
WORD SENSE DISAMBIGUATION AND TEXT RELATEDNESS

BASED ON WORD THESAURI

PHD THESIS

DEPARTMENT OF INFORMATICS

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Georgios Tsatsaronis

June 2009

ii

Preface

As the immense amount of text data increases rapidly over the years, the need to

improve the quality of algorithms in text related tasks is eminent. Traditional models

for representing documents, like the standard vector space model (VSM), often ne-

glect the semantic relatedness between words, suffering from the restriction of exact

keywords matching, in order to explore the similarity or relatedness between segments

of text. In critical tasks, like text classification and retrieval, which have been studied

over the past decades intensively, this assumption of exact keyword matching is often

the reason for poor performance. This thesis aims to explore the potential of incorpo-

rating semantic relatedness between documents in several text related applications,

like text classification, retrieval and paraphrasing recognition. Several aspects have

been taken into account, like natural language processing techniques and use of a

word thesaurus, namely WordNet, in an effort to exhaust as many possibilities as

possible in the workflow from analyzing and preprocessing documents up to embed-

ding successfully the semantic information in a machine readable manner in those

tasks. The outcome of this thesis shows that lexical semantic similarity can be used

efficiently in the studied tasks and that it can boost their performance, widening the

possibilities of more efficient algorithms in text applications. This thesis is part of

the research project number 03E∆850/8.3.1., implemented within the framework of

the Greek Reinforcement Programme of Human Research Manpower (PENED) and

co-financed by Greek national and European Union Funds (25% from the Greek Min-

istry of Development-General Secretariat of Research and Technology, and 75% from

E.U.- European Social Fund).

iii

Acknowledgements

I would like to warmly thank my supervisor Michalis Vazirgiannis, to which I owe

great gratitude for his continuous support. Many thanks also go to Ion Androutsopou-

los, for his constructive discussions and meticulous comments regarding my work. I

would also like to thank the rest of the members of my thesis examination com-

mittee, namely Dr. Constantinos Spyropoulos, Prof. Theodoros Kalaboukis, Prof.

Emmanouel Giannakoudakis, Associate Prof. Emmanouel Giakoumakis, Associate

Prof. Martha Sideri, and Dr. Iraklis Varlamis, for their constructive comments. Es-

pecially the help of Dr. Varlamis in the two final years of this work were determinant

for the final outcome.

I have no words to thank my colleagues in the DB-NET team, former and present,

namely Dimitris Mavroeidis, Christos Doulkeridis, Akrivi Vlachou, Nikos Salamanos,

and Maria Halkidi. The continuous support that DB-NET members show to each

other is something I will bear with me for the rest of my life.

Many more people over all these years have also played important roles in my

research, influencing fruitfully the final outcome. I must, thus, thank Magdalini

Eirinaki, Stratis Valavanis, Christos Pateritsas, and Yannis Batistakis for sharing

with me their experience in the early stages of this work. Special thanks also to

Kjetil Noervag. His professional way of thinking, his large experience in the field of

computer science and the fruitful discussions I have had with him have armed me

with confidence for my work.

None of this could have been achieved without the loving support of my family,

and, of course, my wife Chryssa. I owe them great gratitude.

Last but certainly not least, I dedicate this work to the loving memory of my

iv

father, Basileios Tsatsaronis, and my grand mother, Maria. Their presence taught

me feelings that cannot be described with words, and their absence taught me the

weaknesses of our human nature.

v

Contents

Preface iii

Acknowledgements iv

1 Introduction 1

1.1 Problem and Motivation . 2

1.2 Considered Aspects and Proposed Solution 6

1.3 Summary of Contribution . 7

2 Background and Related Work 10

2.1 Word Sense Disambiguation . 10

2.1.1 Knowledge-based Unsupervised Word Sense Disambiguation . 11

2.1.2 Knowledge-based Supervised Word Sense Disambiguation . . . 15

2.1.3 Previous Use of SANs in WSD 17

2.2 Representation of Text using Semantic Networks 19

2.3 Measuring Semantic Relatedness Between Words 19

2.4 Measuring Semantic Relatedness Between Text Segments 21

2.5 Word Thesauri and their Use in Text Applications 22

2.6 Generalized Vector Space Models . 25

2.6.1 Vector Space Model . 26

2.6.2 Generalized Vector Space Model 26

2.6.3 Semantic Information and GVSM 27

vi

3 Word Sense Disambiguation Using WordNet 29

3.1 Evaluating WSD Performance . 30

3.2 Compactness-based Word Sense Disambiguation 32

3.3 Word Sense Disambiguation Using Semantic Networks 37

3.3.1 Word Sense Disambiguation with Spreading Activation Networks 37

3.3.2 PageRank-based Word Sense Disambiguation 47

3.4 Ensemble of WSD Methods . 48

3.5 Discussion of Experimental Results 59

4 Omiotis: A Thesaurus-based Measure of Semantic Relatedness 61

4.1 Semantic Relatedness Between a Pair of Concepts 63

4.2 Semantic Relatedness Between a Pair of Words 68

4.3 Analysis of the SR Measure . 69

4.4 Omiotis . 76

5 Applications and Experimental Evaluation 78

5.1 Applications of Semantic Relatedness 78

5.2 Experimental Evaluation . 91

5.2.1 Word-to-Word Semantic Relatedness 91

5.2.2 Text-to-Text Semantic Relatedness 96

5.3 Discussion of the Experimental Evaluation 107

6 Conclusions 109

6.1 Contributions . 110

6.2 Conclusions . 115

6.3 Future Work . 115

A WordNet 2.0 Structure 117

B Complexity and Implementation 119

B.1 Complexity Issues . 120

B.2 Omiotis Implementation . 120

B.3 Integration with Terrier . 121

vii

B.4 Examples of Accessing WordNet with the JWNL Wrapper 123

C Dijkstra Using Fibonacci Heaps 125

D Effect of Lexical Ambiguity in Five Toy IR Data Sets 126

D.1 Description of the Data Collections 128

D.2 Results and Analysis . 128

Bibliography 132

viii

List of Tables

3.1 Occurrences of polysemous and monosemous words of WordNet 2 in

Senseval 2, 3 and SemCor. 31

3.2 Overall and per file accuracy on the Senseval 2 data set. 43

3.3 Overall and per POS accuracy of SANs in the three data sets. 45

3.4 Average actual computational cost. 46

3.5 Overall and per POS accuracy of PageRank in the three data sets. . . 48

3.6 Overall and per POS accuracy of FS in the three data sets. 50

3.7 Selected set of features. 52

3.8 Average number of training instances and support vectors for each SVM. 56

3.9 Accuracies (%) on Senseval 2 and 3 All English Words Data Sets. . . 58

3.10 Synopsis of WSD Results in Senseval 2 and 3. 59

4.1 Probability of occurrence for every edge type in WordNet 2.0. 65

5.1 Correlations of semantic relatedness measures with human judgements. 92

5.2 Precision in the 374 SAT Questions. 94

5.3 Error Reduction Rates (%) from the standard vectorial model in the

paraphrase task. 96

5.4 Correlations to human judgements for the 50 documents data set. . . 97

B.1 Statistics of the WordNet 2.0 graph in the implemented database. . . 121

D.1 Documents, queries and domains of the retrieval collections. 128

ix

List of Figures

1.1 Top two Google results for query Low-risk instruments. 4

2.1 A previous method to generate SANs for WSD. 18

3.1 Performance of compactness in SemCor, Senseval 2 and Senseval 3 nouns. 36

3.2 Our method to construct SANs. 38

3.3 Accuracy on polysemous words and the respective 0.95 confidence in-

tervals. 44

3.4 Accuracy on all words and the respective 0.95 confidence intervals. . . 45

3.5 Overall System Organization. 49

3.6 Pairwise methods inter-agreement in sense level. 51

4.1 Constructing semantic networks from word thesauri. 64

4.2 Semantic path from child care to school. 71

4.3 PR and NWPL paths for pairs: car and accelerator (left), car and

autobus (right). 73

5.1 Example of computing SR in a given SAT question. 79

5.2 Correlation between human ratings and SR in the R&G and M&C data

sets. 93

5.3 0.95 confidence intervals in the 374 SAT questions. 95

5.4 Relative Improvement of F-measures scores for various Similarity Con-

figurations in the Amazon Topics. 99

5.5 Relative Improvement of F-measures scores for various Similarity Con-

figurations in the Reuters Topics. 100

x

5.6 Absolute improvements of macro F1 values and exact macro F1 values

for the Acquisitions vs Earnings experiment. 103

5.7 Absolute improvements of macro F1 values and exact macro F1 values

for the 10 largest Reuters categories experiment. 104

5.8 Interpolated precision recall curves and differences (percentage points)

from the baseline in interpolated precision. 105

A.1 Semantic relations in WordNet 2.0. 118

B.1 SR Integration with Terrier Platform. 122

D.1 Differences from the baseline in interpolated precision. 129

xi

xii

Chapter 1

Introduction

The amount of text data has increased rapidly over the last two decades, especially

with the advent and the wide use of the World Wide Web. Searching and organizing

text information efficiently has become a very difficult task, mainly because of two

reasons: (a) the diversity of the domains that texts refer to has increased dramati-

cally, and (b) traditional methods for representing and processing text segments or

documents employ mostly exact keyword matching.

The lexical ambiguity of most languages, like the English language, which is the

language that this thesis focuses on, intensifies the problems arising from the afore-

mentioned facts, with regards to computationally intensive tasks, like text classifica-

tion and retrieval. Words and phrases can be found in different syntactic roles, while

their meanings can also be different in various contexts, depending on the domain.

The amalgamation of the several forms that lexical ambiguity can take, and which

we will explain shortly in detail, has been shown to affect the performance of tasks

like classification and retrieval [10, 51].

A natural solution to the problems arising from lexical ambiguity is to resolve

it. However, automatically resolving lexical ambiguity by a computer program is not

easy. This is the main reason that the problem of lexical ambiguity resolution is

still a central problem in the areas of natural language processing and computational

semantics in particular.

This thesis aims to explore semantic ambiguity, and proposes new Word Sense

1

2 CHAPTER 1. INTRODUCTION

Disambiguation (WSD) algorithms to resolve it for the English language. In addition,

this thesis focuses on the ways that semantic information from word thesauri, in

our case WordNet [31], can be embedded into measures of text relatedness, and

proposes a novel measure of text semantic relatedness, namely Omiotis. In order to

explore the merits of embedding Omiotis into text related tasks, we present a series

of experiments in several difficult tasks, like classification, retrieval, paraphrasing and

document similarity.

The rest of this thesis is organized as follows:

• The remaining sections of chapter 1 present in detail the problem that we are

trying to solve, set the boundaries of this work, and summarize the contribu-

tions.

• Chapter 2 analyzes the related work, with regards to previous WSD meth-

ods, representation of text with semantic networks, other semantic relatedness

measures, as well as text applications of word thesauri like WordNet, includ-

ing a discussion about the effect of embedding WordNet information into text

retrieval.

• Chapter 3 presents our approaches for performing WSD and analyzes the ex-

perimental results in three benchmark collections for the task.

• Chapter 4 presents our novel measure of semantic relatedness, Omiotis.

• Chapter 5 analyzes the means of embedding Omiotis into well known text appli-

cations and also presents the experimental evaluation of Omiotis and discusses

the experimental results.

• Chapter 6 concludes, by summarizing the contributions of this thesis and offer-

ing pointers to interesting future work.

1.1 Problem and Motivation

The classic models for representing documents are based on a vectorial representation

of their terms. For decades now, one of the most important models of this classical

1.1. PROBLEM AND MOTIVATION 3

representation is the vector space model [98], which also constituted the basis for

one of the most influential retrieval systems, namely SMART [97]. According to the

vector space model, given a document d with i distinct terms (t1, ..., ti), the vectorial

representation of this document is a vector with i dimensions ~d = (w1, ..., wj), where

w1, ..., wj are either positive and non-binary, or binary, if the boolean vector model

is used. In case the case that (w1, ..., wj) represent weights of terms (t1, ..., ti) in

document d, a commonly used weighting scheme for the terms is the well known

TF-IDF factor [110].

The vector space model allows the similarity between two documents (or between

a document and a query in the IR paradigm) to be computed as the cosine of the

angle between the two vectors. Though there have been many variations of the

vector space model [5] since it was initially conceived, usually an assumption is made,

known as terms orthogonality. According to this assumption, the vector space has as

its orthocanonical base the term vectors ~t1 = (1, 0, 0..., 0), ..., ~ti = (0, 0, 0..., 1). This

assumption implies that for a pair of documents, only their common terms affect

their similarity, since any pair of term vectors ~tk, ~tm, where tk 6= tm, would produce

a cosine value of zero (the two vectors are orthogonal). In the simplest case, the

assumption leads to computing the similarity between documents based on exact

keyword matching.

In what follows, we shall present some motivating examples of how exact keyword

matching may affect the quality of certain text applications. In addition, we shall

motivate the need for resolving lexical ambiguity in crucial tasks, such as IR. Primar-

ily, let us consider the paraphrase recognition task, in which the target is to recognize

whether a pair of sentences is approximately semantically equivalent. The following

two sentences are an example of a paraphrase taken from the Microsoft Paraphrase

Corpus [29]:

The shares of the company dropped 14 cents.

The organization’s stock slumped 14 cents.

In this example, the noun shares of the first sentence is semantically vary similar

to the noun stock of the second sentence. In fact, these two words are synonyms

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Top two Google results for query Low-risk instruments.

in WordNet. Furthermore, the verb drop of the first sentence, is a synonym of the

verb slump of the second sentence. In addition, the nouns company and organization

also bare a semantic similarity. The models based on exact keyword matching fail to

recognize all of the aforementioned connections, residing in the absolute match of the

number 14 and the noun cent to compute the similarity between these two sentences.

In another example, taken from the IR paradigm, let us consider a user searching

for low-risk instruments in Google. This query pertains to information regarding legal

documents and legislation about low-risk investment products. Submitting this query

to Google, returns as the top two results the Web pages shown in figure 1.1. The

first Web page (left) is an article from the Herald Tribune regarding investors, and it

is certainly relevant to the user’s needs. The second Web page (right) is a Web page

that refers to engineering products (instruments) of a company named Testo. Clearly,

in this second page the word instruments is used with another meaning than the one

intended by the user, and of course this page is irrelevant to the user’s needs. In this

latter case, we observe how semantic lexical ambiguity can cause the performance of

retrieval to deteriorate, if left unresolved.

These two examples, taken from the paraphrase recognition task and IR respec-

tively, are representative of the caveats of exact keyword matching. The problem from

this perspective is now reduced to the following. Traditional models of computing

1.1. PROBLEM AND MOTIVATION 5

document similarity: (a) do not consider semantic relations between documents, and

(b) do not resolve lexical ambiguity. The result is a drop in the quality of the results

in important text related tasks, like IR; as we shall see in the following, other tasks,

such as text classification, are also affected.

Before we proceed our solution to this problem, let us first explore in more depth

the different types of lexical ambiguity, and the ways it affects text applications.

Lexical ambiguity can be roughly separated into two different types, namely syntactic

and semantic ambiguity [13]. The former type of ambiguity stems from the fact that a

word or phrase can have different syntactic roles. Consider the two following example

sentences:

Oxides and hydroxides of metals and ammonia are included in bases.

He bases his claim on some observation.

In this example, bases has a different syntactic role in each sentence. In the

first sentence, bases appears as the plural of the noun base, which in this case has a

meaning taken from chemistry. In the second sentence, bases appears as a verb, with

the meaning of establish or ground. The two sentences are an example of syntactic

ambiguity.

In this thesis, we do not address the problem of syntactic lexical ambiguity. We

only focus on the other large category of lexical ambiguity, semantic lexical ambiguity.

In the following example, notice how differently the word bank is used in each sentence:

He cashed a check at the bank.

He sat on the bank of the river and watched the currents.

Examples like the above can be found in almost every English document, and the

same applies to other natural languages. As a further example consider the following

sentence, taken from [131]:

The young page put the goat in the pen.

6 CHAPTER 1. INTRODUCTION

In this example, page and pen are very difficult to disambiguate, because they do

not have their most common senses. Here, page takes the meaning of a boy who is

employed to run errands, while pen means an enclosure for confining livestock.

Clearly, lexical ambiguity is a significant problem for natural language processing

and text applications. This thesis presents new methods to cope with semantic lexical

ambiguity in texts, by introducing new and efficient WSD algorithms. Furthermore,

the thesis proposes a novel measure that embeds semantic information from WordNet

into several critical text applications like text classification and text retrieval, and

shows that semantic information can help to improve the respective tasks’ results.

1.2 Considered Aspects and Proposed Solution

In an effort to improve the the results of text classification, retrieval and paraphrase

recognition, where traditionally the vector based models that are based on exact key-

word matching are used, in this work we aim at designing and implementing a measure

that captures the semantic relatedness between words. Towards this direction, there

are several possible options to consider, that have their individual advantages and

disadvantages. Three basic research directions that are representative of the work in

this area, are: (a) use of semantic information from word thesauri, (b) use of latent

semantic analysis approaches, and (c) use of a language model. In this work, we focus

only on the first direction, and, more specifically, we propose new WSD algorithms

with the use of WordNet.

Furthermore, we design a new measure of semantic relatedness that capitalizes on

the extracted semantic information and on the use of WordNet as a knowledge-base.

Note, however, that in the remainder of this thesis we distinguish between semantic

similarity and semantic relatedness, as discussed in the related bibliography [18]. The

major difference between those two concepts, when a hierarchical word thesaurus is

used, is that in the case of semantic similarity only the hierarchical relations are

considered (i.e., hypernyms/hyponyms), while in the case of semantic relatedness,

every non-hierarchical semantic relation can also be used. The measure we propose

is a measure of semantic relatedness.

1.3. SUMMARY OF CONTRIBUTION 7

Overall, this thesis focuses on how we can address the limitations of exact keyword

matching by embedding information from WordNet. More specifically, the presented

work proposes novel solutions for the following: (1) extract lexical semantic informa-

tion from text, (2) design and implement a word/text semantic relatedness measure

that combines a thesaurus and the extracted lexical information, and (3) embed this

measure into important text applications and evaluate its performance.

Regarding text pre-processing, unless stated otherwise, in the remainder of this

thesis, the Stanford Tagger [116] is used for part-of-speech (POS) tagging, the Porter

Stemmer is used for word stemming, and the TF-IDF formula [19] is used for term

weighting in the vector space model. Finally, we use WordNet version 2.0, as our

thesaurus. More information about WordNet, and the specific version is provided

in appendix A. Note that concepts in the WordNet lexical database are represented

by synsets (synonym sets), and that the terms concepts and synsets will be used

interchangeably.

1.3 Summary of Contribution

Measuring the relatedness between two text segments in an automated manner is a

difficult task. Text conveys semantics that are hard for a computer program to cap-

ture. Without doubt, a measure of relatedness between text segments must take into

account both the lexical semantic relatedness between words and their significance in

the text that they are found (e.g., their TF-IDF scores). Such a measure that com-

bines both aspects may help in many tasks, such as text classification and retrieval. In

this thesis we present a new approach for measuring the semantic relatedness between

words based on their implicit semantic links. The approach does not require any type

of training, since it exploits a word thesaurus, WordNet, in order to devise implicit

semantic links between words. Based on this approach, we introduce a new measure

of semantic relatedness between texts, which capitalizes on the semantic relatedness

between individual words, and extends it to measure the relatedness between sets of

words. We gradually validate our method: we first evaluate the performance of the

semantic relatedness measure between individual words in four data sets and then

8 CHAPTER 1. INTRODUCTION

proceed with evaluating the performance of our method in measuring text-to-text se-

mantic relatedness in three tasks. Experimental evaluation shows that the proposed

method outperforms every other lexicon-based method of word semantic relatedness

in the selected tasks and the tested data sets, and competes well against corpus-based

approaches that require training. Finally, we show that the proposed measure can

be successfully applied to more complex linguistic tasks (e.g. paraphrasing) and that

it is able to capture the human notion of relatedness better than traditional lexical

matching techniques.

The procedure of using semantic information from WordNet in text applications

requires the design and implementation of a series of steps, most of which still con-

stitute open research issues. Towards this direction, this thesis contributes in the

following:

• Word Sense Disambiguation: We have developed four new methods of

WSD, which we explain in detail in chapter 3, and which achieve state of the art

results on three benchmark WSD data sets, namely Senseval-2 [83], Senseval-3

[108] and SemCor [71]. Three of these methods do not require any type of train-

ing and are dictionary-based approaches, relying only on WordNet. The fourth

method constitutes an ensemble approach of dictionary-based methods to dis-

ambiguate words and requires the use of a training data set. Apart from one of

the approaches, which focuses only on nouns, the other proposed methods can

handle the disambiguation of any given word in unrestricted text.

• Semantic Relatedness: A novel measure of text semantic relatedness, Omio-

tis, is introduced, and explained in detail in chapter 4. Omiotis does not require

training and is based on WordNet. The core element of the measure is Seman-

ticRelatedness (SR), a measure for computing semantic relatedness between

concepts in WordNet. SR is expanded to measure word-to-word relatedness

and, eventually, to compute text-to-text relatedness, forming up the Omiotis

measure. The usefulness of these measures is demonstrated with a series of

experiments covering several different applications, from word-to-word related-

ness to difficult text tasks. The experimental evaluation is analyzed in detail in

1.3. SUMMARY OF CONTRIBUTION 9

chapter 5.

• Omiotis and SR Applications: For some text applications, like text classifi-

cation or text retrieval, embedding semantic information is not straightforward.

In this direction, the thesis contributes by providing a novel semantic smoothing

kernel for text classification and a novel generalized vector space model (GVSM)

for text retrieval. Furthermore, we present additional interesting applications of

these measures, in tasks like paraphrasing recognition and scholastic aptitude

tests (SAT). The applications of SR and Omiotis are explained in section 5.1.

• Novel Implementation: The thesis also provides an implementation of SR

and Omiotis, capable of handling the application of the measures to large data

sets, like Reuters for classification and TREC for retrieval. As explained in

appendix B, the implementation relies on a large database (around 600 GB of

data), which indexes all the pairwise synset SR values for all WordNet synsets

(11 billion combinations).

Chapter 2

Background and Related Work

In this chapter we present previous work that is related to this thesis from the areas

of WSD, semantic representation of text based on information from lexical databases

or thesauri, and applications of text kernels and GVSM to text classification and text

retrieval that use lexical information from dictionaries and/or thesauri.

2.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) aims to assign to every word of a document the

most appropriate meaning (sense) among those offered by a lexicon or a thesaurus.

WSD is important in natural language processing and in several applications, such

as machine translation, speech processing and summarization. A wide range of WSD

algorithms and techniques has been developed, utilizing machine readable dictionar-

ies, statistical and machine learning methods, even parallel corpora. In [42] several

approaches are surveyed; they address WSD either in a supervised manner, utiliz-

ing existing manually-tagged corpora, or with unsupervised methods, which sidestep

the tedious stage of constructing manually-tagged corpora. Similar categorizations of

WSD methods have been presented in [1] and [79]. In this thesis we follow Navigli

[79], who distinguishes between supervised and unsupervised approaches, and also

between knowledge-based and corpus-based approaches, with the former utilizing a

10

2.1. WORD SENSE DISAMBIGUATION 11

knowledge-base, like a lexical database or a thesaurus, whereas the latter rely on docu-

ment collections instead. Based on this categorization, the relevant approaches to the

ones we propose are knowledge-based approaches, both supervised and unsupervised.

Most of the approaches are traditionally evaluated in specific tasks of the Senseval

initiative, which measure their ability to disambiguate all the words of texts (English

All Words task of Senseval) or a targeted set of words (English Lexical Sample task).1

The methods we propose are able to disambiguate all words in a given text segment,

and, thus, we focus more on the corresponding task. The following three subsec-

tions discuss such approaches, giving greater emphasis to the methods that use a

hierarchical word thesaurus, rather than a dictionary.

2.1.1 Knowledge-based Unsupervised Word Sense Disambigua-

tion

Several WSD approaches capitalize on the fact that thesauri like WordNet offer impor-

tant vertical (hypernym/hyponym) and horizontal (synonym, antonym, coordinate

terms) semantic relations. Though early approaches of WSD, like the much influen-

tial method of Lesk [58], do not consider word thesauri, and rather use a dictionary

to discover the correct senses through measuring the overlap of sense definitions and

context words, the expansion of existing, and the development of new word thesauri

has offered powerful knowledge that can be exploited. There have been approaches

that try to expand the measurement of overlap of sense definitions to words of the

thesaurus that are directly connected with the context words through strong seman-

tic relations, like synonyms and hypernyms [6]. The performance of these approaches

though, cannot compete with the results obtained from methods that use even more

knowledge from rich thesauri like WordNet. A feature that distinguishes two of our

proposed approaches for WSD, namely the Spreading Activation Networks approach

that we introduced in [121] and a PageRank-based approach, both explained in de-

tail in chapter 3, is the fact that we utilize all of the available semantic information

1http://www.senseval.org/

12 CHAPTER 2. BACKGROUND AND RELATED WORK

offered by WordNet. The state-of-the-art performance of these approaches on Sense-

val’s data sets shows that the rich semantic information in WordNet can boost WSD

performance.

The idea of using semantic relations from word thesauri in WSD is not new. Sussna

[114] proposes a disambiguation algorithm, which assigns a sense to each noun in a

window of context by minimizing a semantic distance function among their possible

senses. The measure proposed is based on the assignment of weights to the edges in

the WordNet noun hierarchy. To compute the weights, the is-a, has-part, is-a-part-of

and antonyms relations between the noun senses are considered. Furthermore, the

higher the level of the WordNet hierarchy, the greater is the conceptual distance that a

semantic link between two senses suggests. Thus, Sussnas algorithm rewards semantic

links between senses in lower levels of the WordNet noun hierarchy. This method has

combinatory complexity due to the pair-wise computation of the semantic distance

function for a given window of context.

Aggire and Rigau [3] introduce and apply a similarity measure based on concep-

tual density between noun senses. Their proposed measure is based on WordNet’s

is-a hierarchy and it measures the similarity between a target noun sense and the

nouns in the surrounding context. For this purpose, they divide the WordNet noun

is-a hierarchy into subhierarchies, so that each possible sense of the ambiguous noun

belongs to exactly one subhierarchy. For each possible sense of the word to be disam-

biguated the measure returns the ratio of the area of the corresponding subhierarchy

that is occupied by the context words (nouns only) to the total area occupied by the

subhierarchy. The sense with the highest conceptual density (ratio) is assigned to the

target word.

Banerjee and Pedersen [6] suggest an adaptation of the original Lesk algorithm in

order to take advantage of the network of relations provided in WordNet. Rather than

simply considering the glosses of the surrounding words in the sentence, the concept

network of WordNet is exploited to allow for glosses of word senses related to the

words in the context to be compared as well. Essentially, the glosses of surrounding

words in the text are expanded to include glosses of those words to which they are

related through relations in WordNet. They also suggest a scoring scheme such that

2.1. WORD SENSE DISAMBIGUATION 13

a match of n consecutive words in the glosses is weighted more heavily than a set of

n one word matches.

More recent knowledge-based WSD approaches utilize even more semantic infor-

mation from WordNet and can disambiguate words from all POS (nouns, verbs, ad-

jectives and adverbs). An example of such an approach is the PageRank-based WSD

method of Mihalcea et al. [70]. They use representation of WordNet as a graph, defin-

ing the vertices as synsets and the edges as the semantic relations connecting synsets.

Adding some custom type edges in the same graph, they use this representation to

construct synset graphs from text, and then execute the known PageRank algorithm

to rank the synset vertices. However, they do not use weights on the edges, and they

do not make use of all the semantic relations offered by WordNet 2.0. In chapter 3

we will show a modification of this algorithm, our proposed PageRank-based WSD

method, relying on our novel semantic representation, and we prove experimentally

that these modifications boost WSD performance on the Senseval data sets.

Navigli [81, 77, 78] presented the online implementation of Structural Semantic

Interconnections (SSI-HITS), which constructs semantic graphs that connect all can-

didate senses and consequently ranks senses using the HITS algorithm. SSI-HITS is

based on a measure that maximizes the degree of mutual interconnection among a set

of senses, a variation of their former SSI WSD algorithm. The final sense selection

for each term occurs after ranking the participating sense nodes in the constructed

semantic graphs, using the HITS algorithm. Both SSI-HITS and the original SSI

compare competitively as unsupervised WSD methods, though SSI performs bet-

ter than its online implementation in Senseval 3, and can perform unrestricted text

WSD. This method is similar to our PageRank-based based method (see chapter 3),

but a different semantic network representation is used, as well as a different ranking

algorithm for the nodes of the graph (HITS against PageRank).

There are also methods that propose a combination of unsupervised knowledge-

based WSD algorithms to perform the task. Rigau et al. [93] propose a set of

unsupervised knowledge-based heuristics and combine the disambiguation results with

a weighted sum to produce the final decision for the disambiguation of a given word.

Though Rigau et al. have applied it only to the disambiguation of genus terms of

14 CHAPTER 2. BACKGROUND AND RELATED WORK

two machine readable dictionaries (MRD), their method can also be applied to the

disambiguation of unrestricted text, but Rigau et al. do not provide a means of

tuning the weights of each heuristic. In some cases, knowledge-based methods and

corpus-based methods are combined in an ensemble with simple voting mechanisms,

to perform WSD, like for example in the work of Montoyo et al. [75]. Ensemble-based

approaches rely on the hypothesis that WSD requires different types of knowledge

sources to achieve high performance.

An ensemble methodology with higher performance than the method in [75] was

proposed by Brody et al. [17], who use an ensemble of 4 unsupervised WSD methods

(a Lesk-like extended gloss overlap method, a lexical chains method, the structural

semantic interconnections method of Navigli [78], a distributional and WordNet sim-

ilarity based method that learns predominant senses from raw text [65]) to boost

overall performance and perform unrestricted text WSD. The method combines un-

supervised methods, and uses their recommendations to reach a final decision. The

overall method does not have a classifier on top of the unsupervised methods, and rec-

ommends senses and not WSD methods to be used. This ensemble approach of WSD

methods is similar to the supervised ensemble WSD method that we propose (consult

section 3.4), but it differs in that our ensemble recommends the WSD method that

should be used to disambiguate each word occurrence, instead of proposing directly

the sense for each word.

Another interesting unsupervised knowledge-based approach that utilizes mea-

sures of semantic relatedness or similarity to perform WSD is the approach by Sinha

and Mihalcea [105]. They propose an unsupervised graph-based method for WSD,

based on an algorithm that computes graph centrality of nodes in the constructed

semantic graph. To measure the centrality of the nodes, they use the indegree, the

closeness, the betweenness of the vertices in the graph, as well as PageRank. They

also employ five known measures of semantic similarity or relatedness to compute the

similarity of the nodes in the semantic graph, though the idea of using measures of

semantic relatedness for performing WSD was initially employed by Patwardhan et

al. [86]. The results of Sinha and Mihalcea are state-of-the art in the Senseval data

sets, and their method is directly comparable to our PageRank method. The main

2.1. WORD SENSE DISAMBIGUATION 15

difference lies in the constructed semantic networks, as we will see in detail in section

3.3.2.

2.1.2 Knowledge-based Supervised Word Sense Disambigua-

tion

Traditional supervised WSD methods use classifiers to predict the correct term sense

from the context representation of the target word [87, 33, 54, 48]. In these methods

a separate classifier learns to disambiguate the occurrences of each lemma (main

form of a word). A feature vector is constructed for each lemma occurrence. The

features are binary declaring the existence or absence of any other lemma in a given

distance window from the target lemma occurrence. Supervised WSD becomes really

hard to apply in this manner, since an ordinary document collection contains tens

of thousands of different lemmas, leading to the construction of tens of thousands

of classifiers. Furthermore, these methods require at least one occurrence of the

target lemma in the training set to perform disambiguation, and are inapplicable to

unrestricted text WSD. Moreover, their experimental evaluation is usually limited

to a small set of target lemmas (at most 72 in the lexical sample Senseval tasks).

Similar restrictions apply to WSD approaches that need at least one occurrence of

each candidate sense in the manually annotated training corpora [137].

More formally, the basic idea of those methods is to use binary features (F1, F2, ..., Fn),

where each Fi suggests the existence or absence of a single word (or lemma) within

a window of words to the left and the right of the target word, as for example shown

in [87]. Though there is no global consensus on the selection of the appropriate fea-

tures in the WSD task, the features must be chosen carefully. Their selection must

be based upon three facts characterizing the domain of WSD: (a) Different parts of

speech have different mean average polysemy, thus differing in the disambiguation

difficulty. Using different features per POS, also depending on the number of senses

a target word has may thus be desirable. (b) Many corpus-based methods, like the

heuristic that always selects the first WordNet sense, are based on the frequencies

of the senses of the target words in a corpus. This means these frequencies inside a

16 CHAPTER 2. BACKGROUND AND RELATED WORK

document and in the whole collection in general need to be considered. (c) The sense

of a word occurrence can only be decided by examining its context, which was also

the base thinking for early and successful Lesk-like WSD approaches.

In recently proposed supervised methods for WSD, the constraints that did not

allow earlier supervised approaches to be applied to open text are relaxed, due to two

main reasons: (a) more generic features are used, and (b) ensembles of approaches

are used to increase coverage. Towards this direction, Mihalcea [67] presents the

SenseLearner WSD system, which can perform unrestricted text WSD with very

high accuracy. The system builds different semantic models for predefined different

categories of terms, with a varying granularity of categories, and uses them to predict

the correct sense per term. SenseLearner can disambiguate occurrences of only terms

that have appeared at least once in the training corpus, or have been covered by

the learned semantic models; Mihalcea uses the first WordNet sense heuristic for the

other term occurrences.

In the approach of Kohomban and Lee [49] WSD is based on the construction

of coarse grained semantic classes. Different classifiers learn to predict the correct

semantic class for each term, and predictions are combined using a weighted major-

ity voting scheme. The suggested semantic class is consequently mapped into finer

grained senses based on heuristics. The accuracy of this method, which can perform

WSD of unrestricted text, is comparable to fine grained WSD.

Hoste et al. [40] propose a WSD method that trains classifiers for each word-POS

combination. To address the Senseval 2 English all words task they had to train

596 classifiers, one for each word-POS pair combination. The method can perform

unrestricted text WSD, but has huge space complexity.

Le et al. [53] present a system that combines multiple classifiers to perform WSD.

Their method is based on varying representations of each target term’s context for

each classifier. The classifiers’ results are combined based on the Dempster-Shafer

theory of evidence.

In contrast to the aforementioned approaches, our supervised ensemble approach

described in section 3.4, decides on the appropriate base WSD method to be used for

a term occurrence, and not on the correct sense, and since it uses unsupervised base

2.1. WORD SENSE DISAMBIGUATION 17

methods, it can be easily applied to unrestricted text. We provide a comparative

analysis of the performance of the above methods in the Senseval 2 and 3 benchmark

datasets, compared to our ensemble approach.

Finally, there are also some other approaches that can potentially disambiguate

unrestricted text, but they are computationally infeasible for large amounts of text.

For example, the method of Mihalcea and Moldovan [68] searches the Internet to

find collocations of words in the glosses of the target terms and neighboring words to

perform WSD. This is computationally expensive due to the large number of internet

searches required.

2.1.3 Previous Use of SANs in WSD

Spreading Activation Networks (SANs) have already been used in information re-

trieval [26] and in text structure analysis [50]. Since the introduction of semantic

networks by Quillian [90], several others [24, 15] have used semantic networks and

spreading of activation in WSD, but those approaches required rather ad hoc hand-

encoded sets of semantic features to compute semantic similarities. The most recent

attempt to use SANs in WSD, overcoming the aforementioned drawback, is the work

by Veronis and Ide [131].

Figure 2.1 illustrates how SANs were applied to WSD by Veronis and Ide. Let W1

and W2 be two words that co-occur (e.g., in a sentence or text) and which we want to

disambiguate. They constitute the network nodes (word nodes) depicted in the initial

phase of Figure 2.1; more generally, there would be n word nodes, corresponding to

the n words of the text fragment. Next, all relevant senses of W1 and W2 are retrieved

from a machine readable dictionary (MRD), and are added as nodes (sense nodes) to

the network. Each word is connected to all of its senses via edges with positive weights

(activatory edges). The senses of the same word (e.g. S11 and S12) are connected to

each other with edges of negative weight (inhibitory edges). This is depicted as phase

1 in Figure 2.1. Next, the senses’ glosses are retrieved, tokenized, and reduced to

their lemmas (base forms of words). Stop-words are removed. Each gloss word (GW)

is added as a node to the network, and is connected via activatory links to all sense

18 CHAPTER 2. BACKGROUND AND RELATED WORK

W1

...

W2

S.1.1

S.1.2

S.2.1

S.2.2

W1 W2

S.1.1

S.1.2

S.2.1

S.2.2

W1 W2

GW
1.1.1

GW
1.1.n

GW
1.2.1

GW
1.2.n

GW
2.1.1

GW
2.1.n

GW
2.2.1

GW
2.2.n

...

... ...

Initial Phase Phase 1

Phase 2

= Word Node

Index:

= Sense Node

= Activatory Link

= Inhibitory Link

Figure 2.1: A previous method to generate SANs for WSD.

nodes that contain it in their glosses (phase 2). The possible senses of the gloss words

are retrieved from the MRD and added to the network. The network continues to

grow in the same manner, until nodes that correspond to a large part or the whole

of the thesaurus have been added. Note that each edge is bi-directional, and each

direction can have a different weight.

Once the network is constructed, the initial word nodes are activated, and their

activation is spread through the network according to a spreading strategy, ensuring

that eventually only one sense node per initial word node will have a positive activa-

tion value, which is taken to be the sense the algorithm assigns to the corresponding

word. Note that this approach assumes that all occurrences of the same word in

the text fragment we apply the algorithm to have the same sense, which is usually

reasonable, at least for short fragments like sentences or paragraphs.

In section 3.3.1 we introduce a new spreading activation WSD algorithm, that is

based on a novel semantic network construction methodology and a new spreading

activation strategy. An important difference from the semantic network construction

in [131] is that we also use sense-to-sense relations, while are not considered in the

aforementioned approach. Furthermore, we do not make use of gloss-words. Experi-

ments on WSD benchmarks show that our SAN method outperforms the method of

2.2. REPRESENTATION OF TEXT USING SEMANTIC NETWORKS 19

Veronis and Ide.

2.2 Representation of Text using Semantic Net-

works

The use of a word thesaurus offers rich semantic relations between concepts and allows

representing texts as semantic networks, initially introduced by Quilian [89]. The

expansion of WordNet with semantic relations that cross parts of speech has added

more possibilities of semantic network construction from text. Early approaches,

(e.g., Veronis and Ide [131]) used the gloss words in the terms’ definitions in order

to build semantic networks from text. More recent approaches to semantic network

construction from word thesauri, by Mihalcea et al. [70] and Navigli [78], utilize

the semantic relations of WordNet instead. These methods outperformed previous

methods that used semantic networks in the all words WSD tasks of Senseval 2 and

3 for English. In this thesis we adopt the semantic network construction method

that we introduced in [121]. The method, which is explained in detail in section

3.3.1, utilizes all of the available semantic relations in WordNet 2.0 (Appendix A).

Furthermore, we employ a novel weighting scheme for the edges connecting the sense

nodes. WSD experiments show that the employed semantic network representation of

text can be processed with several node ranking algorithms (e.g., activation spreading,

PageRank), and that it outperforms previously proposed representations in WSD,

like the one introduced by Mihalcea [70]. Furthermore, in chapter 4 we introduce

our measure of semantic relatedness, which used the semantic network construction

method in order to define semantic relatedness between concepts and words.

2.3 Measuring Semantic Relatedness Between Words

Semantic relatedness between words has been exploited in the past in text summa-

rization, text retrieval and WSD [18]. The three most important factors of semantic

graph based relatedness are: (a) length of the path connecting the senses, (b) the

20 CHAPTER 2. BACKGROUND AND RELATED WORK

depth of the senses in the used hierarchical thesaurus, and (c) the importance of

the thesaurus edges involved. In section 4.1 we present a new measure of semantic

relatedness (SR) [119] between WordNet concepts and we show how it is expanded

to measure semantic relatedness between words and between texts (Omiotis). To the

best of our knowledge, SR is the first measure of semantic relatedness that combines

the three aforementioned factors. In general, the measures of semantic relatedness can

be roughly classified in dictionary-based (also found in the bibliography as knowledge-

based, or thesaurus-based), corpus-based and hybrid. Though SR and Omiotis belong

clearly in the measures of the first category, in the experimental evaluation we com-

pare them not only against all the state of the art dictionary-based measures, but

also against some very important corpus-based and hybrid measures.

Regarding dictionary-based or hybrid measures that utilize a thesaurus, the mea-

sure of Agirre and Rigau in [2] computes the relatedness between sets of concepts

based on the concepts’ density and depth and on the length of the shortest path

that connects them. However, Agirre and Rigau assume that all edges in the path

are equally important. Resnik’s [91] measure for pairs of concepts is based on the

information content (IC) of the deepest concept that can subsume both. Measures

proposed by Jiang and Conrath [45], Hirst and St-Onge [39], Leacock and Chodor-

row [55], and Lin [59] were based on similar ideas. The reader may wish to consult

Budanitsky and Hirst [18] for a detailed discussion of most of the aforementioned

measures. All these measures use only the noun hierarchy, whereas our measure de-

fines the semantic relatedness between any two terms, independently of their POS,

utilizing all available semantic links offered by WordNet.

Some other, more recent, interesting measures of semantic relatedness, to which

we also compare in our experiments, are: the measures of Jarmasz and Szpakowicz

[44], who use Roget’s thesaurus to compute semantic similarity; the LSA measure

of Finkelstein et al. [32], who perform Latent Semantic Analysis (LSA) to capture

text relatedness; the methods of Strube and Ponzetto [113] and Gabrilovich and

Markovitch [34], who use Wikipedia to compute semantic relatedness; and finally the

method of Mihalcea et al. [66], which is a hybrid method combining knowledge-based

and corpus-based measures of text relatedness.

2.4. MEASURING SEMANTIC RELATEDNESS BETWEEN TEXT SEGMENTS21

2.4 Measuring Semantic Relatedness Between Text

Segments

Most of the aforementioned measures of semantic similarity or distance or relatedness

can be applied to pairs of words; their expansion to measure the relatedness between

text segments requires an additional step. Though there are numerous string kernels

than can measure the similarity between text segments by considering the string

similarities of the words inside the texts [132], the approaches in the bibliography

that can embed semantic similarity of words are few. A system that can achieve the

thematic organization of Web documents (or text documents in general) by taking

into account semantic information from a word thesaurus is THESUS [129], proposed

by Varlamis et al. THESUS relied on Wu and Palmer’s similarity measure [135] to

cluster thematically a collection of documents. The noun hierarchy of WordNet was

employed and experimental evaluation with two clustering algorithms (COBWEB

and DBSCAN) showed that the clustering of THESUS produced higher F-Measure

than the traditional VSM model with the cosine similarity measure. In our approach,

we use THESUS to define Omiotis, our measure of semantic relatedness between text

segments.

Besides THESUS, there are other approaches as well, that can be used to embed

a semantic similarity measure of words in a semantic similarity measure of texts.

Towards this direction, in an analogy to string kernels, there are semantic kernels

that exploit knowledge bases like WordNet. Basili et al. [7, 10] define a semantic

kernel that is applied to text classification. The measures of Wu and Palmer [135]

and Lin [59] have been tested with Basili et al.’s kernel and the results presented

in [10], that were obtained for a text classification task with Reuters, show that the

defined kernel outperforms the linear kernel of Support Vector Machines (SVM). In

section 5.1 we present a new kernel, based on the kernel in [10], by embedding SR

as a measure of semantic relatedness. Experimental results show that in the same

text classification task the kernel performs even better, due to the substitution of the

relatedness measure.

Mihalcea et al. [66] propose another way to use measures of semantic similarity for

22 CHAPTER 2. BACKGROUND AND RELATED WORK

words to measure similarity between short text segments. Given two text segments T1

and T2, with n1 and n2 words respectively, they compute the following score between

them:

sim(T1, T2) =
1

2
(

∑

w∈T1
(maxSim(w, T2) ∗ idf(w))

∑

w∈T1 idf(w)
+

∑

w∈T2
(maxSim(w, T1) ∗ idf(w))

∑

w∈T2 idf(w)
)

(2.1)

where maxSim(w, T1) is the maximum similarity found for the word w of T2 with

any word of the same part of speech from T1, and idf(w) is the inverse document

frequency of word w in the collection. The THESUS formula that we use [129] is

similar to the above, but considers similarity between all combinations of POS and

normalizes to the number of terms in each text segment.

Other existing approaches for measuring text semantic similarity use Web re-

sources. Cilibrasi and Vitanyi [21] propose the Google similarity distance, which is

based on the page counts of word co-occurrences. Gabrilovich and Markovitch [34]

and Strube and Ponzetto [113, 88] rely on Wikipedia to compute semantic relat-

edness between texts. Finally, there are also corpus-based approaches, like the the

one proposed by Islam and Inkpen [43], combining corpus-based similarity and string

similarity measures. These approaches, though offering high performance in many

interesting tasks, have high computational cost due to the needed processing of huge

Web sub-graphs or the required training and tuning. In contrast, Omiotis is a fast,

unsupervised knowledge-based measure of semantic relatedness.

2.5 Word Thesauri and their Use in Text Applica-

tions

Word thesauri, like WordNet or Roget’s International Thesaurus, constitute the

knowledge-base for several text-related research tasks. WordNet has been used suc-

cessfully as a knowledge base in the construction of Generalized Vector Space Models

(GVSM) and semantic kernels for document similarity with application to text classi-

fication, like in the work of Basili et al.[7], or our previous work [63], and text retrieval,

2.5. WORD THESAURI AND THEIR USE IN TEXT APPLICATIONS 23

like in the work of Voorhees [133], and the work of Stokoe et al. [112]. Furthermore,

the idea of using a thesaurus as a knowledge base in text retrieval has also been

proven successful in the case of cross language information retrieval, like in the CLIR

system presented by Clough and Stevenson [22]. The design of a document similarity

measure based on semantic kernels with application to information retrieval and/or

text classification is a research challenge, since it involves investigating the impact of

lexical ambiguity and WSD performance in those tasks. A short discussion follows

that sums up the current trends in evaluating the impact of ambiguity in those tasks.

The most thorough investigation towards this direction, in information retrieval, is

probably by Sanderson [101] who concludes that ambiguity in words can be found in

many types, but new test collections are needed to realize the true importance of re-

solving ambiguity and using semantic relatedness measures and sense disambiguation

in the text retrieval task. Earlier, Sanderson [100] reported that even 90% accurate

WSD cannot guarantee retrieval improvement, though his experimental methodology

was based only on randomly generated pseudowords of varying numbers of words.

More precisely, he concluded that sense ambiguity is problematic for IR only when

short queries are used. Similarly, Voorhees [133] reported a drop in retrieval perfor-

mance when the retrieval model was based on WSD information. On the contrary, the

construction of a sense-based retrieval model by Stokoe [112] improved performance,

while several years before, Krovetz and Croft [51] had already pointed out that resolv-

ing word senses can improve searches requiring high levels of recall. More specifically,

their results revealed that under certain circumstances, information about the senses

of words may improve IR. Experiments on two document collections, CACM and

TIMES showed that word senses provide a clear distinction between relevant and

non-relevant documents, rejecting the null hypothesis that the senses of the words

are not related to judgments of relevance. Also, they reached the conclusion that

words being worth of disambiguation are either the words with uniform distribution

of senses, or the words that have a different sense in the query from the most popular

one.

From this small discussion it is evident that the impact of ambiguity in IR has

raised a controversy that has been going on for almost two decades. From our point

24 CHAPTER 2. BACKGROUND AND RELATED WORK

of view, and since we have re-examined and verified part of the evaluation conducted

by previous authors, like Krovetz and Croft [51] (consult Appendix D for our findings

in five small IR collections), the opinion of Sanderson [101] is probably the most

representative and descriptive of the situation: we do not have currently the data

sets on which we can really evaluate the impact of lexical ambiguity in IR. Besides

these conclusions, in section 5.1 we present a GVSM that embeds our SR measure of

semantic relatedness into the text retrieval task, and we have conducted experimental

evaluation on three TREC collections that shows slight improvement against the VSM

model [117].

Regarding the use of semantic information from word thesauri in the text classifi-

cation task, we shall briefly describe the previous relevant work on embedding WSD

in document classification. The conclusions from the use of semantic information in

text classification, in opposition to IR, are clear and compact, stating that seman-

tic information (e.g. WSD information) improves document classification, especially

when the training sizes are small. In [115], a WSD algorithm based on the general

concept of extended gloss overlaps is used and classification is performed with an

SVM classifier for the two largest categories of the Reuters-25178 collection and two

IMDB movie genres.2 It is demonstrated that, when the training set is small, the use

of WordNet senses together with words improves the performance of the SVM classi-

fication algorithm; however for training sets above a certain size, the WSD approach

is shown to have inferior performance compared to term-based classification. In that

study, the semantic relations in WordNet were not exploited in the classification pro-

cess. Although the WSD algorithm that was employed was not tested experimentally,

its precision was estimated with a reference to [6], since the later work had a very

similar theoretical basis. The experiments conducted in the latter study in Senseval

2 lexical sample data, show that the algorithm exhibits low precision (around 45%)

and thus may introduce much noise that may deteriorate the overall performance in

a classification task.

In [11], Bloehdorn and Hotho experiment with various mappings from words to

senses including using the most frequent sense, as provided by WordNet, and using

2http://www.imdb.com

2.6. GENERALIZED VECTOR SPACE MODELS 25

WSD based on context. Their approach is evaluated on Reuters-25178, OSHUMED

and the FAODOC corpus, providing positive results. Their WSD algorithm has

similar semantic information available as in the WSD algorithm proposed in [2], using

only hypernyms.

In [95], Rosso et al. utilize the supervised WSD algorithm proposed in [74] in

k-NN classification of the 20-newsgroups dataset. The WSD algorithm they employ

is based on a Hidden Markov Model and is evaluated on Senseval 2 in the English all

words task, achieving a maximum precision of around 60%. On the classification task

of the 20-newsgroups dataset they report a very slight improvement in the error rate

of the classification algorithm. WordNet’s semantic relations are not exploited in the

k-NN classification process.

Scott and Matwin [103] present an early attempt to incorporate semantics by

means of hierarchical thesauri in the classification process, reporting negative results

on the Reuters-21578 and DigiTrad collection. While no disambiguation algorithm is

employed, hypernyms are used to extend the feature space representation.

In section 5.1 we present two new different ways of incorporating semantic infor-

mation from WordNet to the text classification task, namely a GVSM model and a

semantic smoothing kernel. Our experimental evaluation agrees with the reported

conclusions of previous works: semantic information from a word thesaurus, like

WordNet, can improve text classification performance, especially when the training

sizes are small.

2.6 Generalized Vector Space Models

The Vector Space Model (VSM) assumes term orthogonality and, as explained in

the introduction, this assumption misses much information regarding evidence of

similarity among document vectors. Research has been conducted to formulate VSM

generalizations (GVSM) that attempt to take into account the possible dependencies

among terms in the VSM. In the remaining of this section we explain in detail the

VSM and the GVSM.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

2.6.1 Vector Space Model

The VSM has been a standard model of representing documents in information re-

trieval for almost four decades [98, 128, 99, 5]. Let D be a document collection and

Q the set of queries representing users’ information needs. Let also ti symbolize term

i used to index the documents in the collection, with i = 1, .., n. The VSM assumes

that for each term ti there exists a vector ~ti in the vector space that represents it.

It then considers the set of all term vectors {~ti} to be the generating set of the vec-

tor space, thus the space basis. If each dk (for k = 1, .., p) denotes a document of

the collection, then there exists a linear combination of the term vectors {~ti} which

represents each dk in the vector space. Similarly, any query q can be modelled as a

vector ~q that is a linear combination of the term vectors.

In the standard VSM, the term vectors are considered pairwise orthogonal, mean-

ing that they are linearly independent. However, this assumption is unrealistic, since

it requires lack of relatedness between any pair of terms, whereas the terms in a lan-

guage often relate to each other. Provided that the orthogonality assumption holds,

the similarity between a document vector ~dk and a query vector ~q in the VSM can be

expressed by the cosine measure given in equation 2.2.

cos(~dk, ~q) =

∑n
j=1 dkjqj

√

∑n
i=1 d2

ki

∑n
j=1 q2

j

(2.2)

where dkj, qj are real numbers standing for the weights of term j in document dk and

query q respectively. A standard baseline retrieval strategy is to rank the documents

according to their cosine similarity to the query.

2.6.2 Generalized Vector Space Model

Wong et al. [134] presented an analysis of the problems that the pairwise orthogo-

nality assumption of the VSM creates. They were the first to address these problems

by expanding the VSM. They introduced term to term correlations, which depre-

cated the pairwise orthogonality assumption, but they kept the assumption that the

2.6. GENERALIZED VECTOR SPACE MODELS 27

term vectors are linearly independent, creating the first GVSM model.3 More specif-

ically, they considered a new space, where each term vector ~ti was expressed as a

linear combination of 2n vectors ~mr, r = 1..2n. The similarity measure between a

document and a query then become as shown in equation 2.3, where ~ti and ~tj are

now term vectors in a 2n dimensional vector space, ~dk, ~q are the document and the

query vectors, respectively, as before, d́ki, q́j are the new weights, and ń the new space

dimensionality.

cos(~dk, ~q) =

∑ń
j=1

∑ń
i=1 d́kiq́j

~ti~tj
√

∑ń
i=1 d́ki

2 ∑ń
j=1 q́j

2
(2.3)

From equation 2.3 it follows that the term vectors ~ti and ~tj need not be known, as

long as the dependencies between terms ti and tj are known. If pairwise orthogonality

is assumed, the similarity measure is reduced to that of equation 2.2.

2.6.3 Semantic Information and GVSM

Based on the first GVSM model described earlier, it is evident that there are at least

two basic directions for embedding term to term relatedness inside such a model:

(a) compute semantic correlations between terms, or (b) compute frequency co-

occurrence statistics of terms using large corpora. In this thesis we focus on the

first direction to construct GVSM.

Several recent approaches have incorporated semantic information in VSM. In

[63], we created a GVSM based on the use of noun senses, and their hypernyms

from WordNet. We experimentally showed that this can improve text categorization.

Stokoe et al. [112] reported an improvement in retrieval performance using a senses-

based system. In [119] we show through another GVSM, presented in section 5.1, that

semantic information and the use of a GVSM can improve the retrieval task. The lat-

ter approach differs from the aforementioned ones in that it expands the VSM model

using the semantic information of a word thesaurus to interpret the orthogonality of

terms and to measure semantic relatedness, instead of directly replacing terms with

3It is known from Linear Algebra that if every pair of vectors in a set of vectors is orthogonal,
then this set of vectors is linearly independent, but not the inverse.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

senses, or adding senses to the model, as we shall explain in detail in chapter 4.

Chapter 3

Word Sense Disambiguation Using

WordNet

In this chapter we analyze the contribution of this thesis in WSD. Four new WSD

approaches are being proposed, that rely on the use of WordNet to disambiguate word

occurrences in a given text. Experimental evaluation on the SemCor corpus, and the

Senseval 2 and 3 all English words task show that the proposed methods produce

state of the art results in the WSD bibliography. Regarding the selection of WordNet

as the thesaurus of this thesis, there has been a lot of research work that compares

experimentally the use of WordNet against other thesauri, like Roget’s [76]. One of

these studies is the one by Hale [64], who has implemented several semantic similarity

measures using WordNet and Roget’s thesaurus and has evaluated the measures on

the Miller and Charles data set of word pairs similarities [72]. The results show that

there are no major differences when using either of the two thesauri. Hence, we

have chosen to use WordNet, since it is updated more frequently with new senses

and relations than Roget’s. Note however, that the aforementioned study also shows

that semantic similarity measures used with WordNet can be also used with other

thesauri. Thus, the measures and algorithms defined in the remaining of this thesis

can be easily adapted to work with other thesauri as well.

29

30 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

3.1 Evaluating WSD Performance

The typical evaluation methodology of WSD uses some measures from information

retrieval, namely precision, recall, and the F1 measure. In addition, accuracy and

coverage are also used [79]. In the following, we will explain how these measures are

defined in the context of WSD.

Given a data set T = (w1, ..., wn) consisting of n word occurrences to be disam-

biguated, and given a function W that maps any wi ∈ T to a sense of this word

from a dictionary D, then coverage C is defined as the percentage of the attempted

answers (mappings) given by W , to the total number of the answers that should be

provided (n):

C =
#answers

n
(3.1)

In the same context, precision P is defined as the percentage of correct answers

provided by W , with regards to the total answers given by W :

P =
#correct

#answers
(3.2)

Recall R is defined as the percentage of correct answers provided by W with

regards to the total number of answers that should be returned:

R =
#correct

n
(3.3)

Precision and Recall are usually combined to a single measure, the F1 measure:

F1 =
2PR

P + R
(3.4)

Finally, when the returned number of answers by W is equal to n (full coverage),

it is common in the WSD bibliography [42, 79] to use the notion of accuracy of W ,

as the percentage of the correct answers with respect to n [70]; in this case precision

and recall are identical to accuracy.

With regards to the data sets used to evaluate WSD systems, the Senseval initia-

tive has conducted four series of evaluation exercises (Senseval 1, 2, 3 and SemEval),

3.1. EVALUATING WSD PERFORMANCE 31

Senseval 2 Nouns Verbs Adjectives Adverbs Total

Mono. 260 33 80 91 464
Poly. 813 502 352 172 1839

Av. Poly. 4.21 9.9 3.94 3.23 5.37
Av. Poly. (Poly. only) 5.24 10.48 4.61 4.41 6.48

Senseval 3

Mono. 193 39 72 13 317
Poly. 699 686 276 1 1662

Av. Poly. 5.07 11.49 4.13 1.07 7.23
Av. Poly. (Poly. only) 6.19 12.08 4.95 2.0 8.41

SemCor

Mono. 16990 2584 9854 7831 37259
Poly. 70432 45117 24981 11878 152408

Av. Poly. 4.49 10.74 4.26 2.77 5.84
Av. Poly. (Poly. only) 5.33 11.29 5.55 3.93 7.02

Table 3.1: Occurrences of polysemous and monosemous words of WordNet 2 in Sen-
seval 2, 3 and SemCor.

where the given data sets were manually annotated with the correct senses by human

annotators using WordNet.1 In each of these competitions there were many different

tasks for several languages, with two of the most important ones being the English all

words and the English lexical sample tasks. The data sets of the first task are widely

used as benchmarks for WSD systems that can be applied to unrestricted text, while

the data sets of latter task can be used with systems that only disambiguate of a set of

few designated (target) words. Since we will be using the English all words exercises

from Senseval 2 and 3 to evaluate the proposed algorithms, in table 3.1 we present

the statistics of those data sets, including average polysemy of words, both with (Av.

Poly.) and without (Av. Poly. (Poly. only)) taking into account monosemous words.

We have also included an additional corpus that we adopt for evaluation, the SemCor

corpus [71], which is larger than the data sets of the Senseval exercises and it is often

used for the training of supervised WSD methods.

The table shows the number of monosemous (one sense given from WordNet)

1http://www.senseval.org/

32 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

and polysemous (more than one sense given from WordNet) word occurrences in the

three data sets. Senseval 2 is easier to disambiguate than Senseval 3, as the average

polysemy is larger in the latter. Adverbs are very easy to disambiguate and are usually

excluded from the evaluation (i.e. Senseval 3 has only 13 adverb occurrences with

average polysemy close to 1). The verb POS is the most difficult to disambiguate,

since a typical verb has more than 8 different senses from WordNet.

Regarding the lower and upper bounds of WSD methods in those data sets, a

straightforward lower bound is to select randomly a sense for each word occurrence.

This disambiguation method would produce an accuracy of around 20% for Senseval

2 and SemCor, and 14% for Senseval 3. A reasonable upper bound, as stated in [79],

would be the interannotator agreement or intertagger agreement (ITA), that is, the

percentage of words tagged with the same sense by two or more human annotators.

The interannotator agreement on coarse-grained (lexicons with few and clearly dis-

tinct senses for each lemma are used), possibly binary (two senses per lemma), sense

inventories is calculated around 90% [35, 80], whereas on fine-grained, WordNet-style

sense inventories, where there are many senses per lemma and which are often hard

to distinguish, the inter-annotator agreement is estimated between 67% and 80%

[20, 108, 82]. Similar findings have been reported, regarding the human performance

in distinguishing among fine-grained and among coarse-grained senses of English word

occurrences [37]. In the following sections, for each introduced method we present its

performance on the data sets of table 3.1. The reader is requested to keep in mind

the upper bound.

3.2 Compactness-based Word Sense Disambigua-

tion

In this section we present an unsupervised WSD method, that we initially introduced

in [62] and thoroughly evaluated in [63]. The algorithm can only disambiguate nouns

and it is based on the intuition that adjacent terms extracted from a text document

are expected to be semantically close to each other. Given a set of adjacent terms,

3.2. COMPACTNESS-BASED WORD SENSE DISAMBIGUATION 33

our disambiguation algorithm considers all the candidate sets of senses and output

the set of senses that exhibits the highest level of semantic relatedness. Therefore, the

main component of the algorithm is the definition of a semantic compactness measure

for sets of senses.

Assuming that a document is represented by a set of senses, the semantic com-

pactness measure that we introduce for WSD implies a similarity notion either among

the senses of a sense set or between two sense sets. Its computation is based on the

notion of Steiner Tree. Given a set of graph vertices, the Steiner Tree is the smallest

tree that connects the set of nodes in the graph. The formal definition of the Steiner

Tree is given below.

Definition 1 Given an undirected graph G = (V,E), and a set S ⊆ V , then the

Steiner Tree is the minimal tree of G that contains all vertices of S.

The use of the Steiner Tree in the formulation of semantic compactness stems from

the fact that in most of the previous related approaches [45, 59, 91] the distance or

similarity measure depend on the size of the shortest path that connects two concepts

through a common ancestor in the hierarchy, or on the largest depth of a common

ancestor in the hierarchy. The deepest common ancestor of a set of senses S will be

denoted as lca(S). Note, however, that in WordNet it is not always the case that a

lca(S) exists for S. In this case, the method cannot disambiguate the respective set

of words. The definition of semantic compactness of a set of senses S follows.

Definition 2 Given a Hierarchical Thesaurus (HT) O and a set of senses S =

{s1, ..., sn}, where si ∈ O, the compactness of S is defined as the cost (weight) of

the Steiner Tree of S ∪ lca(S), such that there exists at least one path from each si to

the lca(S).

In the definition above we include one path for every sense to the least common

ancestor lca(S). The reason for imposing such a restriction is that the distance

between two concepts in a HT is not defined as the shortest path that connects them

in the HT, but rather as the shortest path that goes through a common ancestor of

a set of concepts S in which these two concepts belong to. Thus, it can be argued

34 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

that two concepts are connected only through a common ancestor and not through

any other path in the HT. Including in the graph lca(S) (and a path between every

concept and the lca(S)) guarantees that a path connecting all pairs of concepts (in

the sense discussed earlier) exists.

Although in general the problem of computing the Steiner Tree is NP-complete,

the computation of the Steiner Tree (with the restriction imposed) of a set of concepts

with their lca in a HT is computationally feasible and it is reduced to the computation

of the shortest path from the lca to every concept of the set. Another issue, potentially

adding excessive computational load, is the large number of combinations of possible

sets of senses, when a term set of large cardinality is considered for disambiguation.

In order to address this issue, we reduce the execution time by search the search space

non-exhaustively with the use of a simulated annealing algorithm [25]. The proposed

WSD algorithm can then be formulated as follows, given the definition of semantic

compactness from definition 2.

Algorithm 1 requires a parameter T which is essentially the upper bound of the

number of combinations of senses to be examined. In the experimental evaluation we

set T = 10000. Another (implicit) parameter is the size of the window of adjacent

word occurrences (W). Though a straightforward solution would be to truncate the

text into sentences, experimental studies have shown that the size of the window is

important in the disambiguation process [4]. Thus, in the experiments that follow, a

parameter w declares the size of the considered windows.

Furthermore, since WordNet’s noun hierarchy is actually a forest of nine trees

with no common root the computation of the compactness is not always feasible,

since for a given set of senses S, lca(S) may not exist. To address this problem,

we compute the windows compactness separately for each one of the nine trees of

WordNet’s noun hierarchy, and we sum the compactness scores we obtain to compute

an overall compactness score. The number of allowed separate trees that the senses

in S may belong to, is parameterized with L, where a value of L = 0 means that

we will allow the computation of compactness only in the case that the senses, from

the examined combinations, belong in the same WordNet noun tree. Respectively, a

value of L = 1 means that the senses may belong to at most two different WordNet

3.2. COMPACTNESS-BASED WORD SENSE DISAMBIGUATION 35

Algorithm 1 WSD-Semantic-Compactness(O,W,T)

Require: A word thesaurus O, a sequence of adjacent word occurrences W and a
given positive constant T

Ensure: A mapping M of W to senses S or failure
1: MinCompactness = MAXIMUMPOSITIVEINTEGER
2: M=NULL
3: S[i]= select randomly a sense i of wi ∈ W
4: tempCompactness = compactness(S)
5: if tempCompactness < MinCompactness then
6: MinCompactness = tempCompactness
7: M = assignments of senses to words of step 3
8: end if
9: while T > 0 do

10: S = nextCombinationOfSenses(W)
11: T = T − 1
12: tempCompactness = compactness(S)
13: if tempCompactness < MinCompactness then
14: MinCompactness = tempCompactness
15: M = assignment of senses to words of step 10
16: else
17: p = e

(tempCompactness−MinCompactness)
T

18: M = assignment of senses to words of step 10 with probability p
19: end if
20: end while
21: if M 6= NULL return M else return failure

trees, and so on and so forth.

Experimental Evaluation

In figure 3.1 we present the results of algorithm 1 on the SemCor (Brown Corpus 1 and

2) and the Senseval 2 and 3 data sets for various settings of the parameters W and L.

The white bars indicate precision and the black bars coverage. Only the nouns were

considered in all data sets. The results are sorted in decreasing order of precision.

The precision and coverage values reported do not take into account the monosemous

nouns, but only the ambiguous ones. We can estimate, based on the examined corpora

statistics, that the inclusion of the monosemous nouns would increase precision by 3%

36 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

Figure 3.1: Performance of compactness in SemCor, Senseval 2 and Senseval 3 nouns.

to 4%; coverage would increase by almost 22%. Hence, compactness achieves precision

greater than 80% with an associated coverage of more than 25%, if monosemous

(i.e., non-ambiguous) nouns are also taken into account. Comparable experiments,

including monosemous nouns, conducted in [3] reported a top precision result of 64,5%

with an associated coverage of 86,2%. Similar experiments conducted in [114, 6, 74]

resulted as well in lower precision than compactness. Comparing our approach to

the state of the art WSD algorithms that were submitted to the English All Words

task in Senseval 2[83] and 3[108], we observe that our approach can be configured to

exhibit the highest precision for the noun POS. Of course the approach has two major

problems: (a) it can only disambiguate nouns, and (b) precision drops dramatically

if full coverage is achieved for large values of the l parameter. For this reason, we

have extended the ideas of using semantic information from WordNet to disambiguate

text by constructing semantic networks, and we have developed better algorithms for

WSD, explained in the following sections, that solve the aforementioned problems.

3.3. WORD SENSE DISAMBIGUATION USING SEMANTIC NETWORKS 37

3.3 Word Sense Disambiguation Using Semantic

Networks

In modern thesauri like WordNet 2.0, there are many semantic links between senses,

which allow semantic networks to be constructed from text, as explained in section 2.2.

Previous WSD approaches, however, have not considered the full range of semantic

links between senses in a thesaurus. In [6] a larger subset of semantic relations

compared to previous approaches was used, but antonymy, domain/domain terms and

all inter-POS relations (e.g., linking noun senses to verb senses) were not considered.

Similarly, other recent approaches like [70] and [77] consider a wide range of WordNet

relations, but not the full range. Also, when constructing semantic networks, the

weights of the edges are important, as pointed out in previous studies [114, 131].

In the next two sections we present two new WSD methods, SANs that are based

on spreading of activation, and a PageRank-based approach. Both WSD systems

are based on a semantic network construction method that we introduced in [121].

The edges in the semantic network are weighted and the full range of the WordNet

semantic relations is considered. Experimental evaluation on the two Senseval data

sets and SemCor shows that the two methods’ performance is state of the art with

respect to knowledge-based unsupervised methods. Moreover, the PageRank-based

method has the highest reported accuracy compared to any other single (no ensem-

bling) unsupervised knowledge-based method in all the tested data sets.

3.3.1 Word Sense Disambiguation with Spreading Activation

Networks

The following WSD method we have developed requires no training and can disam-

biguate all words in a given text. WordNet is used to construct Spreading Activation

Networks (SANs), initially introduced in WSD by Quillian [90]. The innovative points

of this new WSD algorithm are: (a) it explores all types of semantic links, as provided

by the thesaurus, even links that cross parts of speech, unlike previous knowledge-

based approaches, which made use of mainly the “is-a” and “has-part” relations; (b)

38 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

S.1.1

S.1.2

gene

S.2.1

= Word NodeIndex: = Sense Node = Activatory Link = Inhibitory Link

copies polyps

Initial Phase

S.1.4

...

S.3.1

S.3.2

S.1.1

S.1.2

S.2.1

S.1.4

...

S.3.1

S.3.2

......

Expansion Round 1

...

...

Synonym

...

Hypernym

...
Antonym

Holonym
Attribute

...

...

Figure 3.2: Our method to construct SANs.

it introduces a new method for constructing SANs for the WSD task; and (c) it in-

troduces an innovative weighting scheme for the networks’ edges, taking into account

the importance of each edge type with respect to the whole network.

SAN Creation

For the construction of SANs we only consider the words of each sentence that are

present in WordNet. We also assume that the words of the text have been tagged

with their parts of speech (POS). For each sentence, a SAN is constructed as shown

in figure 3.2. For simplicity, in this example we kept only the nouns of the input

sentence, though the method disambiguates all parts of speech. The sentence is from

the d00 file of the Senseval 2 data set:

“If both copies of a certain gene were knocked out, benign polyps would

develop.”

To construct the SAN, initially the word nodes, in our case the nouns copies,

gene and polyps, along with their senses are added to the network, as shown in the

initial phase of figure 3.2. The activatory and inhibitory links are then added, but

after this point the SAN grows in a very different manner compared to Veronis and

Ide. First, all the senses of the thesaurus that are directly linked to the existing

senses of the SAN via any semantic relation are added to the SAN, along with the

corresponding links, as shown in expansion round 1 of figure 3.2. Every edge is bi-

directional, since the semantic relations, at least in WordNet, are bi-directional (e.g.

3.3. WORD SENSE DISAMBIGUATION USING SEMANTIC NETWORKS 39

if S1 is a hypernym of S2, S2 is a hyponym of S1). In the next expansion round, the

same process continues for the newly added sense nodes of the previous round. The

network ceases growing when there is a path between every pair of the initial word

nodes. Then the network is considered as connected. If there are no more senses to

be expanded and the respective SAN is not connected, we cannot disambiguate the

words of that sentence, losing in coverage. Note that when adding sense nodes, we

use breadth-first search with a closed set, which guarantees we do not get trapped

into cycles.

The Spreading Activation Strategy

The procedure above leads to networks with tens of thousands of nodes, and almost

twice as many edges. Since each word is eventually assigned its most active sense,

great care must be taken in such large networks, so that the activation is efficiently

constrained, instead of spreading all over the network [26].

Our spreading activation strategy consists of iterations. The nodes initially have

an activation level 0, except for the input word nodes, whose activation is 1. In

each iteration, every node propagates its activation to its neighbors, as a function

of its current activation value and the weights of the edges that connect it with

its neighbors. We adopt the activation strategy introduced by Berger et al. [8],

modifying it by inserting a new scheme to weigh the edges, which is discussed in

the next section. More specifically, at each iteration p every network node j has an

activation level Aj(p) and an output Oj(p), which is a function of its activation level,

as shown in equation 3.5.

Oj(p) = f(Aj(p)) (3.5)

The output of each node affects the next-iteration activation level of any node k

towards which node j has a directed edge. Thus, the activation level of each network

node k at iteration p is a function of the output, at iteration p−1, of every neighboring

node j having a directed edge ejk, as well as a function of the edge weight Wjk, as

shown in equation 3.6. Although this process is similar to the activation spreading of

feed-forward neural networks, the reader should keep in mind that the edges of SANs

40 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

are bi-directional (for each edge, there exists a reciprocal edge). A further difference

is that no training is involved in the case of SANs.

Ak(p) =
∑

j

Oj(p − 1) · Wjk (3.6)

Unless a function for the output O is chosen carefully, after a number of iterations

the activation floods the network nodes. We use the function of equation 3.7, which

incorporates fan-out and distance factors to constrain the activation spreading; τ is

a threshold value.

Oj(p) =

0 , if Aj(p) < τ

Fj

p+1
· Aj(p) , otherwise

(3.7)

Equation 3.7 prohibits the nodes with low activation levels from influencing their

neighboring nodes. The factor 1
p+1

diminishes the influence of a node to its neighbors

as the iterations progress (intuitively, as “pulses” travel further). Function Fj is a

fan-out factor, defined in equation 3.8. It reduces the influence of nodes that connect

to many neighbors.

Fj = (1 −
Cj

CT

) (3.8)

CT is the total number of nodes, and Cj is the number of nodes directly connected

to j via directed edges from j.

Assigning Weights to Edges

In information retrieval, a common way to measure a token’s importance in a doc-

ument is to multiply its term frequency in the document (TF) with the inverse (or

log-inverse) of its document frequency (IDF), i.e. with the number of documents the

token occurs in. To apply the same principle to the weighting of SAN edges, we

consider each node of a SAN as corresponding to a document, and each type of edge

(each kind of semantic relation) as corresponding to a token.

Initially each edge of the SAN is assigned a weight of −1 if it is inhibitory (edges

representing antonymy and competing senses of the same word), or 1 if it is activatory

(all other edges). Once the network is constructed, we multiply the initial weight wkj

3.3. WORD SENSE DISAMBIGUATION USING SEMANTIC NETWORKS 41

of every edge ekj with the following quantity:

ETF (ekj) · INF (ekj) (3.9)

ETF, defined in equation 3.10, is the edge type frequency, the equivalent of TF. It

represents the percentage of the outgoing edges of k that are of the same type as ekj.

When computing the edge weights, edges corresponding to hypernym and hyponym

links are considered of the same type, since they are symmetric. The intuition behind

ETF is to promote edges whose type is frequent among the outgoing edges of node

k, because nodes with many edges of the same type are more likely to be hubs for the

semantic relation that corresponds to that type.

ETF (ekj) =
|{eki|type(eki) = type(ekj)}|

|{eki}|
(3.10)

The second factor in equation 3.9, defined in equation 3.11, is the inverse node fre-

quency (INF), inspired by IDF. It is the frequency of ekj’s type in the entire SAN.

INF (ekj) = log
N + 1

Ntype(ekj)

(3.11)

N is the total number of nodes in the SAN, and Ntype(ekj) is the number of nodes that

have outgoing edges of the same type as ekj. As in IDF, the intuition behind INF is

that we want to promote edges of types that are rare in the SAN.

The WSD Algorithm

Our WSD algorithm consists of the steps shown in algorithm 2, given a POS-tagged

text, a designated set of parts of speech to be disambiguated, and a word thesaurus.

Note that during the spreading of the activation, activation spreads iteratively until

all nodes are inactive.2 For every word node, eventually the sense node with the

highest activation is kept. If there is more than one sense node with this property

per word, we select randomly. This never occurred in our experiments.

2In equation 3.7, Oj(p) is bounded, because as p increases it approaches 0. Eventually, all nodes
become inactive.

42 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

Algorithm 2 WSD-SAN(O,T,P)

Require: A word thesaurus O, a part of speech tagged text T , and a set of designated
parts of speech for disambiguation P .

Ensure: A mapping M of all word occurrences W of T to senses S or failure
1: Sen = fragmentTextIntoSentences(T)
2: for all Sen[i] do
3: W [i] = keepWordsOfDesignatedPOS(Sen[i],P)
4: end for
5: for all W [i] do
6: G = constructSANForSetOfWords(W [i],O)
7: if G is a connected graph then
8: spreadActivation(G)
9: S[i] = getMostActiveSenseNodesForWords(G,W [i])

10: else
11: S[i] = NULL
12: end if
13: end for
14: M = map(W ,S)
15: return M

Experimental Evaluation

We evaluated our algorithm on Senseval 2, 3 and SemCor. Prior to presenting the

results from all data sets, and for reasons of straightforward comparison with other

methods, we will first present a comparative evaluation in Senseval 2. We experi-

mented with all parts of speech, to be compatible with all published results of Senseval

2 [83].

In order to compare our WSD method to the method of Veronis and Ide [131],

we implemented the latter and evaluated it on Senseval 2. We also include in the

comparison the baseline for unsupervised WSD methods, i.e., the assignment of a

random sense to each word. For the baseline, the mean average of 10 executions

(random assignments) is reported. Moreover, in order to evaluate the possibility

of including glosses in our method, instead of only synset-to-synset relations, we

implemented a hybrid method which utilizes both, by adding to our SANs the gloss

words of the synsets along with their senses, similarly to the method of Veronis

and Ide (section 2.1.3). For the purposes of this implementation, as well as for the

3.3. WORD SENSE DISAMBIGUATION USING SEMANTIC NETWORKS 43

Words SAN SAN Glosses SAN Baseline Best Unsup. Pagerank

Mono Poly Synsets Veronis and Ide Syn.+Glosses Senseval 2 Mihalcea

File 1 (d00) 103 552 0.4595 0.4076 0.4396 0.3651 UN/A 0.4394

File 2 (d01) 232 724 0.4686 0.4592 0.4801 0.4211 UN/A 0.5446

File 3 (d02) 129 563 0.5578 0.4682 0.5115 0.4303 UN/A 0.5428

Overall 464 1839 0.4928 0.4472 0.4780 0.4079 0.4510 0.5089

Table 3.2: Overall and per file accuracy on the Senseval 2 data set.

implementation of the original method of Veronis and Ide, we used the Extended

WordNet [73], which provides the POS tags and lemmas of all WordNet 2 synset

glosses. In the comparison, we also include the results presented by Mihalcea et al.

[70]. Their method is an unsupervised knowledge-based WSD method, evaluated

on Senseval 2; the method uses thesauri-generated semantic networks, along with

Pagerank for their processing. We also report the accuracy of the best reported

unsupervised method that participated in the Senseval 2 “English all words” task,

presented in [60].

Table 3.2 presents the accuracy of the six WSD methods, on the three files of

Senseval 2. The presented accuracy corresponds to full coverage, and hence recall

and precision are both equal to accuracy. The results in Table 3.2 suggest that our

method outperforms that of Veronis and Ide, the hybrid method, and the random

baseline. Moreover, our method achieved higher accuracy than the best unsupervised

method that participated in Senseval 2, and overall slightly lower accuracy than the

reported results of Mihalcea et al. [70].

Figure 3.3 shows the corresponding overall results for the four methods we imple-

mented, when accuracy is computed only on polysemous words, i.e. excluding triv-

ial cases, along with the corresponding 0.95 confidence intervals. There is clearly

a statistically significant advantage of our method (Synsets) over both the base-

line and the method of Veronis and Ide. Adding WordNet’s glosses to our method

(Synsets+Glosses) does not lead to statistically significant difference (overlapping

confidence intervals), and hence our method without glosses is better, since it is

simpler and requires lower computational cost, as explained later. The decrease in

44 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

0.239

0.259

0.279

0.325

0.346

0.368

0.287

0.308

0.329

0.343

0.365

0.387

0.220

0.240

0.260

0.280

0.300

0.320

0.340

0.360

0.380

0.400

A
c
c
u

ra
c
y

Baseline Synsets+Glosses Veronis & Ide Synsets

Figure 3.3: Accuracy on polysemous words and the respective 0.95 confidence inter-
vals.

performance when adding glosses is justified by the fact that many of the glosses’

words are not relevant to the senses the glosses express, and thus the use of glosses

introduces irrelevant links to the SANs.

Figure 3.3 does not show the corresponding results of Mihalcea et al.’s method,

due to the lack of corresponding published results; the same applies to the best

unsupervised method of Senseval 2. We note that in the results presented by Mihalcea

et al., there is no allusion to the variance in the accuracy of their method, which

occurs by random assignment of senses to words that could not be disambiguated,

nor to the number of these words. Thus no direct and clear statement can be made

regarding their reported accuracy. In Figure 3.4 we compare the accuracy of our

method against Mihalcea et al.’s on each Senseval 2 file. In this case we included all

words, monosemous and polysemous, because we do not have results for Mihalcea et

al.’s method on polysemous words only; the reader should keep in mind that these

results are less informative than the ones of Figure 3.3, because they do not exclude

monosemous words. There is an overlap between the two confidence intervals for 2

out of 3 files, and thus the difference is not always statistically significant.

Regarding the best unsupervised method that participated in Senseval 2, we do

3.3. WORD SENSE DISAMBIGUATION USING SEMANTIC NETWORKS 45

0.421

0.460

0.498

0.437

0.469

0.500

0.521

0.558

0.595

0.395

0.439

0.484

0.510

0.545

0.579

0.500

0.545

0.586

0.380

0.430

0.480

0.530

0.580

A
c

c
u

ra
c

y

Synsets File 1 Synsets File 2 Synsets File 3

Mihalcea et al. File 1 Mihalcea et al. File 2 Mihalcea et al. File 3

Figure 3.4: Accuracy on all words and the respective 0.95 confidence intervals.

POS Senseval 2 Senseval 3 SemCor

NOUN 0.5396 0.5078 0.5086

VERB 0.3177 0.3641 0.3512

ADJECTIVE 0.5902 0.5804 0.5576

ALL 0.4928 0.4676 0.4859

Table 3.3: Overall and per POS accuracy of SANs in the three data sets.

not have any further information apart from its overall accuracy, and therefore we rest

on our advantage in accuracy reported in table 3.2. Finally, we note that to evaluate

the significance of our weighting, we also executed experiments without taking it into

account in the WSD process. The accuracy in this case drops by almost 1%, and the

difference in accuracy between the resulting version of our method and the method of

Veronis and Ide is no longer statistically significant, which illustrates the importance

of our weighting. We have also conducted experiments in Senseval 3, where similar

results with statistically significant differences were obtained: our method achieved

an overall accuracy of around 46%, while Ide and Veronis achieved 39, 7%. In table

3.3 we present the results of the SANs method in Senseval 2 and 3, as well as in

SemCor. The table shows the performance of the method per POS.

46 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

Measurement SAN SAN Glosses SAN

Synsets Veronis and Ide Synsets+Glosses

Nodes/Net. 10,643.74 6,575.13 9,406.04

Edges/Net. 13,164.84 34,665.53 37,181.64

Pulses/Net. 166.93 28.64 119.15

Sec./Net. 13.21 3.35 19.71

Table 3.4: Average actual computational cost.

Complexity and Actual Computational Cost

Regarding the complexity and the computational costs of SANs, let k be the max-

imum branching factor (maximum number of edges per node) in a word thesaurus,

l the maximum path length, following any type of semantic link, between any two

nodes, and n the number of words to be disambiguated. Since we use breadth-

first search, the computational complexity of constructing each SAN (network) is

O(n ·kl+1). Furthermore, considering the analysis of constrained spreading activation

in [94], the computational complexity of spreading the activation is O(n2 ·k2l+3). The

same computational complexity figures apply to the method of Veronis and Ide, as

well as to the hybrid one, although k and l differ across the three methods. These

figures, however, are worst case estimates, and in practice we measured much lower

computational cost. In order to make the comparison of these three methods more

concrete with respect to their actual computational cost, table 3.4 shows the aver-

age numbers of nodes, edges, and iterations per network (sentence) for each method.

Moreover, the average CPU time per network is shown (in seconds), which includes

both network construction and activation spreading. The average time for the SAN

Synsets method to disambiguate a word was 1.37 seconds. Table 3.4 shows that our

method requires less CPU time than the hybrid method, with which there is no statis-

tically significant difference in accuracy; hence, adding glosses to our method clearly

has no advantage. The method of Veronis and Ide has lower computational cost, but

this comes at the expense of a statistically significant deterioration in performance.

Mihalcea et al. provide no comparable measurements, and thus we cannot compare

against them; the same applies to the best unsupervised method of Senseval 2.

3.3. WORD SENSE DISAMBIGUATION USING SEMANTIC NETWORKS 47

3.3.2 PageRank-based Word Sense Disambiguation

In order to investigate further the potential of the semantic representation that we

introduced earlier, we designed another WSD algorithm that uses the representa-

tion of the SANs method and processes the constructed networks with PageRank.

The PageRank formula that we used is a simple variation of the original PageRank

equation, which takes into account edge weights as well. This variation was first

introduced by Mihalcea et al. in [70]. Equation 3.12 shows the original PageRank

formula and equation 3.13 shows its weighted variation that we use to process the

networks. S(Vi) (and WS(Vi) respectively) is the PageRank value of vertex Vi, d is

the damping factor, Out(Vj) is the number of outgoing links from vertex Vi and wij

is the weight of the edge connecting vertices Vi and Vj.

S(Vi) = (1 − d) + d
∑

j∈In(Vi)

S(Vi)

|Out(Vj)|
(3.12)

WS(Vi) = (1 − d) + d
∑

Vj∈In(Vi)

wij
∑

Vk∈Out(Vj)
wjk

WS(Vj) (3.13)

Algorithm 2 can then be easily modified to process the constructed networks with

equation 3.13, instead of spreading of activation. As a dumping factor (d) we set 0.85,

as in the original formula by Brin and Page [16]. After the PageRank values stabilize,

the sense nodes with the highest PagerRank scores for each target word are selected

to disambiguate each word occurrence. The complexity of the network construction

was discussed in the previous section.

Experimental Evaluation

To evaluate the performance of this new PageRank-based WSD algorithm, we ex-

perimented with Senseval 2, 3 and SemCor. Table 3.5 shows the accuracy of our

method for all POS in the three data sets. The proposed PageRank-based algorithm

surpasses (with statistical significance at the 0.95 confidence level) both our SANs

method [121] and the method of Mihalcea et al. [65]. To the best of our knowledge,

this method is currently the best performing unsupervised knowledge-based method,

48 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

POS Senseval 2 Senseval 3 SemCor

NOUN 0.6439 0.5728 0.6137

VERB 0.3271 0.4179 0.4216

ADJECTIVE 0.5810 0.5459 0.6355

ALL 0.5475 0.5109 0.5633

Table 3.5: Overall and per POS accuracy of PageRank in the three data sets.

when no ensembles of several methods are used.

3.4 Ensemble of WSD Methods

The interannotator agreement in the Senseval competitions ranges from 67% to 80%

[79]. As shown in the previous sections, the state of the art in unsupervised knowledge-

based WSD methods reaches up to approximately 55%. In order to close the perfor-

mance gap between automated WSD algorithms and theoretical human performance

(interannotator agreement) several supervised WSD methods have been proposed in

the past, that utilize machine learning technniques to learn the correct sense of each

word occurrence, as discussed in section 2.1.2.

In this section we propose a new supervised WSD method based on an ensemble

of unsupervised knowledge-based methods. More precisely, in order to address the

knowledge acquisition bottleneck problem, without the need for extensive training,

which typically requires manual annotation effort, we combine several Wordnet-based

WSD approaches, which do not require training. Training is required only for deciding

which method to trust per word occurrence. Consequently the WSD problem for a

word occurrence splits into two separate decision problems: a) find the degree of trust

for each WSD method per term occurrence based on a set of term features and, b)

decide on the method that will disambiguate the target term occurrence.

For the trustfulness problem we use one Support Vector Machine (SVM) classifier

for each WSD method. For a word occurrence, the classifier examines a small set of

lexical and syntactic features and decides how much we should trust the respective

WSD method (the positive class stands for trust, while the negative one for do not

3.4. ENSEMBLE OF WSD METHODS 49

WSD Base Methods Level

Classifiers Level

Decision Level

SAN PR FS

SAN SVM PR SVM FS SVM

Arbiter-based Voting

Decision

PR FSSAN

Figure 3.5: Overall System Organization.

trust) for the disambiguation of the particular word occurrence. We combine the

classifiers’ decisions using a simple arbiter-based voting mechanism, and we choose

the prevailing method to disambiguate the given word occurrence.

A major advantage of this method is its flexibility, since the modules of each level

(see figure 3.5) can be enhanced or replaced by others, as we show in the experiments:

a) the base WSD methods can be either supervised or unsupervised, b) the number

of the base WSD methods and the respective classifiers can be increased or decreased,

c) different types of classifiers (e.g., SVM, Maximum Entropy) can be employed.

System Overview

The proposed WSD system combines the merits of three WordNet-based WSD meth-

ods in order to raise the overall WSD accuracy. The overall system organization is

shown in figure 3.5, where the two dotted levels do not have any need for training.

The system can disambiguate any word occurrence, provided the word occurs in the

lexicon, without restrictions (i.e., in context or part of speech). Each WSD method

in the lowest layer gives a candidate sense for the term. A set of classifiers, in the

middle layer, examines specific features of the term and produces a binary decision

50 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

POS Senseval 2 Senseval 3 SemCor

NOUN 0.711 0.6972 0.7851

VERB 0.4253 0.524 0.6131

ADJECTIVE 0.6759 0.6724 0.813

ALL 0.637 0.613 0.7425

Table 3.6: Overall and per POS accuracy of FS in the three data sets.

(trust or do not trust) for each WSD method. The final decision is drawn at the top

layer, where the prevailing WSD method is selected from the ensemble using a simple

arbiter-based voting formula that does not require any type of training.

The details of the classifiers’ training, the selected set of features and the ensem-

bling mechanisms are presented later. The three lexicon-based methods we employ

are the Spreading Activation Networks (SAN) introduced in section 3.3.1, a simple

baseline method that always selects the first (most frequent) sense from WordNet (FS)

and is usually the baseline for supervised WSD methods, and finally the PageRank-

based method (PR) introduced in section 3.3.2, which constitutes a combination of

SAN and the method presented in [70].

Knowledge-based WSD Methods

The main requirements for the suggested WSD system, in order to achieve high

disambiguation performance are: (1) the base methods should provide state of the

art performance, and (2) they should have low level of pairwise inter-agreement in

their disambiguation result, so that each method can act as a complement to the rest.

In simple words, performance is high when at least one of the WSD methods in the

lower layer gives the correct sense, and when the WSD methods often disagree. In

this section we explain why the selected three WSD methods meet both conditions.

Prior to that, we explain the FS method in detail. This simple, yet powerful heuristic,

is used as a baseline in supervised WSD. As McCarthy et al. [65] noticed, FS is so

powerful because the distribution of word senses is often skewed; the most probable

sense is dominant. For example, in 63.7% of the word occurrences of Senseval 2 and

61.3% of Senseval 3, the correct sense is the first WordNet sense. Table 3.6 shows the

3.4. ENSEMBLE OF WSD METHODS 51

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

NO
UN

VERB

ADJECTIVE

ALL
NO

UN

VERB

ADJECTIVE

ALL
NO

UN

VERB

ADJECTIVE

ALL

In
te

ra
g
re

e
m

e
n
t
(%

)

Pairwise Methods Level of Interagreement
 in Percentage for All POS

SAN-PR SAN-FS PR-FS

SemCorSenseval3Senseval2

Figure 3.6: Pairwise methods inter-agreement in sense level.

performance per POS of the FS method in the three data sets. Clearly, FS surpasses

both the SANs and the PR method in performance. It relies, however, on statistics

from annotated corpora that the WordNet developers analyzed to rank the senses by

decreasing frequencies, and in that sense FS is supervised, whereas SANs and PR are

unsupervised.

All three methods, however, have very high performance on the tested data sets.

An analysis of the interagreement of the three methods is shown in figure 3.6, per

POS and data set. Interagreement has been computed for all pairwise combinations of

the methods. A successful combination of methods should have low interagreement

rates (below 80%) to improve the overall WSD performance, since an ensemble of

WSD methods, as analyzed in [33], brings relatively little performance improvement

over individual classifiers when the classifiers have a very high inter-agreement rate.

Indeed, the selected methods have low levels of inter-agreement for all POS.

Classifiers Ensemble

First, we train one classifier for each base WSD method, using a set of sense-tagged

training term occurrences and a limited set of grammatical and syntactic features for

each term. We consequently merge the classifiers’ decisions (confidence scores) using

a voting mechanism. The details of the classification features, the classifiers, and the

voting mechanism follow.

52 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

Feature NPOS VPOS AJPOS AVPOS SN CWA CPA CPT CLT WFTS

Descr. 0,1 0,1 0,1 0,1 # Target % correct % correct % correct % correct Target

word’s word POS POS lemma word’s

senses sense ass. sense ass. triad ass. triad ass. FOC

Table 3.7: Selected set of features.

We will first discuss the selected feature set. Previous work [53] has shown that

WSD performance improves when several different categories of features are com-

bined. Consequently, we aimed at a small and simple feature set that combines dif-

ferent kinds of features, shown in table 3.7. The first four features (NPOS, V POS,

AJPOS and AV POS) are binary and represent the POS of the word occurrence (the

one to be disambiguated). Senses Number (SN) is an integer indicating the polysemy

of the target word. Correct Word Assignment (CWA) and Correct POS Assignment

(CPA) are both real numbers in [0..1] representing the percentage of correct sense as-

signments to the occurrences of the target word and the POS of the target word in the

training set for the base disambiguation method the classifier corresponds to. With

regards to the Collocated Lemma Triads (CLT) and Collocated POS Triads (CPT),

let (LT−1, LT , LT+1) be the ordered triple of the target lemma, the previous and the

next lemma; and let N(LT−1,LT ,LT+1) be the number of occurrences of this triple in the

training set.3 If C(LT−1,LT ,LT+1) is the number of correct word-sense assignments to

the target lemma in the training set when this triad occurs, then CLT is given by

equation 3.14.

CLT =
C(LT−1,LT ,LT+1)

N(LT−1,LT ,LT+1)

(3.14)

If in equation 3.14 we substitute the two quantities with the respective ones for triads

of POS tags instead of lemmas, we get CPT . Finally, Word FOC Test Set (WFTS)

is the frequency of the target word in the test set.

Three SVM classifiers are trained in order to decide whether or not to use the

respective base WSD method for a specific term occurrence. Training is based on

the terms’ feature vectors, which have the following form: (Xi1, ..., XiN , Ci), where

3When LT is at the beginning of a sentence, LT−1 is the pseudo-lemma start of text. Similarly,
when LT is at the end of a sentence, LT+1 is the pseudo-lemma end of text.

3.4. ENSEMBLE OF WSD METHODS 53

Xin is the value of the nth feature from table 3.7, for the training example i, and

Ci is the binary class attribute on which the respective SVM learns whether to trust

the current disambiguation method (Ci = 1) or not (Ci = −1). The Ci values

represent the success or failure of the respective WSD method in disambiguating

the specific training instance. In order to improve the stability of the SVMs and

improve their performance, we normalize all features in [0, 1]. We experimented with

linear, polynomial and RBF kernels on a small subset of the training set (5 randomly

selected files - on average approximately 4600 term occurrences each) and we repeated

the experiment 5 times, each time using 10-fold cross validation. In all cases, the three

SVMs provided better accuracies when the RBF kernel was used. Consequently, we

decided to use the RBF kernel, with the default gamma parameter of the SVMLight

implementation [46].

We decided to retain the overall ensemble complexity low by applying a simple

arbiter based voting mechanism. Additionally, we experimented with four basic en-

semble mechanisms that have proven to boost WSD performance in the case of Naive

Bayes classifiers [33]. All the ensemble mechanisms were applied after calibrating

the SVM outputs into the value range of [−1, 1]. Additional experimental results,

reported later, show that using a linear classifier (Maximum Entropy) as a top-level

classifier in the ensemble, does not improve performance. The description of all tested

ensemble mechanisms, including the proposed arbiter-based voting, follows.

Ensemble Mechanism 1 and 2: Simple voting (SV) and weighted voting of the pos-

itive class normalized SVM outputs. The simple voting is summarized in equation

3.15, where SV MVi(x) is the value (confidence score) of the ith support vector ma-

chine (corresponding to the ith base WSD approach) for instance x. The mechanism

takes into account only the positive SVMV values. Consequently when all the i values

are negative this means that the mechanism does not trust any of the WSD meth-

ods, and it cannot disambiguate the specific word occurrence. The weighted voting

multiplies each SV Mi(x) with the accuracy Ai of the respective WSD method (SAN,

PR, FS) in the training set.

arg max
i

SV MVi(x) (3.15)

54 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

Ensemble Mechanisms 3 and 4: These two mechanisms are variations of 1 and 2

respectively, that consider all the SVMV values, both positive and negative. The

difference is that when all the SV MVi(x) values are negative, the mechanism decides

to trust the WSD method corresponding to the least negative value.

In all the aforementioned ensembles each SVM is autonomous and its confidence

is examined independently of the other two. Note also that in the case of ensembles 1

and 2, when all SVM values are negative, the algorithm decides not to disambiguate

the examined word occurrence, since there is no SVM with positive confidence.

Ensemble Mechanism 5: Arbiter-based voting counts in a pairwise manner the

number of times each SVM had larger SVMV value. Let (k, l) be all possible pairs of

the underlying SVMs and m another SVM acting as an arbiter. If SV MVk,SV MVl,SV MVm

are the corresponding SVM values for word occurrence i, and Ak, Al, Am the accu-

racies of the underlying base WSD methods respectively (SAN, PR, FS) then we

compute SV MV ′
k (and SV MV ′

l in the same manner) with the following rule: if

SV MVm > SV MVk then SV MV ′
k becomes as shown in equation 3.16.

SV MV ′
k = SV MVk + (SV MVm − SV MVk) ·

√

(Am − Ak)2 + (SV MVm − SV MVk)2

(3.16)

Else, if SV MVm < SV MVk then SV MV ′
k becomes as shown in equation 3.17.

SV MV ′
k = SV MVk − (SV MVk − SV MVm) ·

√

(Am − Ak)2 + (SV MVm − SV MVk)2

(3.17)

Else, if SV MVm = SV MVk then SV MV ′
k = SV MVk.

Since there is no global consensus on which of the three SVMs could act as arbiter,

and there is no unbiased external arbiter, each one of the i SVMs acts as an arbiter for

the remaining i − 1, and announces its preference. Eventually, the most voted SVM

indicates the WSD method to use. The intuition behind this set up, implemented

by formulas 3.16 and 3.17, is that each arbiter takes into account the general WSD

performance of the two compared methods (denoted by the overall accuracy of the

corresponding WSD method). It also considers the degree of disagreement between

itself and each of the other two SVM (denoted by the differences in the respective

3.4. ENSEMBLE OF WSD METHODS 55

Algorithm 3 SupervisedWSD(TS, T, U)

Require: A sense-annotated training set (TS), a part of speech tagged text (T), a
word thesaurus (U).

Ensure: A mapping of the terms in T to thesaurus’ senses. Training(TS,U)
1: for all terms t ∈ TS do
2: SANSenses[t]=disambiguate(SAN,t)
3: PRSenses[t]=disambiguate(PR,t)
4: FSSenses[t]=disambiguate(FirstSense,t)
5: end for
6: SANModel = Train(SANSenses, TS)
7: PRModel = Train(PRSenses, TS)
8: FSModel = Train(FSSenses, TS)

Disambiguate(T,U,SANModel, PRModel, FSModel)
9: for all terms t ∈ T do

10: WSDMethod = Predict(t, Ensemble(SANModel, PRModel, FSModel))
11: disambiguate(WSDMethod,t)
12: end for

SVMV values). Based on that, the arbiter recalculates the SVMV values of the

compared methods and votes for the SVM with the highest SVMV value.

Algorithm and Complexity

The proposed WSD approach can be summarized as algorithm 3. The time cost of

the training step consists of the time required to disambiguate all training terms with

all the base methods and the time to train the three SVMs. In [121] we showed that

the construction time of the semantic networks is O(n · kl+1) where n is the number

of words we disambiguate, k is the maximum branching factor of the used thesaurus

nodes, and l is the maximum semantic path length in the thesaurus. The execution

of the SANs, costs O(n2 ·k2l+3). The execution of PR costs O(n2 ·k
3
2
l+3), in the worst

case where the network has n · k
l
2
+1 nodes and n · kl+2 edges. The execution of FS

costs O(n). PR and SAN share the same networks which are constructed once, so the

overall time cost for WSD of training terms is O(n2 · k
3
2
l+3). For the SVMs training

(SVM RBF kernel training) we used the quadratic optimizer of SVMLight [46]. The

overall training time cost is one-time cost and the algorithm requires few training

56 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

#Training Files 5 10 20 40 60 80 130 ALL (186)

Avg. # Training Instances 4566 8500 16407 32612 48524 64683 106657 169958

Avg. # SAN SVM Support Vectors 51 80 188 322 416 667 1186 1498

Avg. # PR SVM Support Vectors 44 52 98 162 194 339 567 715

Avg. # FirstSense SVM Support Vectors 47 55 125 175 264 465 832 1062

Arbiter Voting, Senseval 2 40.04% 46.47% 46.7% 50.9% 65.02% 65.1% 65.1% 65.1%

Arbiter Voting, Senseval 3 46.76% 52.62% 55.7% 61.42% 63.9% 65.7% 65.7% 65.7%

Table 3.8: Average number of training instances and support vectors for each SVM.

examples to obtain its top performance.

The space complexity of the training step is O(n2 ·k2l+3). The disambiguation step

is fast (at worst the execution time of SANs and at best, the execution time of FS)

and does not require much memory, since, as reported in table 3.8, a few hundreds

of support vectors in average need to be stored in each SVM model. Note also that

only one WSD method (the most suitable according to the classifiers’ ensemble) is

executed for each test term.

Comparison with Related WSD methods

In this section we theoretically compare our method against four other state of the art

supervised WSD methods. In the SenseLearner method [67] the authors suggest the

construction of seven semantic models, which are trained using the Timbl memory

based learning algorithm. The major drawback of this method is that the coverage

of the target words in the disambiguation phase is limited to those words previously

seen in the training corpus. In contrast, our method does not have this limitation;

the only complication are the values of CWA and CLT , which are zero.

The Simil-Prime method [49] learns generic semantic classes, thus alleviating the

aforementioned limitation of coverage. Then it casts back the finer grained senses

from the generic semantic classes learned, using heuristical mapping. The major

drawback of this method is the use of heuristics, which cannot guarantee that finer

senses will not be missed. Another drawback is the fact that a decision-tree based

implementation of the k-nn classifier is used. Though faster than the typical k-nn

3.4. ENSEMBLE OF WSD METHODS 57

classifier, the execution cost of disambiguation (mainly space complexity) is still high,

since many training examples need to be reexamined for each target word. In contrast

our method considers at most 3% of the training examples (table 2 - ratio of training

instances used as support vectors).

The SSI method [77] uses the HITS algorithm as a means of discovering the

dominant senses in a given word context σ = w1, w2, ..., wn. A significant disadvantage

of this approach is the use of HITS itself, which is prone to clique-attack: a small set of

strongly interconnected senses can gain advantage against the senses of the semantic

graph that are less interconnected. In contrast, the semantic network based methods

employed in our approach use PageRank and constrained spreading of activation

respectively, which solve the aforementioned problem.

Finally, in [40] the authors propose a memory-based learning approach, that

uses voting among word-experts to decide on the correct sense. This memory-based

method stores all instances in memory during training and testing, which results in

high space and time complexity.

Experimental Evaluation

With regards to the evaluation of the training process, this is repeated for a varying

number of training files to observe the performance of our system for a varying size of

training instances. We randomly select (with a uniform distribution) 5,10,20,40,60,80

and 130 documents from the SemCor set, and perform training. We proceed by

evaluating our method on the test sets. We used 10 iterations (random selections of

training documents) for each training set size. We also performed training once, using

the complete set of SemCor documents (186 files). Table 3.8 summarizes the training

process and shows the average number of training instances and support vectors for

each SVM. It also presents the accuracy of our best set up, which is the use of the

arbiter-based voting (ensemble mechanism 5), in the Senseval 2 and 3 data sets. By

consulting table 3.8 we conclude that using few training instances (less than 40% of

SemCor) the proposed ensemble learns to trust the correct WSD method per case

and achieves the highest possible accuracy.

Next, we compare with the methods of [67] (SenseLearner), [49] (Simil-Prime),

58 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

Method SenseLearner Simil-Prime SSI WE EM1 EM2 EM3 EM4 Arbiter Voting FS U-Bound

Senseval 2 66.22 66.4 N/A 63.2 63.8 63.8 63.8 63.8 65.1 63.7 80.7

Senseval 3 63.28 66.1 60.4 N/A 64.2 64.5 64.1 64.3 65.7 61.3 76.6

Table 3.9: Accuracies (%) on Senseval 2 and 3 All English Words Data Sets.

[77] (SSI), [40] (WE), on the Senseval 2 and 3 data sets. Table 3.9 shows the respec-

tive accuracies, where available. We also report the performance of the other tested

ensemble mechanisms, as well as the FS baseline. We can compare with the method

of Brody et al. [17] only in the noun POS of Senseval 3 data set, since their method’s

evaluation is limited to that. Arbiter voting achieves an accuracy of 74.3% in the

Senseval 2 nouns and an accuracy of 74.18% in the Senseval 3 nouns. Brody et al.

report an accuracy of 63.9% in Senseval 3 nouns (Senseval 2 is N/A) with an upper

bound lower than 70%. In all, the proposed system ranks among the top 3 approaches

from all the compared systems in table 3, which provide the best ever reported results

in Senseval 2 and 3 English all words task. The achieved performance requires less

that 40% of SemCor for training.

In order to test the effect of using SVMs in the classifier level, we conducted

experiments using Maximum Entropy (ME) classifiers instead. The results were worse

than using SVM: in Senseval 2 we obtained an overall accuracy of 63.95% and in

Senseval 3 63.85%. We also experimented using ME as the ensemble mechanism at

the decision (top) level. For this, we partitioned SemCor instances into two sets, one

for training the SVMs and another for training the ensemble mechanism. Despite the

additional cost of training at the decision level, the results were worst than using the

arbiter-based voting (60.9% in Senseval 3 and 65.5% in Senseval 2).

To analyze whether all three WSD methods are necessary or not, we consider

an unerring ”oracle”, an ideal decision level mechanism, that would always select

the correct method among the three dictionary-based. Initially, the upper-bound of

accuracy is 80.76% in Senseval 2 and 76.65% in Senseval 3, when all three methods are

used. They fall to 76.03% and 73.06% respectively when the PR method is removed

from the base level, and to 77.72% and 71.85% respectively, when the SAN method

is removed. Finally, by removing FS, the upper bounds drop to 69.73% and 63.36%

3.5. DISCUSSION OF EXPERIMENTAL RESULTS 59

Collection Compactness SAN PR FS Ensemble UB

(Nouns only)

Senseval 2 48.2 49.3 57.9 61.3 65.1 80.7

Senseval 3 45.4 47.4 51.7 63.4 65.7 76.6

Table 3.10: Synopsis of WSD Results in Senseval 2 and 3.

respectively. This shows that all three WSD methods are necessary and cannot be

omitted. A fourth WSD method should ideally disambiguate correctly all the terms

missed by the other three methods and it should favor the less frequent senses (i.e.,

senses 3-4 and below in WordNet).

3.5 Discussion of Experimental Results

In this chapter, we have presented four new knowledge-based methods for WSD based

on WordNet (Compactness, SANs, PR and an ensemble WSD system). A synopsis

of the results in the two Senseval competitions is shown in table 3.10. The table

shows the accuracies for all methods in full coverage. Note however that the accuracy

of the Compactness-based method refers only to nouns, since the method cannot

disambiguate other POS. As shown, SAN and PR provide state of art results in

knowledge-based WSD, with overall accuracies of approximately 55%, without any

type of training, and with average polysemy ranging from 5.3 to 7.2. Both methods

are outperformed by the FS method, which is the supervised baseline. The ensemble

method provides state of the art performance in supervised WSD, surpassing the FS

with statistical significance at the 0.95 confidence level. UB is the upper bound that

the ensemble can reach, if a learner fits the data more, but that could reside in an

overfit.

An argument can be raised regarding the fact that the reported accuracies may

seem low and close to the FS baseline. It is true, though, that the best current state

of the art methods all achieve small improvements (1 − 3%) compared to FS. This

is not trivial, if one considers the fact that the human interannotator agreement is

approximately 70% and, thus, accuracies of 65% essentially approximate the human

60 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

performance in WSD.

In all, in this chapter we have introduced WSD methods that are among the

top-performing methods in the current WSD bibliography [79]. Our top-performing

method is a multilayered WSD system based on an ensemble of three WordNet-

based WSD algorithms. The method trains a set of SVM classifiers, one for each

WSD algorithm, and learns which WSD method to trust depending on a feature

vector of the target term. The main advantages of this method are: (1) state of

the art accuracy in unrestricted text, (2) limited training requirements to achieve

top performance, (3) low space complexity, since the classifiers are trained on a very

small number of features and the stored support vectors are on average 3% of the

training instances, and (4) the disambiguation step of the algorithm has lower time

complexity for the disambiguation than existing supervised WSD methods. Overall,

the proposed approach competes well (in terms of accuracy) against state of the art

methods for unrestricted text WSD.

Chapter 4

Omiotis: A Thesaurus-based

Measure of Semantic Relatedness

Relatedness between texts can be perceived in several different ways. Primarily, one

can think of surface (string) relatedness or similarity between texts, which can be eas-

ily captured by a vectorial representation of texts and a standard similarity measure

(e.g., cosine, Dice, Jaccard etc.). Such models have had high impact in informa-

tion retrieval over the past decades. Several improvements have been proposed for

such techniques, towards inventing more sophisticated weighting schemes for the text

terms (e.g. TF-IDF and its variations). Other directions explore the need to capture

the latent semantic relations between dimensions (words) in the constructed vector

space model, by using techniques of latent semantic analysis [52]. Another aspect of

text relatedness, probably of equal importance, is the semantic relatedness between

two text segments. For example, the sentences “The shares of the company dropped

14 cents” and “The business institution’s stock slumped 14 cents” have an obvious

semantic relatedness, as explained in the introduction, which traditional measures of

text similarity fail to recognize. In this chapter we propose Omiotis, a measure of

relatedness between texts, which takes into account both the surface and the semantic

relatedness of words, performs better than the traditional surface (string) matching

models, and can handle cases like the above.1

1Omiotis is the Greek word for relatedness or similarity.

61

62CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

The measure is based on the semantic representation of the WSD methods in-

troduced in the previous chapter. The core of the measure is SR, a new measure

of semantic relatedness between senses, that is extended to measure semantic relat-

edness between words. Omiotis constitutes the final extension to measure semantic

relatedness between text segments. The word relatedness measure is based on the

construction of semantic links between individual words, according to a word the-

saurus (in our case, WordNet). Each pair of words is potentially connected via one

or more semantic paths, each one comprising one or more edges that connect inter-

mediate thesaurus nodes. To weigh the semantic path we consider three key factors:

(a) the length of the semantic path; (b) the intermediate nodes’ specificity, denoted

by the node depth in the thesaurus’ hierarchy; and (c) the types of the semantic

edges that compose the path. The three factors allow our measure to perform well

in complex linguistic tasks, that require more than simple similarity, such as the

SAT Analogy Test (section 5.1).2 To the best of our knowledge, SR and Omiotis are

the first measures of semantic relatedness that consider in tandem all three factors.

Omiotis integrates semantic relatedness at the word level with statistical information

about words at the text level, and provides a semantic relatedness measure between

texts.

The contributions of this chapter are: 1) a new measure for computing semantic

relatedness between words, which exploits all of the semantic information a thesaurus

can offer, including semantic relations crossing parts of speech (POS), while taking

into account relation weights and the depth of the thesaurus’ nodes; 2) a new mea-

sure for computing semantic relatedness between texts, Omiotis, that does not require

any type of training; 3) thorough experimental evaluation on benchmark data sets

to measure the performance of word-to-word similarity in word analogy, as well as

experiment on three text related tasks (paraphrase recognition, document similarity

detection, document classification) to evaluate the performance of the text-to-text

relatedness measure. An additional practical contribution of the thesis is a publicly

available system [120] that can be used to obtain a pre-computed semantic related-

ness score between any pair of WordNet senses, which facilitates incorporating our

2http://www.aclweb.org/aclwiki/index.php?title=SAT_Analogy_Questions

4.1. SEMANTIC RELATEDNESS BETWEEN A PAIR OF CONCEPTS 63

semantic relatedness measure in many retrieval tasks.3

The key features of the proposed measures are: (a) it constructs semantic links

between all word senses in WordNet and pre-computes a relatedness score between

every pair of WordNet senses; (b) it computes the semantic relatedness for a pair of

words by taking into account the relatedness of their corresponding WordNet senses;

(c) it computes a semantic relatedness score for any two given text segments using

the relatedness at word-level. Depending on the task, the computation of semantic

relatedness can be modified to take into account all or some of the senses of each

word, or all or some of the words in each text, depending on the word importance

or sense importance in context. This allows Omiotis to be adapted in various text

related tasks, without modifying the main process of computing relatedness. In the

section 4.1 below, we formally define our semantic relatedness measure for senses. In

section 4.2 we present its extension to measure relatedness between words, and in

section 4.3 we provide a detailed justification of our design decisions. In section 4.4

we define Omiotis, and in section 5.1 we explain how Omiotis can be embedded in

several applications.

4.1 Semantic Relatedness Between a Pair of Con-

cepts

In order construct semantic paths between words, we reuse the idea of constructing

semantic networks connecting words, that we presented in section 3.3.1 [121].

Figure 4.1 gives an example of the construction of a semantic network for two

words ti and tj. For simplicity, we assume the construction of a semantic path between

the highlighted senses S.i.2 and S.j.1 only (Initial Phase), though we could do the

same for every possible pair of two words’ senses. Initially, the two sense nodes are

expanded using all the semantic links offered by WordNet. The semantic links of the

highlighted senses, as found in the thesaurus, are added as edges and the senses they

point to are added to the network as nodes (Network Expansion). The expansion

3Available at http://omiotis.hua.gr/WebSite/

64CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

...

S.i.1

= Word NodeIndex: = Sense Node = Semantic Link

ti
t
j

Initial Phase

S.i.7

S.j.1

S.j.5

...
S.i.2 S.j.1

...

Network Expansion

Synonym
...

Hypernym

...
Antonym

Holonym

Meronym
S.i.2 S.j.2

Hyponym

Figure 4.1: Constructing semantic networks from word thesauri.

process is repeated recursively until the shortest path between S.i.2 and S.j.1 is

found; a more detailed description of this process is provided as algorithm 4. If no

path is found from S.i.2 to S.j.1, then the senses and consequently the words are not

semantically related.

The semantic relatedness of a pair of concepts is measured over the constructed

semantic network. The measure considers the path length, captured by semantic

compactness, and the path depth, captured by semantic path elaboration, which are

defined in the following. Note that in the previous chapter we introduced a measure

for WSD based on the idea of compactness that we initially proposed in [63]. That

measure used only nouns and the hypernym relation. In this chapter, the measure

is extended to exploit all of WordNet’s relations and the noun, verb, and adjective

parts of speech. We also define a new compactness measure (definition 3) as on of the

core components of the Omiotis measure.

Definition 3 Given a word thesaurus O, a weighting scheme that assigns a weight

e ∈ (0, 1) to each edge type (each edge is assigned the weight of its type), a pair

of senses S = (s1, s2), and a path of length l connecting the two senses, the se-

mantic compactness of S (SCM(S,O)) is defined as: SCM(S,O) =
∏l

i=1 ei, where

e1, e2, ..., el are the weights of the path’s edges. If s1 = s2 then SCM(S,O) = 1. If

there is no path between s1 and s2 then SCM(S,O) = 0.

Note that compactness takes the path length into account and is bound in [0, 1].

4.1. SEMANTIC RELATEDNESS BETWEEN A PAIR OF CONCEPTS 65

WordNet 2.0 Edge Type Probability of Occurrence

hypernym/hyponym 0.61

nominalization 0.147

category domain 0.094

part meronym/holonym 0.0367

region domain 0.0238

similar 0.02

usage domain 0.016

member meronym/holonym 0.014

antonym 0.0105

verb group 0.01

also see 0.0091

attribute 0.00414

entailment 0.00195

cause 0.00158

substance meronym/holonym 0.00089

derived 0.0003

participle of 3.4E − 06

Table 4.1: Probability of occurrence for every edge type in WordNet 2.0.

Higher compactness between senses declares higher semantic relatedness. The intu-

ition behind the weighting of the edge types is that certain types provide stronger

(more straightforward, e.g., hypernym/hyponym edges) semantic connections than

others. Considering that human editors of WordNet tend to use the stronger relation

types more often than weaker ones, a straightforward solution is to define the weights

of the edge types proportionally to their frequency of occurrence in WordNet 2.0.

The weights assigned to each type using this solution are shown in table 4.1 and are

in accordance to those found in [109]. The table shows the probability of occurrence

in WordNet 2.0 of every possible edge type in decreasing order of probability.

The depth of nodes that belong to the path also affects term relatedness. A

standard means of measuring depth in a word thesaurus is the hypernym/hyponym

hierarchical relation for the noun and adjective POS and hypernym/troponym for

the verb POS. For the adverb POS the related stem adjective sense can be used to

measure its depth. A path with shallow sense nodes is more general compared to

66CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

a path with deep nodes. This parameter of semantic relatedness between terms is

captured by the measure of semantic path elaboration and is introduced in definition

4.

Definition 4 Given a word thesaurus O , a pair of senses S = (s1, s2), where s1,s2 ∈

O and s1 6= s2, and a path between the two senses of length l, the semantic path

elaboration of the path (SPE(S,O)) is defined as:

SPE(S, O) =
∏l

i=1
2didi+1

di+di+1
· 1

dmax
,

where di is the depth of sense si according to O, and dmax the maximum depth of

O. If s1 = s2 and d = d1 = d2 then SPE(S,O) = d
dmax

. If there is no path from s1 to

s2 then SPE(S,O) = 0.

A path of length l comprises l+1 nodes, thus when i = l, di+1 is the last node in

the path. Essentially, each factor of SPE is the harmonic mean of the depths of two

adjacent senses along the path, normalized to the maximum thesaurus depth. The

harmonic mean is preferred over the average of depths, since it offers a lower upper

bound. Compactness and Semantic Path Elaboration capture the two most important

parameters of measuring semantic relatedness between terms [18], namely path length

and senses depth in the used thesaurus. We combine these two measures as follows

in the definition of the Semantic Relatedness between two terms (definition 5).

Definition 5 Given a word thesaurus O, and a pair of senses S = (s1, s2) the se-

mantic relatedness of S (SR(S,O)) is defined as max{SCM(S,O) ·SPE(S,O)}, over

all the paths that connect s1 and s2.

Given a word thesaurus, there can be more than one semantic paths connecting two

senses. The senses’ compactness can take different values for different paths. In these

cases, we use the path that maximizes the semantic relatedness. For its computation

we introduce algorithm 4, which is a modification of Dijkstra’s algorithm for finding

the shortest path between two nodes in a weighted directed graph. The modification

made is to incorporate the multiplication of edges weights, substituting the sum in

4.1. SEMANTIC RELATEDNESS BETWEEN A PAIR OF CONCEPTS 67

Algorithm 4 Maximum-Semantic-Relatedness(G,u,v,w)

Require: A directed weighted graph G, two nodes u, v and a weighting scheme
w : E → (0..1), where E is the set of all edge types.

Ensure: The path from u to v with the maximum product of the edges weights.
Initialize-Single-Source(G,u)

1: for all vertices v ∈ V [G] do
2: d[v] = −∞
3: π[v] = NULL
4: end for
5: d[u] = 1

Relax(u, v, w)
6: if d[v] < d[u] · w(u, v) then
7: d[v] = d[u] · w(u, v)
8: π[v] = u
9: end if

Maximum-Relatedness(G,u,v,w)
10: Initialize-Single-Source(G,u)
11: S = ∅
12: Q = V [G]
13: while v ∈ Q do
14: s = Extract from Q the vertex with the maximum d
15: S = S ∪ s
16: for all vertices k ∈ Adjacency List of s do
17: Relax(s,k,w)
18: end for
19: end while
20: return the path following all the ancestors π of v back to u

the original algorithm. The proof of the algorithm’s correctness follows in the next

theorem, and it is based on the respective proof of the Dijkstra algorithm in [23]. In

algorithm 4, d holds an estimate of the weight of the shortest path from the source

to each node in the graph, and π holds the predecessor of each node (so that at the

end we know the exact shortest path from the source to every node in the graph).

Theorem 1 Given a word thesaurus O, an edges weighting function w : E → (0, 1),

where a higher value declares a stronger edge, and a pair of senses S(ss, sf) declar-

ing source (ss) and destination (sf) vertices, then the SCM(S,O) · SPE(S,O) is

maximized for the path returned by Algorithm 4, by using the weighting scheme

68CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

eij = wij · 2·di·dj

dmax·(di+dj)
, where eij the new weight of the edge connecting senses si

and sj.

Proof 1 We will show that for each vertex sf ∈ V , d[sf] is the maximum product

of edges’ weight through the selected path, starting from ss, at the time when sf is

inserted into S. From now on, the notation δ(ss, sf) will represent this product. Path

p connects a vertex in S, namely ss, to a vertex in V − S, namely sf . Consider the

first vertex sy along p such that sy ∈ V − S and let sx be y’s predecessor. Now, path

p can be decomposed as ss → sx → sy → sf . We claim that d[sy] = δ(ss, sy) when

sf is inserted into S. Observe that sx ∈ S. Then, because sf is chosen as the first

vertex for which d[sf] 6= δ(ss, sf) when it is inserted into S, we had d[sx] = δ(ss, sx)

when sx was inserted into S.

Because sy occurs before sf on the path from ss to sf and all edge weights are

nonnegative and in (0, 1) we have δ(ss, sy) ≥ δ(ss, sf), and thus d[sy] = δ(ss, sy) ≥

δ(ss, sf) ≥ d[sf]. But both sy and sf were in V − S when sf was chosen, so we

have d[sf] ≥ d[sy]. Thus, d[sy] = δ(ss, sy) = δ(ss, sf) = d[sf]. Consequently, d[sf] =

δ(ss, sf) which contradicts our choice of sf . We conclude that at the time each vertex

sf is inserted into S, d[sf] = δ(ss, sf).

Next, to prove that the returned maximum product is the SCM(S,O) ·SPE(S,O),

let the path between ss and sf with the maximum edge weight product have k edges.

Then, Algorithm 1 returns the maximum
∏k

i=1 ei(i+1) = ws2·
2·ds·d2

dmax·(ds+d2)
·w23·

2·d2·d3

dmax·(d2+d3)
·

... · wkf ·
2·dk·df

dmax·(dk+df)
=

∏k
i=1 wi(i+1) ·

∏k
i=1

2didi+1

di+di+1
· 1

dmax
= SCM(S,O) · SPE(S,O).

4.2 Semantic Relatedness Between a Pair of Words

Based on definition 5, which measures the semantic relatedness between a pair of

senses S, we can define the semantic relatedness between a pair of terms T (t1, t2) as

in definition 6.

Definition 6 Let O be a word thesaurus O, let T = (t1, t2) be a pair of terms for

which there are entries in O, S1 be the set of senses of t1 and S2 the set of senses of

t2 in O. If Sk, k = 1..|S1| · |S2| are all the possible sets of senses pairs (si, sj), with

4.3. ANALYSIS OF THE SR MEASURE 69

si ∈ S1 and sj ∈ S2, then the semantic relatedness of T (SR(T, Sk, O)) is defined as

max{SCM(Sj, O) · SPE(Sj, O)}, for all j = 1..|S1| · |S2|. The semantic relatedness

between two terms t1, t2 where t1 ≡ t2 ≡ t and t /∈ O is defined as 1. The semantic

relatedness between t1, t2 when t1 ∈ O and t2 /∈ O, or vice versa, is considered 0.

In the remainder of this thesis, the SR(T, Sk, O) for a pair of terms will be denoted

as SR(T), to ease readability. Note also that this measure of semantic relatedness

between terms, inherently performs WSD, if one term is taken to be the target one

and the other its (single-word) context: For a given word t1, the semantic relatedness

to another word t2 might be maximized with the sense s11 of t1, and for a new given

word t3, it might be maximized for another sense, e.g. s12. In [119] we present the

findings of using SR(T) as a WSD measure; the performance was similar to SANs,

on Senseval 2 and 3 data sets.

4.3 Analysis of the SR Measure

In this section we present the rationale behind the definitions 2, 4 and 5, by providing

theoretical and/or experimental evidence for the decisions made on the design of the

measure. We illustrate the advantages and disadvantages of the different alternatives

using simple examples and argue for our decisions. Finally, we discuss the advantages

of SR against previous measures of semantic relatedness and its possible caveats.

The list of decisions made for the design of our semantic relatedness measure

comprises: a) use of senses in all POS, instead of noun senses only, b) use of all

semantic edge types found in WordNet, instead of the IS-A relation only, c) use

of edge weights, and d) use of senses’ depth as a scaling factor. It is important

to mention that measures of semantic relatedness differ from measures of semantic

similarity, which traditionally use hierarchical relations only and ignore all other types

of semantic relations. In addition, both concepts differ from semantic distance, in the

sense that the latter is a metric.

70CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

Use all POS Information

Firstly, we shall argue that the use of all POS in designing a semantic relatedness

measure is important, and can increase the coverage of such a measure. The rationale

supporting this decision is fairly simple. Current data sets for evaluating semantic

relatedness or even semantic similarity measures are restricted to the noun POS

(Rubenstein and Goodenough’s 65 word pairs [96], Miller and Charles’ 30 word pairs

[72], the Word-Similarity-353 collection [32]) and, thus, cannot pinpoint the caveat

of omitting the remaining parts of speech. However, text similarity tasks and their

benchmark data sets comprise more than nouns. Throughout the following analysis,

the reader should keep in mind that the resulting measure of semantic relatedness

between words is destined to be embedded in a text-to-text semantic relatedness

measure, as discussed later.

The following two sentences are a paraphrase example taken from the Microsoft

Paraphrase Corpus [29] and show the importance of using other POS, apart from

nouns, such as verbs:

“The charges of espionage and aiding the enemy can carry the death

penalty.”

“If convicted of the spying charges he could face the death penalty.”

Words that appear in WordNet 2.0 are written in bold and stopwords have been

omitted for simplicity.4 The two sentences have many nouns in common (charges,

death, penalty), but there are also pairs of words across the two sentences that can

provide evidence that the two sentences are paraphrases of each other. For example

espionage and spying have an obvious semantic relatedness, as well as enemy and

spying. Also, charges and convicted, as well as penalty and convicted. This

type of evidence would have been disregarded by any measure of semantic relatedness

or similarity that uses only the noun POS and WordNet’s hierarchy. Examples of

such measures are: the measure of Sussna [114], Wu and Palmer [135], Jiang and

4The stopwords’ list that we used is available at http://www.db-net.aueb.gr/gbt/resources/
stopwords.txt

4.3. ANALYSIS OF THE SR MEASURE 71

child care
(Noun)

service
(Noun)

Hypernym

aid
(Noun)

Hypernym

activity
(Noun)

Hypernym

Hyponym

education
(Noun)

educate
(Verb)

Nominalization

Hyponym

school
(Verb)

school
(Noun)

Nominalization

Figure 4.2: Semantic path from child care to school.

Conrath [45], Resnik [91, 92], and the WordNet-based component of Finkelstein et

al. [32]. From this point of view, the decision to use all POS information expands

the potential matches found by the measure and allows using the measure in more

complicated tasks, like paraphrase recognition, text retrieval, and text classification.

Use Every Type of Semantic Relations

The decision to use all parts of speech in the construction of the semantic graphs re-

quires using all semantic relations instead of merely taxonomic (IS-A) ones. Moreover,

this decision was based on evidence from related literature. The work of Richard-

son et Al. [107] provides experimental evidence that measuring semantic similarity

by incorporating non-hierarchical link types (i.e., part meronym/holonym, member

meronym/holonym, substance meronym/holonym) improves significantly the perfor-

mance of such a measure; the experiments conducted by adopting a small variation

of the Resnik’s measure [91].

Hirst and St-Onge [39] reported that they discovered several limitations and miss-

ing connections in WordNet’s relations during the construction of lexical chains from

72CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

sentences for the detection and correction of malapropisms.5 They provided the fol-

lowing example using the pair of words in bold to report this caveat:

“School administrators say these same taxpayers expect the schools to provide

child care and school lunches, to integrate immigrants into the community,

to offer special classes for adult students,.”

The intrinsic connection between the nouns child care and school, which both

exist in WordNet, cannot be discovered by considering only hierarchical edge types.

This connection is depicted in figure 4.2, which shows the path in WordNet. By using

all WordNet’s relations, our measure is able to detect such connections and address

problems of the aforementioned type.

Use Weights on Edges

Resnik [92] reports that simple edge counting, which implicitly assumes that links in

the taxonomy represent equal distances, is problematic and is not the best semantic

distance measure for WordNet. In a similar direction lie the findings of Sussna [114],

who performed thorough experimental evaluation by varying edge weights in order to

measure semantic distance between concepts. Sussna’s findings, revealed that weights

on semantic edges are a non-negligible factor in the application of their measure to

WSD, and that their best results were reported when a weighting scheme for edges

was used, in contrast to assigning each edge the same weight. For all these reasons,

we decided to assign a weight to every edge type, and we chose the simple probability

of occurrence for each edge type in WordNet, as our edge weighting scheme (see table

4.1). This very important factor is absent from several similarity measures proposed

in the past, such as the measures of Leacock and Chodorow [55], Jarmasz and Sz-

pakowicz [44], and Banerjee and Pedersen [6], which are outperformed in experimental

evaluation by our measure.

5Malapropism is the bad use of a word due to confusion with another word having the same
sound

4.3. ANALYSIS OF THE SR MEASURE 73

Part Meronym

car
(Noun)

accelerator
(Noun)

pedal
(Noun)

Hyponym

lever
(Noun)

Hyponym

bar
(Noun)

Hyponym

Hyponym

implement
(Noun)

Hyponym

instrumentality
(Noun)

Hypernym

wheeled
vehicle
(Noun)

container
(Noun)

Hypernym

Hypernym

Category Domain

NWPL Path

PR Path

car
(Noun)

autobus
(Noun)

Hyponym

conveyance
(Noun)

Hypernym

motor vehicle
(Noun)

self-propelled
vehicle
(Noun)

Hypernym

Hypernym

Hypernym

wheeled
vehicle
(Noun)

Hypernym

vehicle
(Noun)

public
transport
(Noun)

Hyponym

passenger
(Noun)

Category Domain

Figure 4.3: PR and NWPL paths for pairs: car and accelerator (left), car and autobus
(right).

Use Depth Scaling Factor

Our decision to incorporate the depth scaling factor (SPE in definition 4) in the

edge weighting mechanism was inspired by the thorough experimental evaluation

conducted by Sussna [114], which provided evidence on the importance of the edge

weighting factor in measures based on semantic networks. Our experiments on the

Miller and Charles data set, show that the Spearman correlation with human judge-

ments is much lower (7 percentage points) without the depth scaling factor, compared

to the correlation when adopting the SPE factor (see definition 2).

Justification of SR Definitions

According to definition 2, the semantic compactness of a pair of concepts is the

product of the depth-scaled weights of the edges connecting the two concepts. The

74CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

use of a product instead of a sum or normalized sum of edge weights is explained in

the following.

Since there might be several paths connecting the two concepts, definition 5 selects

the path that maximizes the product of semantic compactness (SC) and semantic path

elaboration (SPE). For simplicity, we ignore the effect of the depth scaling factor

(SPE in definition 4) and consequently, our aim is to find the path that maximizes
∏l

i=1 ei, where e1, e2, ..., el are the (non depth-scaled) weights of the edges in the

path connecting two given concepts. Let us call this less elaborate version of our

semantic relatedness measure product relatedness (PR). An alternative would be to

define semantic compactness as the average of the weights in the path, i.e.,
∑l

i=1 ei

l
.

In this case, the semantic relatedness would be measured on the path that maximizes

the latter formula. Let us name this alternative after normalized weighted path length

(NWPL).

In the example of figure 4.3, we show how PR and NWPL compute the semantic

relatedness for the term pair car and accelerator (left), and car and autobus (right).

The path that maximizes the respective formulas of PR and NWPL using algorithm

4 and the edge weights in table 4.1, is also illustrated in the figure. For the pair

car and accelerator the sum-based formula, normalized by the path length, selects

a very large path in this example, with a final computed relatedness of 0.61, which

is the weight of the hypernym/hyponym edges. PR finds that the path maximizing

the product is the immediate part meronym relation from car to accelerator, with a

computed relatedness of 0.0367, which is the weight of the part meronym edges. The

main problem arising with NWPL is that it cannot distinguish among the relatedness

between any pair of concepts in the hypernym/hyponym hierarchy of WordNet. In

this example, NWPL computes the same relatedness (0.61) between every possible

concept pair shown in the top figure. In contrast, PR is able to distinguish most

of these pairs in terms of relatedness. More precisely, this behavior of PR is due to

the fact that it embeds the notion of the path length, since the computed relatedness

decays by a factor in the range (0, 1) for every hop made following any type of semantic

relation. Another example, that also shows the importance of considering all WordNet

relations, is the one shown in the right part of figure 4.3, where NWPL and PR paths

4.3. ANALYSIS OF THE SR MEASURE 75

have been computed for the term pair car and autobus. Again, NWPL selects a very

large path, and does stays within the hypernym/hyponym tree. Note however, that

the example on the right part of the figure points out the importance of the depth

scaling factor as well, since the shown path for PR is considered if the depth scaling

factor is used, otherwise it would follow the same path as NWPL.

Overall, NWPL would rather traverse through a huge path of hypernym/hyponym

edges, than follow any other less important edge type which would decrease its av-

erage path importance. This behavior creates serious drawbacks: (a) lack of ability

to distinguish relatedness among any pair of concepts in the same hierarchy (e.g.,

instrumentality and container are as related as instrumentality and accelerator), and

(b) large increase of the actual computational cost of algorithm 4, due to the fact

that NWPL will tend not to deviate from the hypernym/hyponym hierarchy, even

if there is a direct semantic edge (other than hypernym/hyponym) connecting the

two concepts, as shown in figure 4.3. Furthermore, by conducting experiments with

NWPL in the 30 word pairs of Miller and Charles [72], we discovered that in almost

40% of the cases, NWPL produces the same value of semantic relatedness, equal to

0.61, being unable to distinguish them and creating many ties, while PR produces

a different value from almost every pair. Thus, PR is a better option to use in our

measure, as the semantic compactness factor.

Note that our measure is solely based on the use of WordNet, unlike measures of

semantic relatedness that use large corpora, such as Wikipedia. Although such mea-

sures (e.g., Gabrilovich and Markovitch [34], and Ponzetto and Strube [88]) provide

a larger coverage, including concepts that do not reside in WordNet, they require

extensive training. Experimental evaluation in chapter 5, shows that our measure

outperforms all the aforementioned word-to-word relatedness measures in all three

data sets used. In the following section, we introduce Omiotis, the extension of SR

for measuring text-to-text relatedness.

76CHAPTER 4. OMIOTIS: A THESAURUS-BASED MEASURE OF SEMANTIC RELATEDNESS

4.4 Omiotis

The definition of semantic relatedness between a pair of terms can be extended to

capture semantic relatedness between texts. Given a pair of texts A,B, for every word

ai in A we seek the word bj of B that maximizes the semantic relatedness between ai

and bj, according to definition 6. Besides the semantic relatedness between ai and bj

we also consider the importance of each word using their TF*IDF values. We define

λai,bj
of two words ai and bi as the harmonic mean of their TF*IDF values.

λai,bj
=

2TF IDF (ai)TF IDF (bj)

TF IDF (ai) + TF IDF (bj)
(4.1)

Since we want to combine the importance of terms ai and bj, according to their

TF*IDF values, with their semantic relatedness, eventually, for every word ai of

document A we seek the word x(ai) from document B for which:

x(ai) = arg max
j∈[1,|B|]

(λai,bj
· SR(ai, bj)) (4.2)

Similarly, we do the same for document B, seeking for every word bj, the word y(bj)

of document A, for which:

y(bj) = arg max
i∈[1,|A|]

(λai,bj
· SR(ai, bj)) (4.3)

We aggregate these scores for both directions (e.g., from document A to document

B and vice versa) as shown in equations 4.4 and 4.5 respectively. Note that both

directions are needed, to cover the cases where the number of words are not equal

in the two texts. Finally, OMOIOTIS between A,B can be obtained by the formula

shown in equation 4.6.

ζ1(A,B) =
1

|A|

|A|
∑

i=1

λai,x(ai) · SR(ai, bx(ai))

 (4.4)

4.4. OMIOTIS 77

ζ2(A,B) =
1

|B|

|B|
∑

j=1

λy(bj),bj
· SR(ay(bj), bj)

 (4.5)

Omiotis(A,B) =
1

2
[ζ1(A,B) + ζ2(A,B)] (4.6)

Note that measure Omiotis(A,B) between texts A and B takes into account both the

importance of the terms in the document (TF-IDF values), as well as the semantic

relatedness of the terms across the two documents. In fact, the new measure extends

the THESUS measure that we presented in [129], which could only handle noun words,

and did not consider TF-IDF scores. Appendix B analyzes the complexity of Omiotis

and presents a novel implementation of our measure, along with an on-line demo.

Chapter 5

Applications and Experimental

Evaluation

5.1 Applications of Semantic Relatedness

In this section we describe the methodology of incorporating semantic relatedness

between pairs of words or pairs of text segments into well-known text related tasks.

Word Similarity

In 1965, Rubenstein and Goodenough [96] obtained synonymy judgements from 51

human subjects on 65 pairs of words, in an effort to investigate the relationship

between similarity of context and similarity of meaning (synonymy). Since then,

the idea of evaluating computational measures of semantic relatedness by comparing

against human judgments on a given set of word pairs has been widely used, and even

more data sets have been developed. The proposed measure of semantic relatedness

between words (SR), introduced in definition 6, can be used directly in such a task,

in order to evaluate directly the basis of the Omiotis measure, which is the measure-

ment of word-to-word semantic relatedness. The application is straightforward: let

n be all the pairs of words in the word similarity data set used; then, the semantic

relatedness for every pair is computed, through the use of SR(T, S,O), as defined

78

5.1. APPLICATIONS OF SEMANTIC RELATEDNESS 79

Stem: wallet: money

Choices: (a) safe: lock

(b) suitcase: clothing

(c) camera: film

(d) setting: jewel

(e) car: engine

S1: 0.2605
S2: 6.75E-04

S1: 0.4795
S2: 0.015

S1: 0.1805
S2: 7.87E-05

S1: 0.3764
S2: 8.99E-05

S1: 0.1506
S2: 0.0029

Winner based on S1 (Horizontal Analogy): b
Winner based on S2 (Vertical Analogy): b

Winner based on combined S: b
Correct Answer: b

Figure 5.1: Example of computing SR in a given SAT question.

in 6; the computed values are sorted in decreasing order, and the produced rank-

ing of similarities is compared against the “gold standard” ranking of humans, using

Spearman correlation. Additional measures of semantic relatedness can be compared

against each other by examining the produced values of the Spearman correlation.

SAT Analogy Tests

The problem of identifying similarities in word analogies among pairs of words is a

difficult problem and it has been standardized as a test for assessing the human ability

for language understanding in the well known SAT analogy tests (Scholastic Aptitude

Tests). SAT tests in general are used as admission tests by secondary schools in the

United States. The aim is to locate out of five pairs of words the one that presents

the most similar analogy to a target pair.

Although it is difficult for machines to model the human cognition of word analogy,

several approaches exist in the bibliography that attempt to tackle this problem.

80 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

Previous approaches can be broadly categorized in corpus-based, lexicon-based, and

hybrid. Some examples of corpus-based approaches are those of Turney [125], and

Bicici and Yuret [9]. Examples of lexicon-based approaches are the approaches of

Veale [130], and the application of the lexicon-based measure of Hirst and St. Onge

[39] in SAT, that can be found in the work of Turney [123]. Hybrid approaches

have been applied in SAT through the application of the measures of Resnik [91] and

Lin[59] that can also be found in the work of Turney [123]. In order for the reader

to understand the difficulty of answering SAT questions, we must point out that the

average US college applicant scores 57% [126], while the top corpus-based approach

scores 56.1% [123], the top lexicon-based scores 42% [130], and the top hybrid scores

33.2% [91].

Another way of categorizing the approaches that measure semantic similarity in

analogy tasks is to distinguish among attributional and relational similarity measures

[36].1 Representative approaches of the first category are lexicon-based approaches,

while examples of relational similarity measures can be found in approaches based on

Latent Relational Analysis (LRA) [123]. It is of great interest to point out that LRA-

based approaches, like the LRME algorithm proposed recently by Turney [124], are

superior in finding word analogies to attributional similarity approaches. This fact,

supported by the experimental findings in [123]. Relational similarity approaches may

perform better in the SAT analogy task, but still, as shown later in the experiments

we conducted in other applications, like paraphrasing, lexicon-based measures can

outperform LRA-based approaches in other tasks.

Semantic relatedness (SR) between words, as applied in Omiotis, can be exploited

to solve the word analogy task. The aim of word analogy is, for a given pair of

words w1 and w2, to identify the series of semantic relations that lead from w1 to w2

(semantic path). In the SAT test, the target pair (w1,w2) and candidate word pairs

(w1k,w2k), with k usually being from 1 to 5, are processed in order to find each pair’s

semantic path. The aim is to locate the pair k, whose elements have the most similar

semantic path to that of (w1,w2). We are trying to solve this problem by employing

1Two things, X and Y, are attributionally similar when the attributes of X are similar to the
attributes of Y. Two pairs, A:B and C:D, are relationally similar when the relations between A and
B are similar to the relations between C and D.

5.1. APPLICATIONS OF SEMANTIC RELATEDNESS 81

two criteria. First, we compare the k pairs to the target pair, and pick the candidate

pair whose elements seem to be connected by a semantic relation that is most similar

to that of the target pair. However, when the most similar relation is not obvious,

we examine all the 6 pairs together in order to find the slight differences between the

words comprising each pair. We attempt to model this using SR in a twofold manner:

we use SR to measure both the horizontal and the vertical analogy between the target

pair and the possible candidate pairs. To capture what we call horizontal analogy

between the target pair of words and a candidate pair, we measure the difference of

the SR score, of the members of each pair as follows:

s1(w1k, w2k) = |SR(w1, w2) − SR(w1k, w2k)| (5.1)

Essentially, s1 expresses the horizontal analogy of the candidate pair (w1k, w2k) with

the given pair (w1, w2), meaning their similarities in the paths connecting the words

of the two pairs. Similarly, we capture the notion of the vertical analogy between the

two pairs, meaning the similarity of the paths connecting the first word of the target

pair, with the first word of a candidate pair (and the same for the second word) by

computing the difference of the SR scores among the two word pairs, as follows:

s2(w1k, w2k) = |SR(w1, w1k) − SR(w2, w2k)| (5.2)

Finally, we rank candidates depending on the combined vertical and horizontal anal-

ogy the have with the given pair, according to the following equation:

s(w1k, w2k) =
s1(w1k, w2k) + s2(w1k, w2k)

2
(5.3)

Eventually, we select the candidate pair with the maximum combined score, taking

into account both aspects (horizontal and vertical) of analogy between the given and

the candidate pairs.

The intuition behind the selection of the these two scores for handling the SAT

test, is the following. The order of the words in the pairs (both target and candidates)

is not random. Usually, given a pair (w1, w2), and a the candidate pairs (w1k, w2k)

82 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

the test is solved if one can successfully find the analogy: w1k is to w2k what w1 is to

w2. From this perspective, s1 and s2 try to find the candidate pair that best aligns

with the target pair. Figure 5.1 illustrates these two types of analogies (horizontal

and vertical) for an example SAT question.

Paraphrasing

The performance of document processing applications relying on natural language

processing may suffer from the fact that the processed documents might contain

lexically different, yet semantically related, text segments. The task of recognizing

pairs of text segments, with identical or almost identical semantics, which is better

known as paraphrase detection, is challenging and difficult to solve, as shown in the

work of Mihalcea et al. [66], and Pasca [85]. The task itself is important for many

text related applications, like summarization [38], information extraction [104] and

question answering [84]. We demonstrate the usefulness of the Omiotis measure in

paraphrasing detection using the Microsoft Research Paraphrase Corpus [29]. The

application of Omiotis to paraphrase detection is straightforward: given a pair of text

segments, we compute the Omiotis score between them, using equation 3. Higher

values of Omiotis for a given pair denote a stronger semantic relatedness between

the two text segments. The task is now reduced to defining a threshold for Omiotis

values, above which pairs will be classified as paraphrases. Since no type of training

is used in the computation of Omiotis, and since Omiotis values are in [0, 1], we have

selected the 0.5 as a threshold value.

Document Similarity

In order to assess how well Omiotis approximates human judgments in document-to-

document similarity, we have conducted experiments on a corpus of 50 news docu-

ments, taken from the Australian Broadcasting Corporation’s news mail service. One

main difference from the paraphrase task is that the answer concerning text relat-

edness is not binary. In this test [57], for each possible pair from the collection of

5.1. APPLICATIONS OF SEMANTIC RELATEDNESS 83

the 50 documents, 10 different human judgements were given, that rated the simi-

larity between documents from 0 to 5, with 5 corresponding to maximum similarity.

Inter-rater agreement correlation is about 0.6. Furthermore, an assessment of the 50

documents conducted by Lee et al. [57] against a standard corpus of five English

texts, using four models of language (log-normal, generalized inverse Gauss-Poisson,

Yule-Simon and Zipfian), showed that the document set is within the normal range

of English text for word frequency spectrum and vocabulary growth. Thus, the used

collection can be regarded as representative of normal English texts. The use of Omi-

otis in document similarity is again a straightforward application of equation 3, for

all document pairs.

Text Classification

As an additional task to evaluate the ability of Omiotis to measure text relatedness,

we embed its core Semantic Relatedness (SR) measure in the text classification task.

Several means of embedding semantic information in the text classification task have

been considered in the past. A standard methodology is to construct a semantic ker-

nel and embed it in a support vector machines classifier [106, 63, 7, 10, 12]. In the

following we present a new GVSM based on a semantic smoothing kernel, that incor-

porates noun information from WordNet (WSD information for nouns based on the

compactness disambiguation method, and the senses hypernyms). Furthermore, we

present the incorporation of SR in an existing semantic smoothing kernel. Both mod-

els for text classification are evaluated in section 5.2.2 using the Reuters classification

data set.

In previous work [63], we presented a Generalized Vector Space Model (GVSM),

based on the semantic smoothing kernel introduced in [106]. In that work we in-

troduced a means of embedding WSD information into the classification task (using

SVM). Since we aim at embedding WSD in the SVM classifier, we require the defini-

tion of a kernel that captures the semantic relations provided by the used hierarchical

thesaurus (HT). To the best of our knowledge, the only previous other approaches

that define a semantic kernel based on a HT are [106] and [10]. The formal definition

of the kernel in [106] is given in definition 7.

84 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

Definition 7 A Semantic Smoothing Kernel between two documents d1, d2 is defined

as K(d1, d2) = d1P
′Pd2 = d1P

2d2, where P is a matrix whose entries Pij = Pji,

represent the semantic proximity between concepts i and j.

The elements of the similarity matrix P are obtained by using a HT similarity

measure. The Semantic Smoothing Kernels have similar semantics to the GVSM

model defined in [134]. A kernel definition based on the GVSM model is given in

definition 8.

Definition 8 The GVSM kernel between two documents d1 and d2 is defined as

K(d1, d2) = d1DD′d2, where D is the term document matrix.

The rows of matrix D in the GVSM kernel contain the vector representation of

terms, used to measure their pairwise semantic relatedness. The Semantic Smoothing

Kernel has similar semantics. The Semantic Smoothing Kernel between two docu-

ments K(d1, d2) = d1P
2d2, can be regarded as a GVSM kernel, where the matrix

D is derived by the decomposition P 2 = DD′ (the decomposition is always possible,

since P 2 is guaranteed to be positive definite). The rows of D can be considered

as the vector representation of concepts, used to measure their semantic proximity.

Semantic Smoothing Kernels use P 2 and not P , because P is not guaranteed to be

positive definite.

The kernel we define is based on the general concept of GVSM kernel and uses

the semantics of the HT. The use of hypernyms for the vector space representation

of the concepts of a HT, enables the measurement of semantic distances in the vector

space [62]. More precisely, given a tree HT, there exists a weight configuration for

the hypernyms, such that standard vector space distance and similarity measures are

equivalent to popular HT distances and similarities. This is explained in the following

propositions.

Proposition 1 Let O be a Tree HT. If we represent the concepts of O as vectors

containing all their hypernyms, then there exists a configuration for the weights of the

hypernyms such that the Manhattan distance (Minkowski distance with p = 1) of any

two concepts in vector space is equal to the Jiang-Conrath measure [45] in the HT.

5.1. APPLICATIONS OF SEMANTIC RELATEDNESS 85

Proposition 2 Let O be a Tree HT. If we represent the concepts of the HT as vectors

containing all their hypernyms, then there exists a configuration for the weights of the

hypernyms such that the Resnik similarity measure [91] in the HT is equal to the inner

product in the vector space.

The WordNet hierarchical thesaurus is composed by 9 hierarchies that contain

concepts that inherit from more than one concept, and thus are not trees. However,

since only 2.28% of the concepts inherit from more than one concept [28], we can

consider WordNet’s as being close to trees. From the above we conclude that, if we

construct a matrix D where each row contains the vector representation of each sense

containing all its hypernyms, the matrix DD′ will reflect the semantic similarities

that are contained in the HT. Based on D, we move on to define the kernel between

two documents d1, d2, based on the general concept of GVSM kernels as K(d1, d2) =

d1DD′d2. In our experiments we have used various configurations for the rows of

D. More precisely, we have considered the vector representation of each concept to

be extended with a number of hypernyms (noun POS considered only). We have

experimented with several such varying numbers of hypernyms. The argument for

using only a limited number and not all hypernyms is that the similarity between

hypernyms close to the root of the HT is considered to be very close to 0. The

potential of the use of hyponyms was explored as well. The kernel that we finally

utilize in our experiments is a combination of the inner product kernel for terms with

the concept kernel K(d1, d2) = Kterms(d1, d2) + Kconcepts(d1, d2). This GSVM kernel

was embedded into the current version of SVMLight [46] and replaced the standard

linear kernel used for document classification with sparse training vectors. The kernel

defined implies a mapping from the original term and concept space, to a space that

includes the terms, the concepts and their hypernyms. The kernel can be considered

as the inner product in this feature space.

Besides the created GVSM kernel for text classification, we have also created

an additional semantic smoothing kernel based on the work in [10]. The need for a

GVSM kernel, defined in the previous paragraphs, instead of the more straightforward

semantic smoothing kernel, originated from the fact that we could not initially (during

earlier stages of this work) obtain a matrix P , whose entries Pij = Pji would denote

86 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

the semantic proximity between concepts i and j. This caveat was due to the fact

that we did not use any measure of semantic relatedness between terms at that time,

so that we could obtain Pi,j for every (i, j) pair. Instead, we used the compactness-

based WSD algorithm (section 3.2) and embedded the WordNet concepts along with

a defined number of their hypernyms in a GVSM representation of the documents.

Having defined Omiotis however, we were then able use a semantic smoothing

kernel that embeds the SR score (see definition 6), as a means for computing Pij. In

parallel, wanted to keep the lexical information of the terms in the corpus (i.e., their

TF-IDF weights). Thus, we used the kernel proposed by Basili et Al. [7], further

discussed and evaluated in [10, 12]. The used kernel is explained in the following: Let

d1 and d2 be two documents of the document collection. Their similarity is defined

as shown in the next equation.

K(d1, d2) =
∑

w1∈d1,w2∈d2

(λ1λ2) × SR(w1, w2) (5.4)

where λ1 and λ2 are the weights (TF-IDF values in our case) of the words w1 and w2 in

d1 and d2 respectively, and SR is our measure of semantic relatedness between a pair of

terms.2 Then, the kernel can be embedded directly in the SVM classifier. Regarding

the SVM implementation, we use SVMLight [46], and for the implementation of the

kernel we use a semantic kernel extension for SVMLight.3

Text Retrieval

Synonymy (many words per sense) and polysemy (many senses per word) are two fun-

damental problems in text retrieval. Synonymy is related with recall, while polysemy

with precision. One standard method to tackle synonymy is the expansion of the

query terms with their synonyms. This increases recall, but it can reduce precision

dramatically. Both polysemy and synonymy can be captured on the GVSM model in

the computation of the inner product between ~ti and ~tj (explained in equation 2.3).

2In [7] Basili et al. prove that equation 5.4 is a kernel, using the Lin semantic similarity measure
[59].

3Thanks to Stephan Bloehdorn, the semantic kernel extension is publicly available at http:

//www.aifb.uni-karlsruhe.de/WBS/sbl/software/semkernel/

5.1. APPLICATIONS OF SEMANTIC RELATEDNESS 87

The methodology of constructing such a GVSM for text retrieval is explained in the

following.

In the expansion of the VSM model we need to weigh the inner product between

any two term vectors with their semantic relatedness. For this purpose we use the

semantic relatedness between a pair of terms (SR) defined in definition 6. In equation

2.3, which captures the document-query similarity in the GVSM model, the similarity

between terms ti and tj is expressed by the inner product of the respective term vectors

~ti~tj. Note that ~ti and ~tj are in reality unknown. We estimate their inner product by

equation 5.5, where si and sj are the senses of terms ti and tj respectively, maximizing

SCM · SPE.

~ti~tj = SR((ti, tj), (si, sj), O) (5.5)

Since in our model we assume that each term can be semantically related with any

other term, and SR((ti, tj), O) = SR((tj, ti), O), the new space is of n·(n−1)
2

dimen-

sions. In this space, each dimension stands for a distinct pair of terms. Given a

document vector ~dk in the VSM TF-IDF space, we define the value in the (i, j) di-

mension of the new document vector space as shown in equation 5.6.

dk(ti, tj) = (TF − IDF (ti, dk) + TF − IDF (tj, dk)) · ~ti~tj. (5.6)

We add the TF-IDF values because any product-based value results to zero, unless

both terms are present in the document. The dimensions q(ti, tj) of the query, are

computed similarly. A GVSM model aims at being able to retrieve documents that not

necessarily contain exact matches of the query terms, and this is its great advantage.

This new space leads to a new GVSM model, which is a natural extension of the

standard VSM. The cosine similarity between a document dk and a query q now

becomes as shown in equation 5.7.

cos(~dk, ~q) =

∑n
i=1

∑n
j=i dk(ti, tj) · q(ti, tj)

√

∑n
i=1

∑n
j=i dk(ti, tj)

2 ·
√

∑n
i=1

∑n
j=i q(ti, tj)

2
(5.7)

where n is the dimension of the VSM TF-IDF space.

88 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

Other Applications of Omiotis

Besides the aforementioned applications of SR and Omiotis, for which we provide

experimental evaluation in chapter 5, there are also other interesting applications, for

which initial experimental evaluation is encouraging. One such application is the use

of Omiotis for organizing bibliographical data from paper repositories, like DBLP4. In

this direction we have applied Omiotis as a paper-to-paper similarity measure based

on the paper titles lying in DBLP, from selected conferences (e.g. ECML, ECDL,

FOCS, VLDB, etc.). The Omiotis metric can then be applied in text clustering and

classification tasks by substituting the traditional document similarity measures (e.g.

cosine similarity) with the semantic relatedness measure. Below, we demonstrate

Omiotis’ incorporation into the k-nearest neighbor (k-NN) classification scheme [27]

and into the clustering algorithms of the CLUTO [138] suite. Of course, our measure

can be employed by any other data organization method that operates upon the

notion of word or instance similarities. To demonstrate how Omiotis can be explored

by the above schemes, we examine the case of publication titles’ classification and

clustering, respectively.

In the original k-NN classification algorithm, a new instance is classified by a

majority vote of its neighbors. Specifically, assume we want to classify instance j

to the most suitable class, out of m classes. Assume also that we have available a

training set for which we already know the correct classes. Instance j is classified to

class ci -the most frequent class amongst its k nearest neighbors- using the following

formula:

ci = arg max
c=1..m

|Okc| (5.8)

where |Okc| is the number of training instances that belong to class ci, with i = 1, ..,m.

The parameter k signifies that we only explore the k nearest neighbors of j every time

a classification is made. Based on the above steps, the k-NN classifier assigns texts to

their corresponding classes. To classify documents that are represented in the VSM,

the cosine similarity or Jaccard’s coefficient metrics are employed in order to identify

the neighboring training instances. We replace the notion of similarity with that of

4http://www.informatik.uni-trier.de/~ley/db/

5.1. APPLICATIONS OF SEMANTIC RELATEDNESS 89

relatedness and we employ the Omiotis measure for deriving the relatedness between

semantic aspects of texts.

Regarding Omiotis’s incorporation into CLUTO, the suite offers three different

clustering algorithms that can be applied either (i) to text instances, or (ii) to any

type of instances as long as a similarity matrix between instances exists. The second

case is the most straightforward for incorporating Omiotis, since we can use a pre-

computed similarity matrix as input to the algorithm instead of modifying its internal

mechanism. In particular, we use the scluster program of CLUTO, which takes as

input the adjacency matrix of instances and the desired number of classes. We also use

the adjacency matrices produced by the cosine similarity and the Omiotis measures

respectively, and we compare the obtained results. Initial experimental results show

a constant improvement of classification and clustering of DBLP paper titles using

Omiotis, against the use of the traditional GVSM.

In another application setting, we have embedded the SR measure into a novel

keyword extraction algorithm, SemanticRank, that we define below. Identifying the

most important terms in a text is of paramount importance for a variety of tasks.

Currently, the most widely used keyword extraction method is the TF-IDF weighting

scheme that estimates the importance of terms based on their statistical properties

(i.e., frequency counts) in the texts in which they appear. Recently, there has been a

significant body of research, which demonstrates that supervised methods are more

successful than traditional term extraction techniques. For an overview, we refer

the reader to the work of [69]. Here, we introduce a new approach for keyword

extraction. Our method builds upon the SR measure, and employs a novel algorithm

for quantifying the importance of every term in a text.

Our algorithm, named SemanticRank, relies on the semantic relatedness graph

of document terms and is mutatis mutandis the TF-IDF scheme in the world of

semantics. More specifically, assume a document collection C and a document d ∈

C with n distinct terms ti, i = 1..n. By relying on the SR measure of definition

6, we can compute the semantic relatedness between every distinct pair of terms

(n·(n−1)
2

in total) in every document d. Thereafter, we consider a semantic graph

where every term constitutes a vertex Vi and every edge Eij the semantic relatedness

90 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

between terms ti and tj. Based on the above, we compute the SemanticRank score

for each term by using an adaptation of the well-known PageRank formula [69]. More

specifically, the SemanticRank of a term i is determined as:

SemanticRank(ti) = (1 − d) + d ·
∑

tj∈IN(ti)

SR(ti, tj)
∑

tk∈OUT (tj)
SR(tj, tk)

SemanticRank(tj)

(5.9)

The intrinsic aim of SemanticRank is that it rewards the centrality of terms in the

semantic relatedness graph in an analogous manner that PageRank rewards the cen-

trality of nodes in the web graph. Thus, as PageRank promotes the most strongly

connected graph nodes, SemanticRank promotes the terms that are the most seman-

tically related to the majority of other terms in the collection graph. Based on the

SemanticRank values computed for every term in a text, we can extract the top k

terms as the most important keywords for communicating the text semantics. Initial

experimentation in an effort to label the clusters produced by bibliographical data

from DBLP, again provides very interesting and promising results.

In another direction, in the past we had examined the introduction of WSD in-

formation into Web personalization [30]. Web personalization is the process of cus-

tomizing a web site to the needs of each specific user or set of users. Personalization

of a web site may be performed by the provision of recommendations to the users,

highlighting/ adding links, creation of index pages, etc. The web personalization sys-

tems are mainly based on the exploitation of the navigational patterns of the web

sites visitors. When a personalization system relies solely on usage-based results,

however, valuable information conceptually related to what is finally recommended

may be missed. The exploitation of the web pages semantics can considerably im-

prove the results of web usage mining and personalization, since it provides a more

abstract yet uniform and both machine and human understandable way of processing

and analyzing the usage data. The underlying idea is to integrate usage data with

content semantics, expressed in ontology terms, in order to produce semantically en-

hanced navigational patterns that can subsequently be used for producing valuable

recommendations. The work in [30] was a proposal of a semantic web personalization

system, focusing on WSD techniques which can be applied in order to semantically

5.2. EXPERIMENTAL EVALUATION 91

annotate the web sites content. Under the same scope, we aim at applying Omio-

tis to automatically annotate Web pages with semantic information from WordNet.

New WordNet senses can also aid to construct and evolve a domain ontology of the

considered Web pages [118] helping to crate thematic user profiles.

5.2 Experimental Evaluation

The experimental evaluation of Omiotis is two-fold. First, we test the performance

of the semantic relatedness measure for a pair of words in four benchmark data sets,

namely the Rubenstein and Goodenough 65 word pairs [96] (R&G), the Miller and

Charles 30 word pairs [72] (M&C), the Word-Similarity-353 collection [32] (353-C)

comprising 353 word pairs, and the SAT Analogy questions, comprising 374 test

questions. Second, we evaluate the performance of Omiotis in four text related tasks,

namely the paraphrase detection task, using the Microsoft Research Paraphrase Cor-

pus [29], a document similarity task [57], the document classification task using the

Reuters-21578 document collection (ModApte split) and the Amazon data set, and

finally the text retrieval task, using three TREC collections.

5.2.1 Word-to-Word Semantic Relatedness

Comparison of the Semantic Relatedness Measure to Human Perception

For the evaluation of the proposed semantic relatedness measure between two terms

we used three widely used data sets in which human subjects have provided scores of

relatedness for each pair. A kind of ”gold standard” ranking of related word pairs (i.e.,

from the most related words to the most irrelevant) has thus been created, against

which computer programs can test their ability on measuring semantic relatedness

between words. We compared our measure against ten known measures of semantic

relatedness: Hirst and St-Onge (HS)[39], Jiang and Conrath (JC)[45], Leackock and

Chodorow (LC)[55], Lin (L)[59], Resnik (R)[91, 92], Jarmasz and Szpakowicz (JS)[44],

Gabrilovich and Markovitch (GM)[34], Finkelstein et al. (F)[32], Hughes and Ramage

(HR)[41], and Strube and Ponzetto (SP) [113, 88]. In table 5.1 we show the results for

92 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

HS JC LC L R JS GM F HR SP SR

R&G 0.745 0.709 0.785 0.77 0.748 0.842 0.816 N/A 0.817 0.56 0.861

M&C 0.653 0.805 0.748 0.767 0.737 0.832 0.723 N/A 0.904 0.49 0.855

353-C N/A N/A 0.34 N/A 0.35 0.55 0.75 0.56 0.48 0.552 0.61

Table 5.1: Correlations of semantic relatedness measures with human judgements.

all three data sets and for all ten measures, when these were available. The reported

numbers are the Spearman correlation of the results of each measure with the gold

standard (human judgements). The detailed scores for humans for R&G and M&C

data set can be found in [18], while the detailed scores for the (353-C) data set are

made available with the collection5. The correlations for the R&G and M&C data

sets show that SR performs in general better than any other measure of semantic

relatedness of any category (knowledge-based, corpus-based or hybrid). To visualize

the performance of our measure in a more comprehensible manner, we also present

in figure 5.2.1 the relatedness values given by humans for all pairs in the R&G and

M&C data sets, in increasing order of value (left side) and the respective values for

these pairs produced using SR (right side). A closer look on figure 5.2.1 reveals that

the values produced by SR (right figure) follow a pattern similar to that of the human

ratings (left figure). Note that the x-axis in both charts begins from the least related

pair of terms, according to humans, and goes up to the most related pair of terms.

The y-axis in the left chart is the respective humans’ rating for each pair of terms.

The right figure shows SR for each pair. The reader can consult [18] to confirm that

all the other measures of semantic relatedness we compare to, for the same two data

sets, do not follow the same pattern as the human ratings, as closely as our measure of

relatedness does (low y values for small x values and high y values for high x). With

regards to the SR performance in the 353-C data set, we note that it ranks second,

right after the Wikipedia-based measure of Gabrilovich and Markovitch (GM), but

surpasses the rest, including the Wikipedia-based method of Strube and Ponzetto

(SP). Note also that Omiotis wins both GM and SP in the R&B and M&C data

5http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

5.2. EXPERIMENTAL EVALUATION 93

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 20 30 40 50 60 65

H
u
m

a
n
 R

a
ti
n
g

Pair Number

HUMAN RATINGS AGAINST HUMAN RANKINGS - R&G Data Set

correlation of human pairs ranking and human ratings
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 65

S
e
m

a
n
ti
c
 R

e
la

te
d
n
e
s
s

Pair Number

SEMANTIC RELATEDNESS AGAINST HUMAN RANKINGS - R&G Data Set

correlation of human pairs ranking and semantic relatedness

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 10 15 20 25 30

H
u
m

a
n
 R

a
ti
n
g

Pair Number

HUMAN RATINGS AGAINST HUMAN RANKINGS - M&C Data Set

correlation of human pairs ranking and human ratings 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30

S
e
m

a
n
ti
c
 R

e
la

te
d
n
e
s
s

Pair Number

SEMANTIC RELATEDNESS AGAINST HUMAN RANKINGS - M&C Data Set

correlation of human pairs ranking and semantic relatedness

Figure 5.2: Correlation between human ratings and SR in the R&G and M&C data
sets.

sets, and that the 353-C data set contains the term pairs of the M&C data set. As a

further remark regarding the 353-C collection, we need to add the fact that there are

cases where the inter-judge correlations may fall below 65%, while R&B and M&C

data sets have inter-judge correlations between 0.88 and 0.95. Finally, regarding the

statistical significance of the results, the correlations of SR rankings to the human

rankings (0.861,0.855 and 0.61 respectively for the three data sets) denote a significant

positive correlation at the 0.99 confidence level.

SAT Analogy Questions

The approach that we chose to evaluate SR in the analogy task is to use the typi-

cal benchmark test set employed in the related bibliography, namely the Scholastic

Aptitude Test (SAT).6 It comprises 374 words pairs and for each target pair 5 sup-

plementary pairs of words. The average US college applicant answered correctly only

6Many thanks to Peter Turney, for providing us with a standard set for experimentation.

94 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

RG JC L LC HS R B V T S1 S2 S UB NB

Prec. 0.2 0.273 0.273 0.313 0.321 0.332 0.4 0.42 0.561 0.283 0.304 0.34 0.524 0.381

Table 5.2: Precision in the 374 SAT Questions.

57 percent of the questions, which consequently became the upper bound for every

machine based approach. In table 5.2, we present the precision on the 374 SAT ques-

tions, of nine methods, namely random guessing (RG), Jiang and Conrath (JC)[45],

Lin (L) [59], Leacock and Chodrow (LC)[55], Hirst and St.-Onge (HS)[39], Resnik

(R)[91], Bollegala et al. (B)[14], Veale (V)[130], and Turney (T) [123]. Further-

more, we present the individual results of S1 (equation 5.1), S2 (equation 5.2) and

S (equation 5.3). Towards the direction of combining the answers of S1 and S2 in

a different manner than the naive average, we also report the results of an ”oracle”

that would always choose the correct score among S1 and S2. This is reported in

the table as our upper-bound (UB). In an effort to design a learning mechanism that

would learn when to select S1 or S2 answers for each SAT question, with the goal to

reach our upper-bound, we designed and implemented a simple representation of the

SAT questions as training instances. For each SAT question, we created a training

instance that has 6 features: the minimum S1 value found for this question (among

the five computed values for all the possible pairs), the maximum S1 value, and their

difference. We also added the same features regarding S2. We then trained and

tested a Naive Bayes classifier [47] using ten-fold cross validation in the 374 SAT

questions. The classification is binary (trust S1 or not trust S1, meaning to trust S2),

and we used the respective Weka implementation. The results of this experiment are

shown in the table as (NB). Finally, we also present the top results ever reported in

the literature for the specific data set, which is the LRA method by Turney [123].

This is reported in the table as (T). The results presented in table 5.2 show that S

ranks second among all lexicon-based measures loosing only by the measure of Veale

(V)[130], which is especially tuned for the SAT test. The method of Bollegala et Al.

(B) achieves higher score than SR, but needs training on SAT questions. At this

point we have to note that the LRA method (T) needs almost 8 days to process the

5.2. EXPERIMENTAL EVALUATION 95

RG
JC

L
LC
HS

R
B
V
T
S

UB
NB

 10 15 20 25 30 35 40 45 50 55 60 65

M
e

a
s
u

re

Precision (%)

0.95 Confidence Intervals

NB
UB

S
T
V
B
R

HS
LC

L
JC

RG

Figure 5.3: 0.95 confidence intervals in the 374 SAT questions.

374 SAT questions [123], (B) needs around 6 hours [14], while SR needs a little less

than 3 minutes. The precision of SR in the 374 SAT questions, along with the fact

that it needs very little time to execute, given the implementation discussed in the

previous chapter, shows that SR can be successfully applied to the SAT task, and it

also needs orders of magnitude less execution time, compared to some of the state of

the art approaches.

Furthermore, the fact that combining S1 and S2 can reach 52.4% shows that SR

can produce very promising results, if a classifier learns successfully how to combine

them. The NB results, which are a simple attempt to construct such a learner

with few features, shows an important boost in performance of 4.1%. Better feature

engineering and more training SAT questions can potentially yield more promising

results, as the gap between 38.1% and the upper bound of 52.4% is still large. In all,

these results show that our lexicon-based relatedness measure is very efficient even

when used in a task which it has not been designed for. In addition, as results show,

it can be a useful tool for designing a sophisticated solution especially for the SAT

tests.

Finally, regarding the statistical significance of the results, figure 5.3 shows the 0.95

confidence intervals for all compared measures. As shown, S matches the performance

of all lexicon-based measures, while the upper bound of combining S1 and S2 can

lead to a performance that matches the top reported results in the specific 374 SAT

questions by Turney [123].

96 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

Corpus-based Knowledge-based

PMI-IR LSA STS JC LC Lesk L WP R Com.U Omiotis

ERR 13 8.67 11.93 11.27 11.84 11.27 11.27 10.4 10.4 14.16 14.69

Table 5.3: Error Reduction Rates (%) from the standard vectorial model in the
paraphrase task.

5.2.2 Text-to-Text Semantic Relatedness

Paraphrase Task

In order to evaluate how well Omiotis measures the semantic relatedness between

texts, we decided to run the paraphrase recognition task on the test pairs of the

Microsoft Research Paraphrase Corpus [29]. From the original data set, containing

both training and test pairs, we run experiments only on the 1725 test pairs of text

segments, which have been collected from news sources on the Web over a period of

18 months. For each pair, human subjects have determined whether any of the two

texts in the pair consists a paraphrase of the other (the direction is not an issue).

The inter-judge agreement between annotators has been 83%.

For this task we computed Omiotis between the texts of every pair and marked as

paraphrases only those pairs with Omiotis greater than a threshold. The threshold

was set to 0.5 since the measure’s values range from 0 to 1. We compare the perfor-

mance of Omiotis against all the other measures of semantic relatedness measuring

the Error Reduction Rate (ERR) compared to the baseline Vector Space Model using

cosine as the similarity measure. Table 5.3 shows the reported ERR for Omiotis, as

well as for JC[45], LC[55], L[59], R[91, 92] and LSA[32]. We have also added ERR

for the simple Lesk measure (Lesk) [58], the Wu and Palmer measure (WP) [135], the

PMI-IR corpus-based measure suggested by Turney [122], the STS corpus-based mea-

sure proposed by Islam and Inkpen (using the reported results for the same threshold

of 0.5) [43] and two combined measure proposed by Mihalcea et al. [66] (Com.U).

The results indicate that Omiotis surpasses all the compared knowledge-based and

corpus-based measures in the paraphrase task, providing an error reduction rate of

14.69% to the vector space model with cosine similarity.

5.2. EXPERIMENTAL EVALUATION 97

COS CFM RM DFM LSA GM Omiotis

Correlation 0.27 0.22 − 0.49 0.32 − 0.49 0.03 − 0.14 0.6 0.72 0.4427

Table 5.4: Correlations to human judgements for the 50 documents data set.

Document Similarity Task

The second text related task for Omiotis, is the document similarity task, discussed

in section 5.1. The data set comprises 50 documents and the number of words per

document varies from 51 to 126. For all possible pairs of documents, we have human

judgments of similarity. The inter-rater correlation, which can be considered as the

human performance and an upper bound for the task, is 0.605. We computed Omio-

tis for all the pairs and measured the correlation between our results and the human

judgments. We compared Omiotis against six other measures, namely a baseline text

similarity method using the vector space model as documents representation, cosine

as documents similarity measure and TF-IDF as terms’ weights (COS), the Common

Features Model (CFM)[56], which assumes that similarity is measured by the pro-

portion of common features (terms in our case); Tversky’s Ratio Model (RM)[127],

which measures similarity as the ratio of common to common and distinctive features;

the Distinctive Features Model (DFM), which is a special case of Tversky’s contrast

model [127] and is based more on the dissimilarity of the compared documents; the

LSA method of Lee et Al. (LSA)[57]; and finally, the ESA-Wikipedia method of

Gabrilovich and Markovich (GM)[34]. Table 5.4 shows the reported results, in terms

of correlation to the human judgements. For CFM, RM and DFM, the ranges in

correlation have been obtained by using different setups of the models [57]. More

specifically, the lower correlations were obtained without considering n-grams, while

higher correlations were achieved when using 7-, 8-, or 9-grams. The results reveal

the following interesting findings: (a) Omiotis surpasses the COS and DFM models,

while it is also better in the majority of the setups of the CFM and RM models. Note

also that CFM and RM need tuning to perform their highest correlations. (b) RM,

CFM, Omiotis, LSA and GM are significantly better than COS and DFM. (c) LSA

and GM achieve top correlations. In all, Omiotis performs well on the 50 documents

98 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

data set, even though it does not require any type of training; Note also that LSA

requires extensive tuning to select the optimal number of dimensions for the singular

value decomposition. The reader is also reminded that the LSA-based approaches

were outperformed by Omiotis in the paraphrase task.

Document Classification Task

In this section we present the results of our experimental evaluation in the document

classification task, for the GVSM kernel based on the compactness WSD measure and

the semantic smoothing kernel based on the SR measure. Regarding the evaluation

of the GVSM kernel, we have conducted experiments in the Reuters-21578 data set

and a data set from amazon.com using Amazon’s publicly available Web interface.

Reuters-21578 is a compilation of news articles from the Reuters newswire in 1987.

We include this collection mostly because it has become a standard benchmark in

document classification. We conducted experiments on the two largest categories,

namely acquisitions and earnings, using the split in training and test documents of

[11]. This split yields a total of 4, 436 training and 1, 779 test documents for the two

categories. We extracted features from the mere article bodies, and hiding from the

classifier any direct hints as to the actual topic (e.g., keywords tags). Standard term-

based classifiers achieve very high accuracy on Reuters-21578 given a sufficiently large

training set. The interesting point in using this collection is to compare known results

with the behavior of our approach at various smaller training set sizes. Regarding

the Amazon data set, this site promotes books which are classified in categories.

From that taxonomy, we selected all the available editorial reviews for books in the

three categories Physics, Mathematics, and Biological Sciences, with a total of 6, 167

documents. These reviews typically contain a brief discussion of a books content and

its rating. Since there is a high overlap among these topics vocabulary and a higher

diversity of terms within each topic than in Reuters, we expect this task to be more

challenging.

We POS-annotated both the Reuters and Amazon collections (using the Stanford

tagger [116]) and we restricted the disambiguation step to matching noun phrases in

WordNet, because compactness-based disambiguation can only handle nouns. Since

5.2. EXPERIMENTAL EVALUATION 99

Figure 5.4: Relative Improvement of F-measures scores for various Similarity Config-
urations in the Amazon Topics.

WordNet also contains the POS information for each of its concepts, POS document

tagging significantly reduces the amount of choices for ambiguous terms and simplifies

the disambiguation step. For example the term run has 52 (!) distinct senses in

WordNet out of which 41 are tagged as verbs. We first consider adjacent noun phrase

tokens in a small window of up to a size of 5 into dictionary lookups in WordNet before

the disambiguation step takes place. If no matching phrase is found in WordNet

within the current window, the window is moved one token ahead. This sliding

window technique enables us to match any multi-word noun terms known in WordNet,

whereupon larger phrases are typically less ambiguous. Non-ambiguous terms can be

chosen directly as safe seeds for the compactness-based disambiguation step. Note

that we did not perform any feature selection methods such as Mutual Information

or Information Gain [61] prior to training the SVM. The binary classification tasks

100 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

Figure 5.5: Relative Improvement of F-measures scores for various Similarity Config-
urations in the Reuters Topics.

were performed after forming all pairs between the three Amazon topics, and one

pair between the two largest Reuters-21578 topics. The parameters setting for the

compactness-based WSD was W3L0, since it achieved high percision and performed

in a stable manner during the WSD evaluation experiments in the WSD benchmark

corpora. Our baseline was the F-Measure [61] arising from the usage of term features

only (e.g., not considering WordNet concepts as well). The baseline competed against

the embedding of the term senses, whenever disambiguation was possible, and their

hypernyms/hyponyms into the term feature vectors, according to the different GVSM

kernel configurations shown in figures 5.4 and 5.5. We varied the training set sizes

between 3 and 500 documents per topic. For each setup, in figures 5.4 and 5.5 we

report the differences of the macro-averaged F-Measure between the baseline and

the respective configurations, using 10 iterations for each of the training set sizes to

reduce the degree of result variances due to a few document outliers. For more than

500 documents, all our experiments indicate a convergence in results between the

concept-based classifier and the text classifier based on term features only. For each

run, the training documents were selected randomly following a uniform distribution.

Since there is no split into separate documents for training and testing given in the

5.2. EXPERIMENTAL EVALUATION 101

Amazon collection, we performed cross-validation runs over the whole set, each using

all the remaining documents for the test phase.

The results demonstrate that the use of compactness-based WSD and our kernel

function, based on a small number of hypernyms increases consistently the classi-

fication quality especially for small training sets. In some cases, as the number of

hypernyms increases we observe a performance deterioration which in some cases

falls below the term-based classification. The variance in the number of hypernyms

needed to achieve better performance can be explained by the fact that we did not

employ a hypernym weighting scheme. Thus, when semantically correlated cate-

gories are considered, such as Maths/Physics in the Amazon data, then the use of all

the hypernyms with equal weights would result in many documents belonging to the

Physics category to have a high similarity to documents of Maths category, degrading

the performance of the classification algorithm.

As a next step, we compare the GVSM kernel with the semantic smoothing kernel

using SR. We selected the best set up to compare with, which was the embedding of

at most 6 hypernyms in the GVSM, for every disambiguated noun. Note that the pre-

vious GVSM requires a noun disambiguation step prior to execution, increasing the

computational complexity of the corpus pre-processing. The conducted experiments

for this comparison use only the two largest Reuters categories, namely acquisitions

and earnings. At first, binary classification was performed using a linear kernel with

SVMLight, and weighting term features with their TF-IDF values. For this exper-

iment, the computation of the TF-IDF values was restricted only by keeping the

documents of the two used categories (TF values are not affected). Again, we did not

use any feature selection methods, like Mutual Information or Information Gain.

In order to comply with the previous experimental results, we varied the number

of documents used for training between 3 and 500 documents per topic. For each

setup, we measured the macro-averaged F-Measure, using 10 iterations for each of

the training set sizes, to reduce the degree of result variances due to a few document

outliers. In figure 5.6 the results from the conducted experiments are shown. The

top figure shows the absolute increase in the macro-averaged F1 values from the

baseline, for both the GVSM and the semantic kernel and for all training set sizes.

102 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

The bottom figure shows the exact macro-averaged F1 values for the three classifiers

and for all training set sizes. The results clearly show that all three classifiers achieve

very high macro F1 scores, all above 75%. The proposed semantic kernel shows an

improvement for both the baseline and the compared GVSM. Especially, if we focus

on the experimental results when small training size sets were used, the semantic

kernel boosts macro F1 scores up to 6.25% compared to the baseline, and almost 2%

compared to the GSVM. Overall, the semantic kernel uses richer semantic information

than the compared GVSM, which is restricted only to nouns and the use of their

hypernyms. The SR used in the semantic kernel can produce term to term semantic

relatedness values that can aid the document classification task more than the GVSM,

especially when the available training size sets are small.

To demonstrate further the classification boost that the used kernel can achieve,

we have also conducted experiments on the ten largest Reuters categories, namely

earn, acq, crude, trade, money-fx, interest, money-supply, ship, sugar, and coffee.

The experiments were conducted following the procedure in [10] so that the results

are comparable. The experimental setup in this case lies in selecting for each exe-

cution randomly a small percentage from the Reuters training set (2%, 3%, 4% and

5%) and applying classification to the full test set of the designated Reuters cate-

gories. The experiment has been repeated 10 times for each training subset size, and

binary classification is applied each time for each category (one-against-all classifica-

tion strategy). The final F1 scores are averaged to compute the macro-F1 score for

each training size. In figure 5.7 we present our results. In the top figure we show

the difference (in absolute percentage points) in the macro-F1 scores of our kernel

from the baseline, which is the linear kernel. We also show the same difference for

the best performed kernel of Bloehdorn et al. [10]. Note that the two kernels are the

same, and the difference lies in the underlying similarity measure between terms that

produces the term-to-term similarity matrix. In [10] their best setup is with the use

of the similarity measure of Lin [59], and the differences depicted in the upper figure

represent that specific setup. In the bottom figure we show the precise macro-F1

values for our kernel and the linear kernel. At this point we have to note that we

report much lower macro-F1 scores for the linear kernel, than the scores reported

5.2. EXPERIMENTAL EVALUATION 103

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

0 3 5 10 50 100 200 500

A
b

s
o

lu
te

 D
if
fe

re
n

c
e

 (
p

.p
.)

Training set size per category

Acquisitions vs Earnings: absolute differences in macro-averaged F1 values

GVSM
Semantic Kernel

75.0
77.0
79.0
81.0
83.0

85.0
87.0
89.0
91.0
93.0
95.0

0 3 5 10 50 100 200 500

M
a

c
ro

 F
1

 v
a

lu
e

s

Training set size per category

Acquisitions vs Earnings: macro-averaged F1 values

Baseline
GVSM

Semantic Kernel

Figure 5.6: Absolute improvements of macro F1 values and exact macro F1 values
for the Acquisitions vs Earnings experiment.

in [10]. This must be due to the different pre-processing conducted in the ModApte

split (stopwords, TF-IDF formula variation, etc.). Furthermore, we have not removed

other features than the ones in the used stopword list (i.e., features appearing less

than 5 times in the whole dataset). The results show an improvement to the linear

kernel macro-F1, of up to 9.11% when using only 2% of the training set. We can

also see a small improvement over the Lin Kernel for the very small training subsets.

Our findings align to the conclusions extracted in [63] and [10], with regards to the

fact that semantic information from WordNet can boost the classification task when

there is limited availability in training data. Finally, we have also discovered through

the experimental evaluation, as in [10], that when the training set becomes larger,

104 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

5.0

6.0

7.0

8.0

9.0

10.0

2 3 4 5

A
b

s
o

lu
te

 D
if
fe

re
n

c
e

 (
p

.p
.)

Percentage of Training Set used per category

Reuters 10 Categories: Absolute differences in macro-averaged F1 values

Lin Kernel
Semantic Kernel

15.0

20.0

25.0

30.0

35.0

40.0

45.0

2 3 4 5

M
a

c
ro

 F
1

 v
a

lu
e

s

Percentage of Training Set used per category

Reuters 10 Categories: macro-averaged F1 values

Baseline
Semantic Kernel

Figure 5.7: Absolute improvements of macro F1 values and exact macro F1 values
for the 10 largest Reuters categories experiment.

the performance of the semantic kernel converges to the results of the linear kernel,

as also shown in figure 5.6, where larger training sets are used (i.e. 500 training

documents per category), and in few cases the semantic kernel even deteriorates the

performance by a small percentage of almost 1%.

Regarding the statistical significance of the results, we have performed a macro t-

test [136] for the macro-F1 values of the linear kernel and our semantic kernel, for both

experiments. In all cases, besides the training size of 500 documents per category in

our first experiment, the differences in the macro F1 values are statistically significant

at the 0.95 confidence level. Furthermore, we also made the same test for the macro-

F1 values of our semantic kernel and the GVSM kernel of the first experiment. We

5.2. EXPERIMENTAL EVALUATION 105

0
10
20
30
40
50
60
70
80
90

100

 0 10 20 30 40

P
re

c
is

io
n

 V
a

lu
e

s
 (

%
)

Recall Values (%)

Precision-Recall Curves TREC 1

VSM
GVSM

-1

-0.7

-0.3

0.0

0.3

0.7

1.0

 0 10 20 30

P
re

c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)

Recall Values (%)

Differences from Interpolated Precision in TREC 1

GVSM
TFIDF VSM

0

10

20

30

40

50

60

70

80

90

 0 10 20 30 40 50 60 70 80

P
re

c
is

io
n

 V
a

lu
e

s
 (

%
)

Recall Values (%)

Precision-Recall Curves TREC 4

VSM
GVSM

-2

-1.5

-1

0

0.5

1

1.5

2.0

 0 10 20 30 40 50 60 70 80
P

re
c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)
Recall Values (%)

Differences from Interpolated Precision in TREC 4

GVSM
TFIDF VSM

0

10

20

30

40

50

60

70

 0 10 20 30 40 50 60 70 80

P
re

c
is

io
n

 V
a

lu
e

s
 (

%
)

Recall Values (%)

Precision-Recall Curves TREC 6

VSM
GVSM

-2

-1.5

-1

0

0.5

1

1.5

2.0

 0 10 20 30 40 50 60 70

P
re

c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)

Recall Values (%)

Differences from Interpolated Precision in TREC 6

GVSM
TFIDF VSM

Figure 5.8: Interpolated precision recall curves and differences (percentage points)
from the baseline in interpolated precision.

found that the differences in the macro-F1 values are statistically significant at the

0.95 confidence level, only for the training sizes of 3 and 5 documents per category.

The same test could not be done for the differences with the Lin kernel, because the

F1 values for all the individual categories, necessary for performing the macro t-test,

are not publicly available for this kernel.

Text Retrieval

For the evaluation of the proposed GVSM model, we have experimented with three

TREC collections 7, namely TREC 1 (TIPSTER disks 1 and 2), TREC 4 (TIPSTER

7http://trec.nist.gov/

106 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

disks 2 and 3) and TREC 6 (TIPSTER disks 4 and 5). We selected those TREC

collections in order to cover as many different thematic subjects as possible. For

example, TREC 1 contains documents from the Wall Street Journal, Associated Press,

Federal Register, and abstracts of U.S. department of energy. TREC 6 differs from

TREC 1, since it has documents from Financial Times, Los Angeles Times and the

Foreign Broadcast Information Service.

For each TREC, we executed the standard baseline TF-IDF VSM model for the

first 20 topics of each collection. Limited resources prohibited us from executing

experiments in the top 1000 documents. To minimize the execution time, we have

indexed all the pairwise semantic relatedness values according to the SR measure,

in a database, whose size reached 300GB, and integrated this infrastructure into

the Terrier retrieval platform, as explained in section B.3. Thus, the execution of

the SR itself is really fast, as all pairwise SR values between WordNet synsets are

indexed. For TREC 1, we used topics 51 − 70, for TREC 4 topics 201 − 220 and

for TREC 6 topics 301 − 320. From the results of the VSM model, we kept the

top-50 retrieved documents. In order to evaluate whether the proposed GVSM can

aid the VSM performance, we executed the GVSM in the same retrieved documents.

The interpolated precision-recall values in the 11-standard recall points for these

executions are shown in figure 5.8 (left graphs), for both VSM and GVSM. In the

right graphs of figure 5.8, the differences in interpolated precision for the same recall

levels are depicted. For reasons of simplicity, we have excluded the recall values in

the right graphs, above which, both systems had zero precision. Thus, for TREC 1 in

the y-axis we have depicted the difference in the interpolated precision values (%) of

the GVSM from the VSM, for the first 4 recall points. For TRECs 4 and 6 we have

done the same for the first 9 and 8 recall points respectively.

As shown in figure 5.8, the proposed GVSM may improve the performance of the

TFIDF VSM up to 1.93% in TREC 4, 0.99% in TREC 6 and 0.42% in TREC 1.

This small boost in performance proves that the proposed GVSM model is promis-

ing. There are many aspects though in the GVSM that we think require further

investigation, like for example the fact that we have not conducted WSD so as to

map each document and query term occurrence into its correct sense, or the fact that

5.3. DISCUSSION OF THE EXPERIMENTAL EVALUATION 107

the weighting scheme of the edges used in SR is generated from the distribution of

each edge type in WordNet, while there might be other more sophisticated ways to

compute edge weights. We believe that if these, but also more aspects discussed in

the next section, are tackled, the proposed GVSM may improve more the retrieval

performance.

5.3 Discussion of the Experimental Evaluation

In this chapter, we have experimentally evaluated a new measure of text semantic

relatedness, Omiotis. The major strength of this measure lies in the formulation of

the semantic relatedness between words. Experimental evaluation showed that our

measure approximates human understanding of semantic relatedness between words

better than previously proposed measures. The combination of path length, nodes’

depth and edges’ type in a single formula allowed us to apply our semantic relatedness

measure to different text-based tasks with promising performance. More specifically,

the SR measure surpassed all state of the art measures in word-to-word tasks and the

Omiotis measure performed significantly well in the paraphrase and text classification

task. Although, the results in the word analogy task are satisfactory, since no special

tuning has been performed, we are sure that there is still place for improvement.

From the set of our experiments, we conclude that our measure can be easily

applied to several text related tasks. More specifically, we have introduced two dif-

ferent methodologies of embedding semantic information from WordNet in the text

classification task. The first method, a GVSM kernel, that is based on the disam-

biguation information produced by the compactness-based WSD introduced in section

3.2, shows statistically significant improvement in two data sets over the linear ker-

nel of SVM. The second method, a semantic smoothing kernel that uses SR, shows

additional improvement over the linear kernel, and in many cases statistically signifi-

cant improvement over the GVSM kernel. The results of this experiment in all cases

revealed that text classification improves significantly if semantic information from

WordNet is used, especially when the training set is small.

Finally, we showed that the proposed measure of semantic relatedness can be

108 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

applied to text retrieval through integration with the Terrier platform. This achieve-

ment is much due to the infrastructure and the implementation we have created for

Omiotis. Results in three TREC collections are encouraging and reveal that the pro-

posed GVSM partially improves and constantly never deteriorates the VSM model.

In the future, we plan to create a semantic indexing framework, so that semantic in-

formation from WordNet is indexed at index time of the documents, and not during

their retrieval. This plan has many challenging points that remain to be solved, and

thus it constitutes interesting future work. Once developed, it will allow on-line text

retrieval using semantic information from word thesauri.

Chapter 6

Conclusions

This thesis has investigated the use of semantic information from word thesauri in

several text applications like text classification, text retrieval, paraphrasing and word-

to-word relatedness. The aim of this thesis was to provide new methods for extracting

semantics from text that exist in a word thesaurus through state of the art Word Sense

Disambiguation (WSD) approaches, and to propose novel models for embedding dis-

ambiguation information into the aforementioned applications. A novel measure of

semantic relatedness based on WordNet was defined, Omiotis, which was experi-

mentally shown to capture successfully the semantic relatedness between words and

text segments, matching in several data sets the human performance in similarity

perception between pieces of text. New models for embedding the Omiotis mea-

sure in challenging text applications, like text classification and text retrieval, were

proposed, and we have shown that they perform better than traditional document

similarity measures and models, like the combination of VSM and cosine similarity.

We believe that the proposed solution has accomplished its initial goal, which was to

find new means of computing similarity between text, besides relying solely on the

exact keyword matching that many traditional models adopt. In this direction, this

work constitutes a new methodology for processing text with the aim to classify and

retrieve or organize document collections. In the following, we discuss the contribu-

tion of this work in detail, we sum up the conclusions reached after the experimental

evaluation, and finally we provide useful directions towards the continuation of the

109

110 CHAPTER 6. CONCLUSIONS

current research.

6.1 Contributions

The contributions of this research span in three directions. Primarily, new meth-

ods for Word Sense Disambiguation are introduced that have been shown to achieve

state of the art performance in three benchmark WSD data sets. Secondly, a novel

measure of semantic relatedness is introduced, that embeds the semantic information

from WordNet into the measurement of word-to-word (SR measure) and text-to-text

(Omiotis measure) relatedness. Finally, new models for several text applications are

introduced that use SR and Omiotis.

WSD

We have introduced four new methods for WSD, three unsupervised and one super-

vised, all belonging to the category of knowledge-based WSD. The first approach

(compactness-based WSD) exploits the content and structure (i.e., the senses and

hierarchical relationships) of hierarchical thesauri (HT) and extends the bag of words

model for text classification. The contribution of this approach is the design of a

successful WSD method that improves the text classification process. The compact-

ness WSD approach takes into account term senses found in HTs, (in the specific case

Wordnet), and for each document selects the best combination of them based on their

conceptual compactness in terms of related Steiner tree costs. Apart from the senses

we add to the original document feature set a controlled number of hypernyms of

the senses at hand. The hypernyms are incorporated by means of the GVSM kernel

utilized.

The attractive features of this approach are:

(i) Appropriate WSD approach for text classification. Most of the related ap-

proaches incorporating WSD in the classification task do not provide a sound ex-

perimental evidence on the quality of their WSD approach. On the contrary in this

approach, the WSD algorithm is exhaustively evaluated against various humanly dis-

ambiguated benchmark datasets and achieves very high precision (among the top

6.1. CONTRIBUTIONS 111

found in related work) although at low coverage values. The experimental evaluation

provides us with the assurance that our WSD algorithm can be configured to have

high precision, and thus, would insert in the training set very little noise.

(ii) Similarity measure that takes into account the structure of the HT. Document

classification depends on a relevant similarity measure to classify a document into the

closest of the available classes. It is obvious that the similarity among sets of features

(representing documents) should take into account their hierarchical relationships

as they are represented in the HT. None of the previous approaches for embedding

WSD in classification has taken into account the existing literature for exploiting

the HT relations. Even when hypernyms are used, they are used in an ad-hoc way,

based on the argument that the expansion of a concept with hypernyms would behave

similar to query expansion using more general concepts. We utilize a Kernel based on

the general concept of a GVSM kernel that can be used for measuring the semantic

similarity between two documents. The kernel is based on the use of hypernyms for the

representation of concepts - theoretically justified by previous related work concerning

the computation of semantic distances and similarities on a HT that aligns to tree

structure. We conducted classification experiments on two real world data sets (the

two largest Reuters categories and a data set constructed from the editorial reviews of

products on three categories of the Amazon web site). The results demonstrate that

this approach for embedding WSD in classification yields significantly better results,

when the training sets are small.

In an effort to improve even more the disambiguation performance and close the

gap between automated WSD and human performance (which in the used data sets

ranges from 67% to 80%), we presented a new unsupervised WSD algorithm, which

utilizes all types of semantic relations in WordNet. The algorithm uses Spreading

Activation Networks (SANs), but unlike previous WSD work it creates SANs taking

into account all sense-to-sense relations, rather than relations between senses and

glosses, and it employs a novel edge-weighting scheme. The algorithm was evaluated

on three benchmark data sets (Senseval 2, 3 and SemCor), using WordNet as the

thesaurus, though it is general enough to exploit other word thesauri as well. It

outperformed: (i) the most recent SAN-based WSD method, which overcame the

112 CHAPTER 6. CONCLUSIONS

problems older approaches faced, and (ii) the best unsupervised WSD methods that

participated in the respective Senseval competitions.

Though SANs provided an accuracy of around 50%, we explored the possibility of

keeping the same, rich, semantic representation of the defined semantic networks but

changing the processing algorithm of the nodes, using a variation of PageRank that

takes into account weights on edges. This new WSD algorithm boosted the WSD

performance by an additional 5 − 7%. Currently, to the best of our knowledge, the

PageRank-based method is the top performing unsupervised knowledge-based WSD

approach in the WSD bibliography [79], excluding ensembles.

Finally, we have introduced a new supervised, multilayered WSD method based

on an ensemble of three WordNet-based WSD algorithms. The method trains a set

of SVM classifiers, one for each WSD algorithm, and learns which WSD method

to trust depending on the feature vector of the target term. The contributions of

this method are: (i) state of the art accuracy in unrestricted text WSD, (ii) limited

training requirements to achieve top performance, (iii) low space complexity, since

the classifiers are trained on a very small number of features and the stored support

vectors are on average 3% of the training instances, and (iv) the disambiguation step

of the algorithm has low time complexity, since it is reduced to executing a sing base

WSD method for each word occurrence, selected from a list of methods that do not

require training (SANs, PR and FS). The proposed approach performs as well, in

terms of accuracy, as state of the art methods for unrestricted text WSD, and has

low space and execution time requirements for the disambiguation step.

Measuring Semantic Relatedness

Another contribution of this work is the formulation of Omiotis, a new measure

of semantic relatedness for text segments. The major strength of Omiotis is the

formulation of the semantic relatedness between words (SR), which is exploited to

measure semantic relatedness between texts. Omiotis’ innovation is that it combines

for the first time three important factors: (i) the length of the path that connects

the senses of words in the used thesaurus; (ii) the senses’ depth in the thesaurus, and

(iii) the importance of the thesaurus’ edges. Furthermore, it uses all of the available

6.1. CONTRIBUTIONS 113

semantic information in the thesaurus, even semantic links that cross parts of speech,

and this enables the measure to compute relatedness for pairs of words of every POS

combination. Experimental evaluation showed that our measure approximates human

judgements of semantic similarity between words better than previously proposed

measures.

Applications

Omiotis can be embedded in challenging text applications. For text classification, we

have created a new semantic smoothing kernel that embeds the semantic relatedness

measure into the support vector machines learning mechanism. The semantic kernel

outperforms both the linear kernel and the GVSM kernel that uses compactness

disambiguation information in the Reuters data set. Results reveal that the semantic

relatedness between text segments captured by our measure produce very high macro-

F1 scores, especially when small training sets are used. In text retrieval, we have

incorporated the semantic relatedness measure into a new GVSM that extends the

naive VSM model. Experiments in three TREC collections show that the semantic

information from WordNet improves in many cases the retrieval performance and

never deteriorates it.

In addition, we have used our semantic relatedness measure in several other inter-

esting applications. Primarily, we have incorporated the measure into a formula that

can produce relatedness scores of candidate word pairs in SAT questions. Results

show that our measure surpasses every other knowledge-based measure used in the

task and matches the performance of several corpus-based measures that have high

execution time (i.e. several hours for the set of the 374 examined SAT questions, while

our measure needs less than one minute). Additionally, we have used Omiotis in the

text paraphrase recognition task. Experimental evaluation shows that our measure

reduces the error rate of the standard vectorial model by 14.69%, indicating that it

captures successfully text relatedness.

Finally, the largest part of the research conducted for the writing of this thesis

has been published in the following articles (chronological order):

114 CHAPTER 6. CONCLUSIONS

• G. Tsatsaronis, I. Varlamis, M. Vazirgiannis and K. Nørv̊ag, ”Omiotis: A

Thesaurus-based Measure of Text Relatedness”, Demo paper, to appear in the

proceedings of the European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases (PKDD 2009), Slovenia,

2009.

• G. Tsatsaronis and V. Panagiotopoulou. A generalized vector space model for

text retrieval based on semantic relatedness. In Proc. of the 12th Conference of

the European Chapter of the Association for Computational Linguistics (EACL

2009, Student Research Workshop), pages 70-78, 2009.

• G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis. Word sense disambiguation

with semantic networks. In Proc. of the 11th International Conference on Text,

Speech and Dialogue (TSD 2008), pages 219-226, 2008.

• G. Tsatsaronis, M. Vazirgiannis, and I. Androutsopoulos. Word sense disam-

biguation with spreading activation networks generated from thesauri. In Proc.

of the 20th International Joint Conference on Artificial Intelligence (IJCAI

2007), pages 1725-1730, 2007.

• D. Mavroeidis, G. Tsatsaronis, and M. Vazirgiannis. Semantic Distances for

Sets of Senses and Applications in Word Sense Disambiguation, Book Chapter

in: Knowledge Mining, (Ed.): S. Sirmakessis. Springer Verlag, 2005.

• M. Eirinaki, D. Mavroeidis, G. Tsatsaronis, and M. Vazirgiannis. Introduc- ing

Semantics in Web Personalization: The role of Ontologies. Book Chapter in:

Semantics, Web, and Mining, (Ed.): M. Ackerman, B. Berendt, M. Grobelnik,

A. Hotho, D. Mladenic, G. Semeraro, M. Spiliopoulou, G. Stumme, V. Svatek,

M. van Someren. Springer Verlag, 2005.

• D. Mavroeidis, G. Tsatsaronis, M. Vazirgiannis, M. Theobald, and G. Weikum.

Word sense disambiguation for exploiting hierarchical thesauri in text classifi-

cation. In Proc. of the 9th European Conference on Principles of Data Mining

and Knowledge Discovery (PKDD 2005), pages 181-192, 2005.

6.2. CONCLUSIONS 115

6.2 Conclusions

From the work conducted in this thesis, we have drawn several important conclu-

sions regarding semantic information and its use in text applications. These can be

summarized as follows:

• Automated WSD can reach human performance, even in fine-grained disam-

biguation text collections, like Senseval 2, 3 and SemCor disambiguated with

WordNet 2.0, if all of the available semantic information from the thesaurus is

used, and an ensemble of approaches is utilized.

• The semantic information that WordNet offers is rich, and there are means

of embedding it into text applications that can improve the performance of

traditional models, like VSM. We have introduced such models for several ap-

plications, like text classification, text retrieval, paraphrase recognition, and

SAT analogy tests.

• Semantic relatedness between words and between text segments can be cap-

tured successfully by measures of semantic relatedness that take into account

in tandem all factors affecting the connectivity of nodes in a semantic graph:

semantic path length, the senses’ depth, and the importance of edges.

• It is computationally feasible to incorporate of semantic information into text

applications, but an infrastructure with pre-indexed sense-to-sense values of

relatedness is needed.

6.3 Future Work

This work creates much space for new theoretical models that use semantic networks

and semantic document representation, but also in the application level of text pro-

cessing. In WSD the next research steps should concentrate on studying additional

methods, both supervised and unsupervised, that can complete the introduced en-

semble, to match the human performance in unrestricted text. Current state of the

116 CHAPTER 6. CONCLUSIONS

art research in WSD focuses on a small improvement window of 1−5% from the most

frequent sense baseline, but improvements in this window may allow WSD methods

to match human performance, and in this direction the ensemble approach seems very

promising.

Regarding the research area of measures of semantic similarity and relatedness, fu-

ture work should concentrate on capitalizing on the knowledge that publicly available

corpora can offer, when information from thesauri does not suffice. For example, cur-

rent trends include, among others, the use of Wikipedia as an alternative knowledge

base to thesauri like WordNet.

Furthermore, we plan to apply our semantic relatedness measure to more applica-

tions, such as text clustering, keyword and sentence extraction (using SemanticRank,

the algorithm we propose for keyword extraction), query expansion etc. and to ex-

amine how the measure can be tuned further to achieve better performance.

Moreover, regarding the research in GVSM models for text retrieval, there are ad-

ditional aspects that deserve further attention. In some previously proposed GVSMs,

it was suggested that semantic information can create an individual space, leading

to a dual representation of each document, namely, a vector with document terms

and another one with semantic information. Similarly, our proposed GVSM could

complement the standard VSM representation. Thus, the similarity between a query

and a document may be computed by weighting the similarity in the terms space and

the senses space.

Finally, an interesting aspect of the use of semantic information in text appli-

cations is the creation of an indexing infrastructure that will not only index terms

existing in every incoming document, but will store semantically related concepts

during the indexing process as well. This will allow embedding of semantic informa-

tion even in real time applications. This is also the imminent research interest of the

author.

Appendix A

WordNet 2.0 Structure

Traditionally, machine readable dictionaries (MRD), like the Collins English dictio-

nary, were used in text related tasks. (i.e early attempts on word sense disambigua-

tion). Word thesauri like WordNet [31], or Roget’s International Thesaurus [76],

constitute the knowledge-base for several text-related research tasks. WordNet is

the knowledge base used in this thesis. WordNet’s lexical database contains English

nouns, verbs, adjectives and adverbs, organized in synonym sets (synsets). The terms

senses and synsets are used interchangeably the thesis. Synsets are connected with

various edges, representing semantic relations among them, and the latest WordNet

versions, like 2.0, offer a rich set of such links: hypernymy / hyponymy, meronymy

/ holonymy, synonymy / antonymy, entailment / causality, troponymy, domain /

domain terms, derivationally related forms, coordinate terms, attributes, and stem

adjectives. As it is shown in figure A.1, several relations cross parts of speech, like

the domain terms relation, which connects senses pertaining to the same domain (e.g.

light, as a noun meaning electromagnetic radiation producing a visual sensation, be-

longs to the domain of physics). In all cases, when WordNet 2.0 is used in any of the

proposed approaches, all of the offered semantic relations existing in WordNet 2.0 are

utilized.

117

118 APPENDIX A. WORDNET 2.0 STRUCTURE

ADJECTIVE

NOUN

ADVERB

VERB

ANTONYMS/
SYNONYMS

COORDINATE
TERMS

HYPERNYMS/
HYPONYMS

HOLONYMS/
MERONYMS

DERIVATIONALLY
RELATED
FORMS

ATTRIBUTES

DOMAIN

DOMAIN
TERMS

ANTONYMS/
SYNONYMS

COORDINATE
TERMS

HYPERNYMS/
TROPONYMS

ENTAILMENTS/
CAUSES

DOMAIN

ANTONYMS/
SYNONYMS

DERIVATIONALLY
RELATED
FORMS

DOMAIN

ANTONYMS/
SYNONYMS

STEM
ADJECTIVES

DOMAIN

DOMAIN
TERMS

DOMAIN
TERMS

Figure A.1: Semantic relations in WordNet 2.0.

Appendix B

Complexity and Implementation

The computation of Omiotis entails a series of steps, the complexity of which is

strongly related to its base measure of Semantic Relatedness (SR). Primarily, a fast

API to WordNet is needed, in order to retrieve semantic information lying in its

lexical database. In order to access WordNet fast, we make use of an open source

library written in Java, namely Java WordNet library1. This Java API to WordNet

provides easy access to the semantic information in WordNet’s lexical database. On

top of that API we have developed a wrapper (JWNLWrapper) that handles all the

basic functions needed from the algorithms described in this thesis. More details on

the used API and the developed wrapper are provided in appendix B.4.

Furthermore, a fast implementation of algorithm 4 is crucial to the overall perfor-

mance, since it entails the computation of the path that maximizes a certain product.

Finally, integration with existing retrieval platforms for performing fast text retrieval

using Omiotis is also needed. In this chapter we describe the overall system imple-

mentation and the infrastructure that we have created in order to make Omiotis and

SR scalable measures that can handle large amounts of data.

1http://sourceforge.net/projects/jwordnet

119

120 APPENDIX B. COMPLEXITY AND IMPLEMENTATION

B.1 Complexity Issues

Primarily, given two words, w1 and w2 the construction time of the semantic network

used to compute SR according to algorithm 4, we proved in [121] to be O(2 · kl+1),

where k is the maximum branching factor of the used thesaurus nodes and l is the

maximum semantic path length in the thesaurus. Once the semantic network is con-

structed, the complexity of algorithm 4 is reduced to the standard time complexity

cost of Dijkstra’s algorithm. Using Fibonacci heaps, it is possible to alleviate the com-

putational burden of Dijkstra and further improve time complexity. In the semantic

network, Dijkstra takes O(nL + mD + nE), where n is the number of nodes in the

network, m the number of edges, L is the time for insert, D the time for decrease-key

and E the time for extract-min. If Fibonacci heaps are used then L = D = O(1) and

the cost of extract-min is O(logn), thus significantly reducing the cost of execution.

This whole procedure is repeated 2 × n1 × n2 times for the computation of Omiotis

between two documents d1 and d2 having in total n1 and n2 distinct words respec-

tively. More details on the use of Fibonacci heap with the Dijkstra algorithm can be

found in appendix C.

B.2 Omiotis Implementation

From the aforementioned, it is obvious that the computation of Omiotis is not cheap

in general. For this purpose, and in order to improve the system’s scalability, we have

pre-computed and stored all SR values between every possible pair of synsets in a

RDBMS. This is a one-time computation cost which dramatically decreases the com-

putational complexity of Omiotis. The database schema has three entities, namely

Node, Edge and Paths. Node contains all WordNet synsets. Edge indexes all edges

of the WordNet graph adding weight information for each edge computed using the

SR measure. Finally, Paths contains all pairs of WordNet synsets that are directly

or indirectly connected in the WordNet graph and the computed relatedness. These

pairs were found by running a Breadth First Search (BFS) starting from all Word-

Net roots for all POS. Table B.1 provides statistical information for the RDBMS

B.3. INTEGRATION WITH TERRIER 121

Synsets Edges Con. Synset Pairs Avg In-Degree Avg Out-Degree Avg Fan-In Avg Fan-Out

110, 490 324, 268 11, 182, 324, 723 2.9933 2.9535 103, 192.32 101, 822.56

Table B.1: Statistics of the WordNet 2.0 graph in the implemented database.

which exceeds 300 Gbytes in size. Numbers in columns 4 and 5 measure the average

in- and out-degree based on direct edges between synsets and numbers reveal that

WordNet graph is asymmetric, which is due to the Stem Adjectives and Derivational

Related Forms relations, which direct from a synset si to synset sj but not the op-

posite. Numbers in columns 6 and 7 reveal the same when considering all possible

paths between any synset si and synset sj. This is again due to the aforementioned

asymmetry. The current implementation takes advantage of the database structures

(indices, stored procedures etc) in order to decrease the computational complexity of

Omiotis. The following example is indicative of the complexity of SR computation.

The average number of senses per term is between 5 and 7 (depending on the POS).

For a pair of terms of known POS, we perform n2

2
(n ≃ 6) combinations and for each

pair of synsets we compute the similarity as presented in definition 5. When these

similarities are pre-computed, the time required for processing 100 pairs of terms is

≃ 1 sec, which makes the computation of Omiotis feasible and scalable. As a proof

of concept, we have developed an on-line version of the SR and the Omiotis mea-

sures2, where the user can test the term-to-term and sentence-to-sentence semantic

relatedness measures and the respective execution times.

B.3 Integration with Terrier

Terrier (Terabyte Retriever)3 is an open source retrieval platform which implements

a wide variety of term weighting and retrieval models. It is focused on the TREC col-

lections4, though it is able to index other collections as well. Since in our evaluation

we experiment with several TREC collections, we have integrated the infrastructure

2Publicly available at http://83.212.240.72
3http://ir.dcs.gla.ac.uk/terrier/
4http://trec.nist.gov/tracks.html

122 APPENDIX B. COMPLEXITY AND IMPLEMENTATION

User

Query
Terrier

Java API

TREC
Collections

Index

TREC
Docs

Terms and
Frequencies

Index Data
StructuresTerm

Pairs

SR

Database

SR
Values

TREC Platform

Figure B.1: SR Integration with Terrier Platform.

described in the previous section into the TREC architecture. In figure B.3 an ab-

stract overview of the integration is shown. The integration consists of manipulating

the component of the Terrier Java API that handles the similarity of a given query

with the document. When a query is submitted, prior to returning the results, we

incorporate the semantic relatedness between every query term and every document

term inside the similarity function, in order to compute the value of the GVSM ex-

plained in the previous chapter. Essentially, and because this procedure is conducted

on-line, the time that the system needs to respond, increases dramatically. But,

as more queries are submitted to the system, and because we also index the com-

puted SR values among terms, the systems’ execution time performance improves.

Alternatively, we need to pre-compute all the pairwise SR values for all lemmas ex-

isting in WordNet (as we have done in the sense level). This procedure is in our next

plans to implement, and there is evidence that it will improve the response time even

more. Currently, and for the purposes of our experimental evaluation in three TREC

collections, we have pre-computed the SR values between query terms and the top

50 retrieved documents from the VSM in the normal Terrier mode. This allows us

to evaluate the performance of SR in the returned top 50 results of the VSM model.

Expansion of the evaluation in more top documents (e.g. top 1000) is feasible, but the

computational cost is still high, unless we expand the SR database with precomputed

term SR values between lemmas in WordNet.

B.4. EXAMPLES OF ACCESSING WORDNET WITH THE JWNL WRAPPER123

B.4 Examples of Accessing WordNet with the JWNL

Wrapper

For accessing WordNet, we have used the Java WordNet library, a free and open source

Java API for communicating with the index files of WordNet’s lexical database. In

order to provide more functionality to the JWNL API, we have created a wrapper that

provides the basic functionality needed for implementing the algorithms presented in

this thesis. Below follow some examples of accessing WordNet by using the JWNL

wrapper5.

Initially the JWNLWrapper initializes the JWNL API for the basic interaction

with the physical files of WordNet (WordNet uses a separate large index for each

POS). This is done as shown next.

JWNL. i n i t i a l i z e (new Fi leInputStream (” conf \\ f i l e p r o p e r t i e s . xml”)) ;

Then, given that a JWNLWrapper object is created (e.g. wnWrapper), we can use

this object to retrieve all the WordNet senses for a given lemma, like shown in the

following command. The command will return an ArrayList of Synset objects (defined

in JWNL) for the lemma Test. Each Synset object is essentially a concept of WordNet

thesaurus. In this case, it will return 6 synsets for the noun test and 7 synsets for

the verb test.

ArrayList<Synset > lemmaSenses = wnWrapper . ge tSense s (S t r ing lemma) ;

Then, the synsets can be processed with the functionality that the JWNL API pro-

vides (e.g. get the POS, the gloss words, the synsets connected to it, etc.).

Basic Utility Functions

In order to improve the functionality of the JWNL API, we have developed in the

JWNLWrapper a series of methods that help us process WordNet faster and easier.

The signatures of some of those methods are shown in the following. The methods

names are self-explanatory. Note that the PointerTargetTreeNode is connected to a

Synset object, but stores more information regarding the specific WordNet node.

5Available for download from http://www.db-net.aueb.gr/gbt/download.html

124 APPENDIX B. COMPLEXITY AND IMPLEMENTATION

public void pr in tCh i ld r en (Synset node , int depth) ;

public ArrayList<Synset > getHyponyms (PointerTargetTreeNode node , int depth) ;

public ArrayList<Synset > getAllWordnetSensesOfPartOfSpeech (St r ing lemma , St r ing POS) ;

public int getDepthOfSynset (Synset aSynset) ;

public ArrayList<Synset > getHypernyms (PointerTargetTreeNode node) ;

public ArrayList<Synset > getConnectedSynsets (Synset aSynset) ;

Appendix C

Dijkstra Using Fibonacci Heaps

Algorithm 4 that computes the semantic relatedness between a pair of synsets is

the modified Dijkstra algorithm to maximize the product explained in definition 5,

with an appropriate weighting of the edges. Note however that in the literature [23]

the reference to the modified Dijkstra algorithm is normally used for the version of

Dijkstra that uses a binary heap to implement the priority queue Q of the Dijkstra

algorithm. But, as we will explain in the following, we have used Fibonacci Heaps,

instead of the binary heaps.

The original Dijkstra algorithm has a running time of O(V 2 +E) = O(V 2), where

V is the set of vertices of the graph and E the set of edges. In the case of sparse

graphs, like the constructed semantic networks from WordNet in our case, if binary

heaps are used, the total running time is reduced to O((V +E)logV). Fibonacci heaps

can obtain a further reduction of the running time, achieving O(V logV +E) and since

|V | is usually several hundreds or even thousands in our constructed networks, this

implementation produces an even faster solution.

125

Appendix D

Effect of Lexical Ambiguity in Five

Toy IR Data Sets

In the field of IR much work has been done to estimate the effect of each lexical

ambiguity type independently in retrieval performance. In an effort to provide such an

analysis, the current appendix procvides: (a) experimental study on the effect of each

ambiguity type in IR, (b) evaluation of three GVSM, and (c) analysis on the intrinsic

features of query and documents words whose disambiguation may improve, but not

deteriorate IR performance. Among the related studies made in the past, a special

focus must be given to the works by Krovetz and Croft [51], Voorhees [133], Sanderson

and van Rijsbergen [102], and Stokoe [111]. Besides Voorhees, who used a real WSD

system, the rest used a methodology based on the generation of random pseudowords

to assess the role of semantic ambiguity in IR. This appendix is a complementary

experimental work to the aforementioned in several aspects. Primarily, it investigates

the relation of each ambiguity type with IR independently. Also, it tests 3 GVSM

models and highlights the features of words that should be disambiguated, so that

WSD can improve IR performance. Finally, it uses WordNet and a simple WSD

system (most frequent sense given by WordNet for each word occurrence), instead of

pseudowords, to assess sense ambiguity in IR.

The representation of documents and queries in all tested retrieval models is based

on the simple baseline vector space model (VSM) with a conventional ranking system

126

127

of TF · IDF as a weighting scheme for all terms [5]. Similarity between query and

document vectors in all models is computed with the cosine measure. For every

discussed type of ambiguity, we altered the VSM representation of documents and

queries, and created a new retrieval model for each ambiguity resolution. For the

syntactic ambiguity, we considered a document space where each term is indexed along

with its POS. For each term occurrence ti in a document (the same holds for queries),

we index the pair ti POSi, where POSi is its POS for this occurrence. POS is found

using the Stanford Log-Linear POS Tagger. For sense ambiguity, we created 3 different

GVSM, which embed senses information. All queries were manually disambiguated

and a baseline WSD system is applied to the documents (selecting always the first

sense from WordNet). Along with the terms, we added in the vectors the senses that

disambiguate them. The difference in the 3 GVSM lies in the weighting of terms

and senses. GVSM1 considers two different vector spaces, terms and senses. Each

one uses its own, separate TF · IDF weighting, and the final similarity between a

document and a query is computed as the sum of the cosine similarities in the two

spaces. GVSM2 considers terms and senses as dimensions in the same space. Thus,

a new hybrid vector space, with each distinct term and sense being dimension, is

created. GVSM3, that we proposed in [63], considers one hybrid vector space of

terms and senses, though senses are assigned with the TF · IDF weight of their

terms. When two distinct terms are disambiguated with the same sense, the terms’

weights are combined to produce the sense weight. For the resolution of phrases’

ambiguity we perform a phrase detection algorithm using a sliding window of varying

length, starting from 7 terms and dropping down to 2. Phrases are recognized with

dictionary look-up in WordNet. The resulting phrases substituted the respective term

occurrences in the indexing. Finally, the effect of stemming is studied with the use

of Porter stemmer. The stems substituted the respective term occurrences in the

indexing.

128APPENDIX D. EFFECT OF LEXICAL AMBIGUITY IN FIVE TOY IR DATA SETS

D. Q. Domain #T D. #T Q. #P D. #P Q. D. amb. Q. amb.

CACM 3204 64 ACM abstr. 29.5 13.4 2.11 49.7% 1.4 39% 5 88.3% 4.5 84.9%

MED. 1033 30 med. abstr. 82.3 11.6 2.9 89% 1.3 66.6% 4.4 82.2% 3.1 90.3%

TIMES 423 83 general 304.6 8.2 9.8 100% 1.3 57.8% 4.5 70.5% 3.6 77.9%

NPL 11429 100 physics 23.4 6.8 1.4 44.9% 1.2 26% 4.6 70.2% 4.3 62.1%

CRAN. 1400 225 aer/mics 90.4 9.3 3.1 88% 1.1 35.1% 5.3 88.1% 4.7 89.9%

Table D.1: Documents, queries and domains of the retrieval collections.

D.1 Description of the Data Collections

Experimental evaluation was conducted in 5 IR collections 1, namely CACM, CRAN-

FIELD, NPL, MEDLINE and TIMES. Table D.1 presents the details of the used

data sets. The domain of each collection, the number of documents (D.) and queries

(Q.) and the average number of term occurrences in the documents (#T D.) and

the queries (#T Q.)are shown. Also, table D.1 shows the average number of phrases

recognized in the documents (#P D.) and the queries (#P Q.). Note, however, that

these numbers refer to the documents and queries in which at least one phrase was

found. In the same columns we also report the percentages of documents and queries

that at least one phrase was recognized from the dictionary. Finally, we report the av-

erage ambiguity of words found in WordNet for all documents (D. amb.) and queries

(Q. amb.) per collection, which is the average number of WordNet senses for these

words, along with the percentage of terms found in the used lexicon, separately for

queries and documents.

D.2 Results and Analysis

Figure D.1 presents per collection the differences of each retrieval model from the

interpolated precision of the VSM baseline (indexed terms in the collection without

resolving any ambiguity) for the 11-standard recall points. The depicted lines are

produced from the execution of the six discussed retrieval models, namely stemming

1Material used is downloadable from http://www.db-net.aueb.gr/gbt/download.html

D.2. RESULTS AND ANALYSIS 129

-45

-35

-25

-15

-5
0
5

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)

Recall Values (%)

Differences from Interpolated Precision in the CACM Collection

ST
POS

PD
GVSM1
GVSM2
GVSM3

Baseline
-11

-9

-7

-5

0

3

6

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)

Recall Values (%)

Differences from Interpolated Precision in the MEDLINE Collection

ST
POS

PD
GVSM1
GVSM2
GVSM3

Baseline

-3

-2

-1

0

1

2

3

4

5

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)

Recall Values (%)

Differences from Interpolated Precision in the TIMES Collection

ST
POS

PD
GVSM1
GVSM2
GVSM3

Baseline
-31

-25

-19

-13

-5

0

5

11

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)

Recall Values (%)

Differences from Interpolated Precision in the NPL Collection

ST
POS

PD
GVSM1
GVSM2
GVSM3

Baseline

-18

-15

-12

-9

-5

0

3

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

 D
if
fe

re
n

c
e

 (
%

)

Recall Values (%)

Differences from Interpolated Precision in the CRANFIELD Collection

ST
POS

PD
GVSM1
GVSM2
GVSM3

Baseline

Figure D.1: Differences from the baseline in interpolated precision.

(ST), namely POS tagging (POS), phrase detection (PD), and the three GVSM mod-

els that handle sense ambiguity (GVSM1, GVSM2 and GVSM3). Below follows the

analysis for each retrieval model separately.

Stemming: As shown in figure D.1, stemming improves almost in all cases IR

performance. In four collections (CACM, MEDLINE, TIMES and CRANFIELD)

stemming produces the same behavior in the respective retrieval model. Initially it

boosts IR precision, compared to the baseline, for the first 2 or 3 recall points, then

it weakens in the 40% − 60% recall levels, and finally it boosts precision again, up

to the point where all relevant documents are retrieved. The only collection where

stemming boosted constantly and high (adding up to 11% in precision), without drop

130APPENDIX D. EFFECT OF LEXICAL AMBIGUITY IN FIVE TOY IR DATA SETS

in any recall point, is NPL. Observing closely NPL from table D.1, we notice that

it has the shortest documents and queries among all used collections. By examining

further the boost in precision due to stemming, we notice that the highest differences

occur for the NPL, CACM and MEDLINE (in all cases more than 4.5% for certain

recall points), which also happen to be the collections with the shortest documents.

Thus, according to our results we conclude that stemming can boost precision in low

and high recall levels, while it boosts more in cases when documents are relatively

small.

POS Tagging: Resolving POS in IR cannot help much in precision, as shown

in figure D.1. The POS retrieval model can help as much as 2.5%, compared to the

baseline, and this only happens in TIMES collection. In the CRANFIELD collection

it boosts precision by 2%, but in the same collection also drops up to 5% in the

medium recall points. Note also that in CACM, it drops by even 18%. Examining

further TIMES and CACM collections, in which POS model achieved its top and its

worst performance respectively, we notice that TIMES has the largest documents and

CACM is among the two collections with the shortest. From our analysis, it can be

inferred that POS information cannot boost precision dramatically, but in the cases

it boosts at all, the collections have relatively large documents.

Phrase Detection: Phrase detection can boost retrieval performance up to 4%,

as shown in figure D.1. Looking closer at the collections where PR improves precision,

we notice that this happens only with TIMES and NPL, where it boosts precision in all

recall levels. Reversely, in CACM, the effect of phrase detection is negative, as it drops

precision by almost 10% in the first 3 recall points. A close comparative examination

of TIMES and CACM from table D.1, reveals that TIMES has many phrases detected

on average per document (9.8), while CACM very few (2.1). Furthermore, in TIMES

at least one phrase was detected in all documents, while in CACM this only happened

in 39% of the documents. Finally, at least one phrase was recognized in a larger

percentage of documents in TIMES, than in CACM. Overall, these findings lead us

to the conclusion that phrase detection needs large coverage to aid IR performance,

both in documents and queries.

WSD: The 3 GVSM used show that embedding WSD information in a retrieval

D.2. RESULTS AND ANALYSIS 131

model can boost precision up to 5%, but can also drop it by more than 45%. A

close look at figure D.1 reveals that GVSM1 and GVSM3 have very similar behavior,

and both are better from GVSM2. The latter can only improve precision by at

most 2% (TIMES), while it can drop very much performance (CACM). In general,

considering a single vector space and mixing up term and sense dimensions, treating

them as even dimensions in a VSM, seems a bad choice. In contrast, handling sense

and terms in separate vector spaces (GVSM1), or weighting senses with their terms’

weights (GVSM3) can produce a boost in IR performance (TIMES, MEDLINE, NPL).

Observing closely TIMES and MEDLINE, where GVSM1 and GVSM3 can help IR

noticeably, we discover that precision boost is between 2− 5%. In TIMES, this takes

place in all recall points. In MEDLINE, this occurs for the larger recall points. The

two collections have a remarkable property. They are the collections with the less

ambiguous terms, both per document and per query, as we see from table D.1. Our

results allow us to conclude that a WSD system with an average accuracy of around

60% (this is the first sense heuristic performance in Senseval-2 and Senseval-3 WSD

data sets as discussed in chapter 3) can boost retrieval performance, by even 5% in

cases where the average ambiguity of the disambiguated terms is relatively low (i.e.,

maximum 4 senses per term).

Bibliography

[1] E. Agirre and P. Edmonds. Word Sense Disambiguation Algorithms and Appli-

cations. Springer, 2007.

[2] E. Agirre and G. Rigau. A proposal for word sense disambiguation using concep-

tual distance. In Proc. of the 1st International Conference on Recent Advances

in NLP, 1995.

[3] E. Agirre and G. Rigau. Word sense disambiguation using conceptual density. In

Proceedings of the 16th International Conference on Computational Linguistics,

pages 16–22. Copenhagen, Denmark, 1996.

[4] E. Altintas, E. Karsligil, and V. Coskun. The effect of windowing in word sense

disambiguation. In Proc. of the 20th International Symposium on Computer

and Information Sciences, pages 626–635. Springer Verlag, 2005.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley, 1999.

[6] S. Banerjee and T. Pedersen. Extended gloss overlaps as a measure of semantic

relatedness. In Proc. of IJCAI 2003, 2003.

[7] R. Basili, M. Cammisa, and A. Moschitti. A semantic kernel to exploit linguistic

knowledge. In Proc. of the AI*IA 2005, pages 290–302, 2005.

[8] H. Berger, M. Dittenbach, and D. Merkl. An adaptive information retrieval sys-

tem based on associative networks. In Proc. of the 1st Asia-Pacific Conference

on Conceptual Modelling, pages 27–36, 2004.

132

BIBLIOGRAPHY 133

[9] E. Bicici and D. Yuret. Clustering word pairs to answer analogy questions. In

Proc. of the Fifteenth Turkish Symposium on Artificial Intelligence and Neural

Networks, 2006.

[10] S. Bloehdorn, R. Basili, M. Cammisa, and A. Moschitti. Semantic kernels for

text classification based on topological measures of feature similarity. In Proc.

of the ICDM 2006, pages 18–22, 2006.

[11] S. Bloehdorn and A. Hotho. Boosting for text classification with semantic

features. In Proc. of the SIGKDD 2004, Mining for and from the Semantic

Web Workshop, 2004.

[12] S. Bloehdorn and A. Moschitti. Exploiting structure and semantics for expres-

sive text kernels. In Proc. of the CIKM 2007, pages 861–864, 2007.

[13] B. Boguraev and J. Pustejovsky. Lexical ambiguity and the role of knowledge

representation in lexicon design. In Proc. of the International Conference on

Computational Linguistics., pages 36–41, 1990.

[14] D. Bollegala, Y. Matsuo, and M. Ishizuka. Www sits the sat: Measuring rela-

tional similarity from the web. In Proc. of ECAI 2008, pages 333–337, 2008.

[15] L. Bookman. A microfeature based scheme for modelling semantics. In Proc.

of IJCAI 1987., pages 611–614, 1987.

[16] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. Computer Networks and ISDN Systems, 30:1–7, 1998.

[17] S. Brody, R. Navigli, and M. Lapata. Ensemble methods for unsupervised wsd.

In Proceedings of COLING/ACL 2006, pages 97–104. Sydney, 2006.

[18] A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of lexical

semantic relatedness. Computational Linguistics, 32(1):13–47, 2006.

[19] S. Chakrabarti. Mining the Web. Morgan Kaufmann, 2003.

134 BIBLIOGRAPHY

[20] T. Chklovski and R. Mihalcea. Exploiting agreement and disagreement of hu-

man annotators for word sense disambiguation. In Proc. of the Conference on

Recent Advances on Natural Language Processing (RANLP), 2003.

[21] R.L. Cilibrasi and M.B. Vitanyi. The google similarity distance. IEEE Trans-

actions on Knowledge and Data Engineering, 19(3):370–383, 2007.

[22] P. Clough and M. Stevenson. Cross-language information retrieval using eu-

rowordnet and word sense disambiguation. In Proc. of the 26th ECIR, pages

327–337, 2004.

[23] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The

MIT Press, 1990.

[24] G. Cottrell and S. Small. A connectionist scheme for modelling word sense

disambiguation. Cognition and Brain Theory, 6:89–120, 1983.

[25] J. Cowie, J. Guthrie, and L. Guthrie. Lexical disambiguation using simulated

annealing. In Proceedings of the 14th International Conference on Computa-

tional Linguistics, pages 359–365. Nantes, France, 1992.

[26] F. Crestani. Application of spreading activation techniques in information re-

trieval. Artificial Intelligence Review, 11:453–482, 1997.

[27] B.V. Dasarathy. Nearest Neighbor: Pattern Classification Techniques (Nn

Norms : Nn Pattern Classification Techniques). IEEE Computer Society, 1990.

[28] A. Devitt and K. Vogel. The topology of wordnet: Some metrics.. In Proc. of

GWC 2004, 2004.

[29] W.B. Dolan, C. Quirk, and C. Brockett. Unsupervised construction of large

paraphrase corpora: Exploiting massively parallel news sources. In Proc. of the

20th COLING, 2004.

[30] M. Eirinaki, D. Mavroeidis, G. Tsatsaronis, and M. Vazirgiannis. Introduc-

ing Semantics in Web Personalization: The role of Ontologies. In: Semantics,

BIBLIOGRAPHY 135

Web, and Mining, (Ed.): M. Ackerman, B. Berendt, M. Grobelnik, A. Hotho,

D. Mladenic, G. Semeraro, M. Spiliopoulou, G. Stumme, V. Svatek, M. van

Someren. Springer Verlag, 2005.

[31] C. Fellbaum. WordNet – an electronic lexical database. MIT Press, 1998.

[32] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman,

and E. Ruppin. Placing search in context: The concept revisited. ACM TOIS,

20(1):116–131, 2002.

[33] R. Florian, S. Cucerzan, C. Schafer, and D. Yarowsky. Combining classifiers for

word sense disambiguation. Natural Language Engineering, 8(4):327–341, 2002.

[34] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using

wikipedia-based explicit semantic analysis. In Proc. of the 20th IJCAI, pages

1606–1611. Hyderabad, India, 2007.

[35] W. Gale, K. Church, and D. Yarowsky. Estimating upper and lower bounds on

the performance of word-sense disambiguation programs. In Proc. of the ACL

1992, pages 249–256, 1992.

[36] D. Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive

Science, 7(2):155–170, 1983.

[37] M. Halliday and R. Hasan. Cohesion in English. Longman, 1976.

[38] T. Hirao, T. Fukusima, M. Okumura, C. Nobata, and H. Nanba. Corpus

and evaluation measures for multiple document summarization with multiple

sources. In Proc. of COLING 2004, pages 535–541, 2005.

[39] G. Hirst and D. St-Onge. Lexical chains as representations of context for the

detection and correction of malapropisms. In WordNet: An Electronic Lexical

Database, chapter 13, pages 305–332, Cambridge, 1998. The MIT Press.

[40] V. Hoste, W. Daelemans, I. Hendrickx, and A. van den Bosch. Evaluating

the results of a memory-based word-expert approach to unrestricted word sense

136 BIBLIOGRAPHY

disambiguation. In Proc. of the ACL Workshop on Word Sense Disambiguation,

2002.

[41] T. Hughes and D. Ramage. Lexical semantic relatedness with random graph

walks. In Proc. of EMNLP 2007, 2007.

[42] N.M. Ide and J. Veronis. Word sense disambiguation: the state of the art.

Computational Linguistics, 24(1):1–40, 1998.

[43] A. Islam and D. Inkpen. Semantic text similarity using corpus-based word

similarity and string similarity. ACM Trans. Knowl. Discov. Data, 2(2):1–25,

2008.

[44] M. Jarmasz and S. Szpakowicz. Roget’s thesaurus and semantic similarity. In

Proc. of Conference on Recent Advances in Natural Language Processing, pages

212–219, 2003.

[45] J.J. Jiang and D.W. Conrath. Semantic similarity based on corpus statistics

and lexical taxonomy. In Proc. of ROCLING X, pages 19–33, 1997.

[46] T. Joachims. Making large-scale SVM learning practical. Advances in Kernel

methods - support vector learning. B. Scholkopf, C. Burges and A. Smola (ed.),

MIT-Press, 1999.

[47] G.H. John and P. Langley. Estimating continuous distributions in bayesian

classifiers. In Proc. of the Eleventh Conference on Uncertainty in Artificial

Intelligence. 338–345, 1995.

[48] D. Klein, K. Toutanova, H.T. Ilhan, S.D. Kamvar, and Manning C.D. Com-

bining heterogeneous classifiers for word-sense disambiguation. In Proc. of the

SIGLEX/SENSEVAL Workshop on Word Sense Disambiguation, pages 74–80,

2002.

[49] U.S. Kohomban and W.S. Lee. Learning semantic classes for word sense dis-

ambiguation. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, pages 34–41. Michigan, 2005.

BIBLIOGRAPHY 137

[50] H. Kozima and T. Furugori. Similarity between words computed by spreading

activation on an english dictionary. In Proceedings of the 6th Conference of

the European Chapter of the Association for Computational Linguistics, pages

232–239. Utrecht, The Netherlands, April 1993.

[51] R. Krovetz and W.B. Croft. Lexical ambiguity and information retrieval. ACM

Transactions on Information Systems, 10(2):115–141, 1992.

[52] T.K. Landauer, P. Foltz, and D. Laham. Introduction to latent semantc anal-

ysis. Discourse Processes, 25:259–284, 1998.

[53] C.A. Le, V.N. Huynth, A. Shimazu, and Y. Nakamori. Combining classifiers for

word sense disambiguation based on dempster-shafer theory and owa operators.

Data and Knowledge Engineering, 63(2):381–396, 2007.

[54] C.A. Le, A. Shimazu, and V.N. Huynth. Word sense disambiguation by com-

bining classifiers with an adaptive selection of context representation. Journal

of Natural Language Engineering, 13(1):75–95, 2006.

[55] C. Leacock, G. Miller, and M. Chodorow. Using corpus statistics and wordnet

relations for sense identification. Computational Linguistics, 24(1):147–165,

March 1998.

[56] M.D. Lee and D.J Navarro. Extending the alcove model of category learning

to featural stimulus domains. Psychonomic Bulletin and Review, 9(1):43–58,

2002.

[57] M.D. Lee, B. Pincombe, and M. Welsh. An empirical evaluation of models of

text document similarity. In Proc. of the CogSci2005, pages 1254–1259, 2005.

[58] M. Lesk. Automated sense disambiguation using machine-readable dictionaries:

How to tell a pine cone from an ice cream cone. In Proc. of the SIGDOC

Conference, pages 24–26, 1986.

[59] D. Lin. An information-theoretic definition of similarity. In Proc. of the 15th

International Conference on Machine Learning, pages 296–304, 1998.

138 BIBLIOGRAPHY

[60] K. Litkowski. Use of machine readable dictionaries for word-sense disambigua-

tion in senseval-2. In Proc. of Senseval-2, pages 107–110, 2001.

[61] C.D. Manning and H. Schuetze. Foundations of Statistical Natural Language

Processing. MIT Press, 2000.

[62] D. Mavroeidis, G. Tsatsaronis, and M. Vazirgiannis. Semantic Distances for

Sets of Senses and Applications in Word Sense Disambiguation, In: Knowledge

Mining, (Ed.): S. Sirmakessis. Springer Verlag, 2005.

[63] D. Mavroeidis, G. Tsatsaronis, M. Vazirgiannis, M. Theobald, and G. Weikum.

Word sense disambiguation for exploiting hierarchical thesauri in text classifi-

cation. In Proc. of the 9th PKDD, pages 181–192, 2005.

[64] M.L. Mc Hale. A comparison of wordnet and roget’s taxonomy for measuring

semantic similarity. In Proc. of COLING/ACL 1998 Workshop on Usage of

WordNet in Natural Language Processing Systems, 1998.

[65] D. McCarthy, R. Koeling, J. Weeds, and J. Carroll. Finding predominant

word senses in untagged text. In Proceedings of the 42nd Annual Meeting on

Association for Computational Linguistics, pages 280–287. Spain, 2004.

[66] R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based and knowledge-based

measures of text semantic similarity. In Proc. of the 21st AAAI, 2006.

[67] R. Mihalcea and A. Csomai. Senselearner: Word sense disambiguation for all

words in unrestricted text. In Proc. of the ACL 2005 on Interactive poster and

demonstartion sessions, pages 53–56, 2005.

[68] R. Mihalcea and D. Moldovan. A method for word sense disambiguation of

unrestricted text. In Proceedings of the 37th annual meeting of the Association

for Computational Linguistics, pages 152–158. College PArk, Maryland, 1999.

[69] R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. In Proc. of the

Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 404–411, Spain, 2004.

BIBLIOGRAPHY 139

[70] R. Mihalcea, P. Tarau, and E. Figa. Pagerank on semantic networks with

application to word sense disambiguation. In Proc. of the 20th International

Conference on Computational Linguistics, Switzerland, 2004.

[71] G. Miller, C. Leacock, R. Tengi, and T. Bunker. A semantic concordance. In

Proceedings of ARPA Workshop on Human Language Technology, pages 303–

308. Plainsboro, New Jersey, 1993.

[72] G.A. Miller and W.G. Charles. Contextual correlates of semantic similarity.

Language and Cognitive Processes, 6(1):1–28, 1991.

[73] D. Moldovan and V. Rus. Logic form transformation of wordnet and its ap-

plicability to question answering. In Proc. of the 39th Annual Meeting of the

Association for Computational Linguistics, pages 394–401, France, 2001. Asso-

ciation for Computational Linguistics.

[74] A. Molina, F. Pla, and E. Segarra. A hidden markov model approach to word

sense disambiguation. In Proc. of the 8th Iberoamerican Conference on Artificial

Intelligence, 2002.

[75] A. Montoyo, A. Suarez, G. Rigau, and M. Palomar. Combining knowledge-

and corpus-based word-sense-disambiguation methods. Journal of Artificial

Intelligence Research, 23:299–330, March 2005.

[76] J. Morris and G. Hirst. Lexical cohesion computed by thesaural relations as an

indicator of the structure of text. Computational Linguistics, 17:21–48, 1991.

[77] R. Navigli. Online word sense disambiguation with structural semantic inter-

connections. In Proc. of the 11th EACL, 2006.

[78] R. Navigli. A structural approach to the automatic adjudication of word sense

disagreements. Natural Language Engineering, 14(4):547–573, 2008.

[79] R. Navigli. Word sense disambiguation: A survey. ACM Computing Surveys,

41(2), Article 10, 2009.

140 BIBLIOGRAPHY

[80] R. Navigli, K. Litkowski, and O. Hargraves. Estimating upper and lower bounds

on the performance of word-sense disambiguation programs. In Proc. of the 4th

InternationalWorkshop on Semantic Evaluations (SemEval), pages 30–35, 2007.

[81] R. Navigli and P. Velardi. Structural semantic interconnections: a knowledge-

based approach to word sense disambiguation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27(7):1075–1086, 2005.

[82] M. Palmer, H. Dang, and C. Fellbaum. Making fine-grained and coarse-grained

sense distinctions, both manually and automatically. Journal of Natural Lan-

guage Engineering, 13(2):137–163, 2007.

[83] M. Palmer, C. Fellbaum, and S. Cotton. English tasks: All-words and verb

lexical sample. In Proceedings of Senseval-2, pages 21–24. Toulouse, France,

2001.

[84] M. Pasca. Open-domain question answering from large text collections. In

CSLI Studies in Computational Linguistics. CSLI Publications, Distributed by

the University of Chicago Press, 2003.

[85] M. Pasca. Mining paraphrases from self-anchored web sentence fragments. In

Proc. of PKDD 2005, pages 193–204, 2005.

[86] S. Patwardhan, S. Banerjee, and T. Pedersen. Using measures of semantic re-

latedness for word sense disambiguation. In Proc. of the 4th International Con-

ference on Inbtelligent Text Processing and Computational Linguistics, pages

241–257. Springer Verlag, 2003.

[87] T. Pedersen. A simple approach to building ensembles of naive bayesian clas-

sifiers for word sense disambiguation. In Proceedings of the First Meeting of

the North American Chapter of the Association for Computational Linguistics,

pages 63–69. Seattle, Washington, 2000.

[88] S.P. Ponzetto and M. Strube. Knowledge derived from wikipedia for computing

semantic relatedness. Journal of Artificial Intelligence Research, 30:181–212,

October 2007.

BIBLIOGRAPHY 141

[89] R.M. Quilian. The teachable language comprehender: a simulation program

and theory of language. Communications of ACM, 12(8):459–476, 1969.

[90] R.M. Quillian. The teachable language comprehender: a simulation program

and theory of language. Communications of ACM, 12(8):459–476, 1969.

[91] P. Resnik. Using information content to evaluate semantic similarity. In Proc.

of the 14th IJCAI, pages 448–453, Canada, 1995.

[92] P. Resnik. Semantic similarity in a taxonomy: An information-based measure

and its application to problems of ambiguity in natural language. Journal of

Artificial Intelligence Research, 11:95–130, 1999.

[93] G. Rigau, J. Atserias, and E. Agirre. Combining unsupervised lexical knowledge

methods for word sense disambiguation. In Proceedings of the 35th annual

meeting of the Association of Computational Linguistics, pages 48–55. Madrid,

Spain, 1997.

[94] C. Rocha, D. Schwabe, and M. Poggi de aAragao. A hybrid approach for

searching in the semantic web. In Proc. of WWW 2004, pages 374–383, 2004.

[95] P. Rosso, E. Ferretti, D. Jimenez, and V. Vidal. Text categorization and infor-

mation retrieval using wordnet senses. In Proc. of the GWC 2004, 2004.

[96] H. Rubenstein and J.B. Goodenough. Contextual correlates of synonymy. Com-

munications of the ACM, 8(10):627–633, 1965.

[97] G. Salton. The SMART Retrieval System. Prentice Hall, 1971.

[98] G. Salton and M.E. Lesk. Computer evaluation of indexing and text processing.

Journal of the ACM, 15(1):8–36, 1968.

[99] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, 1983.

[100] M. Sanderson. Word sense disambiguation and information retrieval. In Proc.

of the 17th SIGIR, pages 142–151, Ireland, 1994. ACM.

142 BIBLIOGRAPHY

[101] M. Sanderson. Ambiguous queries: Test collections need more sense. In Proc.

of the 31st SIGIR, pages 499–506, 2008.

[102] M. Sanderson and C.J. van Rijsbergen. The impact on retrieval effectiveness

of skewed frequency distributions. ACM Transactions on Information Systems,

17(4):440–465, 1999.

[103] S. Scott and Matwin S. Feature engineering for text classification. In Proc. of

the 16th International Conference on Machine Learning, pages 379–388, Bled,

SLovenia, 1999.

[104] Y. Shinyama and S. Sekine. Paraphrase acquisition for information extraction.

In Proc. of ACL 2003, 2nd Workshop on Paraphrasing: Paraphrase Acquisition

and Applications, pages 65–71, 2003.

[105] R. Sinha and R. Mihalcea. Unsupervised graph-based word sense disambigua-

tion using measures of word semantic similarity. In Proc. of the IEEE Interna-

tional Conference on Semantic Computing, 2007.

[106] G. Siolas and F. dAlche Buc. Support vector machines based on semantic kernel

for text categorization. In Proc. of IJCNN 2000, pages 205–209. IEEE Press,

2000.

[107] A.F. Smeaton, F. Kelledy, and R. O’Donnell. Trec-4 experiments at dublin city

university: Thresholding posting lists, query expansion with wordnet and pos

tagging of spanish. In Proc. of the TREC 1995., 1995.

[108] B. Snyder and M. Palmer. The english all-words task. In Proceedings of

Senseval-3, pages 41–43. Barcelona, Spain, 2004.

[109] Y.I. Song, K.S. Han, and H.C. Rim. A term weighting method based on lexical

chain for automatic summarization. In Proc. of the 5th CICLing Conference,

pages 636–639, USA, 2004.

[110] K. Sparck Jones. A statistical interpretation of term specificity and its appli-

cation in retrieval. Journal of Documentation, 28(1):11–21, 1972.

BIBLIOGRAPHY 143

[111] C. Stokoe. Differentiating homonymy and polysemy in information retrieval. In

Proc. of the HLT/EMNLP, pages 403–410, 2005.

[112] C. Stokoe, M.P. Oakes, and J. Tait. Word sense disambiguation in information

retrieval revisited. In Proc. of the 26th SIGIR, pages 159–166. ACM, 2003.

[113] M. Strube and S.P. Ponzetto. Wikirelate! computing semantic relatedness using

wikipedia. In Proc. of the 21st AAAI, 2006.

[114] M. Sussna. Word sense disambiguation for free-text indexing using a massive

semantic network. In Proc. of CIKM 1993, 1993.

[115] M. Theobald, R. Schenkel, and G. Weikum. Exploiting structure, annotation,

and ontological knowledge for automatic classification of xml data. In Proc. of

the WebDB 2003, pages 1–6, 2003.

[116] K. Toutanova, D. Klein, C. Manning, and Y. Singer. Feature-rich part-of-

speech tagging with a cyclic dependency network. In Proc. of HLT-NAACL,

pages 252–259, Canada, 2003. ACM.

[117] G. Tsatsaronis and V. Panagiotopoulou. A generalized vector space model

for text retrieval based on semantic relatedness. In Proc. of the EACL 2009

(Student Research Workshop), pages 70–78, 2009.

[118] G. Tsatsaronis, R. Pitkanen, and M. Vazirgiannis. Clustering for ontology

evolution. In Proc. of the 29th Annual Conference of the German Classification

Society (GfKl), 2005.

[119] G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis. Word sense disambiguation

with semantic networks. In Proc. of the 11th International Conference on Text,

Speech and Dialogue (TSD 2008), pages 219–226, September 2008.

[120] G. Tsatsaronis, I. Varlamis, M. Vazirgiannis, and K. Nørv̊ag. Omiotis: A

thesaurus-based measure of text relatedness. In Proc. of PKDD 2009, Demo

Paper (to appear), 2009.

144 BIBLIOGRAPHY

[121] G. Tsatsaronis, M. Vazirgiannis, and I. Androutsopoulos. Word sense disam-

biguation with spreading activation networks generated from thesauri. In Proc.

of the 20th IJCAI, pages 1725–1730, 2007.

[122] M. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Proc.

of the 12th European Conference on Machine Learning, 2001.

[123] P.D. Turney. Similarity of semantic relations. Computational Linguistics,

32(3):379–416, 2006.

[124] P.D. Turney. The latent relation mapping engine: Algorithm and experiments.

JAIR, 33:615–655, 2008.

[125] P.D. Turney. A uniform approach to analogies, synonyms, antonyms, and asso-

ciations. In Proc. of the COLING 2008, pages 905–912, 2008.

[126] P.D. Turney and M.L. Littman. Corpus-based learning of analogies and seman-

tic relations. Machine Learning, 60(1-3):251–278, 2005.

[127] A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.

[128] C.J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

[129] I. Varlamis, M. Vazirgiannis, M. Halkidi, and B. Nguyen. Thesus: Effective

thematic selection and organization of web document collections based on link

semantics. IEEE TKDE Journal, 16(6):585–600, 2004.

[130] T. Veale. Wordnet sits the sat: A knowledge-based approach to lexical analogy.

In Proc. of ECAI 2004, pages 606–612, 2004.

[131] J. Veronis and N.M. Ide. Word sense disambiguation with very large neural

networks extracted from machine readable dictionaries. In Proc. of the 13th In-

ternational Conference on Computational Linguistics, pages 389–394. Finland,

1990.

[132] S.N.V. Vishwanathan and A.J. Smola. Fast Kernels for String and Tree Match-

ing. MIT Press, 2003.

BIBLIOGRAPHY 145

[133] E. Voorhees. Using wordnet to disambiguate word sense for text retrieval. In

Proc. of the 16th SIGIR, pages 171–180. ACM, 1993.

[134] S.K.M. Wong, W. Ziarko, V.V. Raghavan, and P.C.N. Wong. Modeling of

information retrieval concepts in vector spaces. ACM Transactions on Database

Systems, 12(2):299–321, 1987.

[135] Z. Wu and M. Palmer. Verb semantics and lexical selection. In Proc. of the

32nd ACL, pages 133–138, 1994.

[136] Y. Yang and X. Liu. A re-examination of text categorization methods. In Proc.

of the SIGIR 1999., pages 42–49, 1999.

[137] D. Yarowsky. Unsupervised word sense disambiguation rivalling supervised

methods. In Proc. of the 33rd ACL, pages 189–196, 1995.

[138] Y. Zhao and Karypis. G. Hierarchical clustering algorithms for document

datasets. Data Mining and Knowledge Discovery, 10(2):141–168, 2005.

