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Preface

As the immense amount of text data increases rapidly over the yesa the need to
improve the quality of algorithms in text related tasks is emment. Traditional models
for representing documents, like the standard vector space moq¥SM), often ne-
glect the semantic relatedness between words, su®ering from tlestriction of exact
keywords matching, in order to explore the similarity or releedness between segments
of text. In critical tasks, like text classi cation and retrieval, which have been studied
over the past decades intensively, this assumption of exact keynl matching is often
the reason for poor performance. This thesis aims to exploretipotential of incorpo-
rating semantic relatedness between documents in several terlated applications,
like text classi cation, retrieval and paraphrasing recognitin. Several aspects have
been taken into account, like natural language processing tesques and use of a
word thesaurus, namely WordNet, in an e®ort to exhaust as many postiies as
possible in the work°ow from analyzing and preprocessing documgmp to embed-
ding successfully the semantic information in a machine readabmanner in those
tasks. The outcome of this thesis shows that lexical semantic sianiity can be used
exciently in the studied tasks and that it can boost their performance, widening the
possibilities of more excient algorithms in text applications. This thesis is part of
the research project number 03E¢850/8.3.1., implemented wiin the framework of
the Greek Reinforcement Programme of Human Research ManpowBENED) and
co- nanced by Greek national and European Union Funds (25% fmothe Greek Min-
istry of Development-General Secretariat of Research and Tewlogy, and 75% from
E.U.- European Social Fund).
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Chapter 1
Introduction

The amount of text data has increased rapidly over the last two @tades, especially
with the advent and the wide use of the World Wide Web. Searchghand organizing

text information exciently has become a very ditcult task, mairly because of two

reasons: (a) the diversity of the domains that texts refer to hascreased dramati-

cally, and (b) traditional methods for representing and proessing text segments or
documents employ mostly exact keyword matching.

The lexical ambiguity of most languages, like the English langge, which is the
language that this thesis focuses on, intensi es the problemsising from the afore-
mentioned facts, with regards to computationally intensivedsks, like text classi ca-
tion and retrieval. Words and phrases can be found in di®erentr#actic roles, while
their meanings can also be di®erent in various contexts, depémgl on the domain.
The amalgamation of the several forms that lexical ambiguitgan take, and which
we will explain shortly in detail, has been shown to a®ect the germance of tasks
like classi cation and retrieval [10, 51].

A natural solution to the problems arising from lexical ambigity is to resolve
it. However, automatically resolving lexical ambiguity by a omputer program is not
easy. This is the main reason that the problem of lexical ambigy resolution is
still a central problem in the areas of natural language prossing and computational
semantics in particular.

This thesis aims to explore semantic ambiguity, and proposesweéNord Sense
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2 CHAPTER 1. INTRODUCTION

Disambiguation (WSD) algorithms to resolve it for the English&nguage. In addition,
this thesis focuses on the ways that semantic information fromaosd thesauri, in
our case WordNet [31], can be embedded into measures of text tethness, and
proposes a novel measure of text semantic relatedness, namely Qi In order to
explore the merits of embedding Omiotis into text related taks, we present a series
of experiments in several ditcult tasks, like classi cation, reteval, paraphrasing and
document similarity.
The rest of this thesis is organized as follows:

2 The remaining sections of chapter 1 present in detail the pradain that we are
trying to solve, set the boundaries of this work, and summarizenhé contribu-
tions.

2 Chapter 2 analyzes the related work, with regards to previcuWSD meth-
ods, representation of text with semantic networks, other semantrelatedness
measures, as well as text applications of word thesauri like Wiet, includ-
ing a discussion about the e®ect of embedding WordNet informatiamo text
retrieval.

2 Chapter 3 presents our approaches for performing WSD and apaés the ex-
perimental results in three benchmark collections for the &k.

2 Chapter 4 presents our novel measure of semantic relatedness, Gtsi

2 Chapter 5 analyzes the means of embedding Omiotis into wehdwn text appli-
cations and also presents the experimental evaluation of Ontimand discusses
the experimental results.

2 Chapter 6 concludes, by summarizing the contributions of thihesis and o®er-
ing pointers to interesting future work.

1.1 Problem and Motivation

The classic models for representing documents are based on aegat representation
of their terms. For decades now, one of the most important modebf this classical
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representation is the vector space model [98], which also cotgid the basis for
one of the most in°uential retrieval systems, namely SMART [97]. Aarding to the
vector space model, given a documentwith i distinct terms (ty;:::;tj), the vectorial
representation of this document is a vector with dimensionsd'= (wa;:::;w; ), where
waq; W, are either positive and non-binary, or binary, if the boolearvector model
is used. In case the case thatwg;::;w;) represent weights of termstg;:::;t;) in
document d, a commonly used weighting scheme for the terms is the well know
TF-IDF factor [110].

The vector space model allows the similarity between two docuents (or between
a document and a query in the IR paradigm) to be computed as theosine of the
angle between the two vectors. Though there have been many wdions of the
vector space model [5] since it was initially conceived, usualln assumption is made,
known asterms orthogonality According to this assumption, the vector space has as
its orthocanonical base the term vectors; = (1;0;0:::;0); ;6 = (0;0;0:::;1). This
assumption implies that for a pair of documents, only their comon terms a®ect
their similarity, since any pair of term vectorsty; ty,, wherety 6 t,, would produce
a cosine value of zero (the two vectors are orthogonal). In th@mplest case, the
assumption leads to computing the similarity between documesitbased onexact
keyword matching

In what follows, we shall present some motivating examples of haxact keyword
matching may a®ect the quality of certain text applications. n addition, we shall
motivate the need for resolving lexical ambiguity in cruciatasks, such as IR. Primar-
ily, let us consider the paraphrase recognition task, in whicthe target is to recognize
whether a pair of sentences is approximately semantically egalent. The following
two sentences are an example of a paraphrase taken from the Mmoft Paraphrase
Corpus [29]:

The shares of the company dropped 14 cents.
The organization's stock slumped 14 cents.

In this example, the nounsharesof the rst sentence is semantically vary similar
to the noun stock of the second sentence. In fact, these two words are synonyms
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Figure 1.1: Top two Google results for queryow-risk instruments

in WordNet. Furthermore, the verb drop of the rst sentence, is a synonym of the
verb slump of the second sentence. In addition, the nourgdmpany and organization
also bare a semantic similarity. The models based on exact keywanatching fail to
recognize all of the aforementioned connections, residingtive absolute match of the
number 14 and the nourcent to compute the similarity between these two sentences.

In another example, taken from the IR paradigm, let us conside user searching
for low-risk instrumentsin Google. This query pertains to information regarding leg
documents and legislation about low-risk investment productsSubmitting this query
to Google, returns as the top two results the Web pages shown inuge 1.1. The
“rst Web page (left) is an article from the Herald Tribune regarding investors, and it
is certainly relevant to the user's needs. The second Web pag@fit) is a Web page
that refers to engineering products (instruments) of a compgmamed Testo. Clearly,
in this second page the wordanstruments is used with another meaning than the one
intended by the user, and of course this page is irrelevant to ¢huser's needs. In this
latter case, we observe how semantic lexical ambiguity can cauke performance of
retrieval to deteriorate, if left unresolved.

These two examples, taken from the paraphrase recognition taskdalR respec-
tively, are representative of the caveats of exact keyword rt@ing. The problem from
this perspective is now reduced to the following. Traditionamodels of computing
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document similarity: (a) do not consider semantic relations heeen documents, and
(b) do not resolve lexical ambiguity. The result is a drop in thequality of the results
in important text related tasks, like IR; as we shall see in the f@wing, other tasks,
such as text classi cation, are also a®ected.

Before we proceed our solution to this problem, let us rst expte in more depth
the di®erent types of lexical ambiguity, and the ways it a®ectiext applications.
Lexical ambiguity can be roughly separated into two di®erenypes, namelysyntactic
and semanticambiguity [13]. The former type of ambiguity stems from the fet that a
word or phrase can have di®erent syntactic roles. Consider the tialowing example
sentences:

Oxides and hydroxides of metals and ammonia are included ifases

He baseshis claim on some observation.

In this example, baseshas a di®erent syntactic role in each sentence. In the
“rst sentence, basesappears as the plural of the nourbase which in this case has a
meaning taken from chemistry. In the second sentendeasesappears as a verb, with
the meaning ofestablishor ground The two sentences are an example of syntactic
ambiguity.

In this thesis, we do not address the problem of syntactic lexicambiguity. We
only focus on the other large category of lexical ambiguitgemantic lexical ambiguity.
In the following example, notice how di®erently the worbtlankis used in each sentence:

He cashed a check at thébank

He sat on the bank of the river and watched the currents.

Examples like the above can be found in almost every English douent, and the
same applies to other natural languages. As a further examplensider the following
sentence, taken from [131]:

The young page put the goat in the pen.
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In this example, pageand pen are very dixcult to disambiguate, because they do
not have their most common senses. Herpagetakes the meaning of a boy who is
employed to run errands, whilgpen means an enclosure for con ning livestock.

Clearly, lexical ambiguity is a signi cant problem for naturd language processing
and text applications. This thesis presents new methods to copgth semantic lexical
ambiguity in texts, by introducing new and excient WSD algorithms. Furthermore,
the thesis proposes a novel measure that embeds semantic infaiiorafrom WordNet
into several critical text applications like text classi cation and text retrieval, and
shows that semantic information can help to improve the respdge tasks' results.

1.2 Considered Aspects and Proposed Solution

In an e®ort to improve the the results of text classi cation, reteval and paraphrase
recognition, where traditionally the vector based models #t are based on exact key-
word matching are used, in this work we aim at designing and imginenting a measure
that captures the semantic relatedness between words. Towarttss direction, there
are several possible options to consider, that have their inddaal advantages and
disadvantages. Three basic research directions that are repnasg¢ive of the work in
this area, are: (a) use of semantic information from word thesau (b) use of latent
semantic analysis approaches, and (c) use of a language modelthia work, we focus
only on the rst direction, and, more speci cally, we propose new \BD algorithms
with the use of WordNet.

Furthermore, we design a new measure of semantic relatednesg ttapitalizes on
the extracted semantic information and on the use of WordNet as lnowledge-base.
Note, however, that in the remainder of this thesis we distingah between semantic
similarity and semantic relatedness, as discussed in the relatedlography [18]. The
major di®erence between those two concepts, when a hierarchigard thesaurus is
used, is that in the case of semantic similarity only the hierardbal relations are
considered (i.e., hypernyms/hyponyms), while in the case of senig relatedness,
every non-hierarchical semantic relation can also be used. Theasure we propose
iS a measure of semantic relatedness.
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Overall, this thesis focuses on how we can address the limitat®of exact keyword
matching by embedding information from WordNet. More speci clly, the presented
work proposes novel solutions for the following: (1) extracekical semantic informa-
tion from text, (2) design and implement a word/text semantic elatedness measure
that combines a thesaurus and the extracted lexical informain, and (3) embed this
measure into important text applications and evaluate its pgormance.

Regarding text pre-processing, unless stated otherwise, in themmainder of this
thesis, the Stanford Tagger [116] is used for part-of-speech (B{dtagging, the Porter
Stemmer is used for word stemming, and the TF-IDF formula [19kiused for term
weighting in the vector space model. Finally, we use WordNet v&on 2.0, as our
thesaurus. More information about WordNet, and the speci ¢ versiois provided
in appendix A. Note that concepts in the WordNet lexical databasare represented
by synsets (synonym sets), and that the termsonceptsand synsetswill be used
interchangeably.

1.3 Summary of Contribution

Measuring the relatedness between two text segments in an autat@d manner is a
dixcult task. Text conveys semantics that are hard for a computeprogram to cap-
ture. Without doubt, a measure of relatedness between text segmts must take into
account both the lexical semantic relatedness between wordsdatheir signi cance in
the text that they are found (e.g., their TF-IDF scores). Such aneasure that com-
bines both aspects may help in many tasks, such as text classi catiand retrieval. In
this thesis we present a new approach for measuring the semanttatedness between
words based on their implicit semantic links. The approach doemt require any type
of training, since it exploits a word thesaurus, WordNet, in ordeto devise implicit
semantic links between words. Based on this approach, we intozk a new measure
of semantic relatedness between texts, which capitalizes oretsemantic relatedness
between individual words, and extends it to measure the relalaess between sets of
words. We gradually validate our method: we rst evaluate the pgormance of the
semantic relatedness measure between individual words in fodata sets and then
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proceed with evaluating the performance of our method in mearing text-to-text se-
mantic relatedness in three tasks. Experimental evaluation stws that the proposed
method outperforms every other lexicon-based method of wosgmantic relatedness
in the selected tasks and the tested data sets, and competes wekliagt corpus-based
approaches that require training. Finally, we show that the ppposed measure can
be successfully applied to more complex linguistic tasks (e.g.rpphrasing) and that
it is able to capture the human notion of relatedness better #mn traditional lexical
matching techniques.

The procedure of using semantic information from WordNet in texapplications
requires the design and implementation of a series of steps, mogtdich still con-
stitute open research issues. Towards this direction, this thestontributes in the
following:

2 Word Sense Disambiguation: We have developed four new methods of
WSD, which we explain in detail in chapter 3, and which achievstate of the art
results on three benchmark WSD data sets, namely Senseval-2 [&3nseval-3
[108] and SemCor [71]. Three of these methods do not requirey &ype of train-
ing and are dictionary-based approaches, relying only on Wax&t. The fourth
method constitutes an ensemble approach of dictionary-basecethods to dis-
ambiguate words and requires the use of a training data set. Agdrom one of
the approaches, which focuses only on nouns, the other proposeetinods can
handle the disambiguation of any given word in unrestricted te.

2 Semantic Relatedness: A novel measure of text semantic relatedness, Omio-
tis, is introduced, and explained in detail in chapter 4. Omitiss does not require
training and is based on WordNet. The core element of the measuseSeman-
ticRelatedness (SR), a measure for computing semantic relatexss between
concepts in WordNet. SR is expanded to measure word-to-wordlatedness
and, eventually, to compute text-to-text relatedness, fornmg up the Omiotis
measure. The usefulness of these measures is demonstrated with &esesf
experiments covering several di®erent applications, from vasto-word related-
ness to dixcult text tasks. The experimental evaluation is analyed in detail in
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chapter 5.

2 Omiotis and SR Applications: For some text applications, like text classi -
cation or text retrieval, embedding semantic information isiot straightforward.
In this direction, the thesis contributes by providing a novesemantic smoothing
kernel for text classi cation and a novel generalized vector spa model (GVSM)
for text retrieval. Furthermore, we present additional inteesting applications of
these measures, in tasks like paraphrasing recognition and sclstila aptitude
tests (SAT). The applications of SR and Omiotis are explaineth section 5.1.

2 Novel Implementation: The thesis also provides an implementation of SR
and Omiotis, capable of handling the application of the meases to large data
sets, like Reuters for classi cation and TREC for retrieval. As eXpined in
appendix B, the implementation relies on a large database @nd 600 GB of
data), which indexes all the pairwise synset SR values for all \WWiNet synsets
(11 billion combinations).



Chapter 2
Background and Related Work

In this chapter we present previous work that is related to ths thesis from the areas
of WSD, semantic representation of text based on informationdm lexical databases
or thesauri, and applications of text kernels and GVSM to text lassi cation and text
retrieval that use lexical information from dictionaries aul/or thesauri.

2.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) aims to assign to every word of acument the
most appropriate meaning (sense) among those o®ered by a lexicora dhesaurus.
WSD is important in natural language processing and in severapglications, such
as machine translation, speech processing and summarization. Alevrange of WSD
algorithms and techniques has been developed, utilizing ofane readable dictionar-
ies, statistical and machine learning methods, even parallelrpora. In [42] several
approaches are surveyed; they address WSD either in a supervisednner, utiliz-
ing existing manually-tagged corpora, or with unsupervised rfeods, which sidestep
the tedious stage of constructing manually-tagged corpora.in@ilar categorizations of
WSD methods have been presented in [1] and [79]. In this thesig Wllow Navigli
[79], who distinguishes between supervised and unsupervised agmhes, and also
between knowledge-based and corpus-based approaches, with frener utilizing a

10
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knowledge-base, like a lexical database or a thesaurus, wherbaslatter rely on docu-
ment collections instead. Based on this categorization, thelevant approaches to the
ones we propose are knowledge-based approaches, both supenasddinsupervised.

Most of the approaches are traditionally evaluated in speci casks of the Senseval
initiative, which measure their ability to disambiguate all the words of texts English
All Words task of Senseval) or a targeted set of word&qglish Lexical Sampleéask).!
The methods we propose are able to disambiguate all words in agh text segment,
and, thus, we focus more on the corresponding task. The followirthree subsec-
tions discuss such approaches, giving greater emphasis to the hogts that use a
hierarchical word thesaurus, rather than a dictionary.

2.1.1 Knowledge-based Unsupervised Word Sense Disambigua-
tion

Several WSD approaches capitalize on the fact that thesauiké WordNet o®er impor-
tant vertical (hypernym/hyponym) and horizontal (synonym, antonym, coordinate
terms) semantic relations. Though early approaches of WSD, ékhe much in°uen-
tial method of Lesk [58], do not consider word thesauri, and raér use a dictionary
to discover the correct senses through measuring the overlap ohse de nitions and
context words, the expansion of existing, and the development new word thesauri
has o®ered powerful knowledge that can be exploited. Therevhabeen approaches
that try to expand the measurement of overlap of sense de nition® words of the
thesaurus that are directly connected with the context wordshrough strong seman-
tic relations, like synonyms and hypernyms [6]. The performa&e of these approaches
though, cannot compete with the results obtained from methalthat use even more
knowledge from rich thesauri like WordNet. A feature that disthguishes two of our
proposed approaches for WSD, namely the Spreading Activatidvetworks approach
that we introduced in [121] and a PageRank-based approach,thexplained in de-
tail in chapter 3, is the fact that we utilize all of the availeble semantic information

thttp://www.senseval.org/
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o®ered by WordNet. The state-of-the-art performance of these @paches on Sense-
val's data sets shows that the rich semantic information in Wordet can boost WSD
performance.

The idea of using semantic relations from word thesauri in WSD it new. Sussna
[114] proposes a disambiguation algorithm, which assigns a sengesach noun in a
window of context by minimizing a semantic distance functionmong their possible
senses. The measure proposed is based on the assignment of weightseatiges in
the WordNet noun hierarchy. To compute the weights, the is-a, tsmpart, is-a-part-of
and antonyms relations between the noun senses are considerédrthermore, the
higher the level of the WordNet hierarchy, the greater is theanceptual distance that a
semantic link between two senses suggests. Thus, Sussnas algorithmards semantic
links between senses in lower levels of the WordNet noun hierdayc This method has
combinatory complexity due to the pair-wise computation of he semantic distance
function for a given window of context.

Aggire and Rigau [3] introduce and apply a similarity measure Is&d on concep-
tual density between noun senses. Their proposed measure is basedMamdNet's
is-a hierarchy and it measures the similarity between a targetaun sense and the
nouns in the surrounding context. For this purpose, they divid the WordNet noun
is-a hierarchy into subhierarchies, so that each possible sense @& #mbiguous noun
belongs to exactly one subhierarchy. For each possible sense efword to be disam-
biguated the measure returns the ratio of the area of the cosponding subhierarchy
that is occupied by the context words (nouns only) to the totharea occupied by the
subhierarchy. The sense with the highest conceptual density (i} is assigned to the
target word.

Banerjee and Pedersen [6] suggest an adaptation of the origihaisk algorithm in
order to take advantage of the network of relations provideoh WordNet. Rather than
simply considering the glosses of the surrounding words in the sente, the concept
network of WordNet is exploited to allow for glosses of word sensesdated to the
words in the context to be compared as well. Essentially, theagses of surrounding
words in the text are expanded to include glosses of those wordswhich they are
related through relations in WordNet. They also suggest a scorirgcheme such that
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a match ofn consecutive words in the glosses is weighted more heavily thaset of
n one word matches.

More recent knowledge-based WSD approaches utilize even msemantic infor-
mation from WordNet and can disambiguate words from all POS (nms, verbs, ad-
jectives and adverbs). An example of such an approach is the P&gak-based WSD
method of Mihalcea et al. [70]. They use representation of Waxét as a graph, de n-
ing the vertices as synsets and the edges as the semantic relaiconnecting synsets.
Adding some custom type edges in the same graph, they use this regmetation to
construct synset graphs from text, and then execute the known BaRank algorithm
to rank the synset vertices. However, they do not use weights on tlkeelges, and they
do not make use of all the semantic relations o®ered by WordNet 2.0h chapter 3
we will show a modi cation of this algorithm, our proposed Pageéhk-based WSD
method, relying on our novel semantic representation, and weqve experimentally
that these modi cations boost WSD performance on the Sensevaltdasets.

Navigli [81, 77, 78] presented the online implementation of ®ictural Semantic
Interconnections (SSI-HITS), which constructs semantic grdqs that connect all can-
didate senses and consequently ranks senses using the HITS algorittsSI-HITS is
based on a measure that maximizes the degree of mutual intero@etion among a set
of senses, a variation of their former SSI WSD algorithm. The natense selection
for each term occurs after ranking the participating sense ned in the constructed
semantic graphs, using the HITS algorithm. Both SSI-HITS and theraginal SSI
compare competitively as unsupervised WSD methods, though Sgérforms bet-
ter than its online implementation in Senseval 3, and can penfm unrestricted text
WSD. This method is similar to our PageRank-based based methosgeg chapter 3),
but a di®erent semantic network representation is used, as wedl a di®erent ranking
algorithm for the nodes of the graph (HITS against PageRank).

There are also methods that propose a combination of unsupendsknowledge-
based WSD algorithms to perform the task. Rigau et al. [93] prase a set of
unsupervised knowledge-based heuristics and combine the disaguolation results with
a weighted sum to produce the nal decision for the disambiguatioof a given word.
Though Rigau et al. have applied it only to the disambiguationof genus terms of
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two machine readable dictionaries (MRD), their method canlao be applied to the
disambiguation of unrestricted text, but Rigau et al. do not povide a means of
tuning the weights of each heuristic. In some cases, knowledgesbd methods and
corpus-based methods are combined in an ensemble with simpleirngtmechanisms,
to perform WSD, like for example in the work of Montoyo et al. 715]. Ensemble-based
approaches rely on the hypothesis that WSD requires di®erentpes of knowledge
sources to achieve high performance.

An ensemble methodology with higher performance than the medd in [75] was
proposed by Brody et al. [17], who use an ensemble of 4 unsupervig¢fD methods
(a Lesk-like extended gloss overlap method, a lexical chainethod, the structural
semantic interconnections method of Navigli [78], a distribitnal and WordNet sim-
ilarity based method that learns predominant senses from raw e [65]) to boost
overall performance and perform unrestricted text WSD. The gthod combines un-
supervised methods, and uses their recommendations to reach al dacision. The
overall method does not have a classi er on top of the unsupervisewthods, and rec-
ommends senses and not WSD methods to be used. This ensemble agpgrof WSD
methods is similar to the supervised ensemble WSD method that weopose (consult
section 3.4), but it di®ers in that our ensemble recommends the 1 method that
should be used to disambiguate each word occurrence, instead afgmsing directly
the sense for each word.

Another interesting unsupervised knowledge-based approach thatilizes mea-
sures of semantic relatedness or similarity to perform WSD is theproach by Sinha
and Mihalcea [105]. They propose an unsupervised graph-basedthnd for WSD,
based on an algorithm that computes graph centrality of nodeis the constructed
semantic graph. To measure the centrality of the nodes, they usket indegree, the
closeness, the betweenness of the vertices in the graph, as welPageRank. They
also employ ve known measures of semantic similarity or relatedas to compute the
similarity of the nodes in the semantic graph, though the ideafaising measures of
semantic relatedness for performing WSD was initially empleg by Patwardhan et
al. [86]. The results of Sinha and Mihalcea are state-of-thetan the Senseval data
sets, and their method is directly comparable to our PageRank ethod. The main



2.1. WORD SENSE DISAMBIGUATION 15

di®erence lies in the constructed semantic networks, as we wik se detail in section
3.3.2.

2.1.2 Knowledge-based Supervised Word Sense Disambigua-
tion

Traditional supervised WSD methods use classi ers to predict theoorect term sense
from the context representation of the target word [87, 33, 5418]. In these methods
a separate classi er learns to disambiguate the occurrences ottkedemma (main
form of a word). A feature vector is constructed for each lemmaccurrence. The
features are binary declaring the existence or absence of ariiey lemma in a given
distance window from the target lemma occurrence. Supervis®dSD becomes really
hard to apply in this manner, since an ordinary document coltgion contains tens
of thousands of di®erent lemmas, leading to the construction aérts of thousands
of classi ers. Furthermore, these methods require at least one acence of the
target lemma in the training set to perform disambiguation, ad are inapplicable to
unrestricted text WSD. Moreover, their experimental evalugon is usually limited
to a small set of target lemmas (at most 72 in the lexical sample Ssval tasks).
Similar restrictions apply to WSD approaches that need at lest one occurrence of
each candidate sense in the manually annotated training comao[137].

More formally, the basic idea of those methods is to use binanaterres (F1; Fo; i1, Frn),
where eachF; suggests the existence or absence of a single word (or lemma) withi
a window of words to the left and the right of the target word, & for example shown
in [87]. Though there is no global consensus on the selection bé tappropriate fea-
tures in the WSD task, the features must be chosen carefully. Tineselection must
be based upon three facts characterizing the domain of WSD:)(RBi®erent parts of
speech have di®erent mean average polysemy, thus di®ering in ds@ambiguation
dizculty. Using di®erent features per POS, also depending on theumber of senses
a target word has may thus be desirable. (b) Many corpus-based theds, like the
heuristic that always selects the rst WordNet sense, are based on tliequencies
of the senses of the target words in a corpus. This means these frexcies inside a
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document and in the whole collection in general need to be ®dered. (c) The sense
of a word occurrence can only be decided by examining its cert, which was also
the base thinking for early and successful Lesk-like WSD approash

In recently proposed supervised methods for WSD, the constrasmthat did not
allow earlier supervised approaches to be applied to open texte relaxed, due to two
main reasons: (a) more generic features are used, and (b) ense&wldf approaches
are used to increase coverage. Towards this direction, Mihae& [67] presents the
SenselLearner WSD system, which can perform unrestricted text \WSwith very
high accuracy. The system builds di®erent semantic models forege ned di®erent
categories of terms, with a varying granularity of categorge and uses them to predict
the correct sense per term. SenselLearner can disambiguate ocges of only terms
that have appeared at least once in the training corpus, or haveeen covered by
the learned semantic models; Mihalcea uses the rst WordNet sense hstic for the
other term occurrences.

In the approach of Kohomban and Lee [49] WSD is based on the canstion
of coarse grained semantic classes. Di®erent classi ers learn to jmtethe correct
semantic class for each term, and predictions are combined wugia weighted major-
ity voting scheme. The suggested semantic class is consequentlypped into ner
grained senses based on heuristics. The accuracy of this methotjolw can perform
WSD of unrestricted text, is comparable to ne grained WSD.

Hoste et al. [40] propose a WSD method that trains classi ers for daword-POS
combination. To address the Senseval English all words taskthey had to train
596 classi ers, one for each word-POS pair combination. The meifth can perform
unrestricted text WSD, but has huge space complexity.

Le et al. [53] present a system that combines multiple classi ers perform WSD.
Their method is based on varying representations of each tatgerm's context for
each classi er. The classi ers' results are combined based on the Destgp-Shafer
theory of evidence.

In contrast to the aforementioned approaches, our supervisedsemble approach
described in section 3.4, decides on the appropriate base WSDtinogl to be used for
a term occurrence, and not on the correct sense, and since it usesupervised base
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methods, it can be easily applied to unrestricted text. We prode a comparative
analysis of the performance of the above methods in the Sende&and 3 benchmark
datasets, compared to our ensemble approach.

Finally, there are also some other approaches that can poteally disambiguate
unrestricted text, but they are computationally infeasible ér large amounts of text.
For example, the method of Mihalcea and Moldovan [68] searchéhe Internet to
“nd collocations of words in the glosses of the target terms andeighboring words to
perform WSD. This is computationally expensive due to the lgre number of internet
searches required.

2.1.3 Previous Use of SANs in WSD

Spreading Activation Networks (SANs) have already been used in ormation re-
trieval [26] and in text structure analysis [50]. Since the imbduction of semantic
networks by Quillian [90], several others [24, 15] have used sertic networks and
spreading of activation in WSD, but those approaches requiraéther ad hoc hand-
encoded sets of semantic features to compute semantic similest The most recent
attempt to use SANs in WSD, overcoming the aforementioned drawbk, is the work
by Veronis and Ide [131].

Figure 2.1 illustrates how SANs were applied to WSD by Veronis dride. Let W,
and W, be two words that co-occur (e.g., in a sentence or text) and wdh we want to
disambiguate. They constitute the network nodes (word nodeskgicted in theinitial
phaseof Figure 2.1; more generally, there would be word nodes, corresponding to
the n words of the text fragment. Next, all relevant senses &, and W, are retrieved
from a machine readable dictionary (MRD), and are added as des (sense nodes) to
the network. Each word is connected to all of its senses via edgeith positive weights
(activatory edges). The senses of the same word (eS)}4 and S;,) are connected to
each other with edges of negative weight (inhibitory edgesT.his is depicted asphase
1 in Figure 2.1. Next, the senses' glosses are retrieved, tokenizedd reduced to
their lemmas (base forms of words). Stop-words are removed. daagloss word (GW)
is added as a node to the network, and is connected via actiaay links to all sense
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Index: @ @
O = Word Node

= sense Node

f = Activatory Link

e
{ = Inhibitory Link

Initial Phase

Figure 2.1: A previous method to generate SANs for WSD.

nodes that contain it in their glosses§hase 2. The possible senses of the gloss words
are retrieved from the MRD and added to the network. The netwdx continues to
grow in the same manner, until nodes that correspond to a largeagi or the whole

of the thesaurus have been added. Note that each edge is bi-dtrenal, and each
direction can have a di®erent weight.

Once the network is constructed, the initial word nodes are #eated, and their
activation is spread through the network according to a spreauy strategy, ensuring
that eventually only one sense node per initial word node willdve a positive activa-
tion value, which is taken to be the sense the algorithm assigns tiee corresponding
word. Note that this approach assumes that all occurrences of éhsame word in
the text fragment we apply the algorithm to have the same sensehwh is usually
reasonable, at least for short fragments like sentences or paiaghs.

In section 3.3.1 we introduce a new spreading activation WSDgarithm, that is
based on a novel semantic network construction methodology ardnew spreading
activation strategy. An important di®erence from the semantic etwork construction
in [131] is that we also use sense-to-sense relations, while are raisidered in the
aforementioned approach. Furthermore, we do not make use dbgs-words. Experi-
ments on WSD benchmarks show that our SAN method outperforms ¢hmethod of
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Veronis and lde.

2.2 Representation of Text using Semantic Net-

works

The use of a word thesaurus o®ers rich semantic relations betweencepts and allows
representing texts as semantic networks, initially introduag by Quilian [89]. The
expansion of WordNet with semantic relations that cross parts afpeech has added
more possibilities of semantic network construction from text. Early approaches,
(e.g., Veronis and Ide [131]) used the gloss words in the term ditions in order
to build semantic networks from text. More recent approache® semantic network
construction from word thesauri, by Mihalcea et al. [70] and Nagli [78], utilize
the semantic relations of WordNet instead. These methods outgermed previous
methods that used semantic networks in thall words WSD tasks of Senseval 2 and
3 for English. In this thesis we adopt the semantic network consiction method
that we introduced in [121]. The method, which is explainedni detail in section
3.3.1, utilizes all of the available semantic relations in WdNet 2.0 (Appendix A).
Furthermore, we employ a novel weighting scheme for the edgamnecting the sense
nodes. WSD experiments show that the employed semantic netwagpresentation of
text can be processed with several node ranking algorithms (g.gctivation spreading,
PageRank), and that it outperforms previously proposed repsentations in WSD,
like the one introduced by Mihalcea [70]. Furthermore, in chpter 4 we introduce
our measure of semantic relatedness, which used the semantic neknmonstruction
method in order to de ne semantic relatedness between concepisd words.

2.3 Measuring Semantic Relatedness Between Words

Semantic relatedness between words has been exploited in past in text summa-
rization, text retrieval and WSD [18]. The three most important factors of semantic
graph based relatedness are: (a) length of the path connectitige senses, (b) the
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depth of the senses in the used hierarchical thesaurus, and (c) thmportance of
the thesaurus edges involved. In section 4.1 we present a new swa of semantic
relatedness (SR) [119] between WordNet concepts and we show hbvg expanded
to measure semantic relatedness between words and betweenggmiotis). To the
best of our knowledge, SR is the rst measure of semantic relatedisethat combines
the three aforementioned factors. In general, the measuresseimantic relatedness can
be roughly classi ed in dictionary-based (also found in the bildgraphy as knowledge-
based, or thesaurus-based), corpus-based and hybrid. Though SRl @miotis belong
clearly in the measures of the rst category, in the experimentavaluation we com-
pare them not only against all the state of the art dictionary-lased measures, but
also against some very important corpus-based and hybrid measures.

Regarding dictionary-based or hybrid measures that utilize thesaurus, the mea-
sure of Agirre and Rigau in [2] computes the relatedness betwesets of concepts
based on the concepts' density and depth and on the length of theastest path
that connects them. However, Agirre and Rigau assume that all edg in the path
are equally important. Resnik's [91] measure for pairs of cagts is based on the
information content (IC) of the deepest concept that can subsuenboth. Measures
proposed by Jiang and Conrath [45], Hirst and St-Onge [39], Leaak and Chodor-
row [55], and Lin [59] were based on similar ideas. The reader maish to consult
Budanitsky and Hirst [18] for a detailed discussion of most of the afmentioned
measures. All these measures use only the noun hierarchy, whereasmeasure de-
‘nes the semantic relatedness between any two terms, indepentlgrof their POS,
utilizing all available semantic links o®ered by WordNet.

Some other, more recent, interesting measures of semantic tethness, to which
we also compare in our experiments, are: the measures of Jarmasd &zpakowicz
[44], who use Roget's thesaurus to compute semantic similaritthe LSA measure
of Finkelstein et al. [32], who perform Latent Semantic Analysi (LSA) to capture
text relatedness; the methods of Strube and Ponzetto [113] ar@abrilovich and
Markovitch [34], who use Wikipedia to compute semantic relatiess; and nally the
method of Mihalcea et al. [66], which is a hybrid method comhbing knowledge-based
and corpus-based measures of text relatedness.
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2.4 Measuring Semantic Relatedness Between Text
Segments

Most of the aforementioned measures of semantic similarity orsflance or relatedness
can be applied to pairs of words; their expansion to measure thelatedness between
text segments requires an additional step. Though there are merous string kernels
than can measure the similarity between text segments by considey the string
similarities of the words inside the texts [132], the approaels in the bibliography
that can embed semantic similarity of words are few. A system thatan achieve the
thematic organization of Web documents (or text documentsni general) by taking
into account semantic information from a word thesaurus is THE3S [129], proposed
by Varlamis et al. THESUS relied on Wu and Palmer's similarity masure [135] to
cluster thematically a collection of documents. The noun hiarchy of WordNet was
employed and experimental evaluation with two clustering gbrithms (COBWEB
and DBSCAN) showed that the clustering of THESUS produced higher Fleasure
than the traditional VSM model with the cosine similarity measue. In our approach,
we use THESUS to de ne Omiotis, our measure of semantic relatednessnsen text
segments.

Besides THESUS, there are other approaches as well, that can s®=d to embed
a semantic similarity measure of words in a semantic similarity nasure of texts.
Towards this direction, in an analogy to string kernels, thereare semantic kernels
that exploit knowledge bases like WordNet. Basili et al. [7, 10Je ne a semantic
kernel that is applied to text classi cation. The measures of Wurad Palmer [135]
and Lin [59] have been tested with Basili et al.'s kernel and theesults presented
in [10], that were obtained for a text classi cation task with Reters, show that the
de ned kernel outperforms the linear kernel of Support VectoMachines (SVM). In
section 5.1 we present a new kernel, based on the kernel in [1G],dmbedding SR
as a measure of semantic relatedness. Experimental results showattm the same
text classi cation task the kernel performs even better, due tohe substitution of the
relatedness measure.

Mihalcea et al. [66] propose another way to use measures of sen@similarity for
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words to measure similarity between short text segments. Given tviext segmentsT;
and T,, with n; and n, words respectively, they compute the following score between
them:

W2Tl(mel’xSim(w;Tz) aid (w)) N P W2T2(mi':;‘t)xSim(w;Tl) aid (w))
war idF (W) wat2 1 (W)

Sim(TyTo) =

(2.1)
where maxSim(w; T;) is the maximum similarity found for the word w of T, with
any word of the same part of speech frori,, and id (w) is the inverse document
frequency of wordw in the collection. The THESUS formula that we use [129] is
similar to the above, but considers similarity between all combations of POS and
normalizes to the number of terms in each text segment.

Other existing approaches for measuring text semantic simil&yi use Web re-
sources. Cilibrasi and Vitanyi [21] propose the Google similaritgistance, which is
based on the page counts of word co-occurrences. Gabriloviaidaviarkovitch [34]
and Strube and Ponzetto [113, 88] rely on Wikipedia to compatsemantic relat-
edness between texts. Finally, there are also corpus-based a@uttes, like the the
one proposed by Islam and Inkpen [43], combining corpus-based itamity and string
similarity measures. These approaches, though o®ering high periance in many
interesting tasks, have high computational cost due to the needi@rocessing of huge
Web sub-graphs or the required training and tuning. In contrst, Omiotis is a fast,
unsupervised knowledge-based measure of semantic relatedness.

2.5 Word Thesauri and their Use in Text Applica-
tions

Word thesauri, like WordNet or Roget's International Thesaurs, constitute the
knowledge-base for several text-related research tasks. WordNwets been used suc-
cessfully as a knowledge base in the construction of Generaliaéttor Space Models
(GVSM) and semantic kernels for document similarity with appltation to text classi-
“cation, like in the work of Basili et al.[7], or our previous wak [63], and text retrieval,
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like in the work of Voorhees [133], and the work of Stokoe et.gl112]. Furthermore,
the idea of using a thesaurus as a knowledge base in text retrieveas also been
proven successful in the case of cross language information etal, like in the CLIR
system presented by Clough and Stevenson [22]. The design of a doent similarity
measure based on semantic kernels with application to informan retrieval and/or
text classi cation is a research challenge, since it involves iestigating the impact of
lexical ambiguity and WSD performance in those tasks. A short disssion follows
that sums up the current trends in evaluating the impact of amiguity in those tasks.

The most thorough investigation towards this direction, in ifiormation retrieval, is
probably by Sanderson [101] who concludes that ambiguity inords can be found in
many types, but new test collections are needed to realize theié importance of re-
solving ambiguity and using semantic relatedness measures andssedisambiguation
in the text retrieval task. Earlier, Sanderson [100] reportedhat even 90% accurate
WSD cannot guarantee retrieval improvement, though his exgsimental methodology
was based only on randomly generated pseudowords of varyingmers of words.
More precisely, he concluded that sense ambiguity is problenator IR only when
short queries are used. Similarly, Voorhees [133] reported eog in retrieval perfor-
mance when the retrieval model was based on WSD information.n@he contrary, the
construction of a sense-based retrieval model by Stokoe [112pnoved performance,
while several years before, Krovetz and Croft [51] had alrea@ointed out that resolv-
ing word senses can improve searches requiring high levels ole More speci cally,
their results revealed that under certain circumstances, infmation about the senses
of words may improve IR. Experiments on two document colleicns, CACM and
TIMES showed that word senses provide a clear distinction betweeelevant and
non-relevant documents, rejecting the null hypothesis thathte senses of the words
are not related to judgments of relevance. Also, they reachetid conclusion that
words being worth of disambiguation are either the words witluniform distribution
of senses, or the words that have a di®erent sense in the query frora thost popular
one.

From this small discussion it is evident that the impact of ambigity in IR has
raised a controversy that has been going on for almost two decadd-rom our point
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of view, and since we have re-examined and veri ed part of theauation conducted
by previous authors, like Krovetz and Croft [51] (consult Appedix D for our ndings
in ve small IR collections), the opinion of Sanderson [101] is pbably the most
representative and descriptive of the situation: we do not haveurrently the data
sets on which we can really evaluate the impact of lexical anghiity in IR. Besides
these conclusions, in section 5.1 we present a GVSM that embeds oRr1i8easure of
semantic relatedness into the text retrieval task, and we have@oducted experimental
evaluation on three TREC collections that shows slight impraement against the VSM
model [117].

Regarding the use of semantic information from word thesauri ithe text classi -
cation task, we shall brie°y describe the previous relevant woren embedding WSD
in document classi cation. The conclusions from the use of semamninformation in
text classi cation, in opposition to IR, are clear and compact, stting that seman-
tic information (e.g. WSD information) improves document tassi cation, especially
when the training sizes are small. In [115], a WSD algorithm bagen the general
concept of extended gloss overlaps is used and classi cation isfpened with an
SVM classi er for the two largest categories of the Reuters-25178llection and two
IMDB movie genres? It is demonstrated that, when the training set is small, the use
of WordNet senses together with words improves the performanoéthe SVM classi-
“cation algorithm; however for training sets above a certain ge, the WSD approach
is shown to have inferior performance compared to term-baseldgsi cation. In that
study, the semantic relations in WordNet were not exploited inle classi cation pro-
cess. Although the WSD algorithm that was employed was not testezkperimentally,
its precision was estimated with a reference to [6], since thetda work had a very
similar theoretical basis. The experiments conducted in the ti@r study in Senseval
2 lexical sample data, show that the algorithm exhibits low pr&sion (around 45%)
and thus may introduce much noise that may deteriorate the ovall performance in
a classi cation task.

In [11], Bloehdorn and Hotho experiment with various mapping from words to
senses including using the most frequent sense, as provided by Wéeti and using

2http://www.imdb.com
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WSD based on context. Their approach is evaluated on Reuter§278, OSHUMED
and the FAODOC corpus, providing positive results. Their WSD algrithm has

similar semantic information available as in the WSD algoritm proposed in [2], using
only hypernyms.

In [95], Rosso et al. utilize the supervised WSD algorithm propagen [74] in
k-NN classi cation of the 20-newsgroups dataset. The WSD algorithh they employ
is based on a Hidden Markov Model and is evaluated on Senseval 2tie English all
words task achieving a maximum precision of around 60%. On the classi cati task
of the 20-newsgroups dataset they report a very slight improvet in the error rate
of the classi cation algorithm. WordNet's semantic relations a not exploited in the
k-NN classi cation process.

Scott and Matwin [103] present an early attempt to incorporag semantics by
means of hierarchical thesauri in the classi cation process, ragiag negative results
on the Reuters-21578 and DigiTrad collection. While no disanguation algorithm is
employed, hypernyms are used to extend the feature space regaetation.

In section 5.1 we present two new di®erent ways of incorporatisgmantic infor-
mation from WordNet to the text classi cation task, namely a GVSM malel and a
semantic smoothing kernel. Our experimental evaluation agee with the reported
conclusions of previous works: semantic information from a wbrthesaurus, like
WordNet, can improve text classi cation performance, especigliwhen the training
sizes are small.

2.6 Generalized Vector Space Models

The Vector Space Model (VSM) assumes term orthogonality and, axplained in
the introduction, this assumption misses much information regding evidence of
similarity among document vectors. Research has been condutte formulate VSM
generalizations (GVSM) that attempt to take into account thepossible dependencies
among terms in the VSM. In the remaining of this section we expia in detail the
VSM and the GVSM.
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2.6.1 Vector Space Model

The VSM has been a standard model of representing documents ifformation re-
trieval for almost four decades [98, 128, 99, 5]. L& be a document collection and
Q the set of queries representing users' information needs. Let ats@ymbolize term

i used to index the documents in the collection, with = 1;::;n. The VSM assumes
that for each term t; there exists a vectort; in the vector space that represents it.
It then considers the set of all term vectorg tjg to be the generating set of the vec-
tor space, thus the space basis. If eadfy (for k = 1;::;p) denotes a document of
the collection, then there exists a linear combination of théerm vectorsf t;g which
represents eaclty in the vector space. Similarly, any queryg can be modelled as a
vector gthat is a linear combination of the term vectors.

In the standard VSM, the term vectors are considered pairwise ¢rbgonal, mean-
ing that they are linearly independent. However, this assumpdn is unrealistic, since
it requires lack of relatedness between any pair of terms, wieas the terms in a lan-
guage often relate to each other. Provided that the orthogatity assumption holds,
the similarity between a document vectody and a query vectorgin the VSM can be
expressed by the cosine measure given in equation 2.2.
i jn=1 dﬂq

COS(di‘;ﬂ)zq‘?'n > n o
iz O =1 G

(2.2)

wheredy; ; g are real numbers standing for the weights of term in documentd, and
query q respectively. A standard baseline retrieval strategy is to ranthe documents
according to their cosine similarity to the query.

2.6.2 Generalized Vector Space Model

Wong et al. [134] presented an analysis of the problems that thpairwise orthogo-
nality assumption of the VSM creates. They were the rst to address #se problems
by expanding the VSM. They introduced term to term correlatios, which depre-
cated the pairwise orthogonality assumption, but they kept theassumption that the
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term vectors are linearly independent, creating the rst GVSM mdel2 More specif-
ically, they considered a new space, where each term vectprwas expressed as a
linear combination of 2' vectors m,, r = 1::2". The similarity measure between a
document and a query then become as shown in equation 2.3, whgrand tj are
now term vectors in a 2 dimensional vector spaceg, g are the document and the
query vectors, respectively, as beforel]; ; § are the new weights, andh fhe new space
dimensionality. P, P

i
"o diges
coxdi9 = ¢t 0

=1
fi 2P o2

From equation 2.3 it follows that the term vectorst; and tj need not be known, as

(2.3)

long as the dependencies between termsand t; are known. If pairwise orthogonality
is assumed, the similarity measure is reduced to that of equatidh?2.

2.6.3 Semantic Information and GVSM

Based on the rst GVSM model described earlier, it is evident thathere are at least
two basic directions for embedding term to term relatedness side such a model:
(a) compute semantic correlations between terms, or (b) comm frequency co-
occurrence statistics of terms using large corpora. In this tes we focus on the
“rst direction to construct GVSM.

Several recent approaches have incorporated semantic im@tion in VSM. In
[63], we created a GVSM based on the use of noun senses, and their hypas
from WordNet. We experimentally showed that this can improvedxt categorization.
Stokoe et al. [112] reported an improvement in retrieval parmance using a senses-
based system. In [119] we show through another GVSM, presented intsst5.1, that
semantic information and the use of a GVSM can improve the retrval task. The lat-
ter approach di®ers from the aforementioned ones in that it pands the VSM model
using the semantic information of a word thesaurus to interprethe orthogonality of
terms and to measure semantic relatedness, instead of directlypl&cing terms with

31t is known from Linear Algebra that if every pair of vectors in a set of vectors is orthogonal,
then this set of vectors is linearly independent, but not the inverse.
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senses, or adding senses to the model, as we shall explain in detadhapter 4.



Chapter 3

Word Sense Disambiguation Using
WordNet

In this chapter we analyze the contribution of this thesis in V&D. Four new WSD
approaches are being proposed, that rely on the use of WordNetdsambiguate word
occurrences in a given text. Experimental evaluation on th8emCor corpus, and the
Senseval 2 and &ll English wordstask show that the proposed methods produce
state of the art results in the WSD bibliography. Regarding theselection of WordNet
as the thesaurus of this thesis, there has been a lot of researchrivtihat compares
experimentally the use of WordNet against other thesauri, like &yet's [76]. One of
these studies is the one by Hale [64], who has implemented seveeahantic similarity
measures using WordNet and Roget's thesaurus and has evaluatbée imeasures on
the Miller and Charles data set of word pairs similarities [72]The results show that
there are no major di®erences when using either of the two thesauHence, we
have chosen to use WordNet, since it is updated more frequentlytivinew senses
and relations than Roget's. Note however, that the aforememtned study also shows
that semantic similarity measures used with WordNet can be also usewith other
thesauri. Thus, the measures and algorithms de ned in the remaig of this thesis
can be easily adapted to work with other thesauri as well.

29
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3.1 Evaluating WSD Performance

The typical evaluation methodology of WSD uses some measuresnr information
retrieval, namely precision, recall, and the F1 measure. In addition,accuracy and
coverageare also used [79]. In the following, we will explain how these amires are
de ned in the context of WSD.

Given a data setT = (wy;::;;w,) consisting ofn word occurrences to be disam-
biguated, and given a functionW that maps anyw; 2 T to a sense of this word
from a dictionary D, then coverageC is de ned as the percentage of the attempted
answers (mappings) given byV, to the total number of the answers that should be
provided (n):

C= # answers (3.1)
n
In the same context,precision P is de ned as the percentage of correct answers

provided by W, with regards to the total answers given byw:

# correct

= _ - - 2
# answers (3:2)

Recall R is de ned as the percentage of correct answers provided By with
regards to the total number of answers that should be returned:

_ #correct
n

R (3.3)

Precision and Recall are usually combined to a single measure, tHel measure:

2PR
P+R

F1l= (3.4)
Finally, when the returned number of answers byV is equal ton (full coverage),
it is common in the WSD bibliography [42, 79] to use the notionfoaccuracy of W,
as the percentage of the correct answers with respectng70]; in this case precision
and recall are identical to accuracy.
With regards to the data sets used to evaluate WSD systems, the Sevedanitia-
tive has conducted four series of evaluation exercises (Seasdy 2, 3 and SemEval),
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| Senseval 2 | Nouns | Verbs | Adjectives | Adverbs | Total |
Mono. 260 33 80 91 464
Poly. 813 502 352 172 1839
Av. Poly. 4.21 9.9 3.94 3.23 5.37
Av. Poly. (Poly. only) 5.24 10.48 4.61 441 6.48
| Senseval 3 |
Mono. 193 39 72 13 317
Poly. 699 686 276 1 1662
Av. Poly. 5.07 11.49 4.13 1.07 7.23
Av. Poly. (Poly. only) 6.19 12.08 4.95 2.0 8.41
| SemCor |
Mono. 16990 | 2584 9854 7831 | 37259
Poly. 70432 | 45117| 24981 11878 | 152408
Av. Poly. 4.49 10.74 4.26 2.77 5.84
Av. Poly. (Poly. only) 5.33 11.29 5.55 3.93 7.02

Table 3.1: Occurrences of polysemous and monosemous words ofdMet 2 in Sen-
seval 2, 3 and SemCor.

where the given data sets were manually annotated with the aact senses by human
annotators using WordNet! In each of these competitions there were many di®erent
tasks for several languages, with two of the most important oneging the English all
words and the English lexical samplagasks. The data sets of the rst task are widely
used as benchmarks for WSD systems that can be applied to unrested text, while
the data sets of latter task can be used with systems that only disanguate of a set of
few designated (target) words. Since we will be using thienglish all wordsexercises
from Senseval 2 and 3 to evaluate the proposed algorithms, in tak3.1 we present
the statistics of those data sets, including average polysemy of s, both with (Av.
Poly.) and without (Av. Poly. (Poly. only)) taking into accou nt monosemous words.
We have also included an additional corpus that we adopt for eluation, the SemCor
corpus [71], which is larger than the data sets of the Sensevakgecises and it is often
used for the training of supervised WSD methods.

The table shows the number of monosemous (one sense given from dMmt)

thttp://www.senseval.org/
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and polysemous (more than one sense given from WordNet) word oaemces in the
three data sets. Senseval 2 is easier to disambiguate than Sens8yals the average
polysemy is larger in the latter. Adverbs are very easy to disantdpiiate and are usually
excluded from the evaluation (i.e. Senseval 3 has only 13 adveoccurrences with
average polysemy close to 1). The verb POS is the most ditcult to shmbiguate,
since a typical verb has more than 8 di®erent senses from WordNet.

Regarding the lower and upper bounds of WSD methods in thosetdasets, a
straightforward lower bound is to select randomly a sense for éaword occurrence.
This disambiguation method would produce an accuracy of arad 20% for Senseval
2 and SemCor, and 14% for Senseval 3. A reasonable upper boursdstated in [79],
would be the interannotator agreement or intertagger agregent (ITA), that is, the
percentage of words tagged with the same sense by two or more hunaanotators.
The interannotator agreement on coarse-grained (lexicongtitv few and clearly dis-
tinct senses for each lemma are used), possibly binary (two senseslpmma), sense
inventories is calculated around 90% [35, 80], whereas on -geined, WordNet-style
sense inventories, where there are many senses per lemma and warehoften hard
to distinguish, the inter-annotator agreement is estimated keeen 67% and 80%
[20, 108, 82]. Similar ndings have been reported, regardinige human performance
in distinguishing among ne-grained and among coarse-grainechses of English word
occurrences [37]. In the following sections, for each introcked method we present its
performance on the data sets of table 3.1. The reader is requebtto keep in mind
the upper bound.

3.2 Compactness-based Word Sense Disambigua-
tion

In this section we present an unsupervised WSD method, that we fially introduced

in [62] and thoroughly evaluated in [63]. The algorithm canmy disambiguate nouns
and it is based on the intuition that adjacent terms extractedfrom a text document
are expected to be semantically close to each other. Given a sétadjacent terms,
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our disambiguation algorithm considers all the candidate setsf senses and output
the set of senses that exhibits the highest level of semantic reddihess. Therefore, the
main component of the algorithm is the de nition of a semanticempactness measure
for sets of senses.

Assuming that a document is represented by a set of senses, the semaotim-
pactness measure that we introduce for WSD implies a similarityotion either among
the senses of a sense set or between two sense sets. Its computationssdan the
notion of Steiner Tree. Given a set of graph vertices, the SteinTree is the smallest
tree that connects the set of nodes in the graph. The formal deition of the Steiner
Tree is given below.

De nition 1  Given an undirected graphG = (V;E), and a setS u V , then the
Steiner Tree is the minimal tree ofG that contains all vertices ofS.

The use of the Steiner Tree in the formulation of semantic comptess stems from
the fact that in most of the previous related approaches [459591] the distance or
similarity measure depend on the size of the shortest path that cnacts two concepts
through a common ancestor in the hierarchy, or on the largest gih of a common
ancestor in the hierarchy. The deepest common ancestor of a setsehsesS will be
denoted aslca(S). Note, however, that in WordNet it is not always the case that a
Ica(S) exists for S. In this case, the method cannot disambiguate the respective set
of words. The de nition of semantic compactness of a set of sen&follows.

De nition 2  Given a Hierarchical Thesaurus (HT) O and a set of sense§ =
fsy;:8,09, wheres; 2 O, the compactness of is de ned as the cost (weight) of
the Steiner Tree ofS[ Ica(S), such that there exists at least one path from eashto
the Ica(S).

In the de nition above we include one path for every sense to thedst common
ancestor Ica(S). The reason for imposing such a restriction is that the distance
between two concepts in a HT is not de ned as the shortest path thatonnects them
in the HT, but rather as the shortest path that goes through a commin ancestor of
a set of conceptsS in which these two concepts belong to. Thus, it can be argued
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that two concepts are connected only through a common ancestand not through

any other path in the HT. Including in the graph Ica(S) (and a path between every
concept and thelca(S)) guarantees that a path connecting all pairs of conceptsn(i
the sense discussed earlier) exists.

Although in general the problem of computing the Steiner Treés NP-complete,
the computation of the Steiner Tree (with the restriction impsed) of a set of concepts
with their Icain a HT is computationally feasible and it is reduced to the comytation
of the shortest path from thelca to every concept of the set. Another issue, potentially
adding excessive computational load, is the large number ofrgbinations of possible
sets of senses, when a term set of large cardinality is considereddisgambiguation.
In order to address this issue, we reduce the execution time by sgathe search space
non-exhaustively with the use of a simulated annealing algohin [25]. The proposed
WSD algorithm can then be formulated as follows, given the deition of semantic
compactness from de nition 2.

Algorithm 1 requires a parameterT which is essentially the upper bound of the
number of combinations of senses to be examined. In the expeeimtal evaluation we
set T = 10000. Another (implicit) parameter is the size of the windowof adjacent
word occurrences\(V). Though a straightforward solution would be to truncate the
text into sentences, experimental studies have shown that the siof the window is
important in the disambiguation process [4]. Thus, in the expé@nents that follow, a
parameterw declares the size of the considered windows.

Furthermore, since WordNet's noun hierarchy is actually a fast of nine trees
with no common root the computation of the compactness is nothaays feasible,
since for a given set of sense3, Ica(S) may not exist. To address this problem,
we compute the windows compactness separately for each one lt# hine trees of
WordNet's noun hierarchy, and we sum the compactness scores wéaaito compute
an overall compactness score. The number of allowed separatee that the senses
in S may belong to, is parameterized withL, where a value ofL = 0 means that
we will allow the computation of compactness only in the case dlhthe senses, from
the examined combinations, belong in the same WordNet noun tre®espectively, a
value of L = 1 means that the senses may belong to at most two di®erent WordNet
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Algorithm 1 WSD-Semantic-Compactness(O,W,T)
Require: A word thesaurusO, a sequence of adjacent word occurrencés and a

given positive constantT
Ensure: A mapping M of W to sensesS or failure

1: MinCompactness = MAXIMUMPOSITIVEINTEGER
M =NULL
S[i]= select randomly a senseé of w; 2 W
tempCompactness = compactness)
if tempCompactness< MinCompactnessthen
MinCompactness = tempCompactness
M = assignments of senses to words of step 3
end if
while T > 0do
S = nextCombinationOfSenses{V)
T=T; 1
tempCompactness = compactness)
if tempCompactness< MinCompactnessthen
MinCompactness = tempCompactness
M = assignment of senses to words of step 10
else

p=¢

M = assignment of senses to words of step 10 with probabilify
19:  end if
20: end while
21:if M 6 NULL return M else return failure

e

(tempCompactness i MinCompactness )
T

B
® N

trees, and so on and so forth.

Experimental Evaluation

In gure 3.1 we present the results of algorithm 1 on the SemCor (Bwn Corpus 1 and
2) and the Senseval 2 and 3 data sets for various settings of thegmetersW and L.
The white bars indicate precision and the black bars coverag®nly the nouns were
considered in all data sets. The results are sorted in decreasingl@r of precision.
The precision and coverage values reported do not take intocaunt the monosemous
nouns, but only the ambiguous ones. We can estimate, based on txamined corpora
statistics, that the inclusion of the monosemous nouns would inease precision by 3%
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Figure 3.1: Performance of compactness in SemCor, Sensevah@ &enseval 3 nouns.

to 4%; coverage would increase by almost 22%. Hence, compact@ebseves precision
greater than 80% with an associated coverage of more than 25%ionosemous
(i.e., non-ambiguous) nouns are also taken into account. Cow@able experiments,
including monosemous nouns, conducted in [3] reported a topegision result of 64,5%
with an associated coverage of 86,2%. Similar experiments daoted in [114, 6, 74]
resulted as well in lower precision than compactness. Compariogir approach to

the state of the art WSD algorithms that were submitted to theEnglish All Words

task in Senseval 2[83] and 3[108], we observe that our approaen de con gured to

exhibit the highest precision for the noun POS. Of course the appach has two major
problems: (a) it can only disambiguate nouns, and (b) precisionrdps dramatically

if full coverage is achieved for large values of tHeparameter. For this reason, we
have extended the ideas of using semantic information from WiiXet to disambiguate

text by constructing semantic networks, and we have developecetber algorithms for

WSD, explained in the following sections, that solve the aforeantioned problems.
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3.3 Word Sense Disambiguation Using Semantic
Networks

In modern thesauri like WordNet 2.0, there are many semantic lks between senses,
which allow semantic networks to be constructed from text, axplained in section 2.2.
Previous WSD approaches, however, have not considered thd fainge of semantic
links between senses in a thesaurus. In [6] a larger subset of sentanélations
compared to previous approaches was used, but antonymy, damdomain terms and
all inter-POS relations (e.g., linking noun senses to verb seis3avere not considered.
Similarly, other recent approaches like [70] and [77] consida wide range of WordNet
relations, but not the full range. Also, when constructing semait networks, the
weights of the edges are important, as pointed out in previgustudies [114, 131].

In the next two sections we present two new WSD methods, SANs thatabased
on spreading of activation, and a PageRank-based approach. tBONSD systems
are based on a semantic network construction method that we imtduced in [121].
The edges in the semantic network are weighted and the full rga of the WordNet
semantic relations is considered. Experimental evaluatiomahe two Senseval data
sets and SemCor shows that the two methods' performance is statetloe art with
respect to knowledge-based unsupervised methods. Moreover, BegeRank-based
method has the highest reported accuracy compared to any othgngle (no ensem-
bling) unsupervised knowledge-based method in all the testedtdasets.

3.3.1 Word Sense Disambiguation with Spreading Activation
Networks

The following WSD method we have developed requires no trang and can disam-
biguate all words in a given text. WordNet is used to construct Spading Activation
Networks (SANSs), initially introduced in WSD by Quillian [90]. The innovative points
of this new WSD algorithm are: (a) it explores all types of senmaic links, as provided
by the thesaurus, even links that cross parts of speech, unlikeemious knowledge-
based approaches, which made use of mainly the \is-a" and \has-parelations; (b)



38 CHAPTER 3. WORD SENSE DISAMBIGUATION USING WORDNET

Synonym |:| So1
- i Holonym S3.1

f Attribute,
| Hypernym -

Antonym —y
-'D

~wa
SN ——

Initial Phase Expansion Round 1

&
Index: O =WordNode ~[J= Sense Node (—: Activatory Link .‘ = Inhibitory Link

Figure 3.2: Our method to construct SANSs.

it introduces a new method for constructing SANs for the WSD taskand (c) it in-
troduces an innovative weighting scheme for the networks' edsg, taking into account
the importance of each edge type with respect to the whole neivk.

SAN Creation

For the construction of SANs we only consider the words of each sente that are
present in WordNet. We also assume that the words of the text have ée tagged
with their parts of speech (POS). For each sentence, a SAN is constted as shown
in gure 3.2. For simplicity, in this example we kept only the nains of the input
sentence, though the method disambiguates all parts of speedte sentence is from
the dOO Te of the Senseval 2 data set:

\If both copies of a certain gene were knocked out, benignpolyps would
develop.”

To construct the SAN, initially the word nodes, in our case the nousmcopies
geneand polyps along with their senses are added to the network, as shown in the
initial phase of gure 3.2. The activatory and inhibitory links are then added, but
after this point the SAN grows in a very di®erent manner compadeto Veronis and
Ide. First, all the senses of the thesaurus that are directly lirdd to the existing
senses of the SAN via any semantic relation are added to the SAN, ajowith the
corresponding links, as shown imxpansion round lof gure 3.2. Every edge is bi-
directional, since the semantic relations, at least in WordNet,ra bi-directional (e.qg.
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if S; is a hypernym ofS,, S, is a hyponym ofS;). In the next expansion round, the
same process continues for the newly added sense nodes of theipuswound. The
network ceases growing when there is a path between every pairthe initial word
nodes. Then the network is considered a®nnected If there are no more senses to
be expanded and the respective SAN is not connected, we canndtainbiguate the
words of that sentence, losing in coverage. Note that when addirsense nodes, we
use breadth- rst search with a closed set, which guarantees we dot et trapped
into cycles.

The Spreading Activation Strategy

The procedure above leads to networks with tens of thousandsrmdes, and almost
twice as many edges. Since each word is eventually assigned isstractive sense,
great care must be taken in such large networks, so that the activan is exciently
constrained, instead of spreading all over the network [26].

Our spreading activation strategy consists of iterations. The rdes initially have
an activation level 0, except for the input word nodes, whose t@ation is 1. In
each iteration, every node propagates its activation to itsieighbors, as a function
of its current activation value and the weights of the edgeshat connect it with
its neighbors. We adopt the activation strategy introduced byBerger et al. [8],
modifying it by inserting a new scheme to weigh the edges, which discussed in
the next section. More speci cally, at each iteratiorp every network nodej has an
activation level A; (p) and an output O; (p), which is a function of its activation level,
as shown in equation 3.5.

Oj(p) = f (A () (3.5)

The output of each node a®ects the next-iteration activatiorlevel of any nodek
towards which nodej has a directed edge. Thus, the activation level of each netvior
nodek at iteration pis a function of the output, at iteration pj 1, of every neighboring
nodej having a directed edgesy, as well as a function of the edge weightV;, , as
shown in equation 3.6. Although this process is similar to the agttion spreading of
feed-forward neural networks, the reader should keep in mintidt the edges of SANs
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are bi-directional (for each edge, there exists a reciprooadige). A further di®erence
is that no training is involved in the case of SANs.

X
AP = Oi(pi 1) Wi (3.6)

j
Unless a function for the outputO is chosen carefully, after a number of iterations
the activation °oods the network nodes. We use the function of eqtion 3.7, which
incorporates fan-out and distance factors to constrain the @igation spreading; ¢, is

a threshold value. 8
<0 JIEA(P) <¢
o= _ Y (3.7)
L ood ¢A;(p) ; otherwise

Equation 3.7 prohibits the nodes with low activation levelsfrom in°uencing their
neighboring nodes. The factoﬁ diminishes the in°uence of a node to its neighbors
as the iterations progress (intuitively, as \pulses" travel futher). Function F; is a
fan-out factor, de ned in equation 3.8. It reduces the in°uene of nodes that connect
to many neighbors.

F=i ) (3.8)

Cr is the total number of nodes, andC; is the number of nodes directly connected
to j via directed edges fronj .

Assigning Weights to Edges

In information retrieval, a common way to measure a token's iportance in a doc-
ument is to multiply its term frequency in the document (TF ) with the inverse (or
log-inverse) of its document frequencylDF ), i.e. with the number of documents the
token occurs in. To apply the same principle to the weighting foSAN edges, we
consider each node of a SAN as corresponding to a document, andheigpe of edge
(each kind of semantic relation) as corresponding to a token.

Initially each edge of the SAN is assigned a weight ¢f1 if it is inhibitory (edges
representing antonymy and competing senses of the same word)lof it is activatory
(all other edges). Once the network is constructed, we multiplthe initial weight w;
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of every edges; with the following quantity:
ETF (eq) ¢INF (&) (3.9)

ETF, de ned in equation 3.10, is the edge type frequency, thegaivalent of TF. It
represents the percentage of the outgoing edgeskdhat are of the same type ay; .
When computing the edge weights, edges corresponding to hypgn and hyponym
links are considered of the same type, since they are symmetricheTintuition behind
ETF is to promote edges whose type is frequent among the outgoindges of node
k, because nodes with many edges of the same type are more likelypé hubs for the
semantic relation that corresponds to that type.

jfedjtype(ed) = type(eq)aj

ST if aqai

(3.10)

The second factor in equation 3.9, de ned in equation 3.11, iké inverse node fre-
quency (NF ), inspired by IDF. It is the frequency ofe;'s type in the entire SAN.
N +1
INF (&) =log —— (3.11)
nype(ekj )

N is the total number of nodes in the SAN, anNyype(e, ) IS the number of nodes that
have outgoing edges of the same type ag. As in IDF, the intuition behind INF is
that we want to promote edges of types that are rare in the SAN.

The WSD Algorithm

Our WSD algorithm consists of the steps shown in algorithm 2, gimea POS-tagged
text, a designated set of parts of speech to be disambiguated, aadvord thesaurus.
Note that during the spreading of the activation, activation speads iteratively until
all nodes are inactive. For every word node, eventually the sense node with the
highest activation is kept. If there is more than one sense noddtiwthis property
per word, we select randomly. This never occurred in our experents.

2In equation 3.7, O; (p) is bounded, because ap increases it approaches 0. Eventually, all nodes
become inactive.
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Algorithm 2~ WSD-SAN(O,T,P)
Require: A word thesaurusO, a part of speech tagged texT, and a set of designated
parts of speech for disambiguatior .
Ensure: A mapping M of all word occurrencesV of T to sensesS or failure
1. Sen= fragmentTextintoSentences(T)
for all Seni] do
W |i] = keepWordsOfDesignatedPOS$eni],P)
end for
for all W[i] do
G = constructSANForSetOfWords(W[i],0)
if G is a connected graphhen
spreadActivation(G)
S[i] = getMostActiveSenseNodesForWords,W [i])
else
S[i] = NULL
end if
: end for
: M =map(W,S)
: return M

e i el =
a s~ wN PP O

Experimental Evaluation

We evaluated our algorithm on Senseval 2, 3 and SemCor. Priar presenting the
results from all data sets, and for reasons of straightforward cgurarison with other
methods, we will rst present a comparative evaluation in Senseiv2. We experi-
mented with all parts of speech, to be compatible with all puldhed results of Senseval
2 [83].

In order to compare our WSD method to the method of Veronis antte [131],
we implemented the latter and evaluated it on Senseval 2. Wesal include in the
comparison the baseline for unsupervised WSD methods, i.e., thesggnment of a
random sense to each word. For the baseline, the mean average @fekecutions
(random assignments) is reported. Moreover, in order to evalteathe possibility
of including glosses in our method, instead of only synset-to-syhgelations, we
implemented a hybrid method which utilizes both, by adding® our SANs the gloss
words of the synsets along with their senses, similarly to the metloof Veronis
and Ide (section 2.1.3). For the purposes of this implementain, as well as for the
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Words SAN SAN Glosses SAN Baseline Best Unsup. | Pagerank

Mono | Poly Synsets | Veronis and Ide Syn.+Glosses Senseval 2 Mihalcea

File 1 (d00O) 103 552 0.4595 0.4076 0.4396 0.3651 UN/A 0.4394
File 2 (d01) 232 724 0.4686 0.4592 0.4801 0.4211 UN/A 0.5446
File 3 (d02) 129 563 0.5578 0.4682 0.5115 0.4303 UN/A 0.5428
Overall 464 1839 0.4928 0.4472 0.4780 0.4079 0.4510 0.5089

Table 3.2: Overall and per Te accuracy on the Senseval 2 data set

implementation of the original method of Veronis and lde, waised the Extended
WordNet [73], which provides the POS tags and lemmas of all WiNet 2 synset
glosses. In the comparison, we also include the results presentedMipalcea et al.
[70]. Their method is an unsupervised knowledge-based WSD meth evaluated
on Senseval 2; the method uses thesauri-generated semantic oeks, along with
Pagerank for their processing. We also report the accuracy ofehbest reported
unsupervised method that participated in the Senseval 2Bnglish all word$ task,
presented in [60].

Table 3.2 presents the accuracy of the six WSD methods, on the && les of
Senseval 2. The presented accuracy corresponds to full coveragnd hence recall
and precision are both equal to accuracy. The results in TableZ3suggest that our
method outperforms that of Veronis and Ide, the hybrid methd, and the random
baseline. Moreover, our method achieved higher accuracy ththe best unsupervised
method that participated in Senseval 2, and overall slightlydwer accuracy than the
reported results of Mihalcea et al. [70].

Figure 3.3 shows the corresponding overall results for the foorethods we imple-
mented, when accuracy is computed only on polysemous word®. iexcluding triv-
ial cases, along with the corresponding 0.95 con dence intersal There is clearly
a statistically signi cant advantage of our method (Synsets) oveboth the base-
line and the method of Veronis and lde. Adding WordNet's glosse® tour method
(Synsets+Glosses) does not lead to statistically signi cant di®eremdoverlapping
con dence intervals), and hence our method without glosses istte, since it is
simpler and requires lower computational cost, as explainedtér. The decrease in
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Figure 3.3: Accuracy on polysemous words and the respective ®@&n dence inter-
vals.

performance when adding glosses is justi ed by the fact that mangf the glosses'
words are not relevant to the senses the glosses express, and thus uke of glosses
introduces irrelevant links to the SANSs.

Figure 3.3 does not show the corresponding results of Mihalcelaag's method,
due to the lack of corresponding published results; the same amdito the best
unsupervised method of Senseval 2. We note that in the results pemted by Mihalcea
et al., there is no allusion to the variance in the accuracy ofheir method, which
occurs by random assignment of senses to words that could not beainbiguated,
nor to the number of these words. Thus no direct and clear statemtecan be made
regarding their reported accuracy. In Figure 3.4 we comparde accuracy of our
method against Mihalcea et al.'s on each Senseval 2 Te. In thisase we included all
words, monosemous and polysemous, because we do not have result¥litealcea et
al.'s method on polysemous words only; the reader should keepmind that these
results are less informative than the ones of Figure 3.3, besauthey do not exclude
monosemous words. There is an overlap between the two con denatervals for 2
out of 3 Tes, and thus the di®erence is not always statistically gigcant.

Regarding the best unsupervised method that participated in $seval 2, we do
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Figure 3.4: Accuracy on all words and the respective 0.95 conmiee intervals.

| POS | Senseval 2| Senseval 3| SemCor |
NOUN 0:5396 0:5078 0:5086
VERB 0:3177 0:3641 0:3512
ADJECTIVE 0:5902 0:5804 0:5576
ALL 0:4928 0:4676 0:4859

Table 3.3: Overall and per POS accuracy of SANs in the three datets.

not have any further information apart from its overall accuacy, and therefore we rest
on our advantage in accuracy reported in table 3.2. Finallyyve note that to evaluate
the signi cance of our weighting, we also executed experimentithout taking it into
account in the WSD process. The accuracy in this case drops by a@sh 1%, and the
di®erence in accuracy between the resulting version of our methand the method of
Veronis and Ide is no longer statistically signi cant, which ilistrates the importance
of our weighting. We have also conducted experiments in Sengke8, where similar
results with statistically signi cant di®erences were obtainedour method achieved
an overall accuracy of around 46%, while Ide and Veronis aekied 397%. In table
3.3 we present the results of the SANs method in Senseval 2 and 3, adl\as in
SemCor. The table shows the performance of the method per POS.
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Measurement| SAN SAN Glosses SAN
Synsets | Veronis and Ide | Synsets+Glosses
Nodes/Net. 10,643.74 6,575.13 9,406.04
Edges/Net. 13,164.84 34,665.53 37,181.64
Pulses/Net. 166.93 28.64 119.15
Sec./Net. 13.21 3.35 19.71

Table 3.4: Average actual computational cost.

Complexity and Actual Computational Cost

Regarding the complexity and the computational costs of SANs,tlk be the max-
imum branching factor (maximum number of edges per node) inwaord thesaurus,
| the maximum path length, following any type of semantic link,between any two
nodes, andn the number of words to be disambiguated. Since we use breadth-
‘rst search, the computational complexity of constructing eachSAN (network) is
O(n¢k'*1). Furthermore, considering the analysis of constrained spreiad activation
in [94], the computational complexity of spreading the actiation is O(n??*3). The
same computational complexity gures apply to the method of \fenis and Ide, as
well as to the hybrid one, althoughk and | di®er across the three methods. These
“gures, however, are worst case estimates, and in practice we measumuch lower
computational cost. In order to make the comparison of these tee methods more
concrete with respect to their actual computational cost, tale 3.4 shows the aver-
age numbers of nodes, edges, and iterations per network (sewm@nfor each method.
Moreover, the average CPU time per network is shown (in secondsyhich includes
both network construction and activation spreading. The avexge time for the SAN
Synsets method to disambiguate a word was 1.37 seconds. Table shdws that our
method requires less CPU time than the hybrid method, with wltih there is no statis-
tically signi cant di®erence in accuracy; hence, adding glossesour method clearly
has no advantage. The method of Veronis and Ide has lower comgtional cost, but
this comes at the expense of a statistically signi cant deteriotion in performance.
Mihalcea et al. provide no comparable measurements, and thug wannot compare
against them; the same applies to the best unsupervised method @nSeval 2.
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3.3.2 PageRank-based Word Sense Disambiguation

In order to investigate further the potential of the semantic epresentation that we
introduced earlier, we designed another WSD algorithm that ses the representa-
tion of the SANs method and processes the constructed networks wiPageRank.
The PageRank formula that we used is a simple variation of the iginal PageRank
equation, which takes into account edge weights as well. TEhivariation was rst
introduced by Mihalcea et al. in [70]. Equation 3.12 shows theriginal PageRank
formula and equation 3.13 shows its weighted variation that @ use to process the
networks. S(Vi) (and W S(V;) respectively) is the PageRank value of verte¥,, d is
the damping factor, Out(V;) is the number of outgoing links from vertexV; and w;

is the weight of the edge connecting verticeég and V.

o X S(V)
S(Vi)=(j d)+ d. UtV (3.12)
j2In (Vi)
X We
WS(V)=(1j d)+d =) J WS(V,) (3.13)

v, 21n (Vi) vizout (v, ) Wik

Algorithm 2 can then be easily modi ed to process the constructedetworks with
equation 3.13, instead of spreading of activation. As a dumpirfgctor (d) we set 085,
as in the original formula by Brin and Page [16]. After the Pageank values stabilize,
the sense nodes with the highest PagerRank scores for each tangetd are selected
to disambiguate each word occurrence. The complexity of thestwork construction
was discussed in the previous section.

Experimental Evaluation

To evaluate the performance of this new PageRank-based WSDyatithm, we ex-
perimented with Senseval 2, 3 and SemCor. Table 3.5 shows thewacy of our
method for all POS in the three data sets. The proposed PageRabksed algorithm
surpasses (with statistical signi cance at the ®5 con dence level) both our SANs
method [121] and the method of Mihalcea et al. [65]. To the besf our knowledge,
this method is currently the best performing unsupervised kndedge-based method,
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| POS | Senseval 2| Senseval 3| SemCor |
NOUN 0:6439 0:5728 0:6137
VERB 0:3271 0:4179 0:4216
ADJECTIVE 0:5810 0:5459 0:6355
ALL 0:5475 0:5109 0:5633

Table 3.5: Overall and per POS accuracy of PageRank in the te data sets.

when no ensembles of several methods are used.

3.4 Ensemble of WSD Methods

The interannotator agreement in the Senseval competitiongnges from 67% to 80%
[79]. As shown in the previous sections, the state of the art in unsegprised knowledge-
based WSD methods reaches up to approximately 55%. In order ¢tose the perfor-
mance gap between automated WSD algorithms and theoretidallman performance
(interannotator agreement) several supervised WSD methods\vebeen proposed in
the past, that utilize machine learning technniques to learthe correct sense of each
word occurrence, as discussed in section 2.1.2.

In this section we propose a new supervised WSD method based on asesnble
of unsupervised knowledge-based methods. More precisely, inertb address the
knowledge acquisition bottleneckroblem, without the need for extensive training,
which typically requires manual annotation e®ort, we combaseveral Wordnet-based
WSD approaches, which do not require training. Training is iguired only for deciding
which method to trust per word occurrence. Consequently the WS problem for a
word occurrence splits into two separate decision problems: a)drihe degree of trust
for each WSD method per term occurrence based on a set of termtégas and, b)
decide on the method that will disambiguate the target term oxurrence.

For the trustfulness problem we use one Support Vector Machin&YM) classi er
for each WSD method. For a word occurrence, the classi er exarema small set of
lexical and syntactic features and decides how much we shouldist the respective
WSD method (the positive class stands fotrust, while the negative one fordo not
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Figure 3.5: Overall System Organization.

trust) for the disambiguation of the particular word occurrence. W combine the
classi ers' decisions using a simple arbiter-based voting mechanjsamd we choose
the prevailing method to disambiguate the given word occurree.

A major advantage of this method is its °exibility, since the malules of each level
(see gure 3.5) can be enhanced or replaced by others, as we shothéexperiments:
a) the base WSD methods can be either supervised or unsupervisefdiihe number
of the base WSD methods and the respective classi ers can be ina@@dor decreased,
c) di®erent types of classi ers (e.g., SVM, Maximum Entropy) canédemployed.

System Overview

The proposed WSD system combines the merits of three WordNet-bdsé&/SD meth-

ods in order to raise the overall WSD accuracy. The overall systeorganization is
shown in gure 3.5, where the two dotted levels do not have any eé for training.

The system can disambiguate any word occurrence, provided thesd occurs in the
lexicon, without restrictions (i.e., in context or part of spech). Each WSD method
in the lowest layer gives a candidate sense for the term. A set ofiss$i ers, in the
middle layer, examines speci ¢ features of the term and prodes a binary decision
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| POS | Senseval 2| Senseval 3| SemCor |
NOUN 0:711 0:6972 0:7851
VERB 0:4253 0:524 0:6131
ADJECTIVE 0:6759 0:6724 0:813
ALL 0:637 0:613 0:7425

Table 3.6: Overall and per POS accuracy of FS in the three datets.

(trust or do not trust) for each WSD method. The nal decision is drawn at the top
layer, where the prevailing WSD method is selected from the semble using a simple
arbiter-based voting formula that does not require any type faraining.

The details of the classi ers' training, the selected set of featas and the ensem-
bling mechanisms are presented later. The three lexicon-base@thods we employ
are the Spreading Activation Networks (SAN) introduced in sectio 3.3.1, a simple
baseline method that always selects the rst (most frequent) sengei WordNet (FS)
and is usually the baseline for supervised WSD methods, and nalljh¢ PageRank-
based method (PR) introduced in section 3.3.2, which constitas a combination of
SAN and the method presented in [70].

Knowledge-based WSD Methods

The main requirements for the suggested WSD system, in order tohaeve high
disambiguation performance are: (1) the base methods shouldopide state of the
art performance, and (2) they should have low level of pairwisater-agreement in
their disambiguation result, so that each method can act as a cqiement to the rest.
In simple words, performance is high when at least one of the WSDethods in the
lower layer gives the correct sense, and when the WSD methodseafdisagree. In
this section we explain why the selected three WSD methods mdsith conditions.
Prior to that, we explain the FS method in detail. This simple,yet powerful heuristic,
is used as a baseline in supervised WSD. As McCarthy et al. [65] roatil, FS is so
powerful because the distribution of word senses is often skewélte most probable
sense is dominant. For example, in 63% of the word occurrences of Senseval 2 and
61:3% of Senseval 3, the correct sense is the rst WordNet sense. Table $héws the
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Figure 3.6: Pairwise methods inter-agreement in sense level.

performance per POS of the FS method in the three data sets. CiBaFS surpasses
both the SANs and the PR method in performance. It relies, howeweon statistics
from annotated corpora that the WordNet developers analyzetd rank the senses by
decreasing frequencies, and in that sense FS is supervised, wrefaNs and PR are
unsupervised.

All three methods, however, have very high performance on thedted data sets.
An analysis of the interagreement of the three methods is shown igure 3.6, per
POS and data set. Interagreement has been computed for all paise combinations of
the methods. A successful combination of methods should have laweragreement
rates (below 80%) to improve the overall WSD performance, sia an ensemble of
WSD methods, as analyzed in [33], brings relatively little pgormance improvement
over individual classi ers when the classi ers have a very high iet-agreement rate.
Indeed, the selected methods have low levels of inter-agremhfor all POS.

Classi ers Ensemble

First, we train one classi er for each base WSD method, using a set ofhse-tagged
training term occurrences and a limited set of grammatical ahsyntactic features for
each term. We consequently merge the classi ers' decisions (comde scores) using
a voting mechanism. The details of the classi cation features, ¢hclassi ers, and the
voting mechanism follow.
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Feature NPOS | VPOS | AJPOS | AVPOS SN CWA CPA CPT CLT WFTS
Descr. 0,1 0,1 0,1 0,1 # Target % correct | % correct | % correct | % correct | Target
word's word POS POS lemma word's
senses | sense ass.| sense ass.| triad ass. | triad ass. FOC

Table 3.7: Selected set of features.

We will rst discuss the selected feature set. Previous work [53] $i@hown that
WSD performance improves when several di®erent categoriesfedtures are com-
bined. Consequently, we aimed at a small and simple feature setathcombines dif-
ferent kinds of features, shown in table 3.7. The rst four featws NP OS, VP OS
AJPOS and AV POS) are binary and represent the POS of the word occurrence (the
one to be disambiguated).Senses Numbe(SN) is an integer indicating the polysemy
of the target word. Correct Word Assignment(CW A) and Correct POS Assignment
(CPA) are both real numbers in [0..1] representing the percentagécorrect sense as-
signments to the occurrences of the target word and the POS dfe target word in the
training set for the base disambiguation method the classi er cagsponds to. With
regards to theCollocated Lemma Triads(CLT ) and Collocated POS Triads(CP T),
let (L, 1;Lt;Ly+1) be the ordered triple of the target lemma, the previous andhie
next lemma; and IetN_,. ,..;.L..,) b€ the number of occurrences of this triple in the
training set> If C; ,.i;:1...) IS the number of correct word-sense assignments to
the target lemma in the training set when this triad occurs, tha CLT is given by
equation 3.14.

C g
cLT = _tmatrira) (3.14)
N(LTi nbribr+1)

If in equation 3.14 we substitute the two quantities with the repective ones for triads
of POS tags instead of lemmas, we g&P T. Finally, Word FOC Test Set(WFTS)
is the frequency of the target word in the test set.

Three SVM classi ers are trained in order to decide whether or ndb use the
respective base WSD method for a speci ¢ term occurrence. Traigi is based on
the terms' feature vectors, which have the following form: X4, :::, Xin, Ci), where

SWhen L+ is at the beginning of a sentencelt; 1 is the pseudo-lemmastart_of text. Similarly,
when Lt is at the end of a sentencel. 7., is the pseudo-lemmaend.of_text.
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Xin is the value of theny, feature from table 3.7, for the training example, and
C;i is the binary class attribute on which the respective SVM learnghether to trust
the current disambiguation method C; = 1) or not (C; = j 1). The C; values
represent the success or failure of the respective WSD method isambiguating
the speci ¢ training instance. In order to improve the stability of the SVMs and
improve their performance, we normalize all features in;[Q]. We experimented with
linear, polynomial and RBF kernels on a small subset of the traimg set (5 randomly
selected Tes - on average approximately 4600 term occurres@ach) and we repeated
the experiment 5 times, each time using 10-fold cross validatioln all cases, the three
SVMs provided better accuracies when the RBF kernel was usedosequently, we
decided to use the RBF kernel, with the defaulpamma parameter of the SVMLight
implementation [46].

We decided to retain the overall ensemble complexity low by afying a simple
arbiter based voting mechanism. Additionally, we experimentewith four basic en-
semble mechanisms that have proven to boost WSD performance retcase of Naive
Bayes classi ers [33]. All the ensemble mechanisms were applieteratalibrating
the SVM outputs into the value range of { 1;1]. Additional experimental results,
reported later, show that using a linear classi er (Maximum Entrpy) as a top-level
classi er in the ensemble, does not improve performance. The dagtion of all tested
ensemble mechanisms, including the proposed arbiter-based wgti follows.

Ensemble Mechanism 1 and &imple voting (SV) and weighted voting of the pos-

itive class normalized SVM outputs. The simple voting is summar in equation
3.15, whereSV MV.(x) is the value (con dence score) of théh support vector ma-
chine (corresponding to thath base WSD approach) for instanc&. The mechanism
takes into account only the positive SVMV values. Consequentlytven all thei values
are negative this means that the mechanism does not trust any dfe WSD meth-
ods, and it cannot disambiguate the speci ¢ word occurrence. Theeighted voting
multiplies eachSV M;(x) with the accuracy A; of the respective WSD method (SAN,
PR, FS) in the training set.
arg maxSV MV, (x) (3.15)
i
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Ensemble Mechanisms 3 and &hese two mechanisms are variations of 1 and 2
respectively, that consider all the SVMV values, both positive ah negative. The

di®erence is that when all the&sV MV, (x) values are negative, the mechanism decides
to trust the WSD method corresponding to the least negative vaki

In all the aforementioned ensembles each SVM is autonomous dtslcon dence
is examined independently of the other two. Note also that in # case of ensembles 1
and 2, when all SVM values are negative, the algorithm decidest to disambiguate
the examined word occurrence, since there is no SVM with posigicon dence.

Ensemble Mechanism 5Arbiter-based voting counts in a pairwise manner the
number of times each SVM had larger SVMV value. Letk; 1) be all possible pairs of
the underlying SVMs andm another SVM acting as an arbiter. IfSV M,,SV MV|,SV MV,
are the corresponding SVM values for word occurrenéeand Ag; A; A, the accu-

racies of the underlying base WSD methods respectively (SAN, PRRS) then we
compute SVMV? (and SV MV in the same manner) with the following rule: if
SV MV, > SV MV, then SV MV,? becomes as shown in equation 3.16.

p
SVMVP= SVMV+(SVMVini SVMVI) ¢ (Ami A)2+(SVMVpi SVMW)?2
(3.16)
Else, if SV MV, < SV MV, then SV MVk0 becomes as shown in equation 3.17.

p
SVMV= SVMWi (SVMVki SVMVin) ¢ (Ami A2+ (SVMVyi SVMW)2
(3.17)
Else, if SV MV, = SV MV then SV MV2= SV M\k.

Since there is no global consensus on which of the three SVMs doait as arbiter,
and there is no unbiased external arbiter, each one of th&VMs acts as an arbiter for
the remainingi j 1, and announces its preference. Eventually, the most voted/8l
indicates the WSD method to use. The intuition behind this set p, implemented
by formulas 3.16 and 3.17, is that each arbiter takes into asant the general WSD
performance of the two compared methods (denoted by the oediraccuracy of the
corresponding WSD method). It also considers the degree of dissgment between
itself and each of the other two SVM (denoted by the di®erences the respective
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Algorithm 3 SupervisedWSD(TS, T, U)
Require: A sense-annotated training set (TS), a part of speech tagged tekt), a
word thesaurus (U).
Ensure: A mapping of the terms in T to thesaurus' sensesTraining(TS,U)
1: for all termst 2 TS do
SANSenses[t]=disambiguate(SAN,t)
PRSenses[t]=disambiguate(PR,t)
FSSenses|t]=disambiguate(FirstSense,t)
end for
SANModel = Train(SANSenses, TS)
PRModel = Train(PRSenses, TS)
FSModel = Train(FSSenses, TS)
Disambiguate(T,U,SANModel, PRModel, FSModel)
9: for all termst2 T do
10  WSDMethod = Predict(t, Ensemble(SANModel, PRModel, FSModel)
11: disambiguate(WSDMethod,t)
12: end for

© N O wN

SVMV values). Based on that, the arbiter recalculates the SVMV vaes of the
compared methods and votes for the SVM with the highest SVMV va&u

Algorithm and Complexity

The proposed WSD approach can be summarized as algorithm 3. Ttwme cost of
the training step consists of the time required to disambiguatelldraining terms with
all the base methods and the time to train the three SVMs. In [121)e showed that
the construction time of the semantic networks i©(n ¢k'**) where n is the number
of words we disambiguatek is the maximum branching factor of the used thesaurus
nodes, andl is the maximum semantic path length in the thesaurus. The exedon
of the SANSs, costO(n? tk2'*3). The execution of PR cost€(n?¢kz'*3), in the worst
case where the network has ¢kz*! nodes andn ¢k'*2 edges. The execution of FS
costsO(n). PR and SAN share the same networks which are constructed once tlse
overall time cost for WSD of training terms isO(n? ¢k%'+3). For the SVMs training
(SVM RBF kernel training) we used the quadratic optimizer of SVM.ight [46]. The
overall training time cost is one-time cost and the algorithm equires few training
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#Training Files

10

20

40

60

80

130

ALL (186)

Avg. # Training Instances

4566

8500

16407

32612

48524

64683

106657

169958

Avg. # SAN SVM Support Vectors

51

80

188

322

416

667

1186

1498

Avg. # PR SVM Support Vectors

44

52

98

162

194

339

567

715

Avg. # FirstSense SVM Support Vectors

47

55

125

175

264

465

832

1062

Arbiter Voting, Senseval 2

40:04%

46:47%

46:7%

50:9%

65:02%

65:1%

65:1%

65:1%

Arbiter Voting, Senseval 3

46:76%

52:62%

55:7%

61:42%

63:9%

65:7%

65:7%

65:7%

Table 3.8: Average number of training instances and support vieecs for each SVM.

examples to obtain its top performance.

The space complexity of the training step i©(n?&?+2). The disambiguation step
is fast (at worst the execution time of SANs and at best, the executn time of FS)
and does not require much memory, since, as reported in table83a few hundreds
of support vectors in average need to be stored in each SVM modBslote also that
only one WSD method (the most suitable according to the classi erg€nsemble) is
executed for each test term.

Comparison with Related WSD methods

In this section we theoretically compare our method against tio other state of the art
supervised WSD methods. In the SenseLearner method [67] the auth suggest the
construction of seven semantic models, which are trained usingetilimbl memory
based learning algorithm. The major drawback of this methodsithat the coverage
of the target words in the disambiguation phase is limited to tbse words previously
seen in the training corpus. In contrast, our method does not havthis limitation;
the only complication are the values o€CW A and CLT, which are zero.

The Simil-Prime method [49] learns generic semantic classes,shalleviating the
aforementioned limitation of coverage. Then it casts back th ner grained senses
from the generic semantic classes learned, using heuristical mpaqyy. The major
drawback of this method is the use of heuristics, which cannot grantee that ner
senses will not be missed. Another drawback is the fact that a decsitree based
implementation of the k-nn classi er is used. Though faster thanhie typical k-nn
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classi er, the execution cost of disambiguation (mainly space cqbexity) is still high,
since many training examples need to be reexamined for eachget word. In contrast
our method considers at most 3% of the training examples (tabi- ratio of training
instances used as support vectors).

The SSI method [77] uses the HITS algorithm as a means of discangrthe
dominant senses in a given word conte®t= wq; W»; ::3; W,. A signi cant disadvantage
of this approach is the use of HITS itself, which is prone to cliguiattack: a small set of
strongly interconnected senses can gain advantage against thasss of the semantic
graph that are less interconnected. In contrast, the semanticetwork based methods
employed in our approach use PageRank and constrained spreadiof activation
respectively, which solve the aforementioned problem.

Finally, in [40] the authors propose a memory-based learningoproach, that
uses voting among word-experts to decide on the correct senséhisSTmemory-based
method stores all instances in memory during training and testg, which results in
high space and time complexity.

Experimental Evaluation

With regards to the evaluation of the training process, this isepeated for a varying
number of training Tes to observe the performance of our systeroifa varying size of
training instances. We randomly select (with a uniform distribtion) 5,10,20,40,60,80
and 130 documents from the SemCor set, and perform training. éMproceed by
evaluating our method on the test sets. We used 10 iterations (rdom selections of
training documents) for each training set size. We also performiéraining once, using
the complete set of SemCor documents (186 Ies). Table 3.8 sumnzas the training
process and shows the average number of training instances an@sart vectors for
each SVM. It also presents the accuracy of our best set up, which itsetuse of the
arbiter-based voting (ensemble mechanism 5), in the Sensevalitia88 data sets. By
consulting table 3.8 we conclude that using few training instares (less than 40% of
SemcCor) the proposed ensemble learns to trust the correct WSD tned per case
and achieves the highest possible accuracy.

Next, we compare with the methods of [67] (SenseLearner), [48imil-Prime),
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Method

SenselLearner

Simil-Prime

SSI

WE

EM1

EM2

EM3

EM4

Arbiter Voting

FS

U-Bound

Senseval 2

66.22

66.4

N/A

63.2

63.8

63.8

63.8

63.8

65.1

63.7

80.7

Senseval 3

63.28

66.1

60.4

N/A

64.2

64.5

64.1

64.3

65.7

61.3

76.6

Table 3.9: Accuracies (%) on Senseval 2 and 3 All English Words RaSets.

[77] (SSI), [40] (WE), on the Senseval 2 and 3 data sets. Table 3/®ows the respec-
tive accuracies, where available. We also report the performee of the other tested
ensemble mechanisms, as well as the FS baseline. We can compaite twe method
of Brody et al. [17] only in the noun POS of Senseval 3 data set, sntheir method's
evaluation is limited to that. Arbiter voting achieves an acaracy of 743% in the
Senseval 2 nouns and an accuracy of:I8% in the Senseval 3 nouns. Brody et al.
report an accuracy of 63% in Senseval 3 nouns (Senseval 2 is N/A) with an upper
bound lower than 70%. In all, the proposed system ranks among ttegp 3 approaches
from all the compared systems in table 3, which provide the bester reported results
in Senseval 2 and English all wordstask. The achieved performance requires less
that 40% of SemCor for training.

In order to test the e®ect of using SVMs in the classi er level, we camcted
experiments using Maximum Entropy (ME) classi ers instead. Theasults were worse
than using SVM: in Senseval 2 we obtained an overall accuracy @:8%6% and in
Senseval 3 685%. We also experimented using ME as the ensemble mechanism at
the decision (top) level. For this, we partitioned SemCor instaces into two sets, one
for training the SVMs and another for training the ensemble méanism. Despite the
additional cost of training at the decision level, the results are worst than using the
arbiter-based voting (609% in Senseval 3 and 65% in Senseval 2).

To analyze whether all three WSD methods are necessary or notewonsider
an unerring "oracle", an ideal decision level mechanism, thawvould always select
the correct method among the three dictionary-based. Initlgy, the upper-bound of
accuracy is 8076% in Senseval 2 and 765% in Senseval 3, when all three methods are
used. They fall to 7603% and 7306% respectively when the PR method is removed
from the base level, and to 772% and 7185% respectively, when the SAN method
is removed. Finally, by removing FS, the upper bounds drop t69:73% and 6336%
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Collection Compactness | SAN PR FS Ensemble | UB

(Nouns only)
Senseval 2 48:2 49:3 | 579 | 61:3 65:1 80:7
Senseval 3 45:4 474 | 51:7 | 634 65:7 76:6

Table 3.10: Synopsis of WSD Results in Senseval 2 and 3.

respectively. This shows that all three WSD methods are necesgand cannot be
omitted. A fourth WSD method should ideally disambiguate corectly all the terms

missed by the other three methods and it should favor the less frggnt senses (i.e.,
senses 3-4 and below in WordNet).

3.5 Discussion of Experimental Results

In this chapter, we have presented four new knowledge-basedtheals for WSD based
on WordNet (Compactness, SANs, PR and an ensemble WSD system). A synopsis
of the results in the two Senseval competitions is shown in tabl@10. The table
shows the accuracies for all methods in full coverage. Note hewer that the accuracy
of the Compactness-based method refers only to nouns, since thethoe cannot
disambiguate other POS. As shown, SAN and PR provide state of art selts in
knowledge-based WSD, with overall accuracies of approxinedy 55%, without any
type of training, and with average polysemy ranging from 5.30t7.2. Both methods
are outperformed by the FS method, which is the supervised baisel. The ensemble
method provides state of the art performance in supervised WSBurpassing the FS
with statistical signi cance at the 0:95 con dence level. UB is the upper bound that
the ensemble can reach, if a learner ts the data more, but thatould reside in an
over t.

An argument can be raised regarding the fact that the reportedcauracies may
seem low and close to th& S baseline. It is true, though, that the best current state
of the art methods all achieve small improvements (1 3%) compared to FS. This
is not trivial, if one considers the fact that the human interanotator agreement is
approximately 70% and, thus, accuracies of 65% essentially apximate the human
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performance in WSD.

In all, in this chapter we have introduced WSD methods that a& among the
top-performing methods in the current WSD bibliography [7R Our top-performing
method is a multilayered WSD system based on an ensemble of threeondNet-
based WSD algorithms. The method trains a set of SVM classi ers, onerfeach
WSD algorithm, and learns which WSD method to trust dependingon a feature
vector of the target term. The main advantages of this methodre: (1) state of
the art accuracy in unrestricted text, (2) limited training requirements to achieve
top performance, (3) low space complexity, since the classi ersearained on a very
small number of features and the stored support vectors are onexage 3% of the
training instances, and (4) the disambiguation step of the algidhm has lower time
complexity for the disambiguation than existing supervised WSDnethods. Overall,
the proposed approach competes well (in terms of accuracy)aagst state of the art
methods for unrestricted text WSD.



Chapter 4

Omiotis: A Thesaurus-based
Measure of Semantic Relatedness

Relatedness between texts can be perceived in several di®ekeays. Primarily, one
can think of surface (string) relatedness or similarity betweetexts, which can be eas-
ily captured by a vectorial representation of texts and a starard similarity measure
(e.g., cosine, Dice, Jaccard etc.). Such models have had highpact in informa-
tion retrieval over the past decades. Several improvementsvJeabeen proposed for
such techniques, towards inventing more sophisticated weighg schemes for the text
terms (e.g. TF-IDF and its variations). Other directions expore the need to capture
the latent semantic relations between dimensions (words) in ¢hconstructed vector
space model, by using techniques of latent semantic analysis][52nother aspect of
text relatedness, probably of equal importance, is the semaatrelatedness between
two text segments. For example, the sentenceJ he shares of the company dropped
14 cents' and \ The business institution's stock slumped 14 cerithave an obvious
semantic relatedness, as explained in the introduction, whidhaditional measures of
text similarity fail to recognize. In this chapter we propose @iotis, a measure of
relatedness between texts, which takes into account both therace and the semantic
relatedness of words, performs better than the traditional stace (string) matching
models, and can handle cases like the above.

LOmiotis is the Greek word for relatedness or similarity.

61
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The measure is based on the semantic representation of the WSD treds in-
troduced in the previous chapter. The core of the measure R, a new measure
of semantic relatedness between senses, that is extended to meas@mantic relat-
edness between words. Omiotis constitutes the nal extension toeasure semantic
relatedness between text segments. The word relatedness meassrbased on the
construction of semantic links between individual words, acoding to a word the-
saurus (in our case, WordNet). Each pair of words is potentiallgonnected via one
or more semantic paths, each one comprising one or more edgeg ttannect inter-
mediate thesaurus nodes. To weigh the semantic path we considbrete key factors:
(a) the length of the semantic path; (b) the intermediate nodg speci city, denoted
by the node depth in the thesaurus' hierarchy; and (c) the typesf the semantic
edges that compose the path. The three factors allow our measuo perform well
in complex linguistic tasks, that require more than simple simildty, such as the
SAT Analogy Test (section 5.1)> To the best of our knowledge, SR and Omiotis are
the rst measures of semantic relatedness that consider in tanderfi three factors.
Omiotis integrates semantic relatedness at the word level vhitstatistical information
about words at the text level, and provides a semantic relate@ss measure between
texts.

The contributions of this chapter are: 1) a new measure for cqating semantic
relatedness between words, which exploits all of the semantidormation a thesaurus
can o®er, including semantic relations crossing parts of spee€&OgS), while taking
into account relation weights and the depth of the thesaurus'ades; 2) a new mea-
sure for computing semantic relatedness between texts, Omiotibat does not require
any type of training; 3) thorough experimental evaluation a benchmark data sets
to measure the performance of word-to-word similarity in wordnalogy, as well as
experiment on three text related tasks (paraphrase recogrom, document similarity
detection, document classi cation) to evaluate the performate of the text-to-text
relatedness measure. An additional practical contribution athe thesis is a publicly
available system [120] that can be used to obtain a pre-computedmantic related-
ness score between any pair of WordNet senses, which facilitatesorporating our

2http://www.aclweb.org/aclwiki/index.php?title=SAT_A nalogy_Questions
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semantic relatedness measure in many retrieval tasks.

The key features of the proposed measures are: (a) it construasmantic links
between all word senses in WordNet and pre-computes a relatedaescore between
every pair of WordNet senses; (b) it computes the semantic relateelss for a pair of
words by taking into account the relatedness of their correspding WordNet senses;
(c) it computes a semantic relatedness score for any two giverxtesegments using
the relatedness at word-level. Depending on the task, the conmation of semantic
relatedness can be modi ed to take into account all or some of tteenses of each
word, or all or some of the words in each text, depending on theowd importance
or sense importance in context. This allows Omiotis to be adagd in various text
related tasks, without modifying the main process of computingelatedness. In the
section 4.1 below, we formally de ne our semantic relatedness asare for senses. In
section 4.2 we present its extension to measure relatedness benwavords, and in
section 4.3 we provide a detailed justi cation of our design destons. In section 4.4
we de ne Omiotis, and in section 5.1 we explain how Omiotis can Embedded in
several applications.

4.1 Semantic Relatedness Between a Pair of Con-
cepts

In order construct semantic paths between words, we reuse the @&ef constructing
semantic networks connecting words, that we presented in secti8.3.1 [121].

Figure 4.1 gives an example of the construction of a semantictwerk for two
wordst; andt;. For simplicity, we assume the construction of a semantic path beeen
the highlighted sensesS:i:2 and S:j:1 only (Initial Phase), though we could do the
same for every possible pair of two words' senses. Initially, the tvaense nodes are
expanded using all the semantic links o®ered by WordNet. The sentiarlinks of the
highlighted senses, as found in the thesaurus, are added as edgesthe senses they
point to are added to the network as nodes (Network Expansion)The expansion

3Available at http://omiotis.hua.gr/WebSite/
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= \Anonym
Hyponym

Initial Phase Network Expansion

Index: O =Word Node ] = Sense Node {‘ = Semantic Link

Figure 4.1: Constructing semantic networks from word thesauri

process is repeated recursively until the shortest path betweesti:2 and S:j:1 is
found; a more detailed description of this process is providess algorithm 4. If no
path is found from S:i:2 to S:j: 1, then the senses and consequently the words are not
semantically related.

The semantic relatedness of a pair of concepts is measured oves tonstructed
semantic network. The measure considers the path length, captad by semantic
compactnessand the path depth, captured bysemantic path elaborationwhich are
de ned in the following. Note that in the previous chapter we itroduced a measure
for WSD based on the idea oEtompactnesghat we initially proposed in [63]. That
measure used only nouns and the hypernym relation. In this chigy, the measure
is extended to exploit all of WordNet's relations and the nounverb, and adjective
parts of speech. We also de ne a neeompactnessneasure (de nition 3) as on of the
core components of the Omiotis measure.

De nition 3  Given a word thesauru€D, a weighting scheme that assigns a weight
e 2 (0;1) to each edge type (each edge is assigned the weight of its typepair

of sensesS = (s1;S;), and a path of lengthl connecting the two senses, the se-
mantic compactness oS (SCM(S;0)) is de ned as: SCM(S;0) = Q::l e, Where
e, &;::;; g are the weights of the path's edges. ¢f = s, then SCM(S;0) = 1. If
there is no path betwees; and s, then SCM(S;0) =0.

Note that compactnesstakes the path length into account and is bound in [0, 1].
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WordNet 2.0 Edge Type Probability of Occurrence
hypernym/hyponym 0:61
nominalization 0:147
category domain 0:094
part meronym/holonym 0:0367
region domain 0:0238
similar 0:02
usage domain 0:016
member meronym/holonym 0:014
antonym 0:0105
verb group 0:.01
also see 0:0091
attribute 0:00414
entailment 0:00195
cause 0:00158
substance meronym/holonym 0:00089
derived 0:0003
participle of 3:4E | 06

Table 4.1: Probability of occurrence for every edge type in @¥dNet 2.0.

Higher compactnessbetween senses declares higher semantic relatedness. The intu-
ition behind the weighting of the edge types is that certainypes provide stronger
(more straightforward, e.g., hypernym/hyponym edges) semaiat connections than
others. Considering that human editors of WordNet tend to use thsetronger relation
types more often than weaker ones, a straightforward solutios to de ne the weights

of the edge types proportionally to their frequency of occuence in WordNet 2.0.
The weights assigned to each type using this solution are shown @bte 4.1 and are

in accordance to those found in [109]. The table shows the prdilgty of occurrence

in WordNet 2.0 of every possible edge type in decreasing order oblpability.

The depth of nodes that belong to the path also a®ects term reétness. A
standard means of measuring depth in a word thesaurus is the hypgm/hyponym
hierarchical relation for the noun and adjective POS and hygrnym/troponym for
the verb POS. For the adverb POS the relatedtem adjectivesense can be used to
measure its depth. A path with shallow sense nodes is more genezampared to
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a path with deep nodes. This parameter of semantic relatednesstlveen terms is
captured by the measure ofemantic path elaborationand is introduced in de nition
4.

De nition 4  Given a word thesauru®© , a pair of sensesS = ( s;;s;), wheres;,s; 2
O and sl 6 s2, and a path between the two senses of lendgththe semantic path
elaboration of the path (SPE(S,0)) is de ned as:

i=1 di+din Omax ’

whered; is the depth of senss; according toO, and dnax the maximum depth of
O.If s;=s,andd= d; = d, thenSPE(S;0) = ﬁ If there is no path froms; to
s, then SPE(S;0) =0.

A path of length | comprisesl+1 nodes, thus wheni = I, di;; is the last node in

the path. Essentially, each factor of SPE is the harmonic mearf the depths of two

adjacent senses along the path, normalized to the maximum thesas depth. The

harmonic mean is preferred over the average of depths, sinceo@ers a lower upper
bound. Compactnessand Semantic Path Elaborationcapture the two most important

parameters of measuring semantic relatedness between terng,[hamely path length

and senses depth in the used thesaurus. We combine these two measase®llows

in the de nition of the Semantic Relatednesbetween two terms (de nition 5).

De nition 5  Given a word thesaurudO, and a pair of sensesS = (s;;s;) the se-
mantic relatedness oS (SR(S,0)) is de ned asmaxf SCM(S; O) ¢SPE(S; O)g, over
all the paths that connecs; and s,.

Given a word thesaurus, there can be more than one semantic pattennecting two
senses. The sensexdmpactnesscan take di®erent values for di®erent paths. In these
cases, we use the path that maximizes the semantic relatedness. E®rcomputation
we introduce algorithm 4, which is a modi cation of Dijkstra'salgorithm for nding
the shortest path between two nodes in a weighted directed gfapThe modi cation
made is to incorporate the multiplication of edges weights, bstituting the sum in
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Algorithm 4  Maximum-Semantic-Relatedness(G,u,v,w)

Require: A directed weighted graph G, two nodes u, v and a weighting same
w:E! (0:1), whereE is the set of all edge types.

Ensure: The path from u to v with the maximum product of the edges weigts.
Initialize-Single-Source(G,u)

1: for all verticesv 2 V[G] do

2 dv]=i1

3 Yv]= NULL

4

5

. end for
s dul =1
Relax(u; v;w)

6: if dv] <d[u] ¢w(u; V) then
7 d[v] = d[u] ¢w(u; V)

8 Yivl=u

9: end if

Maximum-Relatedness(G,u,v,w)
10: Initialize-Single-Source(G,u)
11: S=;
12: Q = V[G]
13: while v2 Q do
14. s = Extract from Q the vertex with the maximum d

5. S=S[ s

16: for all verticesk 2 Adjacency List of s do
17: Relax(s,k,w)

18: end for

19: end while

20: return the path following all the ancestors¥sof v back to u

the original algorithm. The proof of the algorithm's corretness follows in the next
theorem, and it is based on the respective proof of the Dijkstrdgorithm in [23]. In
algorithm 4, d holds an estimate of the weight of the shortest path from the sougc
to each node in the graph, and/holds the predecessor of each node (so that at the
end we know the exact shortest path from the source to every nodethe graph).

Theorem 1 Given a word thesaurug), an edges weighting functiomv : E ! (0;1),
where a higher value declares a stronger edge, and a pair ofsesS(ss; sf) declar-
ing source &s) and destination (s¢) vertices, then theSCM(S;0O) ¢SPE(S;O) is
maximized for the path returned by Algorithm 4, by using the wgéiting scheme
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24, @

e = Wj ¢—dmax @rd)

ands;.

where g; the new weight of the edge connecting senses

Proof 1 We will show that for each vertexs; 2 V, d[s¢] is the maximum product
of edges' weight through the selected path, starting frsy at the time whens; is
inserted into S. From now on, the notation+(ss; s¢ ) will represent this product. Path
p connects a vertex inS, namely ss, to a vertex inV j S, namelys;. Consider the
‘rst vertex s, alongp such thatsy 2 V i S and lets, bey's predecessor. Now, path
p can be decomposed a& ! s, ! s, ! s. We claim that d[s,] = #(Ss;Sy) when
s; is inserted into S. Observe thats, 2 S. Then, becauses; is chosen as the rst
vertex for whichd[s;] 6 #(ss;Sf) when it is inserted into S, we hadd[sy] = #(Ss; Sx)
whens, was inserted intoS.

Becauses, occurs befores; on the path fromss to s; and all edge weights are
nonnegative and in(0; 1) we have(ss;sy) , HSs;S), and thusd[sy] = #(ss;sy) ,
#(Ss;Sr) , d[sf]. But both's, and s were inV j S whens; was chosen, so we
haved[s;], d[s,]. Thus, d[s,] = H(ss;Sy) = HSs;St) = d[s;]. Consequently,d[s;] =
#(Ss; S¢) which contradicts our choice of;. We conclude that at the time each vertex
St is inserted into S, d[s;] = #(Ss; St ).

Next, to prove that the returned maximum product is thBCM (S; O) ¢SPE(S; O),
let the path betweerss and s; with the maximum edge weight product hakeedges.

Then, Algorithm 1 returns the maximum ™ ¥, €+ = Wszd:dmaf‘?(j;’ff ) ¢/v23¢dmax2“§(2d“fj ¢

Q i
HOWG Cg T T e Wi O 1y oyt ¢ = SCM(S; 0) ¢SPE(S; 0).

4.2 Semantic Relatedness Between a Pair of Words

Based on de nition 5, which measures the semantic relatedness Wweén a pair of
sensesS, we can de ne the semantic relatedness between a pair of terih;t,) as
in de nition 6.

De nition 6 Let O be a word thesauru®, let T = (ty;t,) be a pair of terms for
which there are entries inO, S; be the set of senses of and S, the set of senses of
t, in O. If S, k=1:jSj ¢[S,) are all the possible sets of senses pa(s;s;), with
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Si2 S;ands; 2 S,, then the semantic relatedness of (SR(T; S; O)) is de ned as

maxf SCM(S;; O) ¢SPE(S;; 0)g, for all j = 1::jS;j ¢ [Syj. The semantic relatedness
between two termgq;t, wheret; ~ t,~ t andt 2 O is de ned asl. The semantic

relatedness betweety;t, whent; 2 O andt, 2 O, or vice versa, is considered.

In the remainder of this thesis, theSR(T; S,; O) for a pair of terms will be denoted
as SR(T), to ease readability. Note also that this measure of semantic edédness
between terms, inherently performs WSD, if one term is takerotbe the target one
and the other its (single-word) context: For a given word,, the semantic relatedness
to another wordt, might be maximized with the senses;; of t;, and for a new given
word ts, it might be maximized for another sense, e.gs;,. In [119] we present the
‘ndings of using SR(T) as a WSD measure; the performance was similar to SANs,
on Senseval 2 and 3 data sets.

4.3 Analysis of the SR Measure

In this section we present the rationale behind the de nitions,24 and 5, by providing
theoretical and/or experimental evidence for the decisionmade on the design of the
measure. We illustrate the advantages and disadvantages of ti®erent alternatives
using simple examples and argue for our decisions. Finally, wecliss the advantages
of SR against previous measures of semantic relatedness and iisgible caveats.

The list of decisions made for the design of our semantic relatezBs measure
comprises: a) use of senses in all POS, instead of noun senses only,sk) af all
semantic edge types found in WordNet, instead of the IS-A relain only, c) use
of edge weights, and d) use of senses' depth as a scaling factor. lingportant
to mention that measures of semantic relatedness di®er from me&Esuof semantic
similarity, which traditionally use hierarchical relationsonly and ignore all other types
of semantic relations. In addition, both concepts di®er from semtic distance, in the
sense that the latter is a metric.
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Use all POS Information

Firstly, we shall argue that the use of all POS in designing a semantrelatedness
measure is important, and can increase the coverage of such a suga. The rationale
supporting this decision is fairly simple. Current data sets foevaluating semantic
relatedness or even semantic similarity measures are restrictéml the noun POS
(Rubenstein and Goodenough's 65 word pairs [96], Miller andh@rles' 30 word pairs
[72], the Word-Similarity-353 collection [32]) and, thus, &nnot pinpoint the caveat
of omitting the remaining parts of speech. However, text simitdy tasks and their
benchmark data sets comprise more than nouns. Throughout thelltaving analysis,
the reader should keep in mind that the resulting measure of senmanrelatedness
between words is destined to be embedded in a text-to-text sem& relatedness
measure, as discussed later.

The following two sentences are a paraphrase example takennfréhe Microsoft
Paraphrase Corpus [29] and show the importance of using other BQapart from
nouns, such as verbs:

\The charges of espionage and aiding the enemy can carry the death
penalty ."

\If convicted of the spying charges he couldface the death penalty ."

Words that appear in WordNet 2.0 are written in bold and stopwods have been
omitted for simplicity.* The two sentences have many nouns in common (charges,
death, penalty), but there are also pairs of words across the twsentences that can
provide evidence that the two sentences are paraphrases ofteather. For example
espionage and spying have an obvious semantic relatedness, as wellesemy and
spying . Also, charges and convicted , as well aspenalty and convicted . This
type of evidence would have been disregarded by any measure ofiaatic relatedness
or similarity that uses only the noun POS and WordNet's hierarcih Examples of
such measures are: the measure of Sussna [114], Wu and Palmer [1B&hg and

4The stopwords' list that we used is available athttp://www.db-net.aueb.gr/gbt/resources/
stopwords.txt
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Hyponym
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education
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educate
(Verb)

Hyponym

Nominalization

Figure 4.2: Semantic path fromchild care to school.

Conrath [45], Resnik [91, 92], and the WordNet-based componeoit Finkelstein et
al. [32]. From this point of view, the decision to use all POS infmation expands
the potential matches found by the measure and allows using thmeasure in more
complicated tasks, like paraphrase recognition, text retried, and text classi cation.

Use Every Type of Semantic Relations

The decision to use all parts of speech in the construction of thernsantic graphs re-
quires using all semantic relations instead of merely taxonom({IS-A) ones. Moreover,
this decision was based on evidence from related literature.h& work of Richard-
son et Al. [107] provides experimental evidence that measurisgmantic similarity
by incorporating non-hierarchical link types (i.e., part neronym/holonym, member
meronym/holonym, substance meronym/holonym) improves sigréantly the perfor-

mance of such a measure; the experiments conducted by adoptagmall variation
of the Resnik's measure [91].

Hirst and St-Onge [39] reported that they discovered several litations and miss-
ing connections in WordNet's relations during the constructin of lexical chains from
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sentences for the detection and correction of malapropisfsThey provided the fol-
lowing example using the pair of words in bold to report this cseat:

\School administrators say these same taxpayers expect thechools to provide
child care and school lunches, to integrate immigrants into the community,
to o®er special classes for adult students,."

The intrinsic connection between the nounshild care and school, which both
exist in WordNet, cannot be discovered by considering only hiehical edge types.
This connection is depicted in gure 4.2, which shows the patmiWordNet. By using
all WordNet's relations, our measure is able to detect such corct®ns and address
problems of the aforementioned type.

Use Weights on Edges

Resnik [92] reports that simple edge counting, which implidit assumes that links in
the taxonomy represent equal distances, is problematic and istnthe best semantic
distance measure for WordNet. In a similar direction lie the ndigs of Sussna [114],
who performed thorough experimental evaluation by varyingdge weights in order to
measure semantic distance between concepts. Sussna's ndings,akgkthat weights
on semantic edges are a non-negligible factor in the applicat of their measure to
WSD, and that their best results were reported when a weightingcheme for edges
was used, in contrast to assigning each edge the same weight. Fortlaése reasons,
we decided to assign a weight to every edge type, and we chose tingpse probability
of occurrence for each edge type in WordNet, as our edge weigbtscheme (see table
4.1). This very important factor is absent from several similaty measures proposed
in the past, such as the measures of Leacock and Chodorow [55kndasz and Sz-
pakowicz [44], and Banerjee and Pedersen [6], which are oufpemed in experimental
evaluation by our measure.

SMalapropism is the bad use of a word due to confusion with another word having thesame
sound
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Figure 4.3: PR and NWPL paths for pairs:car and accelerator (left), car and autobus
(right).

Use Depth Scaling Factor

Our decision to incorporate the depth scaling factor (SPE in daition 4) in the
edge weighting mechanism was inspired by the thorough expeemntal evaluation
conducted by Sussna [114], which provided evidence on the imjaoce of the edge
weighting factor in measures based on semantic networks. Our expnents on the
Miller and Charles data set, show that the Spearman correlatiowith human judge-
ments is much lower (7 percentage points) without the depth stiag factor, compared
to the correlation when adopting the SPE factor (see de nitior2).

Justi cation of SR De nitions

According to de nition 2, the semantic compactness of a pair of noepts is the
product of the depth-scaled weights of the edges connectinigettwo concepts. The
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use of a product instead of a sum or normalized sum of edge weiglgskplained in
the following.

Since there might be several paths connecting the two conceptie nition 5 selects
the path that maximizes the product of semantic compactness C3 and semantic path
elaboration (SPE). For simplicity, we ignore the e®ect of the epth scaling factor
&SPE in de nition 4) and consequently, our aim is to nd the path hat maximizes

:=1 e, Where e;; e;:::;; 9 are the (non depth-scaled) weights of the edges in the
path connecting two given concepts. Let us call this less elatate version of our
semantic relatedness measumgoduct relatednesgPR). An alternative wouIdP be to

| )
i=1 &
T

In this case, the semantic relatedness would be measured on théhpat maximizes

de ne semantic compactness as the average of the weights in thalhp i.e.,

the latter formula. Let us name this alternative afternormalized weighted path length
(NWPL).

In the example of gure 4.3, we show how PR and NWPL compute the semti
relatedness for the term paircar and accelerator (left), and car and autobus(right).
The path that maximizes the respective formulas of PR and NWPL sing algorithm
4 and the edge weights in table 4.1, is also illustrated in the ga. For the pair
car and accelerator the sum-based formula, normalized by the path length, selects
a very large path in this example, with a nal computed relatedess of 61, which
is the weight of the hypernym/hyponym edges. PR nds that the pth maximizing
the product is the immediate part meronym relation fromcar to accelerator with a
computed relatedness of:0367, which is the weight of the part meronym edges. The
main problem arising with NWPL is that it cannot distinguish amorg the relatedness
between any pair of concepts in the hypernym/hyponym hierahy of WordNet. In
this example, NWPL computes the same relatedness:§Q) between every possible
concept pair shown in the top gure. In contrast, PR is able to dishguish most
of these pairs in terms of relatedness. More precisely, this befa of PR is due to
the fact that it embeds the notion of the path length, since theeomputed relatedness
decays by a factor in the range (L) for every hop made following any type of semantic
relation. Another example, that also shows the importance of asidering all WordNet
relations, is the one shown in the right part of gure 4.3, where N\WL and PR paths
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have been computed for the term paicar and autobus Again, NWPL selects a very
large path, and does stays within the hypernym/hyponym tree Note however, that
the example on the right part of the gure points out the importance of the depth
scaling factor as well, since the shown path fd? R is considered if the depth scaling
factor is used, otherwise it would follow the same path as NWPL.

Overall, NWPL would rather traverse through a huge path of hypeym/hyponym
edges, than follow any other less important edge type which wdudecrease its av-
erage path importance. This behavior creates serious drawdda: (a) lack of ability
to distinguish relatedness among any pair of concepts in the sarheerarchy (e.g.,
instrumentality and container are as related as instrumentély and accelerator), and
(b) large increase of the actual computational cost of algohin 4, due to the fact
that NWPL will tend not to deviate from the hypernym/hyponym h ierarchy, even
if there is a direct semantic edge (other than hypernym/hypoym) connecting the
two concepts, as shown in gure 4.3. Furthermore, by conductingxperiments with
NWPL in the 30 word pairs of Miller and Charles [72], we discoved that in almost
40% of the cases, NWPL produces the same value of semantic relatsi equal to
0:61, being unable to distinguish them and creating many ties, wlei PR produces
a di®erent value from almost every pair. Thus, PR is a better ogin to use in our
measure, as the semantic compactness factor.

Note that our measure is solely based on the use of WordNet, unlike aseires of
semantic relatedness that use large corpora, such as WikipedAthough such mea-
sures (e.g., Gabrilovich and Markovitch [34], and Ponzettoral Strube [88]) provide
a larger coverage, including concepts that do not reside in \WiNet, they require
extensive training. Experimental evaluation in chapter 5, sbws that our measure
outperforms all the aforementioned word-to-word relatedess measures in all three
data sets used. In the following section, we introduce Omiotishé extension of SR
for measuring text-to-text relatedness.
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4.4 Omiotis

The de nition of semantic relatedness between a pair of terms mée extended to
capture semantic relatedness between texts. Given a pair of teXA; B, for every word
a in A we seek the wordy of B that maximizes the semantic relatedness between
and by, according to de nition 6. Besides the semantic relatedness betena; and b
we also consider the importance of each word using their TF*IDFalues. We de ne
, a;n Of two wordsa and by as the harmonic mean of their TF*IDF values.

2TF_IDF (a)TF_IDF (i)

»%% = TEIDF (a)+ TFIDF () 41

Since we want to combine the importance of terms; and by, according to their
TF*IDF values, with their semantic relatedness, eventually, fo every word a; of
documentA we seek the wordk(a) from documentB for which:

x(a&) = argmax(, . ¢SR(ai;Q)) (4.2)
j2[LjBj]
Similarly, we do the same for documenB, seeking for every wordy, the word y(h)
of documentA, for which:

y() = argmax(, a5 ¢SR(a;h)) (4.3)
i2[LjAj]

We aggregate these scores for both directions (e.g., from doent A to document
B and vice versa) as shown in equations 4.4 and 4.5 respectively. t&that both
directions are needed, to cover the cases where the number ofrdg are not equal
in the two texts. Finally, OMOIOTIS between A; B can be obtained by the formula
shown in equation 4.6.
0 1
YAI

1
31(A; B) = JW] @ s aix(ai) ¢S R(ai; l:&(ai))A (4.4)
i=1
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0 1
1 K
*2(A;B) = E@ Ly CSR(aym);B)A (4.5)
j=1
Omiotis (A;B) = %[31(A;B)+ 3,(A;B)] (4.6)

Note that measureOmiotis (A; B) between textsA and B takes into account both the
importance of the terms in the document (TF-IDF values), as weas the semantic
relatedness of the terms across the two documents. In fact, thewm measure extends
the THESUS measure that we presented in [129], which could onlyridie noun words,
and did not consider TF-IDF scores. Appendix B analyzes the congity of Omiotis
and presents a novel implementation of our measure, along wigm on-line demo.



Chapter 5

Applications and Experimental
Evaluation

5.1 Applications of Semantic Relatedness

In this section we describe the methodology of incorporating mantic relatedness
between pairs of words or pairs of text segments into well-kwo text related tasks.

Word Similarity

In 1965, Rubenstein and Goodenough [96] obtained synonymy gements from 51
human subjects on 65 pairs of words, in an e®ort to investigate thelationship
between similarity of context and similarity of meaning (synopmy). Since then,
the idea of evaluating computational measures of semantic ag¢dness by comparing
against human judgments on a given set of word pairs has been elglused, and even
more data sets have been developed. The proposed measure of semeelatedness
between words (SR), introduced in de nition 6, can be used dicdy in such a task,
in order to evaluate directly the basis of the Omiotis measureayhich is the measure-
ment of word-to-word semantic relatedness. The application straightforward: let
n be all the pairs of words in the word similarity data set used; thg the semantic
relatedness for every pair is computed, through the use 8R(T;S; O), as de ned

78
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Stem: wallet : money

Choices: (@)  safe:lock

L

(b)  suitcase : clothing

S1:0.2605
S2:6.75E-04
() camera :fim
S1:0.4795
$2:0.015
(d)  setting :jewel
S1:0.1805
S2:7.87E-05
(e)  car:engine
S1:0.3764
Winner based on S1 (Horizontal Analogy): b S2: 8.99E-05
Winner based on S2 (Vertical Analogy): b
Winner based on combined S: b S1:0.1506
Correct Answer: b $2:0.0029

Figure 5.1: Example of computing SR in a given SAT question.

in 6; the computed values are sorted in decreasing order, andetiproduced rank-
ing of similarities is compared against the \gold standard" raking of humans, using
Spearman correlation. Additional measures of semantic relakeess can be compared
against each other by examining the produced values of the $pman correlation.

SAT Analogy Tests

The problem of identifying similarities in word analogies amwng pairs of words is a
dixcult problem and it has been standardized as a test for assessirfgethuman ability
for language understanding in the well known SAT analogy tes{§Scholastic Aptitude
Tests). SAT tests in general are used as admission tests by secondatyosts in the
United States. The aim is to locate out of ve pairs of words the anthat presents
the most similar analogy to a target pair.

Although it is dixcult for machines to model the human cognitian of word analogy,
several approaches exist in the bibliography that attempt to dckle this problem.
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Previous approaches can be broadly categorized in corpusséd, lexicon-based, and
hybrid. Some examples of corpus-based approaches are those whéy [125], and
Bicici and Yuret [9]. Examples of lexicon-based approacheseathe approaches of
Veale [130], and the application of the lexicon-based measwtHirst and St. Onge
[39] in SAT, that can be found in the work of Turney [123]. Hybd approaches
have been applied in SAT through the application of the meases of Resnik [91] and
Lin[59] that can also be found in the work of Turney [123]. In aler for the reader
to understand the ditculty of answering SAT questions, we must poinout that the
average US college applicant scores 57% [126], while the toppas-based approach
scores 568.% [123], the top lexicon-based scores 42% [130], and the topriny scores
332% [91].

Another way of categorizing the approaches that measure semansimilarity in
analogy tasks is to distinguish among attributional and relatnal similarity measures
[36]! Representative approaches of the st category are lexiconded approaches,
while examples of relational similarity measures can be four approaches based on
Latent Relational Analysis (LRA) [123]. It is of great interest o point out that LRA-
based approaches, like the LRME algorithm proposed recently Byurney [124], are
superior in nding word analogies to attributional similarity approaches. This fact,
supported by the experimental ndings in [123]. Relational siitarity approaches may
perform better in the SAT analogy task, but still, as shown latetin the experiments
we conducted in other applications, like paraphrasing, lexan-based measures can
outperform LRA-based approaches in other tasks.

Semantic relatedness (SR) between words, as applied in Om#tcan be exploited
to solve the word analogy task. The aim of word analogy is, for awgn pair of
wordsw; and w,, to identify the series of semantic relations that lead fromv,; to w,
(semantic path). In the SAT test, the target pair (w;,w,) and candidate word pairs
(wik,Wok), with k usually being from 1 to 5, are processed in order to nd each pair's
semantic path. The aim is to locate the paik, whose elements have the most similar
semantic path to that of (w;,w,). We are trying to solve this problem by employing

Two things, X and Y, are attributionally similar when the attributes of X ar e similar to the
attributes of Y. Two pairs, A:B and C:D, are relationally similar when t he relations between A and
B are similar to the relations between C and D.
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two criteria. First, we compare thek pairs to the target pair, and pick the candidate
pair whose elements seem to be connected by a semantic relatibattis most similar

to that of the target pair. However, when the most similar relatn is not obvious,

we examine all the 6 pairs together in order to nd the slight di@ences between the
words comprising each pair. We attempt to model this using SR ia twofold manner:

we use SR to measure both the horizontal and the vertical analpgetween the target
pair and the possible candidate pairs. To capture what we call haontal analogy

between the target pair of words and a candidate pair, we measuthe di®erence of
the SR score, of the members of each pair as follows:

S1(Wik; Wok) = JSR(W1; W) | SR(Wak; Wox)] (5.1)

Essentially, s; expresses the horizontal analogy of the candidate pawv{y; wy) with
the given pair (w1; w,), meaning their similarities in the paths connecting the wais
of the two pairs. Similarly, we capture the notion of the verttal analogy between the
two pairs, meaning the similarity of the paths connecting the st word of the target
pair, with the rst word of a candidate pair (and the same for the seond word) by
computing the di®erence of the SR scores among the two word gaias follows:

So(Wik; Wak) = JSR(W1; Wak) i SR(Wa; Wa)] (5.2)

Finally, we rank candidates depending on the combined vectal and horizontal anal-
ogy the have with the given pair, according to the following guation:

S1(Wak; Wok ) + So(Wak; W)

S(Wik; Wox) = 5

(5.3)

Eventually, we select the candidate pair with the maximum coivined score, taking
into account both aspects (horizontal and vertical) of analgy between the given and
the candidate pairs.

The intuition behind the selection of the these two scores for hdling the SAT
test, is the following. The order of the words in the pairs (bdt target and candidates)
is not random. Usually, given a pair (v;; W), and a the candidate pairs Wix; W)



82 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

the test is solved if one can successfully nd the analogwy is to wo, what w; is to
w,. From this perspective,s; and s, try to nd the candidate pair that best aligns
with the target pair. Figure 5.1 illustrates these two types ofanalogies (horizontal
and vertical) for an example SAT question.

Paraphrasing

The performance of document processing applications relyirmn natural language
processing may su®er from the fact that the processed documents mhigontain
lexically di®erent, yet semantically related, text segments. He task of recognizing
pairs of text segments, with identical or almost identical semdics, which is better
known as paraphrase detection, is challenging and dixcult to 8@, as shown in the
work of Mihalcea et al. [66], and Pasca [85]. The task itself is portant for many
text related applications, like summarization [38], informton extraction [104] and
guestion answering [84]. We demonstrate the usefulness of the ©tis measure in
paraphrasing detection using the Microsoft Research ParaphraS@®orpus [29]. The
application of Omiotis to paraphrase detection is straightfavard: given a pair of text
segments, we compute the Omiotis score between them, using edquat3. Higher
values of Omiotis for a given pair denote a stronger semanticlagedness between
the two text segments. The task is now reduced to de ning a threstbfor Omiotis
values, above which pairs will be classi ed as paraphrases. Sineetype of training
is used in the computation of Omiotis, and since Omiotis valuegain [0; 1], we have
selected the & as a threshold value.

Document Similarity

In order to assess how well Omiotis approximates human judgmenin document-to-
document similarity, we have conducted experiments on a carp of 50 news docu-
ments, taken from the Australian Broadcasting Corporation's nes mail service. One
main di®erence from the paraphrase task is that the answer conueg text relat-

edness is not binary. In this test [57], for each possible pair frothe collection of



5.1. APPLICATIONS OF SEMANTIC RELATEDNESS 83

the 50 documents, 10 di®erent human judgements were given, ttmated the simi-
larity between documents from O to 5, with 5 corresponding to aximum similarity.
Inter-rater agreement correlation is about . Furthermore, an assessment of the 50
documents conducted by Lee et al. [57] against a standard cogpof ve English
texts, using four models of language (log-normal, generakizeverse Gauss-Poisson,
Yule-Simon and Zip an), showed that the document set is within lhe normal range
of English text for word frequency spectrum and vocabulary gvath. Thus, the used
collection can be regarded as representative of normal Ergjlitexts. The use of Omi-
otis in document similarity is again a straightforward appliation of equation 3, for
all document pairs.

Text Classi cation

As an additional task to evaluate the ability of Omiotis to measte text relatedness,
we embed its core Semantic Relatedness (SR) measure in the telessi cation task.
Several means of embedding semantic information in the textassi cation task have
been considered in the past. A standard methodology is to consttua semantic ker-
nel and embed it in a support vector machines classi er [106, 63, 70, 12]. In the
following we present a new GVSM based on a semantic smoothing keyieat incor-
porates noun information from WordNet (WSD information for rouns based on the
compactness disambiguation method, and the senses hypernymsyrtRermore, we
present the incorporation of SR in an existing semantic smootrgrkernel. Both mod-
els for text classi cation are evaluated in section 5.2.2 using éhReuters classi cation
data set.

In previous work [63], we presented a Generalized Vector Spadodel (GVSM),
based on the semantic smoothing kernel introduced in [106]. &t work we in-
troduced a means of embedding WSD information into the classiation task (using
SVM). Since we aim at embedding WSD in the SVM classi er, we requitae de ni-
tion of a kernel that captures the semantic relations providiby the used hierarchical
thesaurus (HT). To the best of our knowledge, the only previoustler approaches
that de ne a semantic kernel based on a HT are [106] and [10]. Therfwl de nition
of the kernel in [106] is given in de nition 7.
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De nition 7 A Semantic Smoothing Kernel between two documents d, is de ned
as K (di;dp) = diPPd, = diP?d,, where P is a matrix whose entriesP; = Pj,
represent the semantic proximity between conceptand j .

The elements of the similarity matrix P are obtained by using a HT similarity
measure. The Semantic Smoothing Kernels have similar semastito the GVSM
model de ned in [134]. A kernel de nition based on the GVSM modekigiven in
de nition 8.

De nition 8 The GVSM kernel between two document$; and d, is de ned as
K (di; dy) = d,DD %, whereD is the term document matrix.

The rows of matrix D in the GVSM kernel contain the vector representation of
terms, used to measure their pairwise semantic relatedness. The &atic Smoothing
Kernel has similar semantics. The Semantic Smoothing Kernel taeen two docu-
ments K (d1;d2) = d,P?d,, can be regarded as a GVSM kernel, where the matrix
D is derived by the decompositior?? = DD ° (the decomposition is always possible,
since P? is guaranteed to be positive de nite). The rows oD can be considered
as the vector representation of concepts, used to measure theimsatic proximity.
Semantic Smoothing Kernels us@? and not P, becauseP is not guaranteed to be
positive de nite.

The kernel we de ne is based on the general concept of GVSM kergld uses
the semantics of the HT. The use of hypernyms for the vector spacepresentation
of the concepts of a HT, enables the measurement of semantic distas in the vector
space [62]. More precisely, given a tree HT, there exists a weiglin guration for
the hypernyms, such that standard vector space distance and sintilgt measures are
equivalent to popular HT distances and similarities. This is eXpined in the following
propositions.

Proposition 1 Let O be a Tree HT. If we represent the concepts @ as vectors
containing all their hypernyms, then there exists a con guratiofor the weights of the
hypernyms such that the Manhattan distance (Minkowski disteg withp = 1) of any

two concepts in vector space is equal to the Jiang-Conrath reeee [45] in the HT.
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Proposition 2 Let O be a Tree HT. If we represent the concepts of the HT as vectors
containing all their hypernyms, then there exists a con guratiofor the weights of the
hypernyms such that the Resnik similarity measure [91] in the H§ equal to the inner
product in the vector space.

The WordNet hierarchical thesaurus is composed by 9 hierarckig¢hat contain
concepts that inherit from more than one concept, and thus arnot trees. However,
since only 228% of the concepts inherit from more than one concept [28]evcan
consider WordNet's as being close to trees. From the above we dode that, if we
construct a matrix D where each row contains the vector representation of each sense
containing all its hypernyms, the matrix DD ° will re°ect the semantic similarities
that are contained in the HT. Based onD, we move on to de ne the kernel between
two documentsd;; d,, based on the general concept of GVSM kernels Kqd;; d;) =
d;DD @,. In our experiments we have used various con gurations for thews of
D. More precisely, we have considered the vector representatioheach concept to
be extended with a number of hypernyms (noun POS consideredlpn We have
experimented with several such varying numbers of hypernyms. h& argument for
using only a limited number and not all hypernyms is that the sinarity between
hypernyms close to the root of the HT is considered to be very close 0. The
potential of the use of hyponyms was explored as well. The keinthat we nally
utilize in our experiments is a combination of the inner prodct kernel for terms with
the concept kernelK (di; dz) = Kierms (d1; 02) + Kconcepts(di; d2). This GSVM kernel
was embedded into the current version of SVMLight [46] and regted the standard
linear kernel used for document classi cation with sparse trainqwvectors. The kernel
de ned implies a mapping from the original term and concept sge, to a space that
includes the terms, the concepts and their hypernyms. The kezhcan be considered
as the inner product in this feature space.

Besides the created GVSM kernel for text classi cation, we havesal created
an additional semantic smoothing kernel based on the work in [[LOThe need for a
GVSM kernel, de ned in the previous paragraphs, instead of the m®straightforward
semantic smoothing kernel, originated from the fact that we edd not initially (during
earlier stages of this work) obtain a matrixP, whose entriesP; = P;; would denote
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the semantic proximity between concepts and j. This caveat was due to the fact
that we did not use any measure of semantic relatedness betweemnts at that time,
so that we could obtainP;; for every (;j ) pair. Instead, we used the compactness-
based WSD algorithm (section 3.2) and embedded the WordNet capts along with
a de ned number of their hypernyms in a GVSM representation of #h documents.

Having de ned Omiotis however, we were then able use a semantic sitiong
kernel that embeds the SR score (see de nition 6), as a means fonputing P;; . In
parallel, wanted to keep the lexical information of the term in the corpus (i.e., their
TF-IDF weights). Thus, we used the kernel proposed by Basili et Al. 7], further
discussed and evaluated in [10, 12]. The used kernel is explaimethe following: Let
d; and d, be two documents of the document collection. Their similantis de ned
as shown in the next equation.

X
K (dy; d) = (. 1,2) £ SR(Wi; W) (5.4)

W12 d1;W22 dz

where, ; and , , are the weights (TF-IDF values in our case) of the word®; andw; in

d; and d, respectively, and SR is our measure of semantic relatedness leswa pair of
terms? Then, the kernel can be embedded directly in the SVM classi er. Rarding
the SVM implementation, we use SVMLight [46], and for the implemntation of the
kernel we use a semantic kernel extension for SVMLight.

Text Retrieval

Synonymy (many words per sense) and polysemy (many senses per waré two fun-
damental problems in text retrieval. Synonymy is related vih recall, while polysemy
with precision. One standard method to tackle synonymy is the @ansion of the
query terms with their synonyms. This increases recall, but itan reduce precision
dramatically. Both polysemy and synonymy can be captured on thGVSM model in
the computation of the inner product betweert; and tj (explained in equation 2.3).

2|n [7] Basili et al. prove that equation 5.4 is a kernel, using the Lin semanic similarity measure
[59].

3Thanks to Stephan Bloehdorn, the semantic kernel extension is publicly available athttp:
[Iwww.aifb.uni-karlsruhe.de/WBS/sbl/software/semker nel/
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The methodology of constructing such a GVSM for text retrievald explained in the
following.

In the expansion of the VSM model we need to weigh the inner procubetween
any two term vectors with their semantic relatedness. For this ygrpose we use the
semantic relatedness between a pair of terms (SR) de ned in detioin 6. In equation
2.3, which captures the document-query similarity in the GVSMnodel, the similarity
between termg; andt; is expressed by the inner product of the respective term vectors
titj. Note that t7 and tj are in reality unknown. We estimate their inner product by
equation 5.5, wheres; and s; are the senses of termis and t; respectively, maximizing
SCM ¢SPE.

tt; = SR((ti;t));(si;5); O) (5.5)

Since in our model we assume that each term can be semanticalljated with any
other term, and SR((ti;t;); O) = SR((t;;ti); O), the new space is of"“”z—il) dimen-
sions. In this space, each dimension stands for a distinct pair ofrtes. Given a
document vectordy in the VSM TF-IDF space, we de ne the value in the ij ) di-
mension of the new document vector space as shown in equation. 5.6

dk(ti;tj) :(TF i IDF (ti;dk)+ TF i IDF (tJ,dk)) ¢tTt'J' (56)

We add the TF-IDF values because any product-based value resulto zero, unless
both terms are present in the document. The dimensiong(t;;t;) of the query, are
computed similarly. A GVSM model aims at being able to retrievdocuments that not
necessarily contain exact matches of the query terms, and thsits great advantage.
This new space leads to a new GVSM model, which is a natural exson of the
standard VSM. The cosine similarity between a documentl, and a query g now
becomes as shown in equation 5.7.

P

n P n
iz =i Gk(ti; b)) Co(ti; )

. PRAC] (5.7)
T jn:idk(ti;tj)zq: inzl jn:iq(ti;tj)z

cosGii 9= &p

wheren is the dimension of the VSM TF-IDF space.
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Other Applications of Omiotis

Besides the aforementioned applications of SR and Omiotis,rfavhich we provide
experimental evaluation in chapter 5, there are also otherteresting applications, for
which initial experimental evaluation is encouraging. Onsuch application is the use
of Omiotis for organizing bibliographical data from paperepositories, like DBLP. In
this direction we have applied Omiotis as a paper-to-paperrsilarity measure based
on the paper titles lying in DBLP, from selected conferences(Q. ECML, ECDL,
FOCS, VLDB, etc.). The Omiotis metric can then be applied in t&t clustering and
classi cation tasks by substituting the traditional document simiarity measures (e.g.
cosine similarity) with the semantic relatedness measure. Belpwve demonstrate
Omiotis' incorporation into the k-nearest neighbor (k-NN) classtation scheme [27]
and into the clustering algorithms of the CLUTO [138] suite. Of gurse, our measure
can be employed by any other data organization method that @pates upon the
notion of word or instance similarities. To demonstrate how Omi@ can be explored
by the above schemes, we examine the case of publication titlessi cation and
clustering, respectively.

In the original k-NN classi cation algorithm, a new instance is @ssi ed by a
majority vote of its neighbors. Speci cally, assume we want to assify instancej
to the most suitable class, out oim classes. Assume also that we have available a
training set for which we already know the correct classes. Insted] is classi ed to
classc -the most frequent class amongst its k nearest neighbors- using tadlowing
formula:

¢ = arg max O] (5.8)

c=1:m
wherejOy.j is the number of training instances that belong to class, with i = 1;::; m.
The parameterk signi es that we only explore thek nearest neighbors of every time
a classi cation is made. Based on the above steps, the k-NN classi er assitexts to
their corresponding classes. To classify documents that are repeated in the VSM,
the cosine similarity or Jaccard's coexcient metrics are empfed in order to identify
the neighboring training instances. We replace the notion ofrilarity with that of

4http://www.informatik.uni-trier.de/~ley/db/
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relatedness and we employ the Omiotis measure for deriving thelatedness between
semantic aspects of texts.

Regarding Omiotis's incorporation into CLUTO, the suite o®erstiree di®erent
clustering algorithms that can be applied either (i) to text nstances, or (ii) to any
type of instances as long as a similarity matrix between instaas exists. The second
case is the most straightforward for incorporating Omiotis, sirewe can use a pre-
computed similarity matrix as input to the algorithm instead o modifying its internal
mechanism. In particular, we use thescluster program of CLUTO, which takes as
input the adjacency matrix of instances and the desired numbef classes. We also use
the adjacency matrices produced by the cosine similarity andhé Omiotis measures
respectively, and we compare the obtained results. Initial expimental results show
a constant improvement of classi cation and clustering of DBLP paer titles using
Omiotis, against the use of the traditional GVSM.

In another application setting, we have embedded the SR measuinto a novel
keyword extraction algorithm, SemanticRank, that we de ne klow. Identifying the
most important terms in a text is of paramount importance for avariety of tasks.
Currently, the most widely used keyword extraction method istie TF-IDF weighting
scheme that estimates the importance of terms based on their gtgical properties
(i.e., frequency counts) in the texts in which they appear. Reently, there has been a
signi cant body of research, which demonstrates that supervisedathods are more
successful than traditional term extraction techniques. For aroverview, we refer
the reader to the work of [69]. Here, we introduce a new apprdador keyword
extraction. Our method builds upon the SR measure, and emplsy novel algorithm
for quantifying the importance of every term in a text.

Our algorithm, named SemanticRank, relies on the semantic lededness graph
of document terms and is mutatis mutandis the TF-IDF scheme irthe world of
semantics. More speci cally, assume a document collecti@ and a documentd 2
C with n distinct terms t;, i = 1::n. By relying on the SR measure of de nition
6, we can compute the semantic relatedness between every distipair of terms
(W in total) in every document d. Thereafter, we consider a semantic graph
where every term constitutes a verteX; and every edgeE; the semantic relatedness



90 CHAPTER 5. APPLICATIONS AND EXPERIMENTAL EVALUATION

between termst; and t;. Based on the above, we compute the SemanticRank score
for each term by using an adaptation of the well-known PageR&rformula [69]. More
speci cally, the SemanticRank of a term is determined as:

X R(t: 1.
SemanticRank(t;)) = (1 j d)+ d¢ p  SR(tiit) |
t20uT () SR(tj; 1)

tj 2IN (t;)

SemanticRank(t;)

(5.9
The intrinsic aim of SemanticRank is that it rewards the centality of terms in the
semantic relatedness graph in an analogous manner that PagelRaewards the cen-
trality of nodes in the web graph. Thus, as PageRank promotefi¢ most strongly
connected graph nodes, SemanticRank promotes the terms thae the most seman-
tically related to the majority of other terms in the collecton graph. Based on the
SemanticRank values computed for every term in a text, we cagxtract the top k
terms as the most important keywords for communicating the t¢ semantics. Initial
experimentation in an e®ort to label the clusters produced byilidiographical data
from DBLP, again provides very interesting and promising rests.

In another direction, in the past we had examined the introdugon of WSD in-
formation into Web personalization [30]. Web personalizatiois the process of cus-
tomizing a web site to the needs of each speci ¢ user or set of usersrsBaalization
of a web site may be performed by the provision of recommendai®to the users,
highlighting/ adding links, creation of index pages, etc. Thaveb personalization sys-
tems are mainly based on the exploitation of the navigationgbatterns of the web
sites visitors. When a personalization system relies solely on usdgesed results,
however, valuable information conceptually related to whais nally recommended
may be missed. The exploitation of the web pages semantics camsiderably im-
prove the results of web usage mining and personalization, sinterovides a more
abstract yet uniform and both machine and human understandablway of processing
and analyzing the usage data. The underlying idea is to integte usage data with
content semantics, expressed in ontology terms, in order to prockl semantically en-
hanced navigational patterns that can subsequently be used fproducing valuable
recommendations. The work in [30] was a proposal of a semantichweersonalization
system, focusing on WSD techniques which can be applied in ordersemantically
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annotate the web sites content. Under the same scope, we aim at gppg Omio-
tis to automatically annotate Web pages with semantic inforration from WordNet.
New WordNet senses can also aid to construct and evolve a domain dogy of the
considered Web pages [118] helping to crate thematic user presl

5.2 Experimental Evaluation

The experimental evaluation of Omiotis is two-fold. First, ve test the performance
of the semantic relatedness measure for a pair of words in foumigimark data sets,
namely the Rubenstein and Goodenough 65 word pairs [96] (R&Ghe Miller and

Charles 30 word pairs [72] (M&C), the Word-Similarity-353 ollection [32] (353-C)
comprising 353 word pairs, and the SAT Analogy questions, compmgj 374 test
guestions. Second, we evaluate the performance of Omiotis auf text related tasks,
namely the paraphrase detection task, using the Microsoft ResearParaphrase Cor-
pus [29], a document similarity task [57], the document classi tian task using the
Reuters-21578 document collection (ModApte split) and the Aman data set, and
“nally the text retrieval task, using three TREC collections.

5.2.1 Word-to-Word Semantic Relatedness
Comparison of the Semantic Relatedness Measure to Human Per ception

For the evaluation of the proposed semantic relatedness measbrtween two terms
we used three widely used data sets in which human subjects havevded scores of
relatedness for each pair. A kind of "gold standard" ranking afelated word pairs (i.e.,
from the most related words to the most irrelevant) has thus beecreated, against
which computer programs can test their ability on measuring seantic relatedness
between words. We compared our measure against ten known measurésemantic
relatedness: Hirst and St-Onge (HS)[39], Jiang and Conrath (J@%], Leackock and
Chodorow (LC)[55], Lin (L)[59], Resnik (R)[91, 92], Jarmaszral Szpakowicz (JS)[44],
Gabrilovich and Markovitch (GM)[34], Finkelstein et al. (F)[32], Hughes and Ramage
(HR)[41], and Strube and Ponzetto (SP) [113, 88]. In table 5:e show the results for
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| ws Joc [ e [ L | R [3s |oem | F | Hr | sp| sk

R&G | 0745 | 0:700 | 0:785 | 0:77 | 0748 | 0:842 | 0816 | N=A | 0:817 | 056 | 0.861

MaC | 0:653 | 0:805 | 0:748 | 0:767 | 0737 | 0:832 [ 0:723 | N=A | 0:004 | 0:49 || 0855

353-C ‘ N=A ‘ N=A ‘ 0:34 ‘ N=A ‘ 0:35 ‘ 0:55 ‘ 0:75 ‘ 0:56 ‘ 0:48 ‘0:552 H 0.61
Table 5.1: Correlations of semantic relatedness measures withman judgements.

all three data sets and for all ten measures, when these were aahlé. The reported
numbers are the Spearman correlation of the results of each aseare with the gold
standard (human judgements). The detailed scores for humans fR&G and M&C
data set can be found in [18], while the detailed scores for th853-C) data set are
made available with the collection. The correlations for the R&G and M&C data
sets show that SR performs in general better than any other measuof semantic
relatedness of any category (knowledge-based, corpus-basedhydorid). To visualize
the performance of our measure in a more comprehensible mannee also present
in gure 5.2.1 the relatedness values given by humans for allipain the R&G and
M&C data sets, in increasing order of value (left side) and the respea values for
these pairs produced using SR (right side). A closer look on gure2sl reveals that
the values produced by SR (right gure) follow a pattern similato that of the human
ratings (left gure). Note that the x-axis in both charts begins from the least related
pair of terms, according to humans, and goes up to the most relatgair of terms.
The y-axis in the left chart is the respective humans' rating foeach pair of terms.
The right gure shows SR for each pair. The reader can consult [L® con rm that
all the other measures of semantic relatedness we compare to,tfee same two data
sets, do not follow the same pattern as the human ratings, as clogak our measure of
relatedness does (low y values for small x values and high y vesufor high x). With
regards to the SR performance in the 353-C data set, we note tharanks second,
right after the Wikipedia-based measure of Gabrilovich and M&ovitch (GM), but
surpasses the rest, including the Wikipedia-based method of Shret and Ponzetto
(SP). Note also that Omiotis wins both GM and SP in the R&B and M&C data

Shttp://www.cs.technion.ac.il/~gabr/resources/data/w ordsim353/
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Figure 5.2: Correlation between human ratings and SR in the & and M&C data
sets.

sets, and that the 353-C data set contains the term pairs of the M& data set. As a
further remark regarding the 353-C collection, we need to ddhe fact that there are
cases where the inter-judge correlations may fall below 65%hile R&B and M&C
data sets have inter-judge correlations between&8 and 095. Finally, regarding the
statistical signi cance of the results, the correlations of SR radings to the human
rankings (0:861,0855 and 061 respectively for the three data sets) denote a signi cant
positive correlation at the 0.99 con dence level.

SAT Analogy Questions

The approach that we chose to evaluate SR in the analogy task ie tise the typi-
cal benchmark test set employed in the related bibliography,amely the Scholastic
Aptitude Test (SAT). © It comprises 374 words pairs and for each target pair 5 sup-
plementary pairs of words. The average US college applicantsavered correctly only

SMany thanks to Peter Turney, for providing us with a standard set for experimentation.
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lre | oc | L e | | rR[B|Vv ]| T |s1]|s2]|s | u | ns

Prec. | 0:2 | 0:273 | 0:273 | 0:313 | 0:321 | 0:332 | 0:4 | 0:42 | 0561 | 0283 | 0.304 | 0.34 || 0524 | 0.381

Table 5.2: Precision in the 374 SAT Questions.

57 percent of the questions, which consequently became the uppeund for every
machine based approach. In table 5.2, we present the precisiantbe 374 SAT ques-
tions, of nine methods, namely random guessing (RG), Jiang and @ath (JC)[45],
Lin (L) [59], Leacock and Chodrow (LC)[55], Hirst and St.-OngdHS)[39], Resnik
(R)[91], Bollegala et al. (B)[14], Veale (V)[130], and Turng (T) [123]. Further-
more, we present the individual results of S1 (equation 5.1),25equation 5.2) and
S (equation 5.3). Towards the direction of combining the answs of S1 and S2 in
a di®erent manner than the naive average, we also report the rééswf an "oracle"
that would always choose the correct score among S1 and S2. Thiseported in
the table as our upper-bound (UB). In an e®ort to design a learngnmechanism that
would learn when to select S1 or S2 answers for each SAT questiaith the goal to
reach our upper-bound, we designed and implemented a simpl@nmesentation of the
SAT questions as training instances. For each SAT question, weeated a training
instance that has 6 features: the minimum S1 value found for thiquestion (among
the ve computed values for all the possible pairs), the maximumiSvalue, and their
di®erence. We also added the same features regarding S2. We ttraimmed and
tested a Naive Bayes classi er [47] using ten-fold cross validatiom the 374 SAT
questions. The classi cation is binary (trust S1 or not trust S1, meang to trust S2),
and we used the respective Weka implementation. The results dfis experiment are
shown in the table as (NB). Finally, we also present the top resultsver reported in
the literature for the speci ¢ data set, which is the LRA method  Turney [123].
This is reported in the table as (T). The results presented in tale 5.2 show that S
ranks second among all lexicon-based measures loosing only by theasure of Veale
(V)[130], which is especially tuned for the SAT test. The methoaf Bollegala et Al.
(B) achieves higher score than SR, but needs training on SAT gstions. At this
point we have to note that the LRA method (T) needs almost 8 day$o process the
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Figure 5.3: 0.95 con dence intervals in the 374 SAT questions.

374 SAT questions [123], (B) needs around 6 hours [14], whilR &eeds a little less
than 3 minutes. The precision of SR in the 374 SAT questions, alongth the fact
that it needs very little time to execute, given the implemetation discussed in the
previous chapter, shows that SR can be successfully applied tetBAT task, and it
also needs orders of magnitude less execution time, comparedgsbome of the state of
the art approaches.

Furthermore, the fact that combining S1 and S2 can reach 526 shows that SR
can produce very promising results, if a classi er learns successfuibw to combine
them. The NB results, which are a simple attempt to construct such a learner
with few features, shows an important boost in performance of 6. Better feature
engineering and more training SAT questions can potentiallyield more promising
results, as the gap between 38% and the upper bound of 52% is still large. In all,
these results show that our lexicon-based relatedness measuredgsy\excient even
when used in a task which it has not been designed for. In additipas results show,
it can be a useful tool for designing a sophisticated solution esjedly for the SAT
tests.

Finally, regarding the statistical signi cance of the results, gue 5.3 shows the ®5
con dence intervals for all compared measures. As shown, S matshiee performance
of all lexicon-based measures, while the upper bound of comiigiS1 and S2 can
lead to a performance that matches the top reported results ithe speci ¢ 374 SAT
questions by Turney [123].
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‘ Corpus-based ‘ Knowledge-based ‘

’PMI-IR ’LSA ’ STS ’ JC ‘ LC ‘ Lesk ’ L ’WP ‘ R ’Com.U ‘Omiotis ‘

ERR | 13 | e67 [ 1103 | 1127 | 1184 | 1127 | 1227 [ 104 | 104 | 1426 | 1460 |

Table 5.3: Error Reduction Rates (%) from the standard vectaal model in the
paraphrase task.

5.2.2 Text-to-Text Semantic Relatedness
Paraphrase Task

In order to evaluate how well Omiotis measures the semantic adéédness between
texts, we decided to run the paraphrase recognition task on theest pairs of the
Microsoft Research Paraphrase Corpus [29]. From the originaath set, containing
both training and test pairs, we run experiments only on the 1Rtest pairs of text
segments, which have been collected from news sources on the \Wedr a period of
18 months. For each pair, human subjects have determined whethany of the two
texts in the pair consists a paraphrase of the other (the direch is not an issue).
The inter-judge agreement between annotators has been 83%.

For this task we computed Omiotis between the texts of every paand marked as
paraphrases only those pairs with Omiotis greater than a threshd. The threshold
was set to 05 since the measure's values range from 0 to 1. We compare thefper
mance of Omiotis against all the other measures of semantic reldness measuring
the Error Reduction Rate (ERR) compared to the baseline VectdSpace Model using
cosine as the similarity measure. Table 5.3 shows the reported ERor Omiotis, as
well as for JC[45], LC[55], L[59], R[91, 92] and LSA[32]. We Vm also added ERR
for the simple Lesk measure (Lesk) [58], the Wu and Palmer measuWR) [135], the
PMI-IR corpus-based measure suggested by Turney [122], the ST$ps-based mea-
sure proposed by Islam and Inkpen (using the reported results fdné¢ same threshold
of 0.5) [43] and two combined measure proposed by Mihalcea et 6] (Com.U).
The results indicate that Omiotis surpasses all the compared kwtedge-based and
corpus-based measures in the paraphrase task, providing an erreduction rate of
14:69% to the vector space model with cosine similarity.
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jcos| CFM | RM | DFM | LSA | GM | Omiotis
Correlation \ 0:27 \ 0:22i 0:49\ 0:32j 0:49\ 0:03j 0:14\ 0:6 ]o:72] 0:4427

Table 5.4: Correlations to human judgements for the 50 docwents data set.

Document Similarity Task

The second text related task for Omiotis, is the document simildy task, discussed
in section 5.1. The data set comprises 50 documents and the numloé words per
document varies from 51 to 126. For all possible pairs of docuntg, we have human
judgments of similarity. The inter-rater correlation, which can be considered as the
human performance and an upper bound for the task, is 0.605. Wemputed Omio-
tis for all the pairs and measured the correlation between ouesults and the human
judgments. We compared Omiotis against six other measures, nagalbaseline text
similarity method using the vector space model as documents regentation, cosine
as documents similarity measure and TF-IDF as terms' weights @S), the Common
Features Model (CFM)[56], which assumes that similarity is meared by the pro-
portion of common features (terms in our case); Tversky's RatiModel (RM)[127],
which measures similarity as the ratio of common to common andstinctive features;
the Distinctive Features Model (DFM), which is a special case dfversky's contrast
model [127] and is based more on the dissimilarity of the compdrdocuments; the
LSA method of Lee et Al. (LSA)[57]; and nally, the ESA-Wikipedia method of
Gabrilovich and Markovich (GM)[34]. Table 5.4 shows the repted results, in terms
of correlation to the human judgements. For CFM, RM and DFM, tle ranges in
correlation have been obtained by using di®erent setups of theodels [57]. More
speci cally, the lower correlations were obtained without awsidering n-grams, while
higher correlations were achieved when using 7-, 8-, or 9-gr& The results reveal
the following interesting ndings: (a) Omiotis surpasses the COSna DFM models,
while it is also better in the majority of the setups of the CFM arl RM models. Note
also that CFM and RM need tuning to perform their highest corredtions. (b) RM,
CFM, Omiotis, LSA and GM are signi cantly better than COS and DFM. (c) LSA
and GM achieve top correlations. In all, Omiotis performs webn the 50 documents
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data set, even though it does not require any type of trainingNote also that LSA

requires extensive tuning to select the optimal number of dimeions for the singular
value decomposition. The reader is also reminded that the LSAabed approaches
were outperformed by Omiotis in the paraphrase task.

Document Classi cation Task

In this section we present the results of our experimental evaltion in the document
classi cation task, for the GVSM kernel based on the compactness WSkkasure and
the semantic smoothing kernel based on the SR measure. Regardihg evaluation
of the GVSM kernel, we have conducted experiments in the Reu$e21578 data set
and a data set from amazon.com using Amazon's publicly avail&bMeb interface.
Reuters-21578 is a compilation of news articles from the Reus newswire in 1987.
We include this collection mostly because it has become a stamdebenchmark in
document classi cation. We conducted experiments on the two rigest categories,
namely acquisitions and earnings using the split in training and test documents of
[11]. This split yields a total of 4 436 training and 1 779 test documents for the two
categories. We extracted features from the mere article badi, and hiding from the
classi er any direct hints as to the actual topic (e.g., keyworsitags). Standard term-
based classi ers achieve very high accuracy on Reuters-2157&ugia suzciently large
training set. The interesting point in using this collection iso compare known results
with the behavior of our approach at various smaller trainingset sizes. Regarding
the Amazon data set, this site promotes books which are classi ed oategories.
From that taxonomy, we selected all the available editorialeviews for books in the
three categories Physics, Mathematics, and Biological Sciesc with a total of 6 167
documents. These reviews typically contain a brief discussion @books content and
its rating. Since there is a high overlap among these topics eabulary and a higher
diversity of terms within each topic than in Reuters, we expecthis task to be more
challenging.

We POS-annotated both the Reuters and Amazon collections (ug the Stanford
tagger [116]) and we restricted the disambiguation step to mdtg noun phrases in
WordNet, because compactness-based disambiguation can only Hanglouns. Since
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Figure 5.4: Relative Improvement of F-measures scores for iars Similarity Con g-
urations in the Amazon Topics.

WordNet also contains the POS information for each of its conpes, POS document
tagging signi cantly reduces the amount of choices for ambigus terms and simpli es
the disambiguation step. For example the termrun has 52 (!) distinct senses in
WordNet out of which 41 are tagged as verbs. We rst consider adjattenoun phrase
tokens in a small window of up to a size of 5 into dictionary loolas in WordNet before
the disambiguation step takes place. If no matching phrase isuied in WordNet
within the current window, the window is moved one token aheh This sliding
window technique enables us to match any multi-word noun ters known in WordNet,
whereupon larger phrases are typically less ambiguous. Non-aguous terms can be
chosen directly as safe seeds for the compactness-based disambajuatep. Note
that we did not perform any feature selection methods such as Mual Information
or Information Gain [61] prior to training the SVM. The binary classi cation tasks
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Figure 5.5: Relative Improvement of F-measures scores for iars Similarity Con g-
urations in the Reuters Topics.

were performed after forming all pairs between the three Aman topics, and one
pair between the two largest Reuters-21578 topics. The paramees setting for the
compactness-based WSD wa&/3L0, since it achieved high percision and performed
in a stable manner during the WSD evaluation experiments in #8 WSD benchmark
corpora. Our baseline was the F-Measure [61] arising from the gseof term features
only (e.g., not considering WordNet concepts as well). The bdse competed against
the embedding of the term senses, whenever disambiguation wasgble, and their
hypernyms/hyponyms into the term feature vectors, accordingp the di®erent GVSM
kernel con gurations shown in gures 5.4 and 5.5. We varied thedining set sizes
between 3 and 500 documents per topic. For each setup, in gurBst and 5.5 we
report the di®erences of the macro-averaged F-Measure betwdke baseline and
the respective con gurations, using 10 iterations for each of ¢htraining set sizes to
reduce the degree of result variances due to a few documentlars. For more than
500 documents, all our experiments indicate a convergence results between the
concept-based classi er and the text classi er based on term featsrenly. For each
run, the training documents were selected randomly followgna uniform distribution.
Since there is no split into separate documents for training antesting given in the
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Amazon collection, we performed cross-validation runs overahwhole set, each using
all the remaining documents for the test phase.

The results demonstrate that the use of compactness-based WSD and &ernel
function, based on a small number of hypernyms increases consislie the classi-
“cation quality especially for small training sets. In some cases, dse number of
hypernyms increases we observe a performance deterioratiohickh in some cases
falls below the term-based classi cation. The variance in the mber of hypernyms
needed to achieve better performance can be explained by ttaet that we did not
employ a hypernym weighting scheme. Thus, when semantically roelated cate-
gories are considered, such as Maths/Physics in the Amazon dataeh the use of all
the hypernyms with equal weights would result in many documes belonging to the
Physics category to have a high similarity to documents of Maghcategory, degrading
the performance of the classi cation algorithm.

As a next step, we compare the GVSM kernel with the semantic smootig kernel
using SR. We selected the best set up to compare with, which was tembedding of
at most 6 hypernyms in the GVSM, for every disambiguated noun. Netthat the pre-
vious GVSM requires a noun disambiguation step prior to execwtn, increasing the
computational complexity of the corpus pre-processing. Theonducted experiments
for this comparison use only the two largest Reuters categoriasamely acquisitions
and earnings At rst, binary classi cation was performed using a linear kernelwith
SVMLight, and weighting term features with their TF-IDF values. For this exper-
iment, the computation of the TF-IDF values was restricted oty by keeping the
documents of the two used categories (TF values are not a®eqtedlgain, we did not
use any feature selection methods, like Mutual Information omformation Gain.

In order to comply with the previous experimental results, wearied the number
of documents used for training between 3 and 500 documents gepic. For each
setup, we measured thenacro-averaged F-Measureusing 10 iterations for each of
the training set sizes, to reduce the degree of result variancasedto a few document
outliers. In gure 5.6 the results from the conducted experimas are shown. The
top gure shows the absolute increase in the macro-averaged Fllues from the
baseline, for both the GVSM and the semantic kernel and for all @aining set sizes.
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The bottom gure shows the exact macro-averaged F1 values fdrd three classi ers
and for all training set sizes. The results clearly show that all tiee classi ers achieve
very high macro F1 scores, all above 75%. The proposed semanticnké shows an
improvement for both the baseline and the compared GVSM. Espady, if we focus
on the experimental results when small training size sets were dsedhe semantic
kernel boosts macro F1 scores up taZp% compared to the baseline, and almost 2%
compared to the GSVM. Overall, the semantic kernel uses richemsantic information
than the compared GVSM, which is restricted only to nouns and # use of their
hypernyms. The SR used in the semantic kernel can produce term term semantic
relatedness values that can aid the document classi cation taskare than the GVSM,
especially when the available training size sets are small.

To demonstrate further the classi cation boost that the used kerrecan achieve,
we have also conducted experiments on the ten largest Reuteetagories, namely
earn, acq, crude, trade, money-fx, interest, money-supply, ghisugar and co®ee
The experiments were conducted following the procedure it(] so that the results
are comparable. The experimental setup in this case lies in sg#lag for each exe-
cution randomly a small percentage from the Reuters traininget (2%, 3%, 4% and
5%) and applying classi cation to the full test set of the designatk Reuters cate-
gories. The experiment has been repeated 10 times for eachrinag subset size, and
binary classi cation is applied each time for each category (eragainst-all classi ca-
tion strategy). The nal F1 scores are averaged to compute the roeo-F1 score for
each training size. In gure 5.7 we present our results. In the top we we show
the di®erence (in absolute percentage points) in the macro-Floses of our kernel
from the baseline, which is the linear kernel. We also show the sandi®erence for
the best performed kernel of Bloehdorn et al. [10]. Note that #htwo kernels are the
same, and the di®erence lies in the underlying similarity measubetween terms that
produces the term-to-term similarity matrix. In [10] their best setup is with the use
of the similarity measure of Lin [59], and the di®erences depect in the upper gure
represent that speci ¢ setup. In the bottom gure we show the precismacro-F1
values for our kernel and the linear kernel. At this point we ave to note that we
report much lower macro-F1 scores for the linear kernel, thatne scores reported
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Figure 5.6: Absolute improvements of macro F1 values and exattacro F1 values
for the Acquisitions vs Earningsexperiment.

in [10]. This must be due to the di®erent pre-processing condudtan the ModApte
split (stopwords, TF-IDF formula variation, etc.). Furthermore, we have not removed
other features than the ones in the used stopword list (i.e., feaes appearing less
than 5 times in the whole dataset). The results show an improvemeto the linear
kernel macro-F1, of up to 911% when using only 2% of the training set. We can
also see a small improvement over the Lin Kernel for the very smathining subsets.
Our ndings align to the conclusions extracted in [63] and [10}vith regards to the
fact that semantic information from WordNet can boost the classi ation task when
there is limited availability in training data. Finally, we have also discovered through
the experimental evaluation, as in [10], that when the traimg set becomes larger,
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for the 10 largest Reuters categories experiment.

the performance of the semantic kernel converges to the resutif the linear kernel,
as also shown in gure 5.6, where larger training sets are used (i.800 training
documents per category), and in few cases the semantic kernetm® deteriorates the
performance by a small percentage of almost 1%.

Regarding the statistical signi cance of the results, we have perined a macro t-
test [136] for the macro-F1 values of the linear kernel and osemantic kernel, for both
experiments. In all cases, besides the training size of 500 docuiseper category in
our rst experiment, the di®erences in the macro F1 values are $dically signi cant
at the 0:95 con dence level. Furthermore, we also made the same test foetmacro-
F1 values of our semantic kernel and the GVSM kernel of the rst exgiment. We
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Figure 5.8: Interpolated precision recall curves and di®eregs (percentage points)
from the baseline in interpolated precision.

found that the di®erences in the macro-F1 values are statistibasigni cant at the
0:95 con dence level, only for the training sizes of 3 and 5 docunis per category.
The same test could not be done for the di®erences with the Lin kef, because the
F1 values for all the individual categories, necessary for perfning the macro t-test,
are not publicly available for this kernel.

Text Retrieval

For the evaluation of the proposed GVSM model, we have experinted with three
TREC collections’, namely TREC 1 (TIPSTER disks 1 and 2), TREC 4 (TIPSTER

"http://trec.nist.gov/
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disks 2 and 3) and TREC 6 (TIPSTER disks 4 and 5). We selected thoseREC

collections in order to cover as many di®erent thematic subjscas possible. For
example, TREC 1 contains documents from the Wall Street Jounal, Associated Press,
Federal Register, and abstracts of U.S. department of energy.REC 6 di®ers from
TREC 1, since it has documents from Financial Times, Los Angel@dSmes and the
Foreign Broadcast Information Service.

For each TREC, we executed the standard baseline TF-IDF VSM motiéor the
‘rst 20 topics of each collection. Limited resources prohibite us from executing
experiments in the top 1000 documents. To minimize the exec¢an time, we have
indexed all the pairwise semantic relatedness values accoglito the SR measure,
in a database, whose size reached 300GB, and integrated thisrastructure into
the Terrier retrieval platform, as explained in section B.3.Thus, the execution of
the SR itself is really fast, as all pairwise SR values between Yddet synsets are
indexed. For TREC 1, we used topics 51 70, for TREC 4 topics 201; 220 and
for TREC 6 topics 301j 320. From the results of the VSM model, we kept the
top-50 retrieved documents. In order to evaluate whether thproposed GVSM can
aid the VSM performance, we executed the GVSM in the same retriet documents.
The interpolated precision-recall values in the 1ll-standardecall points for these
executions are shown in gure 5.8 (left graphs), for both VSM and \&SM. In the
right graphs of gure 5.8, the di®erences in interpolated priston for the same recall
levels are depicted. For reasons of simplicity, we have excadlthe recall values in
the right graphs, above which, both systems had zero precisionhds, for TREC 1 in
the y-axis we have depicted the di®erence in the interpolatguiecision values (%) of
the GVSM from the VSM, for the rst 4 recall points. For TRECs 4 and 6 ve have
done the same for the rst 9 and 8 recall points respectively.

As shown in gure 5.8, the proposed GVSM may improve the performaaof the
TFIDF VSM up to 1:93% in TREC 4, 099% in TREC 6 and 042% in TREC 1.
This small boost in performance proves that the proposed GVSM melis promis-
ing. There are many aspects though in the GVSM that we think redre further
investigation, like for example the fact that we have not conacted WSD so as to
map each document and query term occurrence into its corres¢nse, or the fact that
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the weighting scheme of the edges used in SR is generated frora thstribution of

each edge type in WordNet, while there might be other more soysticated ways to
compute edge weights. We believe that if these, but also more asfsediscussed in
the next section, are tackled, the proposed GVSM may improve nwithe retrieval

performance.

5.3 Discussion of the Experimental Evaluation

In this chapter, we have experimentally evaluated a new measuof text semantic
relatedness, Omiotis. The major strength of this measure lies ié formulation of
the semantic relatedness between words. Experimental evalioat showed that our
measure approximates human understanding of semantic relatexss between words
better than previously proposed measures. The combination of halength, nodes'
depth and edges' type in a single formula allowed us to apply osemantic relatedness
measure to di®erent text-based tasks with promising performancilore speci cally,
the SR measure surpassed all state of the art measures in word-toravtasks and the
Omiotis measure performed signi cantly well in the paraphrasena text classi cation
task. Although, the results in the word analogy task are satisfacty, since no special
tuning has been performed, we are sure that there is still plader improvement.

From the set of our experiments, we conclude that our measure cée easily
applied to several text related tasks. More speci cally, we havatroduced two dif-
ferent methodologies of embedding semantic information froWordNet in the text
classi cation task. The rst method, a GVSM kernel, that is based on th disam-
biguation information produced by the compactness-based WSbBtioduced in section
3.2, shows statistically signi cant improvement in two data sets\er the linear ker-
nel of SVM. The second method, a semantic smoothing kernel that $s€R, shows
additional improvement over the linear kernel, and in many &ses statistically signi -
cant improvement over the GVSM kernel. The results of this expenent in all cases
revealed that text classi cation improves signi cantly if semarnic information from
WordNet is used, especially when the training set is small.

Finally, we showed that the proposed measure of semantic relatexss can be
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applied to text retrieval through integration with the Terrier platform. This achieve-
ment is much due to the infrastructure and the implementationve have created for
Omiotis. Results in three TREC collections are encouraging drreveal that the pro-
posed GVSM partially improves and constantly never deterioras the VSM model.
In the future, we plan to create a semantic indexing frameworlso that semantic in-
formation from WordNet is indexed at index time of the documets, and not during
their retrieval. This plan has many challenging points thatremain to be solved, and
thus it constitutes interesting future work. Once developedt will allow on-line text
retrieval using semantic information from word thesauri.



Chapter 6
Conclusions

This thesis has investigated the use of semantic information froword thesauri in
several text applications like text classi cation, text retrieval, paraphrasing and word-
to-word relatedness. The aim of this thesis was to provide new theds for extracting
semantics from text that exist in a word thesaurus through statefahe art Word Sense
Disambiguation (WSD) approaches, and to propose novel modets £mbedding dis-
ambiguation information into the aforementioned applicabns. A novel measure of
semantic relatedness based on WordNet was de ned, Omiotis, whictasvexperi-
mentally shown to capture successfully the semantic relatednesstleen words and
text segments, matching in several data sets the human perform@nin similarity
perception between pieces of text. New models for embeddingetOmiotis mea-
sure in challenging text applications, like text classi cation ad text retrieval, were
proposed, and we have shown that they perform better than trational document
similarity measures and models, like the combination of VSM andbsine similarity.
We believe that the proposed solution has accomplished its irat goal, which was to
‘nd new means of computing similarity between text, besides nghg solely on the
exact keyword matching that many traditional models adopt.In this direction, this
work constitutes a new methodology for processing text with thaim to classify and
retrieve or organize document collections. In the followingve discuss the contribu-
tion of this work in detail, we sum up the conclusions reachedtaf the experimental
evaluation, and nally we provide useful directions towardste continuation of the

109
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current research.

6.1 Contributions

The contributions of this research span in three directions. Hnarily, new meth-

ods for Word Sense Disambiguation are introduced that have beshown to achieve
state of the art performance in three benchmark WSD data sets. &mdly, a novel
measure of semantic relatedness is introduced, that embeds gemantic information
from WordNet into the measurement of word-to-word (SR measurgnd text-to-text

(Omiotis measure) relatedness. Finally, new models for sevetekt applications are
introduced that use SR and Omiotis.

WSD

We have introduced four new methods for WSD, three unsupervid@nd one super-
vised, all belonging to the category of knowledge-based WSDh& rst approach
(compactness-based WSD) exploits the content and structure €i, the senses and
hierarchical relationships) of hierarchical thesauri (HT) andextends the bag of words
model for text classi cation. The contribution of this approat is the design of a
successful WSD method that improves the text classi cation proces$he compact-
ness WSD approach takes into account term senses found in HTs, (iretspeci ¢ case
Wordnet), and for each document selects the best combinatiofi them based on their
conceptual compactness in terms of related Steiner tree coségart from the senses
we add to the original document feature set a controlled numbef hypernyms of
the senses at hand. The hypernyms are incorporated by means b&tGVSM kernel
utilized.

The attractive features of this approach are:

(i) Appropriate WSD approach for text classi cation. Most of the rlated ap-
proaches incorporating WSD in the classi cation task do not prade a sound ex-
perimental evidence on the quality of their WSD approach. Othe contrary in this
approach, the WSD algorithm is exhaustively evaluated agash various humanly dis-
ambiguated benchmark datasets and achieves very high precisi(among the top
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found in related work) although at low coverage values. The perimental evaluation
provides us with the assurance that our WSD algorithm can be cayured to have
high precision, and thus, would insert in the training set very ttle noise.

(i) Similarity measure that takes into account the structureof the HT. Document
classi cation depends on a relevant similarity measure to classidydocument into the
closest of the available classes. It is obvious that the similarigmong sets of features
(representing documents) should take into account their hierehical relationships
as they are represented in the HT. None of the previous approash®r embedding
WSD in classi cation has taken into account the existing literatire for exploiting
the HT relations. Even when hypernyms are used, they are used in ad-hoc way,
based on the argument that the expansion of a concept with hypgms would behave
similar to query expansion using more general concepts. We utéi a Kernel based on
the general concept of a GVSM kernel that can be used for measyithe semantic
similarity between two documents. The kernel is based on the usehypernyms for the
representation of concepts - theoretically justi ed by previos related work concerning
the computation of semantic distances and similarities on a HT #t aligns to tree
structure. We conducted classi cation experiments on two realavid data sets (the
two largest Reuters categories and a data set constructed froimet editorial reviews of
products on three categories of the Amazon web site). The ressilemonstrate that
this approach for embedding WSD in classi cation yields signi agly better results,
when the training sets are small.

In an e®ort to improve even more the disambiguation performaaand close the
gap between automated WSD and human performance (which inghused data sets
ranges from 67% to 80%), we presented a new unsupervised WSD allgm, which
utilizes all types of semantic relations in WordNet. The algothm uses Spreading
Activation Networks (SANS), but unlike previous WSD work it creakes SANSs taking
into account all sense-to-sense relations, rather than relatisrbetween senses and
glosses, and it employs a novel edge-weighting scheme. The atgor was evaluated
on three benchmark data sets (Senseval 2, 3 and SemCor), usingrtitet as the
thesaurus, though it is general enough to exploit other word #@sauri as well. It
outperformed: (i) the most recent SAN-based WSD method, which excame the
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problems older approaches faced, and (ii) the best unsupends@&/SD methods that
participated in the respective Senseval competitions.

Though SANs provided an accuracy of around 50%, we explored thessibility of
keeping the same, rich, semantic representation of the de ned samtic networks but
changing the processing algorithm of the nodes, using a variatiof PageRank that
takes into account weights on edges. This new WSD algorithm bsted the WSD
performance by an additional 5§ 7%. Currently, to the best of our knowledge, the
PageRank-based method is the top performing unsupervised knedge-based WSD
approach in the WSD bibliography [79], excluding ensembles.

Finally, we have introduced a new supervised, multilayered W5 method based
on an ensemble of three WordNet-based WSD algorithms. The methtmins a set
of SVM classi ers, one for each WSD algorithm, and learns which WSBethod
to trust depending on the feature vector of the target term. Tle contributions of
this method are: (i) state of the art accuracy in unrestricted éxt WSD, (ii) limited
training requirements to achieve top performance, (iii) v space complexity, since
the classi ers are trained on a very small number of features antié stored support
vectors are on average 3% of the training instances, and (iv)dhdisambiguation step
of the algorithm has low time complexity, since it is reduceda executing a sing base
WSD method for each word occurrence, selected from a list of rhetls that do not
require training (SANs, PR and FS). The proposed approach perfms as well, in
terms of accuracy, as state of the art methods for unrestrictegtxt WSD, and has
low space and execution time requirements for the disambiguan step.

Measuring Semantic Relatedness

Another contribution of this work is the formulation of Omiotis, a new measure
of semantic relatedness for text segments. The major strength ofnibtis is the
formulation of the semantic relatedness between words (SR)high is exploited to
measure semantic relatedness between texts. Omiotis' innovatics that it combines
for the rst time three important factors: (i) the length of the path that connects
the senses of words in the used thesaurus; (ii) the senses' depth in thesaurus, and
(iii) the importance of the thesaurus' edges. Furthermore, it ses all of the available
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semantic information in the thesaurus, even semantic links thatross parts of speech,
and this enables the measure to compute relatedness for paifsmords of every POS
combination. Experimental evaluation showed that our measarapproximates human
judgements of semantic similarity between words better thanrpviously proposed
measures.

Applications

Omiotis can be embedded in challenging text applications. Ftext classi cation, we

have created a new semantic smoothing kernel that embeds the senic relatedness
measure into the support vector machines learning mechanismh& semantic kernel
outperforms both the linear kernel and the GVSM kernel that use compactness
disambiguation information in the Reuters data set. Results keal that the semantic
relatedness between text segments captured by our measure proel very high macro-
F1 scores, especially when small training sets are used. In textreval, we have
incorporated the semantic relatedness measure into a new GVSMathextends the

naive VSM model. Experiments in three TREC collections show #i the semantic

information from WordNet improves in many cases the retrievaperformance and
never deteriorates it.

In addition, we have used our semantic relatedness measure in salvether inter-
esting applications. Primarily, we have incorporated the mesare into a formula that
can produce relatedness scores of candidate word pairs in SAlegtions. Results
show that our measure surpasses every other knowledge-based meassged in the
task and matches the performance of several corpus-based meastin@t have high
execution time (i.e. several hours for the set of the 374 exaraohSAT questions, while
our measure needs less than one minute). Additionally, we havead Omiotis in the
text paraphrase recognition task. Experimental evaluation siws that our measure
reduces the error rate of the standard vectorial model by 18%o, indicating that it
captures successfully text relatedness.

Finally, the largest part of the research conducted for the wiing of this thesis
has been published in the following articles (chronologicarder):
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6.2 Conclusions

From the work conducted in this thesis, we have drawn several impgant conclu-
sions regarding semantic information and its use in text appktions. These can be
summarized as follows:

2 Automated WSD can reach human performance, even in ne-graidedisam-
biguation text collections, like Senseval 2, 3 and SemCor dishiguated with
WordNet 2.0, if all of the available semantic information fromthe thesaurus is
used, and an ensemble of approaches is utilized.

2 The semantic information that WordNet o®ers is rich, and there ra means
of embedding it into text applications that can improve the mrformance of
traditional models, like VSM. We have introduced such models fseveral ap-
plications, like text classi cation, text retrieval, paraphrase recognition, and
SAT analogy tests.

2 Semantic relatedness between words and between text segmerds be cap-
tured successfully by measures of semantic relatedness that takéiaccount
in tandem all factors a®ecting the connectivity of nodes in a i&antic graph:
semantic path length, the senses' depth, and the importance of geks.

2 |t is computationally feasible to incorporate of semantic irdrmation into text
applications, but an infrastructure with pre-indexed sense-tgense values of
relatedness is needed.

6.3 Future Work

This work creates much space for new theoretical models thase semantic networks
and semantic document representation, but also in the applican level of text pro-
cessing. In WSD the next research steps should concentrate on stundyadditional
methods, both supervised and unsupervised, that can complete th@roduced en-
semble, to match the human performance in unrestricted text. @rent state of the
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art research in WSD focuses on a small improvement window of 5% from the most
frequent sense baseline, but improvements in this window mayl@k WSD methods
to match human performance, and in this direction the ensemblapproach seems very
promising.

Regarding the research area of measures of semantic similaribdaelatedness, fu-
ture work should concentrate on capitalizing on the knowledgthat publicly available
corpora can o®er, when information from thesauri does not suxcEor example, cur-
rent trends include, among others, the use of Wikipedia as antainative knowledge
base to thesauri like WordNet.

Furthermore, we plan to apply our semantic relatedness meastteemore applica-
tions, such as text clustering, keyword and sentence extractigasing SemanticRank,
the algorithm we propose for keyword extraction), query expeion etc. and to ex-
amine how the measure can be tuned further to achieve betterff@mance.

Moreover, regarding the research in GVSM models for text regval, there are ad-
ditional aspects that deserve further attention. In some prewusly proposed GVSMs,
it was suggested that semantic information can create an indowal space, leading
to a dual representation of each document, namely, a vector thidocument terms
and another one with semantic information. Similarly, our poposed GVSM could
complement the standard VSM representation. Thus, the similaytbetween a query
and a document may be computed by weighting the similarity intte terms space and
the senses space.

Finally, an interesting aspect of the use of semantic informatioin text appli-
cations is the creation of an indexing infrastructure that wl not only index terms
existing in every incoming document, but will store semantichl related concepts
during the indexing process as well. This will allow embeddinof semantic informa-
tion even in real time applications. This is also the imminentesearch interest of the
author.



Appendix A

WordNet 2.0 Structure

Traditionally, machine readable dictionaries (MRD), likethe Collins English dictio-
nary, were used in text related tasks. (i.e early attempts on wdrsense disambigua-
tion). Word thesauri like WordNet [31], or Roget's Internaticnal Thesaurus [76],
constitute the knowledge-base for several text-related resehrtasks. WordNet is
the knowledge base used in this thesis. WordNet's lexical databasentains English
nouns, verbs, adjectives and adverbs, organized in synonym setgr(sets). The terms
sensesand synsetsare used interchangeably the thesis. Synsets are connected with
various edges, representing semantic relations among themgdathe latest WordNet
versions, like 2.0, o®er a rich set of such links: hypernymy / hypomy, meronymy

/ holonymy, synonymy / antonymy, entailment / causality, trop onymy, domain /
domain terms, derivationally related forms, coordinate term, attributes, and stem
adjectives. As it is shown in gure A.1l, several relations cross parof speech, like
the domain termsrelation, which connects senses pertaining to the same domaend.
light, as a noun meaning electromagnetic radiation producing asual sensation, be-
longs to the domain ofphysicg. In all cases, when WordNet 2.0 is used in any of the
proposed approaches, all of the o®ered semantic relations erigtin WordNet 2.0 are
utilized.
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Figure A.1: Semantic relations in WordNet 2.0.



Appendix B
Complexity and Implementation

The computation of Omiotis entails a series of steps, the comglyy of which is
strongly related to its base measure of Semantic Relatedness §SRrimarily, a fast
API to WordNet is needed, in order to retrieve semantic informabn lying in its
lexical database. In order to access WordNet fast, we make use of @men source
library written in Java, namely Java WordNet library®. This Java APl to WordNet
provides easy access to the semantic information in WordNet'sxleal database. On
top of that APl we have developed a wrapper (JWNLWrapper) that landles all the
basic functions needed from the algorithms described in thidsis. More details on
the used API and the developed wrapper are provided in appendB4.

Furthermore, a fast implementation of algorithm 4 is cruciato the overall perfor-
mance, since it entails the computation of the path that maxinzes a certain product.
Finally, integration with existing retrieval platforms for performing fast text retrieval
using Omiotis is also needed. In this chapter we describe the s system imple-
mentation and the infrastructure that we have created in ordeto make Omiotis and
SR scalable measures that can handle large amounts of data.

Ihttp://sourceforge.net/projects/jwordnet
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B.1 Complexity Issues

Primarily, given two words, w; and w, the construction time of the semantic network
used to compute SR according to algorithm 4, we proved in [12td be O(2 ¢k'*1),
wherek is the maximum branching factor of the used thesaurus nodes ahds the
maximum semantic path length in the thesaurus. Once the semantietwork is con-
structed, the complexity of algorithm 4 is reduced to the stanard time complexity
cost of Dijkstra's algorithm. Using Fibonacci heaps, it is possibke alleviate the com-
putational burden of Dijkstra and further improve time compkxity. In the semantic
network, Dijkstra takes O(nL + mD + nE), where n is the number of nodes in the
network, m the number of edged.. is the time for insert, D the time for decrease-key
and E the time for extract-min. If Fibonacci heaps are used theh = D = O(1) and
the cost of extract-min isO(logn), thus signi cantly reducing the cost of execution.
This whole procedure is repeated £ n; £ n, times for the computation of Omiotis
between two documentsd; and d, having in total n; and n, distinct words respec-
tively. More details on the use of Fibonacci heap with the Dijgtra algorithm can be
found in appendix C.

B.2 Omiotis Implementation

From the aforementioned, it is obvious that the computatiorof Omiotis is not cheap
in general. For this purpose, and in order to improve the systesiscalability, we have
pre-computed and stored allSR values between every possible pair of synsets in a
RDBMS. This is a one-time computation cost which dramaticayl decreases the com-
putational complexity of Omiotis. The database schema has theeentities, namely
Node Edge and Paths Node contains all WordNet synsets.Edge indexes all edges
of the WordNet graph adding weight information for each edgeotnputed using the
SR measure. Finally,Paths contains all pairs of WordNet synsets that are directly
or indirectly connected in the WordNet graph and the computedelatedness. These
pairs were found by running a Breadth First Search (BFS) startig from all Word-
Net roots for all POS. Table B.1 provides statistical informatn for the RDBMS
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’ Synsets ’ Edges ‘ Con. Synset Pairs ‘ Avg In-Degree ‘ Avg Out-Degree ‘ Avg Fan-In ’ Avg Fan-Out ‘

‘ 110; 490 ’ 324; 268 ‘ 11;182;324;723 ‘ 2:9933 ‘ 2:9535 ‘ 103;192:32 ’ 101; 822:56 ‘

Table B.1: Statistics of the WordNet 2.0 graph in the implemergd database.

which exceeds 300 Ghytes in size. Numbers in columns 4 and 5 meashe average
in- and out-degree based on direct edges between synsets and Ioers reveal that
WordNet graph is asymmetric, which is due to the Stem Adjectiveand Derivational
Related Forms relations, which direct from a synses; to synsets; but not the op-
posite. Numbers in columns 6 and 7 reveal the same when considgrail possible
paths between any synse$; and synsets;. This is again due to the aforementioned
asymmetry. The current implementation takes advantage of # database structures
(indices, stored procedures etc) in order to decrease the corntgdional complexity of
Omiotis. The following example is indicative of the complefy of SR computation.
The average number of senses per term is between 5 and 7 (depegdin the POS).
For a pair of terms of known POS, we perforrﬁzi (n' 6) combinations and for each
pair of synsets we compute the similarity as presented in de nitio5. When these
similarities are pre-computed, the time required for processl 100 pairs of terms is
" 1 sec, which makes the computation of Omiotis feasible and sdalla As a proof
of concept, we have developed an on-line version of the SR arm tOmiotis mea-
sureg, where the user can test the term-to-term and sentence-to-sente semantic
relatedness measures and the respective execution times.

B.3 Integration with Terrier

Terrier (Terabyte Retriever)® is an open source retrieval platform which implements
a wide variety of term weighting and retrieval models. It is foused on the TREC col-
lections?, though it is able to index other collections as well. Sinceiour evaluation
we experiment with several TREC collections, we have integradl the infrastructure

2Publicly available at http://83.212.240.72
Shttp://ir.dcs.gla.ac.uk/terrier/
4http://trec.nist.gov/tracks.html
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Figure B.1: SR Integration with Terrier Platform.

described in the previous section into the TREC architectureln gure B.3 an ab-
stract overview of the integration is shown. The integration ansists of manipulating
the component of the Terrier Java API that handles the similaty of a given query
with the document. When a query is submitted, prior to returnng the results, we
incorporate the semantic relatedness between every queryrteand every document
term inside the similarity function, in order to compute the vdue of the GVSM ex-
plained in the previous chapter. Essentially, and because thisocedure is conducted
on-line, the time that the system needs to respond, increases dratically. But,
as more queries are submitted to the system, and because we alseinthe com-
puted SR values among terms, the systems' execution time perfante improves.
Alternatively, we need to pre-compute all the pairwise SR vaks for all lemmas ex-
isting in WordNet (as we have done in the sense level). This proage is in our next
plans to implement, and there is evidence that it will improe the response time even
more. Currently, and for the purposes of our experimental eleation in three TREC
collections, we have pre-computed the SR values between guérms and the top
50 retrieved documents from the VSM in the normal Terrier modeThis allows us
to evaluate the performance of SR in the returned top 50 resslof the VSM model.
Expansion of the evaluation in more top documents (e.g. top Q0) is feasible, but the
computational cost is still high, unless we expand the SR databa with precomputed
term SR values between lemmas in WordNet.
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B.4 Examples of Accessing WordNet with the JWNL
Wrapper

For accessing WordNet, we have used the Java WordNet library, a &@nd open source
Java API for communicating with the index les of WordNet's lexcal database. In
order to provide more functionality to the JWNL API, we have crated a wrapper that
provides the basic functionality needed for implementing # algorithms presented in
this thesis. Below follow some examples of accessing WordNet by gsthe JWNL
wrapper.

Initially the JWNLWrapper initializes the JWNL API for the basic interaction
with the physical Tes of WordNet (WordNet uses a separate large irek for each
POS). This is done as shown next.

JWNL. initialize ( new FilelnputStream("conf nnfile _properties.xml"));

Then, given that a JWNLWrapper object is created (e.g. wnWraper), we can use
this object to retrieve all the WordNet senses for a given lemmdike shown in the
following command. The command will return an ArrayList of Syset objects (de ned
in JWNL) for the lemma Test. Each Synset object is essentially a concept of WordNet
thesaurus. In this case, it will return 6 synsets for the noumest and 7 synsets for
the verb test

ArrayList <Synset> lemmaSenses = wnWrapper.getSenses(String lemma); I

Then, the synsets can be processed with the functionality that tnJWNL API pro-

vides (e.g. get the POS, the gloss words, the synsets connectedtte@tc.).

Basic Utility Functions

In order to improve the functionality of the JWNL API, we have developed in the
JWNLWrapper a series of methods that help us process WordNet fastend easier.
The signatures of some of those methods are shown in the followinbhe methods
names are self-explanatory. Note that the PointerTargetTrédode is connected to a
Synset object, but stores more information regarding the speciWordNet node.

SAvailable for download from http://www.db-net.aueb.gr/gbt/download.html
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public void printChildren(Synset node, int depth);

public ArrayList <Synset> getHyponyms(PointerTargetTreeNode node, int depth);

public ArrayList <Synset> getAllWordnetSensesOfPartOfSpeech(String lemma, Strin g POS);

public int getDepthOfSynset(Synset aSynset);

public ArrayList <Synset> getHypernyms(PointerTargetTreeNode node);

public ArrayList <Synset> getConnectedSynsets(Synset aSynset);




Appendix C

Dijkstra Using Fibonacci Heaps

Algorithm 4 that computes the semantic relatedness between a ipaf synsets is
the modi ed Dijkstra algorithm to maximize the product explained in de nition 5,
with an appropriate weighting of the edges. Note however thahithe literature [23]
the reference to themodi ed Dijkstra algorithm is normally used for the version of
Dijkstra that uses a binary heap to implement the priority quee Q of the Dijkstra
algorithm. But, as we will explain in the following, we have ged Fibonacci Heaps,
instead of the binary heaps.

The original Dijkstra algorithm has a running time ofO(V2+ E) = O(V?), where
V is the set of vertices of the graph andE the set of edges. In the case of sparse
graphs, like the constructed semantic networks from WordNet inuy case, if binary
heaps are used, the total running time is reduced ©((V + E)logV). Fibonacci heaps
can obtain a further reduction of the running time, achievig O(V logV+ E) and since
jVj is usually several hundreds or even thousands in our constructadtworks, this
implementation produces an even faster solution.
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Appendix D

E®ect of Lexical Ambiguity in Five
Toy IR Data Sets

In the eld of IR much work has been done to estimate the e®ect of @dmlexical
ambiguity type independently in retrieval performance. Iran e®ort to provide such an
analysis, the current appendix procvides: (a) experimental sty on the e®ect of each
ambiguity type in IR, (b) evaluation of three GVSM, and (c) andysis on the intrinsic
features of query and documents words whose disambiguationyrieprove, but not
deteriorate IR performance. Among the related studies made the past, a special
focus must be given to the works by Krovetz and Croft [51], Vobees [133], Sanderson
and van Rijsbergen [102], and Stokoe [111]. Besides Voorheds) wsed a real WSD
system, the rest used a methodology based on the generation of ramdpseudowords
to assess the role of semantic ambiguity in IR. This appendix is amplementary
experimental work to the aforementioned in several aspects. iRxarily, it investigates
the relation of each ambiguity type with IR independently. Ako, it tests 3 GVSM
models and highlights the features of words that should be disdiguated, so that
WSD can improve IR performance. Finally, it uses WordNet and a siple WSD
system (most frequent sense given by WordNet for each word occurcel, instead of
pseudowords, to assess sense ambiguity in IR.

The representation of documents and queries in all tested redwval models is based
on the simple baseline vector space model (VSM) with a convent@rranking system
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of TF ¢IDF as a weighting scheme for all terms [5]. Similarity between gty and
document vectors in all models is computed with theosine measure. For every
discussed type of ambiguity, we altered the VSM representation dbcuments and
gueries, and created a new retrieval model for each ambiguitgsolution. For the
syntactic ambiguity, we considered a document space where eéetm is indexed along
with its POS. For each term occurrencé; in a document (the same holds for queries),
we index the pairt; P OS, whereP OS is its POS for this occurrence. POS is found
using theStanford Log-Linear POS Tagger For sense ambiguity, we created 3 di®erent
GVSM, which embed senses information. All queries were manuatlysambiguated
and a baseline WSD system is applied to the documents (selectinigvays the rst
sense from WordNet). Along with the terms, we added in the vectordié senses that
disambiguate them. The di®erence in the 3 GVSM lies in the weighg of terms
and senses. GVSM1 considers two di®erent vector spaces, terms and senSach
one uses its own, separaté F ¢IDF weighting, and the nal similarity between a
document and a query is computed as the sum of the cosine simileas in the two
spaces. GVSM2 considers terms and senses as dimensions in the same.spacs,
a new hybrid vector space, with each distinct term and sense beimgmension, is
created. GVSM3, that we proposed in [63], considers one hybricgotor space of
terms and senses, though senses are assigned with THe ¢IDF weight of their
terms. When two distinct terms are disambiguated with the same sea, the terms'
weights are combined to produce the sense weight. For the resmuo of phrases'
ambiguity we perform a phrase detection algorithm using a slidg window of varying
length, starting from 7 terms and dropping down to 2. Phrases arrecognized with
dictionary look-up in WordNet. The resulting phrases substitutd the respective term
occurrences in the indexing. Finally, the e®ect of stemming studied with the use
of Porter stemmer. The stems substituted the respective term oagences in the
indexing.
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‘ D. ‘ Q. ‘ Domain ‘ #T D. ‘ #T Q. ‘ #P D. ‘ #P Q. ‘ D. amb. ‘ Q. amb.
CACM 3204 64 | ACM abstr. 295 134 211 | 497% | 1.4 39% 5 88.3% | 45 | 84.9%
MED. 1033 | 30 | med. abstr. 82.3 11.6 2.9 89% | 1.3 | 66.6% | 4.4 | 82.2% | 3.1 | 90.3%
TIMES 423 83 general 304.6 8.2 9.8 | 100% | 1.3 | 57.8% | 45 | 70.5% | 3.6 | 77.9%
NPL 11429 | 100 physics 23.4 6.8 14 | 449% | 1.2 26% 46 | 70.2% | 4.3 | 62.1%
CRAN. 1400 | 225 aer/mics 90.4 9.3 3.1 88% 1.1 | 351% | 5.3 | 88.1% | 4.7 | 89.9%

Table D.1: Documents, queries and domains of the retrieval ltzctions.

D.1 Description of the Data Collections

Experimental evaluation was conducted in 5 IR collectiony namely CACM, CRAN-
FIELD, NPL, MEDLINE and TIMES. Table D.1 presents the details of the used
data sets. The domain of each collection, the number of documer{D.) and queries
(Q.) and the average number of term occurrences in the docunte (#T D.) and
the queries (#T Q.)are shown. Also, table D.1 shows the average mier of phrases
recognized in the documents (#P D.) and the queries (#P Q.). Nte, however, that
these numbers refer to the documents and queries in which aa$ one phrase was
found. In the same columns we also report the percentages of doents and queries
that at least one phrase was recognized from the dictionary. ally, we report the av-
erage ambiguity of words found in WordNet for all documents (Damb.) and queries
(Q. amb.) per collection, which is the average number of WoNkt senses for these
words, along with the percentage of terms found in the used lexin, separately for
gueries and documents.

D.2 Results and Analysis

Figure D.1 presents per collection the di®erences of each i@tal model from the
interpolated precision of the VSM baseline (indexed terms in thcollection without
resolving any ambiguity) for the 11-standard recall points. Th depicted lines are
produced from the execution of the six discussed retrieval modehamelystemming

IMaterial used is downloadable from http://www.db-net.aueb.gr/gbt/download.ht ml



D.2. RESULTS AND ANALYSIS 129

Differences from Interpolated Precision in the CACM Collection Differences from Interpolated Precision in the MEDLINE Collection
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Figure D.1: Di®erences from the baseline in interpolated pision.

(ST), namely POS tagging(POS), phrase detection(PD), and the three GVSM mod-
els that handle sense ambiguity (GVSM1, GVSM2 and GVSM3). Belowlfows the
analysis for each retrieval model separately.

Stemming: As shown in gure D.1, stemming improves almost in all cases IR
performance. In four collections (CACM, MEDLINE, TIMES and CRANFIELD)
stemming produces the same behavior in the respective retrievaodel. Initially it
boosts IR precision, compared to the baseline, for the rst 2 or 3call points, then
it weakens in the 40% 60% recall levels, and nally it boosts precision again, up
to the point where all relevant documents are retrieved. Thenly collection where
stemming boosted constantly and high (adding up to 11% in preacisi), without drop
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in any recall point, is NPL. Observing closely NPL from table D.1we notice that
it has the shortest documents and queries among all used colieos. By examining
further the boost in precision due to stemming, we notice that th highest di®erences
occur for the NPL, CACM and MEDLINE (in all cases more than 45% for certain
recall points), which also happen to be the collections with # shortest documents.
Thus, according to our results we conclude that stemming can bstgprecision in low
and high recall levels, while it boosts more in cases when docuitzeare relatively
small.

POS Tagging: Resolving POS in IR cannot help much in precision, as shown
in gure D.1. The POS retrieval model can help as much as%%, compared to the
baseline, and this only happens in TIMES collection. In the CRNFIELD collection
it boosts precision by 2%, but in the same collection also drops up 5% in the
medium recall points. Note also that in CACM, it drops by even 18% Examining
further TIMES and CACM collections, in which POS model achiegd its top and its
worst performance respectively, we notice that TIMES has thetgest documents and
CACM is among the two collections with the shortest. From our aalysis, it can be
inferred that POS information cannot boost precision dramatally, but in the cases
it boosts at all, the collections have relatively large docuents.

Phrase Detection: Phrase detection can boost retrieval performance up to 4%,
as shown in gure D.1. Looking closer at the collections where ARiproves precision,
we notice that this happens only with TIMES and NPL, where it ba@sts precision in all
recall levels. Reversely, in CACM, the e®ect of phrase detectismegative, as it drops
precision by almost 10% in the rst 3 recall points. A close compariae examination
of TIMES and CACM from table D.1, reveals that TIMES has many prases detected
on average per document (8), while CACM very few (21). Furthermore, in TIMES
at least one phrase was detected in all documents, while in CACMis only happened
in 39% of the documents. Finally, at least one phrase was recoggul in a larger
percentage of documents in TIMES, than in CACM. Overall, thee ndings lead us
to the conclusion that phrase detection needs large coveragedid IR performance,
both in documents and queries.

WSD: The 3 GVSM used show that embedding WSD information in a retrieva
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model can boost precision up to 5%, but can also drop it by more thad5%. A
close look at gure D.1 reveals that GVSM1 and GVSM3 have very simil behavior,
and both are better from GVSM2. The latter can only improve preision by at
most 2% (TIMES), while it can drop very much performance (CACM. In general,
considering a single vector space and mixing up term and sense dusiens, treating
them as even dimensions in a VSM, seems a bad choice. In contrastndiling sense
and terms in separate vector spaces (GVSM1), or weighting sensathwheir terms'
weights (GVSM3) can produce a boost in IR performance (TIMES, EDLINE, NPL).
Observing closely TIMES and MEDLINE, where GVSM1 and GVSM3 can helIR
noticeably, we discover that precision boost is between 25%. In TIMES, this takes
place in all recall points. In MEDLINE, this occurs for the largr recall points. The
two collections have a remarkable property. They are the dettions with the less
ambiguous terms, both per document and per query, as we see frtable D.1. Our
results allow us to conclude that a WSD system with an average asecy of around
60% (this is the rst sense heuristic performance in Senseval-2 aBdnseval-3 WSD
data sets as discussed in chapter 3) can boost retrieval perfornean by even 5% in
cases where the average ambiguity of the disambiguated terngsrelatively low (i.e.,
maximum 4 senses per term).
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