

 Web Applications Vulnerabilities
Analysis

A Master Thesis project

By

George Iakovakis

Under the supervision of

Dimitris Gritzalis,
 Professor in Department of Informatics

January 2016

Department of Informatics
Athens University of Economics & Business

Athens, Greece

3

Acknowledgements
 This research would not have been possible without the sincere help and

contributions of the many individuals involved directly or indirectly at different levels

of my work. I would like to use this opportunity for expressing my sincere gratitude to

them.

I would like to thank my supervisor, Professor Dimitris Gritzalis for his kind

attention, patience and motivation during this research and the preparation of this

thesis. His guidance encouraged me to work hard and inspired me for finding a new

way of thinking about security in modern world.

I would also like to thank my thesis advisor, PhD candidate Nikos Tsalis for his

purposeful comments and encouragement, but also for his continuous advising for this

thesis writing. Finally, I feel obliged to express my deepest gratitude and love to my

parents, for their unconditional, constant love and psychological support.

7

5.4.6 BLUEPRINT.. 93

5.4.7 BEEP .. 94

5.4.8 WebSecurityAbstraction .. 94

5.4.9 WebStaticApproximation .. 95

5.4.10 DSI ... 95

5.4.11 Pixy .. 96

5.4.12 PQLMatcher ... 96

Chapter 6: Insecure Direct Object References ... 99

6.1 Introduction ... 99

6.2 Types of attack .. 101

6.2.1 By modifying values of parameters in URL string 102

6.3 Detection ... 108

6.3.1 Using static analysis ... 108

6.3.2 Black box testing.. 109

6.3.3 Penetration testing .. 109

6.3.4 Using dynamic analysis ... 110

6.3.5 Using firewall... 111

6.3.6 Using Sandbox-Jail .. 112

6.4 Prevention.. 112

6.4.1 Access control .. 112

6.4.2 Indirect Reference Map: .. 113

6.4.3 Input User Validation .. 114

6.4.4 Use per user or session indirect object references 115

Chapter 7: Security misconfiguration ... 117

7.1 Introduction ... 117

7.2 Types of attacks ... 120

7.2.1 Remote File Inclusion .. 120

7.2.2 Clickjacking ... 121

7.2.3 Predictable Resource Location .. 121

7.2.4 Server Misconfiguration .. 121

7.2.5 Abuse of Functionality ... 122

7.2.6 OS Commanding .. 123

7.2.7 Brute Force... 123

7.2.8 Application Misconfiguration .. 124

8

7.2.9 Content Spoofing ... 124

7.3 Detection ... 125

7.3.1 PeerPressure ... 125

7.3.2 SCAAMP ... 126

7.3.3 PHPSecInfo .. 126

7.3.4 PHP Security Audit .. 126

7.3.5 Baaz.. 127

7.3.6 Using Model Driven Security (MDS) .. 127

7.3.7 Using CCE configuration scanner ... 128

7.3.8 Paros Proxy .. 128

7.3.9 Skipfish .. 129

7.3.10 W3af ... 129

7.3.11 ZAProxy ... 129

7.4 Prevention.. 129

7.4.1 Preventing RFI ... 131

7.4.2 Anti-clickjacking defenses ... 132

7.4.3 Preventing Content Spoofing ... 132

Chapter 8: Sensitive Data Exposure .. 133

8.1 Introduction ... 133

8.2 Types of Attacks.. 134

8.3 Detection ... 135

8.3.1 Using Taint Tracking .. 135

8.3.2 Using data tainting ... 138

8.3.3 Scanning content with Map-Reduce .. 138

8.3.4 Using network-based and/or host-based approaches 139

8.4 Prevention.. 140

8.4.1 Using Database Security Policy .. 142

8.4.2 Using steganography-OIBDH .. 143

8.4.3 Preventing Sensitive Leaks in Error Messages 144

Chapter 9: Missing Function Level Access Control ... 145

9.1 Introduction ... 145

9.2 Types of attacks ... 148

9.2.1 Forced browsing... 149

9.2.2 DNS Hijacking ... 150

10

11.3.4 Using Vulnerability Alert Service (VAS) .. 171

11.3.5 Using Web Application Firewalls (WAF) ... 172

11.4 Prevention.. 172

11.4.1 Using good component practices .. 172

11.4.2 Using threat patterns .. 174

11.4.3 Using CLM .. 174

11.4.4 Prevention against zero-day attack .. 175

Chapter 12: Unvalidated Redirects and Forwards .. 177

12.1 Introduction ... 177

12.2 Types of attacks ... 179

12.2.1 Open Redirect Attack ... 180

12.3 Detection ... 181

12.3.1 Testing for unvalidated redirects ... 181

12.4 Prevention.. 182

12.4.1 Using ADF Security ... 182

12.4.2 Using server-side modifications .. 183

12.4.3 Using heuristics to identify open redirects... 184

Chapter 13: Contributions.. 185

13.1 Contribution in detection and prevention .. 185

13.2 Contribution in presenting threats and trends the time period 2013-2015 .. 188

Chapter 14: Conclusions ... 198

11

List of Figures
Figure 1: ... 14

Figure 2: ... 15

Figure 3: ... 18

Figure 4: ... 20

Figure 5: ... 25

Figure 6: ... 30

Figure 7: ... 32

Figure 8: ... 33

Figure 9: ... 37

Figure 10: ... 38

Figure 11: ... 49

Figure 12: ... 51

Figure 13: ... 52

Figure 14: ... 53

Figure 15: ... 54

Figure 16: ... 55

Figure 17: ... 58

Figure 18: ... 60

Figure 19: ... 78

Figure 20: ... 80

Figure 21: ... 80

Figure 22: ... 83

Figure 23: ... 90

Figure 24: ... 101

Figure 25: ... 103

Figure 26: ... 118

Figure 27: ... 118

Figure 28: ... 133

Figure 29: ... 134

Figure 30: ... 148

Figure 31: ... 150

Figure 32: ... 151

12

Figure 33: ... 152

Figure 34: ... 157

Figure 35: ... 158

Figure 36: ... 161

Figure 37: ... 169

Figure 38: ... 180

Figure 39: ... 191

Figure 40: ... 191

Figure 41: ... 192

Figure 42: ... 192

Figure 43: ... 194

Figure 44: ... 195

Figure 45: ... 196

Figure 46: ... 196

Figure 47: ... 197

Figure 48: ... 198

List of Tables
Table 1: ... 19

Table 2: ... 46

Table 3: ... 47

Table 4: ... 48

Table 5: ... 49

Table 6: ... 56

Table 7: ... 77

Table 8: ... 81

Table 9: ... 85

Table 10: ... 97

Table 11: ... 100

Table 12: ... 100

Table 13: ... 103

Table 14: ... 147

Table 15: ... 147

13

Table 16: ... 157

Table 17: ... 187

Table 18: ... 188

Table 19: ... 189

Table 20: ... 189

Table 21: ... 189

Table 22: ... 190

Table 23: ... 190

Table 24: ... 190

Table 25: ... 190

15

around the world. OWASP is an open community dedicated to enabling organizations

to conceive, develop, acquire, operate, and maintain applications that can be trusted.

All of the OWASP tools, documents, forums, and chapters are free and open to

anyone interested in improving application security. OWASP advocates approaching

application security as a people, process and technology problem because the most

effective approaches to application security includes improvements in all of these

areas.

 The OWASP Top Ten is a powerful awareness document for web application

security. It represents a majority opinion about what the most critical web application

security flaws are. Project members include a variety of security experts from around

the world who have shared their expertise to produce this list. The figure 2 shows the

Top Ten lists from 2003 to 2013 and how the list has changed over the years

(Owasp.org, 2016).

Figure 2: Comparison of OWASP Top Ten Entries

26

If the value of the name parameter is directly transferred to LDAP query, it is possible

to inject more code, change the meaning of the query and access information that the

user shouldn't be able to access. For example, the following two queries may return

the user's password and enumerate all the users:

There is also Blind LDAP injection slower than the classic ones based on binary

logic. The hacker asks the server true or false questions waiting for LDAP filter

generates a valid response and extract information from the LDAP directory (Alonso

et al., 2008).

3.2.3 XPath Injection

 The usage of XML documents instead of relational databases makes web

applications vulnerable to XPath Injection Attacks (XPIAs). This is because of the

loose typing nature of the XPath language. XPath is language designed specifically to

query nodes in an XML document. XPath is a query language for XML document like

SQL is for relational databases. Using XPath querying, a malicious user may extract a

complete XML document, expose sensitive information, and compromise the integrity

of the entire database (Gupta et al., 2013). For achieving a XPIA, a attacker needs to

insert arbitrary XPath code into the form fields and URL query parameters in order to

inject this code directly into the XPath query parser engine. Doing so would allow

him to bypass authentication (if an XML-based authentication system is used) or to

access restricted data from the XML data source. If the user searches an XML

document for user named xxx whose password is yyy the query may look something

like this (Ravichandran et al., 2011):

Altering the value of the password to some value that adds always true condition to

the query, it is possible to bypass authentication. The query may now look like this:

http://www.someapplication.com/ldap-queryuser.asp?name=xxx

http://www.someapplication.com/ldap-queryuser.asp?name=xxx)(|password=*)
http://www.someapplication.com/ldap-queryuser.asp?name=*

/users/user[username = 'xxx' and password = 'yyy']

/users/user[username = 'xxx' and password = 'yyy' or '1'='1']

31

3.3 Detection

 The injection field contains many defense methods and techniques, which obscure

the whole view of the injection attack problem. As a matter of fact, a complete and

final presentation cannot be built in a few pages, because this research area is very

large in dimension. However, in this section, there is a systematic survey of published

work about different detection ways to protect web applications. It is given a mention

to some main methods-techniques which are used widely for protection of the

injection attacks that are referred to previous section.

3.3.1 SQL Injection

 SQL injection detection techniques use several different defense methods to detect

the existence of vulnerabilities giving protection to the web applications. There are a

reasonably small number of things that someone can do to reduce or eliminate the

threat of SQL injection. It is likely that the defender need to implement more than one

of these methods that are included in this chapter to fully secure an application against

SQL injection.

3.3.1.1 Using vulnerability scanning tools.

 Web Application Vulnerability Scanners are the automated tools that scan web

applications to look for known security vulnerabilities and are very useful for

detecting SQL injection attacks. In order to exhaustively scan a web application for

security problems, a web application scanner must first map out the web application's

structure and functionality. The mapping process is done by the web crawler

component, which makes use of different types of content parsers to extract

information from web content. This information may include URLs, HTML forms,

HTML form parameters, HTML comments, and so forth. A large number of both

commercial and open source tools are available and all these tools have their own

strengths and weaknesses. OWASP site provides a listing of vulnerability scanning

tools currently available in the market. Some of them are: w3af, AppScan, Retina etc.

(Owasp.org, 2016).

32

3.3.1.2 Web Application Firewalls

 The most well-known runtime solution in Web application security is the use of a

Web application firewall (WAF). The WAF examines every request submitted by the

user to the application to decide if the request should be accepted (when it is a legal

request) or rejected (if the request is malicious). There is a set of rules that is created

and maintained by the application owner. The WAF accepts or rejects by examining

each input value in the request and checking if the value matches an attack pattern

typically using a set of rules. For example, using a WAF is necessary to be compliant

with the Payment Card Industry Data Security Standard (Pcisecuritystandards.org,

2015) for systems that use/process credit cards. As a consequence, testing an

application for SQL injection vulnerabilities through a WAF can be used to identify

and prioritize vulnerabilities that can be detected through the WAF (Appelt et al.,

2013) (Clarke, 2009).

Figure 7: Web Application Firewall

3.3.1.3 Database Firewall

 Database firewall is essentially a proxy server that sits between the application and

the database. The application connects to the database firewall and sends the query as

though it were normally connecting to the database. The proxy server monitors and

analyzes each SQL statement for malicious commands. It can also serve as an

application - level IDS for malicious database activity by monitoring connections in

passive mode and altering administrators of suspicious behavior (Appelt et al., 2013)

(Clarke, 2009).

36

model is articulated as a grammar that only accepts legal queries and is generated at

runtime by examining the structure of the queries before and after the inclusion of

user-input. A secret key is used to delimit user input by runtime checker during

parsing, so security of this technique is fully dependent on the safety of secret key. It

has implemented in J2EE platform. In order to deploy this technique, developer has to

either manually insert special indicators in the code where user input is inserted to a

dynamically created query or rewrite code to employ a special intermediate library

(Buehrer et al., 2005).

3.3.1.9 CANDID

 Candid (CANdidate evaluation for Discovering Intent Dynamically) is a tool that is

based on modifying web applications written in Java through a program

transformation. This technique works by comparing dynamically infer programmer

intended SQL query structure against the issued actual SQL query structure. For every

user input, this technique creates benign sample inputs known as candidate inputs and

the program is executed over actual inputs and sample inputs (candidate inputs)

simultaneously. Then a candidate SQL query is created along with the actual SQL

query where the candidate SQL query is always benign and actual SQL query is

possibly malevolent. The actual query is rejected if parse structures of both queries do

not match (Bisht et al., 2010).

3.3.1.10 SQL- IDS

 SQL-IDS (SQL Injection Detection System) is a tool which monitors Java based

applications. There is no need of source code modification in existing applications to

use it. This technique follows a specification based methodology to detect SQL

injection vulnerabilities (Fig.9) (Kemalis and Tzouramanis, 2008). It utilizes

specifications that characterize the programmer intended syntactic structure of queries

which are generated and executed by the application. It also monitors the web

application for executing SQL queries that are in breach of the specification. It

controls and filters the traffic between application server and the back end database

server where each SQL query passes through the validation process in order to

specific target system, DBMS, or application environment. According to evaluation of

this technique, the effectiveness is its advantage for detecting all the attempts of attack

37

that were injected through the application in addition to the non-existence of false

negatives (Kemalis and Tzouramanis, 2008)

Figure 9: Architecture of SQL- IDS

3.3.1.11 SecurePHP

 SecurePHP is a tool that automatically detects and suggests fixes to SQL queries

that are found to contain SQL Injection Vulnerabilities. It was written in C# and

utilized the .NET framework. The tool provides the solution using prepared

statements. It is important to note that this solution specifically targets PHP and

MYSQL based web application and for this reason it is called SecurePHP. It has three

major steps, vulnerability detection, creation of prepared statements and report

generation. GUI of SecurePHP is used to look for vulnerabilities. It uses grammar

based violation principle (by parsing SQL statement) to detect the vulnerabilities in

the query. The purpose of this technique is to notify the user of any possible

weaknesses proposing solutions. When a query is used more than once, prepared

statements can actually lead to an increase in performance because the procedure is

temporarily stored on the MySQL server. Lastly, user can generate reports for files

containing vulnerabilities (Dysart and Sherriff, 2008).

3.3.1.12 DIWeDa

 DIWeDa (Detecting Intrusions in Web Databases) is a practical solution to the web

database intrusion detection problem. It is a model which acts at the session level

rather than the SQL statement or transaction stage, detecting the intrusions in web

based applications. The proposed approach is shown to be efficient and could identify

SQL injections and business logic violations. There is a need to be tested against new

types of SQL injection attacks and requires a great need of accuracy improvement.

38

The software architecture for the proposed IDS design is shown in Figure 10 (Gudes

and Roichman, 2008):

Figure 10: Architecture of DIWeDa

3.3.1.13 SDriver

 Smart Driver (SDriver) is a secure database driver and a prototype application that

prevents SQLIAs against web applications. If an SQL injection happens, the structure

of the query, and therefore its signature will be altered, and SDriver will be able to

detect it. SDriver is located between the application and its underlying relational

database management system. To detect an attack, the driver uses stripped down SQL

queries and stack traces to create SQL statement signatures that are then used to

distinguish between injected and legitimate queries (Mitropoulos and Spinellis, 2009).

3.3.1.14 SQLmap

 Sqlmap is an open source penetration testing tool that automates the process of

detecting and exploiting SQL injection flaws and taking over of database servers. It

comes with a powerful detection engine, many niche features for the ultimate

penetration tester and a broad range of switches lasting from database fingerprinting,

over data fetching from the database, to accessing the underlying file system and

executing commands on the operating system via out-of-band connections

(Sqlmap.org, 2016).

41

3.4.1.3 Error Messages

 Another way to prevent SQL injection is to avoid some detailed error messages,

because the hackers can use the information (Ping-Chen, 2011). If an attacker cannot

obtain the source code for an application, error messages become critically important

for a successful attack. Most Java applications do not return detailed error messages.

Testing and analysis should be performed to determine if the application returns

detailed error messages. Handling exceptions and suppression of error messages is

most effective when done with application-level error handlers. Therefore, it is a good

practice to configure the application framework and Web server to return a custom

response when unexpected application errors result. The configured response could be

a custom error page that displays a generic message or a redirection to the default

Web page. The important point is that the page should not reveal any of the technical

details related to why the exception occurred. It is recommended to use a standard

input mechanism to verify all confirmed the input data of length, type, a statement,

enterprise rules, etc (Kost, 2004).

3.4.1.4 Input data Validation

 Every passed string parameter should be validated. Many web applications use

hidden fields and other techniques, which also must be validated. If a bind variable is

not being used, special database characters must be removed or escaped (Kost, 2004).

There are two different types of input validation approaches: whitelist validation

(sometimes referred to as inclusion or positive validation) and blacklist validation

(sometimes known as exclusion or negative validation) (Clarke, 2009). The best way

to filter data is with a default-deny regular expression that includes only the type of

characters that you want. For instance, the following regular expression will return

only letters and numbers: s/[^0-9a-zA-Z]//g (Faust, 2002).

3.4.1.5 Using encryption

 Another way to prevent SQL injection is to use encryption. Especially for storing

sensitive data the use strong cryptography is considered appropriate. If someone must

store sensitive data, he must protect it with a strong symmetric encryption algorithm

such as Advanced Encryption Standard (AES) or Triple DES (Data Encryption

Standard) or hashing algorithms as Message Digest (MD5) and Secure Hash

Algorithm (SHA-1) For example, if a user encrypts his username and password field

46

Table 2: Techniques and Types of SQLi Attacks

Technique

TYPES OF SQL INJECTIONS ATTACKS

Tautology
Union

Query

Stored

Procedure

Piggy

Backed

Queries

Logically

Incorrect

Queries

Alternate

Encodings
Inference

AMNESIA Y Y N Y Y Y Y

SQLRand Y Y N Y N N Y

SQL DOM Y Y N Y Y Y Y

WebSSARI Y Y Y Y Y Y Y

SQLGuard Y Y N Y Y Y Y

CANDID Y N N N N N N

SecurePHP Y Y N Y Y Y Y

SQLCHECK Y Y N Y Y Y Y

DIWeDa N N N N N N Y

SQL-IDS P P P P P P P

SDriver Y Y N Y N N Y

SQLmap Y Y Y Y Y Y Y

Y = Yes, N = No, P = Partly Effective

In the Table 3 (Shakya and Aryal, 2011), there are the defense techniques - tools with

some of their characteristics according to the analysis that has been implemented

above.

Table 3: Defense techniques characteristics

Technique Detection time Detection location Analysis Method

AMNESIA Run time Server side application Hybrid

SQLrand Run time Server side proxy Dynamic

SQL DOM Compile time Server side application Secure Programming

WebSSARI Run time Server side application Hybrid

SQLGuard Run time Server side application Dynamic

CANDID Run time Server side application Dynamic

SecurePHP Run time Server side application Secure Programming

SQLCHECK Run time Server side proxy Dynamic

SQL IDS Run time Server side proxy Dynamic

47

SDriver Run time Server side proxy Dynamic

DIWeDa Run time Server side proxy Dynamic

SQLmap Run time Server side application Dynamic

48

Chapter 4: Broken Authentication and Session

Management

 Broken authentication and session management were rated the number two attack in

web applications on the OWASP top ten in 2013 (Owasp.org, 2015). Broken

authentication deals with improper implementation of authentication mechanism and

broken session management deals with belonging functions such as logout, timeout,

secret question, password reset etc. If the authentication mechanism is not well

implemented it is possible to use that weakness to exploit the application.

 According to NVD (National Vulnerability Database), authentication issues and

credential management vulnerabilities have been discovered for various applications

every year. The following tables show the related vulnerabilities found in different

years. The improper authentication vulnerability counts topped at 2009 and declined

in 2015 and the credentials management counts topped at 2014 (Web.nvd.nist.gov,

2015):
Table 4: Authentication Issues Statistical Report

Year Matches Total Percentage

2002 4 2,156 0.19%

2003 7 1,527 0.46%

2004 6 2,451 0.24%

2005 5 4,931 0.10%

2006 13 6,608 0.20%

2007 68 6,514 1.04%

2008 146 5,632 2.59%

2009 210 5,732 3.66%

2010 75 4,639 1.62%

2011 55 4,150 1.33%

2012 99 5,288 1.87%

2013 107 5,186 2.06%

2014 143 7,937 1.80%

2015 25 4,258 0.50%

49

Table 5: Credentials Management Statistical Report

Year Matches Total Percentage

2002 8 2,156 0.37%

2003 8 1,527 0.52%

2004 6 2,451 0.24%

2005 2 4,931 0.04%

2006 5 6,608 0.08%

2007 24 6,514 0.37%

2008 52 5,632 0.92%

2009 67 5,732 1.17%

2010 53 4,639 1.14%

2011 38 4,150 0.92%

2012 52 5,288 0.98%

2013 89 5,186 1.72%

2014 115 7,937 1.45%

2015 54 4,967 1.09%

According to the annual Verizon 2015 Data Breach Investigations Report (Verizon,

2015), most of the attacks make use of stolen credentials. The following figure 11

(Verizon, 2015) shows how serious problem the broken authentication is.

Figure 11: Variety of hacking actions within Web

64

area, located at the top of every browser window and large enough to contain highly

visible logos and other graphical icons for credentials identifying a legitimate page.

While their solution does not rely on complex security factors, it does not prevent

against spoofing attacks. Specifically, since the logos of websites do not change, they

can be used by an attacker to create a look alike TCA in an untrusted web page.

4.2.1.6 Using machine learning algorithm

 On this approach (Basnet et al., 2008), the authors use learning machines in

detecting and classifying phishing emails. They applied different methods for

detecting phishing emails using known as well as new features. They also employ a

few novel input features that can assist in discovering phishing attacks with very

limited a-prior knowledge about the adversary or the method used to launch a

phishing attack. The scope of this approach is to classify phishing emails by

incorporating key structural features in phishing emails and employing different

machine learning algorithms to our dataset for the classification process. The use of

machine learning from a given training set is to learn labels of instances (phishing or

legitimate emails). This method provides insights into the effectiveness of using

different machine learning algorithms for the purpose of classification of phishing

emails. After the performance of six different machine learning methods that they

used, it is found that Support Vector Machine (LIBSVM) achieved consistently the

best results.

4.2.2 Brute force Attack

4.2.2.1 Using flow-based detection

 Brute-force attacks are most frequently detected at the host level by inspecting

access logs. If the predefined number of unsuccessful login attempts is reached, an

alert is fired, the attacker blocked or other attempts significantly delayed. This

approach is effective, even for distributed attacks. The main drawback is that it does

not scale well (Drasar et al., 2013). Below there are some detection approaches that

profit from the scalability of network flows:

1. Signature-based Approach

The flow-based signatures describe network traffic by specific values, or ranges

of values, of flow features and computed statistics. The signatures are then searched

69

 1. Password strength

Password should be a combination of characters, numbers and also special characters.

If the password is complex and hard to detect then it is difficult for an attacker to

guess the password.

2. Password use

The number of attempts to login in a particular time should be recorded. If the user

does not login into the system after 3 attempts then the user should be blocked for

some time. Increasing the answer's complexity (e.g. requiring a CAPTCHA answer or

verification code sent via cell phone), and/or locking accounts out after unsuccessful

logon attempts.

3. Use Strong Encryption

For transfer data there must be sufficiently strong cryptography. Key lengths less than

64 bits are too weak and keys of at least 128 bits in length are recommended since

they are generally considered strong enough to be secure for some time into the

future.

Weak password recovery can be implemented in such faulty way that allows the

attacker to easily obtains, changes or recovers another user's password. Some

password recovery systems are guided by answering the user's secret question and

there's no lockout policy defined so the attacker can brute force the answer and obtain

the user's password. The hints that are sometimes displayed to the user can also

sometimes reveal too much information and help in guessing or brute forcing the

password.

4.3.3 Replay Attack

The most known ways of prevention a replay attack are the following:

1. Session tokens: Session ID or session token is a piece of data that is used in

network communications (often over HTTP) to identify a session, a series of

related message exchanges. Session identifiers become necessary in cases

where the communications infrastructure uses a stateless protocol such as

HTTP. Session tokens should be chosen by a random process (usually,

pseudorandom processes are used). There are many drawbacks of session ID

and it may not be enough to fulfill some security requirements. Examples of

the names that some programming languages use when naming their cookie

76

background, are easy for humans to respond but rather difficult for computers (an

online attacker is essentially a programmed computer) to answer (Goyal et al., 2006).

4.3.6.4 Account Locking

 Accounts are locked a few unsuccessful login attempts (for example, an account is

locked for an hour after five unsuccessful attempts.) Like the previous measure, this

measure is designed to prevent attackers from checking sufficiently many passwords

in a reasonable time. These countermeasures can be quite useful in a single computer

environment, where users login to a local machine using, say, a keyboard that is

physically attached to it (Pinkas and Sander, 2002).

4.3.6.5 Use of salt technique

 To prevent the risk of Rainbow table, the administrators adds a random character

named salt before hashing. The salt value is stored in the database for each user.

During every authentication, a new challenge is generated by the server, the Rainbow

tables need to either include all the salt combinations which would make them

unmanageably large, or recalculate the table every time which makes them similar in

terms of efficiency to brute force attacks. In this situation, the attacker needs to find

the correct salt for each of his hashing which makes the process much too long. If the

selected salt key is long enough, compromising the password would be much harder

for the attacker (Thorpe, 2008).

77

Chapter 5: Cross-Site Scripting (XSS)

5.1 Introduction

 On the OWASP top ten in 2013 (Owasp.org, 2015) cross site scripting was rated

the number three attack in web applications. In this attack, the attacker injects the

code into the output application of web page which will be sent to a visitor's web

browser and then, the code which was injected will execute automatically or steal the

sensitive information (cookies) from the user input. The malicious data can be

embedded either on the server side when Web application constructs web page to

respond to the request or on the client side when Document Object Model (DOM) is

being built and client side scripts are being executed. In both cases, the problem is

that data that is used to create the page and that can be controlled by an attacker is not

being properly encoded or filtered. Therefore, an attacker can inject his own code and

execute it via supported scripting language, most often Javascript. XSS allows the

attacker to inject malicious code because developer trusts user inputs and does not

filter the input data. XSS attacks are easy to execute, but the detection and prevention

of them is very difficult. One serious reason for that is the high flexibility of HTML

encoding schemes, giving the attacker more benefits (Owasp.org, 2016).

 Flaws that allow these attacks to succeed are quite widespread and occur anywhere

a web application uses input from a user within the output it generates without

validating or encoding it. According to NVD (National Vulnerability Database), XSS

vulnerability has been discovered for various applications every year. The following

table shows the related vulnerability found in different years from 2002 to 2015

(Web.nvd.nist.gov, 2015). This kind of threat counts topped at 2009 and maintains

high percentages until 2015.

Table 7: Cross site scripting Statistical Report

Year Matches Total Percentage

2002 34 2,156 1.58%

2003 33 1,527 2.16%

2004 21 2,451 0.86%

2005 31 4,931 0.63%

2006 102 6,608 1.54%

78

2007 344 6,514 5.28%

2008 790 5,632 14.03%

2009 821 5,732 14.32%

2010 594 4,639 12.80%

2011 454 4,150 10.94%

2012 721 5,288 13.63%

2013 616 5,186 11.88%

2014 1,030 7,937 12.98%

2015 648 5,023 12.90%

According to Acunetix Web Application Vulnerability Report 2015 (Acunetix, 2015),

cross site scripting is the top vulnerability. For this report, Acunetix have aggregated

the findings of over 15,000 scans performed on 1.9 million files (March 2014-March

2015).

Figure 19: Statistical Vulnerabilities report 2015

There are three types of XSS vulnerabilities and they differ on when and how the

malicious data is injected into web page:

1. Persistent or Stored XSS

2. Non-persistent or Reflected XSS

3. DOM Based or Local XSS

87

The first group of characters behind 'wapiti_' is encoded string of page that XSS

vector originated from and second group is encoded name of parameter that XSS

vector originated. The tool claims there is a XSS vulnerability if the XSS vector is

found in response.

5.3.1.3 W3af

 W3af stands for Web Application Attack and Audit Framework. It is the most

detailed tool so far and it searches for many vulnerabilities (W3af.sourceforge.net,

2016). It also searches for all three types of XSS. In creating XSS vectors, it uses

multiple variants of injections with single quotes, double quotes or no quotes at all:

The term RANDOMIZE is then transferred into some random number value. The

scanner doesn't only search for XSS vector in response, but it also analyses the

response and tries to remove false positives. If XSS is not found for some parameter,

the scanner even reports which filters were used to prevent it. W3af also has a plugin

that search for DOM-based XSS. It searches through HTML code for script tags that

use one of predefined suspicious Javascript functions with DOM variables that can be

controlled by users. The list of functions is:

 <SCRIPT>alert2('RANDOMIZE')</SCRIPT>
 javascript:alert('RANDOMIZE');
 JaVaScRiPt:alert('RANDOMIZE');

javas\tcript:alert('RANDOMIZE');
<SCRIPT>a=/XSS/\nalert(a.source)</SCRIPT>RANDOMIZE
javascript:alert("RANDOMIZE");
JaVaScRiPt:alert("RANDOMIZE");
<SCRIPT>alert("RANDOMIZE")</SCRIPT>
javas\tcript:alert("RANDOMIZE");

document.write
document.writeln
document.execCommand
document.open
window.open
eval
window.execScript

88

The list of variables that might be controlled by user is:

If there is a connection found between those two, w3af reports a DOM based XSS

bug.

5.3.1.4 Javascript XSS Scanner:

 Javascript XSS Scanner is GNUCITIZEN's project that demonstrates it is possible

to write XSS scanner in Javascript and execute it in every browser (Gnucitizen.org,

2016). It also uses few simple XSS vectors:

 and search for them in the response.

5.3.1.5 SecuBat

 A web vulnerability scanner SecuBat (Jovanovic et al., 2006) is an open-source web

vulnerability scanner that relies on black-box technique to crawl and scan the web

applications for the presence of exploitable XSS vulnerabilities. This vulnerability

scanner incorporates three major components. The initial one is crawling component,

which collects a set of target web sites. Secondly, the attack component, which initiate

the configured attacks against these web sites. Lastly, the analysis component scans

the results returned by the web sites to find out whether an attack was successful or

not.

5.3.1.6 XSSDS :

 XSSDS (Johns et al., 2008) is a passive and server side XSS detection technique

named XSS-Dec, which discovers the XSS attack by measuring the deviation between

/XSS_SCAN"><script>
/XSS_SCAN'><script>

document.URL
document.URLUnencoded
document.location
document.referrer
window.location

90

Figure 23: XSS Filter Architecture

The most known client-side XSS filters are: the IE8 filter (Blogs.technet.com, 2016),

the noXSS filter (Reith, 2008), the NoScript filter (Noscript.net., 2016), XSSAuditor

(Bates et al., 2010), Mozilla XSS Filter (Wiki.mozilla.org, 2016) etc.

5.3.4 DetectCollectXSS

 DetectCollectXSS (Etoh et al., 2004) is a client-side solution that automatically

detects XSS vulnerability by manipulating either client request or server response

using user side local proxy servers. It provides both input and output signature

detection modes. It copies the input included in the user request at a client-side web

proxy before a request is sent to a web server. If the input includes an executable

script and the response includes the same script copied at the proxy, then the

vulnerability is detected.

5.4 Prevention

5.4.1 Noxes

 A client-side solution for mitigating XSS attacks Noxes (Jovanovic et al., 2006) is

the foremost client side solution that influences the proposal of personal firewalls for

preventing the users against XSS attacks. Noxes is a Microsoft-Windows-based

personal web firewall application that runs as a background service on the desktop of

a user. It generally accepts the HTTP web request connections and can either be

blocked or allowed based on the specified firewall rules. These rules are generally

created in three ways: Manual Creation, Firewall Prompts and Snapshot Mode.

