency) “contributes” to the production of stochastic non-

stationary seasonality.      
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Therefore, a SARIMA(p,d,q)x(P,D,Q)S model: 

 With all groups of roots of its seasonal polynomial Φ(zS) lie outside the unit 

circle and all roots of the non-seasonal polynomial φ(z) lie outside the unit 

circle, is considered stationary. 

 With any roots of its seasonal polynomial Φ(zS) lie on the unit circle or any root 

of the non-seasonal polynomial φ(z) lies on the unit circle is considered to 

produce stochastic non-stationary seasonality.  

 

Summarizing the above details, in the seasonal ARMA(P,Q)S and the mixed seasonal 

ARMA(p,q)x(P,Q)S the stochastic non-stationary seasonality occurs when either 

groups of roots of the polynomial Φ(zS) are on the unit circle or any of the independent 

roots of  φ(z) are on the unit circle.   

 

Consider now the general Seasonal ARIMA(p,d,q)x(P,D,Q)S model in equation 

(2.3.3.a): 

φ(Β)Φ(Βs)(1-B)d(1-BS)DXt=θ(Β)Θ(Bs)zt, zt~WN(0,σ2) 

This model can be written alternatively as: 

 

�̈�(Β)Xt=�̈�(B)zt, zt~WN(0,σ2)(2.3.3.b) 

 

with  �̈�(z)=φ(z)Φ(zs)(1-z)d(1-zS)D and �̈�(B)=θ(z)Θ(zs).  

Seasonal Integration occurs when �̈�(z) has a group of roots of multiplicity D z0,k = 

e
𝑖2𝜋

𝑆
 , k=1,…,S at the seasonal frequencies. However, any (other) root of �̈�(z) on the 

unit circle will result in a non-stationary Xt and will produce seasonal behavior of Xt 

with period S. We will speak in this case as well as non-stationary seasonality in the 

next chapters.  

Generallizing the aforementioned inference, let the ARMA(p,q) modelthat satisfies the 

equation below: 

with 𝜱 ̈(̃z) and 𝜣 ̈(𝑧)̃some other polynomials.  

In this general case of an ARMA(p,q) model, any root of 𝜱 ̈(̃z) on the unit circle will 

also result in a non-stationary Xt. 

 

𝜱 ̈(̃Β)Xt=𝜣 ̈(𝐵)̃zt, zt~WN(0,σ2)(2.3.3.c) 
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3.2.3.c –Examples of SARIMA models 

 

(1) The Seasonal Random Walk 

 

The seasonal random walk of order 1 is defined by the following equation: 

Yt=Yt-S + εt , t=1,2,…,T (2.3.3.b) 

with εt ~ WN(0,σ2). 

It is obvious that the equation (2.3.3.a) is the generalization of the conventional 

nonseasonal random walk. Setting st the season in which observation t falls as st= 1+(t-

1)modS, backward substitution for lagged Yt in the process above, implies that  

 

Yt = 𝑌𝑠𝑡−𝑆
+∑ 휀𝑡−𝑆𝑗

𝑛𝑡 −1
𝑗=0 (2.3.3.c) 

where nt= 1+ [(t-1)/S]. 

 

There random walk described above, contains the disturbances for the season stwith the 

summation over the current disturbance εt plus the disturbance for this season in the nt-

1 previous years of the observation period. Also, the equation (2.3.3.c) implies that 

E(Yt)=E(𝑌𝑠𝑡−𝑆
), so when E(𝑌𝑠𝑡−𝑆

) is nonzero and varies over st=1,…S, deterministic 

seasonal effects are included in the equation (2.3.3.b).  

In time series analysis, the common notation for a process is Yt, where Yt is the value 

of the variable we interested in at the date t. However, for time series that display 

seasonality the double subscript notation Ysτ is being used. The subscript s denotes the 

season of the year, s=1,2,..,S and S is the number of season per year (S=4 for quarterly 

data and S=12 for monthly data). The subscript τ is obvious that it refers to the year. 

Hence, if s=4 then Ys-4,τ=Ys,τ-4.  

Moreover, using the notation of the two subscripts described in the start of this chapter 

the equation (2.3.3.b) can be written equivalently as: 

 

Ysn=Ys,0_ ∑ 휀𝑠𝑗
𝑛
𝑗=1 , s=1,…S and n=1,…,N  (2.3.3.d) 

 

with the assumption that observations are available for precisely N=T/S complete years. 
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(2) The model SARIMA(0,0,1)x(0,0,1)12 includes non-seasonal MA(1) and a 

seasonal MA(1) term, no differencing terms, no AR terms and its span seasonality is 

S=12. The non-seasonal MA(1) polynomial is the θ(Β)=1+θ1Β while the seasonal 

MA(1) polynomial is Θ(Β12)=1+Θ1Β
12. Since there is no differencing term the model 

will have intercept and the equation will be: 

 

(Xt-μ)= Θ(Β12) θ(Β)zt , zt~WN(0,σ2) 

 

which is equivalent to Xt-μ=(1+θ1Β)( 1+Θ1Β
12)ztXt-μ=(1+ Θ1Β

12 + θ1Β + θ1Θ1Β
13)zt.  

Thus the true model has MA terms at lags 1,12 and 13.  

 

 

(3) The model SARIMA(1,0,0)x(1,0,0)12 includes non-seasonal AR(1) and a 

seasonal AR(1) term, no differencing and MA terms and S=12. The model is (1-

Φ1Β
12)(1-φ1Β)(Χt-μ)=zt , zt~WN(0,σ2). Let wt= Xt-μ then wt= φ1wt-1+Φ1wt-12 - φ1Φ1 wt-

13 + zt. This is an AR model with predictors at lags 1,12 and 13.  

 

(4) The model SARIMA(0,1,1)x(0,1,1)12 includes non-seasonal MA(1),seasonal 

MA(1), the differencing terms d=1 and D=1, no AR terms and its span seasonality is 

S=12. Since there are differencing terms, the model will not have an intercept and the 

equation will be:  

 

(1-B)(1-B12)Xt = (1+θ1Β)( 1+Θ1Β
12)zt, zt~WN(0,σ2) 

Xt= Xt-12 – Xt-1 – Xt-13 + (1+θ1Β)( 1+Θ1Β
12)zt.. 

 

 

(5) Below are illustrated the inverse roots of the polynomials Φ(zS) and φ(z) of the 

SARIMA(1,0,1)x(1,1,1)12. We can see the seasonal inverse roots lie on the unit circle.  
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                                   Figure 3.6-The Inverse Roots 

 

 

 

3.2.3 “Assuming the correct vs the wrong type of seasonality”: An 

illustration example  

 

In this part, we illustrate the results of modelling three different types of data generating 

processes, fitting on the one side the dummy variable representation and on the other 

side the Seasonal ARIMA models. Specifically, we simulated data that follow the 

models: 

 Yt=Yt-S+εt  

 Yt=μ+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt 

 Yt = μ+ Yt-S+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt  

 

Where εt~WN(0,σ2). 

 

Then, we estimated each one of them with the models: 

 

 Yt =μ + αSYt-S+ εt (2.3.4.a) 

 Yt= μ+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt(2.3.4.b) 

 Yt =μ + αSYt-S+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 +εt (2.3.4.c) 
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The purpose of this test is to note all the possible consequences of modelling a process 

that displays deterministic seasonality with SARIMA models and vice versa, the 

consequences of modelling a process that displays stochastic (stationary of non-

stationary) seasonality with the dummy variable representation (deterministic 

seasonality). The table below represents the results in the estimations, the residuals as 

well as the ACF and PACF plots of the residuals of modelling these three data 

generating processes with these three different types of models.  

 

 

Table 3.3- Results of the Modelling 

 

We can see from the table above that modelling a seasonal random walk Yt =Yt-S+ εt 

(non-stationary stochastic seasonality) as a process that displays deterministic 

seasonality Yt = μ+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt, are unable to obtain White Noise residuals. 

Specifically, the corresponding plots shown in figure 3.7 illustrate peaks at lags 

True Model 

Yt =Yt-S+ εt Yt=μ+∑  𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt Yt=μ+Yt-S+∑ 𝑚𝑠𝛿𝑠𝑡

𝑆
𝑠=1 + εt 

Yt =μ + αSYt-S+ εt 

Yt = μ+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt 

 

The residuals are 

correlated.ACF plot: We can 

see peaks at lags that are 

multiples of 6. PACF plot: 

Peaks at lags 

1,2,3,6,7,8,9,10,11 and 12. 

After lag 12, the residuals are 

within the limits and they 

finally wear off.  

The ACF and PACF plot 

shows that the residuals are 

almost white noise. 

The residuals are correlated. 

ACF plot: We can see peaks at 

various lags. PACF plot: 

Peaks at lags 

1,2,3,6,7,8,9,10,11 and 12. 

After lag 12, the residuals are 

within the limits and they 

finally wear off. 

Yt=μ+αSYt-S+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 +εt 

 

The estimation of α  is very 

close to unity and the ACF 

and PACF plots indicate that  

εt ~WN(0,σ2). The estimation 

of dummy coefficients are 

significant.  

The ACF and PACF plot 

shows that the residuals are 

almost white noise. 

The estimation of α  is very 

close to unity and the ACF 

and PACF plots indicate that 

εt ~WN(0,σ2) 
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multiples of 6 in ACF plot and various peaks in PACF plot and therefore the residuals 

are uncorrelated.  

 

Furthermore, modelling the process Yt=μ+Yt-S+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt as a model that displays 

deterministic seasonality we are also unable to obtain White Noise residuals. The 

corresponding results of the ACF and PACF plots are almost the same as those of figure 

3.4 

The code and the corresponding output in R, as well as the ACF and PACF plots are 

listed in the Appendix (B. Code - Code, plotsand output in R of the Example) 

 

 

Figure 3.7-The ACF and PACF plots of the Residuals 
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CHAPTER 4 

 

The Seasonal Dickey-Fuller and Augmented Dickey-Fuller Unit 

Root test 
 

 

Some of the most popular seasonal Unit Root tests, are the seasonal Dickey-Fuller test 

(seasonal DF test) and the seasonal Augmented Dickey-Fuller test. Both of them will 

be described in this part.  

 

4.1 The seasonal Dickey-Fuller Unit Root test 

 

First of all, assume the Seasonally Integrated model of order D model (SI(D) model) 

described in part 3.2.3 in Chapter 3. In the framework of this model the hypotheses of 

the seasonal DF test are formed as follows: 

 

                       H0: Yt~ SI(D) 𝛥𝑆
𝐷Yt= (1-ΒS)D∙Yt is a stationary process 

                       H1: Yt is stationary 

 

More specifically, let the model Yt = αS∙Yt-S + εt , εt ~ WN(0,σ2) (3.1.1.α) which is the 

model (2.3.4.a) of the previous part with mean equal to zero. The corresponding 

hypothesis of the seasonal DF test for the model (3.1.1.α) are the following:  

 

                                                             H0: αS = 1 

                                                             H1: αS< 1 

 

Therefore, in general under the null hypothesis of the seasonal DF test the 

Autoregressive polynomials of a model contains all the roots 1, ±i for quarterly data 

and all the roots ±1, ±i, 
1

2
(√3± i), 

1

2
(1±√3i), - 

1

2
(1±√3i), −

1

2
(√3± i) for monthly data. In 

other words under the null hypothesis all roots of the of the Autoregressive polynomials 

are on the unit circle and under the alternative all roots of polynomial have the same 

modulus smaller than unity.   

In order to describe the seasonal DF test, we will use the zero mean and the seasonal 

means model, as well as the single mean model, defined by the following equations: 
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 Yt= αS∙Yt-S+ εt , εt ~ WN(0,σ2) , the Zero Mean Model (3.1.1.α) 

 

 Yt= αSYt-S+∑ 𝛾𝑠𝛿𝑠𝑡
𝑆
𝑠=1 +εt , εt ~ WN(0,σ2) , the Seasonal Means Model (3.1.1.b) 

 

 Yt =μ + αSYt-S+ εt , εt ~ WN(0,σ2) , the Single Mean Model (3.1.1.c) 

 

For these three models Dickey, Hasza and Fuller (1984), described the original least 

squares estimators of their coefficients as well as the corresponding Studentized 

regression statistics. For the Zero Mean Model the ordinary least square estimator of 

αSis the �̂�S=
∑ 𝑌𝑡−𝑆∙𝑌𝑡

𝑛
𝑖=1

∑ 𝑌𝑡−𝑆
2𝑛

𝑖=1

 and the Studentized statistic is the �̂�S = [(∑ 𝑌𝑡−𝑆
2𝑛

𝑡=1 )−1 ∙

𝜎�̂�
2]−

1

2 ∙(�̂�S-1) where 𝜎�̂�
2
= (n-1)-1∙∑ (𝑌𝑡 

𝑛
𝑡=1 - �̂�S∙ Yt-S)2. For the Seasonal Means Model, 

regressing Yt on 𝛿1𝑡,𝛿2𝑡,…, 𝛿𝑆𝑡 , Yt-S for t=1,2,…,n, yields the coefficients 𝛾1̂, 𝛾2̂,…,𝛾�̂�, 

and 𝛼𝜇�̂� , as well as the Studentized statistic �̂�μS. Finally, for the Single Mean Model the 

results are similar to the previous and μ and 𝛼𝑆
∗̂ denote the estimated coefficients of the 

model and 𝜏𝑆
∗̂ is the corresponding Studentized statistic. 

Extending the approach of Dickey (1976) who computed the percentiles of the limit 

distributions of n∙(�̂�1 -1), �̂�1 and �̂�μ1, to the models with S>1, Dickey, Hasza and Fuller 

obtained the limit percentiles of the limit distributions of the statistics described above. 

(see Theorem 1- Dickey, Hasza and Fuller, 1984). Monte Carlo integration and other 

techniques were used for the computation of the percentiles of distributions for time 

series that all of its roots are on the unit circle (under the null hypothesis). The provided 

tabled distributions are used to test the hypothesis listed above. 
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Estimated Equation 5% Percentage points of the OLS estimator 
5% Percentage points of the Studentized 

Statistic 

S=4           -9.16   S=4           -1.90 

S=12         -11.58 S=12         -1.80 

S=4           -27.88 S=4           -4.04 

S=12         -59.45 S=12          -5.82 

S=4           -12.62 S=4            -2.38 

S=12         -13.65 S=12          -2.06 

 

Table 4.1-The 5% percentage points of the estimators for T=+∞ 

 

These conclusions as well as the Dickey Fuller test, concern the three aforementioned 

models under the assumption of εt’s to be White Noise.  

 

 

4.2 The seasonal Augmented Dickey-Fuller Unit Root test 

 

In the presence of the serial correlation of the residuals, the extension of the seasonal 

Dickey-Fuller Unit root test is the seasonal Augmented Dickey-Fuller Unit root test 

(seasonal ADF test).  

Let the multiplicative model: 

(1-αSBS)∙(1-θ1B-…..-θpB
P)∙Yt = εt (3.2.1.α) 

 

where εt is a sequence of iid (0,σ2) random variables. The equation (3.2.1.α) is the 

SARIMA(p,0,0)x(1,0,0)S model with mean equal to zero and it defines the errors εt  as 

a nonlinear function of (αS,θ), where θ’=(θ1,θ2,…,θp).  

The estimator �̂�S-1 will arise from a procedure named the two-step regression and it can 

be used to test the hypothesis H0: αS=1 versus H1:αS≠1. 
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The two-step regression procedure 

 

Note that in the framework of equation (3.2.1.α) and satisfy 𝑌�̇�= Yt-Yt-S corresponds to 

the initial estimate that αS=1. This suggests the following procedure: 

(1) Regress 𝑌�̇� on 𝑌𝑡−1
̇ ,𝑌𝑡−2

̇ ,…,𝑌𝑡−𝑝
̇ to obtain an initial estimator of θ = 

(θ1,θ2,…,θp) that is consistent forθ under the null hypothesis that αS=1.  

 

(2) Compute the residuals εt(1,�̂�) and regress εt(1,�̂�) on  [(1-𝜃1̂B-…..-

𝜃�̂�BP)∙Yt-S, 𝑌𝑡−1
̇ ,𝑌𝑡−2

̇ ,…,𝑌𝑡−𝑝
̇ ] to obtain the estimators (αS-1,θ-�̂�).  

 

As it is subsequently explained in a Theorem 5 (see Dickey, Hasza, Fuller-1984) the 

limit percentiles obtained for the first order models can be extended to the multiplicative 

model. Specifically, if αS=1 in model (3.2.1.α), the two-step regression procedure 

results in an estimator �̂�S and a corresponding Studentized statistic with the same limit 

distribution as that of the statistic one would obtain by regressing Zt-Zt-S=Zt on                   

Zt-S where Zt=Yt-θ1Yt-1-….- θpYt-p. The estimators θi, obtained by adding the estimates 

of θi-𝜽�̂� to𝜽�̂� have the same asymptotic distribution as the coefficients in a regression 

of 𝑌�̇� on 𝑌𝑡−1
̇ ,𝑌𝑡−2

̇ ,…,𝑌𝑡−𝑝
̇ .  

The Theorem 5 implies that the tabulated limit percentiles of estimators in the Zero 

Mean Model are also applicable in the multiplicative model for large sample sizes. 

Therefore, the estimator (αS-1) and the corresponding Studentized statistic will have the 

percentiles with those of the Zero Mean Model.  

As far as the seasonal means and the single mean models are concerned, the extension 

of the theorem is immediate. Specifically, let   

yt = Yt - ∑ 𝛿𝑖𝑡
𝑆
𝑖=1 𝜇�̃�(3.2.1.b) 

 

Replacing Yt by yt in the two-step regression procedure results in the regression of the 

errors εt(1,�̂�) on  [(1-𝜃1̂B-…..-𝜃�̂�BP)∙yt-S, 𝑌𝑡−1
̇ ,𝑌𝑡−2

̇ ,…,𝑌𝑡−𝑝
̇ ].   

Using these arguments, it follows that the first coefficient 𝑎𝜇�̂�and its Studentized 

statistic converge to the limit distribution of the corresponding estimators of the Zero 

Mean model.  
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CHAPTER 5 

 

The HEGY Unit Root test 
 

In the previous part, it was described the seasonal unit root test by Dickey, Hasza and 

Fuller (1984). Specifically, it was listed the asymptotic distribution of the least-square 

estimators for three different models and these results were extended to the case of high-

orders stationary dynamics. A crucial disadvantage of the seasonal ADF unit root test 

is that the null hypothesis implies that all roots of Φ(ΒS) are on the unit circle while the 

alternative restricts the roots to have the same modulus.  

 

 

5.1 The HEGY Unit Root test for quarterly data (S=4) 

 

To begin with, we will assume the general autoregressive model  

φ(Β)(Yt-μt) = εt (4.1.1.a) 

where φ(Β) is the autoregressive polynomial, μt = μ+ ∑ 𝑚𝑠𝛿𝑠𝑡
4
𝑠=1  and εt ~ WN(0,σ2).  

 

The equation (4.1.1.a) can be written equivalently as: 

 

d(B)a(B)(Yt-μt) = εt (4.1.1.b) 

 

where all the roots of d(z) =0 lie on the unit circle and therefore its roots θk є {+1,-1,+i,-

i}for k≤4 since we consider quarterly seasonality only. All the roots of a(z) =0 are 

assumed to lie outside the unit circle and therefore all the stationary components are 

absorbed into a(B) and finally μt describes the deterministic seasonality when there are 

no seasonal unit roots in d(B).  

In practice, unit roots may be present at some, but not at all the frequencies. Therefore, 

a joint test at all seasonal frequencies (seasonal ADF test) simultaneously will not 

provide the appropriate result. The benefit of HEGY unit root test, is that it can look 

for unit roots at any single seasonal frequency (as well as the zero frequency) without 

imposing roots at other frequencies. 

Therefore, HEGY unit root test allows to test for individual roots. Specifically, they are 

tested the following separate hypotheses: 
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 H0: θ1 =1 is root of the polynomial d(z) =0 

H1: θ1 =1 is not root of the polynomial d(z) =0 

 

 H0: θ2 =-1 is root of the polynomial d(z) =0 

H1: θ2 =-1 is not root of the polynomial d(z) =0 

 

 H0: θ3=i and θ4 =-i are both roots of the polynomial d(z) =0 

H1: θ3=i and θ4 =-i are not roots of the polynomial d(z) =0 

 

We will show subsequently that the equation (4.1.1.a) can be also transformed to the 

form  

𝝋∗(𝜝)𝑦4𝑡 =  𝜋1𝑦1𝑡−1 + 𝜋2𝑦2𝑡−1 + 𝜋3𝑦3𝑡−2 + 𝜋4𝑦3𝑡−1 + 휀𝑡 (4.1.1.c) 

where, 

                 𝝋∗(𝜝)= 1-φ1Β-φ2Β
2-…-φpB

p and 휀𝑡 is white noise 

and 

𝑦1𝑡 = (1+B+B2+B3)Yt 

𝑦2𝑡= -(1-B+B2-B3)Yt                                                                                              (4.1.1.d) 

𝑦3𝑡= -(1-B2)Yt 

𝑦4𝑡= (1-B4)Yt 

                          and these y’s are asymptotically uncorrelated. 

 

Moreover, it will be shown that πk = 0 describes exactly the hypothesis that θk is a root 

of φ(Β). Thus, in order to conduct the test one will compute 𝑦4𝑡= Yt – Yt-4 and will then 

estimate the equation: 

 

𝑦4𝑡 = 𝜑1𝑦4𝑡−1 + ⋯ +𝜑𝑝𝑦4𝑡−𝑝 +  𝜋1𝑦1𝑡−1 + 𝜋2𝑦2𝑡−1 + 𝜋3𝑦3𝑡−2 + 𝜋4𝑦3𝑡−1 + 휀𝑡 

 

with OLS to obtain the estimates 𝜑1̂, 𝜑2̂,…,𝜑�̂�, 𝜋1̂, 𝜋2̂, 𝜋3̂,𝜋4̂. Here p has been selected 

by criteria such as AIC, BIC e.t.c. 

In order to test the hypothesis that φ(θk) = 0 where θk is either 1,-1, ±i, it is simply tested 

that  𝜋𝑘 is zero. Specifically, a test that 1 is a root of (4.1.1.c) is a test for 𝜋1 = 0 and 

correspondingly, a test for -1 is a test for 𝜋2 = 0. For the complex roots iand -i it is 
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suggested a joint test that 𝜋3 and 𝜋4are equal to zero. It is evident that a series has no 

unit roots if each one of the π’s is different from zero.  

Therefore, in the framework of the equation (4.1.1.c), in order to look for unit roots at 

the zero frequency as well as the others seasonal frequencies, the following hypothesis 

are being tested: 

 

1) H0: π1 = 0, 1 is a root of the polynomial 

H1: π1<0,   1 is not a root of the polynomial 

 

2) H0: π2 = 0, -1 is a root of the polynomial 

H1: π2<0, -1 is not a root of the polynomial 

 

3) H0: π3 = π4 = 0,  ±i  are roots of the polynomial 

H1: π3≠ 0 and π4 ≠ 0, ±i are not roots of the polynomial 

 

The π’s as well as the φi’s are estimated with ordinary least squares. Hylleberg, Engle, 

Granger and Yoo (1990) studied the asymptotic distribution of the appropriate t and F 

statistics and computed by Monte Carlo integration the critical values for the one-sided 

‘t’ tests on π1 and π2 as well as the critical values for the ‘F’ test on π3∩π4=0. The first 

ones are very close to the Monte Carlo values from Dickey-Fuller and Dickey-Hasza-

Fuller for the situations in which they tabulated the statistics. Below are tabulated the 

5% percentage points of the π1, π2 and π3 and the 95% percentage points for π3∩π4 for 

T=200 of five different models.  
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Estimated Equation ‘t’: π1 ‘t’: π2 
No intercept 

No seas. Dummies 

No trend 

 

-1.94 -1.95 

Intercept 

No seas. Dummies 

No trend 

 

-2.87 -1.92 

Intercept 

Seas. Dummies 

No trend 

 

-2.91 -2.89 

Intercept 

No seas. Dummies 

Trend 

 

-3.44 -1.95 

Intercept 

Seas. Dummies 

Trend 

 

-3.49 -2.91 

 

Table 5.1-The 5% percentage points of the estimators for T=200 

 

 

Estimated Equation ‘F’: π3∩π4 

No intercept 

No seas. Dummies 

No trend 

 

3.16 

Intercept 

No seas. Dummies 

No trend 

 

3.12 

Intercept 

Seas. Dummies 

No trend 

 

6.61 

Intercept 

No seas. Dummies 

Trend 

 

3.07 

Intercept 

Seas. Dummies 

Trend 

 

6.57 

 

Table 5.2-The 95% percentage points of the estimator for T=200 

 

 

Some notes about the aforementioned critical values is that: 

 

1) If the π’s are truly different from zero then the models has no unit roots at theses 

frequencies and the corresponding y’s are stationary. As a result, the regression 

is equivalent to a standard augmented unit-root test. If some of the π’s are zero, 
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the distribution of the others test statistics will not be affected since the y’s are 

asymptotically uncorrelated. For example, the test for π1=0 will have the same 

limiting distribution regardless of the presence of y2 in the regression.  

 

2) If deterministic components are added in the regression the distributions of the 

π’s change. The intercept and a trend term affect only the distribution of π1 while 

the intercept in combination with the three seasonal dummies influences the 

distribution of π2, π3 and π4.  

 

 

5.2 The derivation of HEGY Unit Root test for quarterly data 

 

First of all we will list a Lagrange’s proposition that is useful in the description of the 

HEGY test: 

 

 

In the above, 𝜆𝑘 are defined as: 

𝜆𝑘 = φ(θk) / ∏ 𝛿𝑗 (𝜃𝑘𝑗≠𝑘 ), which always exists. 

By adding and subtracting Δ(Β)∑ 𝜆𝑘 to (4.2.1.α) we get the following form: 

 

“Any (possibly infinite or rational) polynomial φ(Β), which is finite-valued at the 

distinct, non-zero, possibly complex points θ1, θ2,…,θp, can be expressed in  terms 

of elementary polynomials and a remainder as follows:  

  

φ(Β) = ∑ 𝜆𝑘𝛥(𝛣)/𝛿𝑘(𝐵)𝛫
𝑘=1  + Δ(Β)φ**(Β),  (4.2.1.α) 

 

where the𝜆𝑘are a set of constants, φ**(Β) is a (possible infinite or 

rational)polynomial and 

𝛿𝑘(𝐵) = 1-
1

𝜃𝑘
B,    Δ(Β) = ∏ 𝛿𝑘(𝐵)𝛫

𝑘=1   “ 

 

 

φ(Β) = ∑ 𝜆𝑘𝛥(𝛣)(1 − 𝛿𝑘(𝐵))/𝛿𝑘(𝐵)𝛫
𝑘=1  + Δ(Β)φ*(Β),  (4.2.1.b) 
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whereφ*(Β) = φ**(Β) + ∑ 𝜆𝑘.  

Representation (4.2.1.b) indicates two major notes: 

 The polynomial φ(Β) will have a root at 𝜃𝑘 if and only if 𝜆𝑘 = 0 and therefore, 

 testing for unit roots can be performed equivalently by testing for parameters 

λk=0. 

In order to test for seasonal unit roots in quarterly data Hylleberg, Engle, Granger and 

Yoo, (1990) expanded a polynomial φ(Β) about the roots +1, -1 , i and –i as 𝜃𝑘, 

k=1,…,4. Then, from (4.1.1.b): 

φ(Β) = 𝜆1B(1+B)(1+B2) + 𝜆2(-B)(1-B)(1+B2) 

                                               + 𝜆3(-iB)(1-B)(1+B)(1-iB) 

                                               + 𝜆4(iB)(1-B)(1+B)(1+iB) 

                                               + φ*(Β)(1-B4).                                                 (4.2.1.c) 

 

Notice that since φ(Β) is real, 𝜆3 and 𝜆4 should be complex conjugates. More details of 

this derivation are given in the appendix- 1b. 

Replacing the equations π1 = - 𝜆1, π2 = - 𝜆2, 2𝜆3= -π3+iπ4 and 2𝜆4 = -π3-iπ4, in the 

(4.2.1.c), yields the following form: 

 

φ(Β) = -𝝅𝟏𝜝(𝟏 + 𝜝 + 𝜝𝟐 + 𝜝𝟑) − 𝝅𝟐(−𝜝)(𝟏 − 𝜝 + 𝜝𝟐 − 𝜝𝟑)  − (𝝅𝟒 + 𝝅𝟑𝜝)(−𝜝)(𝟏 −

𝜝𝟐)+  𝝋∗(𝜝)(𝟏 − 𝜝𝟒) (4.2.1.d) 

 

More details of this derivation are given in the appendix- 1c 

 

Let φ(Β)Yt = εt be the data generating process. Replacing the equation (4.2.1.d) to φ(Β), 

gives, 

 

𝝋∗(𝜝)𝑦4𝑡 =  𝜋1𝑦1𝑡−1 + 𝜋2𝑦2𝑡−1 + 𝜋3𝑦3𝑡−2 + 𝜋4𝑦3𝑡−1 + 휀𝑡 

 

where 

𝑦1𝑡 = (1+B+B2+B3)Yt 

𝑦2𝑡= -(1-B+B2-B3)Yt                                                                                               

𝑦3𝑡= -(1-B2)Yt 

𝑦4𝑡= (1-B4)Yt 
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5.3 The HEGY Unit Root test for monthly data (S=12) 

 

Correspondingly with the previous, let φ(Β)Yt = εt be the data generating process.  We 

want to know if the polynomial φ(Β) has roots equal to 1 in absolute value at zero 

frequency or seasonal frequencies. In order to test for non-seasonal and seasonal unit 

roots in monthly data, J.J. Beaulieu and J. A. Miron(1993) expanded the polynomial 

φ(Β) about the roots of z12-1=0 which are ±1, ±i, 
1

2
(√3± i), 

1

2
(1±√3i), - 

1

2
(1±√3i), 

−
1

2
(√3± i) according to the Lagrange’s proposition we listed above. The aim is to test 

the presence of a particular unit root without taking into consideration whether other 

seasonal unit roots are present.  

For monthly data, replacing (4.2.1.b) into φ(Β)Yt = εt yields to the following equation: 

 

φ*(Β)y13t = ∑ 𝜋𝑘
12
𝑘=1 𝑦𝑘,𝑡−1+ εt,  (4.3.1.a) 

where, 

𝝋∗(𝜝)= 1-φ1Β-φ2Β
2-…-φpB

p, and p can be chosen with criteria such as AIC, BIC e.t.c,  

휀𝑡 is white noise, 

and 

y1t = (1+B+B2+B3+B4+B5+B6+B7+B8+B9+B10+B11)Yt 

y2t = -(1-B+B2-B3+B4-B5+B6-B7+B8-B9+B10-B11)Yt 

y3t = -(B -B3+B5-B7-B9-B11)Yt 

y4t = -(1-B2+B4-B6+B8-B10)Yt 

y5t = -
1

2
(1+B-2B2 +B3+B4-2B5+B6+B7-2B8+B9+B10-2B11)Yt 

y6t = 
√3

2
 (1-B+B3-B4+B6-B7+B9-B10)Yt 

y7t = 
1

2
(1-B-2B2 -B3+B4+2B5+B6-B7-2B8-B9+B10 +2B11)Yt 

y8t = −
√3

2
 (1+B-B3-B4+B6+B7-B9-B10)Yt 

y9t = -
1

2
(√3-B+B3-√3B4+2B5-√3B6+B7-B9+√3B10-2B11)Yt 

y10t = 
1

2
(1-√3B +2B2 -√3B3+B4-B6 +√3B7-2B8+√3B9-B10)Yt 

y11t = 
1

2
(√3+B-B3-√3B4-2B5-√3B6-B7+B9+√3B10+2B11)Yt 

y12t = -
1

2
(1+√3B+2B2 +√3B3+B4-B6-√3B7-2B8-√3B9-B10)Yt 

y13t = (1-B12)Yt 
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For the frequencies 0 and π, in order to test the hypothesis that φ(θk) = 0 where θk is 

either 1,-1, k=1,2 it is simply tested that πk =0 against πk< 0. For the seasonal 

frequencies we test if πk = πk-1 =0 versus πk≠ 0 orπk-1 ≠ 0 with a joint test or simply πodd 

= πeven =0 versus πodd≠ 0 or πeven ≠ 0   .  

Therefore, in the framework of the equation, (4.3.1.a) the hypothesis for the detection 

of unit roots at the zero as well as all the others seasonal frequencies are the following: 

 

1. H0: π1 = 0, 1 is a root of the polynomial 

H1: π1<0,   1 is not a root of the polynomial 

 

2. H0: π2 = 0, -1 is a root of the polynomial 

H1: π2<0,  -1 is not a root of the polynomial 

 

3. H0: π3 = π4 = 0,  ±i  are roots of the polynomial 

H1: π3≠ 0 orπ4 ≠ 0, ±i  are not roots of the polynomial 

 

4. H0: π5 = π6 = 0, -
 1

2
( 1±√3i ) are roots of the polynomial 

 H1: π5≠ 0 or π6 ≠ 0, -
 1

2
( 1±√3i )are not roots of the polynomial 

 

5. H0: π7 = π8 = 0, 
 1

2
( 1±√3i ) are roots of the polynomial 

H1: π7≠ 0 orπ8 ≠ 0, 
 1

2
( 1±√3i )are not roots of the polynomial 

 

6. H0: π9 = π10 = 0, -
 1

2
(√3± i) are roots of the polynomial 

   H1: π9≠ 0 orπ10 ≠ 0, -
 1

2
(√3± i) are not roots of the polynomial 

 

7. H0: π11 = π12 = 0, 
 1

2
(√3± i) are roots of the polynomial 

 H1: π11≠ 0 orπ12 ≠ 0, 
 1

2
(√3± i) are not roots of the polynomial 
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The π’s as well as the φi’s are estimated with ordinary least squares. Beaulieu and Miron 

computed by Monte Carlo integration the critical values for the one-sided ‘t’ tests on 

π1 and π2 as well as the critical values for the ‘F’ test on πk∩πk-1=0 for k=4,…12 . Below 

are tabulated the 5% percentage points of the π1 and π2and the 95% percentage points 

for πk∩πk-1 for T=+∞ of five different models.  

 

 

Estimated Equation ‘t’: π1 ‘t’: π2 

No intercept 

No seas. Dummies 

No trend 

 

-1.95 -1.95 

Intercept 

No seas. Dummies 

No trend 

 

-2.86 -1.95 

Intercept 

Seas. Dummies 

No trend 

 

-2.86 -2.86 

Intercept 

No seas. Dummies 

Trend 

 

-3.40 -1.95 

Intercept 

Seas. Dummies 

Trend 

 

-3.40 -2.86 

 

Table 5.3-The 5% percentage points of the estimators for T=+∞ 
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Estimated 

Equation 
‘F’: πodd∩πeven 

No intercept 

No seas. Dummies 

No trend 

 

3.10 

Intercept 

No seas. Dummies 

No trend 

 

3.10 

Intercept 

Seas. Dummies 

No trend 

 

6.67 

Intercept 

No seas. Dummies 

Trend 

 

3.10 

Intercept 

Seas. Dummies 

Trend 

 

6.67 

 

Table 5.4-The 95% percentage points of the estimator for T=200 
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CHAPTER 6 

 

Application of the Seasonal Unit Root tests to the Greek 

Inflation 
 

In this part, we conduct the seasonal ADF and the HEGY unit root test in order to detect 

seasonal and non-seasonal unit roots as well as to compare these two methods, using a 

dataset in the statistical package R. The time series analyzed in this example is the 

Greek inflation, labeled as infl91. Data are collected monthly from 1977.1 to 1991.12. 

Since 1991, where the adjustment of the drachma-inflation to the Euro-inflation began, 

the average inflation started to drop to an important extent. This fact results in a break 

in the expected value of the time series. In order to avoid the presence of this break in 

the data we analyzed7, the data collected until December 1991.  The data we had at our 

disposal is the Consumer Price Index in Greece, labeled as cpi. Taking the first 

logarithmic differences we created the time series of the Greek inflation at the 

corresponding period.  

First, we will note the characteristics of our data.  

 

Figure 6.1-Time Series Plot 

 

                                                           
7 The inclusion of a dummy to capture this break might alter the distribution of the statistics 

considered. This is a well-known fact for the classical Dickey-Fuller test.   



50 

 

The above time series plot seems to have a seasonal path while the ACF (which does 

not decrease exponentially). Moreover, the PACF plot indicates that an AR(12) would 

be necessary to describe the data. 

 

 

Figure 6.2-Autocorrelation Function Plot 

 

In the ACF and PACF plots above, in the x-axis, the number 1.0 corresponds to the 

twelfth lag.  

 

 

Figure 6.3-Partial Autocorrelation Function Plot 
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Figure 6.4-The bbPlot 

 

The graphic above is a bbplot and it is provided in the ‘uroot’ package in R. It illustrates 

the 12 monthly paths of the series. The fact that these monthly paths are not parallel 

suggests that the seasonal patterns are not constant and hence some stochastic 

seasonality (stationary or non-stationary) will be present 
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7.1 The seasonal ADF unit root test: Application to the Greek Inflation 

 

In this part, we performed the seasonal ADF using our data in the statistical package R. 

In order to do that, we applied the procedure of the two-step regression described in 

chapter 3. We remind that this procedure contains two regressions that finally give the 

ols estimators (αS-1,θ-�̂�) of the multiplicative model                                                                      

(1-αSBS)∙(1-θ1B-…..-θpB
P)∙(Yt-μ)= εt . 

The order of p in the first step of the two-step procedure is chosen by AIC and is equal 

to 19. The estimates of the coefficients with their standard errors and the t-statistics of 

the second stage regression are given in table 6.1. 

 

 Estimates Std. Error t-Statistic 

Intercept (μ) 0.001 0.001 0.91 

αS- 1 -0.055 0.027 -2.05 

θ1 0.022 0.087 0.26 

θ2 0.003 0.086 0.04 

θ3 -0.008 0.085 -0.10 

θ4 0.005 0.084 0.07 

θ5 -0.007 0.083 -0.09 

θ6 -5.7∙10-5 0.084 -0.00 

θ7 0.014 0.084 0.18 

θ8 0.003 0.077 0.03 

θ9 -0.009 0.079 -0.12 

θ10 0.001 0.080 0.01 

θ11 -0.006 0.079 -0.07 

θ12 0.005 0.079 0.06 

θ13 0.014 0.088 0.16 

θ14 -0.003 0.087 -0.04 

θ15 -0.002 0.084 -0.03 

θ16 0.017 0.085 0.21 

θ17 -0.018 0.086 -0.21 

θ18 -0.008 0.087 -0.09 

θ19 0.018 0.086 0.21 

 

Table 6.1-Seasonal ADF Statistics 

 

We can see that the estimation of αS-1 is not close to zero and from Table 4 we see in 

the paper of Dickey, Hasza and Fuller (1984), the since our t-statistic is -2.05 the p-

value is  smaller than 0.05. Therefore, the null hypothesis of the seasonal ADF test is 

rejected in favor of stationarity of the series.  
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6.3 The HEGY unit root test: Application to the Greek Inflation 

 

In this subsection, we performed the HEGY unit root and computed the corresponding 

statistics using our data in the statistical package R. The purpose is to detect seasonal 

unit roots in the period 1977.1-1991.12 of the Greek inflation at any single seasonal 

frequency. To conduct this test and obtain the statistics we used the ‘uroot’ package and 

specifically the function HEGY.test. As far as the deterministic components of the 

model are concerned, we added the intercept as well as the eleven seasonal dummies, 

while the order p was selected by the criterion of the significance of the φi’s.  

In the table 6.2 are illustrated the indexes οf the seasonal unit roots, the seasonal unit 

roots as well as the corresponding frequencies. 

 

Index Unit Roots Frequencies 

1 1 0 

2 -1 π 

3,4 ± i 𝜋

2 
,
3𝜋

2
 

5,6 −
1

2
(1±√3i) 

2𝜋

3
, 

4𝜋

3
 

7,8 1

2
(1±√3i) 

𝜋

3
, 

5𝜋

3
 

9,10 −
1

2
(√3± i) 

5𝜋

6
,
7𝜋

6
 

11,12 1

2
(√3± i) 

𝜋

6
, 

11𝜋

6
 

 

Table 6.2-Seasonal Unit Roots and Frequencies 

 

In the table 6.3 are presented the Hegy statistics with their corresponding p-values. We 

remind that the null hypothesis of each test is the presence of unit root while the 

alternative is stationarity. 

 

Test Statistics P-Value 
tpi_1 -2.321 0.100 

tpi_2      -3.200 0.014 

Fpi_3:4 12.751 0.010 

Fpi_5:6 12.364 0.010 

Fpi_7:8 9.362 0.010 

Fpi_9:10    6.771 0.036 

Fpi_11:12    5.109 0.100 

Table 6.3-Hegy Statistics 
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According to the table 6.3 the null hypothesis is not rejected in the zero frequency (t:-

2.32) as well as the seasonal frequencies 
𝜋

6
 and

11𝜋

6
 (F: 5.109) at the 5% level of 

significance. Therefore, we consider the presence of the unit root 1 and the seasonal 

unit roots 
 1

2
(√3+i) and 

 1

2
(√3-i). 

 

 Estimates Std.Error P-Value 

Intercept 0.008 0.005 0.118 

SeasDummy.1     -0.019 0.006 0.004 

SeasDummy.2     0.011 0.007 0.115 

SeasDummy.3     0.006 0.005 0.268 

SeasDummy.4     -0.007 0.007 0.326 

SeasDummy.5     0.008 0.007 0.209 

SeasDummy.6     -0.021 0.004 0.000 

SeasDummy.7     -0.020 0.006 0.002 

SeasDummy.8     0.019 0.007 0.006 

SeasDummy.9     0.006 0.005 0.251 

SeasDummy.10     -0.009 0.007 0.185 

SeasDummy.11   0.006 0.006 0.383 

 

Table 6.4-Deterministic Regressors Estimates  

 

In the table 6.4 are tabulated the estimates as well as the standard errors and the 

corresponding p-values of the t-statistics of the deterministic regressors.  

 

 Estimates Std.Error 

π1 0.008 0.005 

π2 -0.019 0.006 

π3 0.011 0.007 

π4 0.006 0.005 

π5 -0.007 0.007 

π6 0.008 0.007 

π7 -0.021 0.004 

π8 -0.020 0.006 

π9 0.019 0.007 

π10 0.006 0.005 

π11 -0.009 0.007 

π12 0.006 0.006 

 

Table 6.5-Hegy Regressors Estimates 

 

The Table 6.5 illustrates the estimates and the standard errors of the πi’sof the equation 

(4.3.1.a) in the framework of the time series analyzed.  
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If the seasonal ADF test did not reject the null hypothesis and thus all the seasonal 

frequencies are considered non-stationary, we should apply twelve differences in order 

to achieve stationarity. Therefore, for φ(Β) = (1-B12), the series  

 

φ(Β)Yt  would be stationary. 

 

On the contrary, if the HEGY test indicates the presence of unit roots in the seasonal 

frequencies λ0=±
𝜋

6
 and at λ=0, the form of the filter changes.  

Let z0 = 𝑒𝑖𝜆0 and z1 = 1 be the roots of the polynomial φ(Β), then: 

φ(Β) = (1-B)(1- 𝑧0
−1B)(1-𝑧0

−1̅̅ ̅̅ ̅B) =  

  (1-B)(1- 2Re(z0)B +  |𝑧0
−1|2B2 ) =  

 (1-B) ( 1- cos(λ0)B + B2) 

 

Therefore, for φ(Β) = (1-B) (1- cos(λ0)B + B2), the series  

 

φ(Β)Yt would be stationary. 

 

 

6.5 Conclusions 

 

From the aforementioned facts it appears that the seasonal ADF and the HEGY unit 

root tests in the framework of the Greek inflation 1977.1-1991.12 conclude to different 

results. On the one hand, the seasonal ADF test rejects the null that the roots of the 

corresponding autoregressive polynomial φ(B) are on the unit circle. Thus it rejects 

non-stationary seasonality in favor of stationary seasonality.  On the other hand, the 

HEGY test rejects all seasonal unit roots except those at the frequencies 
𝜋

6
 and 

11𝜋

6
 and 

0 Thus HEGY does not reject the presence of non-stationary seasonality. It does, 

however, indicate a filter to achieve stationarity which is different from the usually 

employed twelfth-differences-filter. 
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CHAPTER 7 

 

Appendix 
 

7.1 Proofs 

 

1a. The change ΔΥτ is a stationary process that can be forecasting using the standard 

method:  

Δ�̂�𝑡+𝑠|𝑡≡ �̂�[(Yt+s-Yt+s-1|Yt,Yt-1,..)]= δ+ ψsεt+ ψs+1εt-1+ ψs+2εt-2+…  (1) 

Making the proper transformation, we note that the variable at the level t+s, is 

the sum of the changes between the time t and t+s:  

Yt+s=(Yt+s-Yt+s-1)+(Yt+s-1-Yt+s-2)+..+(Yt+1-Yt)+Yt = ΔΥt+s+ΔYt+s-

1+..+ΔΥt+1+Yt(2) 

Therefore, taking into consideration the equation (2) and the forecast of the 

change ΔYt in equation (1), it is concluded that the forecast of a unit root process 

has the following form: 

�̂�𝑡+𝑠|𝑡 =Δ�̂�𝑡+𝑠|𝑡+ Δ�̂�𝑡+𝑠−1|𝑡+…+Δ�̂�𝑡+1|𝑡+ Yt 

= {δ+ ψsεt+ ψs+1εt-1+ ψs+2εt-2+..} + {δ+ ψs-1εt+ ψsεt-1+ ψs+1εt-2+..} + {δ+ ψs-2εt+ 

ψs-1εt-1+ ψsεt-2+..} +...+   {δ+ ψ1εt+ ψ2εt-1+ ψ3εt-2+..} + Υt . 

 

�̂�𝑡+𝑠|𝑡 = 𝑠𝛿 +Yt+(ψs+ψs-1+..+ψ1)εt+ (ψs+1+ψs+..+ψ2)εt-1 +.. 

 

 

1b. For θ1 = +1, θ2 = -1, θ3 = i and θ4 = -i ; 

 

 𝛿𝑘(𝐵) = 1-
1

𝜃𝑘
B:𝛿1(𝐵) = 1-B 

 𝛿2(𝐵) = 1+B 

𝛿3(𝐵) = 1- 
1

𝑖
B = 1 + iB 

𝛿4(𝐵) = 1+
1

𝑖
B = 1-iB 

 

 

 Δ(Β) = ∏ 𝛿𝑘(𝐵)4
𝑘=1 = (1-B)(1+B)(1 + iB)(1-iB) = (1-B2)(1+B2) = (1-B4) 
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 𝜆𝑘𝛥(𝛣)(1 − 𝛿𝑘(𝐵))/𝛿𝑘(𝐵) : 

 

For k=1, 𝜆1(1 − 𝐵4)(1 − 1 + 𝛣)/(1 − 𝛣) = 𝜆1(1+Β)(1+Β2)Β 

 

For k=2, 𝜆2(1 − 𝐵4)(1 − 1 − 𝛣)/(1 + 𝛣) = 𝜆1(1+Β)(1+Β2)(-Β) 

 

For k=3, 𝜆3(1 − 𝐵4)(1 − 1 − 𝑖𝛣)/(1 + 𝑖𝛣) = 𝜆3(1+Β)(1-Β)(-iΒ)(1-iB) 

 

For k=4, 𝜆4(1 − 𝐵4)(1 − 1 + 𝑖𝛣)/(1 − 𝑖𝛣) = 𝜆4(1+Β)(1-Β)(iΒ)(1+iB) 

 

 

 Δ(Β)φ*(Β) = (1-B4)φ*(Β) 

 

Substituting the equations above in the equation (4.1.1.b) gives the equation 

(4.1.1.c). 

 

 

1c.  𝜆1B(1+B)(1+B2) + 𝜆2(-B)(1-B)(1+B2) 

                                               +𝜆3(-iB)(1-B)(1+B)(1-iB) 

                                               + 𝜆4(iB)(1-B)(1+B)(1+iB) =  

 

= - π1Β(1+Β+Β2+Β3) – π2(-B)(1-B+B2-B3)  

                      + (
−𝜋3 +𝑖𝜋4

2
 )(-iΒ)(1-Β)(1+Β)(1-iB) + + ( 

−𝜋3 −𝑖𝜋4

2
 )(iΒ)(1-

Β)(1+Β)(1+iB)= 

 

= - π1Β(1+Β+Β2+Β3) – π2(-B)(1-B+B2-B3) + 

        −
𝜋3

2
(1-Β)(1+Β)[(iB)(1+iB)+(-iB)(1-iB)] −

𝜋4𝑖

2
(1-Β)(1+Β)[(iB)(1-

iB)+iB(1+iB)]= 

 

=   - π1Β(1+Β+Β2+Β3) – π2(-B)(1-B+B2-B3) + 

 

−
𝜋3

2
(1-B2)[iB - B2-iB – B2]  −

𝜋4𝑖

2
(1-B2)[iB + B2 +iB –B2]= 
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 =   - π1Β(1+Β+Β2+Β3) – π2(-B)(1-B+B2-B3) +        

 

−
𝜋3

2
(1-B2)(– 2B2)  −

𝜋4𝑖

2
(1-B2)(2iB) = 

 

=   - π1Β(1+Β+Β2+Β3) – π2(-B)(1-B+B2-B3) +  π3(1-B2)B2 +π4(1-B2)B = 

 

        = - π1Β(1+Β+Β2+Β3) – π2(-B)(1-B+B2-B3) – (π3Β + π4)(-Β)(1-B2). 

 

 

So,  

 

φ(Β) = 𝜆1B(1+B)(1+B2) + 𝜆2(-B)(1-B)(1+B2) +𝜆3(-iB)(1-B)(1+B)(1-iB) 

             + 𝜆4(iB)(1-B)(1+B)(1+iB) + φ*(Β)(1-B4) = 

 

= -π1Β(1+Β+Β2+Β3) – π2(-B)(1-B+B2-B3) – (π3Β + π4)(-Β)(1-B2)+ φ*(Β)(1-B4).   

 

 

7.3 Code 

 

Code for the Figure 2.1 

Simulate a random walk 

 

n <- 20 

eps<- rnorm(n) 

x0<- rep(0, n) 

d<-0.2 

for (i in seq.int(2, n)) 

x0[i] <- d+x0[i-1] + eps[i] 

 

 

Simulate a trend Stationary process 

 

innovs<- rnorm(20,0,1) 

x<-1:20    #time variable 

mu<-10+0.5*x+innovs   #linear trend 

 

 

library(forecast) 
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par(mfrow=c(2,1)) 

plot.forecast(forecast(x0),xlab="Time",main="Forecast of a Unit Root Process") 

abline(lsfit(1:20,ts(x0), intercept =TRUE ),col=2) 

 

plot.forecast(forecast(mu),xlab="Time",main="Forecast of Trend Stationary Process" 

) 

abline(lsfit(1:20,ts(mu), intercept =TRUE),col=2) 

 

Code for Figures 3.2-3.4 

Simulation of AR(2) model with inverse root close to unity 

pre.ss<-100 

period<- 12 

mod.inv<- 0.9 

ss<- period *5 

 

 

lamda<-2*pi/period  

p<-2 

fi<-c(2*mod.inv*cos(lamda ),-mod.inv^2) 

 

 

e <- rnorm(ss+pre.ss) 

 

 

y.init<- rep(NA,ss+pre.ss) 

for (i in 1:p) 

 { 

 y.init[i]<-e[i] 

 } 

 

for (i in (p+1):(ss+pre.ss)) 

 { 

 y.init[i]<- fi[1]*y.init[i-1]+fi[2]*y.init[i-2]+e[i] 

 } 

 

y <- rep(NA,ss) 

y[1:ss] <- y.init[(pre.ss+1):(pre.ss+ss)] 

 

Figure 3.2 

ts.plot(y,type="b",main="Time Series Plot") 

 

Figure 3.3 

ts.plot(acf(y,lag.max=3*period)) 

 

Figure 3.4 

fit<- Arima(y,order=c(2,0,0),seasonal=c(0,0,0)) 

plot(arroots(fit),main="Inverse AR(2) roots") 
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Code for  Figure 3.7 

 

plot(nottem,type="o",col=4,pch=18,main="Run Sequence Plot",ylab="Average Air 

Temperature",xlab="Index") 

plot(acf(nottem),col=3,main="Autocorrelation Plot") 

monthplot(nottem,col=4,main="Seasonal Subseries Plot",ylab="Average Air 

Temperature",xlab="Month") 

 

 

 

 

Code for Figure 3.4 

Finding AR roots 

 

arroots<- function(object) 

    { 

if(!("Arima" %in% class(object)) & !("ar" %in% class(object))) 

stop("object must be of class Arima or ar") 

if("Arima" %in% class(object)) 

parvec<- object$model$phi 

else 

parvec<- object$ar 

if(length(parvec) > 0) 

      { 

last.nonzero<- max(which(abs(parvec) > 1e-08)) 

if (last.nonzero> 0) 

return(structure(list(roots=polyroot(c(1,-parvec[1:last.nonzero])), 

          type="AR"), class='armaroots')) 

      } 

return(structure(list(roots=numeric(0),type="AR"),class='armaroots')) 

    } 

 

 

Plot Inverse Roots 

 

plot.armaroots<- function(x, xlab="Real",ylab="Imaginary", 

main=paste("Inverse roots of",x$type,"characteristic polynomial"), 

        ...) 

    { 

oldpar<- par(pty='s') 

on.exit(par(oldpar)) 

plot(c(-1,1),c(-1,1),xlab=xlab,ylab=ylab, 

type="n",bty="n",xaxt="n",yaxt="n", main=main, ...) 

axis(1,at=c(-1,0,1),line=0.5,tck=-0.025) 

      axis(2,at=c(-1,0,1),label=c("-i","0","i"),line=0.5,tck=-0.025) 

circx<- seq(-1,1,l=501) 

circy<- sqrt(1-circx^2) 

lines(c(circx,circx),c(circy,-circy),col='gray') 
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lines(c(-2,2),c(0,0),col='gray')  

lines(c(0,0),c(-2,2),col='gray') 

if(length(x$roots) > 0) { 

inside<- abs(x$roots) > 1 

points(1/x$roots[inside],pch=19,col='black') 

if(sum(!inside) > 0) 

points(1/x$roots[!inside],pch=19,col='red') 

      } 

    } 

 

Generating the SARIMA models  

 

model <- Arima(ts(rnorm(100),freq=12), order=c(1,1,1), seasonal=c(1,1,1), 

fixed=c(phi=0.5, theta=-0.4, Phi=0.99, Theta=-0.2)) 

foo<- simulate(model, nsim=1000) 

fit1 <- Arima(foo, order=c(1,1,1), seasonal=c(1,1,1)) 

 

 

 

model <- Arima(ts(rnorm(100),freq=12), order=c(1,1,0), seasonal=c(1,1,0), 

fixed=c(phi=0.6, Phi=0.3)) 

foo<- simulate(model, nsim=1000) 

fit2 <- Arima(foo, order=c(1,1,0), seasonal=c(1,1,0)) 

 

Plotting the Inverse Roots 

par(mfrow=c(1,2)) 

plot(arroots(fit1),main="Inverse AR roots") 

plot(arroots(fit2),main="Inverse AR roots") 

 

 

Code, plots and output in R of the Example: 

 

3.2.3 “Assuming the correct vs the wrong type of seasonality”: An illustration example  

 
 
1) Modelling Yt=Yt-d+et as Yt =μ + αYt-d + εt 

 
model1_data1<- Arima(data1, order=c(0,0,0), seasonal=c(1,0,0)) 

summary(model1_data1) 

Series: data1  

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean  

 

 

 

 

Coefficients: 

sar1      intercept 

0.9675     0.8922 

s.e.0.0090     0.8790 
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Plots 

par(mfrow=c(2,1)) 

acf(model1_data1$residuals, main="Acf Residuals") 

pacf(model1_data1$residuals, main="Pacf Residuals") 
 

 

 

2) Modelling Yt=Yt-d+et as Yt = μ+ ∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt 

 

model2_data1<-lm(data1~ dummies) 

 

summary(model2_data1) 

Residuals: 

    Min      1Q  Median      3Q     Max  

-7.8729 -1.6145  0.0396  1.5569  6.9854  

 

Coefficients: 

                  Estimate     Std. Error  t value  Pr(>|t|)     

(Intercept)  -2.95130.3942     -7.487    4.35e-13 *** 

dummiesJan2.3545     0.5536   4.253  2.61e-05 *** 

dummiesFeb4.1176     0.5536   7.438 6.02e-13 *** 

dummiesMar4.8632     0.5574   8.724  < 2e-16 *** 

dummiesApr0.5062     0.5574   0.908  0.364339     

dummiesMay2.1116     0.5574   3.788 0.000175 *** 

dummiesJun-0.2775     0.5574  -0.498  0.618896     

dummiesJul6.4631     0.5574  11.594  < 2e-16 *** 
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dummiesAug7.7878     0.5574  13.970  < 2e-16 *** 

dummiesSep0.6601     0.5574   1.184   0.237071     

dummiesOct9.4955     0.5574  17.034  < 2e-16 *** 

dummiesNov7.4477     0.5574  13.360  < 2e-16 *** 

--- 

 

Residual standard error: 2.332 on 410 degrees of freedom 

Multiple R-squared:  0.6655,    Adjusted R-squared:  0.6565  

F-statistic: 74.16 on 11 and 410 DF,  p-value: < 2.2e-16 

 

 

 
3)ModellingYt =Yt-d+et as Yt=μ+αYt-d+∑ 𝑚𝑠𝛿𝑠𝑡

𝑆
𝑠=1 +εt 

 
model3_data1<- Arima(data1, order=c(0,0,0), seasonal=c(1,0,0),xreg=dummies) 

 

summary(model3_data1) 

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean  

 

 Sar1 Inter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

estimate 0.9220 -2.12 2.1 3.74 2.92     0.470 1.586 -1.078 5.63  6.606 -0.080 8.26 5.72 

 

sigma^2 estimated as 0.9403:  log likelihood=-590.59 

AIC=1209.19   AICc=1210.22   BIC=1265.82 

 

 

par(mfrow=c(2,1)) 

acf(model3_data1$residuals, main="Acf Residuals") 

pacf(model3_data1$residuals, main="Pacf Residuals") 
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4)  Modelling Yt=μ+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt as Yt =Yt-d+et 

model1_data2<- Arima(data2, order=c(0,0,0), seasonal=c(1,0,0)) 

 

summary(model1_data2) 

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean  

 

Coefficients: 

sar1  intercept 

      -0.0254     0.0969 

s.e.   0.0491     0.0496 

 

sigma^2 estimated as 1.094:  log likelihood=-616.7 

AIC=1239.4   AICc=1239.45   BIC=1251.53 

 
 
par(mfrow=c(2,1)) 

acf(model1_data2$residuals, main="Acf Residuals") 

pacf(model1_data2$residuals, main="Pacf Residuals") 
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5)Modelling Yt=μ+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt as Yt=μ+∑ 𝑚𝑠𝛿𝑠𝑡

𝑆
𝑠=1 + εt 

 
model2_data2<-lm(data2~ dummies) 

summary(model2_data2) 

lm(formula = data2 ~ dummies) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-2.81844 -0.72723 -0.02632  0.72704  2.91865  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)   

(Intercept) -0.049362   0.176883  -0.279   0.7803   

dummiesJan   0.004981   0.248408   0.020   0.9840   

dummiesFeb   0.044578   0.248408   0.179   0.8577   

dummiesMar   0.419974   0.250151   1.679   0.0939 . 

dummiesApr   0.057479   0.250151   0.230   0.8184   

dummiesMay   0.327103   0.250151   1.308   0.1917   

dummiesJun   0.133369   0.250151   0.533   0.5942   

dummiesJul   0.118638   0.250151   0.474   0.6356   

dummiesAug   0.110486   0.250151   0.442   0.6590   

dummiesSep   0.317813   0.250151   1.270   0.2046   

dummiesOct  -0.113989   0.250151  -0.456   0.6489   

dummiesNov   0.340994   0.250151   1.363   0.1736   

 

Residual standard error: 1.046 on 410 degrees of freedom 
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Multiple R-squared:  0.02325,   Adjusted R-squared:  -0.002955  

F-statistic: 0.8872 on 11 and 410 DF,  p-value: 0.553 

 

 

Par(mfrow=c(2,1)) 

acf(model2_data2$residuals, main="Acf Residuals") 

pacf(model2_data2$residuals, main="Pacf Residuals") 

 

 

 

6) Modelling Yt=μ+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 + εt as Yt=μ+αYt-d+∑ 𝑚𝑠𝛿𝑠𝑡

𝑆
𝑠=1 +εt 

model3_data2<- Arima(data2, order=c(0,0,0), seasonal=c(1,0,0),xreg=dummies) 

summary(model3_data2) 

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean  

 

Coefficients: 

sar1        intercept     Jan     Feb     Mar     Apr     May     Jun     Jul     Aug 

        -0.0464    -0.0511   0.0068   0.0476  0.4205  0.0621  0.3294  0.1368  0.1198  

0.1143 

s.e.   0.0490     0.1667   0.2340  0.2340  0.2357  0.2357  0.2357  0.2357  0.2357  

0.2357 

         Sep      Oct     Nov 

0.3163  -0.1112  0.3409 

s.e.  0.2357   0.2357  0.2357 

 

sigma^2 estimated as 1.095:  log likelihood=-611.42 

AIC=1250.84   AICc=1251.87   BIC=1307.47 
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par(mfrow=c(2,1)) 

acf(model3_data2$residuals, main="Acf Residuals") 

pacf(model3_data2$residuals, main="Pacf Residuals") 
 

 

 
 

7) Modelling Yt=μ+αYt-d+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 +εt as Yt =Yt-d+et 

model1_data3<- Arima(data3, order=c(0,0,0), seasonal=c(1,0,0)) 

summary(model1_data3) 

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean  

 

Coefficients: 

sar1       intercept 

        0.9675     0.9001 

s.e.  0.0090     0.8800 

 

sigma^2 estimated as 0.9328:  log likelihood=-599.61 

AIC=1205.21   AICc=1205.27   BIC=1217.35 

 

 

par(mfrow=c(2,1)) 

acf(model1_data3$residuals, main="Acf Residuals") 

pacf(model1_data3$residuals, main="Pacf Residuals") 
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8)Modelling Yt=μ+αYt-d+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 +εt asYt=μ+∑ 𝑚𝑠𝛿𝑠𝑡

𝑆
𝑠=1 + εt 

model2_data3<-lm(data3~ dummies) 

summary(model2_data3) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-7.8729 -1.6145  0.0396  1.5569  6.9854  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -2.9479     0.3942  -7.479 4.60e-13 *** 

dummiesJan    2.3487     0.5536   4.243 2.73e-05 *** 

dummiesFeb    4.1398     0.5536   7.478 4.61e-13 *** 

dummiesMar    4.8735     0.5574   8.743  < 2e-16 *** 

dummiesApr    0.5096     0.5574   0.914 0.361181     

dummiesMay    2.1181     0.5574   3.800 0.000167 *** 

dummiesJun   -0.2934     0.5574  -0.526 0.598901     

dummiesJul    6.4563     0.5574  11.582  < 2e-16 *** 

dummiesAug    7.8098     0.5574  14.010  < 2e-16 *** 

dummiesSep    0.6713     0.5574   1.204 0.229198     

dummiesOct    9.5003     0.5574  17.042  < 2e-16 *** 

dummiesNov    7.4565     0.5574  13.376  < 2e-16 *** 

 

 

Residual standard error: 2.332 on 410 degrees of freedom 
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Multiple R-squared:  0.6661,    Adjusted R-squared:  0.6571  

F-statistic: 74.35 on 11 and 410 DF,  p-value: < 2.2e-16 

 

 

par(mfrow=c(2,1)) 

acf(model2_data3$residuals, main="Acf Residuals") 

pacf(model2_data3$residuals, main="Pacf Residuals") 

 

 

 

 

9)Modelling Yt=μ+αYt-d+∑ 𝑚𝑠𝛿𝑠𝑡
𝑆
𝑠=1 +εt asYt=μ+αYt-d+∑ 𝑚𝑠𝛿𝑠𝑡

𝑆
𝑠=1 +εt 

 

model3_data3<- Arima(data3, order=c(0,0,0), seasonal=c(1,0,0),xreg=dummies) 

summary(model3_data3) 

 

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean  

 

Coefficients: 

sar1  intercept     Jan     Feb     Mar     Apr     May      Jun     Jul     Aug 

      0.9220    -2.1126  2.0956  3.7627  2.9316  0.4737  1.5922  -1.0939  5.6264  

6.6276 

s.e.  0.0175     1.6025  2.2505  2.2509  2.2772  2.2597  2.2610   2.2627  2.2629  

2.2662 

          Sep     Oct     Nov 

      -0.0689  8.2615  5.7243 

s.e.2.2623  2.2669  2.2737 

 

sigma^2 estimated as 0.9403:  log likelihood=-590.59 
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AIC=1209.19   AICc=1210.22   BIC=1265.82 

 

 

par(mfrow=c(2,1)) 

acf(model3_data3$residuals, main="Acf Residuals") 

pacf(model3_data3$residuals, main="Pacf Residuals") 

 

 

 

Code in R for time series plot and ACF/PACF plots using the dataset of the 

inflation 

 

##Setingwd## 

setwd("C:/Users/Georgia/Documents/thesis") 

 

##Read Data## 

cpi<-read.table("cpi_gr.txt")     

cpi_val<-ts(cpi[,2],start=c(1977,1),end=c(2012,2),freq=12) 

 

 

##Creating Inflation Series## 

infl<-log(cpi_val)-log(lag(cpi_val,-1)) 

inf<-ts(infl,start=c(1977,1),end=c(2012,2),freq=12) 

 

 

##FirstPart### 

inf191<-ts(infl,start=c(1977,1),end=c(1991,12),freq=12) 

 

plot(infl91,type="l") 
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acf(inf191 ,lag.max =NULL) 

pacf(inf191 ,lag.max =NULL) 

 
 

 

Code in R of the seasonal ADF test using the dataset of the inflation-Chapter 6 

 

(1) 

model1<-ar(diff(infl91,12),aic="TRUE",order.max=24,method="ols") 

resid<-model1$res 

 

(2) 

 

##creation of the first independent variable## 

 

df<-NULL 

for(i in 12:31){ 

k<-diff(infl91,i) 

df<-cbind(df,k) 

  } 

 

ncol(df) 

nrow(df) 

 

coefs<-as.matrix(c(1,-model1$ar)) 

 

ncol(coefs) 

nrow(coefs) 

 

Ydot<-df%*%coefs 

 

Y<-NULL 

for(i in 1:19){ 

k1<-diff(diff(infl91,12),i) 

Y<-cbind(Y,k1) 

} 

 

Y<-as.matrix(Y) 

nrow(Y) 

ncol(Y) 

 

variab<-cbind(Ydot[-1],Y) 

 

 

model2<-lm(resid[-1]~variab) 

model2$coef 
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Code in R of the HEGY test using the dataset of the inflation 

 
library(uroot) 

hegy.out<-HEGY.test (infl91, itsd=c(1,0,c(1,2,3,4,5,6,7,8,9,10,11)), regvar=0,    

selectlags=list(mode="signf", Pmax=NULL)) 

 

hegy.out 

 

summary(hegy.out) 
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