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 The poor physical health faced by people with mental illness has been the 

subject of growing attention, but there has been less focus on the issue of oral health 

even though it is an important part of physical health. Psychiatric patients have 

increased co morbid physical illness. There is less information concerning dental 

disease in this population in spite of risk factors including diet and psychotropic side-

effects (such as xerostomia). This paper is based on Kisely et. al. (2011) and its aim 

was to compare the oral health of people with severe mental illness with that of the 

general population. Another aim of the thesis is to provide a real data comparison 

between three fixed effects methods for the calculation of the fixed effects estimate 

(Mantel-haenszel, Peto and Inverse variance). 

A systematic search for studies from the past 20 years was conducted using 

Medline, PsycINFO, Embase and article bibliographies. Papers were independently 

assessed. The primary outcome using the package R and the library “meta” and 

“metafor” for the analysis of the data was: total tooth loss (edentulousness), the end-

stage of both untreated caries and periodontal disease, and dental decay through 

standardized measures: the mean number of decayed, missing and filled teeth (DMFT) 

or surfaces (DMFS). For studies lacking a control group controls of similar ages from 

a community survey within 10 years of the study were used. 

  As result 21 papers were identified of which 14 had sufficient data (n = 2784 

psychiatric patients) and suitable controls (n = 31 084) for a fixed effect and a random 

effects meta-analysis. People with severe mental illness had 3.4 times the odds of 

having lost all their teeth than the general community (95% CI 1.6–7.2). They also had 

significantly higher scores for DMFT (mean difference 6.2, 95% CI 0.6–11.8) and 
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DMFS (mean difference 14.6, 95% CI 4.1–25.1). Fluoridated water reduced the gap in 

oral health between psychiatric patients and the general population. Psychiatric 

patients have not shared in the improving oral health of the general population. 

Management should include oral health assessment using standard checklists that can 

be completed by non-dental personnel. Interventions include oral hygiene and 

management of xerostomia. 
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Η κακή σωματική υγεία που αντιμετωπίζουν τα άτομα με ψυχικές ασθένειες έχει 

αποτελέσει αντικείμενο αυξανόμενης προσοχής, αλλά έχει επικεντρωθεί λιγότερο στο 

θέμα της στοματικής υγείας, παρόλο που αποτελεί σημαντικό μέρος της σωματικής 

υγείας. Οι ψυχιατρικοί ασθενείς έχουν αυξημένη συνυπάρχουσα σωματική ασθένεια. 

Υπάρχουν λιγότερες πληροφορίες σχετικά με τις οδοντικές ασθένειες σε αυτόν τον 

πληθυσμό, παρά τους παράγοντες κινδύνου, συμπεριλαμβανομένων των διατροφικών 

και ψυχοτρόπων παρενεργειών (όπως η ξηροστομία). Αυτό το έγγραφο βασίζεται στη 

δημοσίευση των Kisely et. al. (2011) και στόχος του ήταν να συγκρίνει την στοματική 

υγεία των ατόμων με σοβαρές ψυχικές ασθένειες με αυτά του γενικού πληθυσμού. 

Ένας άλλος στόχος της εργασίας είναι να υπάρξει πραγματική σύγκριση δεδομένων 

μεταξύ τριών μεθόδων για τον υπολογισμό της εκτίμησης των αποτελεσμάτων 

(Mantel-haenszel, Peto και Inverse variance). Μια συστηματική αναζήτηση για 

μελέτες από τα τελευταία 20 χρόνια διεξήχθη χρησιμοποιώντας Medline, PsycINFO, 

Embase και βιβλιογραφίες άρθρων. Τα έγγραφα αξιολογήθηκαν ανεξάρτητα. Το 

πρωτεύον αποτέλεσμα με τη χρήση της γλώσσας R και της βιβλιοθήκης «meta» και 

«metafor» για την ανάλυση των δεδομένων ήταν: ολική απώλεια των δοντιών 

(edentulousness), το τελικό στάδιο τόσο της τερηδόνας όσο και της περιοδοντικής 

νόσου και της οδοντικής αποσύνθεσης μέσω τυποποιημένων μέτρων : ο μέσος 

αριθμός των τερηδονισμένων, ελλειπόντων και εμφραγμένων δοντιών (DMFT) ή 

επιφανειών (DMFS). Για μελέτες που δεν είχαν ομάδα ελέγχου, χρησιμοποιήθηκαν 

έλεγχοι παρόμοιων ηλικιών από μια κοινοτική έρευνα εντός 10 ετών από τη μελέτη. 

 Ως αποτέλεσμα, προσδιορίστηκαν 21 έγγραφα από τα οποία 14 είχαν επαρκή 

δεδομένα (n = 2784 ψυχιατρικούς ασθενείς) και κατάλληλους μάρτυρες (n = 31 084) 
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για σταθερό αποτέλεσμα και μετα-ανάλυση τυχαίων αποτελεσμάτων. Τα άτομα με 

σοβαρή διανοητική ασθένεια είχαν 3,4 φορές περισσότερες πιθανότητες να χάσουν 

όλα τα δόντια τους από τη γενική κοινότητα (95% CI 1,6-7,2). Επίσης, είχαν 

σημαντικά υψηλότερες βαθμολογίες για DMFT (μέση διαφορά 6.2, 95% CI 0.6-11.8) 

και DMFS (μέση διαφορά 14.6, 95% CI 4.1-25.1). Το φθοριωμένο νερό μείωσε το 

κενό στην στοματική υγεία μεταξύ των ψυχιατρικών ασθενών και του γενικού 

πληθυσμού. Οι ψυχιατρικοί ασθενείς δεν έχουν συμμετάσχει στη βελτίωση της 

στοματικής υγείας του γενικού πληθυσμού. Η διαχείριση θα πρέπει να περιλαμβάνει 

την εκτίμηση της στοματικής υγείας χρησιμοποιώντας τυποποιημένους καταλόγους 

ελέγχου που μπορούν να συμπληρωθούν από μη οδοντιατρικό προσωπικό. Οι 

παρεμβάσεις περιλαμβάνουν την στοματική υγιεινή και τη διαχείριση της 

ξηροστομίας. 
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CHAPTER 1:  INTRODUCTION 

 

This paper is based on Kisely et al., (2011). The aim of this research paper is 

to compare the oral health of people with severe mental illness with that of the general 

population.  

It is well known that individuals with severe mental illness (SMI) have high 

rates of physical ill-health including diabetes, cardiovascular disease, chronic lung 

disease, and cancer (Lawrence et al., 2000). This, in turn, is associated with increased 

mortality from preventable physical disease so that people with schizophrenia die 15 

to 20 years earlier than the general population. Oral health is an important part of 

physical health. (Mirza et al., 2003).  Historically, there has been less attention to the 

issue of oral health, although it is also an important part of physical health and linked 

to systemic diseases such as coronary heart disease, stroke, diabetes, and respiratory 

disease. Oral health also affects eating, speech and other social and psychological 

areas of life.  People with severe mental illness are susceptible to oral disease for a 

number of reasons: these include amotivation, poor oral hygiene, fear, specific dental 

phobia, dental costs, difficulty in accessing healthcare facilities and the side-effects of 

psychiatric drugs such as dry mouth (xerostomia) (Bardow et al., 2001).    

The two most common diseases that affect oral health are dental caries (tooth 

decay) and periodontal disease. Dental caries occurs through the demineralization and 

subsequent proteolysis of the hard tooth structure (enamel and dentine) from a build-

up of dental plaque which microorganisms colonize. If plaque is not removed, and 

there is frequent intake of readily fermentable carbohydrates in the diet, irreversible 

cavitation can occur. This will normally require restoration or extraction of the tooth 

if the dental pulp has become infected. Periodontal disease usually begins with 

gingivitis – inflammation of the gingival tissues (gums). This, too, is caused by 

longstanding accumulation of dental plaque in contact with the soft tissues. In patients 

who harbor particularly pathogenic microflora, or whose host response to these micro-

organisms is ineffective, inflammation spreads to the periodontal ligament with 

destruction of connective tissues and surrounding (alveolar) bone. Signs of 

periodontal disease include bleeding gums and pockets where the gingivae have 

become detached from the teeth. In more advanced disease there is exposure of tooth 
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roots and mobility of teeth (Pihlstrom et al., 2005). These symptoms and signs are 

often associated with halitosis (bad breath). The end-stage of both untreated dental 

caries and periodontal disease is tooth loss, which can involve the whole dentition 

(edentulousness). In an earlier meta-analysis, the authors reported significantly higher 

levels of edentulousness in patients with SMIs such as dementia, schizophrenia, 

bipolar affective disorder, and other affective disorders. By contrast, the effect on 

other measures of oral health, such as dental decay, was inconclusive. This was 

possibly because of the low number of studies that could be incorporated into meta-

analyses. 

The research team  of the paper therefore focused on this condition as an 

indicator of both dental caries and periodontal disease in people with severe mental 

illness. To our knowledge, this is the first systematic review and meta-analysis of this 

topic in people with severe mental illness. The effect of water fluoride levels on 

differences in oral health between people with and without severe mental illness was 

also considered. The aim, therefore, was to compare the prevalence of edentulousness 

in people with severe mental illness with that in the general population. Levels of 

dental decay were also compared. A systematic search for studies from the past 20 

years was conducted using Medline, PsycINFO, Embase and article bibliographies 

was used for the paper that we based our analysis using  software R and the library 

“meta” for the analysis of the data. Papers were independently assessed. The primary 

outcome was total tooth loss (edentulousness), the end-stage of both untreated caries 

and periodontal disease. Dental decay was also assessed through standardized 

measures: the mean number of decayed, missing and filled teeth (DMFT) or surfaces 

(DMFS). For studies lacking a control group we used controls of similar ages from a 

community survey within 10 years of the study. 

The authors  identified 21 papers of which 14 had sufficient data (n = 2784 

psychiatric patients) and suitable controls (n = 31 084) for a random effects meta-

analysis. People with severe mental illness had 3.4 times the odds of having lost all 

their teeth than the general community (95% CI 1.6–7.2). They also had significantly 

higher scores for DMFT (mean difference 6.2, 95% CI 0.6–11.8) and DMFS (mean 

difference 14.6, 95% CI 4.1–25.1). Fluoridated water reduced the gap in oral health 

between psychiatric patients and the general population. Psychiatric patients have not 

shared in the improving oral health of the general population. Management should 

include oral health assessment using standard checklists that can be completed by 
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non-dental personnel. Interventions include oral hygiene and management of 

xerostomia. 

However, it is good to define what systematic review and meta-analysis is and how 

these procedures can work. S. Gopalakrishnan and P. Ganeshkumar present all the 

necessary theory and they present the basic steps for this analysis. 

Systematic review 

A systematic review is a summary of the medical literature that uses explicit and 

reproducible methods to systematically search, critically appraise, and synthesize on a 

specific issue. It synthesizes the results of multiple primary studies related to each 

other by using strategies that reduce biases and random errors. To this end, systematic 

reviews may or may not include a statistical synthesis called meta-analysis, depending 

on whether the studies are similar enough so that combining their results is 

meaningful. Systematic reviews are often called overviews. 

The evidence-based practitioner, David Sackett, defines the following terminologies. 

 Review: The general term for all attempts to synthesize the results and 

conclusions of two or more publications on a given topic. 

 Overview: When a review strives to comprehensively identify and track down 

all the literature on a given topic (also called “systematic literature review”). 

 Meta-analysis: A specific statistical strategy for assembling the results of 

several studies into a single estimate. 

Systematic reviews adhere to a strict scientific design based on explicit, pre-specified, 

and reproducible methods. Because of this, when carried out well, they provide 

reliable estimates about the effects of interventions so that conclusions are defensible. 

Systematic reviews can also demonstrate where knowledge is lacking. This can then 

be used to guide future research. Systematic reviews are usually carried out in the 

areas of clinical tests (diagnostic, screening, and prognostic), public health 

interventions, adverse (harm) effects, economic (cost) evaluations, and how and why 

interventions work. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gopalakrishnan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24479036
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ganeshkumar%20P%5BAuthor%5D&cauthor=true&cauthor_uid=24479036
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Meta-analysis 

A meta-analysis is the combination of data from several independent primary studies 

that address the same question to produce a single estimate like the effect of treatment 

or risk factor. It is the statistical analysis of a large collection of analysis and results 

from individual studies for the purpose of integrating the findings.The term meta-

analysis has been used to denote the full range of quantitative methods for research 

reviews. Meta-analyses are studies of studies.Meta-analysis provides a logical 

framework to a research review where similar measures from comparable studies are 

listed systematically and the available effect measures are combined wherever 

possible. 

The fundamental rationale of meta-analysis is that it reduces the quantity of data by 

summarizing data from multiple resources and helps to plan research as well as to 

frame guidelines. It also helps to make efficient use of existing data, ensuring 

generalizability, helping to check consistency of relationships, explaining data 

inconsistency, and quantifies the data. It helps to improve the precision in estimating 

the risk by using explicit methods. 

Therefore, “systematic review” will refer to the entire process of collecting, 

reviewing, and presenting all available evidence, while the term “meta-analysis” will 

refer to the statistical technique involved in extracting and combining data to produce 

a summary result. 

Following are the six fundamental essential steps while doing systematic review and 

meta-analysis. 

Define the question 

This is the most important part of systematic reviews/meta-analysis. The research 

question for the systematic reviews may be related to a major public health problem 

or a controversial clinical situation which requires acceptable intervention as a 

possible solution to the present healthcare need of the community. This step is most 

important since the remaining steps will be based on this. 
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Reviewing the literature 

This can be done by going through scientific resources such as electronic database, 

controlled clinical trials registers, other biomedical databases, non-English literatures, 

“gray literatures” (thesis, internal reports, non–peer-reviewed journals, 

pharmaceutical industry files), references listed in primary sources, raw data from 

published trials and other unpublished sources known to experts in the field. Among 

the available electronic scientific database, the popular ones are PUBMED, 

MEDLINE, and EMBASE. 

Sift the studies to select relevant ones 

To select the relevant studies from the searches, we need to sift through the studies 

thus identified. The first sift is pre-screening, i.e., to decide which studies to retrieve 

in full, and the second sift is selection which is to look again at these studies and 

decide which are to be included in the review. The next step is selecting the eligible 

studies based on similar study designs, year of publication, language, choice among 

multiple articles, sample size or follow-up issues, similarity of exposure, and or 

treatment and completeness of information. 

It is necessary to ensure that the sifting includes all relevant studies like the 

unpublished studies (desk drawer problem), studies which came with negative 

conclusions or were published in non-English journals, and studies with small sample 

size. 

Assess the quality of studies 

The steps undertaken in evaluating the study quality are early definition of study 

quality and criteria, setting up a good scoring system, developing a standard form for 

assessment, calculating quality for each study, and finally using this for sensitivity 

analysis. 

For example, the quality of a randomized controlled trial can be assessed by finding 

out the answers to the following questions: 

1. Was the assignment to the treatment groups really random? 

2. Was the treatment allocation concealed? 
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3. Were the groups similar at baseline in terms of prognostic factors? 

4. Were the eligibility criteria specified? 

5. Were the assessors, the care provider, and the patient blinded? 

6. Were the point estimates and measure of variability presented for the primary 

outcome measure? 

7. Did the analyses include intention-to-treat analysis? 

Calculate the outcome measures of each study and combine them 

We need a standard measure of outcome which can be applied to each study on the 

basis of its effect size. Based on their type of outcome, following are the measures of 

outcome: Studies with binary outcomes (cured/not cured) have odds ratio, risk ratio; 

studies with continuous outcomes (blood pressure) have means, difference in means, 

standardized difference in means (effect sizes); and survival or time-to-event data 

have hazard ratios. 

Combining studies 

Homogeneity of different studies can be estimated at a glance from a forest plot 

(explained below). For example, if the lower confidence interval of every trial is 

below the upper of all the others, i.e., the lines all overlap to some extent, then the 

trials are homogeneous. If some lines do not overlap at all, these trials may be said to 

be heterogeneous. 

The definitive test for assessing the heterogeneity of studies is a variant of Chi-square 

test (Mantel–Haenszel test). The final step is calculating the common estimate and its 

confidence interval with the original data or with the summary statistics from all the 

studies. The best estimate of treatment effect can be derived from the weighted 

summary statistics of all studies which will be based on weighting to sample size, 

standard errors, and other summary statistics. Log scale is used to combine the data to 

estimate the weighting. 

Interpret results: Graph 

The results of a meta-analysis are usually presented as a graph called forest plot 

because the typical forest plots appear as forest of lines. It provides a simple visual 

presentation of individual studies that went into the meta-analysis at a glance. It 
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shows the variation between the studies and an estimate of the overall result of all the 

studies together. 

Subgroup analysis  

 

Subgroup analysis looks at the results of different subgroups of trials, e.g., by 

considering trials on adults and children separately. This should be planned at the 

protocol stage itself which is based on good scientific reasoning and is to be kept to a 

minimum. 
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CHAPTER 2:  

METHODS OF META-ANALYSIS 

2.1 INTRODUCTION TO META-ANALYSIS 
 

Michael Borenstein in his book Introduction  to Meta-analysis (2009) presents 

all the theory about the history, the procedure and the aim of  Meta-analysis. Prior to 

the 1990s, the task of combining data from multiple studies had been primarily the 

purview of the narrative review. An expert in a given field would read the studies that 

addressed a question, summarize the findings, and then arrive at a conclusion – for 

example, that the treatment in question was, or was not, effective. However, this 

approach suffers from some important limitations. 

One limitation is the subjectivity inherent in this approach, coupled with the 

lack of transparency. For example, different reviewers might use different criteria for 

deciding which studies to include in the review. Once a set of studies has been 

selected, one reviewer might give more credence to larger studies, while another gives 

more credence to ‘quality’ studies and yet another assigns a comparable weight to all 

studies. One reviewer may require a substantial body of evidence before concluding 

that a treatment is effective, while another uses a lower threshold. In fact, there are 

examples in the literature where two narrative reviews come to opposite conclusions, 

with one reporting that a treatment is effective while the other reports that it is not. As 

a rule, the narrative reviewer will not articulate (and may not even be fully aware of) 

the decision-making process used to synthesize the data and arrive at a conclusion. 

A second limitation of narrative reviews is that they become less useful as 

more information becomes available. The thought process required for a synthesis 

requires the reviewer to capture the finding reported in each study, to assign an 

appropriate weight to that finding, and then to synthesize these findings across all 

studies in the synthesis. While a reviewer may be able to synthesize data from a few 

studies in their head, the process becomes difficult and eventually untenable as the 

number of studies increases. This is true even when the treatment effect (or effect 

size) is consistent from study to study. Often, however, the treatment effect will vary 

as a function of study level covariates, such as the patient population, the dose of 

medication, the outcome variable, and other factors. In these cases, a proper synthesis 
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requires that the researcher be able to understand how the treatment effect varies as a 

function of these variables, and the narrative review is poorly equipped to address 

these kinds of issues. 

For these reasons, beginning in the mid 1980s and taking root in the 1990s, 

researchers in many fields have been moving away from the narrative review, and 

adopting systematic reviews and meta-analysis.  

For systematic reviews, a clear set of rules is used to search for studies, and 

then to determine which studies will be included in or excluded from the analysis. 

Since there is an element of subjectivity in setting these criteria, as well as in the 

conclusions drawn from the meta-analysis, we cannot say that the systematic review 

is entirely objective. However, because all of the decisions are specified clearly, the 

mechanisms are transparent. 

A key element in most systematic reviews is the statistical synthesis of the 

data, or the meta-analysis. Unlike the narrative review, where reviewers implicitly 

assign some level of importance to each study, in meta-analysis the weights assigned 

to each study are based on mathematical criteria that are specified in advance. While 

the reviewers and readers may still differ on the substantive meaning of the results (as 

they might for a primary study), the statistical analysis provides a transparent, 

objective, and replicable framework for this discussion. 

The formulas used in meta-analysis are extensions of formulas used in primary 

studies, and are used to address similar kinds of questions to those addressed in 

primary studies. In primary studies we would typically report a mean and standard 

deviation for the subjects. If appropriate, we might also use analysis of variance or 

multiple regression to determine if (and how) subject scores were related to various 

factors. Similarly, in a meta-analysis, we might report a mean and standard deviation 

for the treatment effect. And, if appropriate, we would also use procedures analogous 

to analysis of variance or multiple regression to assess the relationship between the 

effect and study-level covariates. 

Meta-analyses are conducted for a variety of reasons, not only to synthesize 

evidence on the effects of interventions or to support evidence-based policy or 

practice. The purpose of the meta-analysis, or more generally, the purpose of any 

research synthesis has implications for when it should be performed, what model 

should be used to analyze the data, what sensitivity analyses should be undertaken, 

and how the results should be interpreted. Losing sight of the fact that meta-analysis 
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is a tool with multiple applications causes confusion and leads to pointless discussions 

about what is the right way to perform a research synthesis, when there is no single 

right way. It all depends on the purpose of the synthesis, and the data that are 

available. 

Meta-analysis was defined by Glass (1976) to be ‘the statistical analysis of a 

large collection of analysis results from individual studies for the purpose of 

integrating the findings’. Although Glass was involved in social science research, the 

term ‘meta-analysis’ has been adopted within other disciplines and has proved 

particularly popular in clinical research. Some of the techniques of meta-analysis have 

been in use for far longer. Pearson (1904) applied a method for summarizing 

correlation coefficients from studies of typhoid vaccination, Tippet (1931) and Fisher 

(1932) presented methods for combining p-values, and Yates and Cochran (1938) 

considered the combination of estimates from different agricultural experiments. 

However, the introduction of a name for this collection of techniques appears to have 

led to an upsurge in development and application. 

Systematic reviews and meta-analyses are used to synthesize the available 

evidence for a given question to inform policy, as in the examples cited above from 

medicine, social science, business, ecology, and other fields. While this is probably 

the most common use of the methodology, meta-analysis can also play an important 

role in other parts of the research process. Systematic reviews and meta-analyses can 

play a role in designing new research. As a first step, they can help determine whether 

the planned study is necessary. 

It may be possible to find the required information by synthesizing data from prior 

studies, and in this case, the research should not be performed. Iain Chalmers (2007) 

made this point in an article entitled The lethal consequences of failing to make use of 

all relevant evidence about the effects of medical treatments: the need for systematic 

reviews.  

In the medical world, the upsurge began in the 1980s.Some of the key medical 

questions answered by meta-analyses at this time concerned the treatment of heart 

disease and cancer. For example, Yusuf et al.(1985) concluded that long-term beta 

blockade following discharge from the coronary care unit after amyocardial infarction 

reduced mortality, and the Early Breast Cancer Trialists’ Collaborative Group (1988) 

showed that tamoxifen reduced mortality in women over 50 with early breast cancer 

.By the 1990s published meta-analyses were ubiquitous.  
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The rapid increase in the number of meta-analyses being conducted during the last 

decade is mainly due to a greater emphasis on evidence-based medicine and the need 

for reliable summaries of the vast and expanding volume of clinical research. 

Evidence-based medicine has been defined as ‘integrating individual clinical expertise 

with the best available external clinical evidence from systematic research’ (Sackett et 

al., 1997). A systematic review of the relevant external evidence provides a 

framework for the integration of the research, and meta-analysis offers a quantitative 

summary of the results. In many cases a systematic review will include a meta-

analysis, although there are some situations when this will be impossible due to lack 

of data or inadvisable due to unexplained inconsistencies between studies. 

In the event that the new study is needed, the meta-analysis may be useful in 

helping to design that study. For example, the meta-analysis may show that in the 

prior studies one outcome index had proven to be more sensitive than others, or that a 

specific mode of administration had proven to be more effective than others, and 

should be used in the planned study as well. For these reasons, various government 

agencies, including institutes of health in various countries, have been encouraging 

(or requiring) researchers to conduct a meta-analysis of existing research prior to 

undertaking new funded studies. The systematic review can also play a role in the 

publication of any new primary study. In the introductory section of the publication, a 

systematic review can help to place the new study in context by describing what we 

knew before, and what we hoped to learn from the new study. In the discussion 

section of the publication, a systematic review allows us to address not only the 

information provided by the new study, but the body of evidence as enhanced by the 

new study. Iain Chalmers and Michael Clarke (1998) see this approach as a way to 

avoid studies being reported without context, which they refer to as ‘Islands in Search 

of Continents’. Systematic 

reviews would provide this context in a more rigorous and transparent manner than 

the narrative reviews that are typically used for this purpose. 

In accordance with ICH E9, meta-analysis is understood to be a formal 

evaluation of the quantitative evidence from two or more trials bearing on the same 

question. The guidelines indicate that meta-analysis techniques provide a useful 

means of summarizing overall efficacy results of a drug application and of analyzing 

less frequent outcomes in the overall safety evaluation. However, there is a warning 

that confirmation of efficacy from a meta-analysis only will not usually be accepted 
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as a substitute for confirmation of efficacy from individual trials. Certainly the 

magnitude of the treatment effect is likely to be an important factor in regulatory 

decision-making. If the treatment effect is smaller than anticipated, then statistical 

significance may not be reached in the individual trials. Even if statistical significance 

is reached in the meta-analysis, the magnitude of the treatment effect may not be 

clinically significant, and thus be considered insufficient for approval. Fisher (1999) 

considered the two conditions under which one large trial might substitute for the two 

controlled trials usually required by the Food and Drug Administration (FDA) in the 

USA. The first relates to the strength of evidence for demonstrating efficacy. He 

showed that if the evidence required from the two controlled trials is that they should 

each be statistically significant at the two-sided 5% significance level, then the same 

strength of evidence is obtained from one large trial if it is statistically significant at 

the two-sided 0.125% level. The same type of argument could be applied to 

combining trials in a meta-analysis. 

It would seem reasonable to set a more stringent level of statistical significance 

corresponding to proof of efficacy in a meta-analysis than in the individual trials. The 

second condition discussed by Fisher relates to evidence of replicability, and he 

proposes criteria which need to be met by the one large trial. A meta-analysis will 

always involve at least two trials, and it will be important to assess the consistency of 

the results from the individual trials. The extent of any inconsistencies amongst the 

trials will be influential in the choice of model for the meta-analysis and in the 

decision whether to present an overall estimate.  

WE USE META-ANALYSIS: 

• To provide a more precise estimate of the overall treatment effects. 

• To evaluate whether overall positive results are also seen in pre-specified 

subgroups of patients. 

• To evaluate an additional efficacy outcome that requires more power than the 

individual trials can provide. 

• To evaluate safety in a subgroup of patients, or a rare adverse event in all 

patients. 

• To improve the estimation of the dose-response relationship. 

• To evaluate apparently conflicting study results. 
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2.2 TREATMENT EFFECTS AND EFFECT SIZES 
 

Borenstein (2009) and references within made an extensive review of the 

subject and presented all necessary theory. The terms treatment effects and effect 

sizes are used in different ways by different people. Meta-analyses in medicine often 

refer to the effect size as a treatment effect, and this term is sometimes assumed to 

refer to odds ratios, risk ratios, or risk differences, which are common in meta-

analyses that deal with medical interventions. Similarly, meta-analyses in the social 

sciences often refer to the effect size simply as an effect size and this term is 

sometimes assumed to refer to standardized mean differences or to correlations, which 

are common in social science meta-analyses. 

In fact, though, both the terms effect size and treatment effect can refer to any 

of these indices, and the distinction between these terms lies not in the index itself but 

rather in the nature of the study. The term effect size is appropriate when the index is 

used to quantify the relationship between two variables or a difference between two 

groups. By contrast, the term treatment effect is appropriate only for an index used to 

quantify the impact of a deliberate intervention. Thus, the difference between males 

and females could be called an effect size only, while the difference between treated 

and control groups could be called either an effect size or a treatment effect. 

While most meta-analyses focus on relationships between variables, some 

have the goal of estimating a mean or risk or rate in a single population. For example, 

a meta-analysis might be used to combine several estimates for the prevalence of 

Lyme disease in Wabash or the mean SAT score for students in Utah. In these cases 

the index is clearly not a treatment effect, and is also not an effect size, since effect 

implies a relationship. Rather, the parameter being estimated could be called simply a 

single group summary. Note, however, that the classification of an index as an effect 

size and/or a treatment effect (or simply a single group summary) has no bearing on 

the computations. 

In the meta-analysis itself we have simply a series of values and their 

variances, and the same mathematical formulas apply. In this volume we generally 

use the term effect size, but we use it in a generic sense, to include also treatment 

effects, single group summaries, or even a generic statistic. 
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2.3 CHOICE OF EFFECT SIZE 
 

Borenstein (2009) and references within made an extensive review of the subject and 

presented all necessary theory. Three major considerations should drive the choice of 

an effect size index. The first is that the effect sizes from the different studies should 

be comparable to one another in the sense that they measure (at least approximately) 

the same thing. That is, the effect size should not depend on aspects of study design 

that may vary from study to study (such as sample size or whether covariates are 

used). The second is that estimates of the effect size should be computable from the 

information that is likely to be reported in published research reports. That is, it 

should not require the re-analysis of the raw data (unless these are known to be 

available). The third is that the effect size should have good technical properties. For 

example, its sampling distribution should be known so that variances and confidence 

intervals can be computed. Additionally, the effect size should be substantively 

interpretable. This means that researchers in the substantive area of the work 

represented in the synthesis should find the effect size meaningful. If the effect size is 

not inherently meaningful, it is usually possible to transform the effect size to another 

metric for presentation. For example, the analyses may be performed using the log 

risk ratio but then transformed to a risk ratio (or even to illustrative risks) for 

presentation. 

In practice, the kind of data used in the primary studies will usually lead to a 

pool of two or three effect sizes that meet the criteria outlined above, which makes the 

process of selecting an effect size relatively straightforward. If the summary data 

reported by the primary study are based on means and standard deviations in two 

groups, the appropriate effect size will usually be either the raw difference in means, 

the standardized difference in means, or the response ratio. If the summary data are 

based on a binary outcome such as events and non-events in two groups the 

appropriate effect size will usually be the risk ratio, the odds ratio, or the risk 

difference. If the primary study reports a correlation between two variables, then the 

correlation coefficient itself may serve as the effect size. 
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2.4 PARAMETERS AND ESTIMATES 
 

Borenstein (2009) and references within made an extensive review of the subject and 

presented all necessary theory. Throughout this volume we make the distinction 

between an underlying effect size parameter (denoted by the Greek letter θ) and the 

sample estimate of that parameter (denoted by Y). If a study had an infinitely large 

sample size then it would yield an effect size Y that was identical to the population 

parameter θ. In fact, though, sample sizes are finite and so the effect size estimate Y 

always differs from θ by some amount. The value of Y will vary from sample to 

sample, and the distribution of these values is the sampling distribution of Y. 

Statistical theory allows us to estimate the sampling distribution of effect size 

estimates, and hence their standard errors. 

 

Effect sizes based on means  

Raw (unstandardized) mean difference  

Based on studies with independent groups 

Based on studies with matched groups or pre-post designs 

Standardized mean difference  

Based on studies with independent groups 

Based on studies with matched groups or pre-post designs 

Response ratios  

Based on studies with independent groups 

Effect sizes based on binary data  

Risk ratio (RR ) 

Based on studies with independent groups 

Odds ratio (OR ) 

Based on studies with independent groups 

Risk difference (RD ) 

Based on studies with independent groups 

Effect sizes based on correlational data  

Correlation  

Based on studies with one group 
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2.5 A GENERAL FIXED EFFECTS PARAMETRIC APPROACH 

2.5.1 A FIXED EFFECTS META-ANALYSIS MODEL 

 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. Suppose that there are r independent studies each 

comparing the treated group with the control group. There is a common outcome 

measure reported for each patient. The parameter representing the measure of 

treatment difference is denoted by θ. This may, for example, be the difference 

between treatment means for normally distributed data or the log-odds ratio for binary 

data. It is assumed here that θ equals 0 when the two treatments have equal effect. 

Denote by   i an estimate of θ from the ith study. The general fixed effects model is 

given by: 

 

for i = 1, . . . , r, where the εi are error terms and are realizations of normally 

distributed random variables with expected value 0 and variance denoted by                

ξi
2
. It follows that 

 

2.5.2 ESTIMATION AND HYPOTHESIS TESTING OF THE 

TREATMENT DIFFERENCE 
 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. Usually, the estimated variance of   i  var (   i ), is 

treated as if it were the true variance ξi
2
 , that is, no allowance is made for error in the 

calculated term var(   i )  Let wi be the estimated inverse variance of   i ,that is, wi = 1/ 

var (   i ). The distributional assumption that is made is that 

 

 for i = 1, . . . , r. Under the null hypothesis that the treatment difference in each study 

is equal to 0, 
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¨  

for i = 1, . . . , r, and, as the study estimates are independent, 

 

The global null hypothesis that the treatment difference in all studies is equal to 0 is 

tested by comparing the statistic 

 

with the chi-squared distribution with one degree of freedom. Assuming that there is a 

common treatment difference in all studies, 

 

and the overall fixed effect θ can be estimated by ˆθ, where 

 

If wi were the true inverse variance of   i, rather than being an estimate, then     would 

be the maximum likelihood estimate of θ. The standard error of    is given by 

 

and an approximate 95% confidence interval (CI) for θ is given by 

 

The calculations require an estimate of the treatment difference and its variance from 

each study. Usually a trial report will quote the standard error, and then wi can be 

calculated as 1/{se(   i)}
2
. If using efficient score and Fisher’s information 
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statistics,   i = Zi/Vi. For this choice of   i it follows that wi = Vi. Also  i wi = Zi and     i 

2
wi = Zi 

2
 /Vi. Thus 

                            

\ 

And 

                                 

 

The fixed effects approach is sometimes referred to as an ‘assumption-free’ approach 

(see, for example, Early Breast Cancer Trialists’ Collaborative Group, 1990) because 

it is argued that the fixed effects estimate does not rely on the assumption of a 

common treatment difference parameter across all studies. Suppose that the 

assumption of a common treatment difference in all studies is relaxed and that the 

distributional assumption for the individual study estimates becomes 

                                       

 

where θi is the treatment difference parameter in study i. The overall fixed effect 

estimate ˆθ can now be viewed as an estimate of                

                                   

 

the weighted mean of the study treatment difference parameters. Whilst this is an 

acceptable interpretation of   , it would not appear to go far enough. Once variation 

between studies is conceded it would seem natural to investigate the amount of 

heterogeneity and to allow for it when making inferences about the difference 

between the two treatments. 
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2.5.3 TESTING FOR HETEROGENEITY ACROSS STUDIES 
 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. To test for heterogeneity in the treatment difference 

parameter across the studies, 

a large-sample test is used. This is based on the statistic 

 

which is a weighted sum of squares of the deviations of individual study estimates 

from the overall estimate (Cochran, 1954).When treatment difference parameters are 

homogeneous, Q follows a chi-squared distribution with r − 1 degrees of freedom. An 

easier and equivalent formula for calculation is given by 

 

When using efficient score and Fisher’s information statistics, Q can be written as 

             

 

The test statistics U and Q and the estimate    and its standard error can be obtained 

by performing a weighted least-squares regression, in which the observed responses 

(y) are the study estimates of treatment difference,   i, and there are no explanatory 

variables, only a constant term. The weights (w) are the values wi. 

 

2.6 FIXED EFFECTS MODELS FOR BINARY DATA 
 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. The observation yij is assumed to be a realization of a 

random variable Yij, which has a binomial distribution with parameter pij and  

enominator nij = 1. If pij represents the probability of success for patient j in trial i, 
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then yij = 1 if the patient response is a ‘success’ and 0 if the response is a ‘failure’. 

The expected value of Yij is pij and the variance pij(1 − pij). 

In order to model the dependence of pij on the explanatory variables x1, x2, . . . , xq, a 

transformation which maps the unit interval (0, 1) onto the real line (−∞,∞) is used. 

This transformation is known as the link function. The natural choice for estimating 

odds ratios is the logit link function, given by 

 

The logit link function leads to the linear logistic model              

 

where α is the intercept and ηij is a linear combination of explanatory variables. 

This model is an example of a generalized linear model, details of which can be 

found in Section A.6 of the Appendix. An analogy with the general linear model 

can be seen with log{pij/(1 − pij)} replacing μij. 

The model which will provide an overall fixed effects estimate of treatment 

difference, includes study and treatment as covariates. It is given by 

 (5.4) 

The parameter β1 represents the common log-odds ratio of success on treatment 

relative to control. 

 
 

2.6.1 ESTIMATION AND HYPOTHESIS TESTING 
 

 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. Parameter estimates are obtained using the method of 

maximum likelihood, The standard error for a single parameter or a linear 

combination of the parameters can be calculated from the observed or expected 

Fisher’s information matrix. Confidence intervals are based on asymptotic normality. 

Models are compared by means of the likelihood ratio test statistic, that is, the change 
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in deviance (−2 times the log-likelihood) between two models, one of which contains 

the parameter(s) of interest while the other is identical except that it does not contain 

the parameter(s) of interest. This test statistic is compared with the chi-squared 

distribution. Any package which fits a linear logistic regression model can be utilized. 

To test the null hypothesis that the treatment difference in all studies is equal to 0, 

model (5.4) is compared with a model which only contains the study effects, namely 

 

       (5.5) 

Model (5.4) has r + 1 degrees of freedom associated with the model terms and model 

(5.5) has r. The likelihood ratio statistic, equal to the change in deviance between the 

two models, is compared with the chi-squared distribution with one degree of 

freedom. 

 

2.6.2 TESTING HETEROGENEITY ACROSS STUDIED 
 

 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. In order to perform a test for heterogeneity of the 

treatment difference parameter across studies it is necessary to fit the model which 

includes the study by treatment interaction term. This is given by 

                       (5.6) 

which has 2r degrees of freedom associated with the model terms. The test for 

heterogeneity is a test of the study by treatment interaction term and involves the 

comparison of models (5.4) and (5.6). The change in deviance between these two 

models is compared with the chi-squared distribution on r − 1 degrees of freedom, in 

the same way as the Q statistic. 
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2.7 METHODS OF FIXED EFFECTS 
 

The inverse variance (IV) method computes a weighted average of log-odds ratios or 

absolute risk differences using the inverse of the within-study variance as the study 

weight. In keeping with methods implemented in standard meta-analytical software, 

the variance of the individual trial odds ratio was approximated by the method of 

Woolf while the variance of the risk difference was estimated using the Normal 

approximation. The DL method is similar, except that the study weight is equal to the 

inverse of the sum of the individual study’s variance and the estimated among-study 

variance . This is therefore a random effects method (the only one we consider), and 

is identical to the IV method when the among-study variance is zero. The MH method 

combines odds ratios or risk differences, their pooled variance estimators being the 

unconditional product binomial. The Peto one-step method computes an 

approximation of the log-odds from the ratio of the efficient score to the Fisher 

information, both evaluated under the null hypothesis. These quantities are estimated, 

respectively, by the sum of the differences between the observed and expected 

numbers of events in the treatment arm and by the sum of the conditional 

hypergeometric variances. For the MH, inverse variance, DL and Peto methods, we 

have used the Wald z-test method for hypothesis tests and computation of 95 per cent 

confidence limits. The Wald test for an MH-combined odds ratio differs from the 

score test proposed by Mantel and Haenszel . The score test is mathematically, 

although not conceptually, identical to the Wald test for the Peto odds ratio. With rare 

outcomes, a trial will sometimes contain no events in one or both arms, which yields 

problems when computations involve ratios or reciprocals of numbers of events. For 

many methods, statistical packages routinely add 0.5 to each cell from such trials 

before metaanalysis to avoid divide-by-zero errors. When no event occurs in either 

arm of a trial such that a and c are both zero, the trial odds ratio is undefined, as the 

trial provides no information about either the likely direction or magnitude of the 

effect. We have excluded such trials from meta-analyses of odds ratios for all methods 

except the crude unstratified method. The trial’s risk difference is defined in this 

situation (as zero), and thus these trials are included for analyses on the absolute risk 

scale even though they are excluded from analyses on the odds ratio scale 
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2.7.1 INVERSE VARIANCE METHOD 
 

Inverse variance methods may be used to pool either binary or continuous data. In the 

general formula below, the effect size, denoted  i , could be the log odds ratio, log 

relative risk, risk difference, difference in means or standardised mean difference 

from the ith trial(Egger et all., 2013). The effect sizes are combined to give a pooled 

estimate by calculating a weighted average of the treatment effects from the 

individual trials:  

 

The weights are the reciprocals of the squared standard errors:  

 

Thus larger studies, which have smaller standard errors, are given more weight than 

smaller studies, which have larger standard errors. This choice of weight minimises 

the variability of the pooled treatment effect IV. The standard error of IV is given by 

S 

 

The heterogeneity statistic is given by  

 

The strength of this approach is its wide applicability. It can be used to combine any 

estimates that have standard errors available. Thus it can be used for estimates from 

many types of study, including standardized mortality ratios, diagnostic test indices, 

hazard ratios, and estimates from cross-over trials and cluster-randomized trials. It is 

also possible to use this method when crude 2*2 tables cannot be obtained for each 

study, but treatment effects and confidence intervals are available.  
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2.7.2 MANTEL-HAENSZEL METHOD 
 

When data are sparse, both in terms of event rates being low and trials being small, 

the estimates of the standard errors of the treatment effects that are used in the inverse 

variance methods may be poor (Egger et all., 2013). Mantel–Haenszel methods use an 

alternative weighting scheme, and have been shown to be more robust when data are 

sparse, and may therefore be preferable to the inverse variance method. In other 

situations they give similar estimates to the inverse variance method. They are 

available only for binary outcomes. For each study, the effect size from each trial i is 

given weight wi in the analysis. The overall estimate of the pooled effect, θMH is given 

by: 

 

Unlike with inverse variance methods, relative effect measures are combined in their 

natural scale, although their standard errors (and confidence intervals) are still 

computed on the log scale. For combining odds ratios, each study’s. OR is given 

weight 

 

and the logarithm of ORMH has standard error given by 

 

Where 
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 For combining risk ratios, each study’s RR is given weight 

 

 and the logarithm of RRMH has standard error given by  

 

Where 

 

 For risk differences, each study’s RD has the weight 

 

 and RDMH has standard error given by  

 

where  

 

However, the test of homogeneity is based upon the inverse variance weights and not 

the Mantel–Haenszel weights. The heterogeneity statistic is given by  
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where is the log odds ratio, log relative risk or risk difference. 

 

2.7.3 PETO METHOD 
 

An alternative to the Mantel–Haenszel method is a method due to Peto, (Egger et all., 

2013),(sometimes attributed to Yusuf, or to Yusuf and Peto). The overall odds ratio is 

given by 

 

 where the odds ratio ORi is calculated using the approximate Peto method described 

in the individual trial section, and the weight wi is equal to the hypergeometric 

variance of the event count in the intervention group, vi . The logarithm of the odds 

ratio has standard error 

 

 

 The heterogeneity statistic is given by  

 

 

The approximation upon which Peto’s method relies has shown to fail when treatment 

effects are very large, and when the sizes of the arms of the trials are seriously 

unbalanced. Severe imbalance, with, for example, four or more times as many 

participants in one group than the other, would rarely occur in randomised trials. In 

other circumstances, including when event rates are very low, the method performs 

well. Corrections for zero cell counts are not necessary for this method . 
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2.8  A GENERAL RANDOM  EFFECTS PARAMETRIC                                                                                                    

APPROACH 

 

2.8.1 A RANDOM EFFECT META-ANALYSIS MODEL 

In a random effects model it is assumed that the treatment difference parameters in the 

r studies (θ1, . . . , θr) are a sample of independent observations from N(θ, τ
2
). The 

general random effects model is given by 

 

for i = 1, . . . , r, where the νi are normally distributed random effects with mean 0 and 

variance τ
2
. The terms νi and εi are assumed to be independently distributed. It follows 

that 

 

2.8.2 ESTIMATION AND HYPOTHESIS TESTING OF THE   

TREATMENT DIFFERENCE 

 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. Usually τ
2
 is unknown and must be estimated from the 

data. Therefore, the distributional assumption that is made is that 

 

where   2 
is an estimate of τ

2
. By setting 

 

it follows that 

 

 

 

 

Treating the term (w
*
i )

−1
 as if it were the true variance of   i provides the test statistic 
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which follows a chi-squared distribution with one degree of freedom under the null 

hypothesis of no treatment difference (θ = 0). If (w
*

i )
−1

 is the true variance of   i, then 

the ML estimate of θ is given by   *
, where 

 

Now   *
 is asymptotically unbiased for θ, with variance approximately equal to 

1/  
   w

*
i . The standard error is given by 

 

and an approximate 95% CI for θ is given by 

                                            

If   2 
is small then the modified weights w

*
i will be close to the original weights wi. In 

this case the standard error and CI obtained from the random effects model will be 

similar to those from the fixed effects model. Also the overall estimate of treatment 

difference from both models will be similar. If   2 
is large then the standard error and 

CI will be much larger for the random effects model. The random effects estimate of 

treatment difference will move closer towards the arithmetic mean of the individual 

study estimates. How much this estimate differs from the fixed effects estimate will 

depend on the extent to which the studies with the largest original weights wi are 

associated with the extreme estimates of treatment difference. 
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2.8.3 ESTIMATION OF τ
2
 USING THE METHOD OF MOMENTS 

 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. The approach to the estimation of τ
2
 considered here is 

that based on the method of 

moments. This estimate can be readily calculated without the need for a statistical 

software package. The following considerations provide the method of moments 

estimate for τ
2
. Under the random effects model, the fixed effects estimate of θ, 

                                               

still has mean θ, but its variance is now given by 

                 

 

The statistic Q used for testing heterogeneity is 

 

so that the expected value of Q, E(Q), is given by 
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This motivates use of the method of moments estimate   2for τ
2
, where                                

 

as described by DerSimonian and Laird (1986). Because of the possibility of a 

negative method of moments estimate, in practice the estimate used is the maximum 

of the values 0 and   2. This means that when Q is smaller than its degrees of freedom 

the method of moments estimate will be set equal to 0. The test for heterogeneity, 

using Q, is a test of H0: τ
2
 = 0. Should   2 

≤ 0, a fixed effects analysis is more 

appropriate, because this happens when Q < E (Q; τ2 = 0) = r − 1. It can be seen that 

setting τ
2
=0 in the random effects model leads to the fixed effects model. If   2> 0 the 

following approximate result may be used 

 

In a similar way, the test statistic U∗ and the estimate  

  *
 and its standard error can be obtained by performing a weighted least-squares 

regression. The only difference is that for the random effects analysis the weights are 

the values w
*
i instead of wi. 

2.9 RANDOM EFFECTS MODELS FOR BINARY DATA 

 

Borenstein (2009) and references within made an extensive review of the subject and 

presented all necessary theory. The fixed-effect model, discussed above, starts with 

the assumption that the true effect size is the same in all studies. However, in many 

systematic reviews this assumption is implausible. When we decide to incorporate a 

group of studies in a meta-analysis, we assume that the studies have enough in 

common that it makes sense to synthesize the information, but there is generally no 

reason to assume that they are identical in the sense that the true effect size is exactly 

the same in all the studies. 

For example, suppose that we are working with studies that compare the proportion of 

patients developing a disease in two groups (vaccinated versus placebo). If the 

treatment works we would expect the effect size (say, the risk ratio) to be similar but 

not identical across studies. The effect size might be higher (or lower) when the 
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participants are older, or more educated, or healthier than others, or when a more 

intensive variant of an intervention is used, and so on. Because studies will differ in 

the mixes of participants and in the implementations of interventions, among other 

reasons, there may be different effect sizes underlying different studies.  

 

      Figure 2.1: Random effects model- distribution of true effects. 

 

Or, suppose that we are working with studies that assess the impact of an educational 

intervention. The magnitude of the impact might vary depending on the other 

resources available to the children, the class size, the age, and other factors, which are 

likely to vary from study to study. We might not have assessed these covariates in 

each study. Indeed, we might not even know what covariates actually are related to 

the size of the effect. Nevertheless, logic dictates that such factors do exist and will 

lead to variations in the magnitude of the effect. 

One way to address this variation across studies is to perform a random-effects meta-

analysis. In a random-effects meta-analysis we usually assume that the true effects are 

normally distributed. For example, in Figure 2.1 Borenstein (2009) , the mean of all 

true effect sizes is 0.60 but the individual effect sizes are distributed about this mean, 

as indicated by the normal curve. The width of the curve suggests that most of the true 

effects fall in the range of 0.50 to 0.70. 

Suppose that our meta-analysis includes three studies drawn from the distribution of 

studies depicted by the normal curve, and that the true effects (denoted θ1, θ2, and 

θ3) in these studies happen to be 0.50, 0.55 and 0.65 (see Figure 2.2 Borenstein 

(2009)). 

If each study had an infinite sample size the sampling error would be zero and the 

observed effect for each study would be the same as the true effect for that study. 
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           Figure 2.2: Random effects model- true effects. 

 

         Figure 2.3: Random effects model- true and observed effect in one study. 

 

If we were to plot the observed effects rather than the true effects, the observed effects 

would exactly coincide with the true effects. Of course, the sample size in any study is 

not infinite and therefore the sampling error is not zero. If the true effect size for a 

study is θi, then the observed effect for that study will be less than or greater than θi 

because of sampling error. For example, consider Study 3 in Figure 2.2. This study is 

the subject of Figure 2.3, where we consider the factors that control the observed 

effect. The true effect for Study 3 is 0.50 but the sampling error for this study is –

0.10, and the observed effect for this study is 0.40. 

This figure also highlights the fact that the distance between the overall mean and the 

observed effect in any given study consists of two distinct parts: true variation in 

effect sizes (ζi) and sampling error (ei). In Study 3 the total distance from μ to Y3 is 

-0.20. The distance from μ to θ3 (0.60 to 0.50) reflects the fact that the true effect size 

actually varies from one study to the next, while the distance from θ3 to Y3 (0.5 to 0.4) 

is sampling error. 
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More generally, the observed effect Yi for any study is given by the grand mean, the 

deviation of the study’s true effect from the grand mean, and the deviation of the 

study’s observed effect from the study’s true effect. That is, 

 

Therefore, to predict how far the observed effect Yi is likely to fall from μ in any 

given study we need to consider both the variance of ζi and the variance of εi. The 

distance from μ (the triangle) to each θi (the circles) depends on the standard deviation 

of the distribution of the true effects across studies, called τ (tau) (or τ
2
 for 

its variance). The same value of τ
2
applies to all studies in the meta-analysis, and in 

Figure 2.4 Borenstein (2009)  is represented by the normal curve at the bottom, which 

extends roughly 

from 0.50 to 0.70. 

The distance from θi to Yi depends on the sampling distribution of the sample effects 

about θi. This depends on the variance of the observed effect size from each study, 

VYi , and so will vary from one study to the next.  

In Figure 2.4 Borenstein (2009) the curve for Study 1 is relatively wide while the 

curve for Study 2 is relatively narrow. 

 

Figure 2.4: Random effects model- between study and within study variance. 

2.9.1 A RANDOM EFFECTS META-ANALYSIS MODEL 

 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. The random effects meta-analysis model for the binary 

response in which the logit 
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link function is to be used is given by 

 

and has been discussed by Turner et al. (2000). This model is an example of a 

generalized linear mixed model. 

2.9.2 ESTIMATION AND HYPOTHESIS TESTING 
 

Whitehead (2002) and references within made an extensive review of the subject and 

presented all necessary theory. The methodology and the software for fitting 

generalized linear mixed models has recently been and still is undergoing 

development. For a full maximum likelihood analysis based on the joint marginal 

distribution, numerical integration techniques are required for calculation of the log-

likelihood, score equations and Fisher’s information matrix. Approximate inference, 

which is available with the MLn program, involves the use of either marginal quasi-

likelihood (MQL) or penalized quasi-likelihood (PQL), and either first-order or 

second-order Taylor expansion approximations for the logit link function. 

Approximate ML and REML estimates are found via the IGLS and RIGLS 

procedures. PQL produces improved estimates of variance components in mixed 

models, in general, whilst model convergence is more easily achieved with MQL. The 

second-order Taylor expansion provides greater accuracy than the first-order 

expansion. For further details about generalized linear mixed models, the reader is 

referred to Brown and Prescott (1999). 

Wald tests can be used for inferences concerning the variance components. Wald tests 

can be used for inferences concerning the variance components. However, likelihood 

ratio tests based on the REML are preferable. Wald tests can be used for inferences 

concerning the fixed effect parameters. However, the calculated standard errors of the 

parameter estimates and the corresponding CIs are usually too narrow, because no 

allowance is made for the estimation of the variance components. Within MLn 

parametric bootstrapping may be used. 
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2.10 FIXED EFFECTS VS RANDOM EFFECTS 
 

2.10.1 ESTIMATING THE SUMMARY EFFECT 
 

Borenstein (2009) and references within made an extensive review of the subject and 

presented all necessary theory. Under the fixed-effect model we assume that the true 

effect size for all studies is identical, and the only reason the effect size varies 

between studies is sampling error (error in estimating the effect size). Therefore, when 

assigning weights to the different studies we can largely ignore the information in the 

smaller studies since we have better information about the same effect size in the 

larger studies. 

By contrast, under the random-effects model the goal is not to estimate one true 

effect, but to estimate the mean of a distribution of effects. Since each study provides 

information about a different effect size, we want to be sure that all these effect sizes 

are represented in the summary estimate. This means that we cannot discount a small 

study by giving it a very small weight (the way we would in a fixed-effect analysis). 

The estimate provided by that study may be imprecise, but it is information about an 

effect that no other study has estimated. By the same logic we cannot give too much 

weight to a very large study (the way we might in a fixed-effect analysis). Our goal is 

to estimate the mean effect in a range of studies, and we do not want that overall 

estimate to be overly influenced by any one of them.  

2.10.2 CONFIDENCE INTERVAL 
 

Borenstein (2009) and references within made an extensive review of the subject and 

presented all necessary theory. Under the fixed-effect model the only source of 

uncertainty is the within-study (sampling or estimation) error. Under the random-

effects model there is this same source of uncertainty plus an additional source 

(between-studies variance). It follows that the variance, standard error, and 

confidence interval for the summary effect will always be larger (or wider) under the 

random-effects model than under the fixed-effect model (unless τ
2
 is zero, in which 

case the two models are the same). 
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2.10.3 THE NULL HYPOTHESIS 
 

Borenstein (2009) and references within made an extensive review of the subject and 

presented all necessary theory. Often, after computing a summary effect, researchers 

perform a test of the null hypothesis. Under the fixed-effect model the null hypothesis 

being tested is that there is zero effect in every study. Under the random-effects model 

the null hypothesis being tested is that the mean effect is zero. Although some may 

treat these hypotheses as interchangeable, they are in fact different, and it is 

imperative to choose the test that is appropriate to the inference a researcher wishes to 

make. 

 

2.10.4 WHICH MODEL SHALL WE USE? 
 

Borenstein (2009) and references within made an extensive review of the subject and 

presented all necessary theory: 

Fixed effect 

It makes sense to use the fixed-effect model if two conditions are met. First, we 

believe that all the studies included in the analysis are functionally identical. Second, 

our goal is to compute the common effect size for the identified population, and not to 

generalize to other populations. For example, suppose that a pharmaceutical company 

will use a thousand patients to compare a drug versus placebo. Because the staff can 

work with only 100 patients at a time, the company will run a series of ten trials with 

100 patients in each. The studies are identical in the sense that any variables which 

can have an impact on the outcome are the same across the ten studies. Specifically, 

the studies draw patients from a common pool, using the same researchers, dose, 

measure, and so on (we assume that there is no concern about practice effects for the 

researchers, nor for the different starting times of the various cohorts). All the studies 

are expected to share a common effect and so the first condition is met. The goal of 

the analysis is to see if the drug works in the population from which the patients were 

drawn (and not to extrapolate to other populations), and so the second condition is 

met, as well. 

In this example the fixed-effect model is a plausible fit for the data and meets the 

goal of the researchers. It should be clear, however, that this situation is relatively 

rare. The vast majority of cases will more closely resemble those discussed 

immediately below. 
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Random effects 

By contrast, when the researcher is accumulating data from a series of studies that 

had been performed by researchers operating independently, it would be unlikely that 

all the studies were functionally equivalent. Typically, the subjects or interventions 

in these studies would have differed in ways that would have impacted on the results, 

and therefore we should not assume a common effect size. Therefore, in these cases 

the random-effects model is more easily justified than the fixed-effect model. 

Additionally, the goal of this analysis is usually to generalize to a range of scenarios. 

Therefore, if one did make the argument that all the studies used an identical, 

narrowly defined population, then it would not be possible to extrapolate from this 

population to others, and the utility of the analysis would be severely limited. 

 

A caveat 

There is one caveat to the above. If the number of studies is very small, then the 

estimate of the between-studies variance will have poor precision. While the random-

effects model is still the appropriate model, we lack the information needed to apply it 

correctly. In this case the reviewer may choose among several options, each of them 

problematic. 

One option is to report the separate effects and not report a summary effect. The hope 

is that the reader will understand that we cannot draw conclusions about the effect 

size and its confidence interval. The problem is that some readers will revert to vote 

counting and possibly reach an erroneous conclusion. Another option is to perform a 

fixed-effect analysis. This approach would yield a descriptive analysis of the included 

studies, but would not allow us to make inferences about a wider population. The 

problem with this approach is that (a) we do want to make inferences about a wider 

population and (b) readers will make these inferences even if they are not warranted. 

A third option is to take a Bayesian approach, where the estimate is based on data 

from outside of the current set of studies. This is probably the best option, but the 

problem is that relatively few researchers have expertise in Bayesian meta-analysis. 

The test of the null hypothesis between studies variance is zero, is based on 

the amount of between-studies variance observed, relative to the amount we would 

expect if the studies actually shared a common effect size. Some have adopted the 

practice of starting with a fixed-effect model and then switching to a random-effects 
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model if the test of homogeneity is statistically significant. This practice should be 

strongly discouraged because the decision to use the random-effects model should be 

based on our understanding of whether or not all studies share a common effect size, 

and not on the outcome of a statistical test (especially since the test for heterogeneity 

often suffers from low power). If the study effect sizes are seen as having been 

sampled from a distribution of effect sizes, then the random-effects model, which 

reflects this idea, is the logical one to use. If the between-studies variance is 

substantial (and statistically significant) then the fixed-effect model is inappropriate. 

However, even if the between-studies variance does not meet the criterion for 

statistical significance (which may be due simply to low power) we should still take 

account of this variance when assigning weights. If τ
 2

 turns out to be zero, then the 

random-effects analysis reduces to the fixed-effect analysis, and so there is no cost to 

using this model. On the other hand, if one has elected to use the fixed-effect model a 

priori but the test of homogeneity is statistically significant, then it would be 

important to revisit the assumptions that led to the selection of a fixed-effect model. 

The discussion of differences between the fixed-model and the random-effects 

model focused largely on the computation of a summary effect and the confidence 

intervals for the summary effect. We did not address the implications of the dispersion 

itself. Under the fixed-effect model we assume that all dispersion in observed effects 

is due to sampling error, but under the random-effects model we allow that some of 

that dispersion reflects real differences in effect size across studies. In the chapters 

that follow we discuss methods to quantify that dispersion and to consider its 

substantive implications. 

Although  a fixed-effect meta-analysis is defined as assuming that every study has a 

common true effect size, some have argued that the fixed effect method is valid 

without making this assumption. The point estimate of the effect in a fixed-effect 

meta-analysis is simply a weighted average and does not strictly require the 

assumption that all studies estimate the same thing. For simplicity and clarity we 

adopt a definition of a fixed-effect meta-analysis that does assume homogeneity of 

effect. 
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2.11 STUDY SELECTION 
 

For the study selection of studies Anne Whitehead in the book Meta-Analysis 

of controlled clinical trials, in an extended review of the subject presented all 

necessary theory. The selection criteria for studies in the meta-analysis should be 

specified. If there is more than one hypothesis to be tested it may be necessary to 

define separate selection criteria for each one. In addition, for each hypothesis of 

interest, it may be desirable to create two groups of studies. The first group would 

consist of the primary studies on which the formal meta-analysis would be 

undertaken. The second group would consist of additional studies whose results may 

be included in a sensitivity analysis, or in a graphical presentation of individual study 

results. 

Such studies may involve different patient populations or treatment comparisons from 

the primary studies, or may have less appropriate designs. However, their results may 

still be informative. Careful thought needs to be given to the selection criteria for the 

primary studies. 

If they are very strict, the results of the meta-analysis may only be applicable 

to a small subset of the patient population or to a very specific treatment regimen, 

whereas if they are too liberal, it may not be possible to combine the individual trial 

results in an informative way. Typically, the selection criteria will define the 

treatment of interest and the relevant subject population. This should follow logically 

from the statement of the objectives of the meta-analysis. In addition, they may relate 

to the type of study design used. The assessment of the methodological quality of a 

trial may also be used to determine its eligibility for inclusion in the group of primary 

studies. The most important aspect of this assessment concerns the avoidance of bias 

in the estimation of the treatment difference of interest. Therefore, design issues, such 

as the method of randomizing subjects to treatment group, blinding, method of 

assessing patient outcome, follow-up of patients, and handling of protocol deviations 

and patient withdrawals from the trial, are likely to feature prominently. It may be 

appropriate to categorize studies according to how well they adhere to important 

methodological standards. In the report of a meta-analysis it will be necessary to 

include a list of studies which were excluded as well as a list of studies which were 

included. The reason for exclusion should be provided for each excluded study. It 

may be advantageous to have more than one assessor decide independently which 
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studies to include or exclude, together with a well-defined checklist and a procedure 

which will be followed when they disagree. In some cases, new information may 

surface during the reading of the study reports which indicate a need to modify the 

study selection criteria.  

2.12 THE PACKAGE “meta” and “metafor” IN R. 
 

The meta package provides functions for conducting meta-analyses in R. In the r 

project site where all functions of every package in r software are described we found 

that the package includes functions for fitting the meta-analytic fixed- and random-

effects models and allows for the inclusion of moderators variables (study-level 

covariates) in these models. Meta-regression analyses with continuous and categorical 

moderators can be conducted in this way. Functions for the Mantel-Haenszel and 

Peto’s one-step method for meta-analyses of 2 × 2 table data are also available. 

Finally, the package provides various plot functions (for example, for forest, funnel, 

and radial plots) and functions for assessing the model fit, for obtaining case 

diagnostics, and for tests of publication bias.  

Details R package meta (Schwarzer, 2007) provides the following meta-analysis 

methods: 

 • Fixed effect and random effects meta-analysis (functions metabin, metacont, 

metacor, metagen, metainc, metaprop, and metarate)  

• Several plots (forest, funnel, Galbraith / radial, labbe, baujat, bubble)  

• Statistical tests (metabias) and trim-and-fill method (trimfill) to evaluate bias in 

metaanalysis  

• Import data from ’RevMan 5’ (read.rm5; see also metacr) 

 • Prediction interval, Hartung-Knapp and Paule-Mandel method for random effects 

model (arguments in meta-analysis functions) 

 • Cumulative meta-analysis (metacum) and leave-one-out meta-analysis (metainf) 

 • Meta-regression (metareg; if R package metafor is installed) 

 • Generalised linear mixed models (metabin, metainc, metaprop, and metarate; if R 

packages metafor, lme4, numDeriv, and BiasedUrn are installed) 

A comprehensive collection of functions for conducting meta-analyses in R. The 

package includes functions to calculate various effect sizes or outcome measures, fit 

fixed-, random- , and mixed-effects models to such data, carry out moderator and 

meta-regression analyses, and create various types of meta-analytical plots (e.g., 
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forest, funnel, radial, L'Abbe, Baujat, GOSH plots). For meta-analyses of binomial 

and person-time data, the package also provides functions that implement specialized 

methods, including the MantelHaenszel method, Peto's method, and a variety of 

suitable generalized linear (mixedeffects) models (i.e., mixed-effects logistic and 

Poisson regression models). Finally, the package provides functionality for fitting 

meta-analytic multivariate/multilevel models that account for non-independent 

sampling errors and/or true effects (e.g., due to the inclusion of multiple treatment 

studies, multiple endpoints, or other forms of clustering). Network metaanalyses and 

meta-analyses accounting for known correlation structures (e.g., due to phylogenetic 

relatedness) can also be conducted. 

 

2.13 FOREST PLOT 

 

A forest plot, also known as a blobbogram, is a graphical display of estimated results 

from a number of scientific studies addressing the same question, along with the 

overall results. It was developed for use in medical research as a means of graphically 

representing a meta-analysis of the results of randomized controlled trials. In the last 

twenty years, similar meta-analytical techniques have been applied in observational 

studies (e.g. environmental epidemiology) and forest plots are often used in 

presenting the results of such studies also. 

Although forest plots can take several forms, they are commonly presented with two 

columns. The left-hand column lists the names of the studies (frequently randomized 

controlled trials or epidemiological studies), commonly in chronological order from 

the top downwards. The right-hand column is a plot of the measure of effect 

(e.g. an odds ratio) for each of these studies (often represented by a square) 

incorporating confidence intervals represented by horizontal lines. The graph may be 

plotted on a natural logarithmic scale when using odds ratios or other ratio-based 

effect measures, so that the confidence intervals are symmetrical about the means 

from each study and to ensure undue emphasis is not given to odds ratios greater than 

1 when compared to those less than 1. The area of each square is proportional to the 

study's weight in the meta-analysis. The overall meta-analysed measure of effect is 

often represented on the plot as a dashed vertical line. This meta-analysed measure of 

https://en.wikipedia.org/wiki/Meta-analysis
https://en.wikipedia.org/wiki/Randomized_controlled_trials
https://en.wikipedia.org/wiki/Environmental_epidemiology
https://en.wikipedia.org/wiki/Randomized_controlled_trial
https://en.wikipedia.org/wiki/Randomized_controlled_trial
https://en.wikipedia.org/wiki/Epidemiology
https://en.wikipedia.org/wiki/Odds_ratio
https://en.wikipedia.org/wiki/Natural_logarithm
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effect is commonly plotted as a diamond, the lateral points of which indicate 

confidence intervals for this estimate.  

S Lewis (2001) in an extended review of the subject presented all necessary theory 

based on the following ideas. In a typical forest plot, the results of component studies 

are shown as squares centred on the point estimate of the result of each study. A 

horizontal line runs through the square to show its confidence interval—usually, but 

not always, a 95% confidence interval. The overall estimate from the meta-analysis 

and its confidence interval are put at the bottom, represented as a diamond. The centre 

of the diamond represents the pooled point estimate, and its horizontal tips represent 

the confidence interval. Significance is achieved at the set level if the diamond is clear 

of the line of no effect. 

The plot allows readers to see the information from the individual studies that went 

into the meta-analysis at a glance. It provides a simple visual representation of the 

amount of variation between the results of the studies, as well as an estimate of the 

overall result of all the studies together. Forest plots increasingly feature in medical 

journals, and the growth of the Cochrane Collaboration has seen the publication of 

thousands in recent years. 

The origin of forest plots goes back at least to the 1970s. Freiman et al displayed the 

results of several studies with horizontal lines showing the confidence interval for 

each study and a mark to show the point estimate. This study was not a meta-analysis, 

and the results of the individual studies were therefore not combined into an overall 

result.
2
 In 1982, Lewis and Ellis produced a similar plot but this time for a meta-

analysis, and they put the overall effect on the bottom of the plot. However, smaller 

studies, with less precise estimates of effect, had larger confidence intervals and, 

perversely, were the most noticeable on the plots 

In S. Gopalakrishnan and P. Ganeshkumar (2013) a forest plot is described at the 

following structure: meta-analysis graphs can principally be divided into six columns 

[Figure 2.5]. Individual study results are displayed in rows. The first column (“study”) 

lists the individual study IDs included in the meta-analysis; usually the first author 

and year are displayed. The second column relates to the intervention groups and the 

third column to the control groups. The fourth column visually displays the study 

results. The line in the middle is called “the line of no effect.” The weight (in %) in 

https://scholar.google.gr/citations?user=W0xyVdkAAAAJ&hl=el&oi=sra
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1120528/#B2
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gopalakrishnan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24479036
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ganeshkumar%20P%5BAuthor%5D&cauthor=true&cauthor_uid=24479036
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894019/figure/F1/
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the fifth column indicates the weighting or influence of the study on the overall results 

of the meta-analysis of all included studies. The higher the percentage weight, the 

bigger the box, the more influence the study has on the overall results. The sixth 

column gives the numerical results for each study (e.g., odds ratio or relative risk and 

95% confidence interval), which are identical to the graphical display in the fourth 

column. The diamond in the last row of the graph illustrates the overall result of the 

meta-analysis. 

Thus, the horizontal lines represent individual studies. Length of line is the confidence 

interval (usually 95%), squares on the line represent effect size (risk ratio) for the 

study, with area of the square being the study size (proportional to weight given) and 

position as point estimate (relative risk) of the study 

 

Figure 2.5: Interpretation of meta-analysis 

 

An example is presented of how to read a forest plot that can be found at the 

centre for evidence-based intervention of the University of Oxford:  
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Figure 2.6: Forest plot of the example. 

Interpreting the forest plot involves two steps: 

Determine the effect size and 

Assess the level of difference (or heterogeneity) among the different trials that are 

included in the meta-analysis 

In the example, all of the lines fall on the left-hand side of the graph (Figure 2.6), 

which tells us that, in each of the trials, the participants who received the intervention 

showed or reported bigger changes than the participants who received the control 

condition (the control condition may have been another intervention or no 

intervention at all). The black diamond sits about half way between 0 and -1, which 

means that the average effect size of the three trials is about -0.5. For a more precise 

idea of the average effect size of the three trials, the actual number is reported in the 

table in boldface type, under the ‘Std. Mean Difference’ column. In this case, the 

actual average effect size is -0.42. According to a common interpretation of effect 

sizes, this would suggest that the intervention being tested in these three studies had a 

small to medium effect size – in other words, ‘it worked’ and had a moderate effect. 

In addition to the effect size, it is also important to consider the level of heterogeneity 

in a meta-analysis, which is captured in the I
2
 statistic (which can be found at the 

bottom of the table in the example forest plot).    

 Systematic reviews and meta-analyses aim to capture the overall effects of an 

intervention or treatment when it has been tested in multiple trials. Ideally, if multiple 

trials are testing the same intervention, the effects of the intervention should be 

consistent across all of the studies. Unfortunately, this is rarely the case, because 

many things can affect the results of a trial, such as researcher bias, problems with 

data collection, or any number of other things.     

 So a systematic review and meta-analysis are designed to ask the question: If 

https://www.cebi.ox.ac.uk/for-practitioners/what-is-good-evidence/how-to-interpret-the-sample-forest-plot.html#c55
https://www.cebi.ox.ac.uk/for-practitioners/what-is-good-evidence/how-to-interpret-the-sample-forest-plot.html#c56
https://www.cebi.ox.ac.uk/for-practitioners/what-is-good-evidence/how-to-interpret-the-sample-forest-plot.html#c56
https://www.cebi.ox.ac.uk/for-practitioners/what-is-good-evidence/what-is-an-effect-size.html
https://www.cebi.ox.ac.uk/for-practitioners/what-is-good-evidence/what-is-an-effect-size.html
https://www.cebi.ox.ac.uk/for-practitioners/what-is-good-evidence/what-is-an-effect-size.html
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these studies are all testing the same intervention, why don’t they get the same 

results? Are the differences caused by chance, or is there something else involved? If 

it is the former, then we can have confidence in the results of the meta-analysis. If the 

differences are not the result of chance, then we need to be cautious in interpreting the 

results of the meta-analysis. Fortunately, it is easy to tell if heterogeneity is due to 

chance (or not) by interpreting the I
2
 statistic. The I

2
 statistic can be found at the 

bottom of the table in a forest plot. An I
2
 statistic of more than 50% is considered 

high. In our example forest plot, I
2 

= 0%, so we can have confidence that the effects of 

the intervention being tested – which have a moderate effect size (-0.42) – are 

accurate and can be trusted. If the I
2 

statistic were more than 50%, we would be less 

sure that the intervention can consistently have a moderate effect, and we might want 

to read the rest of the study to see if the authors report on why the effects are so 

different across studies. This can help you to determine, for example, with whom the 

intervention worked (e.g. who were the participants?) and to find out other details that 

might help you make a decision about whether the intervention has been tested with 

people or in places that are similar to your own population, clients or context. 

2.14 FUNNEL PLOT 
 

A funnel plot is a graph designed to check for the existence of publication bias; funnel 

plots are commonly used in systematic reviews and meta-analyses. In the absence of 

publication bias, it assumes that studies with high precision will be plotted near the 

average, and studies with low precision will be spread evenly on both sides of the 

average, creating a roughly funnel-shaped distribution.  

Matthias Egger (1997) and references within made an extensive review of the subject 

and presented all necessary theory at the paper "Bias in meta-analysis detected by a 

simple, graphical test". The authors mention that systematic reviews of the best 

available evidence regarding the benefits and risks of medical interventions can 

inform decision making in clinical practice and public health. Such reviews are, 

whenever possible, based on meta-analysis: “a statistical analysis which combines or 

integrates the results of several independent clinical trials considered by the analyst  

to be ‘combinable’. However, the findings of some meta-analyses have later been 

contradicted by large randomized controlled trials. Such discrepancies have brought 

discredit on a technique that has been controversial since the outset. The appearance 

https://en.wikipedia.org/wiki/Publication_bias
https://en.wikipedia.org/wiki/Systematic_review
https://en.wikipedia.org/wiki/Meta-analysis
https://en.wikipedia.org/wiki/Funnel
https://en.wikipedia.org/wiki/Matthias_Egger
http://www.bmj.com/cgi/content/full/315/7109/629
http://www.bmj.com/cgi/content/full/315/7109/629
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of misleading meta-analysis is not surprising considering the existence of publication 

bias and the many other biases that may be introduced in the process of locating, 

selecting, and combining studies. 

Funnel plots, plots of the trials' effect estimates against sample size, may be 

useful to assess the validity of meta-analyses. The funnel plot is based on the fact that 

precision in estimating the underlying treatment effect will increase as the sample size 

of component studies increases. Results from small studies will scatter widely at the 

bottom of the graph, with the spread narrowing among larger studies. In the absence 

of bias the plot will resemble a symmetrical inverted funnel. Conversely, if there is 

bias, funnel plots will often be skewed and asymmetrical. 

The value of the funnel plot has not been systematically examined, and symmetry (or 

asymmetry) has generally been defined informally, through visual examination. 

Unsurprisingly, funnel plots have been interpreted differently by different observers. 

We measured funnel plot asymmetry numerically and examined the extent to which 

such asymmetry predicts discordance of results when meta-analyses are compared to 

single large trials of the same issue. We used the same method to assess the 

prevalence of funnel plot asymmetry, and thus of possible bias, among meta-analyses 

published in leading general medicine journals and meta-analyses disseminated 

electronically by the Cochrane Collaboration. 

 

We present an example of how to read a funnel plot:  

 

 

Figure 2.7: Structure of a funnel plot. 
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A funnel plot is a scatter plot of individual studies, their precision and results. 

Funnel plots have the following characteristics: 

Each dot represents a single study. 

The y-axis is usually the standard error of the effect estimate. Larger studies with 

higher power are placed towards the top. Lower powered studies are placed towards 

the bottom. However, other measures could also be plotted (e.g. the reciprocal of the 

standard error, the reciprocal of the sample size, or variance of the estimated effect). 

The x-axis shows the result for the study, sometimes expressed as an odds ratio. 

The plot should ideally resemble a pyramid or inverted funnel, with scatter due to 

sampling variation. The shape is expected because the studies have a wide range of 

standard errors. If the standard errors were the same size, the studies would all fall on 

a horizontal line. 

Funnel plots can be used as a check for bias in meta-analysis results. Asymmetry is 

commonly equated with publication bias and other kinds of reporting bias. However, 

funnel plots are not a good way to investigate publication bias (Sedgwick). There can 

be a number of reasons for asymmetrical funnel plots (also called small study effects). 

Sterne et. al (2011) list a slew of reasons, which include, but aren’t limited to: 

Poor methodological design, including fraud or inadequate analysis. 

Reporting bias, including delayed publication and location bias, selective outcome 

reporting and selective analysis reporting. Can also include language bias (i.e. only 

including those studies written in your native language). 

Chance: 95% of studies will usually fall within the triangular region if there are no 

biases or heterogeneity present in the studies. One possibility to skew the shape is that 

the errant 5% might all fall in one particular area by chance alone. The “95%” rule is 

actually a probability, meaning that chance alone could cause a higher or lower 

percentage than 95%, causing an asymmetrical shape that’s actually not an indication 

of any bias at all. This is especially true if only a small number of studies are included 

in the meta analysis. 

Study Heterogeneity. If heterogeneity results in a correlation between study size and 

intervention effects, this will result in an asymmetrical funnel (Terrin et. al) 

The decision about whether a funnel plot is symmetric or not shouldn’t be based only 

on visual cues. Tests for asymmetry are available (one such test is Egger’s test), but 

http://www.statisticshowto.com/what-is-a-scatter-plot/
http://www.statisticshowto.com/what-is-the-standard-error-of-a-sample/
http://www.statisticshowto.com/statistical-power/
http://www.statisticshowto.com/probability-and-statistics/variance/
http://www.statisticshowto.com/odds-ratio/
http://www.statisticshowto.com/what-is-bias/
http://www.statisticshowto.com/reporting-bias/
http://www.statisticshowto.com/heterogeneity/
http://www.statisticshowto.com/heterogeneity/
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they should be interpreted with caution. They may not have statistical validity, 

typically have low power, and they may be challenging to interpret. 

For the data analysis and the graphs R statistical software was used and the packages 

meta and metaphor as described in Chapter 2. In the introduction the problem was 

described as a problem of meta-analysis in studies where oral health problems are 

compared between people with severe mental illness and a control group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.statisticshowto.com/reliability-validity-definitions-examples/
http://www.statisticshowto.com/statistical-power/
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CHAPTER 3:  
STATISTICAL METHODS AND  
ANALYSIS 

In this chapter the search strategy for the paper’s collection, the statistical techniques 

used and the analysis of the data are presented. As one of the aims of this thesis is to 

provide a comparison between three fixed effects methods (Mantel-Haenszel, Peto 

and Inverse variance), the results will be calculated using all these methods and a 

comparison between them will be provided. 

 

3.1 SEARCH STRATEGY 

The authors searched Medline, PsycINFO and Embase for the period January 1988 

until March 2010 using the following text, MeSH or Emtree terms as appropriate: 

mental illness, mental disorders, dementia, psychosis, psychotic disorders, depression, 

depressive disorders, bipolar disorder, mood disorder, schizophrenia, oral health, 

dentistry and dental care. They searched for further publications by scrutinizing the 

reference lists of initial studies identified and other relevant review papers. For 

inclusion in the meta-analysis, studies had to have suitable controls. Where these were 

not included the authors looked for controls from a survey of a similar community and 

age group, conducted within 10 years of the index study. This is because oral health 

varies between populations, by both age and over time: for example, oral health has 

improved considerably over the past 20 years in most high-income countries. It was 

also ensured that the comparison data came from areas with similar levels of fluoride 

in the water supply.  

 

3.2 STATISTICAL ANALYSIS 

Package R software and libraries “meta” and “metafor”  were used for the 

analysis. We calculated odds ratios, risk ratios and mean differences  for 

edentulousness, given that the studies  included had a crosssectional design. The 

authors (Kisely et all., 2011)  calculated the mean differences for continuous data as 

studies used the same scale for each outcome (DMFT, DMFS). We assessed 

heterogeneity using the I
2
 statistic. This provides an estimate of the percentage of 
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variability due to heterogeneity rather than chance alone. An I
2
 estimate of 50% or 

greater indicates possible heterogeneity, and scores of 75–100% indicate considerable 

heterogeneity. The I
2
 statistic is calculated using the chi-squared statistic (Q) and its 

degrees of freedom.  

We used a fixed effects model with the Mandel Haenzel, Inverse Variance and 

Peto method for the calculation of and a  random effects model for the calculation of 

odds ratios, risk ratios and mean differences  for edentulousness, since we found 

significant heterogeneity in the majority of our analyses. In the other 

measurement(DMFS, Decayed teeth, missing teeth, Decayed Surfaces, DMFT) we 

used random effects models. For all measurements we performed a forest plot 

analysis for visual inspection of heterogeneity and a funnel plot analysis for graphical 

presentation of publication bias. 

 

The authors found over 550 citations of interest in the initial electronic searches, and 

the final number of papers used is depicted into Figure2.1. Ten studies were from 

Europe; four were from India, three from Israel, two from Australia and one each 

from South Africa, Hong Kong and the USA. The most common diagnosis was 

psychosis, usually schizophrenia. Other diagnose (in descending order of frequency) 

included dementia, bipolar affective disorder, mood disorder, anxiety and personality 

disorder. Only seven studies used ICD or DSM diagnostic criteria. Ages ranged from 

15 to 96 years, (Kisely et all., 2011).   

 

3.3 INCLUSION AND EXCLUSION CRITERIA OF STUDIES 
 

Studies were included with a focus on severe mental illness, defined as a primary 

diagnosis of dementia, schizophrenia, bipolar affective disorder or other affective 

disorder. Studies were included using clinical diagnoses or diagnostic criteria. Studies 

were excluded of eating disorder and of post-traumatic stress disorder in veterans, as 

these are very different patient groups. Studies were also excluded of people with 

primary alcohol or substance use disorders and people with intellectual disability for 

the same reason. Finally, the focus was on edentulousness as the end-stage of the two 

main dental diseases. Therefore there were also excluded studies of less severe dental 

outcomes such as poor oral hygiene. As a result, the finaly list of included studies was 

the following: 
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For the subgroup of edentulousness: 

Adam,2006 

Burchell,2006 

Chalmers, 1998 

Hede,1992 

Hede,1995(35-49 years) 

Hede,1995(65-78 years) 

Lewis,2001 

Mirza,2001 

Tang,2004 

Viglid,1993 

For the measurement of decayed surfaces: 

Hede, 1995 (35–49 years) 

Hede, 1995 (65–78 years) 

Stoefe; 1990 

For measurement of DMFS: 

Hede, 1995 (35–49 years) 

Hede, 1995 (65–78 years) 

Stiefel, 1990 

For the measurement of decayed teeth: 

Ramon, 2003 (18–34 years) 

Velasco, 1997 

For the measurement of Missing teeth: 

Ramon, 2003 (18–34 years) 

Stiefel, 1990 

Velesco, 1997 

For the measurement of DMFT: 

Kumar, 2006 

Ramon, 2003 (18–34 years) 

Rekha, 2002 

Velasco, 1997 
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Figure 3.1: Papers yielded by search strategy in systematic review. 
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3.4 META-ANALYSIS RESULTS 

 

To import the data in the R software we used the following commands: 

data_psych <- data.frame(total=c(135,220,138,84,109,83,326,29,91,407), 

                     events=c(89,16,14,23,2,18,205,2,6,256)) 

data_control<- data.frame(total=c(219,2667,3630,261,5759,8592,188,302,375,455), 

                     events=c(109,213,200,8,58,1352,94,3,0,43)) 

study <- c('Adam,2006','Burchell,2006','Chalmers,1998','Hede,1992','Hede,1995(35-

49years)','Hede,1995(65-78 

years)','Lewis,2001','Mirza,2001','Tang,2004','Viglid,1993') 

data_sbg1<-

data.frame(row.names=study,Psychiatric=data_psych,Control=data_control) 

data_sbg1 

 

Table 3.1: Data frame containing the data. 

 

In order to do the meta-analysis in Odds Ratio we use the following command: 

 

library(meta) 

mOR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_sbg1$Contr

ol.events,data_sbg1$Control.total,sm="OR" , method ="MH" , MH.exact = TRUE) 

library(metafor) 

forest(mOR,studlab=study) 
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Table 3.2: Output presenting fixed and random effects analysis for Odds ratio using        

Mantel-Haenszel method. 

 

As one can see from the results of Table 3.2, the value of Odds Ratio is large (3.25 

and 3.35 for the fixed and random effects estimate respectively). The difference 

between fixed and random effects models is not that large. However, the random 

effects estimate has a lot larger variability depicted in to much larger CIs (1.57, 7.15), 

still however statistically different than 1.  All heterogeneity indeces indicate a 

problem of heterogeneity between trials (H=3.91, I
2
=93.4%, Q=137.34, p<0.001). 

The forest plot (Table 3.3) indicates that the majority of Odds ratio values are greater 

than 1 and that trials 5,8,9 have greater variability than other trials. Heterogeneity 

index I
2
=93% , p<0.01 shows a problem of heterogeneity between trials. The funnel 

plot (Figure 3.1) indicates some publication bias for six studies (1,2,4,6,7,10). These 

studies present unusually low variability according to the distance from the common 

value of Odds ratio. 
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Table 3.3: Forest plot of fixed and random effects analysis for Odds ratio using 

Mantel-Haenszel method.   

 

 

Figure 3.2: Funnel plot of Odds ratio using Mantel-Haenszel method.   
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Next, results of Risk ratio using Mantel-Haenszel method are presented:  

mRR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_sbg1$Contr

ol.events,data_sbg1$Control.total,sm="RR" , method ="MH" , MH.exact = TRUE) 

mRR 

forest(mRR,studlab=study) 

 

 

Table 3.4: Output presenting fixed and random effects analysis for Risk ratio 

using Mantel-Haenszel method. 

 

As one can see from the results of Table 3.3, the value of Risk Ratio is 2.09 and 2.43 

for the fixed and random effects estimate respectively. The difference between fixed 

and random effects models is not that large. However, the random effects estimate has 

a lot larger variability depicted in to much larger CIs (1.43, 4.13), still however 

statistically different than 1. All heterogeneity indeces indicate a problem of 

heterogeneity between trials (H=4.17, I
2
=94.2%, Q=156.38, p<0.001). The forest plot 

indicates that the majority of Risk ratio values are greater than 1 and that trials 5,8,9 

have greater variability than other trials. Heterogeneity index I
2
=94% , p<0.01 shows 

a problem of heterogeneity between trials. The funnel plot (Figure 3.2) indicates some 
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publication bias for seven studies (1,2,4,6,7,9,10). These studies present unusually 

low variability according to the distance from the common value of Risk ratio. 

 

 

 

Table 3.5: Forest plot presenting random effects analysis for Risk ratio using 

Mantel-Haenszel method.   

 

 

Figure 3.3: Funnel plot of Risk ratio using Mantel-Haenszel method.   
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Next, results of Risk difference using Mantel-Haenszel method are presented:  

mRD<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_sbg1$Contr

ol.events,data_sbg1$Control.total,sm="RD" , method ="MH" , MH.exact = TRUE) 

mRD 

forest(mRD,studlab=study) 

 

 

Table 3.6: Output presenting fixed and random effects analysis for Risk 

difference using Mantel-Haenszel method. 

 

As one can see from the results of Table 3.6, the value of Risk Difference is 0.16 and 

0.13 for the fixed and random effects estimate respectively. The difference between 

fixed and random effects models is not that large. However, the random effects 

estimate has a lot larger variability depicted in to much larger CIs (0.01, 0.25), still 

however statistically different than 0. All heterogeneity indeces indicate a problem of 

heterogeneity between trials (H=7.05, I
2
=98%, Q=447.55, p<0.001). The forest plot 

indicates that the majority of Risk differnces values are greater than 0 and that all 

trials contribute practically the same information for the calculation of the common 

risk difference. Heterogeneity index I
2
=98% , p<0.01 shows a problem of 
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heterogeneity between trials. The funnel plot (Figure 3.3) indicates some publication 

bias for seven studies (2,3,5,6,8,9,10). These studies present unusually low variability 

according to the distance from the common value of Risk difference. 

 

 

Table 3.7: Forest plot presenting random effects analysis for Risk difference using 

Mantel-Haenszel method.   

 

 

Figure 3.4: Funnel plot of Risk ratio using Mantel-Haenszel method 
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Next, results of Odds ratio using Peto method are presented:  

 

pOR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_sbg1$Contr

ol.events,data_sbg1$Control.total,sm="OR" , method ="Peto" , MH.exact = TRUE) 

pOR 

forest(pOR,studlab=study) 

 

 

Table 3.8: Output presenting fixed and random effects analysis for Odds ratio 

using Peto method. 

 

As one can see from the results of Table 3.8, the value of Odds Ratio is 3.54 and 4.32 

for the fixed and random effects estimate respectively. The difference between fixed 

and random effects models is large. However, the random effects estimate has a lot 

larger variability depicted into much larger CIs (1.98, 9.47), still however statistically 

different than 1. All heterogeneity indeces indicate a problem of heterogeneity 

between trials (H=4.08, I
2
=94%, Q=149.96, p<0.001). 
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Table 3.9: Forest plot presenting random effects analysis for Odds ratio using Peto 

method.   

 

The forest plot indicates that the majority of Odds ratio values are greater than 1 and 

that trials 5,8,9 have greater variability than other trials. Heterogeneity index I
2
=94% , 

p<0.01 shows a problem of heterogeneity between trials. The funnel plot (Figure 3.4) 

indicates some publication bias for studies 1,2,4,6,7,9,10. These studies present 

unusually low variability according to the distance from the common value of Odds 

ratio. 

 

Figure 3.5: Funnel plot of Odds ratio using Peto method. 
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Next, results of Odds ratio using Inverse varianse method are presented:  

 

ivOR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_sbg1$Contr

ol.events,data_sbg1$Control.total,sm="OR" , method ="Inverse" , MH.exact = 

TRUE) 

ivOR 

forest(ivOR,studlab=study) 

 

 

Table 3.10: Output presenting fixed and random effects analysis for Odds ratio 

using Inverse variance method. 

 

As one can see from the results of Table 3.10, the value of Odds ratio is 2.97 and 3.34 

for the fixed and random effects estimate respectively. The difference between fixed 

and random effects models is large. However, the random effects estimate has a lot 

larger variability depicted into much larger CIs (1.57, 7.13), still however statistically 

different than 1. All heterogeneity indeces indicate a problem of heterogeneity 

between trials (H=3.89, I
2
=93.4%, Q=136.37, p<0.001). 
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Table 3.11: Forest plot presenting random effects analysis for Odds ratio using 

Inverse variance method.   

The forest plot indicates that the majority of Odds ratio values are greater than 1 and 

that and that trials 5,8,9 have greater variability than other trials. Heterogeneity index 

I
2
=93% , p<0.01 shows a problem of heterogeneity between trials. The funnel plot 

(Figure 3.5) indicates some publication bias for studies 2,4,6,7,9,10. These studies 

present unusually low variability according to the distance from the common value of 

Odds Ratio. 

Figure 3.6: Funnel plot of Odds ratio using Inverse variance method. 



- 64 - 

 

Next, results of Risk ratio using Inverse variance method are presented:  

ivRR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_sbg1$Contr

ol.events,data_sbg1$Control.total,sm="RR" , method ="Inverse" , MH.exact = 

TRUE) 

ivRR 

forest(ivRR,studlab=study) 

 

 

Table 3.12: Output presenting fixed and random effects analysis for Risk ratio 

using Inverse variance method. 

 

As one can see from the results of Table 3.12, the value of Risk ratio is 1.65 and 2.4 

for the fixed and random effects estimate respectively. The difference between fixed 

and random effects models is large. However, the random effects estimate has a lot 

larger variability depicted into much larger CIs (1.45, 3.94), still however statistically 

different than 1. All heterogeneity indeces indicate a problem of heterogeneity 

between trials (H=3.89, I
2
=93.4%, Q=136, p<0.001). 
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Table 3.13: Forest plot of random effects analysis for Risk ratio using Inverse variance 

method.   

The forest plot indicates that the majority of Risk ratio values are greater than 1 and 

that trials 5,8,9 have greater variability than other trials. Heterogeneity index I
2
=93% , 

p<0.01 shows a problem of heterogeneity between trials. The funnel plot (Figure 3.6) 

indicates some publication bias for studies . These studies present unusually low 

variability according to the distance from the common value of Risk ratio. 

 

 

Figure 3.7: Funnel plot of Risk ratio using Inverse variance method. 
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Next, result of Risk difference using Inverse variance method are presented:  

 

ivRD<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_sbg1$Contr

ol.events,data_sbg1$Control.total,sm="RD" , method ="Inverse" , MH.exact = 

TRUE) 

ivRD 

forest(ivRD,studlab=study) 

 

 

Table 3.14: Output presenting fixed and random effects analysis for Risk 

differenceusing Inverse variance method. 

 

As one can see from the results of Table 3.14, the value of Risk ratio is 0.08 and 0.13 

for the fixed and random effects estimate respectively. The difference between fixed 

and random effects models is large. However, the random effects estimate has a lot 

larger variability depicted into much larger CIs (0.02, 0.24), still however statistically 

different than 0. All heterogeneity indeces indicate a problem of heterogeneity 

between trials (H=6.19, I
2
=97.4%, Q=341.16, p<0.001). 
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Table 3.15: Forest plot of random effects analysis for Odds ratio using Inverse 

variance method.   

The forest plot indicates that the majority of Risk differences values are greater than 0 

and that all trials contribute practically the same information for the calculation of the 

common risk difference. Heterogeneity index I
2
=97% , p<0.01 shows a problem of 

heterogeneity between trials. The funnel plot (Figure 3.7) indicates some publication 

bias for studies 2,4,5,10. These studies present unusually low variability according to 

the distance from the common value of Risk difference. 

 

 

Figure 3.8: Funnel plot of Risk difference using Inverse variance method. 
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We had also five other measurements for which we investigated results. We assessed 

the number of decayed, missing and filled dental surfaces or teeth; both these indices 

are expressed as a continuous variable. The number of decayed, missing and filled 

teeth reflects a person’s lifetime experience of dental caries. This is because both 

dental decay and its treatment leave permanent marks, either through the presence of 

fillings or the loss of affected teeth by extraction. The total number of teeth (T) and 

surfaces (S) that are decayed (D), missing because of pathology (M) or filled (F) are 

measures referred to as DMFT and DMFS respectively (Kisely, et. al.,2011). In both, 

an increase in score means greater dental decay. Decayed surfaces, DMFS, decayed 

teeth, missing teeth, DMFT. For all these measurements we had all the information 

needed from each study so we can do the meta-analysis. We had the mean, the 

standard deviation and the total number for the control and the psychiatric group as 

well. 

Kisely et. al., (2011) defined the following clarifications on the outcome measures: 

The primary outcome of this study was edentulousness, usually expressed as a 

dichotomous variable. 

 We also  assessed the number of decayed, missing and filled dental surfaces or teeth; 

both these indices are expressed as a continuous variable. The number of decayed, 

missing and filled teeth reflects a person’s lifetime experience of dental caries. This is 

because both dental decay and its treatment leave permanent marks, either through the 

presence of fillings or the loss of affected teeth by extraction. The total number of 

teeth (T) and surfaces (S) that are decayed, missing because of pathology (M) or filled 

(F) are measures referred to as DMFT and DMFS respectively. In both, an increase in 

score means greater dental decay.  

Scores for DMFT and DMFS vary widely by country, from mean DMFT scores of 

under 5 in India to 12.8 in the most recent community survey in a high income 

country (Australia).16–18 Scores for DMFS are higher than for DMFT as the former 

counts damage to each surface of each tooth rather than counting the tooth as a single 

unit; anterior teeth have four surfaces and posterior teeth five. In interpreting both, it 

is useful to recall that humans have 32 permanent teeth. The maximum possible 

DMFT score is therefore 32, whereas the maximum DMFS is 148. 
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So we continued the meta-analysis for each measurement with the random effects 

method. Decayed surfaces is the first measurement. The following R commands were 

used for the analysis: 

 

m1<-c(3.1,5.9,6.4) 

mc1<-c(0.9,1.5,2.07) 

sd1<-c(11.6,8.3,6.67) 

n1<-c(109,23,37) 

sdc1<-c(0.1,0.3,2.53) 

nco1<-c(762,353,29) 

ma1<- rma(yi=m1-mc1,vi=sd1^2/n1+sdc1^2/nco1,method = "DL") 

ma1 

study1<-c('Hede, 1995(35–49 years)','Hede, 1995 (65–78 years)','Stoefe; 1990') 

forest(ma1,slab=study1,xlab='Decayed surfaces') 

 

 

Table 3.16: Output presenting random effects analysis for mean difference of decayed 

surfaces between mentally diseased and controls. 

 

The results of Table 3.16 indicate that heterogeneity is absent (Q=2.11, p=0.349) and 

there is statistically significant difference (mean difference=3.42, p<0.001) in 

Decayed surfaces measurement between people with mental disease and control 

(3.17). .   The funnel plot (Figure 3.8) does not indicate any significant  publication 
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bias for the three studies. These studies present no variability according to the 

distance from the common value of mean difference.   

 

Table 3.17: Forest plot of random effects analysis for mean difference of decayed 

surfaces between mentally diseased and controls.   

 

    Figure 3.9: Funnel plot of mean difference of Decayed Surfaces. 
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Next measurement under examination is the DMFS. The following R commands were 

used for the analysis. 

 

m2<-c(68.3,120.2,31.9) 

mc2<-c(46.6,104.1,27.4) 

sd2<-c(33.3,27.8,22) 

sdc2<-c(0.7,1.7,20) 

ma2<- rma(yi=m2-mc2,vi=sd2^2/n1+sdc2^2/nco1,method = "DL") 

ma2 

study2<-c('Hede, 1995(35–49 years)','Hede, 1995 (65–78 years)','Stiefel; 1990') 

forest(ma2,slab=study2,xlab='DMFS') 

 

DMFS is the second measurement. The following R commands were used for the 

analysis. 

 

Table 3.18: Output presenting random effects analysis for mean score of DMFS 

between mentally diseased and controls. 

 

The results of Table 3.18 indicate that there is some heterogeneity between studies 

(Q=8.00, p=0.018) and there is statistically significant difference (mean 

difference=14.60, p<0.007) in DMFS measurement between people with mental 

disease and control (3.19).   The funnel plot (Figure 3.9) does not indicate any 
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significant  publication bias for the three studies. These studies present no variability 

according to the distance from the common value of mean difference. 

 

Table 3.19: Forest plot of random effects analysis for mean difference of decayed 

surfaces between mentally diseased and controls.   

 

 

 

 

Figure 3.10: Funnel plot of mean difference of DMFS. 
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Next measurement under examination is the number of decayed teeth. The following 

R commands were used for the analysis. 

 

m3<-c(9.16,7.95) 

mc3<-c(2.55,2.9) 

sd3<-c(5.2,6.86) 

sdc3<-c(3.12,2.19) 

n3<-c(54,565) 

nco3<-c(7139,261) 

ma3<- rma(yi=m3-mc3,vi=sd3^2/n3+sdc3^2/nco3, method = "DL") 

ma3 

study3<-c('Ramon, 2003 (18–34 years)','Velasco, 1997') 

forest(ma3,slab=study3,xlab='Decayed Teeth') 

 

 

Table 3.20: Output presenting random effects analysis for mean difference of 

decayed teeth between mentally diseased and controls.   

 

The results of Table 3.20 indicate that there is heterogeneity of limited significance 

between studies (Q=4.03, p=0.045) and there is statistically significant difference 

(mean difference=5.70, p<0.001) in DMFS measurement between people with mental 

disease and control (3.21). The funnel plot (Figure 3.10) does not indicate any 
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significant  publication bias for the two studies. These studies present no variability 

according to the distance from the common value of mean difference.   

 

 

 

 

Table 3.21: Forest plot of random effects analysis for mean difference of decayed 

teeth between mentally diseased and controls.   

 

 

 

Figure 3.11: Funnel plot of mean difference of Decayed Teeth. 

 

 

 



- 75 - 

 

 Next measurement under examination is the number of missing teeth. The following R 

commands were used for the analysis. 

 

m4<-c(5.42,0.57,17.02) 

mc4<-c(0.25,0.55,7.5) 

sd4<-c(6.25,1.3,10.32) 

sdc4<-c(0.69,1.53,6.8) 

n4<-c(54,37,565) 

nco4<-c(7139,29,261) 

ma4<- rma(yi=m4-mc4,vi=sd4^2/n4+sdc4^2/nco4, method = "DL") 

ma4 

study4<-c('Ramon, 2003 (18–34 years)','Stiefel; 1990','Velasco, 1997') 

forest(ma4,slab=study4,xlab='Missing Teeth') 

 

 

Table 3.22: Output presenting random effects analysis for mean difference of 

missing teeth between mentally diseased and controls. 

 

The results of Table 3.22 indicate that there is highly significant heterogeneity 

between studies (Q=192.40, p<0.001) and there is no statistically significant 

difference (p=0.134) in DMFS measurement between people with mental disease and 

control (3.23).  The funnel plot (Figure 3.11) indicates some publication bias for the 
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two of three studies . These studies present unusually low variability according to the 

distance from the common value of mean difference.  

 

 

Table 3.23: Forest plot of random effects analysis for mean difference of missing 

teeth between mentally diseased and controls. 

 

 

 

Figure 3.12: Funnel plot of mean difference of MissingTeeth. 
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 Next measurement under examination is the number of DMFT. The following R commands 

were used for the analysis. 

 

m5<-c(0.92,17.5,6.1,24.99) 

mc5<-c(0.4,8.49,3.2,12.5) 

sd5<-c(1.8,8.2,6.87,7.71) 

sdc5<-c(0.92,4.95,3.49,7.1) 

n5<-c(180,54,326,565) 

nco5<-c(121,7139,156,261) 

ma5<- rma(yi=m5-mc5,vi=sd5^2/n5+sdc5^2/nco5, method = "DL") 

ma5 

study5<-c('Kumar, 2006','Ramon, 2003 (18–34 years)','Rekha, 2002','Velasco, 1997') 

forest(ma5,slab=study5,xlab='DMFT') 

 

 

Table 3.24: Output presenting random effects analysis for mean difference of DMFT 

between mentally diseased and controls. 

 

The results of Table 3.24 indicate that there is highly significant heterogeneity 

between studies (Q=495.19, p<0.001) and there is statistically significant difference 

(mean difference=6.20, p=0.031) in DMFS measurement between people with mental 

disease and control (3.25).    
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Table 3.25: Forest plot of random effects analysis for mean difference of DMFT 

between mentally diseased and controls. 

 

 

 

 

Figure 3.13: Funnel plot of mean difference of DMFT. 
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3.5 DISCUSSION OF RESULTS 
 

After the analysis that was presented in this chapter we ended up to the following 

conclusions: 

Edentulousness Fixed effects Random effects τ
2
 Ι

2 
(%) 

Mantel-Haenszel/ 

Odds ratio 

3.35(<0.001) 3.25(0.002) 1.23 93.4 

Mantel-Haenszel/ 

Risk ratio 

2.09(<0.001) 2.43(0.001) 0.55 94.2 

Mantel-Haenszel/ 

Mean difference 

0.16(<0.001) 0.13(0.036) 0.04 98.0 

Peto/Odds ratio 3.55(<0.001) 4.33(<0.001) 1.28 94.0 

Inverse variance/ 

Odds ratio 

2.97(<0.001) 3.34(0.002) 1.22 93.4 

Inverse variance/ 

Risk ratio 

1.65(<0.001) 2.39(<0.001) 0.48 93.4 

Inverse variance/ 

Mean difference 

0.08(<0.001) 0.13(0.017) 0.03 97.4 

Table 3.26: Summary of meta-analysis of edentulousness for fixed and random 

effects(p-values in parenthesis) along with τ
2 
estimates and heterogeneity index 

I
2
. 

 According to Table 3.26 we reach the following conclusions: 

 Both Fixed and Random effects approaches for edentulousness indicated 

highly statistical differences between mentally diseased and control groups. 

 Odds ratio estimates for edentulousness represented these differences in a 

clearer way in comparison to risk ratio and risk differences. 

 Differences between Fixed and Random effects approaches for edentulousness 

were not acute except Risk ratios and Odds ratio Peto estimate. 

 High heterogeneity was measured using all methods for edentulousness. This 

heterogeneity is also confirmed by τ
2
 values.   
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Measurement Mean difference τ
2
 Ι

2
 (%) 

Decayed surfaces 3,42(<0,001) 0,093 5,12 

DMFS 14,60(0,007) 64,520 75,01 

Decayed teeth 5,71(<0,001) 0,915 75,19 

Missing teeth 4,89(0,134) 31,500 98,96 

DMFT 6,20(0,031) 32,623 99,39 

Table 3.27: Summary of meta-analysis of the other measurements for random 

effects (p-values in parenthesis) of mean differences along with τ
2 

estimates and 

heterogeneity index I
2
. 

 

 According to Table 3.27 we reach the following conclusions: 

 All differences between the two comparison groups were statistically 

significant apart from the “Missing teeth” measurement. 

 The difference in “DMFS” measurement between mentally diseased and 

controls was particularly large. 

 Heterogeneity was not particularly present apart from “Missing teeth” and 

“DMFT” measurements.   
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CHAPTER 4: CONCLUSION 

 

The following discussion is based on (Kisely et all., 2011). It is well known 

(Lawrence et al., 2000)  that individuals with severe mental illness have high rates of 

physical ill-health, including diabetes, cardiovascular disease, chronic lung disease 

and cancer. This in turn,  is associated with increased mortality from preventable 

physical disease, so that people with schizophrenia die 15–20 years earlier than the 

general population. Although the oral health of the general population has improved 

in much of the world, psychiatric patients remain at a disadvantage in a wide range of 

countries. This mirrors findings in other areas such as cardiovascular disease, where 

the health of the general population has improved but not that of people with severe 

mental illness (Lawrence et al., 2003).   

 

The results for the primary outcome, edentulousness, were strongly significant. The 

findings for DMFS and DMFT scores were less acute but still significant. This is 

possibly because both are more appropriate for dentate patients. It is impossible to 

record accurately the number of decayed or filled teeth if they have been lost through 

dental disease. 

4.1 LIMITATIONS 
 

There are some limitations to this study. According the authors (Kisely et all., 

2011): 

 There was considerable variation in outcome measures and how these were 

reported. Most studies had no comparison group and it was difficult to find 

suitable community controls for many of the others. Although nine studies (n 

= 1622) were included for the meta-analysis of the primary outcome 

(edentulousness), and there were fewer studies for the other outcomes.  

 Most studies did not use diagnostic criteria for the psychiatric disorders of 

interest.  

 Although age, secular trends in oral health and water fluoride levels were 

taken into account, other factors such as economic status or education level 

were difficult to be determined.  
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 Many of our results showed heterogeneity. This has to be further explored 

using sensitivity analyses of the effects of excluding outlying studies. Random 

effects model. Therefore, a random effects model was fit to the data when a 

very small number of studies was available. However, since strong 

heterogeneity was present the analysis results should be treated with caution. 

4.2 EXPLANATIONS 
 

Explanations for these findings (Kisely et all., 2011) include poor oral hygiene 

resulting in plaque formation and gingivitis. As with other aspects of physical ill-

health, alcohol and substance use, tobacco and diet (including the consumption of 

carbonated drinks) also contribute to poor oral health. For instance, edentulousness is 

associated with low fruit and vegetable intake in marginalized older adults even after 

adjusting for sociodemographic and behavioral variables (Tsakos et al., 2010). 

Smoking leads to an increased incidence of erosion, cervical abrasion and gingival 

necrosis, and other mucosal lesions are reported in people using oral cocaine 

(Krutchkoff et al., 1990). Psychotropic medications can also contribute to dental 

disease as many cause dry mouth (xerostomia) through reduced salivary flow 

(Sjogren et al., 2000). Relevant medications include conventional and atypical 

antipsychotics, all classes of antidepressants, and mood stabilizers (Sreebny et al., 

1997). Xerostomia has been found to decrease overall quality of life (Thomson et al., 

2006), increase plaque and calculus formation, and lead to a higher incidence of 

caries, gingivitis and periodontitis (Cormac et al., 1999). People with severe mental 

illness may also have priorities other than their oral health, or lack privacy for oral 

hygiene owing to poor housing or homelessness. These issues are compounded by 

difficulties with access to dental care. People with severe mental illness may be 

reluctant to seek treatment because of the fear of pain or dental phobia, possibly 

exacerbated by the cost of dental care. With severe tooth loss, some measures of 

caries such as the number of decayed teeth actually fall. To this must be added the 

effects of societal and cultural differences between countries. Further research is 

needed to clarify how all these factors contribute to differences in findings between 

studies. In terms of protective factors, the presence of fluoride in the water supply 

should benefit all sectors of the population including those with severe mental illness.  
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APENDIX (R CODE) 

 

data_psych <- 

data.frame(total=c(135,220,138,84,109,83,326,29,91,407), 

                     events=c(89,16,14,23,2,18,205,2,6,256)) 

data_control <- 

data.frame(total=c(219,2667,3630,261,5759,8592,188,302,375,455), 

                     events=c(109,213,200,8,58,1352,94,3,0,43)) 

 

study <- 

c('Adam,2006','Burchell,2006','Chalmers,1998','Hede,1992','Hede,1995(

35-49 years)','Hede,1995(65-78 

years)','Lewis,2001','Mirza,2001','Tang,2004','Viglid,1993') 

data_sbg1<-

data.frame(row.names=study,Psychiatric=data_psych,Control=data_con

trol) 

data_sbg1 

studyf <- c('1','2','3','4','5','6','7','8','9','10') 

 

library(meta) 

mOR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_

sbg1$Control.events,data_sbg1$Control.total,sm="OR" , method ="MH" 

, MH.exact = TRUE) 

mOR 

forest(mOR,studlab=study) 

funnel(mOR,studlab=studyf) 
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mRR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_

sbg1$Control.events,data_sbg1$Control.total,sm="RR" , method ="MH" 

, MH.exact = TRUE) 

mRR 

forest(mRR,studlab=study) 

funnel(mRR,studlab=studyf) 

 

mRD<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_

sbg1$Control.events,data_sbg1$Control.total,sm="RD" , method ="MH" 

, MH.exact = TRUE) 

mRD 

forest(mRD,studlab=study) 

funnel(mRD,studlab=studyf) 

 

pOR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_

sbg1$Control.events,data_sbg1$Control.total,sm="OR" , method 

="Peto" , MH.exact = TRUE) 

pOR 

forest(pOR,studlab=study) 

funnel(pOR,studlab=studyf) 

 

ivOR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_

sbg1$Control.events,data_sbg1$Control.total,sm="OR" , method 

="Inverse" , MH.exact = TRUE) 

ivOR 
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forest(ivOR,studlab=study) 

funnel(ivOR,studlab=studyf) 

 

ivRR<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_

sbg1$Control.events,data_sbg1$Control.total,sm="RR" , method 

="Inverse" , MH.exact = TRUE) 

ivRR 

forest(ivRR,studlab=study) 

funnel(ivRR,studlab=studyf) 

 

ivRD<-

metabin(data_sbg1$Psychiatric.events,data_sbg1$Psychiatric.total,data_

sbg1$Control.events,data_sbg1$Control.total,sm="RD" , method 

="Inverse" , MH.exact = TRUE) 

ivRD 

forest(ivRD,studlab=study) 

funnel(ivRD,studlab=studyf) 

 

library(metafor) 

m1<-c(3.1,5.9,6.4) 

mc1<-c(0.9,1.5,2.07) 

sd1<-c(11.6,8.3,6.67) 

n1<-c(109,23,37) 

sdc1<-c(0.1,0.3,2.53) 

nco1<-c(762,353,29) 

ma1<- rma(yi=m1-mc1,vi=sd1^2/n1+sdc1^2/nco1,method = "DL") 

ma1 
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study1<-c('Hede, 1995(35–49 years)','Hede, 1995 (65–78 years)','Stoefe; 

1990') 

forest(ma1,slab=study1,xlab='Subgroup of Decayed surfaces') 

 

 

m2<-c(68.3,120.2,31.9) 

mc2<-c(46.6,104.1,27.4) 

sd2<-c(33.3,27.8,22) 

sdc2<-c(0.7,1.7,20) 

ma2<- rma(yi=m2-mc2,vi=sd2^2/n1+sdc2^2/nco1,method = "DL") 

ma2 

study2<-c('Hede, 1995(35–49 years)','Hede, 1995 (65–78 years)','Stiefel; 

1990') 

forest(ma2,slab=study2,xlab='DMFS') 

 

m3<-c(9.16,7.95) 

mc3<-c(2.55,2.9) 

sd3<-c(5.2,6.86) 

sdc3<-c(3.12,2.19) 

n3<-c(54,565) 

nco3<-c(7139,261) 

ma3<- rma(yi=m3-mc3,vi=sd3^2/n3+sdc3^2/nco3, method = "DL") 

ma3 

study3<-c('Ramon, 2003 (18–34 years)','Velasco, 1997') 

forest(ma3,slab=study3,xlab='Decayed Teeth') 

 

m4<-c(5.42,0.57,17.02) 

mc4<-c(0.25,0.55,7.5) 

sd4<-c(6.25,1.3,10.32) 
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sdc4<-c(0.69,1.53,6.8) 

n4<-c(54,37,565) 

nco4<-c(7139,29,261) 

ma4<- rma(yi=m4-mc4,vi=sd4^2/n4+sdc4^2/nco4, method = "DL") 

ma4 

study4<-c('Ramon, 2003 (18–34 years)','Stiefel; 1990','Velasco, 1997') 

forest(ma4,slab=study4,xlab='Missing Teeth') 

 

m5<-c(0.92,17.5,6.1,24.99) 

mc5<-c(0.4,8.49,3.2,12.5) 

sd5<-c(1.8,8.2,6.87,7.71) 

sdc5<-c(0.92,4.95,3.49,7.1) 

n5<-c(180,54,326,565) 

nco5<-c(121,7139,156,261) 

ma5<- rma(yi=m5-mc5,vi=sd5^2/n5+sdc5^2/nco5, method = "DL") 

ma5 

study5<-c('Kumar, 2006','Ramon, 2003 (18–34 years)','Rekha, 

2002','Velasco, 1997') 

forest(ma5,slab=study5,xlab='DMFT') 
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