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Abstract 

The number and complexity of cyber-attacks has been increasing steadily in recent years. 

The major players in today’s cyber conflicts are well organized and heavily funded teams with 

specific goals and objectives, working for or supported by a nation-state. A commonly used 

term to describe such teams/groups is Advanced Persistent Threat (APT). APT target the 

communication and information systems of government, military and industrial organizations 

and are willing to use vast amounts of money, time and expertise to reach their goals. 

A clear indication of the level of sophistication of APT is their impressive arsenal. The 

complexity and capabilities of recently discovered malware used to facilitate such attacks are 

remarkable: Stuxnet, Duqu, Flame, Red October, MiniDuke and more recently Regin are exam-

ples of highly sophisticated malware, the development of which required skillful individuals – 

in some cases (e.g. Stuxnet) with expertise in multiple technology fields – as well as substantial 

financial resources.  

In addition, serious insider attacks have occurred that resulted in the publication of 

several thousand classified documents, highlighting the fact that even in sensitive institutions, 

the effectiveness of the existing security safeguards is insufficient. 

Advances in attacker sophistication have not been matched by similar defensive 

advances. The concept of keeping the internal, trusted network separated from the external, 

untrusted one (i.e. boundary protection) has become obsolete. The use of blacklists or signatures 

for attack detection is practically useless against sophisticated attackers. The security industry, 

having spent decades developing security products such as anti-malware solutions and 

intrusion-detection/prevention systems, refuses to admit the shortcomings of these products.  

It is not uncommon for security companies to advertise that their products can detect and 

stop APT, even though the same products have been unable to detect such attacks for several 

years.  Furthermore, C-level executives fail to understand the need for more robust security 

mechanisms, as they believe that by following vendor recommendations and making significant 

investments in traditional security solutions, they will keep their organization secure. However 

reality has proven them wrong, over and over again.  

In order to defend against such sophisticated adversaries, it is necessary to redesign our 

defenses and develop technologies focused more on detection than prevention.  

The purpose of this thesis is to offer a comprehensive view of the APT problem by 

analyzing the most common techniques, tools and attack paths that attackers are using, and 

highlighting the shortcomings of current security solutions. The use of deception techniques for 

attack detection is one of the integral focal points of this thesis. Based on this concept, a novel 

APT detection model is proposed, implemented and evaluated.  



 

ix 

 

The evaluation results highlight the significant efficacy of the model in detecting 

sophisticated attacks, with a very low false positive rate.  
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Chapter 1: Introduction 

1.1 Research motivation 

The Cyberwar era has begun. In fact, it began decades ago. Contrary to the common 

belief that Stuxnet (Langner 2011) was the first cyber-attack that caused physical destruction, 

similar attacks date as far back as 1982. Thomas Reed, a former Air Force secretary, wrote in 

his book (Reed 2007) that the trans-Siberian pipeline explosion in June 1982 was the result of 

a logic bomb that the CIA had planted on the Russian SCADA systems that controlled the 

pipeline. Although there is no concrete evidence to support Reed’s statement, in a collection of 

intelligence documents known as “The Farewell Dossier” (Weiss 1996), it is stated that the an 

effort to sabotage multiple Soviet projects. The leaks included software to control SCADA CIA 

intentionally leaked modified (i.e. rogue) software and hardware designs to the Soviets in 

systems, which thus supports Reed’s statement. 

The biggest known cyber-attack in the 1990s was given the code name “Moonlight 

Maze”. The attack targeted numerous military networks, NASA and universities throughout the 

United States. Russian involvement in this attack was suspected but was never proven (Healey 

& Grindal 2013).  

In 2004, a series of sophisticated attacks that the FBI later called “Titan Rain” were 

detected. The attacks had started in 2003, targeting multiple sensitive US networks, including 

numerous US defense contractors. China was the main suspect behind these cyber-attacks, but 

the Chinese government denied any involvement (Bodmer et al. 2012). 

In 2006, the term “advanced persistent threat” (APT) was introduced for the first time, 

by the US Air Force, to describe highly sophisticated attacks. 

In April 2007 a series of cyber-attacks against multiple Estonian organizations, including 

financial institutions, ministries, the Estonian parliament and media, took place. It is believed 

that the cyber-attacks came as a response to the Estonian decision to relocate the “Bronze 

Soldier of Tallinn”, a Russian World War II memorial. This move created significant tension 

between Estonia and Russia, which resulted in a number of severe riots but most importantly, 

to a wave of massive Distributed Denial of Service (DDoS) attacks against Estonia, over a 

period of three weeks. Russia was openly accused of orchestrating this attack, however Russian 

officials refused to admit any involvement (Clarke & Knake 2012). 

In 2008, a USB stick that had been infected by a foreign intelligence agency was left in 

the parking lot of a US Department of Defense facility at a base in the Middle East. The worm 

spread on both unclassified and classified networks, “establishing what amounted to a digital 
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beachhead, from which data could be transferred to servers under foreign control”, as William 

Lynn states. The attack was “the most significant breach of U.S. military computers ever" 

(Lynn 2010).  

In the same year, a massive cyber-espionage operation was conducted during the 

presidential campaigns of Barack Obama and John McCain. According to officials, the goal of 

the attack was to gain as much information as possible for both campaigns, including emails 

and position papers. According to Dennis Blair, who served as President Obama’s Director of 

National Intelligence, the attackers “were looking for positions on China, surprises that might 

be rolled out by campaigns against China.” (Isikoff 2013). 

Furthermore, on 5 August 2008, an explosion at “valve station 30” of the BP pipeline in 

Refahiye, Turkey, caused a massive fire and billions of dollars in lost revenue. The Kurdistan 

Workers’ Party (PKK) claimed credit for the attack, however reports from intelligence services 

challenge that claim, based on its level of sophistication. The pipeline was one of the most 

secure in existence, monitored in real time with advanced sensors and cameras and it even had 

a satellite connection as a backup mechanism, in case the primary connectivity was disrupted. 

According to some reports (Robertson & Riley 2014), there is footage showing two men with 

laptop computers walking near the pipeline a few days before the explosion. The attackers 

managed to gain unauthorized access to the control infrastructure and changed the pressure in 

the pipe to critical levels, while blocking the sensors from raising alerts.  

Google, on 12 January 2010, publicly disclosed on a blog post that it had suffered “a 

highly sophisticated and targeted attack on our corporate infrastructure originating from 

China that resulted in the theft of intellectual property from Google.” (Drummond 2010). The 

attacks had started in mid-2009 and affected dozens of large organizations including Yahoo, 

Adobe and Symantec. The attack was given the name “Operation Aurora” by McAfee (McAfee 

Labs 2010), based on an analysis of the malicious binary files related to the attack. The attackers 

used spear-phishing emails that included links to a malicious website. The attack exploited a 

zero-day vulnerability on Internet Explorer, which resulted in remote code execution and 

subsequently the installation of a remote administration tool (RAT). Apart from the theft of 

intellectual property, the attackers were interested in a database containing the Google accounts 

for which a court-ordered wiretap had been activated. It is therefore believed that the attackers 

were trying to learn if there was an active investigation against undercover Chinese operatives 

in the US (Schwartz 2013). 

In June 2010, Stuxnet was discovered. It was a computer worm designed to target 

specialized industrial control systems (ICS), and more specifically, the Siemens systems that 

were used to control arrays of centrifuges in the Natanz uranium enrichment plant in Iran. 

Stuxnet caused the destruction of hundreds of centrifuges and as a result slowed down the 
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Iranian nuclear program by four years (Lemos 2011). The complexity of the attack is a strong 

indication that it was planned by (at least one) resourceful nation (Chen & Abu-Nimeh 2011). 

In 2011, McAfee published a report on “Operation Shady RAT”, a targeted cyber-attack 

that lasted 5 years and affected 71 organizations. Multiple US federal and state government 

organizations were targeted, as well as industry, media and international sports organizations. 

According to McAfee (Alperovitch 2011), the attackers sent phishing emails to their targets, 

attaching malicious Microsoft Office and Adobe PDF documents, which when executed, 

infected the systems with a remote administration tool. 

In subsequent years, several cases of advanced malware used in targeted attacks against 

sensitive organizations were detected: Flame, Duqu (Bencsáth et al. 2012b), Red October 

(Kaspersky 2013b), (Virvilis & Gritzalis 2013) and most recently Regin (Symantec 2014b). 

The level of sophistication of these attacks, but most importantly the resources required 

for orchestrating them, leaves no room for doubt: cyberspace has become the fifth domain of 

warfare (Economist 2010), where multiple nations are investing vast amounts of resources in 

developing offensive and defensive capabilities.  

Organizations face the always present threat of insider threat, a clear example of which 

is Edward Snowden, who exfiltrated 50,000 to 200,000 classified documents belonging to the 

US National Security Agency (Hosenball 2013). This incident took place shortly before 

Chelsea (Bradley) Manning was convicted and sentenced to 35 years in prison in connection 

with the largest data leak in US history (Denver 2012). 

1.2 Research statement and approach 

Although the cyber-security industry is booming, with global spending of more than 71 

billion USD in 2014 and an increase of almost 8% over 2013 (Gartner 2014a), the majority of 

Information Security professionals are deeply concerned about the effectiveness of existing 

defenses against sophisticated attackers (ISACA 2014). In 2013, there was an astonishing 62% 

increase in the number of security breaches compared to the year before (ISACA 2014). 

Although spending for security solutions has increased, most of the organizations have not 

increased training budgets for their cyber-security professionals (ISACA 2014). Furthermore, 

there is a global shortage of skilled security professionals (Libicki et al. 2014), which directly 

affects a nation’s (or an organization’s) ability to defend. 

It is becoming very clear that traditional security solutions and architectures are 

ineffective against sophisticated attackers. High-speed networks, mobile users, BYOD (bring 

your own device), complex web platforms and the proliferation of social networks and cloud 

services have created new challenges. The new challenges are very different from the 

challenges of the 1980s and early 1990s, when the majority of the security solutions that are in 
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use today were designed. Although security vendors are constantly trying to improve their 

products in order to keep up with new threats, such solutions keep failing over and over again. 

The root cause lies in their design: traditional security solutions are focused on attack 

prevention, which, especially against sophisticated attackers, will eventually fail  (Cole 2012), 

(Bejtlich 2013).  

Sophisticated attacks can manifest themselves in different ways (i.e. via different attack 

paths): 

 They can originate over the Internet (external), where attackers manage to 

compromise their target’s infrastructure remotely.  

 They can originate internally (insider attacks). The insiders can be working on 

their own or as part of a larger team/group (e.g. the APT group can use extortion 

to force an employee of the organization to perform an action on their behalf). 

 They can be indirect attacks e.g. attacks against a service provider in order to 

facilitate further attacks against the real target, such as the attack against RSA 

(RSA 2011), or attacks against mobile devices that will eventually be connected 

to the targeted network (e.g. smart phones, tablets, etc.). 

Because multiple APT attack paths are possible, it is not realistic to focus on a single 

defensive technology (e.g. research on intrusion detection), as even if a perfect detection system 

existed – something that has been proven to be impossible (Cohen 1987) – the attackers would 

just follow a different path to achieve their goal.  

This thesis focuses separately on each of the attack paths, presenting realistic 

countermeasures. In addition, proposes and evaluates a novel APT detection model which 

combines deception and anomaly-based attack indicators. The model improves significantly 

the possibility of early detection against sophisticated attacks, regardless of the attack path 

chosen. 

1.3 Contributions 

In summary, this thesis makes the following contributions: 

 A detailed review of APT attack paths: The main APT attack paths (external, 

internal and indirect) are reviewed, and the unique characteristics of each are 

presented in detail, along with countermeasures for limiting our exposure. 

 

 A technical review of popular APT malware: A technical review of Stuxnet, 

Duqu, Flame, Red October, Mini Duke and Regin is presented, highlighting the 
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common characteristics and techniques of such advanced malware. Recognizing 

the characteristics can lead to better understand of why our existing security 

safeguards have failed to detect such threats. 

 

 A description of the serious security concerns affecting mobile platform users: 

As a result of the proliferation of smartphones/tablets, their continuously 

expanding capabilities and their increasing use in business environments, such 

devices are expected to be a major target for APT in the future. Our experiments 

reveal that the level of security offered on mobile platforms against web based 

attacks is significantly lower than that for desktop platforms.  

 

 A sophisticated APT detection model: A sophisticated model for APT detection 

which correlates deception and anomaly-based attack indicators, is proposed. 

The model has been implemented and evaluated; the results highlight its superior 

effectiveness in attack detection and very low false positive rate, compared to 

traditional security solutions. 

1.4 Dissertation outline 

The rest of the dissertation is organized as follows: Chapter 2 defines APT and highlights 

the main reasons that the security industry has failed to address such attacks. The most common 

cyber-security technologies are presented, focusing on their main shortcomings and ways that 

they can be evaded. The major players in the cyber “arena” are presented with a summary of 

their defensive and offensive capabilities, as derived from publicly available information.  

Chapter 3 discusses external APT attacks, analyzing the most common steps that 

attackers follow when targeting an infrastructure remotely. A technical review of advanced 

APT malware is presented, with emphasis on the common techniques and methods used by the 

malware authors, followed by a review of security countermeasures, which, if they had been 

implemented correctly, would have limited the impact of these attacks. 

Chapter 4 presents the insider threat, with special attention paid to Snowden’s and 

Manning’s attacks. This chapter proposes an insider threat detection model which makes use 

of psychometric tests to assess a user’s predisposition to malicious acts. Parts of it have been 

incorporated into the proposed APT detection model. 

Chapter 5 focuses on indirect attacks and more specifically on the risks introduced by the 

use of smartphones in sensitive environments. The continuously increasing use of smartphones 

for both personal and business use, the sensitive data that is accessed, processed and stored on 

these devices, and the limited or in some cases non-existent security measures, have made them 
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a prime target for attackers. In this chapter, the security countermeasures available on the 

Android and iOS devices are reviewed, with focus on the protection offered against phishing 

and malware attacks. 

Chapter 6 proposes a novel APT detection model. A detailed analysis, a proof of concept 

implementation, and the evaluation of the model against two different attack scenarios used to 

simulate external and internal APT attacks, are presented. The results demonstrate the 

substantial effectiveness of the proposed model in the detection of malicious actions. 

Finally, conclusions, publications and recommendations for future work are presented in 

Chapter 7.   
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Chapter 2: Background 

This chapter defines Advanced Persistent Threat (APT) and highlights the major 

shortcomings of traditional cyber-security technologies in addressing such attacks. It presents 

the main APT attack paths and gives historical examples of such incidents. Additionally, it 

presents an overview of what is being done currently by industry and academia regarding the 

detection of APT. 

2.1 Advanced Persistent Threat (APT) 

The term Advanced Persistent Threat (APT), coined by the US Air Force in 2006 

(Bejtlich 2010), is not strictly defined and loosely covers threats with a number of common 

characteristics. The definition of APT given by the National Institute of Standards and 

Technology (Ross 2012) is as follows: 

“An adversary with sophisticated levels of expertise and significant resources, 

allowing it through the use of multiple different attack vectors (e.g. cyber, physical, 

and deception) to generate opportunities to achieve its objectives, which are typically 

to establish and extend its presence within the information technology infrastructure 

of organizations for purposes of continually exfiltrating information and/or to 

undermine or impede critical aspects of a mission, program, or organization, or place 

itself in a position to do so in the future; moreover, the advanced persistent threat 

pursues its objectives repeatedly over an extended period of time, adapting to a 

defender’s efforts to resist it, and with determination to maintain the level of 

interaction needed to execute its objectives.” 

The term APT is frequently misused, often as an easy excuse for a security incident 

suffered by an organization. By placing the blame on APT the organization can claim that 

although they had been following best practices (which is not usually the case), the incident 

was inevitable, owing to the advanced offensive capabilities of the attacker. Additionally, the 

difference between an APT attack and an opportunistic (i.e. less sophisticated) attack is not 

always clear. The use of sophisticated techniques, novel attack methods and custom malware 

are indications of APT. However, attacks have occurred that used far less sophisticated tools 

and techniques yet are still considered APT, such as the attack against RSA (RSA 2011), in 

which the attackers used a freely available remote administration tool (RAT).  But their end 

goal (stealing data that would allow them to gain access to organizations that use RSA products 

for secure authentication) was a clear indication of a well-organized, sophisticated attack. Thus, 

it is important to recognize that attackers will not spend resources in developing advanced tools 
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if they can achieve their goals by using publicly available ones. This, apart from the obvious 

benefits (cost/time savings), also makes attribution more difficult, as the attackers are using 

tools to which anyone can have access. 

2.2 The failure of traditional security technologies and architectures 

2.2.1 Technology Limitations 

One of the most concerning facts regarding APT, is that certain attacks have been 

ongoing for several months (Bencsáth et al. 2012b), (Virvilis et al. 2013), targeting sensitive 

organizations with substantial cyber-security budgets. Nevertheless, these organizations have 

failed to detect the compromise and the majority of them were notified about the incident from 

a third party (usually law enforcement agencies). 

APT actors possess unique characteristics that differentiate them from opportunistic attackers: 

 APT take advantage of zero-day (unknown) vulnerabilities and develop their own tools 

and techniques. In some cases the tools are only used once, against a specific target. In 

contrast, opportunistic attackers make use of existing attack tools and vulnerabilities. 

 They focus on a specific target and are willing to spend a substantial amount of 

resources and explore all possible attack paths until they are able to subvert its defenses. 

In contrast, opportunistic attackers will move on to an easier target after a small number 

of unsuccessful exploitation attempts against the initial target. 

 Based on the analysis of the major APT incidents, it is evident that some perpetrators 

are state-sponsored and have significant enabling capabilities (intelligence collection, 

manufacturing, covert physical access) for cyber-attacks. On the other hand, 

opportunistic attackers have limited resources and thus, their attacks tend to be less 

sophisticated. 

 APT are highly selective. Only a small and very carefully selected number of victims 

are targeted, usually in non-technical departments of an organization, as they are less 

likely to identify and report the attack. In contrast, opportunistic attackers usually 

spread their attacks against a broader audience, hoping for ‘quick wins’. 

These characteristics make it challenging for current cyber-security solutions to detect 

and mitigate APT attacks. Furthermore, current solutions suffer from a number of shortcomings 

which limit their effectiveness, and are discussed below. 
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2.2.1.1 Intrusion Detection/Prevention Systems (IDS/IPS) 

There are two main detection strategies used by network and host-based intrusion 

detection (or prevention) systems (NIDS/HIDS): 

1. Signature-based, which is still the most common strategy and focuses on the 

identification of known-bad patterns (Wu et al. 2008).  

2. Anomaly-based, which uses heuristic or statistical analysis to determine whether an 

observed activity could be an indication of a malicious action (Maxion & Tan 2000).  

Signature detection, similarly to all blacklist approaches, cannot detect attacks for which 

a signature has not yet been created (such as zero-day exploits). As this shortcoming has been 

known for decades (Cohen 1987), the research community has focused on the use of anomaly-

based detection systems.  

However, the effectiveness of anomaly-based detection systems has also been 

challenged: Sommer and Paxson describe anomaly detection as flawed in its basic assumptions 

(Sommer & Paxson 2010). Research relies on the assumption that anomaly detection is suitable 

for finding new types of attacks, however it is known that machine-learning techniques are best 

suited to finding events similar to ones seen previously. Therefore, these approaches show 

promising detection efficacy for specific (training) data sets, but are subject to serious 

operational limitations when used in operational environments (Sommer & Paxson 2010).  

Regardless of the detection strategy, a major challenge for current NIDS/NIPSs is the 

limited time window for which the connection state can be maintained (for TCP connections). 

Port scanning is a practical example of this weakness:  a quick port scan against a host will 

trigger an alert from virtually any NIDS/NIPS. However, if the scan is spread over a period of 

several minutes and thus outside the detection/correlation window of the network intrusion 

prevention system, the attack will pass undetected by the majority of those systems.  

2.2.1.2 End Point Protection (Anti-Malware)  

End point protection products face the same limitations as NIDS/HIDS, as their detection 

method is mainly signature-based, with only a few products using behavioral/heuristic analysis, 

to complement their detection rates. To make things worse, it is trivial for attackers to test a 

wide range of antivirus products and modify their malware accordingly, to evade detection, 

either by download trial version of these products or using free online services (VirusTotal 

2014).  

The research community has highlighted for many years the limited effectiveness of such 

products: Fred Cohen proved almost thirty years ago, that “Precise detection (of a computer 
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virus) is undecidable” (Cohen 1987). However, industry has been unwilling to admit this fact 

and continues to present their products as panaceas. One of the few occasions on which industry 

publicly admitted the shortcomings of such solutions occurred in 2014, when Symantec’s senior 

vice president for information security stated publicly that “antivirus is dead”, as its 

effectiveness in detecting modern threats is less than 50% (Yadron 2014). Although this 

statement was not a surprise for security experts, it served as an alert for higher management. 

2.2.1.3 Full packet capture 

Full packet capture (FPC) devices are specialized devices for capturing and archiving 

network traffic. They are mainly used by network analysts, to inspect captured traffic after an 

incident. Although they offer the most complete view of the network traffic at any given time 

and support in-depth analysis, FPCs have important shortcomings:   

 They are very expensive. 

 Limited analysis options are typically provided by the capture system itself, requiring 

the use of external tools for low-level traffic inspection.  

 They offer very limited (if any) integration with other systems (e.g. NIDS/NIPS, 

SIEM). 

 Even with massive storage capacity, archiving traffic for more than a few days on high 

speed networks is unrealistic.  

2.2.1.4 SIEM 

Security incident and event management (SIEM) systems collect events from a wide 

range of sources (e.g., IDS/IPS, antivirus, event logs) and apply statistical correlation to identify 

potential attacks. However, their efficacy in detecting sophisticated attacks is limited (Kotenko 

& Skormin 2010), (Geftic 2013). The main challenges that such systems face are:  

 There is a limited time window during which these systems will correlate events - 

usually a few minutes. Events spread over a larger time period will not be correlated, 

and as a result, a carefully orchestrated attack may be undetected or presented as a 

series of seemingly unrelated events. 

 The correlation is performed centrally and is therefore limited by the available 

resources. 
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2.2.2 Proprietary technology and lack of integration 

In addition to the weaknesses and shortcomings of the aforementioned security solutions, 

perhaps an even more significant factor contributing to the difficulty of detecting sophisticated 

attacks is the lack of efficient integration among security solutions. The solutions work as 

“black boxes” and tend to offer (limited) integration only if they come from the same vendor. 

If the solutions do not themselves offer integration, the only possible option for integration 

among them is generally through a SIEM system, which suffers from the aforementioned 

shortcomings. Furthermore, the systems tend to be static, rely on their own (usually proprietary) 

rules and configuration language, and have their own individual knowledge banks of attack 

information, with which users must become familiar. Also, owing to the proprietary nature of 

these devices and the lack of open standards, an analyst who wishes to write custom rules for 

detecting specific incidents must do so using a different language for each system (e.g. Snort-

compatible signature for the NIPS, new correlation rule based on SIEM-specific correlation 

language) (Kotenko & Skormin 2010). 

2.3 Multiple Dimensions of the APT  

As previously mentioned, APT have clearly defined goals. In contrast with opportunistic 

attackers, they focus on a specific target and will use all the tools in their arsenal to achieve 

their goal. APT attacks can manifest via three different attack paths: external, internal and 

indirect. Additionally, it is not uncommon for APT actors to use multiple attack paths at the 

same time. 

2.3.1 External Attacks 

The majority of known APT attacks fall into this category, for example the attacks against 

Google and RSA (Drummond 2010), (RSA 2011). In these attacks, the perpetrators try to 

compromise their target’s infrastructure remotely (i.e. over the Internet). This is usually 

achieved using social engineering techniques, such as sending a cleverly crafted email to a 

limited number of users working at the targeted infrastructure (spear-phishing attack). It is not 

uncommon for the attackers to perform extensive information gathering beforehand to increase 

their chance of success. This can be achieved by exploiting social networks in order to find 

potential targets, their interests, expertise and position in the organization, or through 

intelligence agencies (for state-sponsored attacks). Regardless of the way that the APT plan 

their attacks, the more information they have in advance, the more likely it is that their initial 

exploitation attempt will succeed.  
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Common targets for such attacks are developers, because they usually have elevated 

privileges on their systems and their systems are not hardened (e.g. a workstation with a 

software restriction policy in place would be the least ideal developing environment). Less 

technical departments, such as Human Resources (HR), are also promising targets for attackers, 

as they are used to receiving documents via email (e.g. MS Word files, PDFs), which can be 

exploited to trigger malicious code execution. Additionally, the limited technical expertise of 

these users will make it less likely that they will detect an attack against them. External attacks 

are discussed in detail in Chapter 3. 

2.3.2 Internal Attacks (Insider threat) 

Insider attacks are attacks originating from within the organization. These are either 

attacks planned and conducted by a malicious employee (insider), or attacks in which the insider 

acts as an accomplice for a larger attack group. Edward Snowden’s and Chelsea (Bradley) 

Manning’s actions belong in the first category, while the double agent who infected the Natanz 

nuclear facility with Stuxnet (Kelly 2012) belongs to the second category. 

Such attacks are very effective and tend to have severe consequences as the insiders have 

either authorized access to the internal resources or are in a position to gain access with less 

effort than an external attacker. Furthermore, the insiders may be better informed about the 

security safeguards in place, and thus be able to evade them more effectively. Insider attacks 

are presented in depth in Chapter 4. 

2.3.3 Indirect attacks 

The term “Indirect attacks” refers to attacks which have as an end goal the exploitation 

of a specific target but instead of attacking directly the target’s infrastructure, the perpetrators 

target third party providers and services which are used by their target. A successful exploitation 

of those providers/services can allow them easier access to their target or target’s data (e.g. by 

exploiting the trust relationship between the third party provider and the target).  

One example is the attack against the Dutch Certification Authority (CA) Diginotar, in 

which the attackers managed to create more than five hundred fake certificates. The generated 

certificates (until they got blacklisted) allowed the attackers to impersonate HTTPS web sites, 

including multiple Google services, Yahoo and the TOR project. As Diginotar’s CA certificate 

was pre-installed on all major web browsers, the victims did not receive a warning when 

accessing those services, with the exception of Google Chrome browser due to certificate 

pinning (OWASP 2014).  
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In a similar attack against RSA, the attackers obtained information that would allow them 

to gain access to organizations that used RSA’s products for secure authentication. It is believed 

that a number of US defense contractors were the real targets of that attack (RSA 2011). 

Finally, the attack against Google (Drummond 2010), apart from the theft of intellectual 

property, had a secondary objective: to detect whether or not any of the Gmail accounts of  

undercover Chinese operatives in the US were being monitored (Schwartz 2013). 

The more individuals and organizations use third-party services/providers either for 

generic tasks i.e. web-based email, Cloud storage (Virvilis et al. 2011a), (Virvilis et al. 2011b), 

(Agudo et al. 2011) or security related tasks (Marianthi Theoharidou et al. 2013), (Pitropakis et 

al. 2013), the higher will be the gain for the attackers if they manage to exploit those services. 

As a result, we should expect that APT will continue to target them. 

Alternatively, attackers can focus on systems which have access to the internal network 

of their target but are easier to compromise than other internal systems. Mobile devices and 

especially smartphones/tablets with mobile Operating Systems (e.g. iOS, Android) tend to be 

much easier targets than workstations/laptops with desktop Operating Systems (Mylonas et al. 

2012). Regardless of the limited effectiveness (or even complete absence) of robust security 

mechanisms on mobile devices, the significant benefits offered by such devices make them 

very appealing to users, who care more about usability than security (Mylonas, Gritzalis, et al. 

2013). As a result, the number of tasks performed using such devices is increasing, and this 

includes accessing and storing potentially sensitive information.  

Apart from the risk of information disclosure, smartphones/tables, when used for 

business purposes, allow access to corporate resources (e.g. access to business email or VPN 

services). Thus, a compromised device can be the ideal attack path for gaining unauthorized 

access to a corporate infrastructure, and because such devices generally are subject to limited 

auditing and lack of security solutions, detection can be very challenging. Hence, it should be 

no surprise if such devices become the next major APT target, a risk that is discussed in detail 

in Chapter 5. 

2.4 Increasing growth of cyber-operations 

Cyber operations (both offensive and defensive) are a high-priority topic for most of the 

developed nations and are discussed in detail in sections 2.4.1.1 through 2.4.1.7. 

2.4.1.1 China 

China is one of the most advanced nations in the cyberspace arena. It has been accused 

publicly of being responsible for a wide number of cyber-attacks, focused mainly on 
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information gathering and exfiltration of intellectual property.  In recent years these accusations 

became more direct, with Mandiant publishing a detailed report exposing one of China’s cyber-

attack units, named (by Mandiant) “APT1”. The report focuses on the targets of the APT1 

group, their tools and methodology, their physical location and even the actual identities of the 

members of the team (Mandiant 2013). 

Similarly, in the Pentagon’s 2003 annual report to Congress, the Chinese government 

and military are accused openly of targeting “numerous computer systems around the world, 

including those owned by the US government” (DoD 2013). However, the Chinese government 

has denied the accusations. 

China’s significant cyber capabilities should not come as a surprise, as China’s long-

term plan is to achieve electronic dominance by 2050 (Andreasson 2011). Furthermore, one of 

the future goals of China’s military is to efficiently combine cyber-attacks with traditional 

kinetic strikes and thus gain significant strategic advantage during a conflict (Kernel 2009). 

2.4.1.2 Iran 

Iran is another player in the cyber defense arena. It has suffered major cyber-attacks, but 

has also been identified as the source of attacks against other nations. In 2010 Stuxnet, which 

was then declared the “world’s most complex malware” (a title that it has since lost), caused 

severe damage to the Iranian nuclear program (Langner 2011).  

On the offensive side, an Iranian group called “Cutting Sword of Justice” has attacked 

the Saudi Arabian national oil company Aramco, causing significant damage (Goman & Barnes 

2012). A large number of Distributed Denial of Service attacks against multiple US institutions 

have also been attributed to Iran. Other attacks include the compromise of a Dutch Certification 

Authority (CA) (Galperin et al. 2011), which was used to issue fraudulent certificates for major 

organizations and thus allow the attackers to perform hard-to-detect man-in-the-middle attacks, 

and attacks against Twitter (Geers et al. 2014). 

2.4.1.3 Israel 

Israel has been presumed to be the nation (or at least one for the nations) behind Stuxnet 

attack (Broad et al. 2011), (Chen & Abu-Nimeh 2011) however, there has been no concrete 

proof to support this claim. The recent Discovery of Duqu 2.0 (Kaspersky 2015), (Bencsáth et 

al. 2015), a new version of the infamous Duqu malware which has been created by the same 

team which developed Stuxnet, put Israel once more on the spotlight. Duqu 2.0 has been active 

for the last few months, targeting individuals involved in the negotiations regarding Iran’s 

Nuclear program (Bertrand & Kelley 2015), (Gibbs 2015). 
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Israel has also been the target of cyber-attacks from multiple groups, including Hezbollah 

and Anonymous (Moskowitz 2015), (TrendMicro 2015), (Moore 2015). 

2.4.1.4 Russia 

Russia’s cyber defense plans include the creation of a unit that will specialize in cyber-

attacks and will be responsible for the defense of Russian armed forces. The unit is planned to 

go into operation by 2017 (Fogarty 2014). 

On the offensive side, Russia has been accused multiple times of being the source of 

cyber-attacks, but in most cases there was a lack of hard evidence (Healey & Grindal 2013). 

However, FireEye in a recent report accuses Russia directly and exposes a Russian group that 

they believe is responsible for a large number of cyber-attacks since 2007. The modus operandi 

of the group and the information they seek are clear indications that they have connections (if 

not working directly) with the government (FireEye 2014). 

2.4.1.5 Syria 

The Syrian Electronic Army, a group loyal to Syrian President Bashar al-Assad, has 

conducted a large number of cyber-attacks in recent years. It usually targets media that are 

considered hostile to the Syrian Government. One of the most damaging attacks of the group, 

based on a hoax, was achieved by compromising the Twitter account of “The Associated Press”, 

and then tweeting that there had been explosions in the White House that resulted in injury to 

Barack Obama. The panic that followed caused a 3-minute dip in the stock market of several 

billion USD (Geers et al. 2014). 

Other targets of the Syrian Electronic Army include online services such as Truecaller 

and Viber, information from which can be invaluable for Syrian intelligence agencies.  

2.4.1.6 United Kingdom 

The UK has a strong presence in the cyber arena. The UK government is continually 

investing in cyber security in an effort to augment the country’s cyber defense capabilities 

(Gov.uk 2014a). A clear cyber strategy has been defined, with the main goals of making the 

UK one of the world’s most secure places to do business, increasing resilience against cyber-

attacks and further expanding cyber security knowledge and skills (Gov.uk 2014b). The UK 

Government Communications Headquarters has published several quizzes in recent years  

(GCHQ 2014) in an effort to find and hire new skilled individuals. 
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On the offensive side, based on Snowden’s disclosures, GCHQ has develop sophisticated 

attack and monitoring tools, which are being used by the agency for collecting intelligence 

information (Leyden 2014). 

2.4.1.7 United States 

The US is one of the top players in the cyber arena. US military command has recognized 

cyberspace as the fifth domain of warfare (Economist 2010) and in 2009 created the US Cyber 

Command, an Armed Forces command, focused on cyberspace operations. US short-term plans 

include increasing the Cyber Command staff numbers to 6000 by 2016, which will make it one 

of the largest cyber forces in the world (Nakashima 2014). 

The US was heavily criticized following Snowden’s disclosures regarding the NSA’s 

aggressive cyber operations in gathering intelligence (Gellman & Markon 2013), (Greenwald 

et al. 2013). The seriousness of the disclosures led to the proposal to Congress of an amendment 

intended to limit the NSA’s ability to collect information about US citizens without a warrant 

(Timm 2014). 

2.5 (Most of the) Industry in denial 

As already mentioned, current security solutions are not able to address sophisticated 

attacks. The vast majority of vendors refuse to admit this publicly. Some of them even state 

that their solutions detect and stop APT, ignoring the fact that their solutions have failed to 

detect such attacks over and over again (Bencsáth et al. 2012b), (Virvilis et al. 2013). 

This attitude is somewhat to be expected, as any statement that brings into question the 

effectiveness of current security solutions will inevitably affect vendor revenue. However, lying 

about the problem creates a false sense of security, and organizations continue to spend vast 

amounts of money on security solutions, believing that this is the way to address the APT issue. 

Additionally, organizations that believe the “APT stopper” label will usually not invest in 

additional countermeasures that could help them detect sophisticated attacks, as they believe 

that they are adequately protected. 

2.6 Related Work 

Almost three decades ago, Butler Lampson described how, in the absence of total 

isolation, it is impossible to safeguard data from unauthorized access and programs from 

unauthorized execution (Lampson 1973). Later, Fred Cohen claimed that “Precise detection 

(of a computer virus) is undecidable”. Paul Helman demonstrated that the intrusion detection 

problem is NP-Hard (Helman et al. 1992), which means that it is a decision problem that cannot 
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be resolved in polynomial time in any known way, although it is possible to compute 

approximations to the solution.  

The most widely used approach in intrusion detection is signature-based detection, the 

shortcomings of which have been discussed extensively in the literature. A simple testing 

methodology using known attack patterns revealed substantial limitations in intrusion detection 

systems (Berthier et al. 2010), (Modi et al. 2013), while detection rates have been shown to 

change drastically using small variations of known attack patterns (Brown et al. 2002). 

For many years, the research community has been focusing on alternative attack 

detection methods (behavioral/statistical) (Denning 1987). Machine learning techniques have 

been successfully used in certain domains, yet despite extensive academic research efforts, such 

systems have had limited success in the field of intrusion detection (Tsai et al. 2009), (Sommer 

& Paxson 2010). Although some of these systems show promising results in controlled 

environments (detection rates higher than 90 percent and false-positive rates lower than 0.33 

percent), they achieve unsatisfactory results in real environments (Hadžiosmanović et al. 2012). 

Furthermore, behavioral/statistical analysis may fail to detect known attacks that could easily 

be detected with a signature-based intrusion detection system (IDS), if these attacks do not 

differ significantly from what the system establishes to be normal behavior (Brown et al. 2002). 

In the last few years, developers of IDSs have tried to take advantage of cloud-based 

approaches to optimize their detection capabilities. Cloud-based approaches allow for the 

collection of information from a very large pool of users and data analysis at a central point. 

There has been research on the development of fully distributed IDSs to address the limitations 

of central and hierarchical systems (Snapp et al. 1991), (Locasto et al. 2005), (Dash et al. 2006), 

however only small-scale implementations have been developed. Although centralized 

detection may enable quicker responses to emerging threats (e.g. a new fast-spreading worm), 

it offers limited benefits against APT, because in targeted attacks, the number of infections 

(usually a handful) is too low to raise an alarm. In addition centralized detection introduces 

important privacy issues (M. Theoharidou et al. 2013). Similarly, early warning systems (EWS) 

(Kijewski 2004), which are used extensively for the detection of emerging threats (e.g. worms, 

botnets), face significant limitations in identifying threats that affect only a very small number 

of individuals. EWSs and Network IDS/IPSs also face scalability issues, owing to the 

continuous increase of data traffic.  

Regarding insider threat detection, several models have been proposed in the literature. 

One of them uses multiple but difficult to quantify indicators, such as personality traits and 

verbal behavior, to predict insider attacks (Schultz 2002). Another model uses the attributes 

user knowledge, privileges and skills as metrics (Wood 2000). Hidden Markov Models have 

also been used to infer divergence between the activity patterns of a user and a set of activity 
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models that are in place (Thompson 2004). Psychological attributes of an insider, such as 

introversion and depression, have been identified and dealt with (Shaw et al. 1998). The 

connection between intent and user action has also been investigated through experiments 

(Caputo et al. 2009). Finally, user sophistication (computer skills) has been used as a metric for 

the detection of insiders or as a component of a more general insider detection model 

(Magklaras & Furnell 2005).  

The aforementioned models focus on both the prevention and the detection of the 

insider threat, and draw upon other disciplines, such as psychology. The potential role of 

criminology theories has also been examined (Theoharidou et al. 2005), and best practices for 

the prevention and detection of insider threat have been proposed (Cappelli et al. 2009). 

Additionally, insider detection models using psychometric tests to assess a user’s predisposition 

to malicious acts have been proposed (Kandias et al. 2010), (Kandias, Virvilis, et al. 2013), as 

well as models which use data from social media (Gritzalis et al. 2014), (Kandias, Galbogini, 

et al. 2013), (Kandias, Stavrou, et al. 2013). Finally, the use of business process monitoring 

tools for insider threat detection has also been investigated (Stavrou et al. 2014). 

The technical approaches rely mainly on the detection of insider activity. In (Caputo et 

al. 2009), the system detects violations of an already existing set of policies. Another system 

detects anomalous user search behavior by applying machine-learning algorithms to analyze 

collected search events (Bowen et al. 2013). 

Despite the amount of research being done on intrusion and insider threat detection, 

and the special focus that has been given on the protection of critical infrastructures (Soupionis 

& Benoist 2014), (Soupionis et al. 2014), (Stergiopoulos et al. 2015), (Kokolakis et al. 1998), 

(Kotzanikolaou et al. 2013a), (Lekkas & Gritzalis 2007b), (Lekkas & Gritzalis 2007a), (Polemi 

et al. 2013), (Theoharidou et al. 2011), (Gritzalis et al. 2013), (Kotzanikolaou et al. 2013b), 

(Gymnopoulos et al. 2003), (Dritsas et al. 2005), very little of it has been focused on APT. As 

mentioned, sophisticated attackers will use all available means to fulfil their objective and thus, 

even if a foolproof intrusion detection or insider threat detection system were developed, the 

attackers would just choose a different attack path.  

Research on deception techniques (e.g. honeypots, honeynets, honeyfiles), has resulted 

in a number of useful models than can increase the detection efficacy even against sophisticated 

attacks. Honeypots and honeynets have been proposed for attack detection on both Internet 

facing and internal systems (Lance Spitzner 2003), (Thonnard & Dacier 2008) (Nazario 2009), 

(Mairh et al. 2011), for the detection of botnets (Wang et al. 2010) and attacks on wireless 

networks (Prathapani et al. 2009), (Bowen et al. 2010).  In addition, honeyfiles have been 

proposed for the detection of unauthorized access to resources (Voris et al. 2013), (Bowen et 

al. 2013) while honeywords – a type of honeyuser – for the detection of compromised 

credentials (Juels & Rivest 2013).  
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However, most of the aforementioned deception techniques, do not take into account 

the modus operandi of sophisticated attackers and thus, their efficacy against them is 

questionable. For example in (Bowen et al. 2013), the honeyfiles (decoys) include code which 

is executed when the document is opened and reports back to a monitoring server. This 

approach will not work if the attackers exfiltrate the file and open it from a location where the 

monitoring server cannot be accessed (e.g. offline system).   

Finally, (Wang et al. 2013) have proposed a model similar to the one presented in this 

thesis, however their model is only based on a small number of deception techniques. In 

contrast, our work proposes a comprehensive APT detection model that combines multiple 

types of deception and anomaly-based attack indicators and allows their correlation over a wide 

period of time.  
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Chapter 3: External Attacks 

3.1 Attacker’s objectives 

External attacks, which are the most common type of APT attack, originate from outside 

the targeted organization’s perimeter. The main benefit for the attackers is that they can perform 

their actions over the Internet from a convenient, physically remote location. These attacks 

entail very little risk for the attackers, as it is very difficult to attribute them to a specific 

individual, even if investigation results in the identification of the real source IP addresses that 

the attackers were using. Furthermore, such identification is unlikely, not only for APT but also 

for less skilled attackers, since hiding the originating IP address is a trivial task (e.g. it is 

possible to use anonymous proxies, TOR (TOR 2015), public hotspots, etc.).  

In the very rare cases in which the attackers have been identified owing to poor OPSEC 

(Mandiant 2013), even if the targeted organization presses charges against them, it is very 

unlikely that they will face any penalties, especially if they are working for a state-sponsored 

group.  

Although there are many ways to orchestrate an attack against a remote infrastructure, 

most of them follow a set of generic steps, which are presented below. 

3.1.1 Information gathering  

The initial step of an APT attack is the preparation phase, in which perpetrators gather 

as much information as possible about their target. Identification of the operating system(s), 

third-party software and publicly accessible services (e.g. web servers, mail servers) of the 

organization is crucial for planning a successful attack. Information related to the security 

solutions in use (intrusion detection/prevention systems, anti-malware solutions data leakage 

prevention, etc.) is also important, as it allows the attackers to test their tools and techniques in 

advance, and make sure that they are not detected/blocked. 

An additional element of the preparation phase is collection of information about 

employees, their positions in the organization, their skills and their connections with other 

employees. Using such information APT can create highly targeted spear-phishing campaigns. 

For example, if an attacker has identified an employee working in the human resources (HR) 

department as well as his supervisor, she can send a spoofed email from the email address of 

the supervisor to the employee, asking him to review an attached file (e.g. a curriculum vitae). 

The attachment can be a malicious Word or PDF document that when opened, will execute the 

attacker’s payload. The fact that the email originates from a person known to the victim 

substantially increases the likelihood of it being accepted as legitimate. 



External Attacks 

23 

 

3.1.2 Gaining foothold and further compromise 

After the attacker’s payload has been executed, the compromised system(s) will usually 

connect back to a Command and Control (C&C) Server, where it can be accessed and controlled 

by the attackers (see Figure 1). After gaining a foothold on the network, the next step is to 

exploit other systems to use as backup entry points, in case the initial exploited system(s) is no 

longer accessible (e.g. in case the user reported suspicious behavior and the system was taken 

offline for analysis).  

 

 

Figure 1 - Spear-phishing attack 

 

When the attackers are satisfied with their ability to connect back to the compromised 

infrastructure, they will focus on locating the information that they are interested in.  

As best practices mandate, networks should be segmented and communication between 

segments should be strictly controlled and as mentioned earlier, non-technical users are the 

usual targets, as they are less likely to spot an intrusion attempt. However, on a properly 

segmented network such users will have only limited access to production servers. Thus, 

attackers will have to compromise other users and systems and hop between networks in order 

to be able to reach the targeted information. 



 

24 

 

3.1.3 Exfiltration 

The final step of the APT attack is the exfiltration of the targeted information. Depending 

on the size of the exfiltrated information and the egress filtering performed by the organization, 

different exfiltration techniques can be used. As presented in section 3.2 the majority of the 

APT malware tries to obfuscate its network connections and make them look like legitimate 

user traffic. Using SSL/TLS over known ports (e.g. connections destined to port 443/TCP), 

HTTP traffic with additional headers, use of steganography and DNS tunneling, are the most 

common techniques. 

3.2 Technical review of major APT malware 

In the last few years we have witnessed an impressive change in the complexity of 

malware. Stuxnet, Duqu, Flame, Red October, MiniDuke and Regin are examples of highly 

sophisticated malware, the development of which required skillful individuals - in some cases 

with expertise in multiple technology fields  (e.g. Stuxnet) -  as well as significant financial 

resources (Fisher 2012).  

There are two main reasons that differentiate the aforementioned malware from other in-

the-wild malware samples: a. they were used against sensitive state, military and industrial 

organizations in targeted attacks and in some cases they have been developed for attacking a 

specific target (e.g. Stuxnet), and b. they make use of advanced exploitation and evasion 

techniques, the majority of which were unknown to the security community (i.e. zero-day). 

3.2.1 Stuxnet 

Stuxnet’s earliest sample dates back to June 20091. Stuxnet’s speculated purpose was to 

sabotage the Iranian Nuclear Program and more specifically Natanz uranium enrichment plant, 

something which has succeeded by causing physical damage to the infrastructure and as a result 

slowing down the program by four years (Lemos 2011). Stuxnet interfered with Industrial 

Control Systems (ICS), which were configured by Programmable Logic Controllers (PLC), and 

more specifically Windows systems using Siemens Step-7 software. After infecting such 

systems, Stuxnet would reprogram the PLC to make the centrifuges operate at speeds outside 

acceptable limits, causing their malfunction and eventually destruction. Stuxnet was completely 

autonomous - a “fire and forget weapon” in military jargon and as a result, there was very 

limited window for programming or logical errors from the attacker’s side.  

                                                      
1  This refers to Stuxnet v1. Previous version of Stuxnet (Stuxnet v0.5) were discovered later, and had been active 

since 2005. 
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In order to develop such a complex threat, the team behind Stuxnet should have at 

minimum: a. access to a test environment with all relevant ICS, PLC, centrifuges and 

supporting equipment - ideally an exact replica of the Natanz infrastructure, b. experts for 

installing, configuring and operating such specialized equipment, and c. a team of highly skilled 

programmers, and security researchers for the development of zero-day exploits used for infec-

tion of the targets (or access to a private exploit repository). Based on these requirements, it is 

logical to assume that the team behind Stuxnet was state-sponsored (Chen & Abu-Nimeh 2011). 

An interesting development on Stuxnet’s case happened in 2013, where an older sample was 

identified, named as Stuxnet 0.5 (McDonald et al. 2013). Preliminary research revealed that it 

had been active since 2005, supporting a subset of Stuxnet’s functionality and following a 

different technique for controlling the centrifuges, which was abandoned due to limited success 

in damaging them.  

 

Initial infection and propagation 

The initial infection method has not been identified, but taking into account that such 

sensitive infrastructures are usually not connected to the Internet (and most of the time not even 

connected to a network at all), it could be due to the use of an infected removable drive (e.g. 

USB stick). This is a realistic assumption, as Stuxnet actually infected removable drives. 

Stuxnet was able to spread, using multiple propagation methods: Once an infected USB drive 

was connected to a Windows system, Stuxnet would auto-execute requiring no user interaction, 

making use of a zero-day vulnerability (MS10-046, although older versions of Stuxnet used a 

modified autorun.inf technique). Also, it would try to exploit any network accessible Windows 

systems using the Windows Server Service (MS08-067) or Print Spooler Zero-Day (MS10-

061) vulnerabilities and perform privilege escalation using MS10-073 and MS10-092.  

Apart from MS08-067, the rest were unknown to the security community (zero-day). 

This means that Stuxnet’s team had either developed those exploits internally, or had access to 

a private exploit repository. Other propagation methods include copying itself to accessible 

network shares and the infection of WinCC database server using a hardcoded database 

password.  

Finally, Stuxnet infected Step 7 project files, which - if copied in another system and 

opened - would infect it. When Stuxnet managed to gain access to its target systems - a 

Windows System with Siemens Step-7 PLC - it would re-program the PLC, thus making the 

centrifuges operate outside their limits and eventually destroy them (Langner 2011). 
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Command and Control Servers 

Stuxnet was mainly a “fire and forget” malware. However, three C&C Servers have been 

identified where the malware was trying to connect to in order to send basic information about 

the infected system. 

Rootkit Functionality 

Stuxnet included rootkit code to hide its binaries on Windows systems and also modified 

PLC code to present “acceptable” values to the monitoring software, although the centrifuges 

were working above the operational limits. It also used of two compromised digital certificates 

to sign its drivers in an additional effort to evade detection (Chen & Abu-Nimeh 2011). 

Evasion Techniques 

It would scan for known endpoint security products and based on product name and 

version it would inject its payload accordingly, to evade detection.  

Encryption 

Stuxnet was using XOR encryption with a static key (0xFF) to decrypt parts of its payload 

and a 32-byte fixed key to encode the data it sent to the C&C server. 

3.2.2 Duqu 

Duqu was detected in September 2011. However, it is believed that it has been active 

since February 2010 (Chien et al. 2012). It has significant similarities with Stuxnet, which have 

led researchers to believe that both threats were developed by the same team, with a different 

objective (Bencsáth et al. 2012a): Instead of sabotage, Duqu’s objective was espionage. Duqu 

was a targeted malware and according to estimations infected no more than 50 targets 

worldwide. After initial infection, Duqu remained active for 36 days before self-destructing, 

although attackers could command it to persist for as long as needed. It included a key logging 

component which was used to collect sensitive information, such us passwords, which attackers 

could use to gain access to other systems on the network. Similarly with Stuxnet, it was a 

modular malware, which made use of compromised certificates to sign its components and thus 

be harder to detect (Bencsáth et al. 2012a). 

Initial infection and propagation 

Microsoft Word files which exploited the zero day True Type font parsing vulnerability 

(CVE-2011-3402) were used as the initial attack vector. The malware did not replicate on its 

own. Nevertheless, attackers could use an infected system as a stepping stone, for manually 

exploiting and infecting other systems.  
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Command and Control Servers 

A small number of C&C Servers running CentOS Linux were identified. The malware 

connected to these servers over ports 80/TCP and 443/TCP, and used a custom C&C protocol. 

More specifically, for port 443/TCP a proprietary encrypted protocol was used. For traffic 

destined to port 80/ TCP, Duqu used steganography, by encoding and attaching the transferred 

data to JPEG image files (Chien et al. 2012), (Bencsáth et al. 2012b).  

Rootkit Functionality 

Similarly to Stuxnet, Duqu was using a rootkit module to hide its files. 

Evasion Techniques 

Duqu, having a similar list as Stuxnet, would scan for known security products and based 

on the product and version it would inject its payload accordingly, to evade detection. 

Encryption 

Duqu used AES-CBC for the decryption of executable code received from the C&C 

server. Additionally, it used XOR to encrypt the data captured by the key logger module and to 

encrypt its configuration file (Chien et al. 2012). 

3.2.3 Flame 

Flame was first detected in May 2012. However, it is believed that it had been already 

active for 5-8 years. Flame was incidentally discovered while researching for another malware 

infection (Bencsáth et al. 2012b). One of the most interesting aspects of this malware was its 

abnormal size, which was almost 20 megabytes. Based on the analysis of its code, it is unlikely 

that Flame was developed by the same team that developed Stuxnet and Duqu. However, 

considering the use of common exploits and code, it could be the case that these teams were 

collaborating and had shared source code for at least one module (Kaspersky 2012). Flame, like 

Duqu, was a targeted information stealing malware, however it was significantly more 

widespread than the latter as it infected thousands Windows system, mainly in the Middle East. 

It had a key logging module, took screenshots, intercepted email messages, used the internal 

microphone of the computer to record conversations and captured information about Bluetooth 

devices in close proximity.  

Initial infection and propagation 

Flame’s initial infection method is unknown. It did not replicate on its own, but attackers 

could command it to infect other hosts using a variety of techniques: Apart from infecting USB 

devices, it exploited two zero-day vulnerabilities (same as Stuxnet): Print Spooler (MS10-061) 

and Windows Shell (MS10-046). However, the most impressive propagation technique was the 
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impersonation of a Windows Update Server (WSUS). As Windows software updates are 

digitally signed, the attackers had to perform a complex cryptanalytic attack (chosen prefix 

collision attack for the MD5 algorithm) against Microsoft's Terminal Services licensing 

certificate authority. This attack allowed the creation of valid digital signatures for Flame 

modules. Such advanced cryptanalytic attack required a team of skilled cryptanalysts. 

According to estimations, it has cost between 200K and 2M USD (Fisher 2012), another indi-

cation that such attacks are likely to be state-funded. 

Command and Control Servers 

Flame used more than 80 domains as C&C Servers, mostly Ubuntu Linux Servers. The 

communication was performed over HTTP, HTTPS and SSH protocols. 

Rootkit Functionality 

Flame’s rootkit functionality enabled it to hide its network connections. 

Evasion Techniques 

Flame included an extended list of more than 100 security products and changed its 

infection method accordingly to evade them. Its binaries were using the .ocx extension as it is 

often not scanned by antivirus engines in real time. 

Encryption  

Flame made extensive use of encryption, using substitution ciphers, XOR encryption, 

and RC4 algorithm to encrypt its configuration, modules and captured data.  

3.2.4 Red October 

Red October was discovered in October 2012. It is believed that it has been active since 

May 2007, targeting diplomatic, governmental and scientific agencies (Kaspersky 2013b). Red 

October does not seem to have common characteristics with any of the aforementioned malware 

samples. It had a minimalistic architecture, with one main component responsible for con-

necting to the C&C Servers. When commanded to do so by the attackers, it downloaded and 

executed specific modules (at least 1000 different modules have been identified) enabling it to 

perform a wide range of tasks (Kaspersky 2013b). This small footprint was one of the main 

reasons it managed to evade detection for several years. Its modules allowed: Stealing of 

information from Nokia phones and iPhones, SNMP brute forcing, and recovery of deleted files 

on removable drives (e.g. usb hard drives/sticks).  

Moreover, it included key logging/screen capturing functionality and intercepted 

outlook’s email messages, calendar and contacts list. As a robust persistence mechanism, Red 

October installed a plugin for Office and Adobe reader applications. This plugin parsed each 
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opened Office or PDF file and tried to identify embedded commands (injected by the attackers) 

to execute. Using this technique, even if the C&C servers were taken down, the attackers could 

email specially crafted documents to their victims and regain control of their systems. 

Initial infection and propagation 

Targeted emails containing malicious Word and Excel documents which exploited 

known vulnerabilities (CVE-2009-3129, CVE-2010-3333 and CVE-2012-0158) were used for 

infecting the victims. Each sample was uniquely build for the specific target and each e-mail 

was also tailor-made to increase the probability of been opened by the victim. Exploitation of 

a Java vulnerability (CVE-2011-3544) was another infection method. 

Command and Control Servers 

More than 60 C&C domains were identified. However, only three hardcoded domains 

were included in each custom build of the malware. Additionally, none of these domains were 

the actual C&C servers, but acted as proxies in order to hide the real C&C infrastructure.  

Rootkit Functionality 

No rootkit component has been identified. 

Evasion Techniques 

The minimalistic architecture of the malware, having a basic component responsible for 

downloading encrypted modules and executing them in memory, allowed it to remain 

undetected without having to perform additional evasion techniques.  

Encryption 

Red October used a custom packer with XOR encryption. The same algorithm was also 

used for encrypting exfiltrated data. 

3.2.5 MiniDuke 

MiniDuke was discovered on the 27th February of 2013, but earlier samples have been 

identified and date back in June 2011 (Tivadar et al. 2013). It targeted government bodies in 23 

countries, mainly in Europe.  

Initial infection and propagation 

MiniDuke spread over email, using malicious, well-crafted PDF files. The PDF files 

contained code which triggered a vulnerability in Adobe Reader versions 9, 10 and 11, 

bypassing the sandbox and executing the malware’s payload on the victim’s system. 
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Command and Control Servers 

The malware used a sophisticated, layered technique for locating the C&C servers. It 

connected to specific Twitter accounts controlled by the attackers, which contained the 

encrypted URL’s of the C&C servers. If Twitter was not accessible (e.g. twitter accounts had 

been blocked) the malware would use Google Search to find the encrypted C&C servers by 

searching for specific strings. Upon locating the servers, the malware would receive the second 

stage, obfuscated as GIF images, which in turn would download a larger payload (the third 

stage), which was the one that allowed the attackers to control the infected system. A large 

number of C&C servers have been identified, however all of them have been legitimate web 

sites which were compromised by the attackers (Raiu et al. 2013), (Tivadar et al. 2013). 

Rootkit Functionality 

No rootkit functionality has been identified. 

Evasion Techniques 

MiniDuke’s first stage, written completely in assembly language, contained a list of 

security related processes (debuggers, disassemblers, file system monitoring software, etc.). 

Upon detection of any of these processes, it would remain at an idle state, not performing any 

malicious actions. Newer samples would also wait for user interaction (e.g. mouse movement) 

before decrypting and executing the payload to thwart automated malware analysis. Finally, 

after initial execution the malware would generate a new copy of itself - that was encrypted 

using a key derived from the computer’s hardware configuration - and replace the original 

executable. As a result, the malware would only be able to decrypt correctly under this 

particular system, making analysis of the sample on a different system, challenging. 

Encryption 

MiniDuke made heavy use of encryption. Each payload (after the initial infection) was 

encrypted with a key generated from the CPU, Drive and Computer name of the victim. 

Additional layers of XOR and ROL obfuscation were also used. 

3.2.6 Regin 

Regin was discovered in November 2014, however it is believed that it has been active 

for several years, with some samples having compilation dates from 2003 (Kaspersky 2014). It 

has been used against a number of government organizations, telecommunication providers and 

industry and its main focus was information gathering. The victim organizations were 

geographically diverse as there have been infections in Russia, Saudi Arabia, Mexico, India 

and Iran and other nations.  Regin used a complex six-stage architecture making extensive use 
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of encryption. Its very complex architecture is an indication that a skillful team has been 

involved in its development (Symantec 2014b).  

Among other things, it was capable of capturing network traffic, stealing passwords, 

recovering of detected files and keystroke logging. One of the most interesting features was the 

ability to interact with GSM BSCs (Base Station Controllers), a feature which has been used 

against (at least one) GSM provider (Kaspersky 2014). 

Initial infection and propagation 

The initial infection point is not known, however spear-phishing attacks and zero day 

browser exploits are the most likely scenarios. 

Command and Control Servers 

A small number of command and control servers have been identified. The malware 

supported multiple communication protocols including transmitting data over ICMP ping 

packets, raw UDP & TCP and HTTP/HTTPS connections, where information was encoded in 

cookie data. Even more interesting is the fact that Regin supported peer-to-peer communication, 

which allowed infected machines to route information through other infected machines, making 

network detection more challenging.  

Rootkit Functionality 

Regin had rootkit functionality which was used to hide all its components but its first 

stage. 

Evasion Techniques 

Regin used a six-stage architecture and encryption in an effort to evade detection. All 

stages but the first one were encrypted. Each stage was responsible for decrypting and executing 

the next one. Regin was modular, allowing its operators to include different modules in each 

sample, depending on their needs. 

Encryption 

Regin used a variant of RC5 algorithm.  
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Table 1 - Malware comparison 

 Stuxnet Duqu Flame Red October Mini Duke Regin 

Active since June 2009 (2005) Nov. 2010 
May 2012 

(2006) 
May 2007 June 2011 Possibly 2003 

Detected June 2010 Sept. 2011 May 2012 Oct. 2012 Feb. 2013 Nov. 2014 

PE Type DLL OCX EXE EXE SYS/DLL 

Initial 
infection 

Unknown MS Word Unknown 
MS Excel / 
Word, Java 

PDF Unknown 

Replication 
Removable drives, 

network 
Manual replication only 

Rootkit 
module 

Yes No Yes 

Key logging No Yes No Yes 

Evasion Yes No Yes Yes 

Encryption XOR XOR, AES-CBC 
XOR, RC4, 

Substitution 
XOR 

Unique per victim, 

XOR, ROL 
RC5 Variant, XOR 

Target Sabotage Information gathering 

3.3 Common characteristics 

From the aforementioned analysis common malware characteristics are evident, such as 

similar techniques, attack paths and functionality. Focusing on these characteristics, the 

potential reasons that could have enabled the malware to evade detection, are discussed: 

A. Targeted operating system and architecture 

All samples were targeting 32-bit versions of Windows, with the exception of Regin, for 

which 64-bit samples have also been discovered. The additional security mechanisms that are 

available on 64-bit versions of Windows (Windows vista and newer) complicate significantly 

the exploitation process, especially when malware tries to gain kernel-level access (Field 2006). 

These countermeasures forced Regin creators to change significantly the architecture of the 

malware for 64-bit systems (Symantec 2014b). However, based on the fact that attackers in 

some cases had access to valid certificates (e.g. Stuxnet, Duqu), they could have used them to 

sign the 64-bit components of their malware, and thus be allowed to execute in kernel space. 

Hence, that the main reason that most of malware targeted 32-bit systems was most likely that 

the majority of the victims were using this architecture.  

B. Initial attack vectors 

Duqu and Red October both used malicious Word and Excel documents for infecting 

their targets, while MiniDuke exploited Adobe’s PDF Reader. For Stuxnet and Flame the initial 
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infection method has not been identified, however infection through removable drives or spear 

phishing attacks are the most likely scenarios. Microsoft since the release of Office 2010 Suite, 

has introduced “protected view” (Microsoft 2013), a sandbox feature for opening office docu-

ments received from untrusted sources - such as downloaded from the Internet, network share 

or received as an email attachment. By default, all new files are opened in protected mode thus, 

any potentially malicious payload would have to face the additional barrier of escaping this 

security feature. 

Based on the analysis of the malware samples, none of the Office vulnerabilities used by 

them was able to escape protected view. Thus, we have to assume that victims who got infected 

were either running outdated versions of MS Office, had disabled this security feature or had 

been tricked into opening the document in unprotected mode. This was not the case for 

MiniDuke, which was able to exploit all versions of Adobe Reader and evade its sandbox. 

C. Command execution and escalation of privileges 

All malware made use of exploits for remote code execution or escalation of privileges, 

the vast majority of which were unknown to the security community (zero-day). Exploitation 

of zero-day vulnerabilities against the Operating System is probably the most challenging 

problem to address. As long as these vulnerabilities remain unknown to the vendor, all affected 

systems could be exploited. However, one interesting aspect is that even when security patches 

addressing these vulnerabilities had been released, victims continued to get infected. This 

highlights the lack of proper patch management, even in sensitive environments. 

D. Network Access 

All malware communicated over ports 80/TCP, 443/TCP or 22/TCP, as egress traffic 

destined to these ports is frequently allowed to pass through network access control 

mechanisms. The communication protocols were HTTP, HTTPS, SSH and ICMP, however, 

additional layers of encryption/obfuscation and compression were also used. Malware’s success 

to communicate back to the C&C infrastructure highlights the fact that most of the victims had 

very relaxed Internet access restrictions in place (if any) - a worrying finding, taking into ac-

count the sensitive nature of the targeted organizations. 

E. Network IDS/IPS and endpoint antivirus products 

Stuxnet, Flame, Duqu and MiniDuke were designed to detect and evade Antivirus 

Software using multiple techniques. Moreover, Flame, Duqu, Red October, MiniDuke and 

Regin encrypted or obfuscated their network traffic, to and from the C&C servers, so as to “pass 

under the radar” of Network Intrusion Detection Systems (NIDS). As a result, the level of pro-

tection offered by both antivirus and network security products against advanced threats has 

received strong criticism, as they failed to detect such threats - even when they had been active 

for several months/years (Schneier 2012).  
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F. Use of Encryption / Obfuscation.  

All samples relied strongly on XOR “encryption” to deter detection and complicate 

malware analysis (packing), as well as for protecting the configuration file(s) and network 

traffic. Additionally, Duqu and Flame also used AES and RC4 algorithms, while Regin used a 

variation of RC5. The use of encryption in a program cannot be categorized as malicious on its 

own, however it is a useful indication during behavioral analysis of potentially malicious files. 

G. Exploitation of digital signatures.  

Stuxnet and Duqu binaries were digitally signed using compromised digital certificates. 

Thus, these samples would have managed to infect hardened systems where only digitally sig-

ned binaries were allowed to execute. Similarly, Flame exploited the collision resistance of the 

MD5 hash function to perform the same task.  

Based on these findings, allowing execution of binaries based on the existence of valid 

digital signatures cannot be considered an effective defense on its own. This is particularly 

important for Antivirus and HIPS solutions, which tend to avoid real-time analysis of signed 

binaries for performance reasons.  

3.4 Limiting the impact 

Due to the complexity of those threats and the multiple attack paths, a wide range of 

security countermeasures and hardening procedures are necessary in order to reach an 

acceptable level of security. This section focuses on common countermeasures which can be 

implemented by most organizations with minimal cost, resulting to an increased level of 

protection against malware attacks.  

A. Patch Management: Patch management, for both Operating System and third party 

software, is one of the most effective defenses. Although it will have no effect against zero-day 

vulnerabilities, it will stop further exploitation of new systems, after the relevant vulnerabilities 

exploited by the malware have been patched.  

B. Network Segregation: Strong internal network access controls and monitoring are also 

crucial. In the majority of cases, multiple systems had to be exploited until the objective of an 

attack was met (e.g. data exfiltration or sabotage). One of the most effective techniques that 

could severely block the ability of the malware to spread internally is the isolation between the 

systems. This could be achieved by the use of network or host based firewalls, configured to 

allow workstations to only connect to specific systems, based on their role/business 

requirements.  

C. Network Whitelisting: As all malware had to connect back to a C&C server for 

receiving commands or exfiltrating data (with the exception of Stuxnet), strict Internet access 
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policies and granular traffic inspection of both incoming and outgoing data, should be 

implemented. Instead of following a blacklist approach which can be evaded, a whitelist 

approach should be preferred. Depending on the risk appetite of the organization, the whitelist 

could even include the most popular (non-work related) websites that users are visiting, to limit 

the negative impact on user experience. This countermeasure would block any connection at-

tempts to C&C servers, unless the attackers were able to exploit any of whitelisted domains and 

set their C&C infrastructure there.  

D. Dynamic content execution: Focusing on the client side exploitation mechanisms, it 

is evident that the majority of end-user exploitation techniques (e.g. Malicious Office, PDF 

documents) required dynamic content execution for triggering the vulnerabilities. Content 

protection mechanisms at the network ingress points could filter dynamic content in incoming 

traffic (e.g. JavaScript from PDF files, macro code from Office files etc.), thus protecting 

against a wide range of vulnerabilities (Lagadec 2006).  

3.5 Indirect attacks 

3.5.1 Supply chain attacks 

Supply chain attacks can be considered indirect, external attacks. The malicious actors 

by compromising the supply chain are able to make unauthorized changes to hardware or 

software components, which will be used in the targeted infrastructure. 

Interest in supply chain security is not something new, in a matter of fact, significant 

effort has been made since 2001 on addressing such security issues (Miller 2013), (Williams et 

al. 2008), (Lee & Whang 2005), (Kandias et al. 2011). Most of the technology products 

nowadays are produced and assembled in Eastern countries, due to the lower labor cost. In 

addition, it is not uncommon for the manufacturers of these products, to have multiple 

subcontractors which in turn have their own subcontractors, making tracing and auditing of the 

supply chain challenging. Even if assembly of a product is made under strict control in a trusted 

location, use of any components in those products coming from third party providers, 

introduces a potential risk.  

Until recently, supply chain attacks although possible, were mostly regarded as a 

potential, but not an eminent threat. However, based on Snowden’s disclosures things have 

changed dramatically (Spiegel 2013), (Schneier 2013). According to the disclosures, NSA had 

been intercepting equipment while been shipped from the supplier to the purchaser, modifying 

it in such a way that allowed them remote access to it in the future. The list of products was 

vast (Spiegel 2013), ranging from firewalls and routers of major US manufactures, to personal 

computers, servers and even hard drives and mobile phones.  
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A number of countermeasures, such as side-channel fingerprinting (e.g. analysis of 

power consumption) or use of X-Rays, have been proposed for the detection of modified 

hardware and low level software (Edwards 2013), (Guin et al. 2014). However, such techniques 

are mostly effective for testing very specific components (e.g. a single chip) and not a complete 

system. A slight code modification in the authorization function of a network device would be 

very challenging - if not impossible - to detect with such techniques. 

As a result, supply chain attacks pose a major detection challenge and the research 

community needs to focus upon this complex threat. 

3.5.2 Attacks against third party providers 

Another kind of indirect external attack is the exploitation of third party providers, which 

are used by the targeted infrastructure. These can be Cloud Service providers or any other type 

of provider, which the target is interacting and exchanging data with. The attack against RSA 

(RSA 2011), was a clear example of an indirect external attack, as the attackers goal was to 

exfiltrate information which would allow them to gain access to companies/organizations 

which were using RSA security products for authentication.  

From the defender’s perspective, there are limited options for preventing such indirect 

attacks, mainly due to the fact that they have no control over the provider’s infrastructure. 

However, depending on the type of outsourced data or service, the defenders may be able to 

implement additional measures that will limit the impact in case of an attack against the 

provider. Cloud storage services, which are becoming continuously more popular due to the 

vast storage space they offer at very affordable prices, are a good example. Virtually all services 

support encryption during data transmission, but only a subset of those support data encryption 

at rest, and even fewer encrypt the data on the client side (Virvilis et al. 2011b). The latter, is 

the most secure option, as even if the cloud provider gets compromised and the attackers gain 

access to the stored data, encryption will safeguard data confidentiality. 

Depending on the type, volume of data and security requirements, organizations can 

either choose a provider which supports data encryption on the client side, or use third party 

software which acts as a transparent encryption layer (Cloudfogger 2015), (Boxcryptor 2015), 

for providers that do not offer such functionality. Finally, a Cloud provider agnostic secure 

storage protocol has been proposed (Virvilis et al. 2011a), which offers similar functionality 

with the aforementioned commercial solutions, but is based on an open architecture.  
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Chapter 4: Internal Attacks 

4.1 The insider threat as a subset of APT 

Information systems face several security threats, a number of which may originate from 

internal actors (i.e. insiders). The motives of insiders vary and can be based on revenge or can 

be financial, ethical or political (Gellman & Markon 2013). 

The definition of a malicious insider based on Silowash et al. (Silowash et al. 2012) is: 

“... a current or former employee, contractor, or business partner who meets the following 

criteria: 

 has or had authorized access to the organization’s network, system, or data 

 has intentionally exceeded or intentionally used that access in a manner that negatively 

affected the confidentiality, integrity, or availability of the organization’s information 

or information systems.” 

APT and insiders tend to share specific characteristics that markedly differentiate them 

from traditional (i.e. opportunistic) attackers. Firstly, their attacks require detailed planning and 

are frequently spread over a long period of time, in an effort to evade detection. Secondly, both 

groups are willing to explore all possible attack paths for reaching their goals, including social 

engineering and use of deception (Hudson 2013).  

The main difference between the two groups is that malicious insiders have by definition 

authorized access to the infrastructure and potentially to the servers storing sensitive 

information (e.g. file servers, database servers). Furthermore, they may be aware of existing 

security controls. This is very likely if the insider holds a privileged position, e.g. an 

administrator is expected to have knowledge of the deployed security mechanisms and 

potentially has the access rights to control them, while a less privileged user would not. 

Nevertheless, experience has shown that sophisticated attackers (e.g. APT) have also managed 

to reach their goals while evading detection without prior knowledge of the infrastructure 

(Zetter 2010). 

APT and insider threats are usually considered to be two different threat groups in the 

literature. However, given the fact that APT groups that have used insiders to perform malicious 

actions on their behalf (Kelley 2012), it is our belief that insiders should be regarded as a subset 

of APT. 

Robust models have been proposed for the detection of insider threats (Kandias et al. 

2010), however they are based on the assumption that the malicious insider will perform the 
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entire attack life-cycle on his own (information gathering, exploitation, exfiltration). Yet, in the 

Stuxnet case (Kelley 2012), a malicious insider was used only to deliver the payload, while the 

rest of the exploitation was performed in an automated way. This attack strategy, which 

combines APT with the insider element, poses a serious challenge for such models. Taking into 

consideration the substantial resources available to APT groups (Fisher 2012), similar attacks 

should be expected in the future.  

4.1.1 Major insider attacks 

In discussions of insider attacks, two names are often mentioned first: Chelsea Manning 

and Edward Snowden. Both Manning and Snowden leaked thousands of classified documents 

to the public, causing a substantial amount of frustration to the United States and their allies. 

Their modus operandi, technical skills and access levels differed significantly, as did their goals 

and objectives. 

4.1.2 Manning’s disclosures 

Chelsea Manning (born Bradley Manning) is a discharged US Army soldier convicted of 

leaking several thousand classified documents to the public (Denver 2012). Manning joined the 

Army in 2007 and in October 2009 was sent to Iraq as an Intelligence Analyst, where she had 

access to a vast amount of classified information. In early January 2010 she downloaded 

classified information about the Iraq and Afghanistan wars and leaked it to the WikiLeaks web 

site. Manning was arrested shortly after and prosecuted. She was sentenced in August 2013 to 

35 years of imprisonment and was dishonorably discharged from the Army. One day later, she 

announced that she is a female and asked to be referred to with her new name (Chelsea). 

WikiLeaks published a number of the leaked documents, including videos of airstrikes 

that had cost the lives of civilians, including two Reuters employees (Barnes 2013). Although 

some of the disclosures were “problematic” for US diplomacy, in the end the damage was less 

serious than initially anticipated (Strobel 2013). 

According to Manning, her motives were humanitarian and political. In her court 

statement she states that release of these documents “could spark a domestic debate on the role 

of the military and our foreign policy in general as it related to Iraq and Afghanistan”, and that 

“… the detailed analysis of the data … might cause society to reevaluate the need or even the 

desire to engage in counterterrorism and counterinsurgency operations that ignore the complex 

dynamics of the people living in the affected environment every day.” (Manning 2013). 
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4.1.3 Snowden’s disclosures 

Edward Snowden is a former NSA contractor. In early June 2013 he disclosed thousands 

of classified documents, exposing intrusive global surveillance programs, compromised 

cryptosystems and multiple attack tools and techniques that the NSA was using to perform mass 

surveillance both on US soil and abroad (Hosenball 2013). Shortly after, on 14 June, he was 

charged with theft of government property and violation of the espionage act and had his 

passport revoked. On 23 June, he flew to Russia, were he was granted asylum.  

Snowden released a wealth of information regarding NSA operations and tools, 

including information about: 

 Telecom operators that were sharing their customer phone records with the NSA  

(Greenwald 2013) 

 The PRISM program, which allowed the NSA to access the user data of a number of 

Internet giants including Google, Yahoo, Apple and Facebook (Greenwald & 

MacAskill 2013). 

 The NSA spying on a large number of world leaders, including German Chancellor 

Angela Merkel (Poitras et al. 2014) 

 Multiple efforts of the NSA and GCHQ to cryptanalyze or weaken encryption 

mechanisms, standards and tools (Ball et al. 2013) 

 NSA and GCHQ monitoring of Google’s and Yahoo’s data-center links, which allowed 

them access to “bulk access” of data (Gellman & Soltani 2013) 

Snowden’s disclosures fueled worldwide debates over privacy and mass surveillance. An 

NSA reform bill was proposed in US Congress (Timm 2014), however it was later dropped. 

Industry’s response was much more aggressive: Google’s chief legal officer, David 

Drummond, said in a statement: “We have long been concerned about the possibility of this 

kind of snooping, which is why we have continued to extend encryption across more and more 

Google services and links, especially the links in the slide. We do not provide any government, 

including the U.S. government, with access to our systems. We are outraged at the lengths to 

which the government seems to have gone to intercept data from our private fiber networks, 

and it underscores the need for urgent reform”. Since then, Google has started encrypting the 

traffic between its own data centers, something that is expected to hinder NSA’s mass collection 

capabilities (Google 2014). Yahoo and Microsoft have also followed with similar statements 

and actions (Mayer 2014), (Timberg 2013). 

Germany, after the disclosures, started investigating the possibility of restricting its 

national Internet traffic to remaining always within its borders, in an effort to defend against 
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eavesdropping, and similar efforts are being made by other European Union member nations 

(Birnbaum 2013). 

4.1.4 Public Opinion 

Both Snowden and Manning have been accused as traitors by the U.S. Government 

(Carrie 2014), (Pilkington 2013). However public option differs, as according to a study 67% 

of the Canadians and 60% of the British are considering Snowden a hero (Freeman & Edwards-

Levy 2013). Snowden has been voted as “The Guardian's person of the year” for 2013, has been 

awarded the first place on the 2013 list of leading Global Thinkers (Foreignpolicy 2013) and 

was the “Time’s person of the year” (2013) runner up, while in 2014 he was included in the 

Times list of most Influential People in the world (Times 2014). Manning, has been awarded 

the “Whistleblowerpreis” by the German Section of the International Association of Lawyers 

against Nuclear Arms and the Federation of German Scientists as well as the "People's Choice 

Award", “the Sean MacBride Peace Prize” and “the Sam Adams Award” (Sam Adams Award 

2014). 

Regardless on the different views and the motives of the individuals, the grave impact of 

a successful insider attack has been made crystal-clear. The insider threat is a multi-dimensional 

problem, which cannot be addressed solely with technological countermeasures, especially 

when the perpetrators have privileged access to the infrastructure (e.g. like Snowden). As a 

response to this challenge, in the following section a novel insider threat detection model is 

proposed. 

4.2 An insider threat prediction model 

This section presents a prediction model which combines a user taxonomy with 

approaches from psychology and monitoring techniques (e.g. system call analysis, IDS and 

honeypots). The proposed model (Figure 2) collects two types of information about a user. The 

first type is user characteristics, collected by the Psychological Profiling component. The model 

also analyses data from the IT components of the information systems in order to collect usage 

information about the user. This is the role of the Real Time Usage Profiling component. All 

the information collected serve as input in the Decision Manager, which assesses whether a 

user is potentially dangerous or not.  
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Figure 2 - Insider threat prediction model 

 

When an organization uses monitoring techniques and psychological tests as in this 

model, two conflicting requirements emerge: the security of the organization (assuring business 

continuity and profit) vs. the employees’ privacy (Mitrou & Karyda 2006). This issue is highly 

dependent on the organization’s context and legislation. Thus, the above conflicting 

requirements should be weighed and the model should be developed in a way that fully 

complies with the organization security policy, its culture and the legal framework. 

4.2.1 Component: User Taxonomy  

The user taxonomy is the first building block of the threat prediction model. More 

specifically, each user is categorized on four dimensions: 

System Role {Novice, Advanced, Administrator}. This dimension determines the 

access rights of a user. This value is not expected to change often and is defined in advance by 

the management team. Although an administrator is expected to receive a high user 

sophistication score (see below), this is a different category than this one. For example, a 

department manager can be an advanced user, in terms of access rights, but his computer skills 

may not be advanced. 
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Sophistication {Low, Medium, High}. The user’s capabilities are examined under the 

prism of three further dimensions: “range of knowledge”, “depth of knowledge” and “skill” 

(Magklaras & Furnell 2005). User sophistication is assessed using the formula:  

Fsophistication = Fbreadth + Fappscore + Fresutil, where Fbreadth indicates how many different 

applications has the user utilized, Fappscore indicates user’s sophistication regarding the type of 

applications he invokes and Fresutil that represents the arithmetic sum of three computational 

resource consumption indicators (CPU, RAM and simultaneous applications running). 

Magklaras and Furnell proposed this technique as a method to measure the actual computer 

skills of a user (Magklaras & Furnell 2005). This technique is used in the model in order to 

verify the accuracy of the stated “computer skills” of a user, in parallel with the psychological 

profiling. Later, when usage information is also available (by the system call analysis module), 

these values can be updated. 

The following two dimensions are assessed during the psychological profiling of the 

user: 

Predisposition {Low, Medium, High}. This refers to the tendency of a user to 

demonstrate malevolent behavior. 

Stress Level {Low, Medium, High}. It measures the current degree of personal and 

professional stress that a user experiences. 

4.2.2 Component: Psychological Profiling 

This component draws upon Industrial and Organizational Psychology. In specific, it 

applies techniques of the Social Learning Theory (Theoharidou et al. 2005). The profiling 

contains three stages: the first determines a user’s sophistication, the second assesses 

predisposition to malicious behavior and the third assesses stress level. The results of the test 

are used to populate the user taxonomy and also as part of the decision process (“motive” and 

“capability” dimension). 

User Sophistication. The questionnaire includes questions regarding the computer 

skills of a user. These questions require from the user to evaluate her knowledge on computer 

usage, in terms of operating systems in use, techniques implemented, familiarization with 

specific technologies, etc. These questions, although technical, are used in the beginning of the 

interview, in order to make the user familiar with the process, as well as to encourage his 

cooperation. These questions allow the management team to initialize the user sophistication 

attribute in the taxonomy. This is later updated and verified by the technique of Magklaras and 

Furnell (Magklaras & Furnell 2005). 

Predisposition. It utilizes the CCISLQ questionnaire (Rogers 2001) in order to mea- 

sure the following parameters for each user: (1) Demonstration of delinquent behavior in the 
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past, (2) Imitation and ability to reproduce ideas, (3) Level of influence from family and friendly 

environment, (4) Differential association, (5) Perception of punishment and balance of 

punishment and rewards, (6) Moral disengagement, (7) Sense of collective responsibility, and 

(8) Blaming or devaluation of a victim. Depending on the answers given, each user can be 

categorized as: “Low”, “Medium” or “High”. 

Stress level. Regardless of predisposition, a user has to experience something stressful 

to trigger the above tendency (Heuer & Herbig 2001). This parameter is assessed by a 

psychometric test which evaluates both personal and professional stress (Puleo 2006). The 

factors examined include personal stressful triggers (e.g. death of spouse, financial difficulties, 

etc.) or triggers from the work environment. Such tests already exist and they can be 

customized, so as to embody characteristics of various organizations (e.g. military employees 

are expected to experience higher stress levels than others). The selected test is based on the 

multidimensional Rasch model (Rasch 1993). The output represents a snapshot of the user’s 

current state of stress as “Low”, “Medium”, or “High”. 

4.2.3 Component: Real Time Usage Profiling 

This component monitors the user interaction with the technical components of an 

information system. User behavior is monitored in real time. Usage information is collected 

from networks, operating systems, databases and applications. The modules of the model are 

as follows: 

System calls analysis. The idea of using system call analysis to detect potentially 

malicious actions is not new (Liu et al. 2005). There have been attempts to detect attacks using 

n-grams (Forrest et al. 1996), (Hofmeyr et al. 1998), frequency analysis (Liao & Vemuri 2002), 

etc. For example, it has been demonstrated that the average user presents predictable behavior 

regarding daily file usage (Nguyen et al. 2003). Also, it appears that users have a concrete 

behavior when accessing specific files for a standard number of times daily (Nguyen et al. 

2003). System call analysis can be used to create behavioral patterns that trigger an alarm when 

violated with a low false positive rate. This behavior pattern can be reinforced by application 

execution analysis, which is a variation of system call analysis, and searches for usage patterns 

of applications (Nguyen et al. 2003). 

The previous module is used as part of the decision model measuring several 

parameters. It examines whether a user’s behavior has changed or not, which is the “change of 

behavior” parameter (dimension “opportunity”). It also examines whether the user is 

demonstrating behavior which exceeds his defined skills. This is determined by two parameters, 

i.e., the Boolean parameter “skills verification” (dimension “motive”) and the scale parameter 
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“demonstrated capability” (dimension “capability”). It can also provide data for the assessment 

of the “user sophistication” attribute in the taxonomy. 

Intrusion Detection System. The output of an IDS can be used in order to decide 

whether a user has modified his behavior, which affects the following parameters of the 

decision module (see Section 3.4): “behavior change”, “skills verification”, and “demonstrated 

capability” attributes. Like above, it can also provide data for the assessment of the “user 

sophistication” taxonomy attribute. 

Honeypot. Honeypots are used to attract malicious users. Their advantages include the 

collection of a small amount of data, the low percentage of false positives/negatives, flexibility 

and adaptability (Lance Spitzner 2003). A honeynet is a network of (usually) virtual computers, 

which wait to be targeted. Any interaction with these systems is an indication of an attack, as 

users are not expected to connect to them. The model uses them, so as to evaluate whether a 

user is trying to exploit an opportunity to attack the information infrastructure (dimension 

opportunity), or not. 

4.2.4 Component: Decision Manager 

The previous components include a number of heterogeneous techniques. When these 

components are properly combined with the user taxonomy, they can assess potential insider 

behavior. The model adopts Wood’s assumption that each threat requires: (a) motive, (b) 

opportunity, and (c) capability (Wood 2000). Each factor receives an assessment of the 

following form: (1-2) low, (3-4) medium, and (5-6) high. Assessment of these factors is 

described below. 

 

Factor: Motive. The last dimension of the first stage of the model is the motive of the 

user to launch an attack (see Table 2). The motive of a user Mi is assessed using three 

parameters: (a) predisposition to malicious behavior Pi, (b) current stress level Si, and (c) skill 

verification Vi. 

Mi = f(Pi,Si,Vi) 

At first, the user’s predisposition to malicious behavior is accessed through the test 

mentioned in section 4.2.2. This parameter is important as it indicates the user’s tendency to 

misbehavior however, users of “High” predisposition are not considered as an a priori insider 

threat. The second parameter is the stress level that the user experiences before he decides to 

commence an attack. A high level of stress can be an enabler for a user to start an attack, as it 

helps him overcome his moral inhibitions (Heuer & Herbig 2001). The last parameter is the 

verification of skills, which the user has declared during the psychometric tests.  
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The model considers unexpected the fact that a user was proven to have considerably 

higher skills than he initially declared. 

Table 2 - Motive score 

 

 

Factor: Opportunity. A malevolent user usually requires an opportunity in order to 

launch an attack. The opportunity level Oi of a user i, depends on three parameters: change of 

work behavior Bi, system role Ri, and honeypot use Hi. 

Oi = f(Bi,Ri,Hi) 

Any change in the user behavior during the interaction with the information system 

may theoretically indicate that the user is in the process of finding a possible target in the 

system, or that he is trying to exploit one. The second parameter is the user role in the system, 

which can be “novice”, “advanced” or “administrator”. The last parameter is the potential user 

interaction with the honeypots; a user is not expected to access a honeypot for a legitimate 

purpose. However, any user may accidentally access a honeypot (even an administrator), 

assuming that they are not aware of their existence. The opportunity factor can be assessed 

through on a scoring table (see Table 3). 

Factor: Capability. The skills of a user are already defined by the user sophistication 

attribute in the user taxonomy Si, as a numerical value. However, the IDS and the call analysis 

module may indicate that the user has the ability to use considerably more advanced skills than 

the ones assessed. This is indicated by the parameter “Demonstrated Capability” Di, which is 

measured by these two modules as “Low”, “Medium”, “High” and “Very High”. These 

parameters may seem similar but, if a user demonstrates advanced skills e.g. use of an 

automated exploitation tool, this does not mean per se that his user sophistication is advanced. 

The capability factor can be assessed by using a scoring table like Table 4. 

 

Ci =f(Di,Si) 



Internal Attacks 

47 

 

Table 3 - Opportunity score 

 

 

Table 4 - Capability score 

 

 

Decision algorithm. After the above mentioned factors have been assessed, the model 

has a component that can decide whether the user arouses suspicions and should be closely 

monitored. Every organization that uses this model must set a scoring system for the dimensions 

mentioned above. This system cannot be universal, because every organization has different 

security needs, demands, staff, and philosophy. As a result, every organization adopting this 

model should study several parameters before deciding which scoring system to use. Some of 

these parameters are the average and the fluctuation of the results, the required strictness, 

possibly a risk analysis, etc. 

Herein a simple scoring system is proposed, so as to demonstrate the role of the 

Decision Manager. As already mentioned, every dimension classifies the users into three 

categories: low (1), medium (2), high (3). Hence, if user i is assessed as user with “high” 

motivation (Mi= 3), “medium” opportunity, (Oi= 2), and “high” capability (Ci= 3), then his 

threat score Ti equals to 8 points. 

Ti = Mi + Oi + Ci 

After assessing each user’s final score, a scoring system is used to map the user into a 

category indicating how potentially dangerous he can be. Each organization has to choose the 

score intervals that classifies each user to a category. For example, four intervals can be used 

(3, 4), (5, 6), (7, 8), and (9), which map the user into the categories: “harmless”, “medium risk”, 

“dangerous”, and “very dangerous”, respectively (Table 5). 



 

48 

 

 

Table 5 - Overall threat score 

 

 

These results are then examined and evaluated by the management team. It is important 

to mention that the model determines an estimated value of the potential danger a user may 

pose to the organization. However, it does not receive any automated decision regarding the 

particular user access rights. 

4.3 Requirements and limitations 

The proposed model has a number of requirements which have to be met in order to be 

effective: The monitoring points for the IDS sensor(s) have to be correctly selected and as a 

minimum, should cover all traffic between the workstations and servers.  

Sensitive applications that may be targeted by insiders should have logging capabilities, 

so that all user actions can be logged and analyzed for potentially malicious behavior. Ideally, 

the logging of user actions has to be in (semi) real time. The storage space for the log file should 

be taken into consideration, as - depending on the application - the size can increase rapidly, 

making storage and analysis cumbersome. This is particularly important for databases, as the 

database logging mechanism is frequently disabled, due to the performance overhead.  

Additionally, all sensors should be able to communicate directly and in a secure way 

with the Decision Manager, which will analyze all reported data and decide if a particular user 

action/behavior has to be further analyzed. A considerable level of expertise is also required 

from the network and system administrators, as monitoring the aforementioned resources 

requires manual reconfiguration of the operating systems and network devices. Performance 

issues need also to be taken into account.  
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A clever insider might change his behavior slowly, trying to fool the Decision System 

and prevent it from identifying his attack as abnormal behavior. Furthermore, in case the insider 

has authorized access to specific resources she can access a small part of them each day, 

simulating a normal user behavior, knowing that accessing all information at the same time 

would raise an alarm. His attack will succeed and probably pass undetected, but he will need 

much more time to conduct it. Another important limitation is, that in case the insider has 

administrative rights, he can disable the sensors/logging mechanisms and thus avoid detection. 

Regarding psychological profiling, when the model is applied in different 

organizations, it is likely that its statistical parts may vary significantly. For example, the user 

computer skills in a software house can differ significantly from another organization. This 

could be addressed, if every organization adopts different statistical constants according to its 

own needs and characteristics. This also applies to the algorithm for the classification of users 

in categories. Every organization can develop its customized system of classification. 

Furthermore, the model should study each user’s stress level throughout time, in comparison 

with the results of the user’s predisposition to malicious behavior and his behavior in the 

information infrastructure. 

In addition, as already mentioned, when an organization applies monitoring techniques 

and psychological tests as in this model, compliance with the legal requirements is imperative. 

Finally, the model assumes that the whole attack life cycle, will be performed by a 

single individual. As discussed, there has been at least one sophisticated attack where an insider 

was used in order to perform a very specific action (e.g. infecting a system), while the rest of 

the steps were done in an automated fashion.  Due to this limitation, the current insider detection 

models including the proposed one, will be ineffective against such attacks. As a result, 

different detection strategies like the ones presented in the APT detection model in Chapter 7, 

need to be investigated.  
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Chapter 5: Indirect Attacks: Mobile devices 

5.1 The exponential growth of mobile devices 

Mobile devices and more specifically smartphones and tablets, have become an integral 

part of our life. Apart from facilitating communication, smartphones are frequently used for a 

number of sensitive tasks which include online banking and shopping, acting as two-factor 

authentication tokens for online services, and wireless payments.  Furthermore, the use of 

smartphones in business under the Bring Your Own Device (BYOD) trend  is continuously 

increasing, even in sensitive environments, with iOS and Android devices getting accredited 

for use in the US Dept. of Defense (Taborek & Capaccio 2013). 

Smartphones are now being the primary device used to access the web (Gartner 2014b). 

However, while browsing the web users might visit rogue web sites, namely sites that serve 

malicious software (malware) and/or host phishing scams. It is worth clarifying that users might 

be exposed to such threats not only when they visit nefarious web sites, such as adult websites, 

ones hosting pirated software or gambling sites. Benign sites (e.g. social media websites, search 

engines, news sites, etc.) have been misused in the past to deliver phishing/malware attacks 

after being compromised (i.e., watering hole attacks) (Cisco 2013). As a result, the likelihood 

that users will be exposed to such threats, should not be neglected. In fact, Symantec states that 

38% of mobile users have experienced mobile cybercrime in past 12 months (Symantec 2014a). 

The malware threat is constantly increasing, with Kaspersky Labs reporting that over 

3 billion attacks were detected in 2013, with a total of 1.8 million malicious or potentially 

unwanted programs used in these attacks (Kaspersky 2013a). McAfee Labs Threat Report 

highlighted that there is a 167 percent growth in mobile malware between 2013 and 2014 

(McAfee 2014b). The lack of security awareness of mobile users is well known (Mylonas, 

Kastania, et al. 2013) and this has been confirmed by a recent report that reveals that 57% 

percent of adults are unaware of the existence of security solutions for mobile devices 

(Symantec 2014a). This discovery is very worrying if we take into account the sensitive 

information stored on smartphones as well as their use to access business resources (e.g. 

accessing corporate emails, files etc.).  

Most modern operating systems (e.g. Windows 7 and newer, Mac OS X 10.9 and 

newer) include built-in security features such as a firewall, malware detection software, 

automated security updates and basic auditing. Thus, even the less security conscious users are 

enjoying a basic level of protection. Unfortunately, this is not the case for smartphone 

platforms. Especially for the Android platform malicious applications have found their way 

even on the official marketplace (Zhou et al. 2012), causing data loss, exfiltration of information 
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and phone charges etc. The availability of endpoint protection software is limited and its 

effectiveness questionable. The same is true for the auditing/logging features of mobile 

platforms.  As a result, it is logical to assume that smartphones will be the next APT target, as 

they offer an easy way to gain access to personal and business data, with significantly less risk 

of detection for the attackers.   

Phishing is one of the most popular and profitable attacks as almost 450.000 attacks 

happened in 2013 with an estimated loss of over $5.9 billion (RSA 2014). In addition, one in 

every 392 emails contained a phishing attack in 2013 (Symantec 2014a) and to make things 

worse, 80% of business users were unable to detect phishing attacks effectively (McAfee 

2014a). If we take into account the increased exchange of emails on mobile devices (Gartner 

2012), users are very likely to access phishing pages on such a device.  

Although the majority of phishing attacks are widespread and focus on financial gain, 

targeted phishing attacks also exist. These attacks are known as spear-phishing and have been 

used in a large number of sophisticated attacks against government, military and financial 

institutions. The analysis of multiple security incidents has revealed that attackers used targeted 

phishing attacks in order to gain access to the internal network of their target (Drummond 

2010), (RSA 2011), (Virvilis et al. 2013).  

Web browsers are the first (and unfortunately in some cases the last) line of defense on 

mobile platforms against such attacks. Although it is unrealistic to expect that targeted 

phishing/malware attacks will be detected by the web browser or any third party security 

solution (e.g. Antivirus engine), what is evident from our analysis (see 5.5.4) is that the 

available security mechanisms on smartphones are failing to address even the most basic, non-

targeted web threats. Furthermore, their detection efficacy differs significantly when compared 

to similar mechanisms available on Desktop environments.  

In the next paragraphs, the most popular browsers on Android and iOS are tested, and 

their efficacy in blocking phishing and malicious URLs is compared with popular Desktop 

browsers on Windows. Furthermore, statistics are created for all the malicious files which were 

downloaded during the tests (when visiting a malicious web site), revealing the disappointing 

efficacy of Antivirus engines, even against non-targeted malware. 

5.2 Background 

5.2.1 Phishing Attacks 

The main browser defense against phishing/malware sites is based on blacklists, which 

are used by browsers to identify if a requested URL has been reported as malicious. The most 

popular blacklist is Google’s Safe Browsing (Google 2013), which protects from both phishing 
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and malicious web sites. Safe Browsing is currently used by Chrome, Firefox and Apple Safari 

browsers. Internet Explorer uses SmartScreen, Microsoft’s proprietary blacklist (Microsoft 

2011). Other browsers use their own proprietary lists and/or aggregate data from third parties. 

For instance, Opera uses phishing blacklists from Netcraft (Netcraft 2014) and PhishTank 

(Phishtank 2014) and a malware blacklist from TRUSTe (Abrams et al. 2013). 

A number of approaches has been proposed by the research community to protect users 

from phishing attacks, which vary from user awareness surveys to experiments of the effecti-

veness of current security mechanisms and proposals of novel ones. More specifically, the work 

in (Banu & Banu 2013), (Rosiello et al. 2007) and (RaniSahu & Dubey 2014) focuses on phish-

ing with regards to its properties, characteristics, attack types, and available counter-measures. 

Authors in (RaniSahu & Dubey 2014), (Jansson & von Solms 2013) present a survey on user 

training methods, as well as their effectiveness against phishing attacks. 

Literature has also focused on visual indicators that protect users from phishing. An 

overview of the warning indicators is presented in (Bian 2013). Also, (Darwish & Bataineh 

2012) has surveyed users’ interaction regarding security indicators in web browsers. A study 

on the effectiveness of browser security warnings was published in (Akhawe & Felt 2013), 

focusing on Chrome and Firefox browsers. A similar study in (Egelman & Schechter 2013) 

analyzed the impact on the users' decision based on the choice of background color in the warn-

ing and the text descriptions that were presented to them.  

The authors in (Sheng et al. 2009) focused on the effectiveness of phishing blacklists, 

and more specifically on their update speed and coverage. They found that less than 20% of 

phishing sites were detected at the beginning of their test. Similarly, in (Kirda & Kruegel 2005) 

the authors proposed the use of 'Anti-Phish', an anti-phishing  extension for Firefox. Zhang et 

al. (J. Zhang et al. 2011) used a text classifier, an image classifier, and a fusion algorithm in 

order to defend against known properties of phishing attacks.  

The authors in (Comparatives 2012) analyzed 300 phishing URLs and measured the 

detection effectiveness of desktop browsers. Opera browser offered the highest level of 

protection by blocking 94.2% of the phishing sites. Mazher et al. (Mazher et al. 2013) tested 

the effectiveness of anti-phishing add-ons for Internet Explorer, Chrome, and Firefox, finding 

that Chrome outscored the other browsers. Finally, (Abrams et al. 2013) examined the time 

required for Firefox, Chrome, Opera, IE, and Safari to block a malicious site (from the creation 

of the malicious domain until the time it was blocked by the browsers).  

The authors in (Vidas et al. 2013) investigated the viability of QRishing (i.e. QR-code-

initiated phishing attacks). Similarly, (Xu & Zhu 2012) examined how notification customiza-

tion may allow an installed Trojan application to launch phishing attacks or anonymously post 

spam messages.  Work by (Mylonas, Tsalis, et al. 2013) revealed that security controls, which 

are typically found on desktop browsers, are not provided by their smartphone counterparts. 
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Finally, (Virvilis, Tsalis, et al. 2014) highlighted significant differences in the effectiveness of 

phishing blacklists of Android, iOS, and desktop browsers. 

5.2.2 Malware attacks 

Although the majority of browsers rely solely on blacklists to detect malicious URLs, 

on Windows Internet Explorer and Chrome perform further analysis to detect malicious 

downloads. Both browsers analyze the metadata of the downloaded file (i.e. digital signature, 

hash, file’s popularity, etc.) to warn users about potential risks (Rajab et al. 2013), (Microsoft 

2011), (Colvin 2011). Furthermore, non-browser specific models have been proposed for the 

detection of malicious domains through DNS monitoring (Antonakakis et al. 2011), while 

(Bilge et al. 2011) discusses large-scale, passive DNS analysis techniques to detect domains 

that are involved in malicious activity. A zero-day anti-malware solution is proposed in 

(Shahzad et al. 2013), which uses a combination of  whitelists and blacklists. The authors 

discuss that such whitelists do not need signature updates and provide protection against 

sophisticated zero-day malware attacks by enforcing software restriction policies, which allow 

only legitimate executables, processes and applications to be executed. 

In addition, a number of models have been suggested in the literature focusing on 

malware detection, namely: (a) the AMICO project (Vadrevu et al. 2013), which detects 

malware downloads in live web traffic using statistical analysis to identify characteristics of 

malware distribution campaigns, (b) the ZOZZLE (Curtsinger et al. 2011), which detects and 

prevents JavaScript malware from been deployed in the browser, and (c) the EFFORT system 

(Shin et al. 2012), which focuses on the detection of malware serving bots. Furthermore, 

multiple models have been proposed that rely on machine learning techniques: (a) for malware 

detection (Kolter & Maloof 2006), (Roberto Perdisci et al. 2008), (Antonakakis et al. 2011), (R 

Perdisci et al. 2008) and (b) for detection of drive-by downloads (Caballero et al. 2011), (Cova 

et al. 2010), (Lu et al. 2010), (Provos et al. 2007), (Mavrommatis & Monrose 2008), (H. Zhang 

et al. 2011). Finally, models focusing on malware and attack propagation models have also 

been proposed (Komninos et al. 2007), (Kammas et al. 2008). 

The industry offers a large number of content filtering solutions, ranging from 

software-based solutions, to Cloud services and hardware appliances. Multiple software 

solutions exist, such as McAfee’s Site Advisor and Symantec’s Safe Web (Mcafee 2014), 

(Symantec 2014c). They are usually offered for free or at low cost. However, they require the 

installation of third-party software/browser extensions and are browser and platform dependent, 

with limited support for mobile platforms. Commercial content filtering appliances and Cloud 

Services (e.g. OpenDNS (Opendns 2014)) are popular in enterprises and are usually platform 
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and browser agnostic. However, their effectiveness is hard to measure due to the use of 

proprietary technologies. Also, their significant cost limits their use. 

Lastly, a number of online services exists offering file analysis. One of the most popular 

is VirusTotal (VirusTotal 2014), which utilizes a large number of popular antivirus engines to 

analyze (suspicious) files (c.f. Table 31 in the Appendix for a list of AV engines). Users can 

upload and analyze their files, or query the service for files that have already been analyzed by 

searching their hash. VirusTotal also supports URL scans, querying a URL against a large 

number of blacklists (c.f. Table 32 in the Appendix).  

 

Table 6 - Browser availability on tested platforms 

 iOS 7.1.1 Android 4.0.4 Windows 7  

Safari Mobile  X   

Chrome Mobile X X  

Opera Mini X X  

Browser†  X  

Firefox Mobile  X  

Opera Mobile  X  

Chrome   X 

Firefox   X 

Internet Explorer   X 

Opera   X 

5.3 Methodology 

5.3.1 Test methodology 

The experiments were conducted in June and July 2014 and focused on the most 

popular browsers on the desktop and smartphone platforms (c.f. Appendix, Tables 9-10), 

namely:  

 Desktop browsers. Internet Explorer 11, Chrome v35, Firefox v29, and Opera v22, 

which were installed on a Windows 7 64-bit system. 

 Mobile browsers. Safari Mobile (built-in on iOS 7.1.1), Chrome Mobile v35, Opera 

Mini v7.0, “Browser” or “Internet” (i.e. the default browser for Android 4.0.4), Firefox 

Mobile v30, and Opera Mobile v22, which were installed on an iPhone 5S (iOS v7.1.1) 

and a Sony Xperia Tipo (Android v4.0.4). Although some of the desktop browsers have 

mobile counterparts, their availability on the two smartphone platforms is 

heterogeneous, as shown in Table 6. 

Our effort in the smartphone platform focused on iOS and Android, as these are the 

two most popular operating systems, comprising almost 90% of the global smartphone market 

share (Bradley 2013). 
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To evaluate the protection that is offered to users against rogue web sites, 1400 phishing 

and 1400 malicious URLs were accessed. The ones for which browsers raised alerts, were 

recorded. As technology that can be used to fully automate this process is not currently 

available, a security savvy user manually verified if a web page that had not been reported by 

the browser, was indeed a rogue or a benign web page. Since this was a cumbersome task, the 

architecture presented in Figure 3, was set up.  

  

 
Figure 3 - Laboratory setup 

 

The URL Collection included the URLs that were used in the evaluation. The URL 

Container parsed daily the URL Collection and selected the URLs that had been reported to 

Phishtank in the last 24 hours. Then, two HTML files were created, one for phishing URLs and 

one for malicious URLs, which were formatted as the Snippet below. Finally, a researcher used 

each browser installed on the test devices, to access each HTML file and collect the number of: 

a) blocked URLs, b) false negatives, and c) non-phishing/malicious URLs.  

5.3.2 Phishing Tests 

To evaluate the anti-phishing protection that is offered by the aforementioned web 

browsers, 1400 phishing URLs were collected from PhishTank (Phishtank 2014). PhishTank 

was selected as it is a popular online service that lists phishing URLs, which are verified by an 

active community. PhishTank publishes every day a list of verified phishing URLs, i.e. ones 

that have been confirmed as fraudulent and online. However, as the state of a phishing URL is 

dynamic, a confirmed URL might be cleaned or be taken down shortly after its submission.   
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    <!DOCTYPE html> 

<html> 

<body> 

<script> 

window.open("http://testurl1.com"); 

window.open("http://testurl2.com"); 

… 

window.open("http://testurln.com"); 

</script> 

</body> 

</html> 

Snippet - HTML content 

 

Although part of the experiments could have been automated (e.g. when the request 

returned an HTTP Error Code or the browser raised a warning), manual review was required in 

order to measure the false negatives (actual phishing URLs, which were not blocked by the 

browser). In specific, each URL that was not blocked by the browser was examined and 

classified it as (a) benign or not responsive/non accessible site (i.e. inactive phishing site) or (b) 

false negative (i.e. an active phishing site that was not blocked by the browser).  

Thus, in the end of the experiment every URL in the phishing collection was manually 

classified as: 

a) Blacklisted: The phishing URL was blocked by the web browser, i.e. the user received 

a warning indicating a phishing site.  

b) False Negative: An active phishing URL that was manually verified as fraudulent, but 

was not blocked by the browser.  

c) Non-Phishing/Timeout/Error: The phishing URL had been suspended/taken 

down/cleaned when it was accessed. 

It should be noted that the data set included only verified phishing URLs (i.e. a human 

operator from PhishTank has manually verified them as fraudulent), as the main objective was 

to examine the efficacy of browsers’ anti-phishing blacklists. Therefore, the false positive rate 

of all browsers, which is out of the scope of this work, was zero. Finally, the results are 

compared with our previous work in (Virvilis, Tsalis, et al. 2014).  
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5.3.3 Malware Tests 

An online, well-known service that reports on a daily basis verified malware-hosting 

websites, offering strong community support (comparable to PhishTank), is not currently 

available. Therefore, to gather the malicious URL collection the open source Collective 

Intelligence Framework (CIF) (CIF 2014) was used. CIF allows the collection and analysis of 

malicious threat information from a large number of trusted sources (c.f. Table 25 in the 

Appendix), which is used for incident response and intrusion detection and mitigation. 

Similarly to the anti-phishing experiment, our tests included manual browsing to 1400 

URLs that hosted malicious software. Every URL was categorized as follows:  

a) Blacklisted: The browser blocked either the URL or the file that was downloaded (or 

issued a warning that the file could be potentially dangerous). 

b) False Negative: A URL that was not blocked by the browser and triggered the 

download of a potentially malicious file, without any further alert being raised by the 

browser. 

c) Non-Malicious/Timeout/Error: The URL had either been cleaned or suspended/taken 

down when it was accessed. This category also included the URLs that did not trigger 

a download.  

Similarly, the dataset for this test included only verified malicious URLs as this work 

examines the efficacy of browser blacklists in blocking such attacks. As a result, the false 

positive rate of all browsers, which is out of the scope of this work, was zero. 

5.4 Experimental Results 

5.4.1 Protection against phishing sites 

5.4.1.1 iOS browsers 

Mobile Safari, which is the pre-installed iOS web browser, uses Google’s Safe Brow-

sing to provide anti-phishing protection. The evaluation revealed that the implementation of 

this anti-phishing control suffers from a significant design weakness, as the Safe Browsing 

blacklist is only updated when the iOS device is synchronized with iTunes. Considering that 

some iOS users may not synchronize their devices frequently, they may end up with an outdated 

blacklist. Furthermore, the list is updated only once per day. Thus, any phishing site that has 

been created in the meantime - even if it has been reported to Safe Browsing list - will not be 

blocked. As a result, iOS users receive considerably limited protection against phishing attacks. 
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In fact, during the experiments Safari Mobile did not block any phishing URL when this 

synchronization step was skipped. Therefore, the iOS test device was synced daily, right before 

starting our evaluation.  

Chrome Mobile offers phishing protection since January 2014. However, this option is 

not enabled by default, but requires the user to enable the “Reduce Data Usage” option, which 

uses Google’s servers as a proxy to fetch the requested URL. When this option is enabled, the 

contents of the web page are downloaded and compressed and the URL is checked against the 

Safe Browsing list. This feature is privacy intrusive - as all traffic is transferred through 

Google’s servers - and does not work for SSL/TLS pages or in Incognito mode (private 

browsing). This browser has been excluded from the evaluation as: a) it is less likely that normal 

users (i.e. not security and savvy ones) would enable security controls, as smartphone users 

tend to be oblivious about their security and privacy (Mylonas, Kastania, et al. 2013) and (b) 

the control is not ‘easily configurable’ (Mylonas, Gritzalis, et al. 2013), i.e. the label of the 

control is not intuitive and confusing even for security savvy users. Finally, Opera Mini did not 

support phishing protection. 

 

Table 7 - Phishing protection statistics on iOS 

                URL 

iOS Browser 

Blacklisted False negatives Non-phishing 

Safari Mobile  542 370 488 

Chrome Mobile N/A N/A N/A 

Opera Mini N/A N/A N/A 

 

5.4.1.2 Android browsers 

Android users also receive limited protection against phishing attacks, as the default 

Android browser (known as “Browser” or “Internet”) does not offer phishing protection. The 

same holds true for Chrome Mobile and Opera Mini. It must be noted that these are the most 

popular browsers on Android, according to the number of downloads on Google Play (c.f. Table 

24 in the Appendix). 

On the other hand, Firefox Mobile and Opera Mobile offer anti-phishing protection. 

The results suggest that both browsers offer similar protection with their desktop counterparts. 

Specifically, Firefox and Opera on Windows blocked 86.7% and 77.9% of the phishing URLs 

and Firefox Mobile and Opera Mobile blocked 85.4% and 75.9%, respectively (c.f. Figure 8) 

Nevertheless, if one considers that: (a) not all users feel the need and/or are capable to install a 

third-party browser on their devices (Mylonas, Kastania, et al. 2013) and (b) the pre-installed 
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browser offers no anti-phishing protection, then a large number of Android users is not 

protected from phishing attacks. 

 

Table 8 - Phishing protection statistics on Android 

URL 

Android Browser 

Blacklisted False negatives Non-phishing 

Firefox Mobile  1196 48 156 

Opera Mobile  1062 110 228 

Chrome Mobile N/A† N/A N/A 

Opera Mini N/A N/A N/A 

Android Browser†† N/A N/A N/A 

†† 'Browser' (or Internet) is the pre-installed Android browser  

† N/A: Browser does not support anti-phishing mechanisms 

5.4.1.3 Desktop browsers 

The analysis revealed that all desktop browsers offered anti-phishing protection using 

either Safe Browsing list (Chrome and Firefox) or their own proprietary blacklists (Opera and 

Internet Explorer). The most phishing URLs were blocked by Chrome and Firefox. Although 

their results are similar - which is expected as they use the same blacklist - Chrome outperforms 

Firefox, as in our experiments it blocked roughly 5% more phishing sites and has a lower false 

negative rate.  

During our experiments another issue was encountered with the synchronization of 

blacklists in Firefox, which was also raised by (Abrams et al. 2013). Specifically, each day Safe 

Browsing blacklist in Firefox was not updated, unless Firefox was executed for a few minutes 

before our evaluation, which resulted to a large number of false negatives. This stems from the 

way the Safe Browsing protocol updates its local database (Sobrier 2014). Interestingly, this 

problem did not appear in Chrome or any smartphone browsers that use Safe Browsing. To 

avoid this synchronization issue, Firefox was executed for at least 10 minutes prior testing, to 

allow the browser to update its blacklist. 

Opera blocked roughly 10% less phishing sites than Firefox and had slightly more false 

negatives. Finally, Internet Explorer offered the lowest level of protection among the desktop 

browsers, having the smallest percentage of blocked URLs (less than 50%).  
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Table 9 - Phishing protection statistics on Windows 

URL 

Browser 

Black-
listed 

False 
negatives 

Non-
phishing 

Firefox  1215 83 102 

Chrome  1302 18 80 

Opera  1090 118 192 

Internet Explorer  678 138 584 

5.4.1.4 Comparison with previous evaluation 

Herein, the anti-phishing protection that the popular desktop and mobile browsers offer 

in Q2 2014, are compared with the results of our previous work in (Virvilis, Tsalis, et al. 2014), 

which was conducted in Q1 2014. Since the phishing ‘ecosystem’ is dynamic, i.e. phishing sites 

are short-lived with an average life expectancy of 23 hours (Abrams et al. 2013), our aim is to 

examine how this dynamic nature is reflected in the browsers’ anti-phishing protection over 

this period of time.  

The results are summarized in Figure 4 (c.f. Table 26 to Table 28 in the Appendix for 

detailed results). The browsers blocked fewer phishing URLs in Q2 with the exception of 

Firefox Mobile on Android. Safari Mobile’s (iOS) detection dropped almost by half. This 

stresses again the problematic implementation of the Safe Browsing protocol on iOS. 

Furthermore, the analysis showed a small decrease in the performance of the desktop versions 

of Firefox and Opera, with respect to the blacklisted URLs and false negatives. Finally, Internet 

Explorer blacklisted less URLs and was prone to more false negatives, and Opera Mobile had 

more false negatives. 

  

Figure 4 - Comparison of anti-phishing protection (Q1 2014 – Q2 2014) 
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5.4.2 Protection against malicious sites 

5.4.2.1 iOS Browsers 

The results revealed that none of the iOS browsers offered any protection against 

malicious sites, leaving their users exposed to this threat. In the case of Mobile Safari this was 

rather surprising, as the browser uses Safe Browsing to provide anti-phishing protection, but it 

does not provide detection of malicious sites. Opera Mini did not utilize any blacklist for the 

detection malicious sites and neither did Chrome Mobile (not enabled by default and excluded 

due to the shortcomings that were mentioned previously).    

 

Table 10 - Malware protection statistics on iOS 

URL 

iOS Browser 

Blacklisted False negatives Non-malware 

Safari Mobile (iOS) N/A N/A N/A 

Chrome Mobile N/A N/A N/A 

Opera Mini N/A N/A N/A 

N/A: Browser does not support anti-malware mechanisms 

5.4.2.2 Android Browsers 

The results suggest that Android users are also unprotected against malicious sites. This 

finding is very worrying if one considers the increasing number of attacks against Android and 

the exponential growth of Android malware (Kaspersky 2013a), (Zhou & Jiang 2012), (Zhou 

et al. 2012). Specifically, the pre-installed web browser (“Browser” or “Internet”), Chrome 

Mobile and Opera Mini offered no protection against malicious sites. As summarized in Table 

11, only Firefox Mobile and Opera Mobile utilized malware blacklists. Nonetheless, our results 

suggest that the level of offered protection was very limited, as they blocked only 10-12% of 

the malicious URLs.  

 

Table 11 - Malware protection statistics on Android 

URL 

Android Browser 

Blacklisted False 
negatives 

Non-
malware 

Firefox Mobile (Android) 139 641 620 

Opera Mobile (Android) 166 683 551 

Chrome Mobile N/A N/A N/A 

Opera Mini N/A N/A N/A 

Browser† N/A N/A N/A 

† 'Browser' (or Internet in newer versions) is the pre-installed browser on Android 

N/A: Browser does not support anti-malware mechanisms 
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5.4.2.3 Desktop browsers 

The results suggest that popular desktop browsers offer poor protection against 

malicious sites. Internet Explorer (IE) blocked the most malicious sites and was the least prone 

browser to false negatives, which confirms findings from similar research conducted by the 

industry (Abrams et al. 2013). Nevertheless, even though IE outperformed all the other 

browsers, it only blocked ~41% of the malicious URLs and had a 30% of false negatives. This 

highlights that the application reputation mechanism that is used by IE does offer an extra line 

of defense against malware, but is far from perfect. 

Chrome had more false negatives than IE, even though it offers a similar mechanism 

against malicious downloads. Opera ranked third in terms of blocking malicious sites, but had 

58% of false negatives, the highest in the experiments. Firefox offered the poorest protection, 

blocking only 5% of the malicious URLs and having a ~43% of false negatives. 

During the experiments Firefox and Opera blocked malicious sites only by examining 

their URLs, without analyzing the downloaded files. Newer versions of Firefox now analyze 

the downloaded files using the same technology as Chrome (Mozilla 2014).  

 

Table 12 - Malware protection statistics on Windows 

URL 

Browser 

Blacklisted False negatives Non-malware 

Firefox  70 729 601 

Chrome  280 552 568 

Opera  180 816 404 

Internet Explorer 573 420 407 

 

5.5 Secure Proxy 

The results uncovered three problems that must be addressed to protect users from 

rogue sites: 

a. The limited effectiveness of blacklists against malicious sites and phishing sites. 

b. The limited effectiveness of reputation based mechanisms (e.g. in Internet Explorer 

and Chrome) to block malicious downloads. 

c. The unavailability of the relevant security controls in popular mobile browsers. 

In this context, Secure Proxy is proposed and implemented, as a proof-of-concept 

security mechanism, which proves the efficacy of aggregating multiple data sources in the 

detection of rogue sites. Currently, and due to the heterogeneity and restrictions of smartphones 

and their security models, a different security control might be incompatible (e.g. due to the 



 

64 

 

limitations enforced by iOS) or infeasible to be implemented due to resource restrictions (e.g. 

on older Android smartphones). The proposed proxy is browser and platform agnostic (i.e. does 

not require the installation of third party software) and can protect the user, regardless of the 

browser she is using. Finally, and in contrast with the commercial and closed source content 

filtering solutions, we are proposing an open architecture which can be built with a fraction of 

the cost. 

5.5.1 Architecture 

A secure forward HTTP proxy has been implemented, which uses VirusTotal’s public 

API to analyze the requested URLs and downloaded files. VirusTotal was selected due to (a) 

its popularity, (b) the number of AV engines and blacklist providers that it offers, and (c) the 

availability of free API. Nevertheless, any other similar service could be used. 

The proxy queries VirusTotal for each requested URL to identify if the URL is 

blacklisted by any of the blacklist providers.  If the URL is blacklisted, the request is blocked 

and a warning message is returned to the user. Otherwise, the proxy returns the HTTP response 

(i.e. page contents) to the browser. If a download is triggered, the proxy calculates the SHA-

256 hash of the file and queries VirusTotal. Once more, if the hash is known and is reported as 

malicious by any AV vendor, then the download will be blocked and a warning will be raised. 

If the hash is unknown (i.e. the file has not been analyzed beforehand), then the proxy uploads 

the contents of the file for analysis and allows the user to download the file if it not flagged as 

malicious by the AV engines. These steps are summarized in Figure 5. 

5.5.2 Secure proxy evaluation 

The evaluation of Secure Proxy focused on the detection of malicious sites, as the 

majority of browsers provide only weak protection (or hardly any) against them. The proxy was 

also tested with the complete collection of phishing URLs from PhishTank. However, this test 

was only a verification of the correct operation of Secure Proxy, as PhishTank is one of the 

anti-phishing providers that is used by VirusTotal. 
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Figure 5 - Proposed architecture 

  

To evaluate Secure Proxy the same list of malicious URLs that the browsers were tested 

against on a daily basis was accessed, and the requests were redirected through the Security 

Proxy. A script that simulated the web requests was used instead of a browser, to make sure 

that no browser specific countermeasure would interfere with the results, as well as to automate 

this process. The number of blocked URLs were collected and compared with the results of the 

browser that achieved the highest blocking rate in our evaluation. Secure Proxy was configured 

to block downloaded files (either based on the hash or the actual file analysis), when the number 

of detections reported by VirusTotal were at least one. This parameter is configurable and it 

can be configured to block a request with a different blocking threshold, according to the 

existing security policy or risk appetite. 

Statistics were also collected regarding: (a) the number of URLs that were blocked due 

to URL-only analysis, (b) the number of downloads that were blocked due to hash analysis, and 

(c) the number of downloads that were uploaded and blocked by VirusTotal. 
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Table 13 - Percentage of blacklisted malicious sites  

Secure Proxy vs. Internet Explorer (n=1400) 

 Secure proxy Best browser (Internet Explorer) 

 53.2% 40.9%  

5.5.3 URL-only and hash-based analysis 

As summarized in Table 13, the use of multiple blacklists enabled Secure Proxy to 

block almost half of the malicious URLs - thus outperforming Internet Explorer by 12.3% - 

which was the browser that blocked the most malicious URLs. This finding highlights that 

while the aggregation of multiple blacklists provides higher protection than any individual 

browser, it still fails to detect almost half of the malicious URLs (i.e. 46.8% false negatives).  

Browsing to these URLs triggered the download of 460 unique files (based on their 

SHA-256 hash), all of which were PE executables. Secure Proxy downloaded these files and 

queried VirusTotal for their hashes. The results revealed that 57.3% of the submitted hashes 

(i.e. 264 out of 460) were unknown to VirusTotal, meaning that the files had not been submitted 

for analysis beforehand. The detection rate of the rest of the files is summarized in Figure 6 (for 

detailed results see Table 15 in the Appendix).  

The number of AV engines that are available during the analysis of a file in VirusTotal 

ranges between 49-54 antivirus engines. Figure 6 summarizes the results based on the detection 

ratio for each file. This ratio was calculated with z/n, where z represents the number of antivirus 

engines that flagged the file (hash) as malicious and n is the number of antivirus engines that 

were used. The results indicated that the detection rate of approximately half of the malicious 

files was in the range of 6-38% of the antivirus engines. Moreover, only the 27.4% of the 

malicious files were detected by the majority of the antivirus engines. 
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Figure 6 - Detection percentage of hashes 
 (X-axis lists the percentage of AV engines that flagged the file as malicious,  

Y-axis lists the percentage of the samples). 

5.5.4 File-based analysis 

During the experiments, Secure Proxy uploaded 264 (57.3%) of the downloaded files 

to VirusTotal for analysis, as their hashes were unknown. All of them were reported as 

malicious and the majority of them (~71.0%) were detected by 46-50% of the antivirus engines 

(c.f. Figure 7, and Table 30 in the Appendix). This suggests that with the absence of file-based 

analysis from Secure Proxy, there is ~50% likelihood that malicious files will not be detected 

from the user’s AV (assuming that the user is using only one AV program).  

Finally, it should be highlighted that the abovementioned detection rates refer to 

desktop antivirus engines. Mobile antivirus applications are more constrained due to the 

sandboxed environment of mobile platforms and also lack the advanced features that are 

available at desktop antivirus engines (i.e. advanced heuristic analysis). 
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Figure 7 - Detection percentage of executables 
 (X-axis lists the percentage of AV engines that flagged the file as malicious,  

Y-axis lists the percentage of the samples). 

5.5.5 Performance evaluation 

As mentioned beforehand, Secure Proxy performs three types of queries to VirusTotal, 

which incur delays: (a) URL Query to identify if the URL is reported as rogue by any of the 

blacklist providers, (b) Hash Query to identify if the hash of the file is known to be malicious, 

and (c) File Query in which the actual file is uploaded to VirusTotal for analysis.  

The analysis revealed that for URL Queries the proxy received a response from 

VirusTotal and allowed or blocked the request on average in 648ms. The average Hash Query 

time for each triggered download was 516ms. The longest delay occurs when the hash is 

unknown as the file needs to be uploaded for further analysis (File Query). The delay depends 

on various parameters, e.g. the size of the file, the network speed, and the load on the VirusTotal 

service - with the latter often being the most time consuming parameter. In the evaluation, the 

average size of the collected malicious executables was 848KB and our Internet connection 

was a 20Mbit (2048Kbit upload) ADSL line. On average, the file queries were completed in 

under 41sec, including the time required to upload a file and get the detection report. 

5.6 Discussion 

5.6.1 Limitations 

The corpus was limited to 2800 rogue URLs (1400 phishing and 1400 malicious 

URLs), due to the significant manual effort that was required to test different browsers on 

Windows, iOS and Android. This introduced a potential bias in the results, which describe the 

level of protection in the period that the tests took place, namely June-July 2014. However, 
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even though the results are not generalizable, it is our belief that they provide adequate 

indications about the level of protection offered to the users for two reasons: a) the findings for 

desktop browsers are in accordance with the results in (Abrams et al. 2013) and b) the results 

of this work regarding the effectiveness of anti-phishing protection are similar to our previous 

evaluation of a much larger data set of 5651 URLs (Virvilis, Tsalis, et al. 2014). 

This work focuses only on the popular desktop browsers (Windows) and their 

smartphone counterparts that are available on iOS and Android. While there are other browsers 

that were not examined, such as Safari on Mac OS X and Internet Explorer Mobile on Windows 

Phone, the current results are considered as representative. This holds true as Windows is the 

most popular operating system for desktops and laptops, as well as Android and iOS users 

constitute the 94% of the smartphone users (78.4% and 15.6% respectively) (Gartner 2013). In 

addition, as iPads and Android tablets use a similar operating system (iOS, Android), and in 

most cases the exact same browser versions, the findings are considered to reflect the protection 

that is offered on a larger user base. 

In this work Secure Proxy was proposed, as a countermeasure against rogue sites. It is 

worth noting that the implementation is a proof-of-concept one, highlighting the benefits that 

the aggregation of multiple blacklists and AV engines offers against rogue websites. The 

evaluation regards issues such as privacy or performance as out of scope of this work. However, 

as discussed in section 5.6.2, both issues can be addressed in a real-world implementation. 

The implementation of Secure Proxy is based on the public version of VirusTotal’s 

API, which introduces limitations. Firstly, VirusTotal is a service which was not designed to 

support semi-real time queries, as the ones used by the proposed control. A dedicated service 

optimized for such use, such as CloudAV (Oberheide et al. 2008), might achieve better 

performance and as it can be hosted locally, it avoids privacy concerns. Also, Secure Proxy - 

similarly to VirusTotal - does not weight differently the responses from the various antivirus 

engines or URL blacklists. It can be extended to assign different weights to these responses 

according to organization’s security policy.  

Finally, the results are affected by the dynamic nature of the web ecosystem. This is 

due to the dynamic nature of the threats and the new evasion techniques that attackers create. 

This is reflected on the comparison of the anti-phishing protection that is offered by the 

examined browsers in Q1 and Q2 (2014). Moreover, browsers add to the complexity of the 

evaluation due to their frequent updates, which might include new security controls (e.g. 

analysis of downloaded files is now supported in newer versions of Firefox). 
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5.6.2 Protection of desktop and mobile browsers 

Overall, the results revealed that desktop browsers performed better in comparison to 

their smartphone counterparts, both against phishing and malicious sites. This is a worrisome 

finding if we consider the proliferation of smartphones, as well as the increased web browsing 

with these devices. One could argue that this is expected, as smartphones lack the processing 

capabilities of desktops and laptops. Nonetheless, this is only partly true today, as most 

smartphones have similar resources as a 3-4 year old laptop (e.g. dual core CPU, 1-2 GB or 

RAM, etc.). In addition, work by (Mylonas, Gritzalis, et al. 2013) has shown that the 

unavailability of important security controls - such as blacklists for phishing and malicious sites 

in which this paper focuses - does not stem from the (API) restrictions that are imposed from 

the smartphones operating system (i.e. sandbox profile). The reason that this happens is still 

unclear; however, it falls out of the scope of this work. 

More specifically, the results revealed that only a subset of the mobile browsers offer 

anti-phishing protection and thus, their users are not protected from such attacks. This is 

particularly true for Android users, where the pre-installed browser does not offer anti-phishing 

protection. On iOS, the pre-installed browser offers anti-phishing protection, but its 

effectiveness is questionable (c.f. Section 5.4.2.1). On the contrary, all desktop browsers 

provided anti-phishing protection, even though their effectiveness was significantly different 

and blacklist synchronization issues were identified for Firefox on Windows. Figure 8 

summarizes the results of the anti-phishing experiments. 

 

 

Figure 8 - Phishing URL detection percentage 

 

Contrary to anti-phishing protection, the results suggest that both desktop and mobile 

browsers offer very limited protection against malicious URLs (Figure 9). While Internet 

Explorer and Chrome, which used application reputation mechanisms, blocked more malicious 

URLs/resources than other browsers, their detection rate was still low. Moreover, only a subset 

of the browsers on iOS and Android offer any protection against malicious URLs - the browsers 

that did not block phishing URLs also did not block malicious URLs.  
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Interestingly, Safari Mobile did not block malicious URLs, even though it uses Safe 

Browsing to offer anti-phishing protection. Apple may have assumed that using such a blacklist 

would not increase the level of protection for iOS users, based on the fact that iOS devices only 

execute code signed by Apple. This assumption seems flawed as: (a) a significant percentage 

of users jailbreak their iOS devices, thus the device can also execute unsigned code (Love 

2013), (b) if iOS users do not receive any warning when visiting a malicious site, they can 

unwillingly put other users at risk by forwarding/sharing the URL, and (c) files that are 

downloaded on an iPhone might be synchronized to a computer, resulting to its infection.  

 

 

Figure 9 - Malicious URL detection percentage  

5.6.3 Proposed countermeasure 

To raise the bar of protection that is offered to users against rogue sites Secure Proxy 

was proposed, implemented as a proof of concept and evaluated. Secure Proxy is a HTTP 

forward proxy that uses multiple anti-phishing and anti-malware blacklists. Our work suggests 

that such browser agnostic architectures are currently the only solution for protecting normal 

(i.e. not security savvy) smartphone users, as they are less likely to install third-party browsers 

or security products on their devices (Mylonas, Kastania, et al. 2013).   

The evaluation showed that Secure Proxy blocks more rogue URLs and is less prone 

to false negatives than any individual browser. Our work focused on reducing false negatives, 

i.e. active phishing or malicious URLs that were not blocked by the browsers, as they could 

result in a successful attack. Secure Proxy however, may be prone to false positives as some 

sites may have erroneously been added to a blacklist without proper verification. In this case, a 

URL might be blocked until it is removed from all blacklists causing a temporal nuisance to 

users. Nonetheless, popular blacklists (e.g. Safe Browsing) allow site administrators to request 

their site’s removal from a blacklist when it has been cleaned, which would reduce the 

inaccessibility time. Furthermore, Secure Proxy can be configured, based on the user’s or 

organization’s risk appetite, to block a URL if the number of blacklists that identify it as 

11.9% 9.9%

40.9%

12.9% 20.0%
5.0%

48.8% 45.8%

30.0%

58.3%
39.4%

52.1%

39.4%
44.3%

29.1% 28.9% 40.6% 42.9%

Opera Mobile
(Android)

Firefox Mobile
(Android)

IE (Windows) Opera
(Windows)

Chrome
(Windows)

Firefox
(Windows)

Malicious URL Detection

Blocked False Negatives Non Malicious



 

72 

 

malicious exceeds a threshold, thus reducing potential false positives. However, specifying this 

threshold falls outside the scope this work. 

Similarly to Internet Explorer’s and Chrome’s metadata analysis of the downloaded 

files, Secure Proxy offers hash-based analysis with the aggregation of multiple AV engines. In 

specific, it queries the file’s hash on VirusTotal and blocks its download if it is reported as 

malicious by at least one AV engine – similarly to URL-only analysis this threshold is 

configurable. The results prove that hash-based analysis adds an extra layer of protection 

against malicious sites and - as URL-only analysis - does not introduce significant delays.  

The benefit of online queries is that the URL or hash will always be checked against 

an up-to-date blacklist, avoiding any blacklist synchronization issues. In addition, using a 

browser agnostic countermeasure, such as Secure Proxy, enables the end user to use a browser 

that does not offer any built-in countermeasures and still be protected. Finally, it also allows 

devices with limited resources (e.g. smartphones) to avoid resource intensive operations and 

thus reduces energy consumption. 

The inherent drawback of any online, centralized architecture is user privacy. Each 

visited URL is submitted to a third party for analysis, thus exposing the users’ browsing 

history/profiles. Even though this falls outside the scope of this work, it can be mitigated by 

maintaining a local blacklist/whitelist, thus avoiding the need for a central architecture (e.g. as 

in our case, a proxy server) - similarly to the way Safe Browsing protocol works. The browsers 

that implement the protocol, keep a local database of reported URLs, which is updated 

frequently while the browser is running. As a result, all lookups use the local database, thus 

avoiding unnecessary delays and privacy issues. Based on the fact that VirusTotal is owned by 

Google, it seems fairly easy to include the aggregated results from all blacklist providers to a 

single list (e.g. imported into Safe Browsing list). Still, this will require the browser vendors to 

implement/adopt the Safe Browsing protocol and make sure that they avoid any 

synchronization issues. Another potential solution could be to host a service similar to 

VirusTotal locally e.g. CloudAV (Oberheide et al. 2008), which would also address the privacy 

issues. 

The tests have also revealed the significant benefit of aggregating multiple AV engines 

for the detection of malicious files. Secure Proxy uploads for further analysis all downloaded 

files for which a hash-only query returned no results. This analysis introduces delays (41 sec 

on average in our experiments), which may not be acceptable for some users. However, Secure 

Proxy can be configured to upload these files according to a policy, e.g. by default deny access 

to these files, move the files in a sandbox or ask the user to decide whether the files will be 

submitted for further analysis. The last option however assumes users’ security awareness, 

which might not be the case for all users, as they are known to click through security messages 
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(Akhawe & Felt 2013), (Egelman & Schechter 2013), (Mylonas, Kastania, et al. 2013), 

(Mylonas, Gritzalis, et al. 2013).  

Similarly to other instances in the security domain, there is a tradeoff between security 

and usability. A combination of a whitelist and reputation based system will further limit  the 

number of files that have to be submitted for analysis - as only files that are not included in the 

whitelist and are not blocked by the reputation system have to be analyzed. Nevertheless, the 

benefits of such detailed analysis are significant. This holds true as the results suggest that even 

if an AV engine is in use, it will fail to detect all malicious files (in our experiments on average 

an AV detected only half of the malicious files). On the contrary, Secure Proxy offered better 

anti-malware protection due to the aggregation of multiple AV engines and blocked all the 

malicious files in the corpus.  

Finally, it should be noted that the focus of Secure Proxy is to allow mobile users to 

achieve a comparable level of protection with the one offered to desktop users, regardless of 

the limitations imposed by the mobile platform or browsers. However, as this countermeasure 

is based on the aggregation of Antivirus engines, the shortcomings of which have been raised 

both in this chapter as well as in the bibliography (Cole 2012), (Schneier 2012), it should not 

be considered effective against targeted attacks. For the latter, different detection techniques 

such as the ones presented in the next chapter, have to be investigated. 

5.7 Conclusion 

It is evident that even basic security mechanisms which have been available on desktop 

browsers for years, are not present (or are significantly less effective) on mobile platforms. 

Furthermore, there is a significant gap in the number of security solutions available for desktops 

and mobile platforms, as well as major differences in robustness, effectiveness and list of 

features.  

On mobile platforms, the security products are severely affected by the limitations 

imposed by the sandbox environment. In contrast, on desktop environments they are able to 

interact with the operating system at a low level (i.e. kernel space) and thus, have a much higher 

flexibility. Furthermore, they can perform resource intensive tasks (e.g. execution of the suspect 

file(s) in an emulated environment), that are currently not possible on mobile platforms due to 

architecture and performance constrains.  

Hence, even if smartphone users are technically capable and willing (or forced by policy) 

to install third party browsers or security solutions on their devices, they will still be 

significantly less protected than desktop users. 

These findings, along with the continuously increasing popularity of smartphone devices 

in sensitive environments, has turned them into a high value target for attackers. Thus, it is 
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logical to assume that smartphones will be one of the prime APT targets in the years to come, 

and consequently any robust defense planning should take these devices into consideration.  
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Chapter 6: Redefining the Security Architecture 

6.1 Introduction 

The limited effectiveness of the existing cyber security solutions against sophisticated 

attackers has been criticized harshly by the security community (Schneier 2012), (Bejtlich 

2013). Taking into account the severe security incidents that have been published in recent 

years, it is more than evident that existing solutions - even the ones considered to be the state 

of the art - are unable to address sophisticated attacks (Cole 2012), (Bejtlich 2013). As a result, 

a radical change in the way we defend our assets is required.  

The use of deception, is a very promising approach for attack detection, regardless of the 

attacker’s skills and capabilities. This chapter begins with a presentation of both existing and 

novel deception techniques, and their potential uses for attack detection. Furthermore, it 

proposes a robust APT detection model, a proof of concept implementation of it, and its 

evaluation against two realistic scenarios. The model combines anomaly detection with 

multiple deception-based attack indicators and correlates both current and historical events over 

a wide period of time. It achieves high detection efficacy and a very low false positive rate, 

even against sophisticated attacks designed to evade traditional security solutions. 

6.2 Unconventional defenses: The use of deception 

Prevention of sophisticated attacks by focusing solely on technical countermeasures is 

unrealistic, due to the technical and resource superiority of the attackers. Defenders will always 

have to find and fix all vulnerabilities and attack paths that could enable the attackers to 

compromise the infrastructure, while the latter only need to exploit one weakness to succeed. 

The use of zero-day exploits and robust malware makes the defender’s task very challenging, 

even for large organizations with a substantial cyber security budget. Furthermore as already 

mentioned there is a global shortage of skilled security professionals (Libicki et al. 2014), and 

thus the assumption that every organization will be able to establish a skilled cyber security 

team, is not realistic.  

Use of deception techniques can be invaluable for the detection of malicious actions, 

regardless of the level of sophistication. Examples of common deception techniques include 

honeypots (physical or virtual systems, simulating real production systems) and honey tokens 

(fake files or records which are likely to be accessed by the attackers).  

After unauthorized access has been achieved, the attackers will need to locate and 

exfiltrate the information they are interested in. Doing so, is a complex and time consuming 

task (especially for a large infrastructure), as the attackers will have to hop between network 
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segments, compromise domain accounts and gain access to systems (e.g. file servers) which 

might contain the targeted information. Similar actions should be expected for database servers 

and all other systems than could potentially host what the attackers are after. As a result, the 

introduction of deception-based countermeasures in the form of honeypots, honey files, honey 

tokens and fake accounts (e.g. honey accounts) can significantly raise the possibility of 

detection, as the attackers are likely to access these resources while trying to find the 

information they are interested in. For example, this could be the inclusion of honey files (e.g. 

word documents) on a file server, as the attackers are very likely to access them among all other 

files on the server. This statement is also supported from our evaluation results (see section 

6.4.4.2).  

The APT attack life-cycle (Figure 10) is discussed in the following paragraphs. For each 

stage of the life-cycle, deception techniques that can increase the possibility of detection are 

proposed. It consists of the following stages: a. information gathering, b. attack preparation, c. 

initial exploitation, d. internal access, e. further exploitation (e.g. escalation of privileges, 

network reconnaissance and identification of targeted information) and finally f. exfiltration of 

data. These stages can be grouped into two generic phases: attack planning (steps a, b) and 

attack execution (steps c to f). 

 

 

Figure 10 - APT attack life cycle 

6.2.1 Phase 1: Attack planning 

This phase focuses on actions that the attackers usually perform while planning their 

attack (e.g. information gathering). The attackers will try to gather as much information as 
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possible for their target, from multiple sources such as: social networks, bulletin boards, 

published vacancies, search engine queries (e.g. using Google dorks to find email addresses or 

domains registered to the organization), DNS zone transfers/brute-forcing, server/service 

fingerprinting, WHOIS lookups etc.  

It is critical for the defenders to be able to detect any information gathering attempt 

against their infrastructure as this is a strong indication of an eminent attack. Early detection 

will allow them to raise the readiness level and be better prepared (e.g. reminding the employees 

that opening email attachments from unknown sources is dangerous, that they should report 

immediately any suspicious behavior, etc.). Sections 6.2.1.1 to 6.2.1.3 propose deception-based 

attack indicators that could be used for the detection of information gathering attempts. 

6.2.1.1 DNS honey tokens 

As the attackers are expected to try to identify the Internet-facing systems/services 

belonging to their target, a straight-forward approach that the defenders could try is the 

deployment of honeypots across the unused public IP range of the organization. Based on the 

fact that these honeypots will not be publicly listed, a connection attempt towards them could 

be due to one of the following reasons: (a) human error (mistyping an IP address/domain name), 

(b) mass scanning of the IP address space used either for legitimate purposes (i.e. research) or 

due to malicious actions (e.g. automated attacks, worms) or (c) an information gathering 

attempt trying to identify all publicly accessible systems and services of the organization.  

However, due to the second reason, honeypots are expected to generate a substantial 

amount of noise (alerts) (Gebauer 2012). Furthermore, it is difficult to differentiate between an 

automated, non-targeted interaction with a honeypot and a targeted one. As a result, Internet 

facing honeypots are not the preferred option for the detection of information gathering 

attempts.  

Another, simpler to implement technique with a significantly limited number of false 

positives, is the insertion of fake DNS records (a type of honey token) to the authoritative DNS 

server(s) of the monitored domain. 

Attackers as part of their information-gathering process, are likely to attempt a DNS zone 

transfer (Edge et al. 2010) or to “brute force” the target’s DNS servers for common subdomain 

names, trying to identify interesting resources. By creating a small number of fake DNS records 

on the authoritative DNS servers of the organization and monitoring for requests for those 

records, defenders can receive an early warning of DNS-related information-gathering attempts 

against their infrastructure. 
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6.2.1.2 Web server honey tokens 

The public web servers of an organization are another fruitful source of information for 

attackers. Three kinds of honey tokens could be used for the detection of malicious web-site 

visitors: 

 Addition of fake entries in robots.txt file 

 Use of invisible links in web pages 

 Inclusion of honey-token(s) in HTML comments 

robots.txt file (Hendler & Berners-Lee 2010) is a simple text file located in the root folder 

of the web server, which legitimate bots (e.g. Google bot) parse in order to identify which 

resources on the web server should not be indexed. The file is one of the first places that 

attackers (and automated web vulnerability scanning tools) look for potentially sensitive 

resources. By including non-existing but potentially interesting resources such as “/admin” or 

“/login” in the robots.txt file and monitoring for access requests to them, administrators could 

be alerted for visitors with malicious intents.  

The inclusion of invisible links (e.g. links with the same color as the background color 

of the web page) pointing to non-existing resources (but potentially interesting from the 

attacker’s perspective i.e. http://www.example.com/secret), can serve a similar purpose. 

Although these links will be invisible to legitimate visitors, they will be accessed by web 

crawling tools that attackers are likely to use.  

Another deception mechanism particularly useful for web sites that support 

authentication, is the inclusion of honey tokens in HTML comments (e.g. fake accounts). 

Legitimate users have no need to review the source code of a web page, however attackers 

frequently do, trying to identify vulnerabilities. The inclusion of an HTML comment similar to 

the following in a login page, is very likely to tempt the attacker to use it: 

<!--test account: admin, pass: passworD123. Remove before production!--> 

A login attempt with these credentials, is a clear indication of malicious activity with a 

zero false positive rate. 

6.2.1.3 Social network avatars 

Social networks are an invaluable source of information for attackers.  
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Figure 11 - Common sources of information gathering 

A proposed solution for the detection of information gathering attempts on social 

networks is the creation of avatars (fake personas). The avatars should appear as realistic as 

possible, having connections with people from both inside and outside the organization. In 

addition, these avatars could have active - but limited and very closely monitored - accounts in 

the organization (e.g. active directory accounts), as well as valid email addresses. Interaction 

with the avatars should be regularly monitored (friend requests, private messages, emails, etc.), 

as it is a potential indicator of malice. 

 Of course, there is always the possibility of benign interaction e.g. individuals interested 

in applying for a position in the organization may contact one of the avatars, trying to get more 

information related to the position or the company and thus creating a false alert. However, this 

would be a rare case.  

6.2.2 Phase 2: Attack execution 

The second phase of the APT life-cycle is the attack execution. The attackers after having 

gained foothold on the network (e.g. by exploiting a client side vulnerability), will usually 

proceed with the following steps: Firstly, they will compromise additional systems and use 

them as alternative entry points into the network in case the initial one(s) are detected and 

quarantined. Following, they will move laterally, try to escalate their privileges and will explore 

the internal network looking for systems that may host the information they are seeking, or that 

can help them access it. In order to address this attack phase, the deception-based attack 

indicators in sections 6.2.2.1 and 6.2.2.2 could be implemented. 
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6.2.2.1 Network layer deception 

As previously mentioned, in a medium to large organization in which hundreds or even 

thousands of systems are active, identifying where the targeted information is located is not a 

trivial task. Use of darknets and honeynets can be invaluable in detecting malicious actions, as 

attackers are very likely to access them among other network segments/systems, and thus raise 

alert(s). 

A darknet also known as a “black hole” or “Internet sink” is a portion of routed but 

unallocated IP space, meaning that no workstations/servers or other network devices are located 

in that segment. Access to such regions of the network may occur by mistake (e.g. a user 

mistyping an IP address), however multiple connection attempts should be considered 

suspicious, as this is an indication of network mapping activity.  

Honeynets (L. Spitzner 2003) are used for monitoring larger and/or more diverse 

networks in which one honeypot may not be sufficient. Defenders can use honeynets to create 

multiple fake systems in the same IP range(s) as legitimate workstations/servers. An attacker 

who gains access to a specific network segment is very likely to access these fake systems 

among with the real ones. Interaction with such systems should be very closely monitored as it 

is a strong indication of an active attack. 

6.2.2.2 Application layer deception 

The same techniques used for detecting malicious activity on external web servers can 

also be used for protecting internal ones. Furthermore, additional application specific attack 

indicators can be implemented, to further increase coverage: 

 

Database server honey tokens  

Use of honey tokens (also known as honey records) on databases (e.g. fake information 

that is likely to lure the attacker to access it) can be used to highlight malicious activity. For 

example, a number of fake patient records can be introduced in a hospital’s patient database. 

Similarly, fake credit card records, passwords or any other kind of information that could be 

considered valuable for the attackers could be used. Attempts to access those records should be 

considered highly suspicious, as there is no legitimate need for users to access them. This 

countermeasure is also very effective against insiders even if they are aware of the use of 

deception techniques, as long as they do not know which specific records are the honey tokens 

(Virvilis & Serrano 2014).  
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Honey files 

In (Bowen et al. 2009) and (Voris et al. 2013) a number of strategies for creating decoys 

(honey files) have been proposed, focusing either on the generation of perfectly believable 

decoys or the modification of legitimate files to include alerting functionality. Although the 

practical use of perfectly believable decoys has been challenged, use of legitimate files is likely 

to create multiple false positives. 

To overcome these challenges decoy files with potentially interesting file names (e.g. 

passwords.docx, new_investments.pdf, etc.) could be created. The contents of the files should 

be fake (i.e. no value for the attacker), but at the same time realistic enough, especially if an 

action is expected from the attacker’s side. For example, the contents for passwords.docx decoy 

file could be a list of fake usernames and passwords. Any authentication attempts from these 

accounts should raise an immediate alert.  

Honey files should be spread across the file servers of the organization and/or even 

workstations, however the latter will increase the number of false positive alerts (Ben Salem & 

Stolfo 2011). Access to these files can be monitored by: 

 Enabling file system auditing (Melber 2013), which is the method used by the proposed 

model. 

 Inclusion of code which when executed will report back to a monitoring server. This 

can be achieved by using JavaScript for PDF files or embedding remote images in Word 

documents, which the application will try to access when the document is opened 

(Bowen et al. 2013). This approach is more useful for the detection of malicious insider 

users; APT actors are likely to exfiltrate the files from the infrastructure before they 

open them, and thus connection attempts towards the monitoring server will fail. 

 

Honey accounts 

Use of honey accounts is an additional way of detecting attackers, as any interaction (e.g. 

authentication attempts) with these accounts is a clear indication of an active attack, while the 

false positive rate is practically zero. Honey accounts can either be real, active accounts (i.e. 

domain users) or fake ones. In both cases, they should be very closely monitored. The access 

rights for real/active honey accounts need to be selected carefully, as even if an active honey 

account gets compromised, it should not offer any benefit to the attacker.  

Honey accounts could be combined with the aforementioned example of placing honey 

files on file servers, where a file with fake credentials could be created. An attacker with access 

to this file is very likely to use the credentials in an effort to gain further access to the network. 

The evaluation results of the proposed model support this statement (see 6.4.4.2). 
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Finally, a similar approach is the creation of fake authentication tokens in memory, which 

will be listed along the real authentication tokens when attackers attempt to do Pass-the-Hash 

attacks (Ewaida 2010). Such  tokens can be easily created using built-in Windows tools 

(Baggett 2015). 

6.3 A novel APT detection model 

6.3.1 Anomaly-based attack indicators 

Regardless of the skill, techniques and tools that the attackers use when interacting with 

a system or network, their actions will inevitably generate some noise (anomalies). The 

anomaly-based indicators used by the proposed model are listed below. It should be noted that 

depending on the characteristics of the infrastructure that needs to be protected, policy 

requirements and risk appetite, the list of indicators can be enriched or reduced accordingly. 

 Multiple, successful logins from an account to multiple systems 

 Successful logins during irregular business hours and/or non-working days 

 Multiple login failures for one or more accounts 

 A large number of network connections originating from a system 

 Network connections between workstations 

 Network connections from a workstation to multiple servers 

 Network connections originating from server(s), towards workstation(s) or the Internet 

 Protocol anomalies e.g. large number of failed DNS queries which could be an 

indication of malware using a domain generation algorithm 

 TCP connections which last for several minutes (as the majority of TCP connections 

are short lived) 

 TCP connections for which the transmitted traffic from the internal system is 

significantly more than the received traffic (this is an indication of uploading data) 

 Periodical connections to specific domain names/IP addresses 

 High volume of traffic between two systems (especially when one of the systems is 

outside of the organization e.g. Internet) 

 Connections to countries where the organization does not do business with 

 High resource utilization (CPU, memory, disk usage etc.) 

 Access to multiple files (e.g. on a file server) from a single account within a small time 

period 

 Multiple or large (multiple records) database queries from a single account within a 

small time period 
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It should be noted that these indicators won’t raise alerts when triggered in isolation; 

each indicator is assigned a threat value (i.e. a weight) and alerts will only be raised if this value 

exceeds a predefined threshold (See section 6.3.4 for more details). 

The aforementioned indicators can be collected from two main sources:  

1. System and network device logs 

2. Network traffic metadata e.g. IPFIX (Claise et al. 2013) / NetFlow (Claise 2004) 

The most common log types that can be used for the collection of these statistics are discussed 

in section 6.3.3.1. 

6.3.2 Deception-based attack indicators 

In contrast with the anomaly-based attacked indicators which can be prone to false 

positives, when deception-based indicators are triggered the possibility of a true positive (an 

actual attack) is much more likely. This makes them ideal for attack detection on Internet facing 

systems, where anomaly-based indicators would create significant noise. The proposed model 

monitors for the following deception-based attack indicators: 

 Authentication attempts using honey-accounts 

 Access of honey files  

 Access of honey records 

 Network traffic destined to darknets (preferably for monitoring internal 

networks) 

 Connection/Interaction with honeypots (preferably for monitoring internal 

networks) 

Potentially some of the above indicators may also generate false positives, as a user may 

mistype an IP address and thus connect to honeypot or a darknet. However, if multiple 

deception indicators are triggered and especially if these are accompanied with anomaly-based 

attack indicators, then the probability of a true positive (i.e. actual attack) is very high. 

6.3.3 Data collection 

6.3.3.1 Collection of attack indicators: Log file analysis 

Most modern Desktop/Server Operating Systems support robust auditing mechanisms. 

The following log files can be used to gather the required information for the calculation of the 

anomaly-based attack indicators: 
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 Authentication logs, which include the date and time, the user (username) who 

tried to log in to a system or service, the location from which the authentication 

was initiated (e.g. locally or from a remote system) and the result of the 

authentication attempt (success, failure). 

 System logs, which contain information regarding the status of the system, the 

services that are running, the resource utilization etc. 

 File system auditing, which includes granted and denied access requests to files 

and folders. This is an invaluable source of information for the detection of 

abnormal access patterns (e.g. an authorized user who accesses several 

documents in a short period of time). 

 Database auditing, which logs database queries and can be used to detect 

anomalies, like a user accessing a large number of database records in a short 

period of time or accessing records that she shouldn’t have need to. 

 Application specific logs, e.g. DNS server logs, which include the successful 

and failed DNS queries that have been performed. 

Despite the fact that the aforementioned auditing features are available in most OS’s, 

the format and the storage mechanism of the logs varies significantly. Ideally, all relevant logs 

should be collected to a central repository for processing, to simplify analysis. Forwarding the 

logs to a central system has the additional benefit of safeguarding them, as it is a common 

practice for attackers to delete local log files when they compromise a system to hide their 

traces.  

The means for collecting the log files differ based on the log source and the version of 

the operating system. Most of the operating systems have built-in support for forwarding the 

logs to another system, however a number of alternative solutions also exist (commercial and 

open source). These support additional features such as secure transmission of the logs, log 

buffering in case the collection server is not available, normalization of the logs in a common 

format for easier querying and indexing, and more. 

Unfortunately, on most operating systems (particularly Windows) only very basic 

auditing is enabled by default, especially with regards to authentication and file system access. 

A detailed auditing policy needs to be enabled in order to be able to extract the required 

information for the attack indicators. The proposed audit policy configuration for Windows 

environments is presented in Figure 12 and Figure 13 (Windows Server 2008). 
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Figure 12 - Windows audit policy 

 

 

Figure 13 - Windows audit policy for File System access 

 

 It should be noted that enabling detailed logging has hardly any noticeable 

performance impact on modern workstations/servers, however it tends to affect database 

performance (database auditing) under heavy load. Nevertheless, the benefits significantly 

outweigh the performance hit. 

Ideally, logs from all workstations, servers (including database servers) and network 

devices (routers, firewalls, switches) should be collected. If this is not feasible, then as a 

minimum, logs from the Domain Controller(s), DNS server(s), File server(s), Email Server(s) 

and Database Server(s) should be collected.  

6.3.3.2 Collection of attack indicators: Network traffic Analysis 

Collection of network traffic can be achieved in multiple ways, which depend on the size 

of the organization, the network architecture, the networking technologies in use and the 
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available budget. As a minimum, statistics (metadata) related to network connections have to 

be collected. These should include: a. the source IP address and port, b. the destination IP 

address and port, c. the time the connection was established and d. the number of packets and 

bytes transferred. The above can be easily achieved by collecting IPFIX/NetFlow data from 

router(s) (see Table 14), as most commercial routers offer this capability. If not, software based 

solutions can be used, such as “the Bro Network Security Monitor” (Bro 2015). 

 

Table 14 - Typical NetFlow record (NFDUMP) 

Date/Time Duration Proto Src Addr & Port Dst Addr & Port Pkt Bytes Flows 

2015-02-07 0.001 UDP 172.16.10.1:9001 172.16.10.41:443 1 46 1 

2015-02-07 63.541 TCP 172.16.10.52:4368 172.16.10.51:9837 62 3512 1 

 

Depending on the solution used for generating these connection metadata, it may also be 

possible to collect additional information. The first few bytes after the establishment of a TCP 

connection and the last few bytes before its termination, will offer additional insight on the 

protocols used and the transmitted data. Although more storage space will be required 

compared to pure IPFIX/NetFlow records, in most of the cases the storage requirements will 

be achievable even for small organizations. 

The solution offering the greatest visibility is the full packet capture (FPC) of all network 

traffic. Unfortunately, commercial FPC solutions are very expensive and although open source 

implementations exist, the cost of storing traffic even for a duration of a few days on high 

throughput networks is prohibitive for most organizations. Furthermore, FPC solutions suffer 

from a number of shortcomings (Virvilis, Serrano, et al. 2014), as discussed in section 2.2.1.3. 

As the goal of the proposed model is to be as widely deployable as possible with a 

minimal cost, only connection metadata are used. The location of the collection points will 

depend on the network architecture but the general rule is the more visibility, the better 

(assuming proper de-duplication is in place). A sample architecture and collection points are 

show in Figure 14. As a bare minimum there should be collection points on the border router(s) 

and the core switch(es), especially the ones between workstations and servers. 
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Figure 14 - Sample architecture with proposed network monitoring points 

6.3.4 Data analysis (Correlation engine) 

6.3.4.1 Correlation window 

The correlation engine is responsible for the analysis of the collected data (e.g. logs, 

network traffic metadata) and the identification of anomalies (attack indicators). The 

aforementioned indicators (see 6.3.1, 6.3.2) consist the basis of the correlation engine and for 

each one of them a correlation window is proposed (see Table 15). For the indicators with a 

short correlation window (i.e. minutes), all relevant captured data between the current time 

minus Nm (minutes) will be analyzed. For the indicators with a correlation window of a few 

hours, all relevant captured data between the current time minus Nh (hours) will be analyzed, 

while for indicators with a large correlation window (several days), all relevant captured data 

between the current time minus Nd (days) will be analyzed.  

The default N values (based on which this model has been evaluated are: Nm=30, Nh=24, 

Nd=15 however, they can be fine-tuned depending on the unique characteristics of the 

monitored infrastructure (e.g. open or closed network, classification, number of users, allowed 

protocols/services etc.). 
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Figure 15 - Inputs to correlation engine 

 

As shown in Table 15, for the calculation of the “Multiple, successful logins 

from an account to multiple systems” indicator, there should be correlation of all 

relevant data (e.g. authentication logs) that have been created in the last Nh hours. A 

smaller correlation window could also be used (e.g. successful authentications in the 

last Nm minutes) but is not recommended, as it would enable the attackers to avoid 

triggering the indicator by logging in to only 1-2 systems per Nm minutes.  

On the other hand analysis of “Successful logins during irregular business 

hours and/or non-working days” should have a short correlation window. This 

indicator reports on irregular authentication/login times (off-hours, weekends etc.) and 

thus there is limited value in analyzing historical data. 

“Multiple login failures for one or more accounts” which is a characteristic of 

brute-force attacks used to guess valid credentials for a system/service, should have a 

correlation window of a few hours (e.g. Nh hours). A smaller correlation window would 

allow the attackers to evade detection by reducing their brute-forcing rate. Although it 

is still possible that they may decide to reduce the rate even further (e.g. limit it to a 

handful attempts per day) in order to evade triggering the indicator, this would limit 

dramatically the effectiveness of their attack. Finally, a longer correlation window is 
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expected to create false positives as users might mistype their passwords, and thus 

should be avoided. 

Connection statistics group (all network related indicators) is used to identify 

protocol anomalies which could be the results of malicious actions. These indicators 

should also have correlation windows of Nh hours as a lower value would allow easy 

evasion, while a higher would create false positives. 

 “High resource utilization” should have a small correlation window as the 

focus of this indicator is to detect sudden usage spikes. 

Indicators related to file system access and database queries (excluding access 

to honey files / honey tokens) should have a medium correlation depth (Nh hours). It is 

possible that an attacker might try to access only a handful files/records per day to 

evade detection, however performing multi-day correlation will inevitably create false 

positives (e.g. it is expected that benign users will access a small number of files every 

day, as part of their day-to-day activities). 

 Finally, all deception based indicators due to their low false positive rate and 

their significant impact should be correlated over a long window (Nd days). 

6.3.4.2 Threat Rating, Average Threat Rating 

 As not all of the aforementioned attack indicators have the same severity or are 

prone to false positives, each indicator has been assigned a “Threat Rating” (TR) with 

values: Low, Medium, High or Critical (see Table 15). The indicators that have a 

higher likelihood of triggering false positive alerts have received a lower threat rating. 

On the other hand, indicators that when triggered there it is a high probability of 

malicious activity (true positive) have received a higher threat rating.   

For each IP address/domain name or username which triggers an attack 

indicator, a value called Aggregated Threat Rating (ATR) is calculated. Each of the 

Threat Rating values (Low to Critical) is assigned a different weight, which is used for 

the calculations of the ATR: Low = 1, Medium = 3, High = 6, Critical = 9. 

 If multiple indicators are triggered from the same origin (e.g. same IP address 

or username) then, the Aggregated Threat Rating is equal to the sum of the independent 

Threat Ratings (TR): 

ATR = TR1 + TR2 + … + TRn 

 

The higher the value of the ATR, the higher the probability of an actual attack. 
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Table 15 - Indicator threat rating 

Type1 Indicator 
Threat 

rating 

Correlation 

Window 

(Nm, Nh, Nd) 

A 
Multiple, successful logins from an account to multiple 

systems 
M Nh 

A 
Successful logins during irregular business hours and/or 

non-working days 
M Nm 

A Multiple login failures for one or more accounts M Nh 

A 
A large number of network connections originating from 

a system 
L Nh 

A Network connections between workstations L Nh 

A 
Network connections from a workstation to multiple 

servers 
L Nh 

A 
Network connections originating from server(s), towards 

workstation(s) or the Internet 
L Nh 

A Protocol anomalies L Nh 

A TCP connections which last for several minutes L Nh 

A 

TCP connections for which the transmitted traffic from 

the internal system is significantly more than the 

received traffic 

L Nh 

A Periodical connections L Nd 

A High volume of traffic between two systems L Nh 

A 
Connections to countries where the organization does not 

do business with 
M Nm 

A High resource utilization L Nm 

A 
Access to multiple files from a single account within a 

small time period 
H Nh 

A 
Multiple or large (multiple records) database queries 

from a single account within a small time period 
H Nh 

D Network traffic destined to unused IP ranges H Nd 

D Network traffic or interaction with honeypots H Nd 

D Authentication attempt using a honey-account C Nd 

D 
Communication attempts (e.g. emails) towards a honey-

account 
H Nd 

D Access of honey files (e.g. on a file server) H Nd 

D 
Access of honey records (e.g. database records, DNS 

records) 
H Nd 

1A: Anomaly indicators, D: Deception indicators 
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For example, if network connections between workstations are detected (TR=Low) and 

the originating IP of these connections also connects to multiple servers (TR=Low), followed 

by high volume of traffic between that particular IP and one of the servers (TR=Low), then the 

ATR for this IP will be 3 (3 indicators with low TR (weight 1)). On the other hand, an 

authentication attempt with a honey user account (TR=C), followed by an interaction with one 

of the honeypots (TR=H), will have an aggregated threat rating of 15 (9 + 6). If the ATR exceeds 

a predefined level (see next section) an alert will be generated. The process is depicted in Figure 

16. 

The duration for which the ATR will be valid for the IP Address/Domain name or a user 

account, depends on the correlation window of the threat indicator that was triggered. If more 

than one threat indicators were triggered, the ATR will be valid for the duration mandated by 

the indicator with the higher correlation window. For example, if a particular IP address 

receives an ATR of 1 because it initiated a large number of connections (Nh hours) and one of 

these connections was to the IP address of a honeypot (Nd days), the ATR for that IP address 

will be active for Nd days. 

 

Figure 16 - ATR calculation process 

6.3.5 Alerting level - thresholds 

Depending on the characteristics of the infrastructure that needs to be protected and the 

risk appetite of the organization, the correlation window(s) and the threat rating might need to 
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be fine-tuned. The threat rating of the attack indicators in a closed classified network with a 

limited number of users, a handful of services and only specific network protocols, can be much 

stricter than for a public network with Internet facing systems.  

The proposed model is flexible and allows the fine-tuning of: a. the attack indicators (i.e. 

which ones to use) and their threat rating, b. the correlation window for each indicator and c. 

the ATR threshold, which if exceeded the IP address or username will be reported as malicious. 

 The proposed ATR threshold for an unclassified, Internet connected network is equal to 

the value of the Critical Threat Rating (9). At this level there is only one indicator 

(“Authentication attempt using a honey account”) that could trigger an immediate alert. The 

reason is that the possibility of an actual attack when this indicator is triggered is very high, 

while the false positive rate is virtually zero. For the rest of the indicators, at least two have to 

be triggered within the respective correlation window(s), for an IP address/username to be 

reported as malicious. 

Finally, for some of the attack indicators, indicatory-specific thresholds have to be 

defined. For example, for the “Multiple, successful logins from an account to multiple systems” 

indicator, a threshold of 5 would mean that if more than 5 successful logins are detected from 

the same account to different systems within Nh hours, then the attack indicator would be 

triggered. These thresholds depend on multiple parameters such as the way users authenticate 

to systems (e.g. single/two factor authentication, the use of single sign-on etc.), as well as the 

risk appetite of the organization. A higher threshold would reduce potential false-positive 

triggers but at the same time could potentially allow malicious actions to pass undetected. As a 

result, these values need to be fine-tuned by taking into account the unique characteristics of 

the protected infrastructure. The threshold values which were used for the evaluation of the 

PoC implementation can be found in the Appendix (Snippets 4 & 5). 

6.4 Model Evaluation  

The evaluation of an APT detection model is challenging as the modus operandi of APT 

groups needs to be simulated realistically. In order to address this challenge, four expert 

penetration testing teams (two military and two from the industry) were asked to participate in 

two attack scenarios. For each scenario the teams were asked to achieve specific objectives 

while trying to be as silent/stealthy as possible.  

The first scenario was simulating an external attack (i.e. an attack originating from the 

Internet). The teams were given a domain name and were asked to find and submit a specific 

value (the flag), thus proving that they had achieved their goal(s).  

The second scenario was simulating an internal attack, where the attackers had managed 

to establish foothold in an internal network with several workstations and servers. The teams 
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were given remote access (via RDP) to one of the internal workstations and were asked to locate 

and exfiltrate specific information from the infrastructure, without being told on which 

system(s) the information was located. 

The aforementioned scenarios are described in detail in sections 6.4.1 and 6.4.2. 

6.4.1 External Attack Scenario 

For the external attack scenario a new domain name was registered: virvilis.com. The A 

record for the www.virvilis.com subdomain was pointing to a Linux server hosting the following 

services: a. web server on port 80/TCP, b. an SSH server on port 2222/TCP and c. a custom 

application on port 31337/TCP (see Snippet 1 in the Appendix). A second Linux Server was 

acting as the authoritative DNS server for the virvilis.com domain and its only Internet 

accessible service was DNS at port 53/UDP. The architecture is depicted in Figure 17. 

The web server hosted a very basic 10 page PHP application, which was developed for 

the purposes of this scenario. In addition, a python application was developed, which listened 

on port 31337/TCP and asked for the “flag” (e.g. the proof that the team managed to complete 

the challenge). A correct submission of the flag was concluding the challenge. There were two 

valid values for the flag: The first one was a word available on the owner’s LinkedIn profile 

(see below), while the second one could be accessed by exploiting a command injection 

vulnerability which was intentionally coded in the web application. 

 

The following deception indicators were used by our model, to detect malicious actions 

against the infrastructure: 

 Four subdomains were configured on the DNS server out of which two were 

honey tokens 

 Three robots.txt entries on the web server, one of which was a honey token 

 One honey token at the login page of the web application (base64 

encoded(username:password)), as an HTML comment 

 One invisible link in the admin page 

In addition: 

 For the web site owner (a fake persona), a LinkedIn profile was created with 

realistic information 

 An email address was created for the fake persona, and was monitored for 

interaction (e.g. phishing emails) 
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As previously mentioned, only deception indicators were used for monitoring the 

infrastructure due to their very low false positive rate, which makes them ideal for Internet 

facing systems.  

 

Figure 17 - External attack architecture 

 

Furthermore, the open source Intrusion Detection System Snort (Snort 2015) was 

monitoring all traffic to and from the servers (Snort 2.9.7 with the community  detection rules). 

Snort was not used to feed any data into the model; its purpose instead was to measure and 

compare the efficacy of a “traditional” security solution with the proposed model.  

Two of the teams were informed about the use of deception countermeasures in advance, 

but no specific details were revealed to them. The other two teams were not given any 

information regarding the implemented defense mechanisms. The teams were asked at the end 

of the challenge to send the IP address(es) that they had used, in order to validate the alerts that 

were triggered by the model. 

Finally, as the infrastructure was Internet accessible anyone could connect and interact 

with it. To increase realism, five individuals (not part of the attack teams) were asked to browse 

regularly to www.virvilis.com so as to simulate normal user activity on the web server and thus, 

identify if the deception indicators would create any false positive alerts. 
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6.4.2 Internal Attack Scenario 

For the internal attack scenario the following architecture was created and hosted on a 

single ESXi Server: 

 Three Class C networks, two of which were production networks (server and 

client segment), while the third one was used as a darknet 

 20 hosts in total, 15 of which were actual Virtual Machines (workstations / 

servers), while 5 were simulated systems acting as honeypots (using honeyd) 

 All Windows hosts were members of the same Active Directory domain 

 Linux hosts were stand-alone (i.e. there was not centralized authentication) 

 Multiple, commonly used services, were accessible on each VM (see Table 16) 

Table 16 - Server and Client Segment: VM type and services 

IP address Type OS Main Services / Purpose 

172.16.10.1 VM Windows Server Active Directory, RDP 

172.16.10.5 VM Windows Server File Server, RDP 

172.16.10.6 VM Windows Server MSSQL Server, RDP 

172.16.10.10 VM Windows Server Application Server, RDP 

172.16.10.100 VM Linux Server SSH, HTTP 

172.16.10.101 VM Linux Server Hosted our detection model 

172.16.10.102 VM Linux Server SSH, MYSQL 

172.16.10.105 VM Linux Server FTP, SSH 

172.16.10.110 VM Linux Server SSH, POSTGRESQL 

172.16.10.20 Honeypot Windows Server RDP 

172.16.10.120 Honeypot Linux Server TELNET, SSH, HTTP 

172.16.10.2 Honeypot 

Emulated Network 

Attached Storage 

(NAS) 

SMB2, HTTP 

172.16.11.1 VM Windows Workstation (Client) 

172.16.11.2 VM Windows Workstation (Client) 

172.16.11.3 VM Windows Workstation (Client) 

172.16.11.4 VM Windows Workstation (Client) 

172.16.11.5 VM Windows Workstation (Client) 

172.16.11.6 Honeypot Windows Workstation (Client) 

172.16.11.7 Honeypot Windows Workstation (Client) 

172.16.10.254 

172.16.11.254 
Router Router SSH 



Redefining the Security Architecture 

97 

 

 

The network architecture was as follows: 

 

Figure 18 - Internal network architecture 

 

The teams were given remote desktop access (RDP) to one of the client VMs 

(workstations) in the client segment (different VM per team). This was done to simulate a 

compromised endpoint controlled via a remote administration tool, which is very common for 

APT attacks.  

They were asked to find information related to a software patent (2 flags in total) and 

exfiltrate it, while taking great care to avoid detection. One flag was located on the file server, 

while the latter on the MySQL database. The MySQL Service was accessible over the network, 

but required authentication. Once more, two of the teams were informed about the use of 

deception techniques but no specific details were given. The other two teams did not receive 

any information related to the implemented security measures. 

A proof of concept implementation (PoC) of (a subset) of the proposed model was 

monitoring the virtualized infrastructure. More specifically, the following deception indicators 

were implemented and monitored: 

 2 honey files on the fileserver (out of 150 files in total). One of the files contained 

4 honey accounts (username & password combinations) 



 

98 

 

 2 honey authentication tokens on the File Server and MSSQL server (to detect 

pass-the-hash attacks) 

 5 honeypots, 3 on the server segment and 2 on the client segment, emulating 

different operating systems/services 

 A darknet (172.16.12.0/24) 

In addition, the following anomaly-based attack indicators were monitored: 

 Multiple, successful logins from an account to multiple systems 

 Successful logins during irregular business hours and/or non-working days 

 Multiple login failures for one or more accounts 

 A large number of network connections originating from a system 

 Network connections between workstations 

 Network connections from a workstation to multiple servers 

 Network connections originating from server(s) towards external IP addresses 

 TCP connections which last for several minutes 

 TCP connections for which the transmitted traffic from the internal system is 

significantly more than the received traffic (i.e. uploading of data) 

 

Similarly to the previous scenario, Snort 2.9.7 with the community rules was monitoring 

all internal traffic. More details regarding the proof of concept implementation can be found in 

the next section. 

6.4.3 Proof of Concept Implementation 

A subset of the proposed model was built and evaluated. The model consisted of a SQLite 

database and three modules: The first module was responsible for parsing the Windows binary 

XML log files (.evtx) and Linux log files (syslog format) (Snippet 3 in the Appendix). The 

second module was responsible for the analysis of network traffic (Snippet 4 in the Appendix). 

The results from both modules were stored in the database and were analyzed by the correlation 

engine (third module), every hour (Snipped 5 in the Appendix).  

The model was set up on an Ubuntu Linux 14.04 LTS VM, with 2 GB RAM, 1 vCPU 

and 20 GB of disk space. Apart from the model’s components, the following applications were 

also installed on the VM: The Bro network security monitor (Bro 2015) (for the creation of 

network traffic metadata) and the honeyd service (for the creation of honeypots). The port group 

on the virtual switch was configured to allow the network interface of this VM (monitored by 

Bro) to receive all traffic generated in the virtualized infrastructure (e.g. acting as a SPAN port). 

For the rest of this thesis this VM will be referred to as the “Monitor VM”. 
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More specifically, for the internal scenario the log parser parsed the “Security.evtx” log 

files on the Domain Controller and the File Server VMs, and collected events related to user 

authentication and file system access (see Table 17). Furthermore, it also parsed the 

authentication log file (auth.log) of Linux VMs to gather logon events. The windows logs were 

exported to a shared folder every 60 mins on each of the servers, using the wevtutil command 

line tool (wevtutil epl Security c:\fslogs\Security.evtx /ow:True), via a scheduled task. A domain 

user account was created specifically for the model and it was used to mount the shared folders 

on both servers from the Monitor VM (the folders were only accessible from this account). For 

Linux systems, SCP was used to copy the authentication log file (auth.log) from each VM to 

the Monitor VM every 60 mins. 

 

Table 17 - Parsed Windows event logs 

Event ID Purpose 

4624 Successful logon events for logon types: 2 (Interactive), 

3 (Network) and 10 (remote interactive) 

4771 Failed logon event (Kerberos pre-authentication) 

4625 Failed logon event (This will also capture failed “runas” 

commands) 

4663 File system access events 

 

The Bro network security monitor (Bro 2015) was used to generate network connection 

metadata, which were then parsed by the network module. More specifically, for each network 

connection the source and destination IP and ports, the duration of the connection and the 

amount of transmitted data were extracted from the connection log file (conn.log) of Bro. This 

also included traffic to and from the honeypots. The architecture of the PoC implementation is 

depicted in Figure 19. 

 The output of both modules (e.g. logon events, file system access, unusual network 

patterns etc.) was stored in the database. The database schema can be found in the Appendix 

(Snippet 3). The correlation engine parsed the data in the database and reported the IP 

addresses/usernames for which the ATR was above the alert threshold, based on the limits and 

threat ratings discussed in sections 6.3.4.1 and 6.3.4.2.  
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Figure 19 - Data sources for PoC implementation 

6.4.4 Evaluation Results 

6.4.4.1 External Scenario Results 

The total duration of the external scenario was two weeks. During this time, the web server 

received 8941 requests from 413 unique IP addresses. As presented in Table 18 the first three 

teams, triggered a wide number of deception indicators and as a result their actions were 

detected by the model. The fourth team did not complete in the challenge and did not submit 

the flag. 
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Table 18 - Triggered attack indicators for external scenario 

Team 

Name 

Informed 

for the use 

of deception 

techniques 

DNS 

honey 

tokens 

Robots.txt 

honey 

tokens 

Login 

page 

honey 

token 

Invisible 

Link 

 

Used Fake 

Persona 

Information 

 

Flag ATR 

A Yes 2/2 1/1 1/1 1/1 Yes Yes 30 

B Yes 1/2 1/1 1/1 1/1 No Yes 24 

C No 2/2 1/1 1/1 1/1 No Yes 30 

D No 0/4 0/1 0/1 0/1 No No 0 

Other No 2/2 0/1 0/1 0/1 No No 12 

 

 For example, team A’s IP address received an ATR of 30 which was calculated as 

follows: 5 triggered honey tokens multiplied by 6, where 6 is the weight for an indicator with 

high threat rating. 

One interesting finding was that the first two teams although they had been informed 

about the use of deception techniques, they triggered similar number of indicators with the team 

that had not been informed (e.g. team C). Thus, it is evident that deception indicators - when 

they are realistic enough - are hard to be avoided by attackers.  

Team D did not achieve its goal (i.e. did not complete the challenge due to lack of 

time). Their actions were limited to basic exploration of the targeted systems (i.e. browsing to 

the web application) and as no malicious actions were performed, the system correctly did not 

report any alerts. 

One team used the information available on the fake persona’s LinkedIn profile page, 

based on which they created a wordlist of possible flag values which they tried. They also used 

this list to brute force the SSH service on the webserver. None of the teams had any interaction 

with the fake persona’s email address. Based on the interviews at the end of the challenge, the 

teams said that they would only reside to client side attacks if there was no other way to achieve 

their objective. Once more, this highlights the fact that when external deception-based 

indicators are triggered (e.g. due to information gathering attempts), an attack is eminent. The 

defenders can use this early warning to raise the readiness level (e.g. asking the users to report 

immediately any unexpected behavior etc.). 
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The line “Other”, represents the triggered indicators from IP addresses which did not 

belong to the teams. A total of 16 IPs triggered DNS honey tokens. The IPs were sequential, 

from two different networks, both of which belonged to Google Inc. These were benign DNS 

queries used by Google bot to index new web sites. 

As mentioned, an open source Intrusion Detection System was also monitoring all 

traffic to and from the infrastructure. While the challenge was active, Snort generated 386 alerts 

(8 medium severity and 378 low severity ones) for 54 unique IPs (see Figure 20). None of the 

alerts included the IP addresses of any of the participating teams and all of them were false 

positives, highlighting once more the questionable effectiveness of traditional security 

solutions. The number of reported alerts is presented in Table 19. 

 

 

Figure 20 - Snort alerts based on signature id 

 

Table 19 - Detection results 

Detection Mechanism Number of True 

Positive alerts 

Number of False 

Positive alerts 

Proposed model 3/3 16 

Snort IDS 0/3 397 

 

 It should be noted that neither Snort nor the proposed model had been fine-tuned in 

order to reduce the number of false positives. All Snort alerts were related to ICMP error 

messages or bad traffic (packets with the same source and destination IP address). Thus, with 

minimum fine-tuning the number of false positives would be significantly reduced. Similarly, 

the model could be configured not to report triggered DNS honey tokens from Google’s IP 

ranges (and other major search engines) and thus, could achieve a zero false positive rate. 
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 Finally, it should be noted that although the teams refrained from changing their IP 

address during the challenge which made the analysis easier, in actual APT attacks the 

perpetrators are likely to try and hide their real IP address and/or use multiple addresses, to 

reduce the possibility of being detected. Use of anonymous proxies, compromised hosts (acting 

as a hopping points) or an anonymizing network, will hide the real IP address of the attacker(s), 

however this does not affect the effectiveness of the model. Attribution of cyber-attacks is a 

very challenging problem and is out of the scope of this work. Our focus instead, is to provide 

an early warning of an active attack to the defenders. Thus, even if the true origin of the attack 

(IP address) is spoofed, the defenders will be aware that someone has started a targeted attack 

against their infrastructure, which will allow them to raise the readiness level.  

6.4.4.2 Internal Scenario Results 

The overall duration of the internal scenario was three weeks. Some teams managed to 

gain access to the targeted information (the flags) using multiple strategies, however all of the 

teams were detected at the early stages of their attack process. As the purpose of the scenario 

was to evaluate the effectiveness of the proposed model in detecting malicious actions, the 

teams were allowed to continue (regardless that they had been detected) until they completed 

the challenge (or decided to stop), while their actions were monitored and additional alerts were 

raised. At the end of the challenge a short interview with the teams was conducted to gather 

feedback and confirm the triggered alerts. Statistics for each team are presented in Table 20. 
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Table 20 - Triggered attack indicators for the internal scenario 

 Team A Team B Team C Team D 

Honey Files 2/2 2/2 2/2 4 0/2 

Honey 

Accounts 
4/4 1/4 2 0/4 0/2 

Honey 

Authentication 

Tokes 

0/2 0/2 0/2 0/2 

Honeypots 0/5 5/5 0/5 3/5 

Darknet 3 0/1 1/1 0/1 0/1 

Anomaly-based 

indicators 
None 

1. Connections 

to multiple 

workstations 

2. Connection to 

multiple Servers 

3. Connections 

to external 

systems 

4. TCP 

connections 

which last for 

several minutes 

1. Successful 

logins during 

irregular 

business hours 

and/or non-

working days 

1. TCP 

connections which 

last for several 

minutes 

1st Flag Yes Yes Yes No 

2nd Flag No Yes No No 

ATR Username 

(final value) 
12 12 18 0 

ATR IP  

(final value) 
36 67 3 20 

Time of initial 

alert1: 
0h 32m 0h 4m 0h 21m 0h 54m 

Total duration 

of attack 
2 days 3 days 2 days 1 day 

1 Time of first generated alert (i.e. ATR has exceeded the alert threshold). Time started when the team accessed the workstation 

for the first time. As the logs were analyzed every 60 mins, the alerts were reported back with a delay (in the worst case scenario, 
a delay of 59 mins). 
2 Team only used one of the four honey accounts but attempted to authenticate 3 times with it, thus triggering 3 events. 
3 Connections to the darknet were manually monitored via tcpdump, as Bro would only record established connections between 

endpoints and not connection attempts. 
4 User accessed twice one of the honey files, thus three attempts were recorded. 

 

More specifically, the model raised the first alert for team A 32 minutes after they 

started the challenge. The reason for this alert was that the team had accessed the two honey 

files which were located on the file server. This resulted to an ATR of 12 (higher than the alert 
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threshold) for the username of the logged on user on the workstation controlled by team A. 

Another alert followed 26 minutes later, as four authentication attempts were made with honey 

accounts (the accounts were listed in one of the two honey files). Authentication attempts with 

honey accounts have a Critical Threat Rating (9) and as a result the model reported the IP 

address of the workstation used by the team with an ATR of 36 (4 times 9). 

 For Team B, multiple alerts were raised within the first 5 minutes the team started the 

challenge: Similarly to the first team, team B also accessed the two honey files on the file server 

(resulting to an ATR of 12 for the username of the logged on user), and performed three 

authentication attempts using one honey account. The authentication attempts resulted to an 

ATR of 27 for the IP address of the workstation. No further alerts were raised on that day. On 

the second day the team while trying to explore the internal network using a port scanning tool, 

accessed all 5 honeypots and the darknet, resulting to an ATR of 30. Anomaly-based attack 

indicators were also triggered (as a result of the port scan) due to multiple connections between 

the workstation used by the team and other workstations, multiple connections from the 

workstation to servers and multiple connections to external systems (for downloading the tools 

that were used by the team). As a result, the ATR of the IP used by the team at the end of day 

two was 66. Finally, the team concluded the challenge on day 3, after gaining access to the 

MySQL server which contained the second flag. The database was accessible from the network 

and team successfully guessed the password after a few tries. The only additional indicator that 

was raised on that day (as failed authentication attempts to the database were not monitored), 

was the high duration of the TCP connection between the workstation and the MySQL server. 

 The first alert for team C was triggered within 21 minutes, once more due to accessing 

the two honey files on the file server. As one of the files was accessed twice, the ATR value for 

the username of the logged on user was 18 (e.g. the attack indicator triggered 3 times). Other 

indicators included the successful authentication during non-working days, as the team kept 

playing during the weekend (ATR=3). The team did not complete the challenge and gave up 

after finding the first flag, due to time constraints. 

 Team D triggered the first alert after 54 minutes, as they accessed 3 honeypots. This 

team followed a different attack strategy than the other teams: They downloaded and used a 

custom remote administration tool on the workstation, and all further system and network 

reconnaissance actions were performed via this tool. Their main objective behind this decision 

was to limit their footprint on the workstation. For the same reason they avoided browsing to 

the shared folder on the file server, and as a result they did not access the first flag (or any other 

file on the file server). Their network reconnaissance actions were subtle and limited only to 

the server segment, as the team expected that the targeted information would be hosted there. 

However, they got detected when connections were made to the honeypots located on that 

segment. Finally, the team focused on the exploitation of the MSSQL server as they assumed 
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that the targeted information might be stored there, but did not attempt to access neither the 

MySQL server nor the file server, where the information was actually located.  

By reviewing the attack indicators which were triggered during the whole duration of 

the challenge, it is evident that some indicators are more effective in detecting malicious actions 

than others. For example 3 out of 4 teams accessed the honey files on the file server among 

multiple other files. In addition, two of the teams performed at least one authentication attempt 

with a honey account listed in one of the honey files, as they believed that these accounts would 

allow them to access other systems. As it is highly unlikely that a benign user would try to 

authenticate with credentials she had found in a random file (i.e. the honey file), such indicator 

apart from been very effective in detecting malicious users has practically a zero false positive 

rate. 

 No authentication attempts were made with the honey authentication tokens located on 

the File Server and MSSQL server. In order to gain access to the authentication tokens in 

memory, access to the system with administrative privileges was required. None of the teams 

gained such access (mainly due to the fact that it was not required for solving the challenge). 

Nevertheless, use of fake authentication tokens is considered an effective way of detecting pass-

the-hash attacks and has a zero false positive rate. 

  The honeypots and the darknet were also very effective in detecting network 

reconnaissance actions and this was particularly true for teams B and D, as their network 

scanning attempts were quickly detected. 

 Anomaly-based attack indicators were also triggered, mainly due to the network 

reconnaissance activities. More specifically, multiple connections between the workstation 

used by team B and other workstations, multiple connections between the workstation and 

multiple servers (teams B & D), multiple connections to external systems (team B) and long-

lasting TCP connections (teams B & D), were reported. In addition, an indicator regarding 

authentication attempts during non-business hours/days was triggered by team C, as they 

connected during the weekend. 

 The anomaly-based indicators that were not triggered by any of the teams were related 

to multiple authentication attempts and connections which transmitted a large amount of data. 

The teams were aware that multiple authentication attempts (e.g. account brute forcing) would 

be noisy and thus avoided them, while the second indicator did not trigger as none of the teams 

exfiltrated a large amount of data. Although teams B & D performed a handful of authentication 

attempts against the telnet service on one of the honeypots, this counted as an interaction with 

the honeypot (deception indicator) and not as an anomaly-based one. 

 It should be highlighted that although teams A & B had been informed about the use 

of deception-based attack indicators, they did not manage to evade them. Actually based on the 
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feedback received by Team B, knowing that such indicators were in place made their task more 

challenging as it slowed them down significantly in the fear that every action they made could 

trigger an alert. 

 Finally regarding accuracy, no false positive alerts were raised by the model during the 

challenge. There were a few anomaly-based attack indicators that triggered multiple times (long 

lasting TCP connections and multiple connections to external systems) which were caused 

mainly due to the automatic installation of software updates (security patches) from the 

Windows Operating Systems. However, the ATR of these systems never exceeded the alert 

threshold and thus no alerts were raised.  

 

 

Figure 21 - Triggered attack indicators per team 

6.4.4.2.1 Comparison with Snort 

Snort raised 2930 alerts during the whole duration of the challenge. The description of 

the rules that were triggered and the number of times a rule got triggered, are presented in Table 

21. 
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Table 21 - Triggered Snort rules 

Signature 

ID 

Number 

of alerts 
Description 

538 1485 
This event is generated when an attempt is made to gain access to private 

resources using Samba. 

527 171 
This event is generated when traffic on the network is using the same source 

and destination IP address. 

408 148 
This event is generated when a network host generates an ICMP Echo Reply 

in response to an ICMP Echo Request message. 

466 25 
This event is generated when an ICMP echo request is made from a host 

running the L3 "Retriever 1.5" security scanner. 

409 11 
This event is generated when a network host generates an ICMP Echo Reply 

with an invalid or undefined ICMP Code. 

486 10 

This event is generated when an ICMP destination unreachable 

(Communication with Destination Host is Administratively Prohibited) 

datagram is detected on the network. 

404 7 
This event is generated when An ICMP Protocol Unreachable datagram is 

detected on the network. 

718 7 
This event is generated when an attempted telnet login fails from a remote 

user. 

472 4 
This event is generated when a network host generates an ICMP Redirect for 

Host datagram. 

485 4 

This event is generated when a router was unable to forward a packet due to 

filtering and used the Internet Control Message Protocol to alert involved 

hosts. 

1042 2 
This event is generated when an attempt is made to craft a URL containing 

the text 'Translate: f' in an attempt to view file source code. 

1251 2 
This event is generated when an unsuccessful telnet login attempt was 

detected. 

1411 2 
This event is generated when an SNMP connection over UDP using the 

default 'public' community is made. 

1417 2 
This event is generated when an SNMP-Trap connection over UDP to an 

SNMP daemon is made. 

1418 2 
This event is generated when an SNMP-Trap connection over TCP to an 

SNMP daemon is made. 

1420 2 
This event is generated when an SNMP-Trap connection over TCP to an 

SNMP daemon is made. 

1421 2 
This event is generated when an attempt is made to attack a device using 

SNMP v1. 

1448 2 
This event is generated when a request is sent to the Microsoft Terminal 

Server port. 

2925 2 
This event is generated when an image fitting the profile of a web bug has 

been detected in network traffic. 

366 2 
ping is a standard networking utility that determines if a target host is up. 

This rule indicates that the ping originated from a host running Unix. 

372 2 
This event is generated when an ICMP echo request is made from a Windows 

host running Delphi software. 

384 2 This event is generated when an generic ICMP echo request is made. 

402 2 
This event is generated when an ICMP Port Unreachable message was 

detected. 

491 1 
This event is generated when a failed attempt to login to an FTP server is 

detected. 

553 1 
The event is generated when an attempt is made to log on to an FTP server 

with the username of "anonymous". 
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Similarly to the external attack scenario, neither Snort nor the proposed model had been 

fine-tuned in order to reduce the false positive alerts. The rational behind this decision was that 

fine-tuning is a very subjective process, which depends on the skill and risk appetite of the 

person/team responsible for performing this action. By reviewing the triggered Snort alerts it is 

evident that a large number of them were due to “noisy” rules, which have no real value for 

attack detection.  For example, rule 538 was triggered every time a samba connection was 

established, which was very common in our scenario as there were multiple network shares; 

such connections were normal as all the workstations had a mapped netword drive pointing to 

a shared folder on the file server (and thus the large number of alerts for this rule). In a 

production environment such rule whould have to either be disabled or modified in a way that 

would trigger only for samba connections from systems other than the workstations. In any 

case, as the teams were using a compromized workstation to access the file server, this rule 

would not be able to detect any malicious actions. The multiple ICMP alerts were also due to 

“noisy” rules. Finally, there are some alerts which are clear false positives (verified by 

analyzing network traffic and host information), such as rule 466. 

From all triggered rules, there are only a handful that could – under conditions – help in 

the detection of a subset of the malicious actions performed by the teams. These are the rules 

with signature ids: 718, 1042, 1251, 491 and 553. 

Rules 718 and 1251 were triggered due to the actions of teams B & D, as they performed 

a small number of failed authentication attempts to the telnet service of one of the honeypots. 

Snort reported these as medium severity alerts, as it is quite common for users to mistype their 

passwords and actually, in a real-world enviroment it is very likely that these rules would be 

configured to trigger only after several consequent failed authentication attempts, to limit false 

positives. In comparison, the model reported the IP addresses used by the teams as clearly 

malicious, due to the fact that they connected to the honeypot(s).  

Rule 1042 (medium severity) was triggered by teams C & D as they connected to the IIS 

server hosted on the Application Server, and attempted to view the source code of the main 

page. In a real environemnt it is common for developers to review the source code of a web 

page and thus, it is not clear if this rule would have actually helped in the detection of malicious 

actions or would be considered a false positive alert. 

Finally, rules 491 (medium severity) and 553 (low severity) were triggered after a single 

failed FTP authentication attempt was performed by team D. Once more, in a real environment 

it is highly unlikely that the IDS will be configured to alert on single failed authentication 

attempts, due to the vast amount of alerts that will be raised.  

Based on the above results, it is evident that Snort was only able to detect a very small 

subset of the malicious actions performed by teams B,C,D, while no alerts were raised for team 

A. No high or critical severity alerts were reported, but only low-medium severity ones, which 
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are likely to be ignored by the system administrator/security team. Finally, as all of the triggered 

rules were “noisy” ones, in an operational enviroment it is likely that most of them would be 

disabled or have a higher trigger threshold and thus, the detection efficacy would be even lower. 

A direct comparison between the model and Snort is not fair, as the former monitors both 

network traffic and OS events, while the latter only network traffic. However, even if one 

considers only the network-related alerts, it is evident that the effectiveness of the proposed 

model in detecting malicious actions is much better than Snort’s. The results are summarized 

in Table 22. 

Table 22 - Comparison of alerts 

Team Snort Alerts Proposed model Alerts 

A (Nothing detected by Snort) 

Access to honeyfiles 

Authentication attempts to 

other systems using honey 

accounts 

B 

Failed authentication 

attempt to telnet server 

Access to honeyfiles 

Authentication attempts to 

other systems using honey 

accounts 

Failed authentication to the 

FTP server 

Connections to honeypots 

Connections to darknet 

Multiple (4) anomaly based 

attack indicators 

C Access of the IIS server 

Access to honeyfiles 

One anomaly based attack 

indicator 

D 

Failed authentication 

attempts 
Connections to honeypots 

Access of the IIS server 
Multiple (2) anomaly based 

attack indicators 

Note: Critical & High severity alerts are depicted in red. Medium in yellow and Low in green. 
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6.5 Discussion 

6.5.1 Technical challenges 

As discussed, the correct placement of the traffic collection points and the deception 

indicators is critical for the effectiveness of the model. Honeypots have to be placed in the same 

network segments as operational servers/workstations and must be configured as realistically 

as possible (i.e. same services, OS versions & configuration as production systems). For 

example on a Windows-only network, Linux honeypots will be of limited use and could even 

stand out as potential honeypots. Even minor details have to be taken into account e.g. if all 

Ethernet network cards have MAC addresses from a specific vendor, then the honeypots should 

also have MAC addresses from the same vendor.  

Similarly, honey accounts, honey files and honey tokens, have to be deployed/set-up in 

a way that will look realistic and of value to an attacker. In order for these requirements to be 

fulfilled, some effort is needed from the administrator(s) and/or security team of the 

organization. Initial fine-tuning is required to optimize the detection rate based on the unique 

characteristics of the protected infrastructure. Specific user accounts and IP addresses might 

have to be whitelisted to avoid false alerts; for example if the infrastructure is regularly scanned 

by a network vulnerability analysis tool, the IP addresses of the honeypots will need to be either 

excluded from the range that the tool will scan, or the IP address of the scanning machine will 

need to be whitelisted in the model. Similarly, if there is a third party backup solution that 

archives (thus accesses) at regular intervals all files on the file server(s), the honeyfiles will 

have to either be excluded for the backup process or the user account (service account) used to 

launch this process, will need to be whitelisted in the model. 

Another challenge is that small and medium enterprises do not always have adequate in-

house knowledge to support the installation of such a model. Furthermore, it is common (and 

unfortunate) that a lot of organizations prefer to invest in “black boxes”, which can be installed 

with minimal effort and be “forgotten” (i.e. require minimal interaction and maintenance). 

Thus, it is unlikely that these organizations would consider solutions that require additional 

involvement from their side. 

Maintenance is also a challenge as changes in the network topology or configuration of 

systems have to be reviewed, to make sure that they won’t affect the deployed attack indicators 

and as a result limit the efficacy of the model. However, this is also a challenge for traditional 

security solutions (e.g. NIDS/NIPS, DLP etc.). 

Another, obvious requirement is the need for monitoring the infrastructure. However, if 

the organization has already an established incident management team, the overhead of 

receiving input (alerts) from this model in addition to the ones generated by their traditional 



 

112 

 

monitoring systems (e.g. IDS), is negligible – and can even be beneficial – as it could help 

validate the alerts raised by the latter. 

The model’s evaluation introduces potential bias due to the fact that the APT groups had 

to be simulated by penetration testing experts. Although the skillset of these experts is believed 

to be at the same level as most sophisticated attackers, there are two important parameters to 

consider: Firstly, APT make frequent use of zero-day exploits for gaining access to systems. 

Thus, there is always the possibility that the attackers could have used such exploits to 

compromise the system(s), without performing any reconnaissance/information gathering 

activities. In that case, the effectiveness of the deception indicators for the external scenario 

would be limited. However, for the internal scenario no significant changes in the detection 

efficacy should be expected, as the attackers would still have to explore the internal network to 

locate and exfiltrate the targeted information. Hence, the possibility of triggering one or more 

attack indicators would still be high. Secondly, as already mentioned most APT attacks are 

prolonged and the attackers can spend several months exploiting their target before they find 

and exfiltrate the information they are interested in. It was not possible to test the efficacy of 

the model against prolonged attacks, as none of the teams could commit to such a lengthy task. 

This limited availability was also the reason that some teams did not get access to the MySQL 

database (second flag), as the straight forward (quick) way of doing so required guessing the 

database password (i.e. brute forcing), which they considered an action that no sophisticated 

attacker would do, as it would be easily detected. However, even if the malicious actions were 

spread over a wide period of time, this would affect mainly the efficacy of the anomaly-based 

attack indicators. As the deception-based ones have much higher threat ratings and some of 

them raise immediate alerts when triggered (e.g. authentication attempts with honey 

accounts/authentication tokens), prolonging the attack would not allow the attacker’s actions to 

pass undetected; the overall ATR value for the offending IP or username could be lower but it 

would still be reported as malicious. 

In addition, due to resource constraints the size of the second (internal) scenario 

resembles a very basic infrastructure of a small organization. Although the results were very 

positive, implementation and evaluation of the model in a real environment with a large number 

of systems and users is needed, in order to test the real-world efficacy of it and more specifically 

the false positive rate. 

When it comes to insider threats (working either on their own or as part of an APT group), 

the more comprehensive the knowledge of the insider about the deployed security measures is 

(including the proposed model) the higher will be the likelihood of evasion. An administrator 

who is allowed to create offline backups of files as part of her job duties, can trivially create 

additional copies of sensitive information on external media and thus exfiltrate them without 
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using the network. This is not a limitation of the model, as it is related to physical security. 

However, even if the malicious insider does not have such rights, if she is aware of all the attack 

indicators, their type and which parts of the network/infrastructure they are protecting, she can 

try to evade them. For example, if the insider wants to exfiltrate files from a file server to which 

she has authorized access to, she might refrain from accessing all the files at once as this will 

trigger (at least) one of the aforementioned indicators. Instead, she may download a small 

number of files per day, an action which will not generate any alerts as it is expected user 

behavior. Inevitably, this will slow her down forcing her to spread her attack over a wide period 

of time. This could be considered a weakness of the model, but firstly it should be noted that 

this is a common problem of anomaly-based detection systems and secondly, only a very small 

number of individuals (should) have complete and in depth knowledge of all implemented 

security countermeasures. Nevertheless, section 7.3 proposes a potential solution to this 

problem. 

The model does not address supply chain attacks, meaning that it has no way of 

identifying existing compromised software or hardware components. However, malicious 

actions can still be detected indirectly. For example, if the attackers have access to the 

infrastructure via hardware or firmware implants, network connections from/to the 

compromised systems would still be visible to the model and thus, could be potentially 

highlighted as abnormal. 

Finally, the proposed model should not be considered as panacea against all attacks 

(regardless of the level of sophistication) and under no circumstances should it be the only line 

of defense for an organization. Defense in depth, implementation of security best practices, 

training and awareness and use of traditional security solutions, are all necessary components 

for achieving a robust security posture. The model does not replace current security solutions 

(e.g. AV, IDS etc.). Instead it complements them, by increasing significantly the possibility of 

detecting attacks designed to evade traditional security solutions. 

6.5.2 Business challenges 

One of the main shortcomings that affect negatively the security posture of organizations 

nowadays, is the misinterpretation of the risk from the management. Unfortunately most of the 

executives perceive security as an unfortunate expense that needs to be paid. The effectiveness 

of a security program is hard to measure and thus, the return on investment (ROI) is not easily 

justifiable. The lack of (detected) security incidents has a dual meaning: either no one is 

attacking the organization or the security countermeasures that are in place are mitigating all 

attacks. As a result, it is common for organizations not to invest in cyber security (or do the 

absolutely minimum) until a major incident happens. 



 

114 

 

To make things worse, even when the management understands the real need for security, 

it tends to have an inaccurate view regarding the effectiveness of the security mechanisms that 

have been implemented. The main culprit for this is the security industry itself. The vast 

majority of security products are presented as panacea from the vendors. Some of the vendors 

even state that their products detect and block APT, something that has been challenged harshly 

by the security community (Cole 2012; Bejtlich 2013; Schneier 2012). Due to unrealistic 

promises and the significant cost of these solutions, the management has an incorrect view of 

the organization’s risk exposure. This not only makes risk management harder but hinders the 

organization’s efforts to achieve a robust security posture. Even if the administrators or security 

team is willing to invest time to implement solutions/models such as the one presented in this 

thesis, it is hard to convince the management to support the effort. 
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Chapter 7: Conclusions 

7.1 Summary 

The security industry has been criticized severely in recent years because traditional 

security solutions - even those considered to be state-of-the-art - have failed over and over again 

to address sophisticated attacks. Advanced malware, such as Stuxnet, Duqu, Flame, Red 

October, MiniDuke and Regin, have managed to evade detection – in some cases for several 

years – while allowing the operators to exfiltrate Terabytes of sensitive data or cause physical 

destruction. 

This dissertation begins with an overview of the major cyber-attacks that occurred from 

the early 1980s to the present, identifies the main players in the cyberwar arena, and presents 

an overview of the most popular cyber security technologies, highlighting the main 

shortcomings that have enabled attackers to evade them for years. Furthermore, the three APT 

attack paths are presented: a) external attacks (including supply chain compromise), b) internal 

attacks, which include the insider threat, and c) indirect attacks. Each attack path is presented 

in detail, its main characteristics are highlighted and realistic countermeasures are proposed to 

limit the exposure. 

For the external attacks an in-depth, technical review of the major APT malware used to 

compromise several sensitive targets in the last years is presented (Chapter 3). Multiple 

common characteristics are identified including similar code, exploits, programming 

techniques and methods. Based on these results, the main reasons that the malware (and 

consequently the malware authors) were able to evade detection for several years are presented. 

The chapter concludes with a number of technical countermeasures for limiting the impact of 

malware attacks (regardless of its sophistication level), that can be easily implemented in a wide 

range of environments. 

Internal attacks are discussed in Chapter 4. Two major “insider threat” incidents from 

two threat actors with very different skillsets but seemingly similar motives are presented, 

highlighting the severe impact that such attacks can have. Furthermore, the basic components 

of a robust insider threat-prediction model are presented; they combine technical attack 

indicators and psychological profiling of users as a means to detect malicious actions. 

Attacks against mobile platforms (e.g. smartphones and tablets), although they could be 

categorized as external attacks, are presented separately in detail in Chapter 5. The rationale for 

this decision is that smartphones and tablets are expected to be one of the prime targets in the 

years to come. There are three reasons for this: a) owing to their small size and high mobility 



Conclusions 

117 

 

such devices can be stolen easily, b) as a result of limited security countermeasures on mobile 

platforms, exploitation of such devices is much easier compared to laptops/desktops, and c) 

smartphones/tablets used for work almost always have remote access to the internal resources 

(e.g. email, file server) of the organization and thus are a potential entry point.  

The focus of the work reported here was to measure and compare the effectiveness of the 

security countermeasures available on mobile and desktop platforms against phishing and 

malware attacks, as both are frequently used by APT actors. It was determined that the level of 

protection offered on mobile platforms – even against non-targeted phishing and malware 

attacks – was very low, and differed significantly from the protection offered by desktop 

platforms. Therefore, additional countermeasures, user training and comprehensive monitoring 

of such devices are required, to safeguard them from being an ideal attacker entry point to 

sensitive environments. 

Based on the aforementioned challenges, it is evident that a significant change in the way 

we protect our networks is needed. More specifically, the focus needs to shift from prevention 

– which has been the dominant defensive approach for several decades – to detection, as the 

former is not realistic against sophisticated attackers. 

To address this challenging problem, this thesis proposes a unique APT detection model 

(Chapter 6). The model uses data collected from multiple sources, including network traffic, 

security audit logs and usage statistics, as well as data from multiple deception attack indicators, 

such as honeypots, honey (bait) files, honey records and honey accounts/authentication tokens. 

Traditional security solutions are focused on real-time detection, which significantly 

limits the effectiveness of the correlation; the proposed model offers a much broader correlation 

window by including historical data in the analysis process. Secondly, regardless of the 

attacker’s skill, methods and tools, his interaction with the targeted infrastructure will inevitably 

generate (possibly subtle) indicators (e.g. increased resource utilization, abnormal login times, 

etc.). Such indicators are invaluable for the detection of stealthy attacks, but are almost always 

ignored by existing security solutions. In contrast, the proposed model focuses on the 

identification of these subtle indicators and includes them in the decision process. 

This comprehensive approach allows the detection of sophisticated attacks that evade 

traditional security solutions and at the same time reduces the number of false positive alerts. 

Although delayed detection of an incident is not ideal, it should be noted that in the vast 

majority of APT attacks, attackers have spent several weeks (and in some cases years) 

exploiting an infrastructure, trying to locate and exfiltrate the information of interest. Thus, 

even if there is a detection delay of a few hours, the defenders should be able to stop an attack 

that would otherwise pass undetected by traditional security solutions. 
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The proposed model was evaluated in the following scenarios: 

a. An attack against an Internet-facing architecture, which simulated the information-

gathering attempts and malicious actions that attackers frequently perform while trying to 

compromise a target and/or gain foothold on a network. 

b. An internal attack, simulating the attacker’s actions on an internal network, while 

trying to locate and exfiltrate the data of interest. 

The evaluation was performed by four expert penetration testing teams, which were 

asked to achieve the objectives of each scenario while taking every possible precaution to avoid 

detection. For both scenarios, the proposed model successfully detected all malicious actions 

with a minimum delay, generating a negligible number of false positive alerts.  The robust 

effectiveness does not come without a price, however. The model requires skilled individuals 

to configure it and set it up, taking into account the network architecture, the operating 

system(s), applications and services, as well as the way users interact with those. Furthermore, 

the defenders need to have the required technical skills to limit or block an active attack when 

detected by the model. This can be challenging for small organizations that do not have a 

dedicated security team. Nevertheless, considering the inability of current security solutions to 

address sophisticated threats, the benefits of adopting such a model as a complementary 

mechanism for increasing detection robustness are significant. 

7.2 Publications 

Our research work related to this PhD thesis has been published in peer-reviewed 

journals, conferences and book chapters, namely: 

 

 Publications in peer-reviewed, academic journals: 

1. Virvilis N., Mylonas A., Tsalis N., Gritzalis D., "Security Busters: Web Browser 

security vs. rogue sites", Computers & Security, 2015 (to appear) 

2. Virvilis N., Serrano O., Dandurand L., "Big Data analytics for sophisticated attack 

detection", ISACA Journal, Vol. 3, 2014 

 Publications in peer-reviewed, international conferences: 

1. Virvilis N., Tsalis N., Mylonas A., Gritzalis D., "Mobile devices: A phisher's paradise", 

in Proc. of the 11th International Conference on Security and Cryptography 

(SECRYPT-2014), pp. 79-87, ScitePress, Austria, August 2014 
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2. Virvilis N., Vanautgaerden B., Serrano O. S. (2014, June). “Changing the game: The 

art of deceiving sophisticated attackers.” in Proc. of the 6th International Conference 

on Cyber Conflict (CYCON-014), pp. 87-97, Estonia, June 2014 

3. Virvilis N., Gritzalis D., “Trusted Computing vs. Advanced Persistent Threats: Can a 

defender win this game?”, in Proc. of 10th IEEE International Conference on 

Autonomic and Trusted Computing (ATC-2013), pp. 396-403, IEEE Press, Italy, 

December 2013 

4. Virvilis N., Gritzalis D., “The Big Four - What we did wrong in Advanced Persistent 

Threat detection?”, in Proc. of the 8th International Conference on Availability, 

Reliability and Security (ARES-2013), pp. 248-254, IEEE, Germany, September 2013 

5. Kandias M., Virvilis N., Gritzalis D., "The Insider Threat in Cloud Computing", in 

Proc. of the 6th International Conference on Critical Infrastructure Security (CRITIS-

2011), pp. 93-103, Springer (LNCS 6983), 2013 

6. Virvilis N., Dritsas S., Gritzalis D., “Secure Cloud Storage: Available Infrastructure 

and Architecture Review and Evaluation”, in Proc. of the 8th International Conference 

on Trust, Privacy & Security in Digital Business (TRUSTBUS-2011), Furnell S., et al. 

(Eds.), pp 74-85, LNCS-6863, Springer, France, August 2011 

7. Virvilis N., Dritsas S., Gritzalis D., “A cloud provider-agnostic secure storage 

protocol”, in Proc. of the 5th International Conference on Critical Information 

Infrastructure Security (CRITIS-2010), Wolthusen S., et al. (Eds.), pp. 104-115, 

LNCS-6712, Springer, Greece, September 2010 

8. Kandias M., Mylonas A., Virvilis N., Theoharidou M., Gritzalis D., “An Insider Threat 

Prediction Model”, in Proc. of the 7th International Conference on Trust, Pri-vacy, and 

Security in Digital Business (TrustBus-2010), pp. 26-37, Lopez J., et al. (Eds.), LNCS-

6264, Springer, Spain, August 2010 

 

 Publications in peer-reviewed book chapters: 

1. Tsalis N., Virvilis N., Mylonas A., Apostolopoulos A., Gritzalis D., “Browser 

Blacklists: A utopia of phishing protection”, in Security and Cryptography, M. Obaidad 

and A. Holzinger (Eds.), Lecture Notes (CCIS), Springer, 2015 (to appear) 
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7.4 Future Work 

Future work should focus on the likely benefits of introducing psychological profiling, 

as presented in Chapter 4, to complement the proposed APT detection model. This could 

potentially allow the detection of skillful insiders, who, owing to their thorough knowledge of 

the infrastructure, are aware of all the attack indicators (including the deception-based ones) 

and thus are able to evade them. 

 On the more practical side, future work should investigate ways to automate the model’s 

deployment, and especially the deployment of deception-based indicators. Finally, additional 

focus should be given to mobile platforms by collecting OS level statistics and implementing 

deception indicators in order to increase visibility. 

7.5 Concluding remarks 

APT is a complex, multi-dimensional problem. In contrast with opportunistic attackers, 

APT are highly motivated and skillful. The use of zero-day exploits and sophisticated tools – 

which are often developed for attacking a specific target – enable them to evade detection by 

traditional security methods. In most of the cases, they are working for, or supported by, a 

government or a powerful organization, which gives them access to significant financial and 

intelligence resources as well as immunity from legal actions against them.   

Our current security solutions, even those that are considered state-of-the-art, have failed 

over and over again to address such sophisticated attacks. The prevention mentality on which 

the security industry has been based since the 1980s and the notion of a secure external network 

and a trusted internal one are outdated and unrealistic for application against modern threats.  

A significant change in the way we defend our networks is required, and entails accepting 

the fact that sophisticated attackers will eventually subvert our preventive defenses. We have 

to invest in developing robust detection techniques. Deception is an invaluable tool for 

detecting malicious actions in an infrastructure, on both the network and operating system level. 

Thus, it is a key component of the proposed APT detection model.   

The model offers robust detection of sophisticated attacks, by allowing in-depth 

correlation of multiple deception and anomaly-based attack indicators. It has been evaluated in 

realistic scenarios, which demonstrated its significant superiority against traditional security 

technologies; however, the purpose of this model is not to replace the existing technologies but 

to add an additional defensive layer against attacks that manage to evade them. 

Finally, this thesis is offered as influence towards a change in the way security 

professionals, administrators and users defend their assets and as inspiration for further research 

that will allow stronger defenses to be built. 
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Appendix 

Mobile Statistics 

Table 23 - Desktop browser popularity 

 Source: http://gs.statcounter.com/ (June-July 2014) 

Browser Use percentage 

Chrome 46.03% 

Internet Explorer 25.87% 

Firefox 20.04% 

Safari 4.93% 

Opera 1.3% 

Other 1.84% 

 

Table 24 - Browser popularity on Android 

 Based on the number of installs from Google Play (as of Jul 2014) 

Browser Million installs 

Opera Mini 100-500 

Chrome Mobile 500-1000 

Firefox Mobile 50-100 

Opera Mobile 50-100 

Android Browser In all browsers 

 

Table 25 - Default CIF feeds 

http://aper.svn.sourceforge.net/svnroot/aper/phishing_reply_addresses 

http://data.phishtank.com/data/online-valid.json.gz 

http://malc0de.com/rss 

http://mirror3.malwaredomains.com/files/bulk_registrars.zip 

http://mirror3.malwaredomains.com/files/domains.zip 

http://mirror3.malwaredomains.com/files/url_shorteners.zip 

http://reputation.alienvault.com/reputation.data 

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip 

https://feodotracker.abuse.ch/blocklist/?download=badips 

https://feodotracker.abuse.ch/blocklist/?download=domainblocklist 

https://feodotracker.abuse.ch/blocklist/?download=ipblocklist 

https://spyeyetracker.abuse.ch/blocklist.php?download=domainblocklist 

https://spyeyetracker.abuse.ch/blocklist.php?download=ipblocklist 

https://spyeyetracker.abuse.ch/monitor.php?rssfeed=binaryurls 

https://spyeyetracker.abuse.ch/monitor.php?rssfeed=configurls 

https://spyeyetracker.abuse.ch/monitor.php?rssfeed=dropurls 

https://zeustracker.abuse.ch/blocklist.php?download=domainblocklist 

https://zeustracker.abuse.ch/blocklist.php?download=ipblocklist 

https://zeustracker.abuse.ch/monitor.php?urlfeed=binaries 

https://zeustracker.abuse.ch/monitor.php?urlfeed=configs 

https://zeustracker.abuse.ch/monitor.php?urlfeed=dropzones 

http://www.malwaredomainlist.com/updatescsv.php 

http://www.mirc.com/servers.ini 

http://www.spamhaus.org/drop/drop.lasso 

http://www.spamhaus.org/drop/edrop.txt 

http://dragonresearchgroup.org/insight/sshpwauth.txt 

http://dragonresearchgroup.org/insight/vncprobe.txt 

http://www.openbl.org/lists/date_all.txt 

 

http://gs.statcounter.com/
http://aper.svn.sourceforge.net/svnroot/aper/phishing_reply_addresses
http://data.phishtank.com/data/online-valid.json.gz
http://malc0de.com/rss
http://mirror3.malwaredomains.com/files/bulk_registrars.zip
http://mirror3.malwaredomains.com/files/domains.zip
http://mirror3.malwaredomains.com/files/url_shorteners.zip
http://reputation.alienvault.com/reputation.data
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://feodotracker.abuse.ch/blocklist/?download=badips
http://www.mirc.com/servers.ini
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Table 26 - Percentage of URLs that were blacklisted 

Browser Blacklisted 

 Results Q2 2014 (n=1400) Results Q1 2014 (n=5651) 

Safari Mobile (iOS) 38.7% 75% 

Firefox Mobile (Android) 85.4% 85.3% 

Opera Mobile (Android) 75.9% 78.7% 

Firefox (Windows) 86.7% 94.9% 

Chrome (Windows) 93% 94.5% 

Opera (Windows) 77.9% 87.1% 

IE (Windows) 48.4% 64.6% 

 

Table 27 - Percentage of false negatives 

Browser False negatives 

 Results Q2 2014 Results Q1 2014 

Safari Mobile (iOS) 26.4% 13.3% 

Firefox Mobile (Android) 3.4% 3% 

Opera Mobile (Android) 7.9% 1.5% 

Firefox (Windows) 5.9% 2% 

Chrome (Windows) 1.3% 1.7% 

Opera (Windows) 8.4% 1.4% 

IE (Windows) 9.9% 6.7% 

  

Table 28 - Percentage of URLs that were manually verified as non-phishing 

Browser Non-phishing 

 Results Q2 2014 Results Q1 2014 

Safari Mobile (iOS) 34.9% 11.5% 

Firefox Mobile (Android) 11.1% 11.7% 

Opera Mobile (Android) 16.3% 19.8% 

Firefox (Windows) 7.3% 3% 

Chrome (Windows) 5.7% 3.8% 

Opera (Windows) 13.7% 11.5% 

IE (Windows) 41.7% 28.7% 
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Table 29 - Malicious file detection based on the hash of the samples 

AV Engine 

Detection % 
% of Malware 

Cumulative 

Percent 

AV Engine 

Detection % 
% of Malware 

Cumulative 

Percent 

6 3.6 3.6 44 1 57.1 

7 1 4.6 54 0.5 57.7 

9 2 6.6 56 1 58.7 

10 0.5 7.1 60 0.5 59.2 

11 1 8.2 61 0.5 59.7 

12 1.5 9.7 63 1 60.7 

13 1 10.7 65 1 61.7 

14 0.5 11.2 67 2.6 64.3 

15 2.6 13.8 68 1 65.3 

17 2.6 16.3 69 1.5 66.8 

19 1 17.3 70 1 67.9 

20 1 18.4 71 0.5 68.4 

22 1 19.4 72 0.5 68.9 

24 2.6 21.9 73 0.5 69.4 

25 0.5 22.4 74 3.1 72.4 

26 4.1 26.5 75 1 73.5 

27 0.5 27 76 3.1 76.5 

28 1 28.1 77 1 77.6 

29 0.5 28.6 78 3.1 80.6 

30 4.1 32.7 79 2 82.7 

31 4.1 36.7 80 1 83.7 

32 1 37.8 81 3.6 87.2 

33 4.1 41.8 82 1.5 88.8 

34 0.5 42.3 83 0.5 89.3 

35 1 43.4 85 1.5 90.8 

36 0.5 43.9 86 0.5 91.3 

37 5.6 49.5 87 4.6 95.9 

38 2 51.5 88 0.5 96.4 

39 2.6 54.1 89 2 98.5 

40 1 55.1 90 1 99.5 

43 1 56.1 91 0.5 100 

 

Table 30 - Malicious file detection based on file analysis (submission of the file) 

AV Engine 

Detection % 
% of Malware 

Cumulative 

Percent 

AV Engine 

Detection % 
% of Malware 

Cumulative 

Percent 

19 0.4 0.4 48 29.3 53.7 

25 0.4 0.9 49 13.5 67.2 

26 0.4 1.3 50 9.6 76.9 

33 0.4 1.7 51 2.2 79 

34 0.4 2.2 52 4.8 83.8 

35 0.9 3.1 53 3.1 86.9 

38 0.4 3.5 54 4.8 91.7 

43 0.4 3.9 55 0.9 92.6 

44 0.9 4.8 56 3.9 96.5 

45 1.3 6.1 57 2.2 98.7 

46 5.2 11.4 61 0.9 99.6 

47 13.1 24.5 62 0.4 100 
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Table 31 - VirusTotal AV Engines 

AVG DrWeb NANO-Antivirus 

AVware ESET-NOD32 Norman 

Ad-Aware Emsisoft Panda 

AegisLab F-Prot Qihoo-360 

Agnitum F-Secure Rising 

AhnLab-V3 Fortinet SUPERAntiSpyware 

AntiVir GData Sophos 

Antiy-AVL Ikarus Symantec 

Avast Jiangmin Tencent 

Baidu-International K7AntiVirus TheHacker 

BitDefender K7GW TotalDefense 

Bkav Kaspersky TrendMicro 

ByteHero Kingsoft VBA32 

CAT-QuickHeal Malwarebytes VIPRE 

CMC McAfee ViRobot 

ClamAV McAfee-GW-Edition Zillya 

Commtouch MicroWorld-eScan Zoner 

Comodo Microsoft nProtect 

 

Table 32 - VirusTotal URL reputation providers 

ADMINUSLabs Kaspersky SpyEyeTracker 

AegisLab Malc0de StopBadware 

AlienVault Malekal Sucuri 

Antiy-AVL Malware Tencent 

AutoShun MalwareDomainList ThreatHive 

Avira MalwarePatrol Trustwave 

BitDefender Malwarebytes URLQuery 

C-SIRT Malwared VX 

CLEAN Netcraft Web 

CRDF OpenPhish Websense 

Comodo Opera Webutation 

CyberCrime PalevoTracker Wepawet 

Dr.Web ParetoLogic Yandex 

ESET Phishtank ZCloudsec 

Emsisoft Quttera ZDB 

Fortinet Rising ZeusTracker 

FraudSense SCUMWARE.org malwares.com 

G-Data SecureBrain zvelo 

Google Sophos  

K7AntiVirus Spam404  
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Source Code 

Snippet 1 – External Scenario 

#!/usr/bin/env python 

""" 

Listens on TCP port 31337 and upon connection ask for the “flag”.  

The submitted value is checked against two hashes. One is the word available on the fake persona’s LinkedIn page, 

while the second can be accessed by exploiting a command injection vulnerability on the web app. 

""" 

import socket, hashlib, datetime 

 

hashes=["51db1cd987251beffb9c666761a9b062","9724f396135aa0bfe71d172bd76254a9"] 

 

host = '' 

port = 31337 

backlog = 5 

size = 1024 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.bind((host,port)) 

s.listen(backlog) 

while 1: 

    client, address = s.accept() 

    client.send("\nFlag:") 

    data = client.recv(size) 

    if data: 

        h=hashlib.md5(data.strip()) 

        if h.hexdigest() in hashes: 

            client.send("\n***You did it! End of  CTF1***\n") 

            client.send("\nPlease email us with a brief explanation on how you did it, when (date/time) your started and 

your IP address. \n\n") 

            localtime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") 

            f=open('/home/ubuntu/winners.txt','a') 

            f.write(localtime) 

            f.write(str(address)) 

            if h.hexdigest()== hashes[0]: 

                f.write(" LinkedIn hash!\n") 

            else: 

                f.write(" Command Injection hash!\n") 

            f.write("****\n") 

            f.close() 

        else: 

            client.send("No, try again!\n") 

    client.close() 
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Snippet 2 – Internal Scenario, honeyd configuration 

create default 

set default default tcp action block 

set default default udp action block 

set default default icmp action allow 

 

create windows2008 

set windows2008 personality "Microsoft Windows Server 2008 R2" 

set windows2008 default tcp action reset 

add windows2008 tcp port 135 open 

add windows2008 tcp port 139 open 

add windows2008 tcp port 445 open 

add windows2008 tcp port 80 "sh /usr/share/honeyd/scripts/win32/web.sh" 

add windows2008 tcp port 3389 open 

 

create windows7 

set windows7 personality "Microsoft Windows 7 or Windows Server 2008 R2" 

set windows7 default tcp action reset 

add windows7 tcp port 135 open 

add windows7 tcp port 139 open 

add windows7 tcp port 445 open 

 

create linux 

set linux personality "Linux 3.0 - 3.1" 

set linux default tcp action reset 

add linux tcp port 80 "sh /usr/share/honeyd/scripts/linux/httpd $ipsrc $sport $ip dst $dport" 

add linux tcp port 22 "sh /usr/share/honeyd/scripts/linux/ssh.sh $ipsrc $sport $ipdst $dporta" 

add linux tcp port 23 "sh /usr/share/honeyd/scripts/linux/telnetd.sh  $ipsrc $sport $ipdst $dport" 

 

create nas 

set nas personality "Netgear ReadyNAS 3200 NAS device (Linux 2.6)" 

set nas default tcp action reset 

add nas tcp port 445 open 

add nas tcp port 80 open 

 

set linux ethernet "00:11:32:28:84:f7" 

set nas ethernet "00:00:24:b2:b1:74" 

set windows2008 ethernet "00:00:25:f0:c9:11" 

set windows7 ethernet "00:00:25:f0:c1:11" 

set windows7 ethernet "00:00:25:f0:c1:12" 

 

bind 172.16.10.2 nas 

bind 172.16.10.20 windows2008 

bind 172.16.10.120 linux 

bind 172.16.11.6 windows7 

bind 172.16.11.7 windows7 
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Snippet 3 – Internal Scenario, LogParser.py 

import mmap, os, time, sys, sqlite3 

import datetime 

import contextlib 

import argparse 

import subprocess 

''' 

Required: https://github.com/williballenthin/python-evtx.git 

Copy evtxdump.py to the same folder as this 

''' 

import xml.etree.ElementTree as ET 

XMLdata="" 

 

#-------- configuration---------- 

data_age_in_mins = 120 

honeyusers=["hightechadmin","backupuser"] 

honeyfiles=["C:\Shares\\For review\\old_patent.doc", "C:\\Shares\\backups\\old.zip"] 

whitelistedAccounts=["FILESERVER$"] #Accounts for which access to honeyfiles won't be reported. (e.g. For a 

backup process which accesses all the files) 

LinuxAuthLog = '/var/log/auth.log' 

#-------- configuration---------- 

 

NowEpoch = (datetime.datetime.today() - datetime.datetime(1970,1,1)).total_seconds() #This will import to the db 

all data captured in the last data_age_in_mins minutes. 

FormatTime = '%Y-%m-%d %H:%M:%S.%f' 

 

previous_record = "" # Windows creates 4 logon events when a user successfully authenticates. This quick trick 

keeps only the first 

 

def CreateDB(): 

  conn = sqlite3.connect("core.db") 

  c = conn.cursor() 

  c.execute("CREATE TABLE logins (username TEXT, systemname TEXT, ip TEXT, timeepoc TEXT, authgood 

INTEGER, weekends INTEGER, honeyaccount INTEGER)") 

  c.execute("CREATE TABLE honeyfiles (username TEXT, systemname TEXT, timeepoc TEXT, honeyfile 

TEXT)") 

  c.execute("CREATE TABLE suspectIP (ip TEXT, timeepoc TEXT, numberofoffences INTEGER, 

honeypotconnection INTEGER)") 

  c.close() 

 

def WriteRecordsLoginDB(username, systemname, ip, timeepoc, authgood, weekends, honeyaccount): 

  global conn, c 

  params = (username, systemname, ip, timeepoc, authgood, weekends, honeyaccount) 
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  c = conn.cursor() 

  c.execute("INSERT INTO logins(username, systemname, ip, timeepoc, authgood, weekends, honeyaccount) 

VALUES (?,?,?,?,?,?,?)", params) 

  conn.commit()   

  c.close() 

 

def WriteRecordsFilesDB(username, systemname, timeepoc, honeyfile): 

  global conn, c 

  params = (username, systemname, timeepoc, honeyfile) 

  c = conn.cursor() 

  c.execute("INSERT INTO honeyfiles(username, systemname, timeepoc, honeyfile) VALUES (?,?,?,?)", params) 

  conn.commit()   

  c.close() 

 

def ParseLinuxLogs(file): 

    LinuxFormatTime = '%Y %b %d %H:%M:%S' 

    year= datetime.date.today().year #linux SSH logs don't include year 

    AuthFromIp={} # Holds the number of failed auth attempts per IP 

    if os.path.exists(file): 

        #for failed SSH authentication attempts 

        proc = subprocess.Popen(["grep", "Invalid user", file], stdout=subprocess.PIPE) #get list of failed SSH 

authentications 

        data=proc.stdout.readlines() 

        for line in data: 

            record=line.split() 

            eventdate = datetime.datetime.strptime(str(year) + " " + " ".join(record[:3]),LinuxFormatTime) 

            eventdateEpoch = (eventdate - datetime.datetime(1970,1,1)).total_seconds() 

            if eventdate.weekday() > 4: 

                weekends=1 #weekday() > 4 is Saturday or Sunday 

            else: 

                weekends=0 

            if record[7] in honeyusers: 

                honeyaccount=1 

                print "SEVERE: IP:", record[9], "tried to connect with honeyaccount:", record[7], "on", eventdate 

            else: 

                honeyaccount=0 

            WriteRecordsLoginDB(record[7], record[3], record[9], eventdateEpoch, 0, weekends, honeyaccount) 

 

        #Failed password for user from 10.0.1.51 port 54337 ssh2 

        proc = subprocess.Popen(["grep", "Failed password for", file], stdout=subprocess.PIPE) 

        data=proc.stdout.readlines() 

        for line in data: 

            record=line.split() 

            eventdate = datetime.datetime.strptime(str(year) + " " + " ".join(record[:3]),LinuxFormatTime) 

            eventdateEpoch = (eventdate - datetime.datetime(1970,1,1)).total_seconds() 
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            if eventdate.weekday() > 4: 

                weekends=1 #weekday() > 4 is Saturday or Sunday 

            else: 

                weekends=0 

            if record[8] in honeyusers: 

                honeyaccount=1 

                print "SEVERE: IP:", record[10], "tried to connect with honeyaccount:", record[8], "on", eventdate 

            else: 

                honeyaccount=0 

            WriteRecordsLoginDB(record[8], record[3], record[10], eventdateEpoch, 0, weekends, honeyaccount) 

 

    else: 

        print "Warning. Linux auth log could not be parsed." 

        return 1 

 

def ParseWindowsLogs(file): 

  global XMLdata, previous_record, previous_epoch 

  with open(file) as f: 

    XMLdata = f.read() 

 

  root = ET.fromstring(XMLdata) 

  for child in root: 

    try: 

      if child[0][1].text=="4624": # successful logon event 4624 

        if (child[1][8].text == "3" or child[1][8].text == "2" or child[1][8].text == "10") and not 

child[1][5].text.endswith("$") and not child[1][5].text=="ANONYMOUS LOGON" :  #logon type 3(network) or 2 

(interactive) or 10 RemoteInteractive (remote desktop). Second part ignores computer and anonymous logins 

          eventdate = datetime.datetime.strptime(child[0][7].get("SystemTime"), FormatTime) 

          eventdateEpoch = (eventdate - datetime.datetime(1970,1,1)).total_seconds() 

          if (previous_record != child[1][5].text + child[0][12].text + str(int(eventdateEpoch))): #if you see succesful 

auth from the same user to the same machine in the same second, ignore... 

            if eventdate.weekday() > 4: 

              weekends=1 #weekday() > 4 is Saturday or Sunday 

            else: 

              weekends=0 

            if (NowEpoch - eventdateEpoch) < (data_age_in_mins * 3600): # if not too old 

              if child[1][5].text in honeyusers: 

                honeyaccount=1 

                print "SEVERE: IP", child[1][18].text, "tried to connect with honeyaccount:", child[1][5].text, "on", 

eventdate 

              else: 

                honeyaccount=0 

              previous_record = child[1][5].text + child[0][12].text + str(int(eventdateEpoch)) 
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              WriteRecordsLoginDB(child[1][5].text, child[0][12].text, child[1][18].text, eventdateEpoch, 1, weekends, 

honeyaccount) 

 

      elif child[0][1].text=="4771": #failed logon event 4771 

        if child[0][4].text=="14339" and not child[1][0].text.endswith("$"): #kerberos auth task. Second ignores 

computer accounts 

          eventdate = datetime.datetime.strptime(child[0][7].get("SystemTime"), FormatTime) 

          eventdateEpoch = (eventdate - datetime.datetime(1970,1,1)).total_seconds() 

          if child[1][0].text in honeyusers: 

            honeyaccount=1 

            print "SEVERE: IP", child[1][6].text[7:], "workstation", child[0][12].text, "tried to connect with 

honeyaccount:", child[1][0].text, "on", eventdate 

          else: 

            honeyaccount=0 

          WriteRecordsLoginDB(child[1][0].text, child[0][12].text, child[1][6].text[7:], eventdateEpoch, 0, 0, 

honeyaccount) 

      elif child[0][1].text=="4625": #failed logon event 4625 (to catch runas commands) 

          if child[1][5].text: #if we have a username value 

            eventdate = datetime.datetime.strptime(child[0][7].get("SystemTime"), FormatTime) 

            eventdateEpoch = (eventdate - datetime.datetime(1970,1,1)).total_seconds() 

            if child[1][5].text in honeyusers: 

                honeyaccount=1 

                print "SEVERE: IP", child[1][19].text, "workstation", child[1][13].text, "tried to connect with 

honeyaccount:", child[1][5].text, "on", eventdate #have added the workstation part, as for failed auth attempts for 

non existing users the ip is captured as '-' 

            else: 

                honeyaccount=0 

            WriteRecordsLoginDB(child[1][5].text, child[1][13].text, child[1][19].text, eventdateEpoch, 0, 0, 

honeyaccount) 

      elif child[0][1].text=="4663": #filesystem access 

          if not (child[1][1].text in whitelistedAccounts) and (child[1][6].text in honeyfiles):#if the useraccount is not 

whitelisted (e.g. Antivirus/Backup service) 

            eventdate = datetime.datetime.strptime(child[0][7].get("SystemTime"), FormatTime) # warning: Windows 

will log it in UTC, regardless of the time configured on the windows system 

            eventdateEpoch = (eventdate - datetime.datetime(1970,1,1)).total_seconds() 

            WriteRecordsFilesDB(child[1][1].text, child[0][12].text, eventdateEpoch, child[1][6].text) 

            print "SEVERE: User:", child[1][1].text, "accessed honeyfile", child[1][6].text, "on", eventdate 

    except IndexError: 

      pass 

 

def main(): 

    global XMLdata, conn, c 

    parser = argparse.ArgumentParser( 

        description="Dump a binary EVTX file into XML.") 

    parser.add_argument("evtx", type=str, 
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                        help="Path to the Windows EVTX event log file") 

    args = parser.parse_args() 

 

    if os.path.exists(args.evtx): 

      xmlfile = time.strftime("%Y%m%d%H%M%S") 

      xmlfile = xmlfile + ".xml" 

      command='python evtxdump.py ' + args.evtx + ' > ' + xmlfile 

      os.system(command) #XML file created 

      #Prepare the DB 

      if not os.path.exists('core.db'): CreateDB()  

      conn = sqlite3.connect('core.db') 

      ParseWindowsLogs(xmlfile) 

      ParseLinuxLogs(LinuxAuthLog) 

      #clean up 

      os.remove(xmlfile) 

 

    else: 

      print args.evtx, "does not exist. Exiting\n" 

 

 

if __name__ == "__main__": 

    main() 
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Snippet 4 – Internal Scenario, NetworkParser.py 

from netaddr import IPNetwork, IPAddress 

import os, sys, time, datetime, sqlite3, commands 

 

#-------- configuration---------- 

 

CLIENT_NET='172.16.11.0/24' #Client network range 

SERVER_NET='172.16.10.0/24' #Server network range 

#Alert Threshold 

w2wlimit=5 #connections between workstations 

w2slimit=5 #connections between a single workstation and multiple servers 

s2elimit=1 #connections originating from server to an external network 

tcptimelimit=600 #alert on TCP connections that last more than 600 seconds (10 min) 

tcpsizelimit=2000000000 #alert on an internal system uploaded more than 2 GB 2000000000 

BroConnLog='/nsm/bro/logs/current/conn.log' 

honeydconnlog='/var/log/honeypot/connectionsLoopback.log' 

honeypotIP=["172.16.10.2, 172.16.10.20, 172.16.10.120, 172.16.11.6, 172.16.11.7"] 

path_brocut='/nsm/bro/bin/bro-cut' 

#-------- configuration---------- 

 

w2w={} #holds the connections a workstation has initiated to other workstations 

w2s={} #holds the connections a workstation has initiated to servers 

s2e={} #holds the connections a server has initiated to an external network 

conn2honeypot={} 

conndur={} # holds the TCP connections that have lasted more than tcptimelimit 

connsize={} # holds the TCP connections that have transferred more than tcpsizelimit 

suspects={} 

 

def writetoDB(): 

    '''This function writes the results in the DB to be parsed by the correlation module''' 

    honeypotconnection=0 

    if not os.path.exists('core.db'): 

        print "Error! Database file not found. Exiting" 

        sys.exit(1) 

    NowEpoch = (datetime.datetime.today() - datetime.datetime(1970,1,1)).total_seconds() 

    conn = sqlite3.connect('core.db') 

    c = conn.cursor() 

    for ip in suspects: 

        params = (ip, NowEpoch, str(int(suspects[ip])), honeypotconnection) 

        c.execute("INSERT INTO suspectIP(ip, timeepoc, numberofoffences, honeypotconnection) VALUES 

(?,?,?,?)", params) 

    conn.commit() 

    # add honeypot connections to the DB 

    honeypotconnection=1 
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    for ip in conn2honeypot: 

        NumberOfHoneypots=len(conn2honeypot[ip].split()) 

        params = (ip, NowEpoch, NumberOfHoneypots, honeypotconnection) #NumberOfHoneypots holds the 

number of honeypots the ip has connected to 

        c.execute("INSERT INTO suspectIP(ip, timeepoc, numberofoffences, honeypotconnection) VALUES 

(?,?,?,?)", params) 

    conn.commit() 

    c.close() 

 

def ReportIP(ip): 

    '''Goes through the list of malicious IPs and calculates the number of times an IP has triggered an alert''' 

    if ip in suspects: 

        suspects[ip] = suspects[ip] + 1 

    else: 

        suspects[ip] = 1 

 

 

def honeypots(): 

    ips=" ".join(honeypotIP).replace(",", '|') 

    badguys={} 

    threshold=2 # alert where more than X connections to the honeys are done by the same IP 

    cmd="grep -E " + "\"" + ips + "\"" + " " + honeydconnlog 

    (status,output)=commands.getstatusoutput('grep -E "10.0.1.40|10.0.1.41|10.0.1.42" 

/var/log/honeypot/connectionsLoopback.log') 

    s=output.split('\n') 

 

    for line in s: 

        if len(line.split()) == 0: 

            print "No events, exiting..." 

            sys.exit(0) 

        bad=line.split()[3] #field with sounce IP 

        if len(bad) > 15 or ';' in bad or '|' in bad or '&' in bad : #lame command injection check 

            print "Error parsing IP... Exiting" 

            sys.exit(1) 

        if bad in badguys: 

            badguys[bad]= badguys[bad] + 1 

        else: 

            badguys[bad]=1 

    print badguys 

 

def analyzeresults(): 

    '''This function parses the anomalous connections and checks to see if they have exceeded the alert threshold. If 

yes they are reported as malicious''' 

    for ip in w2w: 
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        if len(w2w[ip]) > w2wlimit: 

            ReportIP(ip) 

    for ip in w2s: 

        if len(w2s[ip]) > w2slimit: 

            ReportIP(ip) 

    for ip in s2e: 

        if len(s2e[ip]) > s2elimit: 

            ReportIP(ip) 

    for ip in conndur: 

        ReportIP(ip) 

    for ip in connsize: 

        ReportIP(ip) 

 

def printresults(): 

    '''This Function prints the analysis results''' 

    print "\n" 

    print "Connection between workstations" 

    print "-" * 50 

    for ip in w2w: 

        print "*", ip, "Connected to", str(len(w2w[ip].split())), "workstations", "*" 

        print "*", ip, "Connected to workstations", w2w[ip], "*" 

    print "-" * 50 

 

    print "\n" 

    print "Connections from workstations to servers" 

    print "-" * 50 

    for ip in w2s: 

      #print ip, "Connected to", str(len(w2s[ip].split())), "servers", "*" 

      print "*", ip, "Connected to servers", w2s[ip], "*" 

    print "-" * 50 

 

    print "\n" 

    print "Connection from servers to external IP addresses" 

    print "-" * 50 

    for ip in s2e: 

      #print ip, "Connected to", str(len(s2e[ip].split())), "External IPs", "*" 

      print "*", ip, "Connected to External IP:", s2e[ip], "*" 

    print "-" * 50 

 

    print "\n" 

    print "TCP connections that lasted more than", str(tcptimelimit), "seconds" 

    print "-" * 50 

    for ip in conndur: 

      print "From", ip, "to", conndur[ip] 

    print "-" * 50 
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    print "\n" 

    print "Connections which uploaded more than", str(tcpsizelimit), "bytes" 

    print "-" * 50 

    for ip in connsize: 

      print "From", ip, "to", connsize[ip] 

    print "-" * 50 

 

    print "\n" 

    print "Connections to honeypots" 

    print "-" * 50 

    for ip in conn2honeypot: 

      print ip, "Connected to honeypot", conn2honeypot[ip] 

    print "-" * 50 

    print "\n" 

 

 

def networkstats(file): 

    '''This function parses bro conn.logs and identifies anomalies based on our proposed attack indicators. The 

anomalous connections are stored and processed by analyzeresults function''' 

    with open(file) as f:  # zcat conn.log | bro-cut -d id.orig_h id.orig_p id.resp_p id.resp_h duration orig_bytes 

resp_bytes 

      data=f.readlines() 

 

    honeypotlist=honeypotIP[0].replace(" ","").split(",") #convert to a form ['ip1', 'ip2', 'ip3'] 

 

    for connection in range(len(data)): 

      SRC=data[connection].split()[0] 

      DST=data[connection].split()[3] 

      #connection between workstations 

      if IPAddress(SRC) in IPNetwork(CLIENT_NET) and IPAddress(DST) in IPNetwork(CLIENT_NET): 

        if SRC in w2w: #if already reported 

          if not DST in w2w[SRC]: 

            w2w[SRC] = w2w[SRC]+ " " + DST 

        else: 

          w2w[SRC] = DST 

      #connection from workstation to servers 

      elif IPAddress(SRC) in IPNetwork(CLIENT_NET) and IPAddress(DST) in IPNetwork(SERVER_NET): 

        if SRC in w2s: #if already reported 

          if not DST in w2s[SRC]: 

            w2s[SRC] = w2s[SRC]+ " " + DST 

        else: 

          w2s[SRC] = DST 

      #connections originating from servers to an external network 
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      elif IPAddress(SRC) in IPNetwork(SERVER_NET): #if its a server address 

        if (IPAddress(DST) not in IPNetwork(SERVER_NET)) and (IPAddress(DST) not in 

IPNetwork(CLIENT_NET)): # and the DST is not an internal segment 

          #print "*"*8, DST 

          if SRC in s2e: #if already reported 

            if not DST in s2e[SRC]: 

              s2e[SRC] = s2e[SRC]+ " " + DST 

          else: 

            s2e[SRC] = DST 

 

      if data[connection].split()[4] != "-": 

        if float(data[connection].split()[4]) > tcptimelimit: #if the TCP connection lasted more than the alert limit 

          if SRC in conndur: 

            if not DST in conndur[SRC]: 

              conndur[SRC] = conndur[SRC]+ " " + DST 

 

          else: 

            conndur[SRC] = DST 

      if IPAddress(SRC) in IPNetwork(CLIENT_NET) or IPAddress(SRC) in IPNetwork(SERVER_NET): # if the 

source is an internal system 

        if (IPAddress(DST) not in IPNetwork(SERVER_NET)) and (IPAddress(DST) not in 

IPNetwork(CLIENT_NET)): #if data is uploaded from an internal system to an external one 

          if data[connection].split()[5] != "-": 

            if float(data[connection].split()[5]) > tcpsizelimit: #if the TCP connection uploaded more than tcpsizelimit 

              if SRC in connsize: 

                if not DST in connsize[SRC]: 

                  connsize[SRC] = connsize[SRC]+ " " + DST 

              else: 

                connsize[SRC] = DST 

      #Check for Honeypot Access (basic only checks for connection attempts. Even if an IP connects to multiple 

ports on a honeypot only, this will count as a single offence. For more info honeydlogs needs to be parsed. 

      if DST in honeypotlist: 

          if SRC in conn2honeypot: 

              if DST not in conn2honeypot[SRC]:# Add only if we haven't seen this connection before 

                  conn2honeypot[SRC] = conn2honeypot[SRC] + " " + DST 

                  print "SEVERE: IP", SRC, "connected to honeypot", DST 

          else: 

              conn2honeypot[SRC] = DST 

              print "SEVERE: IP", SRC, "connected to honeypot", DST 

 

def main(): 

    if os.path.exists(BroConnLog): 

        outputfile = time.strftime("%Y%m%d%H%M%S") 

        outputfile = "Bro" + outputfile + ".txt" 
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        command="cat " + BroConnLog + " |" + path_brocut + " -d id.orig_h id.orig_p id.resp_p id.resp_h duration 

orig_bytes resp_bytes > " + outputfile 

        os.system(command) 

        networkstats(outputfile) 

        printresults() 

        analyzeresults() 

        writetoDB() 

        #clean up temp files 

        os.remove(outputfile) 

    else: 

        print "Warning! Network statistics not available." 

 

if __name__ == "__main__": 

    main() 
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Snippet 5 – Internal Scenario, Correlation.py 

import os, sys, sqlite3, operator 

 

#-------- configuration---------- 

SuccessfulLoginLimit = 5 #if more than 5 successful authentication attempts in 24h from the same user alert 

FailedLoginLimit = 5 #if more than 5 failed authentication in 24h from the same IP 

 

TRLow=1      #The TR weight for TR=L 

TRMedium=3   #The TR weight for TR=M 

TRHigh=6     #The TR weight for TR=H 

TRCritical=9 #The TR weight for TR=C 

#-------- configuration---------- 

 

MalUser={} 

MalIP={} 

 

def ReportIP(ip, TR): 

    print "Reported IP", ip, "with TR", TR 

    if ip in MalIP: #if this ip has already been reported as malicious 

        MalIP[ip] = MalIP[ip] + TR 

    else: 

        MalIP[ip] = TR 

 

def ReportUser(username, TR): 

    print "Reported Username", username, "with TR", TR 

    if username in MalUser: #if this username has already been reported as malicious 

        MalUser[username] = MalUser[username] + TR 

    else: 

        MalUser[username] = TR 

 

def ATRCalc(): 

    conn = sqlite3.connect('core.db') 

    c = conn.cursor() 

 

    #Multiple, successful logins from an authorized account in the last 24h to different systems. 

    c.execute("SELECT username, count(DISTINCT ip) FROM logins WHERE (SELECT strftime('%s','now') - 

timeepoc < 86400) AND authgood = 1 GROUP BY username") #change to <!!! 

    data = c.fetchall() 

    for record in data: 

        username=record[0] 

        n=record[1] #number of successful authentications to different systems 

        if n > SuccessfulLoginLimit: 

            ReportUser(username,TRMedium) # we don't care about the exact number. If it is above the limit it will get 

reported 
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    #Multiple login failures from one or more ips in the last 24h. 

    c.execute("SELECT ip, count(ip) FROM logins WHERE (SELECT strftime('%s','now') - timeepoc < 86400) 

AND authgood = 0 AND honeyaccount = 0 AND ip != '-' GROUP BY username")#change to <!!! 

    data = c.fetchall() 

    for record in data: 

        ip=record[0] 

        n=record[1] #number of failed auth attempts 

        if n > FailedLoginLimit: 

            ReportIP(ip,TRMedium) 

 

    #Succesful authentications during irregular business hours and/or non-working days 

    c.execute("SELECT DISTINCT username FROM logins WHERE weekends = 1 GROUP BY username") 

    data = c.fetchall() 

    for username in data: 

        ReportUser(username[0],TRMedium) 

 

    #Access to honey files 

    c.execute("SELECT username, count(username) FROM honeyfiles GROUP BY username") 

    data = c.fetchall() 

    for record in data: 

        username = record[0] 

        n = record[1] #number of honeyfiles access by user 

        TR = TRHigh * n # n times she has accessed honeyfiles times the defined high weight of this action 

        ReportUser(username,TR) 

 

    #Login attempts with a honeyaccount 

    c.execute("SELECT ip, count(ip) FROM logins WHERE honeyaccount=1 GROUP BY ip") 

    data = c.fetchall() 

    for record in data: 

        ip = record[0] 

        n = record[1] 

        TR = n * TRCritical 

        ReportIP(ip, TR) 

 

    #Get the alerts from network traffic analysis (excluding connections to honeypots) 

    c.execute("SELECT ip, sum(numberofoffences) FROM suspectIP WHERE honeypotconnection = 0  GROUP BY 

ip") 

    data = c.fetchall() 

    for record in data: 

        ip =record[0] 

        n = record[1] 

        TR = TRLow * n 

        ReportIP(ip,TR) 
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    #Get the IPs which have interacted with honeypots 

    c.execute("SELECT ip, sum(numberofoffences) FROM suspectIP WHERE honeypotconnection = 1  GROUP BY 

ip") 

    data = c.fetchall() 

    for record in data: 

        ip =record[0] 

        n = record[1] 

        TR = TRHigh * n 

        ReportIP(ip,TR) 

 

def main(): 

    if not os.path.exists('core.db'): 

        print "Error! Database file not found. Exiting" 

        sys.exit(1) 

    ATRCalc() # Calculate the ATR for offending usernames and IPs 

    sorted_MalIP = sorted(MalIP.items(), key=operator.itemgetter(1), reverse=True) #Sorting based on largest ATR 

    sorted_MalUser = sorted(MalUser.items(), key=operator.itemgetter(1), reverse=True) 

    print "*" * 29 

    print "*"*10, "Results", "*"*10 

    print "*" * 29 

    print "\nOffending IP(s):" 

    print "-"*29 

    for ip in sorted_MalIP: 

        print ip[0], "with an ATR of:", ip[1] 

    print "-"*29 

    print "\nOffending Users(s):" 

    print "-"*29 

    for username in sorted_MalUser: 

        print username[0], "with an ATR of:", username[1] 

    print "-"*29 

 

if __name__ == "__main__": 

    main
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