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ABSTRACT

PANAGIOTA ALIFRAGKI

A Systematic Review and Meta-Analysis of the Association Between

Advanced Dental Disease and Severe Mental IlIness using R software.

November 2017

The poor physical health faced by people with mental illness has been the
subject of growing attention, but there has been less focus on the issue of oral health
even though it is an important part of physical health. Psychiatric patients have
increased co morbid physical illness. There is less information concerning dental
disease in this population in spite of risk factors including diet and psychotropic side-
effects (such as xerostomia). This paper is based on Kisely et. al. (2011) and its aim
was to compare the oral health of people with severe mental illness with that of the
general population. Another aim of the thesis is to provide a real data comparison
between three fixed effects methods for the calculation of the fixed effects estimate
(Mantel-haenszel, Peto and Inverse variance).

A systematic search for studies from the past 20 years was conducted using
Medline, PsycINFO, Embase and article bibliographies. Papers were independently
assessed. The primary outcome using the package R and the library “meta” and
“metafor” for the analysis of the data was: total tooth loss (edentulousness), the end-
stage of both untreated caries and periodontal disease, and dental decay through
standardized measures: the mean number of decayed, missing and filled teeth (DMFT)
or surfaces (DMFS). For studies lacking a control group controls of similar ages from
a community survey within 10 years of the study were used.

As result 21 papers were identified of which 14 had sufficient data (n = 2784
psychiatric patients) and suitable controls (n = 31 084) for a fixed effect and a random
effects meta-analysis. People with severe mental illness had 3.4 times the odds of
having lost all their teeth than the general community (95% CI 1.6—7.2). They also had
significantly higher scores for DMFT (mean difference 6.2, 95% CI 0.6-11.8) and



DMFS (mean difference 14.6, 95% CI 4.1-25.1). Fluoridated water reduced the gap in
oral health between psychiatric patients and the general population. Psychiatric
patients have not shared in the improving oral health of the general population.
Management should include oral health assessment using standard checklists that can
be completed by non-dental personnel. Interventions include oral hygiene and

management of xerostomia.
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I[TANATTIQTA AAH®PAT'KH

M cvotnuoTiKy avafe®pnon Kol UETO-avVAALON TNG CVUVOEGNS
HETOEDL NG TPOY®PNUEVNG OOOVTIKNG VOoOL Kol TNG cofapng

YuyYIKne acévelac, ypnoyonmolmdvtog ™ yAwosoa R.

NoéuPBprog 2017

H xokn copatikn vyela mov avtipetonilovv ta dropa pe yoyxikég acOéveleg €xet
amOTEAECEL OVTIKEILEVO OEAVOUEVNG TPOGOYNG, OALA Exel emkeVTpwOEl MydTepo GTO
Bépa g oTopaTIKNG VYElNG, TOPOAO TOV OMOTEAEL OTUAVTIKO UEPOS TNG COUATIKNG
vyetag. O yoyratpucoi acBeveic Exovv avEnpévn GLVLTTAPYOVCE COUOTIKY AcHEVELD.
Yrdpyovv AMydtepeg TANPOPOPIEG CYETIKA HE TIS 00OVIIKEG 00OEVELEG GE QVTOV TOV
TANOLGUO, TP TOVS TAPAYOVTEG KIVODVOL, GUUTEPIAAUPOVOUEVAOV TOV OATPOPIKDV
KoL YuyoTponmV mapevepyeldv (0mmg 1 Enpooctopia). Avtd to Eyypago Paciletar ot
dnpocievon tov Kisely et. al. (2011) kot 6td}0G TOV TOV VO GLYKPIVEL TNV GTOUOTIKN
vyela Tov oTOp®V pe coPapéc yuyikés acBéveleg pe avtd Tov YeEVIKOU TANOLGLOV.
"Evag dAhog otdy0c ™C epyaciog elvar va vtapEel TPAyHOTIKY] GVYKPIOT OE00UEVMOV
petald Tprov peBOO®V Yoo TOV LTOAOYIGUO TNG EKTIUNONG TOV OTOTEAEGUATOV
(Mantel-haenszel, Peto kot Inverse variance). M cvotnuatiky ovalitmon yuo
ueléteg amd ta televtaio 20 ypovia deEnybn ypnoponowdvtog Medline, PSycINFO,
Embase kot Biprioypagicc apbpwv. Ta Eyypapa a&oroynOnkav aveEaptnra. To
TPOTEVOV AMOTEAEGUO e TN ¥pNomn ™S YA®ooag R kol g Pipiodnimg «metay kot
«metafor» ywo v avdAvon tov 0edopEVOV NTOV: OAMKN OTMOAEW TOV SOVIIOV
(edentulousness), to Tehkd 6TAd10 TOGO TG TEPNIOVAG OGO KOl TNG TEPLOOOVTIKNG
vOGOL KOl TNG 000VTIKNG amochVOEONG UECH TLTOMOMUEVOV UETPOV : O HEGOG
aplOpog TV TEPNOOVIGUEVOVY, eAAEOVIOV Kol euppayuévav dovtiov (DMFT) 7
emoavelwv (DMFES). T pedéteg mov dev elyav opddo eA&yyov, xpnNoLomo|onKoy
ELeyyol ToPOUOIOV NAKIOV amd (ol KOWOTIKY £pguva €viog 10 etdv and ™ perém.
Q¢ amotélecua, mpocsdopiotnkay 21 &yypoaea amd to omoion 14 elyav emoapkn

dedopéva (N = 2784 yoyrorpikong acbeveic) ko katdAinlovg udptopeg (n = 31 084)

\



vy otafepd amotéleopa Kol peTa-availvon tuyaiov amotedecpatwv. To dtopo pe
coPapn owavontikn acbévela giyov 3,4 Qopéc meplocoTEPES MOAVOTNTES VO YAGOLV
OAc To dOvTIoL TOug omd TN yevikh kowotnta (95% Cl 1,6-7,2). Emiong, siyoav
onuovTikd vynAotepeg Pabuporoyieg yioo DMFT (uéon dwapopd 6.2, 95% CI1 0.6-11.8)
kot DMFS (uéon dweopd 14.6, 95% CI 4.1-25.1). To ¢Bopiopévo vepd pelwce 1o
KEVO OTNV GTOUATIKY LYElD HETOED TOV YUXTPIKOV 0COEVOV KOl TOV YEVIKOD
mAnBucpov. Ov yoyorpikoi acbeveic dev éxovv ocvppetdoyet otn Peitioon tng
OTOUATIKNG LYElNG TOL YeViKoL mAnBvuouov. H dayeipion 6o mpémet va mepiapPavet
TNV EKTIUNON TNG GTOUOTIKNG VYELNG XPNOLOTOIOVTIOS TUTOTOMUEVOVS KATAAOYOVG
EAEYYOL TOL UTOPOLV VA GUUTANP®OOLV amd Un 0doVTITPIKO TPocOTIKO. Ot
nopepPacelg  mephapuPdvouy TNV GTOUHOTIKY VYlEWR kot TN Olaygipion g

Enpooctopiag.
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CHAPTER 1: INTRODUCTION

This paper is based on Kisely et al., (2011). The aim of this research paper is
to compare the oral health of people with severe mental illness with that of the general
population.

It is well known that individuals with severe mental illness (SMI) have high
rates of physical ill-health including diabetes, cardiovascular disease, chronic lung
disease, and cancer (Lawrence et al., 2000). This, in turn, is associated with increased
mortality from preventable physical disease so that people with schizophrenia die 15
to 20 years earlier than the general population. Oral health is an important part of
physical health. (Mirza et al., 2003). Historically, there has been less attention to the
issue of oral health, although it is also an important part of physical health and linked
to systemic diseases such as coronary heart disease, stroke, diabetes, and respiratory
disease. Oral health also affects eating, speech and other social and psychological
areas of life. People with severe mental illness are susceptible to oral disease for a
number of reasons: these include amotivation, poor oral hygiene, fear, specific dental
phobia, dental costs, difficulty in accessing healthcare facilities and the side-effects of
psychiatric drugs such as dry mouth (xerostomia) (Bardow et al., 2001).

The two most common diseases that affect oral health are dental caries (tooth
decay) and periodontal disease. Dental caries occurs through the demineralization and
subsequent proteolysis of the hard tooth structure (enamel and dentine) from a build-
up of dental plague which microorganisms colonize. If plaque is not removed, and
there is frequent intake of readily fermentable carbohydrates in the diet, irreversible
cavitation can occur. This will normally require restoration or extraction of the tooth
if the dental pulp has become infected. Periodontal disease usually begins with
gingivitis — inflammation of the gingival tissues (gums). This, too, is caused by
longstanding accumulation of dental plaque in contact with the soft tissues. In patients
who harbor particularly pathogenic microflora, or whose host response to these micro-
organisms is ineffective, inflammation spreads to the periodontal ligament with
destruction of connective tissues and surrounding (alveolar) bone. Signs of
periodontal disease include bleeding gums and pockets where the gingivae have

become detached from the teeth. In more advanced disease there is exposure of tooth



roots and mobility of teeth (Pihlstrom et al., 2005). These symptoms and signs are
often associated with halitosis (bad breath). The end-stage of both untreated dental
caries and periodontal disease is tooth loss, which can involve the whole dentition
(edentulousness). In an earlier meta-analysis, the authors reported significantly higher
levels of edentulousness in patients with SMIs such as dementia, schizophrenia,
bipolar affective disorder, and other affective disorders. By contrast, the effect on
other measures of oral health, such as dental decay, was inconclusive. This was
possibly because of the low number of studies that could be incorporated into meta-
analyses.

The research team of the paper therefore focused on this condition as an
indicator of both dental caries and periodontal disease in people with severe mental
illness. To our knowledge, this is the first systematic review and meta-analysis of this
topic in people with severe mental illness. The effect of water fluoride levels on
differences in oral health between people with and without severe mental illness was
also considered. The aim, therefore, was to compare the prevalence of edentulousness
in people with severe mental illness with that in the general population. Levels of
dental decay were also compared. A systematic search for studies from the past 20
years was conducted using Medline, PsycINFO, Embase and article bibliographies
was used for the paper that we based our analysis using software R and the library
“meta” for the analysis of the data. Papers were independently assessed. The primary
outcome was total tooth loss (edentulousness), the end-stage of both untreated caries
and periodontal disease. Dental decay was also assessed through standardized
measures: the mean number of decayed, missing and filled teeth (DMFT) or surfaces
(DMFS). For studies lacking a control group we used controls of similar ages from a
community survey within 10 years of the study.

The authors identified 21 papers of which 14 had sufficient data (n = 2784
psychiatric patients) and suitable controls (n = 31 084) for a random effects meta-
analysis. People with severe mental illness had 3.4 times the odds of having lost all
their teeth than the general community (95% CI 1.6-7.2). They also had significantly
higher scores for DMFT (mean difference 6.2, 95% CI 0.6-11.8) and DMFS (mean
difference 14.6, 95% CI 4.1-25.1). Fluoridated water reduced the gap in oral health
between psychiatric patients and the general population. Psychiatric patients have not
shared in the improving oral health of the general population. Management should
include oral health assessment using standard checklists that can be completed by

-2-



non-dental personnel. Interventions include oral hygiene and management of

Xerostomia.

However, it is good to define what systematic review and meta-analysis is and how
these procedures can work. S. Gopalakrishnan and P. Ganeshkumar present all the

necessary theory and they present the basic steps for this analysis.

Systematic review

A systematic review is a summary of the medical literature that uses explicit and
reproducible methods to systematically search, critically appraise, and synthesize on a
specific issue. It synthesizes the results of multiple primary studies related to each
other by using strategies that reduce biases and random errors. To this end, systematic
reviews may or may not include a statistical synthesis called meta-analysis, depending
on whether the studies are similar enough so that combining their results is

meaningful. Systematic reviews are often called overviews.

The evidence-based practitioner, David Sackett, defines the following terminologies.

e Review: The general term for all attempts to synthesize the results and
conclusions of two or more publications on a given topic.

e Overview: When a review strives to comprehensively identify and track down
all the literature on a given topic (also called “systematic literature review”).

e Meta-analysis: A specific statistical strategy for assembling the results of

several studies into a single estimate.

Systematic reviews adhere to a strict scientific design based on explicit, pre-specified,
and reproducible methods. Because of this, when carried out well, they provide
reliable estimates about the effects of interventions so that conclusions are defensible.
Systematic reviews can also demonstrate where knowledge is lacking. This can then
be used to guide future research. Systematic reviews are usually carried out in the
areas of clinical tests (diagnostic, screening, and prognostic), public health
interventions, adverse (harm) effects, economic (cost) evaluations, and how and why

interventions work.


https://www.ncbi.nlm.nih.gov/pubmed/?term=Gopalakrishnan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24479036
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ganeshkumar%20P%5BAuthor%5D&cauthor=true&cauthor_uid=24479036

Meta-analysis

A meta-analysis is the combination of data from several independent primary studies
that address the same question to produce a single estimate like the effect of treatment
or risk factor. It is the statistical analysis of a large collection of analysis and results
from individual studies for the purpose of integrating the findings.The term meta-
analysis has been used to denote the full range of quantitative methods for research
reviews. Meta-analyses are studies of studies.Meta-analysis provides a logical
framework to a research review where similar measures from comparable studies are
listed systematically and the available effect measures are combined wherever

possible.

The fundamental rationale of meta-analysis is that it reduces the quantity of data by
summarizing data from multiple resources and helps to plan research as well as to
frame guidelines. It also helps to make efficient use of existing data, ensuring
generalizability, helping to check consistency of relationships, explaining data
inconsistency, and quantifies the data. It helps to improve the precision in estimating

the risk by using explicit methods.

Therefore, “systematic review” will refer to the entire process of collecting,
reviewing, and presenting all available evidence, while the term “meta-analysis” will
refer to the statistical technique involved in extracting and combining data to produce

a summary result.

Following are the six fundamental essential steps while doing systematic review and

meta-analysis.

Define the question

This is the most important part of systematic reviews/meta-analysis. The research
question for the systematic reviews may be related to a major public health problem
or a controversial clinical situation which requires acceptable intervention as a
possible solution to the present healthcare need of the community. This step is most

important since the remaining steps will be based on this.



Reviewing the literature

This can be done by going through scientific resources such as electronic database,
controlled clinical trials registers, other biomedical databases, non-English literatures,
“gray literatures” (thesis, internal reports, non—peer-reviewed journals,
pharmaceutical industry files), references listed in primary sources, raw data from
published trials and other unpublished sources known to experts in the field. Among
the available electronic scientific database, the popular ones are PUBMED,
MEDLINE, and EMBASE.

Sift the studies to select relevant ones

To select the relevant studies from the searches, we need to sift through the studies
thus identified. The first sift is pre-screening, i.e., to decide which studies to retrieve
in full, and the second sift is selection which is to look again at these studies and
decide which are to be included in the review. The next step is selecting the eligible
studies based on similar study designs, year of publication, language, choice among
multiple articles, sample size or follow-up issues, similarity of exposure, and or

treatment and completeness of information.

It is necessary to ensure that the sifting includes all relevant studies like the
unpublished studies (desk drawer problem), studies which came with negative
conclusions or were published in non-English journals, and studies with small sample

size.

Assess the quality of studies

The steps undertaken in evaluating the study quality are early definition of study
quality and criteria, setting up a good scoring system, developing a standard form for
assessment, calculating quality for each study, and finally using this for sensitivity

analysis.

For example, the quality of a randomized controlled trial can be assessed by finding

out the answers to the following questions:

1. Was the assignment to the treatment groups really random?

2. Was the treatment allocation concealed?



Were the groups similar at baseline in terms of prognostic factors?
Were the eligibility criteria specified?

Were the assessors, the care provider, and the patient blinded?

o g ~ w

Were the point estimates and measure of variability presented for the primary
outcome measure?

7. Did the analyses include intention-to-treat analysis?

Calculate the outcome measures of each study and combine them

We need a standard measure of outcome which can be applied to each study on the
basis of its effect size. Based on their type of outcome, following are the measures of
outcome: Studies with binary outcomes (cured/not cured) have odds ratio, risk ratio;
studies with continuous outcomes (blood pressure) have means, difference in means,
standardized difference in means (effect sizes); and survival or time-to-event data

have hazard ratios.
Combining studies

Homogeneity of different studies can be estimated at a glance from a forest plot
(explained below). For example, if the lower confidence interval of every trial is
below the upper of all the others, i.e., the lines all overlap to some extent, then the
trials are homogeneous. If some lines do not overlap at all, these trials may be said to

be heterogeneous.

The definitive test for assessing the heterogeneity of studies is a variant of Chi-square
test (Mantel-Haenszel test). The final step is calculating the common estimate and its
confidence interval with the original data or with the summary statistics from all the
studies. The best estimate of treatment effect can be derived from the weighted
summary statistics of all studies which will be based on weighting to sample size,
standard errors, and other summary statistics. Log scale is used to combine the data to

estimate the weighting.

Interpret results: Graph

The results of a meta-analysis are usually presented as a graph called forest plot
because the typical forest plots appear as forest of lines. It provides a simple visual

presentation of individual studies that went into the meta-analysis at a glance. It
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shows the variation between the studies and an estimate of the overall result of all the

studies together.

Subgroup analysis

Subgroup analysis looks at the results of different subgroups of trials, e.g., by
considering trials on adults and children separately. This should be planned at the
protocol stage itself which is based on good scientific reasoning and is to be kept to a

minimum.



CHAPTER 2:
METHODS OF META-ANALYSIS

2.1 INTRODUCTION TO META-ANALYSIS

Michael Borenstein in his book Introduction to Meta-analysis (2009) presents
all the theory about the history, the procedure and the aim of Meta-analysis. Prior to
the 1990s, the task of combining data from multiple studies had been primarily the
purview of the narrative review. An expert in a given field would read the studies that
addressed a question, summarize the findings, and then arrive at a conclusion — for
example, that the treatment in question was, or was not, effective. However, this
approach suffers from some important limitations.

One limitation is the subjectivity inherent in this approach, coupled with the
lack of transparency. For example, different reviewers might use different criteria for
deciding which studies to include in the review. Once a set of studies has been
selected, one reviewer might give more credence to larger studies, while another gives
more credence to ‘quality’ studies and yet another assigns a comparable weight to all
studies. One reviewer may require a substantial body of evidence before concluding
that a treatment is effective, while another uses a lower threshold. In fact, there are
examples in the literature where two narrative reviews come to opposite conclusions,
with one reporting that a treatment is effective while the other reports that it is not. As
a rule, the narrative reviewer will not articulate (and may not even be fully aware of)
the decision-making process used to synthesize the data and arrive at a conclusion.

A second limitation of narrative reviews is that they become less useful as
more information becomes available. The thought process required for a synthesis
requires the reviewer to capture the finding reported in each study, to assign an
appropriate weight to that finding, and then to synthesize these findings across all
studies in the synthesis. While a reviewer may be able to synthesize data from a few
studies in their head, the process becomes difficult and eventually untenable as the
number of studies increases. This is true even when the treatment effect (or effect
size) is consistent from study to study. Often, however, the treatment effect will vary
as a function of study level covariates, such as the patient population, the dose of

medication, the outcome variable, and other factors. In these cases, a proper synthesis



requires that the researcher be able to understand how the treatment effect varies as a
function of these variables, and the narrative review is poorly equipped to address
these kinds of issues.

For these reasons, beginning in the mid 1980s and taking root in the 1990s,
researchers in many fields have been moving away from the narrative review, and
adopting systematic reviews and meta-analysis.

For systematic reviews, a clear set of rules is used to search for studies, and
then to determine which studies will be included in or excluded from the analysis.
Since there is an element of subjectivity in setting these criteria, as well as in the
conclusions drawn from the meta-analysis, we cannot say that the systematic review
is entirely objective. However, because all of the decisions are specified clearly, the
mechanisms are transparent.

A key element in most systematic reviews is the statistical synthesis of the
data, or the meta-analysis. Unlike the narrative review, where reviewers implicitly
assign some level of importance to each study, in meta-analysis the weights assigned
to each study are based on mathematical criteria that are specified in advance. While
the reviewers and readers may still differ on the substantive meaning of the results (as
they might for a primary study), the statistical analysis provides a transparent,
objective, and replicable framework for this discussion.

The formulas used in meta-analysis are extensions of formulas used in primary
studies, and are used to address similar kinds of questions to those addressed in
primary studies. In primary studies we would typically report a mean and standard
deviation for the subjects. If appropriate, we might also use analysis of variance or
multiple regression to determine if (and how) subject scores were related to various
factors. Similarly, in a meta-analysis, we might report a mean and standard deviation
for the treatment effect. And, if appropriate, we would also use procedures analogous
to analysis of variance or multiple regression to assess the relationship between the
effect and study-level covariates.

Meta-analyses are conducted for a variety of reasons, not only to synthesize
evidence on the effects of interventions or to support evidence-based policy or
practice. The purpose of the meta-analysis, or more generally, the purpose of any
research synthesis has implications for when it should be performed, what model
should be used to analyze the data, what sensitivity analyses should be undertaken,
and how the results should be interpreted. Losing sight of the fact that meta-analysis
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is a tool with multiple applications causes confusion and leads to pointless discussions
about what is the right way to perform a research synthesis, when there is no single
right way. It all depends on the purpose of the synthesis, and the data that are
available.

Meta-analysis was defined by Glass (1976) to be ‘the statistical analysis of a
large collection of analysis results from individual studies for the purpose of
integrating the findings’. Although Glass was involved in social science research, the
term ‘meta-analysis’ has been adopted within other disciplines and has proved
particularly popular in clinical research. Some of the techniques of meta-analysis have
been in use for far longer. Pearson (1904) applied a method for summarizing
correlation coefficients from studies of typhoid vaccination, Tippet (1931) and Fisher
(1932) presented methods for combining p-values, and Yates and Cochran (1938)
considered the combination of estimates from different agricultural experiments.
However, the introduction of a name for this collection of techniques appears to have
led to an upsurge in development and application.

Systematic reviews and meta-analyses are used to synthesize the available

evidence for a given question to inform policy, as in the examples cited above from
medicine, social science, business, ecology, and other fields. While this is probably
the most common use of the methodology, meta-analysis can also play an important
role in other parts of the research process. Systematic reviews and meta-analyses can
play a role in designing new research. As a first step, they can help determine whether
the planned study is necessary.
It may be possible to find the required information by synthesizing data from prior
studies, and in this case, the research should not be performed. lain Chalmers (2007)
made this point in an article entitled The lethal consequences of failing to make use of
all relevant evidence about the effects of medical treatments: the need for systematic
reviews.

In the medical world, the upsurge began in the 1980s.Some of the key medical
questions answered by meta-analyses at this time concerned the treatment of heart
disease and cancer. For example, Yusuf et al.(1985) concluded that long-term beta
blockade following discharge from the coronary care unit after amyocardial infarction
reduced mortality, and the Early Breast Cancer Trialists” Collaborative Group (1988)
showed that tamoxifen reduced mortality in women over 50 with early breast cancer
.By the 1990s published meta-analyses were ubiquitous.
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The rapid increase in the number of meta-analyses being conducted during the last
decade is mainly due to a greater emphasis on evidence-based medicine and the need
for reliable summaries of the vast and expanding volume of clinical research.
Evidence-based medicine has been defined as ‘integrating individual clinical expertise
with the best available external clinical evidence from systematic research’ (Sackett et
al., 1997). A systematic review of the relevant external evidence provides a
framework for the integration of the research, and meta-analysis offers a quantitative
summary of the results. In many cases a systematic review will include a meta-
analysis, although there are some situations when this will be impossible due to lack
of data or inadvisable due to unexplained inconsistencies between studies.

In the event that the new study is needed, the meta-analysis may be useful in
helping to design that study. For example, the meta-analysis may show that in the
prior studies one outcome index had proven to be more sensitive than others, or that a
specific mode of administration had proven to be more effective than others, and
should be used in the planned study as well. For these reasons, various government
agencies, including institutes of health in various countries, have been encouraging
(or requiring) researchers to conduct a meta-analysis of existing research prior to
undertaking new funded studies. The systematic review can also play a role in the
publication of any new primary study. In the introductory section of the publication, a
systematic review can help to place the new study in context by describing what we
knew before, and what we hoped to learn from the new study. In the discussion
section of the publication, a systematic review allows us to address not only the
information provided by the new study, but the body of evidence as enhanced by the
new study. lain Chalmers and Michael Clarke (1998) see this approach as a way to
avoid studies being reported without context, which they refer to as ‘Islands in Search
of Continents’. Systematic
reviews would provide this context in a more rigorous and transparent manner than
the narrative reviews that are typically used for this purpose.

In accordance with ICH E9, meta-analysis is understood to be a formal
evaluation of the quantitative evidence from two or more trials bearing on the same
question. The guidelines indicate that meta-analysis techniques provide a useful
means of summarizing overall efficacy results of a drug application and of analyzing
less frequent outcomes in the overall safety evaluation. However, there is a warning

that confirmation of efficacy from a meta-analysis only will not usually be accepted
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as a substitute for confirmation of efficacy from individual trials. Certainly the
magnitude of the treatment effect is likely to be an important factor in regulatory
decision-making. If the treatment effect is smaller than anticipated, then statistical
significance may not be reached in the individual trials. Even if statistical significance
is reached in the meta-analysis, the magnitude of the treatment effect may not be
clinically significant, and thus be considered insufficient for approval. Fisher (1999)
considered the two conditions under which one large trial might substitute for the two
controlled trials usually required by the Food and Drug Administration (FDA) in the
USA. The first relates to the strength of evidence for demonstrating efficacy. He
showed that if the evidence required from the two controlled trials is that they should
each be statistically significant at the two-sided 5% significance level, then the same
strength of evidence is obtained from one large trial if it is statistically significant at
the two-sided 0.125% level. The same type of argument could be applied to
combining trials in a meta-analysis.

It would seem reasonable to set a more stringent level of statistical significance
corresponding to proof of efficacy in a meta-analysis than in the individual trials. The
second condition discussed by Fisher relates to evidence of replicability, and he
proposes criteria which need to be met by the one large trial. A meta-analysis will
always involve at least two trials, and it will be important to assess the consistency of
the results from the individual trials. The extent of any inconsistencies amongst the
trials will be influential in the choice of model for the meta-analysis and in the

decision whether to present an overall estimate.
WE USE META-ANALYSIS:

* To provide a more precise estimate of the overall treatment effects.

* To evaluate whether overall positive results are also seen in pre-specified
subgroups of patients.

* To evaluate an additional efficacy outcome that requires more power than the
individual trials can provide.

* To evaluate safety in a subgroup of patients, or a rare adverse event in all
patients.

* To improve the estimation of the dose-response relationship.

* To evaluate apparently conflicting study results.

-12 -



2.2 TREATMENT EFFECTS AND EFFECT SIZES

Borenstein (2009) and references within made an extensive review of the
subject and presented all necessary theory. The terms treatment effects and effect
sizes are used in different ways by different people. Meta-analyses in medicine often
refer to the effect size as a treatment effect, and this term is sometimes assumed to
refer to odds ratios, risk ratios, or risk differences, which are common in meta-
analyses that deal with medical interventions. Similarly, meta-analyses in the social
sciences often refer to the effect size simply as an effect size and this term is
sometimes assumed to refer to standardized mean differences or to correlations, which
are common in social science meta-analyses.

In fact, though, both the terms effect size and treatment effect can refer to any
of these indices, and the distinction between these terms lies not in the index itself but
rather in the nature of the study. The term effect size is appropriate when the index is
used to quantify the relationship between two variables or a difference between two
groups. By contrast, the term treatment effect is appropriate only for an index used to
quantify the impact of a deliberate intervention. Thus, the difference between males
and females could be called an effect size only, while the difference between treated
and control groups could be called either an effect size or a treatment effect.

While most meta-analyses focus on relationships between variables, some
have the goal of estimating a mean or risk or rate in a single population. For example,
a meta-analysis might be used to combine several estimates for the prevalence of
Lyme disease in Wabash or the mean SAT score for students in Utah. In these cases
the index is clearly not a treatment effect, and is also not an effect size, since effect
implies a relationship. Rather, the parameter being estimated could be called simply a
single group summary. Note, however, that the classification of an index as an effect
size and/or a treatment effect (or simply a single group summary) has no bearing on
the computations.

In the meta-analysis itself we have simply a series of values and their
variances, and the same mathematical formulas apply. In this volume we generally
use the term effect size, but we use it in a generic sense, to include also treatment

effects, single group summaries, or even a generic statistic.
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2.3 CHOICE OF EFFECT SIZE

Borenstein (2009) and references within made an extensive review of the subject and
presented all necessary theory. Three major considerations should drive the choice of
an effect size index. The first is that the effect sizes from the different studies should
be comparable to one another in the sense that they measure (at least approximately)
the same thing. That is, the effect size should not depend on aspects of study design
that may vary from study to study (such as sample size or whether covariates are
used). The second is that estimates of the effect size should be computable from the
information that is likely to be reported in published research reports. That is, it
should not require the re-analysis of the raw data (unless these are known to be
available). The third is that the effect size should have good technical properties. For
example, its sampling distribution should be known so that variances and confidence
intervals can be computed. Additionally, the effect size should be substantively
interpretable. This means that researchers in the substantive area of the work
represented in the synthesis should find the effect size meaningful. If the effect size is
not inherently meaningful, it is usually possible to transform the effect size to another
metric for presentation. For example, the analyses may be performed using the log
risk ratio but then transformed to a risk ratio (or even to illustrative risks) for
presentation.

In practice, the kind of data used in the primary studies will usually lead to a
pool of two or three effect sizes that meet the criteria outlined above, which makes the
process of selecting an effect size relatively straightforward. If the summary data
reported by the primary study are based on means and standard deviations in two
groups, the appropriate effect size will usually be either the raw difference in means,
the standardized difference in means, or the response ratio. If the summary data are
based on a binary outcome such as events and non-events in two groups the
appropriate effect size will usually be the risk ratio, the odds ratio, or the risk
difference. If the primary study reports a correlation between two variables, then the

correlation coefficient itself may serve as the effect size.
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2.4 PARAMETERS AND ESTIMATES

Borenstein (2009) and references within made an extensive review of the subject and
presented all necessary theory. Throughout this volume we make the distinction
between an underlying effect size parameter (denoted by the Greek letter 8) and the
sample estimate of that parameter (denoted by Y). If a study had an infinitely large
sample size then it would yield an effect size Y that was identical to the population
parameter 0. In fact, though, sample sizes are finite and so the effect size estimate Y
always differs from 6 by some amount. The value of Y will vary from sample to
sample, and the distribution of these values is the sampling distribution of Y.
Statistical theory allows us to estimate the sampling distribution of effect size
estimates, and hence their standard errors.

Effect sizes based on means
Raw (unstandardized) mean difference
Based on studies with independent groups
Based on studies with matched groups or pre-post designs
Standardized mean difference
Based on studies with independent groups
Based on studies with matched groups or pre-post designs
Response ratios
Based on studies with independent groups
Effect sizes based on binary data
Risk ratio (RR)
Based on studies with independent groups
Odds ratio (OR)
Based on studies with independent groups
Risk difference (RD )
Based on studies with independent groups
Effect sizes based on correlational data
Correlation

Based on studies with one group
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2.5 A GENERAL FIXED EFFECTS PARAMETRIC APPROACH
2.5.1 AFIXED EFFECTS META-ANALYSIS MODEL

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. Suppose that there are r independent studies each
comparing the treated group with the control group. There is a common outcome
measure reported for each patient. The parameter representing the measure of
treatment difference is denoted by 6. This may, for example, be the difference
between treatment means for normally distributed data or the log-odds ratio for binary

data. It is assumed here that 6 equals 0 when the two treatments have equal effect.

Denote by 0; an estimate of 0 from the ith study. The general fixed effects model is

given by:
B; =0+ g.

for i =1, ..., r, where the g are error terms and are realizations of normally
distributed random variables with expected value O and variance denoted by
gZ. It follows that

6; ~ N(0, £D).

2.5.2 ESTIMATION AND HYPOTHESIS TESTING OF THE
TREATMENT DIFFERENCE

Whitehead (2002) and references within made an extensive review of the subject and

presented all necessary theory. Usually, the estimated variance of éi var ( @i ), IS

treated as if it were the true variance &? , that is, no allowance is made for error in the

calculated term var( éi) Let w; be the estimated inverse variance of éi that is, wj = 1/

var ( 0, ). The distributional assumption that is made is that
0; ~ N(®, u-*:._'],

fori=1,..., r. Under the null hypothesis that the treatment difference in each study

is equal to O,
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) é;w,- ~ N(O, w;),

fori=1,...,r, and, as the study estimates are independent,

r

eréjw; ~ N0, Z W;j

i=1 i=1
The global null hypothesis that the treatment difference in all studies is equal to O is
tested by comparing the statistic

X Wi

with the chi-squared distribution with one degree of freedom. Assuming that there is a

common treatment difference in all studies,
r r r
Z Biw; ~ N |6 Z w;, Z W;
i=1 i=1 i=1
and the overall fixed effect 6 can be estimated by "6, where
'r i T
d — > i1 Biwi
_ r Ta '
D iz Wi
If wi were the true inverse variance of 0;, rather than being an estimate, then 8 would

be the maximum likelihood estimate of . The standard error of 8 is given by

III l
Y liwi

and an approximate 95% confidence interval (CI) for 0 is given by

se(@} =

0E+1.96 | .
V2w
The calculations require an estimate of the treatment difference and its variance from

each study. Usually a trial report will quote the standard error, and then w; can be

calculated as 1/{se( gi)}z_ If using efficient score and Fisher’s information
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statistics, 9i = Z;i/V;. For this choice of @i it follows that w; = V. Alsoéi wi;=Z;and 0;
2Wi =7; 2 /Vi. Thus

And

The fixed effects approach is sometimes referred to as an ‘assumption-free’ approach
(see, for example, Early Breast Cancer Trialists’ Collaborative Group, 1990) because
it is argued that the fixed effects estimate does not rely on the assumption of a
common treatment difference parameter across all studies. Suppose that the
assumption of a common treatment difference in all studies is relaxed and that the

distributional assumption for the individual study estimates becomes

B; ~ N(6;, wj_] ),

where 0i is the treatment difference parameter in study i. The overall fixed effect

estimate "0 can now be viewed as an estimate of

;
>i1 Giw;
=
D oii1 Wi
the weighted mean of the study treatment difference parameters. Whilst this is an

acceptable interpretation of 67, it would not appear to go far enough. Once variation

between studies is conceded it would seem natural to investigate the amount of
heterogeneity and to allow for it when making inferences about the difference

between the two treatments.
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2.5.3 TESTING FOR HETEROGENEITY ACROSS STUDIES

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. To test for heterogeneity in the treatment difference
parameter across the studies,

a large-sample test is used. This is based on the statistic

r

0 = Z w;(B; — )2,

i=1
which is a weighted sum of squares of the deviations of individual study estimates
from the overall estimate (Cochran, 1954).When treatment difference parameters are
homogeneous, Q follows a chi-squared distribution with r — 1 degrees of freedom. An

easier and equivalent formula for calculation is given by
.
0 = E 62w; — U.
i=1

When using efficient score and Fisher’s information statistics, Q can be written as

9

(- E) ()5

J: —1 i=1

The test statistics U and Q and the estimate 0 and its standard error can be obtained
by performing a weighted least-squares regression, in which the observed responses
(y) are the study estimates of treatment difference, 8, and there are no explanatory

variables, only a constant term. The weights (w) are the values w;.

2.6 FIXED EFFECTS MODELS FOR BINARY DATA

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. The observation y;j is assumed to be a realization of a
random variable Yj;, which has a binomial distribution with parameter p; and

enominator nj; = 1. If p; represents the probability of success for patient j in trial i,
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then y;; = 1 if the patient response is a ‘success’ and 0 if the response is a ‘failure’.
The expected value of Yj; is pj; and the variance pi(1 — pjj).

In order to model the dependence of p;; on the explanatory variables x1, x2, . . ., Xq, a
transformation which maps the unit interval (0, 1) onto the real line (—oo,) is used.
This transformation is known as the link function. The natural choice for estimating

odds ratios is the logit link function, given by

}..
l()g( P ) :
1 — _”ij'

The logit link function leads to the linear logistic model

;s
log( i ) = a + Ny,
1 — Pij

where a is the intercept and n;; is a linear combination of explanatory variables.

This model is an example of a generalized linear model, details of which can be
found in Section A.6 of the Appendix. An analogy with the general linear model
can be seen with log{p;i/(1 — pij)} replacing ;.

The model which will provide an overall fixed effects estimate of treatment

difference, includes study and treatment as covariates. It is given by

}.]i”

log (I—I) = o+ Boi + P11
— Dijj

(5.4)

The parameter By represents the common log-odds ratio of success on treatment
relative to control.

2.6.1 ESTIMATION AND HYPOTHESIS TESTING

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. Parameter estimates are obtained using the method of
maximum likelihood, The standard error for a single parameter or a linear
combination of the parameters can be calculated from the observed or expected
Fisher’s information matrix. Confidence intervals are based on asymptotic normality.

Models are compared by means of the likelihood ratio test statistic, that is, the change
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in deviance (-2 times the log-likelihood) between two models, one of which contains
the parameter(s) of interest while the other is identical except that it does not contain
the parameter(s) of interest. This test statistic is compared with the chi-squared
distribution. Any package which fits a linear logistic regression model can be utilized.
To test the null hypothesis that the treatment difference in all studies is equal to O,

model (5.4) is compared with a model which only contains the study effects, namely

Dy
log ( ! ) = o + Poi.
] — !,]U’
(5.5)

Model (5.4) has r + 1 degrees of freedom associated with the model terms and model

(5.5) has r. The likelihood ratio statistic, equal to the change in deviance between the
two models, is compared with the chi-squared distribution with one degree of

freedom.

2.6.2 TESTING HETEROGENEITY ACROSS STUDIED

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. In order to perform a test for heterogeneity of the
treatment difference parameter across studies it is necessary to fit the model which

includes the study by treatment interaction term. This is given by

) Pij
o2 (]_—; = o + Boi + Prix1y,
! ij
(5.6)
which has 2r degrees of freedom associated with the model terms. The test for
heterogeneity is a test of the study by treatment interaction term and involves the
comparison of models (5.4) and (5.6). The change in deviance between these two
models is compared with the chi-squared distribution on r — 1 degrees of freedom, in

the same way as the Q statistic.
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2.7 METHODS OF FIXED EFFECTS

The inverse variance (IV) method computes a weighted average of log-odds ratios or
absolute risk differences using the inverse of the within-study variance as the study
weight. In keeping with methods implemented in standard meta-analytical software,
the variance of the individual trial odds ratio was approximated by the method of
Woolf while the variance of the risk difference was estimated using the Normal
approximation. The DL method is similar, except that the study weight is equal to the
inverse of the sum of the individual study’s variance and the estimated among-study
variance . This is therefore a random effects method (the only one we consider), and
is identical to the IV method when the among-study variance is zero. The MH method
combines odds ratios or risk differences, their pooled variance estimators being the
unconditional product binomial. The Peto one-step method computes an
approximation of the log-odds from the ratio of the efficient score to the Fisher
information, both evaluated under the null hypothesis. These quantities are estimated,
respectively, by the sum of the differences between the observed and expected
numbers of events in the treatment arm and by the sum of the conditional
hypergeometric variances. For the MH, inverse variance, DL and Peto methods, we
have used the Wald z-test method for hypothesis tests and computation of 95 per cent
confidence limits. The Wald test for an MH-combined odds ratio differs from the
score test proposed by Mantel and Haenszel . The score test is mathematically,
although not conceptually, identical to the Wald test for the Peto odds ratio. With rare
outcomes, a trial will sometimes contain no events in one or both arms, which yields
problems when computations involve ratios or reciprocals of numbers of events. For
many methods, statistical packages routinely add 0.5 to each cell from such trials
before metaanalysis to avoid divide-by-zero errors. When no event occurs in either
arm of a trial such that a and c are both zero, the trial odds ratio is undefined, as the
trial provides no information about either the likely direction or magnitude of the
effect. We have excluded such trials from meta-analyses of odds ratios for all methods
except the crude unstratified method. The trial’s risk difference is defined in this
situation (as zero), and thus these trials are included for analyses on the absolute risk

scale even though they are excluded from analyses on the odds ratio scale
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2.7.1 INVERSE VARIANCE METHOD

Inverse variance methods may be used to pool either binary or continuous data. In the
general formula below, the effect size, denoted i, could be the log odds ratio, log
relative risk, risk difference, difference in means or standardised mean difference
from the ith trial(Egger et all., 2013). The effect sizes are combined to give a pooled

estimate by calculating a weighted average of the treatment effects from the

0 = 22,
S

The weights are the reciprocals of the squared standard errors:

individual trials:

1
SE@®,)"

Thus larger studies, which have smaller standard errors, are given more weight than
smaller studies, which have larger standard errors. This choice of weight minimises
the variability of the pooled treatment effect IV. The standard error of IV is given by
S

1
SE(H IV } = .
The heterogeneity statistic is given by

0= 0,0, -0,

The strength of this approach is its wide applicability. It can be used to combine any
estimates that have standard errors available. Thus it can be used for estimates from
many types of study, including standardized mortality ratios, diagnostic test indices,
hazard ratios, and estimates from cross-over trials and cluster-randomized trials. It is
also possible to use this method when crude 2*2 tables cannot be obtained for each

study, but treatment effects and confidence intervals are available.
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2.7.2 MANTEL-HAENSZEL METHOD

When data are sparse, both in terms of event rates being low and trials being small,
the estimates of the standard errors of the treatment effects that are used in the inverse
variance methods may be poor (Egger et all., 2013). Mantel-Haenszel methods use an
alternative weighting scheme, and have been shown to be more robust when data are
sparse, and may therefore be preferable to the inverse variance method. In other
situations they give similar estimates to the inverse variance method. They are
available only for binary outcomes. For each study, the effect size from each trial i is
given weight w; in the analysis. The overall estimate of the pooled effect, Ou is given

by:

0 Z wl,
MH — "% °
Se

Unlike with inverse variance methods, relative effect measures are combined in their
natural scale, although their standard errors (and confidence intervals) are still
computed on the log scale. For combining odds ratios, each study’s. OR is given
weight

. = b:'ca'

1 N

3

and the logarithm of ORwy has standard error given by

I|
SE[In(OR, ;)] = 'I(E P H],

\EE RxS S§?

Where
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For combining risk ratios, each study’s RR is given weight

ZU,- — Cr'nli' ,
N.

1

and the logarithm of RRyy has standard error given by

P

SE[In(RR,)] = \' R S

Where

— (ﬂ i (ai + Ci) - a:'ciN:'). — a1y, “ — Cily;
Py R=E s S= R

1

For risk differences, each study’s RD has the weight

and RDwy has standard error given by

SE(RDyy,) =+ /K7,

where

_} ) Z[a!bing,. +c,d.n J; K- 2[%}

nl 1 n?.:' Niz i

However, the test of homogeneity is based upon the inverse variance weights and not

the Mantel-Haenszel weights. The heterogeneity statistic is given by
Q=2 w6, —6 )’
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where is the log odds ratio, log relative risk or risk difference.

2.7.3 PETO METHOD

An alternative to the Mantel-Haenszel method is a method due to Peto, (Egger et all.,
2013),(sometimes attributed to Yusuf, or to Yusuf and Peto). The overall odds ratio is
given by

OR,, = exp {—ZEH(OR")],
oW,

where the odds ratio OR; is calculated using the approximate Peto method described
in the individual trial section, and the weight w; is equal to the hypergeometric
variance of the event count in the intervention group, v; . The logarithm of the odds

ratio has standard error

1

\"I P2

SE[In(OR,, )=

The heterogeneity statistic is given by

0= Y v,(n0R; ~InOR,.,,)".

The approximation upon which Peto’s method relies has shown to fail when treatment
effects are very large, and when the sizes of the arms of the trials are seriously
unbalanced. Severe imbalance, with, for example, four or more times as many
participants in one group than the other, would rarely occur in randomised trials. In
other circumstances, including when event rates are very low, the method performs

well. Corrections for zero cell counts are not necessary for this method .
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2.8 A GENERAL RANDOM EFFECTS PARAMETRIC
APPROACH

2.8.1 ARANDOM EFFECT META-ANALYSIS MODEL

In a random effects model it is assumed that the treatment difference parameters in the
r studies (01, . . ., Or) are a sample of independent observations from N(8, °). The

general random effects model is given by
éj::9-+-ﬂj4-ﬁh
fori=1,...,r, where the v; are normally distributed random effects with mean 0 and

variance t2. The terms v; and &; are assumed to be independently distributed. It follows
that

6; ~ N0, g2 + 12).

2.8.2 ESTIMATION AND HYPOTHESIS TESTING OF THE
TREATMENT DIFFERENCE

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. Usually 2 is unknown and must be estimated from the

data. Therefore, the distributional assumption that is made is that
6 ~ N, w; ' 4 1
i~ N8, w; ~ +17),
where £2is an estimate of 12 By setting
wh = (w; ' + 3271

it follows that

éj ~ N(B, (W)~ Ly,

Treating the term (w'; ) * as if it were the true variance of 0 i provides the test statistic
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which follows a chi-squared distribution with one degree of freedom under the null

hypothesis of no treatment difference (6 = 0). If (w’; ) * is the true variance of 0., then

the ML estimate of 0 is given by é*, where

o T
ST

~

Now 6 is asymptotically unbiased for 6, with variance approximately equal to

/¥, wi. The standard error is given by

| 1

SC{G:E:] — I'Illr—*1
\ 2 i1 W;

and an approximate 95% CI for 0 is given by

If £2 is small then the modified weights w’; will be close to the original weights w;. In
this case the standard error and CI obtained from the random effects model will be
similar to those from the fixed effects model. Also the overall estimate of treatment
difference from both models will be similar. If £%is large then the standard error and
CI will be much larger for the random effects model. The random effects estimate of
treatment difference will move closer towards the arithmetic mean of the individual
study estimates. How much this estimate differs from the fixed effects estimate will
depend on the extent to which the studies with the largest original weights w; are

associated with the extreme estimates of treatment difference.
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2.8.3 ESTIMATION OF 1> USING THE METHOD OF MOMENTS

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. The approach to the estimation of > considered here is
that based on the method of

moments. This estimate can be readily calculated without the need for a statistical
software package. The following considerations provide the method of moments

estimate for 72, Under the random effects model, the fixed effects estimate of 6,
5— Z i 0w ‘
Ejhzllli
still has mean 0, but its variance is now given by
S, whvar(;) Z: L wi w4 1)
(> m-)z Zf—l wy

_ 1 - Z: ]u‘
S (L)

1-*&11‘(@} =

The statistic Q used for testing heterogeneity is

)
— Z wi(0; — 0)? Z wi(B; — 8)° — (Z w;) 06— 0)?,

i=1

so that the expected value of Q, E(Q), is given by

r r
E(Q) = Zwivﬂr{é;} — (Z w;) qur{'@]

i=1 i=1

r F l 1: 12
= wilw; '+ 1) — (Z,w)l T ! = 11]
i=1 i=1 Zi:l Wi ( i—1 u:l)
Wy
_ 1) y ,___1 .
= (r ( w; 1“’)
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This motivates use of the method of moments estimate fzfor 2, where

2 _ 0—(r—1)
S W S W S

as described by DerSimonian and Laird (1986). Because of the possibility of a
negative method of moments estimate, in practice the estimate used is the maximum
of the values 0 and 2. This means that when Q is smaller than its degrees of freedom
the method of moments estimate will be set equal to 0. The test for heterogeneity,
using Q, is a test of Ho: 7> = 0. Should 2 < 0, a fixed effects analysis is more
appropriate, because this happens when Q < E (Q; 12 = 0) = r — 1. It can be seen that
setting t°=0 in the random effects model leads to the fixed effects model. If 2> 0 the

following approximate result may be used
B ~ NO, w' +1%) = N(6, (wh) ™).

In a similar way, the test statistic U* and the estimate
6" and its standard error can be obtained by performing a weighted least-squares
regression. The only difference is that for the random effects analysis the weights are

the values w'; instead of w;.
2.9 RANDOM EFFECTS MODELS FOR BINARY DATA

Borenstein (2009) and references within made an extensive review of the subject and
presented all necessary theory. The fixed-effect model, discussed above, starts with
the assumption that the true effect size is the same in all studies. However, in many
systematic reviews this assumption is implausible. When we decide to incorporate a
group of studies in a meta-analysis, we assume that the studies have enough in
common that it makes sense to synthesize the information, but there is generally no
reason to assume that they are identical in the sense that the true effect size is exactly
the same in all the studies.

For example, suppose that we are working with studies that compare the proportion of
patients developing a disease in two groups (vaccinated versus placebo). If the
treatment works we would expect the effect size (say, the risk ratio) to be similar but

not identical across studies. The effect size might be higher (or lower) when the
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participants are older, or more educated, or healthier than others, or when a more
intensive variant of an intervention is used, and so on. Because studies will differ in
the mixes of participants and in the implementations of interventions, among other

reasons, there may be different effect sizes underlying different studies.

r T T T T - I/-’v\\l_ T T T 1

0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1.0 1.1 1.2
1l

Figure 2.1: Random effects model- distribution of true effects.

Or, suppose that we are working with studies that assess the impact of an educational
intervention. The magnitude of the impact might vary depending on the other
resources available to the children, the class size, the age, and other factors, which are
likely to vary from study to study. We might not have assessed these covariates in
each study. Indeed, we might not even know what covariates actually are related to
the size of the effect. Nevertheless, logic dictates that such factors do exist and will
lead to variations in the magnitude of the effect.

One way to address this variation across studies is to perform a random-effects meta-
analysis. In a random-effects meta-analysis we usually assume that the true effects are
normally distributed. For example, in Figure 2.1 Borenstein (2009) , the mean of all
true effect sizes is 0.60 but the individual effect sizes are distributed about this mean,
as indicated by the normal curve. The width of the curve suggests that most of the true
effects fall in the range of 0.50 to 0.70.

Suppose that our meta-analysis includes three studies drawn from the distribution of
studies depicted by the normal curve, and that the true effects (denoted 04, 6, and

03) in these studies happen to be 0.50, 0.55 and 0.65 (see Figure 2.2 Borenstein
(2009)).

If each study had an infinite sample size the sampling error would be zero and the

observed effect for each study would be the same as the true effect for that study.
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Figure 2.2: Random effects model- true effects.
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Figure 2.3: Random effects model- true and observed effect in one study.

If we were to plot the observed effects rather than the true effects, the observed effects
would exactly coincide with the true effects. Of course, the sample size in any study is
not infinite and therefore the sampling error is not zero. If the true effect size for a
study is 6;, then the observed effect for that study will be less than or greater than 6;
because of sampling error. For example, consider Study 3 in Figure 2.2. This study is
the subject of Figure 2.3, where we consider the factors that control the observed
effect. The true effect for Study 3 is 0.50 but the sampling error for this study is —
0.10, and the observed effect for this study is 0.40.

This figure also highlights the fact that the distance between the overall mean and the
observed effect in any given study consists of two distinct parts: true variation in
effect sizes ({j) and sampling error (e;). In Study 3 the total distance from p to Y3 is
-0.20. The distance from p to 63 (0.60 to 0.50) reflects the fact that the true effect size
actually varies from one study to the next, while the distance from 05 to Y3 (0.5 to 0.4)

is sampling error.
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More generally, the observed effect Y; for any study is given by the grand mean, the
deviation of the study’s true effect from the grand mean, and the deviation of the

study’s observed effect from the study’s true effect. That is,

Yi=pn+(; + €.

Therefore, to predict how far the observed effect Y; is likely to fall from p in any
given study we need to consider both the variance of {; and the variance of ¢;. The
distance from p (the triangle) to each 6; (the circles) depends on the standard deviation
of the distribution of the true effects across studies, called t (tau) (or ° for

its variance). The same value of tapplies to all studies in the meta-analysis, and in
Figure 2.4 Borenstein (2009) is represented by the normal curve at the bottom, which
extends roughly

from 0.50 to 0.70.

The distance from 0; to Y; depends on the sampling distribution of the sample effects
about 6;. This depends on the variance of the observed effect size from each study,
Vyvi , and so will vary from one study to the next.

In Figure 2.4 Borenstein (2009) the curve for Study 1 is relatively wide while the

curve for Study 2 is relatively narrow.

Study 1 — = ® —
A
Study 2 — oW -
Study 3 ® = o3
h 4
0.0 0.1 02 03 04 0.5 0.6 07 08 09 1.0 1.1 1.2
M

Figure 2.4:. Random effects model- between study and within study variance.
2.9.1 ARANDOM EFFECTS META-ANALYSIS MODEL

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. The random effects meta-analysis model for the binary

response in which the logit
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link function is to be used is given by

Pij

IDB( ) = a + Boi + P1x15 + viix1i.
L — pj

and has been discussed by Turner et al. (2000). This model is an example of a

generalized linear mixed model.

2.9.2 ESTIMATION AND HYPOTHESIS TESTING

Whitehead (2002) and references within made an extensive review of the subject and
presented all necessary theory. The methodology and the software for fitting
generalized linear mixed models has recently been and still is undergoing
development. For a full maximum likelihood analysis based on the joint marginal
distribution, numerical integration techniques are required for calculation of the log-
likelihood, score equations and Fisher’s information matrix. Approximate inference,
which is available with the MLn program, involves the use of either marginal quasi-
likelihood (MQL) or penalized quasi-likelihood (PQL), and either first-order or
second-order Taylor expansion approximations for the logit link function.
Approximate ML and REML estimates are found via the IGLS and RIGLS
procedures. PQL produces improved estimates of variance components in mixed
models, in general, whilst model convergence is more easily achieved with MQL. The
second-order Taylor expansion provides greater accuracy than the first-order
expansion. For further details about generalized linear mixed models, the reader is
referred to Brown and Prescott (1999).

Wald tests can be used for inferences concerning the variance components. Wald tests
can be used for inferences concerning the variance components. However, likelihood
ratio tests based on the REML are preferable. Wald tests can be used for inferences
concerning the fixed effect parameters. However, the calculated standard errors of the
parameter estimates and the corresponding Cls are usually too narrow, because no
allowance is made for the estimation of the variance components. Within MLn

parametric bootstrapping may be used.
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2.10 FIXED EFFECTS VS RANDOM EFFECTS

2.10.1 ESTIMATING THE SUMMARY EFFECT

Borenstein (2009) and references within made an extensive review of the subject and
presented all necessary theory. Under the fixed-effect model we assume that the true
effect size for all studies is identical, and the only reason the effect size varies
between studies is sampling error (error in estimating the effect size). Therefore, when
assigning weights to the different studies we can largely ignore the information in the
smaller studies since we have better information about the same effect size in the
larger studies.

By contrast, under the random-effects model the goal is not to estimate one true
effect, but to estimate the mean of a distribution of effects. Since each study provides
information about a different effect size, we want to be sure that all these effect sizes
are represented in the summary estimate. This means that we cannot discount a small
study by giving it a very small weight (the way we would in a fixed-effect analysis).
The estimate provided by that study may be imprecise, but it is information about an
effect that no other study has estimated. By the same logic we cannot give too much
weight to a very large study (the way we might in a fixed-effect analysis). Our goal is
to estimate the mean effect in a range of studies, and we do not want that overall

estimate to be overly influenced by any one of them.

2.10.2 CONFIDENCE INTERVAL

Borenstein (2009) and references within made an extensive review of the subject and
presented all necessary theory. Under the fixed-effect model the only source of
uncertainty is the within-study (sampling or estimation) error. Under the random-
effects model there is this same source of uncertainty plus an additional source
(between-studies variance). It follows that the variance, standard error, and
confidence interval for the summary effect will always be larger (or wider) under the
random-effects model than under the fixed-effect model (unless 7 is zero, in which

case the two models are the same).
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2.10.3 THE NULL HYPOTHESIS

Borenstein (2009) and references within made an extensive review of the subject and
presented all necessary theory. Often, after computing a summary effect, researchers
perform a test of the null hypothesis. Under the fixed-effect model the null hypothesis
being tested is that there is zero effect in every study. Under the random-effects model
the null hypothesis being tested is that the mean effect is zero. Although some may
treat these hypotheses as interchangeable, they are in fact different, and it is
imperative to choose the test that is appropriate to the inference a researcher wishes to

make.

2.10.4 WHICH MODEL SHALL WE USE?

Borenstein (2009) and references within made an extensive review of the subject and
presented all necessary theory:

Fixed effect

It makes sense to use the fixed-effect model if two conditions are met. First, we
believe that all the studies included in the analysis are functionally identical. Second,
our goal is to compute the common effect size for the identified population, and not to
generalize to other populations. For example, suppose that a pharmaceutical company
will use a thousand patients to compare a drug versus placebo. Because the staff can
work with only 100 patients at a time, the company will run a series of ten trials with
100 patients in each. The studies are identical in the sense that any variables which
can have an impact on the outcome are the same across the ten studies. Specifically,
the studies draw patients from a common pool, using the same researchers, dose,
measure, and so on (we assume that there is no concern about practice effects for the
researchers, nor for the different starting times of the various cohorts). All the studies
are expected to share a common effect and so the first condition is met. The goal of
the analysis is to see if the drug works in the population from which the patients were
drawn (and not to extrapolate to other populations), and so the second condition is
met, as well.

In this example the fixed-effect model is a plausible fit for the data and meets the

goal of the researchers. It should be clear, however, that this situation is relatively
rare. The vast majority of cases will more closely resemble those discussed

immediately below.
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Random effects

By contrast, when the researcher is accumulating data from a series of studies that

had been performed by researchers operating independently, it would be unlikely that
all the studies were functionally equivalent. Typically, the subjects or interventions

in these studies would have differed in ways that would have impacted on the results,
and therefore we should not assume a common effect size. Therefore, in these cases
the random-effects model is more easily justified than the fixed-effect model.
Additionally, the goal of this analysis is usually to generalize to a range of scenarios.
Therefore, if one did make the argument that all the studies used an identical,
narrowly defined population, then it would not be possible to extrapolate from this
population to others, and the utility of the analysis would be severely limited.

A caveat
There is one caveat to the above. If the number of studies is very small, then the
estimate of the between-studies variance will have poor precision. While the random-
effects model is still the appropriate model, we lack the information needed to apply it
correctly. In this case the reviewer may choose among several options, each of them
problematic.
One option is to report the separate effects and not report a summary effect. The hope
is that the reader will understand that we cannot draw conclusions about the effect
size and its confidence interval. The problem is that some readers will revert to vote
counting and possibly reach an erroneous conclusion. Another option is to perform a
fixed-effect analysis. This approach would yield a descriptive analysis of the included
studies, but would not allow us to make inferences about a wider population. The
problem with this approach is that (a) we do want to make inferences about a wider
population and (b) readers will make these inferences even if they are not warranted.
A third option is to take a Bayesian approach, where the estimate is based on data
from outside of the current set of studies. This is probably the best option, but the
problem is that relatively few researchers have expertise in Bayesian meta-analysis.
The test of the null hypothesis between studies variance is zero, is based on
the amount of between-studies variance observed, relative to the amount we would
expect if the studies actually shared a common effect size. Some have adopted the
practice of starting with a fixed-effect model and then switching to a random-effects
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model if the test of homogeneity is statistically significant. This practice should be
strongly discouraged because the decision to use the random-effects model should be
based on our understanding of whether or not all studies share a common effect size,
and not on the outcome of a statistical test (especially since the test for heterogeneity
often suffers from low power). If the study effect sizes are seen as having been
sampled from a distribution of effect sizes, then the random-effects model, which
reflects this idea, is the logical one to use. If the between-studies variance is
substantial (and statistically significant) then the fixed-effect model is inappropriate.
However, even if the between-studies variance does not meet the criterion for
statistical significance (which may be due simply to low power) we should still take
account of this variance when assigning weights. If t 2 turns out to be zero, then the
random-effects analysis reduces to the fixed-effect analysis, and so there is no cost to
using this model. On the other hand, if one has elected to use the fixed-effect model a
priori but the test of homogeneity is statistically significant, then it would be
important to revisit the assumptions that led to the selection of a fixed-effect model.
The discussion of differences between the fixed-model and the random-effects
model focused largely on the computation of a summary effect and the confidence
intervals for the summary effect. We did not address the implications of the dispersion
itself. Under the fixed-effect model we assume that all dispersion in observed effects
is due to sampling error, but under the random-effects model we allow that some of
that dispersion reflects real differences in effect size across studies. In the chapters
that follow we discuss methods to quantify that dispersion and to consider its
substantive implications.
Although a fixed-effect meta-analysis is defined as assuming that every study has a
common true effect size, some have argued that the fixed effect method is valid
without making this assumption. The point estimate of the effect in a fixed-effect
meta-analysis is simply a weighted average and does not strictly require the
assumption that all studies estimate the same thing. For simplicity and clarity we
adopt a definition of a fixed-effect meta-analysis that does assume homogeneity of

effect.
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2.11 STUDY SELECTION

For the study selection of studies Anne Whitehead in the book Meta-Analysis

of controlled clinical trials, in an extended review of the subject presented all
necessary theory. The selection criteria for studies in the meta-analysis should be
specified. If there is more than one hypothesis to be tested it may be necessary to
define separate selection criteria for each one. In addition, for each hypothesis of
interest, it may be desirable to create two groups of studies. The first group would
consist of the primary studies on which the formal meta-analysis would be
undertaken. The second group would consist of additional studies whose results may
be included in a sensitivity analysis, or in a graphical presentation of individual study
results.
Such studies may involve different patient populations or treatment comparisons from
the primary studies, or may have less appropriate designs. However, their results may
still be informative. Careful thought needs to be given to the selection criteria for the
primary studies.

If they are very strict, the results of the meta-analysis may only be applicable
to a small subset of the patient population or to a very specific treatment regimen,
whereas if they are too liberal, it may not be possible to combine the individual trial
results in an informative way. Typically, the selection criteria will define the
treatment of interest and the relevant subject population. This should follow logically
from the statement of the objectives of the meta-analysis. In addition, they may relate
to the type of study design used. The assessment of the methodological quality of a
trial may also be used to determine its eligibility for inclusion in the group of primary
studies. The most important aspect of this assessment concerns the avoidance of bias
in the estimation of the treatment difference of interest. Therefore, design issues, such
as the method of randomizing subjects to treatment group, blinding, method of
assessing patient outcome, follow-up of patients, and handling of protocol deviations
and patient withdrawals from the trial, are likely to feature prominently. It may be
appropriate to categorize studies according to how well they adhere to important
methodological standards. In the report of a meta-analysis it will be necessary to
include a list of studies which were excluded as well as a list of studies which were
included. The reason for exclusion should be provided for each excluded study. It

may be advantageous to have more than one assessor decide independently which
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studies to include or exclude, together with a well-defined checklist and a procedure
which will be followed when they disagree. In some cases, new information may
surface during the reading of the study reports which indicate a need to modify the
study selection criteria.

2.12 THE PACKAGE “meta” and “metafor” IN R,

The meta package provides functions for conducting meta-analyses in R. In the r
project site where all functions of every package in r software are described we found
that the package includes functions for fitting the meta-analytic fixed- and random-
effects models and allows for the inclusion of moderators variables (study-level
covariates) in these models. Meta-regression analyses with continuous and categorical
moderators can be conducted in this way. Functions for the Mantel-Haenszel and
Peto’s one-step method for meta-analyses of 2 x 2 table data are also available.
Finally, the package provides various plot functions (for example, for forest, funnel,
and radial plots) and functions for assessing the model fit, for obtaining case
diagnostics, and for tests of publication bias.

Details R package meta (Schwarzer, 2007) provides the following meta-analysis
methods:

* Fixed effect and random effects meta-analysis (functions metabin, metacont,
metacor, metagen, metainc, metaprop, and metarate)

* Several plots (forest, funnel, Galbraith / radial, labbe, baujat, bubble)

» Statistical tests (metabias) and trim-and-fill method (trimfill) to evaluate bias in
metaanalysis

* Import data from ’RevMan 5’ (read.rmS5; see also metacr)

* Prediction interval, Hartung-Knapp and Paule-Mandel method for random effects
model (arguments in meta-analysis functions)

» Cumulative meta-analysis (metacum) and leave-one-out meta-analysis (metainf)

» Meta-regression (metareg; if R package metafor is installed)

* Generalised linear mixed models (metabin, metainc, metaprop, and metarate; if R
packages metafor, Ime4, numDeriv, and BiasedUrn are installed)

A comprehensive collection of functions for conducting meta-analyses in R. The
package includes functions to calculate various effect sizes or outcome measures, fit
fixed-, random- , and mixed-effects models to such data, carry out moderator and

meta-regression analyses, and create various types of meta-analytical plots (e.g.,
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forest, funnel, radial, L'Abbe, Baujat, GOSH plots). For meta-analyses of binomial
and person-time data, the package also provides functions that implement specialized
methods, including the MantelHaenszel method, Peto's method, and a variety of
suitable generalized linear (mixedeffects) models (i.e., mixed-effects logistic and
Poisson regression models). Finally, the package provides functionality for fitting
meta-analytic multivariate/multilevel models that account for non-independent
sampling errors and/or true effects (e.g., due to the inclusion of multiple treatment
studies, multiple endpoints, or other forms of clustering). Network metaanalyses and
meta-analyses accounting for known correlation structures (e.g., due to phylogenetic

relatedness) can also be conducted.

2.13 FOREST PLOT

A forest plot, also known as a blobbogram, is a graphical display of estimated results
from a number of scientific studies addressing the same question, along with the
overall results. It was developed for use in medical research as a means of graphically
representing a meta-analysis of the results of randomized controlled trials. In the last
twenty years, similar meta-analytical techniques have been applied in observational
studies (e.g. environmental epidemiology) and forest plots are often used in

presenting the results of such studies also.

Although forest plots can take several forms, they are commonly presented with two
columns. The left-hand column lists the names of the studies (frequently randomized
controlled trials or epidemiological studies), commonly in chronological order from
the top downwards. The right-hand column is a plot of the measure of effect
(e.g. an odds ratio) for each of these studies (often represented by a square)
incorporating confidence intervals represented by horizontal lines. The graph may be
plotted on a natural logarithmic scale when using odds ratios or other ratio-based
effect measures, so that the confidence intervals are symmetrical about the means
from each study and to ensure undue emphasis is not given to odds ratios greater than
1 when compared to those less than 1. The area of each square is proportional to the
study's weight in the meta-analysis. The overall meta-analysed measure of effect is

often represented on the plot as a dashed vertical line. This meta-analysed measure of
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effect is commonly plotted as a diamond, the lateral points of which indicate

confidence intervals for this estimate.

S Lewis (2001) in an extended review of the subject presented all necessary theory
based on the following ideas. In a typical forest plot, the results of component studies
are shown as squares centred on the point estimate of the result of each study. A
horizontal line runs through the square to show its confidence interval—usually, but
not always, a 95% confidence interval. The overall estimate from the meta-analysis
and its confidence interval are put at the bottom, represented as a diamond. The centre
of the diamond represents the pooled point estimate, and its horizontal tips represent
the confidence interval. Significance is achieved at the set level if the diamond is clear

of the line of no effect.

The plot allows readers to see the information from the individual studies that went
into the meta-analysis at a glance. It provides a simple visual representation of the
amount of variation between the results of the studies, as well as an estimate of the
overall result of all the studies together. Forest plots increasingly feature in medical
journals, and the growth of the Cochrane Collaboration has seen the publication of

thousands in recent years.

The origin of forest plots goes back at least to the 1970s. Freiman et al displayed the
results of several studies with horizontal lines showing the confidence interval for
each study and a mark to show the point estimate. This study was not a meta-analysis,
and the results of the individual studies were therefore not combined into an overall
result.? In 1982, Lewis and Ellis produced a similar plot but this time for a meta-
analysis, and they put the overall effect on the bottom of the plot. However, smaller
studies, with less precise estimates of effect, had larger confidence intervals and,

perversely, were the most noticeable on the plots

In S. Gopalakrishnan and P. Ganeshkumar (2013) a forest plot is described at the
following structure: meta-analysis graphs can principally be divided into six columns
[Figure 2.5]. Individual study results are displayed in rows. The first column (“study”)
lists the individual study IDs included in the meta-analysis; usually the first author
and year are displayed. The second column relates to the intervention groups and the
third column to the control groups. The fourth column visually displays the study

results. The line in the middle is called “the line of no effect.” The weight (in %) in
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the fifth column indicates the weighting or influence of the study on the overall results

of the meta-analysis of all included studies. The higher the percentage weight, the

bigger the box, the more influence the study has on the overall results. The sixth

column gives the numerical results for each study (e.g., odds ratio or relative risk and

95% confidence interval), which are identical to the graphical display in the fourth

column. The diamond in the last row of the graph illustrates the overall result of the

meta-analysis.

Thus, the horizontal lines represent individual studies. Length of line is the confidence

interval (usually 95%), squares on the line represent effect size (risk ratio) for the

study, with area of the square being the study size (proportional to weight given) and

position as point estimate (relative risk) of the study
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Figure 2.5: Interpretation of meta-analysis

An example is presented of how to read a forest plot that can be found at the

centre for evidence-based intervention of the University of Oxford:
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Figure 2.6: Forest plot of the example.

Interpreting the forest plot involves two steps:

Determine the effect size and

Assess the level of difference (or heterogeneity) among the different trials that are

included in the meta-analysis

In the example, all of the lines fall on the left-hand side of the graph (Figure 2.6),
which tells us that, in each of the trials, the participants who received the intervention
showed or reported bigger changes than the participants who received the control
condition (the control condition may have been another intervention or no
intervention at all). The black diamond sits about half way between 0 and -1, which
means that the average effect size of the three trials is about -0.5. For a more precise
idea of the average effect size of the three trials, the actual number is reported in the
table in boldface type, under the ‘Std. Mean Difference’ column. In this case, the
actual average effect size is -0.42. According to a common interpretation of effect
sizes, this would suggest that the intervention being tested in these three studies had a
small to medium effect size — in other words, ‘it worked’ and had a moderate effect.
In addition to the effect size, it is also important to consider the level of heterogeneity
in a meta-analysis, which is captured in the I? statistic (which can be found at the
bottom of the table in the example forest plot).

Systematic reviews and meta-analyses aim to capture the overall effects of an
intervention or treatment when it has been tested in multiple trials. Ideally, if multiple
trials are testing the same intervention, the effects of the intervention should be
consistent across all of the studies. Unfortunately, this is rarely the case, because
many things can affect the results of a trial, such as researcher bias, problems with
data collection, or any number of other things.

So a systematic review and meta-analysis are designed to ask the question: If
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these studies are all testing the same intervention, why don’t they get the same
results? Are the differences caused by chance, or is there something else involved? If
it is the former, then we can have confidence in the results of the meta-analysis. If the
differences are not the result of chance, then we need to be cautious in interpreting the
results of the meta-analysis. Fortunately, it is easy to tell if heterogeneity is due to
chance (or not) by interpreting the I? statistic. The I®statistic can be found at the
bottom of the table in a forest plot. An I?statistic of more than 50% is considered
high. In our example forest plot, 1= 0%, so we can have confidence that the effects of
the intervention being tested — which have a moderate effect size (-0.42) — are
accurate and can be trusted. If the 1° statistic were more than 50%, we would be less
sure that the intervention can consistently have a moderate effect, and we might want
to read the rest of the study to see if the authors report on why the effects are so
different across studies. This can help you to determine, for example, with whom the
intervention worked (e.g. who were the participants?) and to find out other details that
might help you make a decision about whether the intervention has been tested with
people or in places that are similar to your own population, clients or context.

2.14 FUNNEL PLOT

A funnel plot is a graph designed to check for the existence of publication bias; funnel
plots are commonly used in systematic reviews and meta-analyses. In the absence of
publication bias, it assumes that studies with high precision will be plotted near the
average, and studies with low precision will be spread evenly on both sides of the
average, creating a roughly funnel-shaped distribution.

Matthias Egger (1997) and references within made an extensive review of the subject
and presented all necessary theory at the paper "Bias in meta-analysis detected by a
simple, graphical test”. The authors mention that systematic reviews of the best
available evidence regarding the benefits and risks of medical interventions can
inform decision making in clinical practice and public health. Such reviews are,
whenever possible, based on meta-analysis: “a statistical analysis which combines or
integrates the results of several independent clinical trials considered by the analyst
to be ‘combinable’. However, the findings of some meta-analyses have later been
contradicted by large randomized controlled trials. Such discrepancies have brought

discredit on a technique that has been controversial since the outset. The appearance
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of misleading meta-analysis is not surprising considering the existence of publication
bias and the many other biases that may be introduced in the process of locating,
selecting, and combining studies.

Funnel plots, plots of the trials' effect estimates against sample size, may be
useful to assess the validity of meta-analyses. The funnel plot is based on the fact that
precision in estimating the underlying treatment effect will increase as the sample size
of component studies increases. Results from small studies will scatter widely at the
bottom of the graph, with the spread narrowing among larger studies. In the absence
of bias the plot will resemble a symmetrical inverted funnel. Conversely, if there is
bias, funnel plots will often be skewed and asymmetrical.

The value of the funnel plot has not been systematically examined, and symmetry (or
asymmetry) has generally been defined informally, through visual examination.
Unsurprisingly, funnel plots have been interpreted differently by different observers.
We measured funnel plot asymmetry numerically and examined the extent to which
such asymmetry predicts discordance of results when meta-analyses are compared to
single large trials of the same issue. We used the same method to assess the
prevalence of funnel plot asymmetry, and thus of possible bias, among meta-analyses
published in leading general medicine journals and meta-analyses disseminated

electronically by the Cochrane Collaboration.

We present an example of how to read a funnel plot:

Y Dots represent
individual studies
&
‘_; L)
7] ]
[
o .
=
: &
n
- - X
x 2x 3x

Study Precision

Figure 2.7: Structure of a funnel plot.
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A funnel plot is a scatter plot of individual studies, their precision and results.

Funnel plots have the following characteristics:

Each dot represents a single study.

The y-axis is usually the standard error of the effect estimate. Larger studies with
higher power are placed towards the top. Lower powered studies are placed towards
the bottom. However, other measures could also be plotted (e.g. the reciprocal of the
standard error, the reciprocal of the sample size, or variance of the estimated effect).
The x-axis shows the result for the study, sometimes expressed as an odds ratio.

The plot should ideally resemble a pyramid or inverted funnel, with scatter due to
sampling variation. The shape is expected because the studies have a wide range of
standard errors. If the standard errors were the same size, the studies would all fall on
a horizontal line.

Funnel plots can be used as a check for bias in meta-analysis results. Asymmetry is
commonly equated with publication bias and other kinds of reporting bias. However,
funnel plots are not a good way to investigate publication bias (Sedgwick). There can
be a number of reasons for asymmetrical funnel plots (also called small study effects).
Sterne et. al (2011) list a slew of reasons, which include, but aren’t limited to:

Poor methodological design, including fraud or inadequate analysis.

Reporting bias, including delayed publication and location bias, selective outcome
reporting and selective analysis reporting. Can also include language bias (i.e. only
including those studies written in your native language).

Chance: 95% of studies will usually fall within the triangular region if there are no
biases or heterogeneity present in the studies. One possibility to skew the shape is that
the errant 5% might all fall in one particular area by chance alone. The “95%” rule is
actually a probability, meaning that chance alone could cause a higher or lower
percentage than 95%, causing an asymmetrical shape that’s actually not an indication
of any bias at all. This is especially true if only a small number of studies are included
in the meta analysis.

Study Heterogeneity. If heterogeneity results in a correlation between study size and
intervention effects, this will result in an asymmetrical funnel (Terrin et. al)

The decision about whether a funnel plot is symmetric or not shouldn’t be based only

on visual cues. Tests for asymmetry are available (one such test is Egger’s test), but
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they should be interpreted with caution. They may not have statistical validity,
typically have low power, and they may be challenging to interpret.

For the data analysis and the graphs R statistical software was used and the packages
meta and metaphor as described in Chapter 2. In the introduction the problem was
described as a problem of meta-analysis in studies where oral health problems are

compared between people with severe mental illness and a control group.
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CHAPTER 3:
STATISTICAL METHODS AND
ANALYSIS

In this chapter the search strategy for the paper’s collection, the statistical techniques

used and the analysis of the data are presented. As one of the aims of this thesis is to
provide a comparison between three fixed effects methods (Mantel-Haenszel, Peto
and Inverse variance), the results will be calculated using all these methods and a

comparison between them will be provided.

3.1 SEARCH STRATEGY
The authors searched Medline, PsycINFO and Embase for the period January 1988

until March 2010 using the following text, MeSH or Emtree terms as appropriate:
mental illness, mental disorders, dementia, psychosis, psychotic disorders, depression,
depressive disorders, bipolar disorder, mood disorder, schizophrenia, oral health,
dentistry and dental care. They searched for further publications by scrutinizing the
reference lists of initial studies identified and other relevant review papers. For
inclusion in the meta-analysis, studies had to have suitable controls. Where these were
not included the authors looked for controls from a survey of a similar community and
age group, conducted within 10 years of the index study. This is because oral health
varies between populations, by both age and over time: for example, oral health has
improved considerably over the past 20 years in most high-income countries. It was
also ensured that the comparison data came from areas with similar levels of fluoride

in the water supply.

3.2 STATISTICAL ANALYSIS

Package R software and libraries “meta” and “metafor” were used for the
analysis. We calculated odds ratios, risk ratios and mean differences for
edentulousness, given that the studies included had a crosssectional design. The
authors (Kisely et all., 2011) calculated the mean differences for continuous data as
studies used the same scale for each outcome (DMFT, DMFS). We assessed

heterogeneity using the 1 statistic. This provides an estimate of the percentage of
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variability due to heterogeneity rather than chance alone. An I? estimate of 50% or
greater indicates possible heterogeneity, and scores of 75-100% indicate considerable
heterogeneity. The 12 statistic is calculated using the chi-squared statistic (Q) and its
degrees of freedom.

We used a fixed effects model with the Mandel Haenzel, Inverse Variance and
Peto method for the calculation of and a random effects model for the calculation of
odds ratios, risk ratios and mean differences for edentulousness, since we found
significant heterogeneity in the majority of our analyses. In the other
measurement(DMFS, Decayed teeth, missing teeth, Decayed Surfaces, DMFT) we
used random effects models. For all measurements we performed a forest plot
analysis for visual inspection of heterogeneity and a funnel plot analysis for graphical
presentation of publication bias.

The authors found over 550 citations of interest in the initial electronic searches, and
the final number of papers used is depicted into Figure2.1. Ten studies were from
Europe; four were from India, three from Israel, two from Australia and one each
from South Africa, Hong Kong and the USA. The most common diagnosis was
psychosis, usually schizophrenia. Other diagnose (in descending order of frequency)
included dementia, bipolar affective disorder, mood disorder, anxiety and personality
disorder. Only seven studies used ICD or DSM diagnostic criteria. Ages ranged from
15 to 96 years, (Kisely et all., 2011).

3.3 INCLUSION AND EXCLUSION CRITERIA OF STUDIES

Studies were included with a focus on severe mental illness, defined as a primary
diagnosis of dementia, schizophrenia, bipolar affective disorder or other affective
disorder. Studies were included using clinical diagnoses or diagnostic criteria. Studies
were excluded of eating disorder and of post-traumatic stress disorder in veterans, as
these are very different patient groups. Studies were also excluded of people with
primary alcohol or substance use disorders and people with intellectual disability for
the same reason. Finally, the focus was on edentulousness as the end-stage of the two
main dental diseases. Therefore there were also excluded studies of less severe dental
outcomes such as poor oral hygiene. As a result, the finaly list of included studies was

the following:
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For the subgroup of edentulousness:
Adam,2006

Burchell,2006

Chalmers, 1998

Hede,1992

Hede,1995(35-49 years)
Hede,1995(65-78 years)
Lewis,2001

Mirza,2001

Tang,2004

Viglid,1993

For the measurement of decayed surfaces:
Hede, 1995 (35-49 years)

Hede, 1995 (6578 years)

Stoefe; 1990

For measurement of DMFS:

Hede, 1995 (35-49 years)

Hede, 1995 (6578 years)

Stiefel, 1990

For the measurement of decayed teeth:
Ramon, 2003 (18-34 years)
Velasco, 1997

For the measurement of Missing teeth:
Ramon, 2003 (18-34 years)

Stiefel, 1990

Velesco, 1997

For the measurement of DMFT:
Kumar, 2006

Ramon, 2003 (18-34 years)

Rekha, 2002

Velasco, 1997
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Total papers yielded
{abstracts searched

about 550 studes

gedronically for key terms):

Possible inclusion
{abstracts scrutnised):
73 studies

Dnd not meaet inclEson crntena:
abut 480

Excluded: 35 studies
Did not meet inclusion criteria
(&£ primary focus was eatng
disorder, alcohol, substance
use or learning disability):
34 studies
Paper unavailable: 1 sudy

38

Papers scrutinised in detail:

Excluded: 17 studies
(&£ nota prevalence study
of oral health and psychiatric
disorder, or did not Inciude

4 rélevant dental outcome)

Papers in review:
21

Excluded from meta-analysis:
7 studies
(e.2 Insufhcient data
Or No contnols)

Papers in meta-analysis:
14

Figure 3.1: Papers yielded by search strategy in systematic review.




3.4 META-ANALYSIS RESULTS

To import the data in the R software we used the following commands:

data_psych <- data.frame(total=c(135,220,138,84,109,83,326,29,91,407),
events=c(89,16,14,23,2,18,205,2,6,256))

data_control<- data.frame(total=c(219,2667,3630,261,5759,8592,188,302,375,455),
events=c(109,213,200,8,58,1352,94,3,0,43))

study <- c(*‘Adam,2006','Burchell,2006','Chalmers,1998','Hede,1992','Hede,1995(35-

49years)’,'Hede,1995(65-78

years)','Lewis,2001','Mirza,2001','Tang,2004",'Viglid,1993")

data_sbgl<-

data.frame(row.names=study,Psychiatric=data_psych,Control=data_control)

data_sbhgl

study Psychiatric.total psychiatric.events Control.total Control.events

1 Adam, 2006 135 g9 219 109
2 Burchell,2006 220 16 2667 213
3 Chalmers,1998 138 14 3630 200
4 Hede, 1992 84 23 261 8
5 Hede,1995(35-49 years) 109 2 5759 58
6 Hede,1995(65-78 years) 83 18 8592 1352
7 Lewis,2001 326 205 188 94
8 Mirza,2001 29 2 302 3
9 Tang,2004 91 6 375 0
10 viglid,1993 407 256 455 43

Table 3.1: Data frame containing the data.

In order to do the meta-analysis in Odds Ratio we use the following command:

library(meta)

MOR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl1$Psychiatric.total,data_sbgl$Contr
ol.events,data_sbgl1$Control.total,sm="OR" , method ="MH" , MH.exact = TRUE)
library(metafor)

forest(mOR,studlab=study)
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W
E

oOR 05%—CI Hw(fixed) w(random)
1 1.9525 [ 1.2529; 3.0428] 18.1 11.6
2 0.9036 [ 0.5331; 1.5317] 19.2 11.5
3 1.9363 [ 1.0943; 3.4263] 8.4 11.3
4 11.9242 [ 5.0880; 27.9453] 1.8 10.5
5 1.8373 [ 0.4430; 7.6201] 1.4 B.5
5] 1.4829 [ 0.8770; 2.5075] 12.9 11.5
F 1.6942 [ 1.1777; 2.4372] 2B8.3 11. 8
B 7.3B27 [ 1.1819; 46.1166] 0.3 7.1
9 57.0936 [ 2.1857; 1023.2145] 0.0 4.4
10 16.2440 [11.1870; 23.5869] 9.6 11. 8
Mumber of studies combined: k = 10

OR 85%-CI z p-value

Fixed effect model 3.2478 [2.7798; 3.7945] 14.84 < 0.0001
rRandom effects model 2.3510 [1.5703; 7.1511] 3.13 0. 0018

quantifying heterogeneity:
taur2 = 1.2333; H = 3.91 [3.15; 4.84]; 142 = 93.4% [89.9%; 95.7%]

Test of heterogeneity:
o d.f. p-value
137,34 9 =« 0.0001

Details on meta-analytical method:

- Mantel-Haenszel method (without continuity correction)

- Dersimonian-Laird estimator for taus2

- Continuity correction of 0.5 in studies with zero cell freguencies

Table 3.2: Output presenting fixed and random effects analysis for Odds ratio using

Mantel-Haenszel method.

As one can see from the results of Table 3.2, the value of Odds Ratio is large (3.25
and 3.35 for the fixed and random effects estimate respectively). The difference
between fixed and random effects models is not that large. However, the random
effects estimate has a lot larger variability depicted in to much larger Cls (1.57, 7.15),
still however statistically different than 1. All heterogeneity indeces indicate a
problem of heterogeneity between trials (H=3.91, 1°=93.4%, Q=137.34, p<0.001).

The forest plot (Table 3.3) indicates that the majority of Odds ratio values are greater
than 1 and that trials 5,8,9 have greater variability than other trials. Heterogeneity
index 1°=93% , p<0.01 shows a problem of heterogeneity between trials. The funnel
plot (Figure 3.1) indicates some publication bias for six studies (1,2,4,6,7,10). These
studies present unusually low variability according to the distance from the common

value of Odds ratio.
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Experimental Control Weight Weight
Study Events Total Events Total Odds Ratio OR 95%-Cl (fixed) (random)
Adam, 2006 a9 135 109 219 : 195 [1.25 304] 181% 11.6%
Burchell 2006 16 220 213 2667 == f 080 [053; 153] 192% 11.5%
Chalmers, 1988 14 138 200 3630 —'-E 194 [1.09; 343] 84% 11.3%
Hede 1982 23 84 a 261 E—'— 11.92 [5.09; 2795 1.8% 10.5%
Hede, 1995(35-49 years) 2 109 58 5754 —-'-E— 184 [044;, 762 14% a.5%
i
Hede 1995(65-78 years) 18 83 1352 8582 T'_E 148 [0.88, 251 129% 11.5%
Lewis 2001 205 326 94 138 J 169 [1.18;, 244] 28.3% 11.8%
Mirza, 2001 2 29 3 302 —E—'— 7.38 [1.18; 4612] 0.3% 7.1%
Tang, 2004 6 9 0 37 E—'— 7.09 [319,1023.21] 0.0% 4.4%
Viglid, 1993 266 407 43 455 f il 16.24 [11.19; 23508] 9.6% 11.8%
E
Fixed effect model 1622 22448 5 3.25 [2.78; 3.79] 100.0% -
Random effects model = 3.35 [1.57; 7.5 100.0%
5 2 | | | |
Heterogeneity: /™ =93%, 1 =1.233 p <= 0.1
genety ? ] 01 1 10 1000
Table 3.3: Forest plot of fixed and random effects analysis for Odds ratio using
Mantel-Haenszel method.
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Figure 3.2: Funnel plot of Odds ratio using Mantel-Haenszel method.
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Next, results of Risk ratio using Mantel-Haenszel method are presented:
mRR<-

metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data_sbgl$Contr

ol.events,data_sbgl$Control.total,sm="RR" , method ="MH" , MH.exact = TRUE)

mRR
forest(mRR,studlab=study)

= MRR
RR 05%-CT %wW(fixed) %w{random)
1 1.3246 [1.1063; 1.5858] 25.8 12.0
2 0.9106 [0.5584; 1.4851] 10.1 11.9
3 1.8413 [1.1007; 3.0801] 4.5 11. 8
4 §.9330 [4.1527; 19.2162] 1.2 10.4
5 1.8219 [0.4507; 7.3645] 0.7 6.9
G 1.3782 [0.9131; 2.0803] 8.0 12.2
7 1.2577 [1.0658; 1.4840] 37.0 12.0
8 ©.9425 [1.2087; 39.8777 0.2 5.4
9 53,3497 [3.03229; 938.4402] 0.0 2.7
10 &6.6556 [4.9601; &.9308] 12.6 12.7
Mumber of studies combined: k = 10
RRE 95%-CI z p-value
Fixed effect model 2.0914 [1.8853; 2.3201] 13.94 = 0.0001
rRandom effects model 2.4303 [1.4307; 4.1280] 3.29 0. 0010
Quantifying heterogeneity:
tausa2 = 0.55%29; H = 4,17 [3.39; 5.12]; I~A2 = 94.2% [91.3%;
Test of heterogeneity:
g d.f. p-value
156. 38 9 = 0.0001

95, 2%]

Table 3.4: Output presenting fixed and random effects analysis for Risk ratio

using Mantel-Haenszel method.

As one can see from the results of Table 3.3, the value of Risk Ratio is 2.09 and 2.43

for the fixed and random effects estimate respectively. The difference between fixed

and random effects models is not that large. However, the random effects estimate has

a lot larger variability depicted in to much larger Cls (1.43, 4.13), still however

statistically different than 1. All heterogeneity indeces indicate a problem of
heterogeneity between trials (H=4.17, 1°=94.2%, Q=156.38, p<0.001). The forest plot
indicates that the majority of Risk ratio values are greater than 1 and that trials 5,8,9

have greater variability than other trials. Heterogeneity index 1°=94% , p<0.01 shows

a problem of heterogeneity between trials. The funnel plot (Figure 3.2) indicates some
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publication bias for seven studies (1,2,4,6,7,9,10). These studies present unusually

low variability according to the distance from the common value of Risk ratio.

Study

Adam, 2006

Burchell 2006
Chalmers, 1998

Hede, 1992
Hede,1995(35-49years)
Hede, 1995(65-78 years)
Lewis, 2001

Mirza, 2001

Tang,2004

Wiglid, 1993

Fixed effect model
Random effects model

89
16
14
23
2
18
205

256

Experimental
Events Total

135
220
138
84
109
83
326
29
81
407

1622

Control
Events Total

108 219
213 2867
200 3630
8 261

53 5759
1352 8592
894 188

3 302

0 375

43 455

22448

Heterogeneity: I° = 84%, T = 0.5529, p < 0.01

Weight VWeight
Risk Ratio RR 95%-Cl (fixed) (random)
| : 1.32 [1.11; 1.59] 2538% 13.0%
-'-E 091 [056 149 10.1% 11.9%
—';— 1.84 [1.10; 2.08] 4.5% 11.8%
E—'— 8.93 [415; 19.22] 1.2% 10.4%
——*E— 1.82 [045 7.36] 0.7% 5.9%
*—E 1.38 [0.91, 2.08] 8.0% 12.2%
| 126 [1.07, 1.48] 37.0% 13.0%
—E—'— 6.94 [1.21, 39.88] 0.2% 5.4%
E—'— 53.35 [3.03;938.44] 0.0% 27%
E 6.66 [4.96, 8.93] 12.6% 12.7%

E
g 2.09 [1.89; 2.32] 100.0% -
: | <> : | 243 [1.43; 4.13] -~ 100.0%

001 01 1 10 100

Table 3.5: Forest plot presenting random effects analysis for Risk ratio using

Mantel-Haenszel method.
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Figure 3.3: Funnel plot of Risk ratio using Mantel-Haenszel method.
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Next, results of Risk difference using Mantel-Haenszel method are presented:
mRD<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data_sbgl$Contr
ol.events,data_sbgl$Control.total,sm="RD" , method ="MH" , MH.exact = TRUE)
mRD

forest(mRD,studlab=study)

= MRD

RD 95%-CTI MW{Tixed) 2w{random)
1 0.1815 [ 0.0577; 0.2654] 7.5 9.6
2 -0.0071 [-0.0430; 0.0287] 18.4 10. 32
3 0.0464 [-0.0046; 0.0973] 12.0 10. 2
4 0.2432 [ 0.1455%; 0.3408] 5.7 9.7
5 0.0082 [-0.0170; 0.03386] 9.7 10. 3
3] 0.05%95 [-0.0295; 0.1485] 7.4 9.8
7 0.1288 [ 0.0402; 0.2175] 10. 8 9.8
B 0.0590 [-0.0339; 0.1519] 2.4 9.8
a 0.065%9 [ 0.0134; 0.1184] 6.6 10. 2
10 0.5345 [ 0.4804; 0.5886] 19.4 10,2

Mumber of studies combined: k = 10

RD 95%-CI z p-value
Fixed effect model 0.1591 [0.1381; 0.1801] 14.84 <= 0.0001
random effects model 0.1295 [0.0086; 0.2503] 2.10 0.0357

guantifying heterogeneity:
taua2 = 0.0366; H = 7.05 [6.08; B.18]; IA2 = 98.0% [97.3%; 98.5%]

Test of heterogeneity:
o d.f. p-value
447,55 9 <« 0.0001

Table 3.6: Output presenting fixed and random effects analysis for Risk

difference using Mantel-Haenszel method.

As one can see from the results of Table 3.6, the value of Risk Difference is 0.16 and
0.13 for the fixed and random effects estimate respectively. The difference between
fixed and random effects models is not that large. However, the random effects
estimate has a lot larger variability depicted in to much larger Cls (0.01, 0.25), still
however statistically different than 0. All heterogeneity indeces indicate a problem of
heterogeneity between trials (H=7.05, 1°=98%, Q=447.55, p<0.001). The forest plot
indicates that the majority of Risk differnces values are greater than 0 and that all
trials contribute practically the same information for the calculation of the common

risk difference. Heterogeneity index 1°=98% , p<0.01 shows a problem of
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heterogeneity between trials. The funnel plot (Figure 3.3) indicates some publication
bias for seven studies (2,3,5,6,8,9,10). These studies present unusually low variability

according to the distance from the common value of Risk difference.

Experimental Control VWeight Weight
Study Events Total Events Total Risk Difference RD 95%-Cl (fixed) (random}
Adam, 2006 89 135 109 219 —:'— 016 [0.06,027] 7.5% 9. 6%
Burchell 2006 16 220 213 2667 H -0.01 [-0.04;003] 184%  10.3%
Chalmers, 1998 14 138 200 3630 -'—5: 005 [0.00;,010] 120%  10.2%
Hede 1992 23 B4 8 261 *:—'— 024 [015,034] 57% 9.7%
Hede, 1995(35-49years) 2 1049 58 5759 : 001 [-0.02,003] 97%  10.3%
Hede, 1995(65-78 years) 18 83 1352 8542 -—'—'1: 006 [-0.03;0158] 7.4% 9.8%
Lewis, 2001 205 324 94 188 -t 013 [0.04;022] 108% 9.8%
Mirza, 2001 2 29 3 302 -—'—'1' 0.06 [-0.03;018] 24% 9.8%
Tang,2004 6 91 0 375 —'—i 007 [001,012] 66%  10.2%
Viglid, 1993 286 407 43 455 | —+ (053 [048059] 194%  10.2%

;;

Fixed effect model 1622 22448 *G* 0.16 [0.14; 0.18] 100.0% -
Random effects model — *::“;lh 043 [00%;025) - 100.0%

Heterogeneity: I° = 98%, t° = 0.0386, p < 0.01
genety 7 0402 0 02 04

Table 3.7: Forest plot presenting random effects analysis for Risk difference using

Mantel-Haenszel method.
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Figure 3.4: Funnel plot of Risk ratio using Mantel-Haenszel method
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Next, results of Odds ratio using Peto method are presented:

pOR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data_sbgl$Contr
ol.events,data_sbg1$Control.total,sm="0OR" , method ="Peto" , MH.exact = TRUE)
pOR

forest(pOR,studlab=study)

> pOR
OR O05%-CI %W(fixed) %Zw{random)
1 1.9223 [ 1.2488; 2.9592] 14.9 12.0
2 0.9069 [ 0.5453; 1.5083] 10.7 11. 8
3 2.3752 [ 1.1397; 4.9501] 5.1 11.2
4 19.3881 [ 8.2166; 45.7487] 3.8 10. 8
3 2.2654 [ 0O.3445; 14.8988] 0.8 7.2
6 1.5643 [ 0.B648; 2.8298] 7.9 11. &
7 1.6963 [ 1.1793; 2.4399] 20.9 12.1
8 G2.2401 [ 2.3087; 1182.0492] 0.3 4.2
4 77.0692 [23.2692; 1347.4241] 0.7 6.8
10 10.5540 [ 7.9703; 13.9752] 35.1 12.2
Number of studies combined: k = 10
OR 95%-CI z p-value
Fixed effect model 3.5480 [2.005%1; 4.190%] 14.93 < 0.0001
random effects model 4.3263 [1.9763; 9.4705] 3.66 0.0002
quantifying heterogeneity:
taur?2 = 1.2848; H = 4.08 [3.31; 5.03]; I42 = 94.0% [90.9%; 96.0%]
Test of heterogeneity:
g d.f. p-value
149, 96 9 < 0.0001

Table 3.8: Output presenting fixed and random effects analysis for Odds ratio
using Peto method.

As one can see from the results of Table 3.8, the value of Odds Ratio is 3.54 and 4.32
for the fixed and random effects estimate respectively. The difference between fixed
and random effects models is large. However, the random effects estimate has a lot
larger variability depicted into much larger Cls (1.98, 9.47), still however statistically
different than 1. All heterogeneity indeces indicate a problem of heterogeneity
between trials (H=4.08, 1°=94%, Q=149.96, p<0.001).
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Experimental Control Weight Weight

Study Events Total Events Total Odds Ratio OR 95%-Cl (fixed) {random}
Wdam, 2006 89 135 109 2149 -'-i 192 [1.25 296] 149% 12 0%
Burchell 2006 16 220 213 2667 =+ :i 0.91 [0585 151 107% 11.8%
IChalmers, 1998 14 138 200 3630 —'+ 238 [114, 495 51% 11.2%
Hede, 1992 23 &4 8 261 i —— 1939 [8.22, 4575] 38% 10.8%
Hede, 1995(35-49years) 2 108 58 5759 ——'-{'— 227 [034;, 1490] 0.8% 7.2%
Hede, 1895(G5-78 years) 18 83 1352 §h9z +i 1566 [0.86, 283] 7.9% 11.6%
| ewis, 2001 205 326 94 188 :i 170 [118, 244] 209% 12.1%
Mirza, 2001 2 28 3 302 —}—'— 5224 [231,1182.05] 0.3% 4.2%;
Tang,2004 6 91 0 375 i —+—— 17707 [2327;134742] 07% 6.8%

iglid, 1993 256 407 43 455 i 1085  [7.97, 1398] 351% 12.2%

I

Fixed effect model 1622 22448 '5 3585 [3.01; 4.19] 100.0% -1
Random effects model : : {I}I | 4,33 [1.88 947 —  100.0%

Heterogensity: I~ = 94%, 1 = 1.285, p < 0.01

] 01 1 10 1000

Table 3.9: Forest plot presenting random effects analysis for Odds ratio using Peto
method.

The forest plot indicates that the majority of Odds ratio values are greater than 1 and
that trials 5,8,9 have greater variability than other trials. Heterogeneity index 1>=94% ,
p<0.01 shows a problem of heterogeneity between trials. The funnel plot (Figure 3.4)
indicates some publication bias for studies 1,2,4,6,7,9,10. These studies present
unusually low variability according to the distance from the common value of Odds

ratio.
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Figure 3.5: Funnel plot of Odds ratio using Peto method.
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Next, results of Odds ratio using Inverse varianse method are presented:

IVOR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl1$Psychiatric.total,data_sbg1$Contr
ol.events,data_sbgl$Control.total,sm="OR" , method ="Inverse" , MH.exact =
TRUE)

ivOR

forest(ivOR,studlab=study)

= TVOR

OR 95%-CI ZwWi(fixed) Zw{random)
1 1.9525 [ 1.2529; 3.0428] 15.7 11.7
2 0.9036 [ 0.5331; 1.5317] 11.1 11.5
3 1.9363 [ 1.0943; 3.4263] 9.5 11.4
4 11.9242 [ 5.088B0; 27.09453] 4.3 10.5
5 1.8373 [ 0.4430; 7.68201] 1.5 E.5
] 1.4829 [ 0.8770; 2.5075] 11.2 11.5
7 1.6942 [ 1.1777; 2.4372] 23.3 11. 8
B 7.3827 [ 1.1819; 46.1166] 0.8 7.1
Q 57.003s [ 2.1857; 1023.2145] 0.4 4.4
10 16. 2440 [11.1870; 23.5869] 22.2 11. 8

Mumber of studies combined: k = 10

OR 95%-CI z p-value
Fixed effect model 2.9737 [2.4947; 3.5448] 12.16 < 0.0001
random effects model 3.3487 [1.5731; 7.1285%] 3.14 0.0017

quantifying heterogeneity:
taur2 = 1.2240; H = 3.89 [3.14; 4.83]; IA2 = 03.4% [89.9%; 95.7%]

Test of heterogeneity:
q d.f. p-value
136. 37 9 = 0.0001

Table 3.10: Output presenting fixed and random effects analysis for Odds ratio

using Inverse variance method.

As one can see from the results of Table 3.10, the value of Odds ratio is 2.97 and 3.34
for the fixed and random effects estimate respectively. The difference between fixed
and random effects models is large. However, the random effects estimate has a lot
larger variability depicted into much larger Cls (1.57, 7.13), still however statistically
different than 1. All heterogeneity indeces indicate a problem of heterogeneity
between trials (H=3.89, 1°=93.4%, Q=136.37, p<0.001).
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Experimental Control Weight \Weight
Study Events Total Events Total Odds Ratio OR 95%-Cl (fixed) (random)
Adam, 2006 89 135 108 219 h 195 [1.25 3.04] 157%  11.7%
Burchell 2006 16 220 213 2667 L 090 [053 153 111%  11.5%
Chalmers 1993 14 138 200 3630 —'-E 1.94  [1.09; 343] 95% 11.4%
Hede, 1992 23 B4 B 261 - 11.92 [509;, 2795 43%  105%
Hede, 1995(35-49years) 2 109 58 5759 — 184 [044; 7E62] 1.5% B8.5%
Hede, 1995(65-78 years) 18 B3 1352 B854z I-'—E 148 [088; 251 1M12%  11.5%
Lewis, 2001 205 326 94 188 : 169  [1.18; 244] 233%  11.8%
Mirza, 2001 2 29 3 302 —E—'— 7.38 [1.18; 4612] 0.9% 7.1%
Tang,2004 F 9 0 375 —+—— 57.09 [3.19,1023.21] 0.4% 4 4%
Viglid, 1993 256 407 43 455 : 1624 [11.19; 2358] 222%  118%

E

Fixed effect model 1622 22448 é 297 [249; 3.54] 100.0% -
Random effects model : : {'}l | 336 [1.57;, T3] -~ 100.0%
Heterogeneity: " =93%, T =1.224, p<0.01 0 01 1 10 1000

Table 3.11: Forest plot presenting random effects analysis for Odds ratio using

Inverse variance method.
The forest plot indicates that the majority of Odds ratio values are greater than 1 and
that and that trials 5,8,9 have greater variability than other trials. Heterogeneity index
1°=93% , p<0.01 shows a problem of heterogeneity between trials. The funnel plot
(Figure 3.5) indicates some publication bias for studies 2,4,6,7,9,10. These studies

present unusually low variability according to the distance from the common value of

Odds Ratio.
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Figure 3.6: Funnel plot of Odds ratio using Inverse variance method.
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Next, results of Risk ratio using Inverse variance method are presented:

IVRR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data_sbgl$Contr
ol.events,data_sbgl$Control.total,sm="RR" , method ="Inverse" , MH.exact =
TRUE)

iVRR

forest(ivRR,studlab=study)

> 1VRR
RR 95%-CI %wW(Tixed) Zw(random)
1 1.3246 [1.1063; 1. 5858] 32.3 13.32
2 0.9106 [0.5584; 1.4851] 4.4 12.0
3 1.8413 [1.1007; 3.0801] 4.0 11.8
4 5.9330 [4.1527; 19, 2162] 1.8 10.2
5 1.8219 [0.4507; 7.3645] 0.5 6.5
@ 1.3782 [0.9131; 2.0803] 0.2 12.4
7 1.2577 [1.0658; 1.4840] 38.2 13.3
8 6.9425 [1.2087; 39. 8777 0.3 5.1
9 53.3497 [3.0329; 938.4402] 0.1 2.5
10 6.46556 [4.9601; 8.9308] 12.1 12.9
Number of studies combined: k = 10
RR 95%-CI z p-value
Fixed effect model 1.6522 [1.4915; 1.8303] 9.62 < 0.0001
Random effects model 2.3940 [1.455%6; 3.9374] 3.44 0. 0006
quantifying heterogeneity:
taur?2 = 0.4765%; H = 3.89 [3.13; 4.82]; 12 = 93.4% [89,8%; 95.7%]
Test of heterogeneity:
g d.f. p-value
136.00 9 <« 0.0001

Table 3.12: Output presenting fixed and random effects analysis for Risk ratio

using Inverse variance method.

As one can see from the results of Table 3.12, the value of Risk ratio is 1.65 and 2.4
for the fixed and random effects estimate respectively. The difference between fixed
and random effects models is large. However, the random effects estimate has a lot
larger variability depicted into much larger Cls (1.45, 3.94), still however statistically
different than 1. All heterogeneity indeces indicate a problem of heterogeneity
between trials (H=3.89, 1°=93.4%, Q=136, p<0.001).
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Random effects model

Experimental
Study Events Total
Adam, 2006 89 135
Burchell 2008 16 220
Chalmers, 1993 14 138
Hede 1982 23 B4
Hede, 1995(35-49years) 2 109
Hede 1995(65-78 years) 18 83
Lewis, 2001 205 328
Mirza, 2001 2 29
Tang, 2004 6 91
Wiglid, 1983 256 407
Fixed effect model 1622

Control

Events

109
213
200
8

58
1352
94

43

Heterogeneity: I = 3%, T = 0.4765, p < 0.01

Total

219
2667
3630

261
5759
8592

188

a0z

375

455

22448

Risk Ratio RR 95%-Cl

132 [1.11; 1.59]

. 091 [056 1.49]
T 184 [1.10; 3.08]
1 —— 893 [415 19.22]

T 182 [0.45; 7.36]
p 138 [0.91; 2.08]
. 126 [1.07. 1.48]
-i—'— .04 [1.21; 29.88)
i —————— 5335 [3.03; 938.44]
i 666 [4.96 893
;;

i 165 [1.49; 1.83]
— & _ 239 [1.46; 3.94]

001 01 1 10 100

Weight

Weight

(fixed) (random)

32.3%
4.4%
4.0%
1.8%
0.5%
6.2%

38.2%
0.2%
0.1%

12.1%

100.0%

13.3%
12.0%
11.8%
10.2%

6.5%
12.4%
13.3%

5.1%

2.5%
12.9%

100.0%

Table 3.13: Forest plot of random effects analysis for Risk ratio using Inverse variance

method.

The forest plot indicates that the majority of Risk ratio values are greater than 1 and

that trials 5,8,9 have greater variability than other trials. Heterogeneity index 1>=93% ,

p<0.01 shows a problem of heterogeneity between trials. The funnel plot (Figure 3.6)

indicates some publication bias for studies .

variability according to the distance from the common value of Risk ratio.

These studies present unusually low
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Figure 3.7: Funnel plot of Risk ratio using Inverse variance method.
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Next, result of Risk difference using Inverse variance method are presented:

iVRD<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data_sbgl$Contr
ol.events,data_sbgl$Control.total,sm="RD" , method ="Inverse" , MH.exact =
TRUE)

ivRD

forest(ivRD,studlab=study)

= 1wRD

RD» O5%—CI 2w{fixed) 2w{random)
1 0.1615 [ 0.0577; 0.2654] 2.3 9.5
2 -0.0071 [-0.04320; 0.0287] 19.5 10.4
3 0.0464 [-0.0046; 0.0973] 9.7 10. 3
4 0.2432 [ 0.1455; 0.3408)] 2.6 9.6
5 0.0083 [-0.0170; 0.0326] 39.0 10.4
& 0.0595 [-0.0295; 0.1485] 3.2 9.8
i 0.1288 [ 0.0402; 0.2175] 3.2 9.8
& 0.0590 [-0.032329; 0.1519] 2.9 9.7
9 0.0659 [ 0.0134; 0.1184] 9.1 10. 2
10 0.5345 [ 0.4804; 0.5886] E.B 10,2
Mumber of studies combined: k = 10

RD 95%-CI z p-value

Fixed effect model 0.0759 [0.0600; 0.0917] 9.40 =« 0O.0001
rRandom effects model 0.1293 [0.0235; 0.2350] 2.40 0. 0166

qQuantifying heterogeneity:
tauAr2 = 0.0277: H = 6.16 [5.24; 7.24]: IA2 = 97.4% [96.4%; 98.1%]

Test of heterogeneity:
g d.f. p-value
341.16 9 = 0.0001

Table 3.14: Output presenting fixed and random effects analysis for Risk

differenceusing Inverse variance method.

As one can see from the results of Table 3.14, the value of Risk ratio is 0.08 and 0.13
for the fixed and random effects estimate respectively. The difference between fixed
and random effects models is large. However, the random effects estimate has a lot
larger variability depicted into much larger Cls (0.02, 0.24), still however statistically
different than 0. All heterogeneity indeces indicate a problem of heterogeneity
between trials (H=6.19, 1°=97.4%, Q=341.16, p<0.001).
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Study Events
Adam, 2006 29
Burchell 2006 16
Chalmers, 1988 14
Hede 1992 23
Hede 1995(35-48years) 2
Hede 1995(65-78 years) 18
Lewis, 2001 205
Mirza, 2001 2
Tang, 2004 B
Viglid, 1993 256

Fixed effect model
Random effects model
Heterogeneity: I* = 7%, T = 0.0277,

Experimental

Total Events
135 108
220 213
138 200
a4 a
1049 58
83 1382
326 a4
29 3
91 0
407 43

1622

p =001

Control

Total

219
2667
3630

261
5759
8592

188

302

375

455

22448

Risk Difference

[ I 1
04 -02 0 02 04

RD 95%-Cl

0.16 [0.06; 0.27]
-0.01 [-0.04; 0.03]
0.05 [0.00;0.10]
0.24 [0.15;0.24]
0.01 [-0.02; 0.03]
0.06 [-0.03;0.15]
0.12 [0.04;0.22)
0.06 [-0.03; 0.15]
0.07 [0.01:0.12)
0.53 [0.48; 0.59]

0.02 [0.06: 0.09]
0.13 [0.02; 0.24]

Weight

Weight

(fixed) (random)

2.3%
19.5%
9.7%
2.6%
39.0%
3.2%
32%
2.9%
9.1%
8.6%

100.0%

9.5%
10.4%
10.3%

9.6%
10.4%

9.8%

9.8%

9.7%
10.2%
10.2%

100.0%

Table 3.15: Forest plot of random effects analysis for Odds ratio using Inverse

variance method.

The forest plot indicates that the majority of Risk differences values are greater than 0
and that all trials contribute practically the same information for the calculation of the
common risk difference. Heterogeneity index 1’=97% , p<0.01 shows a problem of
heterogeneity between trials. The funnel plot (Figure 3.7) indicates some publication
bias for studies 2,4,5,10. These studies present unusually low variability according to

the distance from the common value of Risk difference.
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Figure 3.8: Funnel plot of Risk difference using Inverse variance method.
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We had also five other measurements for which we investigated results. We assessed
the number of decayed, missing and filled dental surfaces or teeth; both these indices
are expressed as a continuous variable. The number of decayed, missing and filled
teeth reflects a person’s lifetime experience of dental caries. This is because both
dental decay and its treatment leave permanent marks, either through the presence of
fillings or the loss of affected teeth by extraction. The total number of teeth (T) and
surfaces (S) that are decayed (D), missing because of pathology (M) or filled (F) are
measures referred to as DMFT and DMFS respectively (Kisely, et. al.,2011). In both,
an increase in score means greater dental decay. Decayed surfaces, DMFS, decayed
teeth, missing teeth, DMFT. For all these measurements we had all the information
needed from each study so we can do the meta-analysis. We had the mean, the
standard deviation and the total number for the control and the psychiatric group as
well.

Kisely et. al., (2011) defined the following clarifications on the outcome measures:
The primary outcome of this study was edentulousness, usually expressed as a
dichotomous variable.

We also assessed the number of decayed, missing and filled dental surfaces or teeth;
both these indices are expressed as a continuous variable. The number of decayed,
missing and filled teeth reflects a person’s lifetime experience of dental caries. This is
because both dental decay and its treatment leave permanent marks, either through the
presence of fillings or the loss of affected teeth by extraction. The total number of
teeth (T) and surfaces (S) that are decayed, missing because of pathology (M) or filled
(F) are measures referred to as DMFT and DMFS respectively. In both, an increase in
score means greater dental decay.

Scores for DMFT and DMFS vary widely by country, from mean DMFT scores of
under 5 in India to 12.8 in the most recent community survey in a high income
country (Australia).16-18 Scores for DMFS are higher than for DMFT as the former
counts damage to each surface of each tooth rather than counting the tooth as a single
unit; anterior teeth have four surfaces and posterior teeth five. In interpreting both, it
is useful to recall that humans have 32 permanent teeth. The maximum possible
DMFT score is therefore 32, whereas the maximum DMFS is 148.
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So we continued the meta-analysis for each measurement with the random effects
method. Decayed surfaces is the first measurement. The following R commands were

used for the analysis:

ml<-c(3.1,5.9,6.4)

mcl<-c(0.9,1.5,2.07)

sd1<-c(11.6,8.3,6.67)

n1<-c(109,23,37)

sdcl1<-¢(0.1,0.3,2.53)

ncol<-c(762,353,29)

mal<- rma(yi=ml-mcl,vi=sd1"2/n1+sdc1*2/ncol,method = "DL")

mal

studyl<-c('"Hede, 1995(35-49 years)',"Hede, 1995 (65-78 years)','Stoefe; 1990")

forest(mal,slab=studyl,xlab="Decayed surfaces")

= mal

Random-Effects Model (k = 3; taur?2 estimator: DL)

taur?2 (estimated amount of total heterogeneity): 0.0928 (S5E = 1.8120)
tau (sguare root of estimated taut2 value): 0.3046

142 (total heterogeneity / total wvariability): 5.12%

HAZ (total wvariability / sampling variability): 1.05

Test for Heterogeneity:
Q(df = 2) = 2.1079, p-val = 0.3486

Model Results:

estimate se zval pval ci.lb ci.ub
3.4191 0. 7588 4, 5061 =, 0001 1.9320 4.90632 R
Signif. codes: 0 f##=' Q0,001 ***° 0.01 ‘*' 0.05 *." 0.1 * " 1

Table 3.16: Output presenting random effects analysis for mean difference of decayed

surfaces between mentally diseased and controls.

The results of Table 3.16 indicate that heterogeneity is absent (Q=2.11, p=0.349) and
there is statistically significant difference (mean difference=3.42, p<0.001) in
Decayed surfaces measurement between people with mental disease and control
(3.17). . The funnel plot (Figure 3.8) does not indicate any significant publication
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bias for the three studies. These studies present no variability according to the

distance from the common value of mean difference.

Hede, 1995(35-49 years) . 220[0.02, 4.38]

Hede, 1995 (65-78 years) | 4.40[1.01,7.79]
Stoefe; 1990 —. 4.33[1.99, 6.67]
RE Model ——— 342193, 491]

i I I I I
0o 2 4 6 8

Decayed surfaces

Table 3.17: Forest plot of random effects analysis for mean difference of decayed

surfaces between mentally diseased and controls.

0
|

Standard Error
0.865
|

1.731
|
L ]

T T T T
0 2 4 6

Decayed surfaces

Figure 3.9: Funnel plot of mean difference of Decayed Surfaces.
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Next measurement under examination is the DMFS. The following R commands were

used for the analysis.

m2<-c(68.3,120.2,31.9)

mc2<-c(46.6,104.1,27.4)

sd2<-c(33.3,27.8,22)

sdc2<-¢(0.7,1.7,20)

ma2<- rma(yi=m2-mc2,vi=sd2"2/n1+sdc2*2/ncol,method = "DL")

ma2

study2<-c('"Hede, 1995(35-49 years)',"Hede, 1995 (65-78 years)','Stiefel; 1990")
forest(ma2,slab=study2,xlab="DMFS")

DMEFS is the second measurement. The following R commands were used for the

analysis.

= ma

Random-effects mModel (k = 3; tausr?2 estimator: DL)

taur?2 (estimated amount of total heterogeneity): 64.5202 (5E = BE.1040)
tau (square root of estimated tauA2 value): 5.0324

IA2 (total heterogeneity / total variability): 75.01%

HAZ (total wvariability / sampling variability): 4.00

Test for Heterogeneity:
Q(df = 2) = 8.0040, p-val = 0.0183

Mode]l Results:

estimate se zval pval ci.lb ci.ub
14.5951 5.3823 2.7117 0. 0067 40461 25.1441 HE
5ignif. codes: 0 *#==' Q.001 ‘*=' 0,01 **° 0.05 *." 0.1 * "1

Table 3.18: Output presenting random effects analysis for mean score of DMFS

between mentally diseased and controls.

The results of Table 3.18 indicate that there is some heterogeneity between studies
(Q=8.00, p=0.018) and there s statistically significant difference (mean
difference=14.60, p<0.007) in DMFS measurement between people with mental

disease and control (3.19). The funnel plot (Figure 3.9) does not indicate any
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significant publication bias for the three studies. These studies present no variability

according to the distance from the common value of mean difference.

Hede, 1995(35-49 years)
Hede, 1995 (6578 years)
Stiefel; 1990

—— 21.70[15.45, 27.95]
' 16.10[4.74, 27 .46]
4.50 [-5.66, 14.66]

RE Model

S— 1460[4.05,25.14]

-10 0 10 20 30

DMFS

Table 3.19: Forest plot of random effects analysis for mean difference of decayed

surfaces between mentally diseased and controls.

0
|

Standard Error
2.899
|

5797
|

| | | |
10 15 20 25

DMFS

Figure 3.10: Funnel plot of mean difference of DMFS.
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Next measurement under examination is the number of decayed teeth. The following

R commands were used for the analysis.

m3<-c(9.16,7.95)

mc3<-c(2.55,2.9)

sd3<-c(5.2,6.86)

sdc3<-¢(3.12,2.19)

n3<-c(54,565)

nco3<-c(7139,261)

ma3<- rma(yi=m3-mc3,vi=sd3"2/n3+sdc3"2/nco3, method = "DL")
ma3

study3<-c(‘Ramon, 2003 (18-34 years)','Velasco, 1997")
forest(ma3,slab=study3,xlab="Decayed Teeth")

= maz3

Random-effects Model (k = 2; taus? estimator: DL)

tausr?2 (estimated amount of total heterogeneity): 0.9149 (5 = 1.7208)
tau (square root of estimated taur2 value): 0.9565

142 (total heterogeneity / total wvariability): 75.19%

HAZ (total variability / sampling variability): 4.03

Test for Heterogeneity:
Q(df = 1) = 4.0307, p-val = 0.0447

Mode]l Results:

estimate se zval pval ci.lb ci.ub
5.7017 0.7694 7.4108 <. 0001 4.1937 7.2098 wEE
Signif. codes: 0O *#%*%' (Q_001 °*#*%' 0.01 **' 0.05 *.” 0.1 ° " 1

Table 3.20: Output presenting random effects analysis for mean difference of

decayed teeth between mentally diseased and controls.

The results of Table 3.20 indicate that there is heterogeneity of limited significance
between studies (Q=4.03, p=0.045) and there is statistically significant difference
(mean difference=5.70, p<0.001) in DMFS measurement between people with mental

disease and control (3.21). The funnel plot (Figure 3.10) does not indicate any
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significant publication bias for the two studies. These studies present no variability

according to the distance from the common value of mean difference.

Ramon, 2003 (18-34 years) 6.61[5.22, 8.00]
Velasco, 1997 —a— 5.05[4.43, 5.67)
RE Model 570[4.19,7.21]
r | T T |
4 ] 6 7 8
Decayed Teeth

Table 3.21: Forest plot of random effects analysis for mean difference of decayed

teeth between mentally diseased and controls.

[

D —

§ -

L

T D ’

@ S

L= O

[

T

5 |
a» Tl
S .
o | | | | | | | |

4 45 4] 55 6 6.5 7
Decayed Teeth

Figure 3.11: Funnel plot of mean difference of Decayed Teeth.
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Next measurement under examination is the number of missing teeth. The following R

commands were used for the analysis.

m4<-c(5.42,0.57,17.02)

mc4<-c(0.25,0.55,7.5)

sd4<-c(6.25,1.3,10.32)

sdc4<-¢(0.69,1.53,6.8)

n4<-c(54,37,565)

nco4<-c(7139,29,261)

mad<- rma(yi=m4-mc4,vi=sd4"2/n4+sdc4”"2/nco4, method = "DL")
ma4

study4<-c('Ramon, 2003 (18-34 years)','Stiefel; 1990','Velasco, 1997")
forest(ma4,slab=study4,xlab="Missing Teeth")

= mad
Random-Effects Model (k = 3; taur2 estimator: DL)

taur2 (estimated amount of total heterogeneity): 31.4999 (S = 34.5703)
tau (square root of estimated taur2 value): 5.6125

142 (total heterogeneity / total wvariability): 98. 96%

HAZ (total variability / sampling wvariability): 96.20

Test for Heterogeneity:
Q(df = 2) = 192.3954, p-val < .0001

Model Results:

estimate 58 zval pval ci.lb ci.ub
4. 8900 3.2610 1.4995 0.1237 -1.5015 11.2815

Signif. codes: 0 *#®%" Q001 *#*° Q.01 **" 0.05 *.” 0.1 ° " 1

Table 3.22: Output presenting random effects analysis for mean difference of

missing teeth between mentally diseased and controls.

The results of Table 3.22 indicate that there is highly significant heterogeneity
between studies (Q=192.40, p<0.001) and there is no statistically significant
difference (p=0.134) in DMFS measurement between people with mental disease and
control (3.23). The funnel plot (Figure 3.11) indicates some publication bias for the
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two of three studies . These studies present unusually low variability according to the

distance from the common value of mean difference.

Ramon, 2003 (18-34 years) — 5.17[3.50, 6.84]
Stiefel: 1990 -I- 002[-068, 072]
Velasco, 1997 - 952[833,10.71]
RE Model 4 89[-1.50, 11.28]
[ I I ! ]
5 0 5 10 15
Missing Teeth

Table 3.23: Forest plot of random effects analysis for mean difference of missing

teeth between mentally diseased and controls.

0
|

Standard Error
0425
|

0.851
|
L

T T T T T |
0 2 4 6 8 10

Missing Teeth

Figure 3.12: Funnel plot of mean difference of MissingTeeth.
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Next measurement under examination is the number of DMFT. The following R commands

were used for the analysis.

m5<-¢(0.92,17.5,6.1,24.99)

mc5<-c(0.4,8.49,3.2,12.5)

sd5<-c(1.8,8.2,6.87,7.71)

sdc5<-c(0.92,4.95,3.49,7.1)

n5<-¢(180,54,326,565)

nco5<-c(121,7139,156,261)

mab5<- rma(yi=m5-mc5,vi=sd5"2/n5+sdc5"2/nco5, method = "DL")

mab

study5<-c(‘Kumar, 2006','Ramon, 2003 (18—34 years)','Rekha, 2002','Velasco, 1997")
forest(mab,slab=study5,xlab="DMFT")

= mabd

Random-Effects Model (k = 4; taus?2 estimator: DL)

taur? (estimated amount of total heterogeneity): 32.6226 (S5E = 33.7584)
tau (square root of estimated taua2 wvalue): 5.7116

I~Z2 (total heterogeneity / total wvariability): 94, 39%

HAZ (total wariability / sampling variability): 165.06

Test for Heterogeneity:
Q(df = 3) = 495.1874, p-val < .0001

Model Results:

estimate s5e zval pval ci.lb ci.ub
6.1965 2.8751 2.1552 0.0311 0.5614 11.8316 #
signif. codes: 0O f=%=° Q,001 **=' Q.01 %' Q.05 .7 0.1 ° " 1

Table 3.24: Output presenting random effects analysis for mean difference of DMFT

between mentally diseased and controls.

The results of Table 3.24 indicate that there is highly significant heterogeneity
between studies (Q=495.19, p<0.001) and there is statistically significant difference
(mean difference=6.20, p=0.031) in DMFS measurement between people with mental

disease and control (3.25).
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Kumar, 2006 l 0.52[0.21, 0.83)

Ramon, 2003 (18-34 years) | — 9.01[6.82, 11.20]
Rekha, 2002 X 290[1.97, 3.83]
Velasco, 1997 —.-— 12.49 [11.42, 13.56)
RE Model 6.20[0.56, 11.83]
i T I |
0 5 10 15
DMFT

Table 3.25: Forest plot of random effects analysis for mean difference of DMFT

between mentally diseased and controls.

0
|

Standard Error
0.558
|

1.117
|
L ]

DMFT

14

Figure 3.13: Funnel plot of mean difference of DMFT.
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3.5 DISCUSSION OF RESULTS

After the analysis that was presented in this chapter we ended up to the following

conclusions:

Edentulousness Fixed effects Random effects | t° I (%)
Mantel-Haenszel/ 3.35(<0.001) 3.25(0.002) 1.23 | 934
Odds ratio

Mantel-Haenszel/ 2.09(<0.001) 2.43(0.001) 0.55 94.2
Risk ratio

Mantel-Haenszel/ 0.16(<0.001) 0.13(0.036) 0.04 |98.0
Mean difference

Peto/Odds ratio 3.55(<0.001) 4.33(<0.001) 128 [94.0
Inverse variance/ 2.97(<0.001) 3.34(0.002) 1.22 | 934
Odds ratio

Inverse variance/ 1.65(<0.001) 2.39(<0.001) 0.48 |934
Risk ratio

Inverse variance/ 0.08(<0.001) 0.13(0.017) 0.03 |974

Mean difference

Table 3.26: Summary of meta-analysis of edentulousness for fixed and random

effects(p-values in parenthesis) along with 1° estimates and heterogeneity index

12,

e According to Table 3.26 we reach the following conclusions:

e Both Fixed and Random effects approaches for edentulousness indicated

highly statistical differences between mentally diseased and control groups.

e Odds ratio estimates for edentulousness represented these differences in a

clearer way in comparison to risk ratio and risk differences.

e Differences between Fixed and Random effects approaches for edentulousness

were not acute except Risk ratios and Odds ratio Peto estimate.

¢ High heterogeneity was measured using all methods for edentulousness. This

heterogeneity is also confirmed by % values.

-79-




Measurement Mean difference I (%)
Decayed surfaces | 3,42(<0,001) 0,093 512
DMFS 14,60(0,007) 64,520 75,01
Decayed teeth 5,71(<0,001) 0,915 75,19
Missing teeth 4,89(0,134) 31,500 98,96
DMFT 6,20(0,031) 32,623 99,39

Table 3.27: Summary of meta-analysis of the other measurements for random

effects (p-values in parenthesis) of mean differences along with t° estimates and

heterogeneity index 1%,

e According to Table 3.27 we reach the following conclusions:

e All differences between the two comparison groups were statistically

significant apart from the “Missing teeth” measurement.

e The difference in “DMFS” measurement between mentally diseased and

controls was particularly large.

e Heterogeneity was not particularly present apart from “Missing teeth” and

“DMFT” measurements.
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CHAPTER 4: CONCLUSION

The following discussion is based on (Kisely et all., 2011). It is well known
(Lawrence et al., 2000) that individuals with severe mental illness have high rates of
physical ill-health, including diabetes, cardiovascular disease, chronic lung disease
and cancer. This in turn, is associated with increased mortality from preventable
physical disease, so that people with schizophrenia die 15-20 years earlier than the
general population. Although the oral health of the general population has improved
in much of the world, psychiatric patients remain at a disadvantage in a wide range of
countries. This mirrors findings in other areas such as cardiovascular disease, where
the health of the general population has improved but not that of people with severe

mental illness (Lawrence et al., 2003).

The results for the primary outcome, edentulousness, were strongly significant. The
findings for DMFS and DMFT scores were less acute but still significant. This is
possibly because both are more appropriate for dentate patients. It is impossible to
record accurately the number of decayed or filled teeth if they have been lost through

dental disease.
4.1 LIMITATIONS

There are some limitations to this study. According the authors (Kisely et all.,
2011):

e There was considerable variation in outcome measures and how these were
reported. Most studies had no comparison group and it was difficult to find
suitable community controls for many of the others. Although nine studies (n
= 1622) were included for the meta-analysis of the primary outcome
(edentulousness), and there were fewer studies for the other outcomes.

e Most studies did not use diagnostic criteria for the psychiatric disorders of
interest.

e Although age, secular trends in oral health and water fluoride levels were
taken into account, other factors such as economic status or education level

were difficult to be determined.

-81-



e Many of our results showed heterogeneity. This has to be further explored
using sensitivity analyses of the effects of excluding outlying studies. Random
effects model. Therefore, a random effects model was fit to the data when a
very small number of studies was available. However, since strong

heterogeneity was present the analysis results should be treated with caution.

4.2 EXPLANATIONS

Explanations for these findings (Kisely et all., 2011) include poor oral hygiene
resulting in plaque formation and gingivitis. As with other aspects of physical ill-
health, alcohol and substance use, tobacco and diet (including the consumption of
carbonated drinks) also contribute to poor oral health. For instance, edentulousness is
associated with low fruit and vegetable intake in marginalized older adults even after
adjusting for sociodemographic and behavioral variables (Tsakos et al., 2010).
Smoking leads to an increased incidence of erosion, cervical abrasion and gingival
necrosis, and other mucosal lesions are reported in people using oral cocaine
(Krutchkoff et al., 1990). Psychotropic medications can also contribute to dental
disease as many cause dry mouth (xerostomia) through reduced salivary flow
(Sjogren et al., 2000). Relevant medications include conventional and atypical
antipsychotics, all classes of antidepressants, and mood stabilizers (Sreebny et al.,
1997). Xerostomia has been found to decrease overall quality of life (Thomson et al.,
2006), increase plague and calculus formation, and lead to a higher incidence of
caries, gingivitis and periodontitis (Cormac et al., 1999). People with severe mental
illness may also have priorities other than their oral health, or lack privacy for oral
hygiene owing to poor housing or homelessness. These issues are compounded by
difficulties with access to dental care. People with severe mental illness may be
reluctant to seek treatment because of the fear of pain or dental phobia, possibly
exacerbated by the cost of dental care. With severe tooth loss, some measures of
caries such as the number of decayed teeth actually fall. To this must be added the
effects of societal and cultural differences between countries. Further research is
needed to clarify how all these factors contribute to differences in findings between
studies. In terms of protective factors, the presence of fluoride in the water supply
should benefit all sectors of the population including those with severe mental illness.
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APENDIX (R CODE)

data_psych <-

data.frame(total=c(135,220,138,84,109,83,326,29,91,407),
events=c(89,16,14,23,2,18,205,2,6,256))

data_control <-

data.frame(total=c(219,2667,3630,261,5759,8592,188,302,375,455),
events=c(109,213,200,8,58,1352,94,3,0,43))

study <-
c("‘Adam,2006','Burchell,2006','"Chalmers,1998','Hede,1992','Hede, 1995(
35-49 years)',"Hede,1995(65-78
years)','Lewis,2001','Mirza,2001','Tang,2004','Viglid,1993")

data_shgl<-
data.frame(row.names=study,Psychiatric=data_psych,Control=data_con
trol)

data_sbgl

studyf <- ¢('1','2','3','4",'5','6",'7",'8",'9",'10")

library(meta)

MOR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data
sbgl$Control.events,data_sbgl$Control.total,sm="0OR" , method ="MH"
, MH.exact = TRUE)

mOR

forest(mOR,studlab=study)

funnel(mOR,studlab=studyf)
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MRR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data_
sbgl$Control.events,data_sbgl$Control.total,sm="RR" , method ="MH"
, MH.exact = TRUE)

mRR

forest(mRR,studlab=study)

funnel(mRR,studlab=studyf)

mRD<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data
sbgl$Control.events,data_sbgl$Control.total,sm="RD" , method ="MH"
, MH.exact = TRUE)

mRD

forest(mRD,studlab=study)

funnel(mRD,studlab=studyf)

pOR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data
sbgl$Control.events,data_sbgl$Control.total,sm="OR" , method
="Peto" , MH.exact = TRUE)

pOR

forest(pOR,studlab=study)

funnel(pOR,studlab=studyf)

IVOR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data_
sbg1$Control.events,data_sbgl$Control.total,sm="OR" , method
="Inverse" , MH.exact = TRUE)

IVOR
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forest(ivOR,studlab=study)
funnel(ivOR,studlab=studyf)

IVRR<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data
sbg1$Control.events,data_sbg1$Control.total,sm="RR" , method
="Inverse" , MH.exact = TRUE)

IVRR

forest(ivRR,studlab=study)

funnel(ivRR,studlab=studyf)

IVRD<-
metabin(data_sbgl$Psychiatric.events,data_sbgl$Psychiatric.total,data
sbgl$Control.events,data_sbgl$Control.total,sm="RD" , method
="Inverse" , MH.exact = TRUE)

IVRD

forest(ivRD,studlab=study)

funnel(ivRD,studlab=studyf)

library(metafor)

ml<-c(3.1,5.9,6.4)

mcl<-c(0.9,1.5,2.07)

sd1<-c(11.6,8.3,6.67)

n1<-c(109,23,37)

sdc1<-¢(0.1,0.3,2.53)

ncol<-c(762,353,29)

mal<- rma(yi=ml-mcl,vi=sd1*2/n1+sdcl”2/ncol,method = "DL")

mal
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studyl<-c(‘Hede, 1995(35-49 years)','Hede, 1995 (6578 years)','Stoefe;
1990"

forest(mal,slab=study1,xlab="'Subgroup of Decayed surfaces')

m2<-c(68.3,120.2,31.9)

mc2<-c(46.6,104.1,27.4)

sd2<-c(33.3,27.8,22)

sdc2<-¢(0.7,1.7,20)

ma2<- rma(yi=m2-mc2,vi=sd2"2/n1+sdc2"2/ncol,method = "DL")

ma?2

study2<-c(‘Hede, 1995(35-49 years)','"Hede, 1995 (6578 years)','Stiefel;
1990")

forest(ma2,slab=study2,xlab="DMFS")

m3<-¢(9.16,7.95)

mc3<-c(2.55,2.9)

sd3<-c(5.2,6.86)

sdc3<-¢(3.12,2.19)

n3<-c(54,565)

nco3<-c(7139,261)

ma3<- rma(yi=m3-mc3,vi=sd3"2/n3+sdc3"2/nco3, method = "DL")
ma3

study3<-c('Ramon, 2003 (18-34 years)','Velasco, 1997")
forest(ma3,slab=study3,xlab='"Decayed Teeth’)

m4<-c(5.42,0.57,17.02)
mc4<-¢(0.25,0.55,7.5)
sd4<-c(6.25,1.3,10.32)
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sdc4<-¢(0.69,1.53,6.8)

n4<-c(54,37,565)

nco4<-c(7139,29,261)

ma4<- rma(yi=m4-mc4,vi=sd4"2/n4+sdc4"2/nco4, method = "DL")
mad

study4<-c(‘Ramon, 2003 (18-34 years)','Stiefel; 1990','Velasco, 1997")
forest(ma4,slab=study4,xlab="Missing Teeth")

m5<-¢(0.92,17.5,6.1,24.99)

mc5<-c¢(0.4,8.49,3.2,12.5)

sd5<-c(1.8,8.2,6.87,7.71)

sdc5<-c(0.92,4.95,3.49,7.1)

n5<-c(180,54,326,565)

nco5<-c(121,7139,156,261)

ma5<- rma(yi=m5-mc5,vi=sd5"2/n5+sdc5"2/nco5, method = "DL")
mab

study5<-c(‘Kumar, 2006','Ramon, 2003 (18-34 years)','Rekha,
2002','Velasco, 1997")

forest(mab,slab=study5,xlab="DMFT")
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