

ΔΙΠΛΩΜΑΤΙKH ΕΡΓΑΣΙΑ

“Η διδακτική της διαχείρισης έργων πληροφορικής µε χρήση
ευέλικτων τεχνικών”

Αλέξανδρος Λεκάτος

ΜΜ4140026

ΑΘΗΝΑ, ΣΕΠΤΕΜΒΡΙΟΣ 2016

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΕΙΔΙΚΕΥΣΗΣ
(MSc)

στα ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ABSTRACT

 While software is so important for all facets of the modern world,

teaching software development itself is not a perfect process. Agile

software engineering methods have recently emerged as a new and

different way of developing software as compared to the traditional

methodologies. Agile methods are becoming commonplace in the

workplace, the effectiveness of teaching agile methods in the classroom

has been disputed and many academics have taken a different approach.

 This research study was a survey on the on the success of different

methods of agile teaching, their efficiency as perceived by academics and

students, as well as their ability to provide future software developers

with the skills now required by information technology businesses.

 An extensive literature review was done to identify the various teaching

methods employed at institutions around the world, including recent

researches on the subject as well as a case study from the industry. The

aim of the literature review was to establish what is now considered best

practice to distinguish any known problems or gaps in knowledge

regarding the teaching of agile methodologies at universities.

 A survey was conducted among current and former computer science

students, gathering data from 200 students that attended university in the

past 5 years. The students have previously attended a course meant to

teach agile methods through the completion of a capstone project and

they were required to provide feedback regarding their views on the agile

methods used as well as the method of teaching. Students with relevant

work experience after the completion of their studies were also required

to reflect on the parallels of using agile at university and workplace and

its perceived effect on their employability.

�2

 ACKNOWLEDGEMENT

 I would first like to thank my supervisor Dr Panos Fitsilis of the Athens

University of Economics and Business . He allowed this paper to be my

own work, but steered me in the right the direction whenever he thought I

needed it and I could approach him whenever I had a question about my

research or writing.

 I would also like to thank Mr Aggelos Thanos, Mr Nikolaos Drosos and

Mr Dionisis Adamopoulos who were involved in the distribution of the

survey questionnaire for this research. Without their participation, the

research could not have been successfully conducted.

 Finally, I must express my gratitude to my parents for providing me with

support and encouragement throughout my years of study and through

the process of researching and writing this thesis. This accomplishment

would not have been possible without them.

 Thank you.

 Alexandros Lekatos

�3

 TABLE OF CONTENTS

 1. Introduction 5

 2. Literature Review 9

 2.01 Agile Methods 9

 2.02 Agile Practices 20

 2.03 Criticism of Agile Methodology 29

 2.04 Teaching Software Engineering at MIT 33

 2.05 Teaching Agile Software Development 37

 2.06 Bringing Agile into the Capstone Course 41

 2.07 Teaching Using Simulation Games 44

 2.08 Teaching Methods 46

 2.09 Virtual Methods 48

 2.10 Agile Teaching / Learning Methodology 53

 2.11 Anti-practices while teaching Agile 55

 2.12 Using Agile to teach Agile at IBM - Agile@IBM 56

 3. Methodology 62

 4. Findings 65

 5. Conclusion 77

 6. References 79

 Appendix: Questionnaire 84

�4

 1. INTRODUCTION

 In recent years, “Course design has developed from a craftsmanship-like

process to a structured production, which involves interdisciplinary

teams and requires more complex communication skills”. [Botturi, 2006]

This makes methods and modeling languages increasingly important.

 Many instructional design methods have been developed in the last years,

but they seem to be inadequate if applied in the context of the 21th

century school. In fact, nowadays, new skills for students are required,

like the ability to perform in social activities or to collaborate with each

other to solve problems [De Vincentis, 2007], which in turn, make it

necessary that learning embodies and encompasses these new activities.

That yields other problems to be faced, like the students’ satisfaction, the

administrative transparency, the effectiveness of the documentation and

the need for cooperation among the members of a team.

 As agile methods are becoming main-stream in the software industry,

there has been an increase in the demand for them to be taught in the

classroom. Annual Surveys

have shown that the use of Scrum has

increased in the last few years. In 2007, 37% of respondents used Scrum,

and nowadays, more than 50% of the surveyed companies are adopting

Scrum as an effective vehicle toward agility. The knowledge of Scrum is

crucial to most companies because it emphasizes the importance of team

effort and social activities in the development of software. Scrum

concentrates on project management practices and includes monitoring

and feedback activities that ensure transparency.

 This emerging use of Scrum has opened a gap between the skills taught

in academic contexts and the ones required by the software industry. As a

result, in undergraduate as well as postgraduate courses, there is an

increasing need for effective ways of teaching the fundamentals of Agile

Methods; yet constraints within educational premises demand creative

use of resources.

�5

 In the past decade, agile development has begun to see widespread

industrial acceptance. A 2009 survey found that 35% of Information

Technology companies were using agile teams for at least some of their

software development projects. A more recent survey, conducted in 2014,

found that 75% of surveyed companies were using agile development for

some projects and nearly 50% were using agile development practices for

the majority of their software projects.

 Despite industrial adoption of agile methodologies, their acceptance and

incorporation into academic curricula has been limited. Most popular

software engineering texts, have been updated to include some coverage

of agile methodologies but are still organized around traditional waterfall

methodology.

 In order to solve the problems arising from classical software engineering

methods, in 2001 a group of software developers and designers formed

the Agile Alliance, which published the Manifesto for Agile Software

Development based on the assumption that individuals and interactions,

working software, customer collaboration and responding to change are,

respectively, more important than process and tools, documentation,

contract negotiation and following a plan. [Manifesto for Agile Software

distribution, 2001]

 Agile methodologies aim to satisfy the customer, to welcome changing

requirements, to deliver working software frequently, to make customers

and developers collaborate, to motivate individuals by suitable

environment and to support, considering dialogue essential to exchange

information about the project.

 These methods can be seen as a reaction to plan-based or traditional

methods, which emphasize an engineering-based approach in which it is

claimed that problems are fully specifiable and that optimal and

predictable solutions exist for every problem. The traditionalists are said

to advocate extensive planning, codified processes, and rigorous reuse to

make development an efficient and predictable activity.

�6

 By contrast, agile processes address the challenge of an unpredictable

world by relying on “people and their creativity rather than on

processes”.

 Ericksson et al. define agility as follows: “Agility means to strip away as

much of the heaviness, commonly associated with the traditional

software-development methodologies, as possible to promote quick

response to changing environments, changes in user requirements,

accelerated project deadlines and the like”.

 Williams and Cockburn state that agile development is about feedback

and change and that agile methodologies are developed to embrace,

rather than reject, higher rates of change.

 Many have tried to explain the core ideas in agile software development,

some by examining similar trends in other disciplines. Conboy and

Fitzgerald, describe agility as what is known in other fields as flexibility

and leanness. They refer to several sources of inspiration, primarily:

 Agile manufacturing, which was introduced by researchers from Lehigh

University in an attempt for the USA to regain its competitive position in

manufacturing. Key concepts in agile manufacturing are integrating

customer-supplier relationships, managing change, uncertainty,

complexity, utilizing human resources, and information.

 Lean development, which is rooted in the Toyota Production System

from the 1950s. Some of the core ideas in this system were to eliminate

waste, achieve quality first time, and focus on problem solving.

 Meso and Jain have compared ideas in agile development to those in

Complex Adaptive Systems by providing a theoretical lens for

understanding how agile development can be used in volatile business

environments. Turk et al. have clarified the assumptions that underlie

processes of agile development and also identifies the limitations that

may arise from these assumptions. In the literature, we also find articles

�7

that trace the roots of agile development to the Soft Systems

Methodology of Peter Checkland.

 Nerur and Balijepally compare agile development to maturing design

ideas in architectural design and strategic management: ‘‘the new design

metaphor incorporates learning and acknowledges the connectedness of

knowing and doing (thought and action), the interwoven nature of means

and ends, and the need to reconcile multiple world-views”.

�8

 2. LITERATURE REVIEW

 2.01 Agile methods

 Scrum

 Scrum is one of the most popular frameworks for implementing agile. So

popular, in fact, that many people think scrum and agile are the same

thing. Scrum is an iterative and incremental agile software development

framework for managing product development. It defines a flexible,

holistic product development strategy where a development team works

as a unit to reach a common goal, challenges assumptions of the

traditional, sequential approach to product development, and enables

teams to self-organize by encouraging physical co-location or close

online collaboration of all team members, as well as daily face-to-face

communication among all team members and disciplines involved.

[Foegen, 2010]

 A key principle of Scrum is its recognition that during product

development, the customers can change their minds about what they

want and need, and that unpredicted challenges cannot be easily

addressed in a traditional predictive or planned manner. As such, Scrum

adopts an evidence-based empirical approach accepting that the problem

cannot be fully understood or defined, focusing instead on maximizing

the team's ability to deliver quickly, to respond to emerging requirements

and to adapt to evolving technologies and changes in market conditions.

 Scrum focuses on project management in situations where it is difficult to

plan ahead, with mechanisms for empirical process control where

feedback loops constitute the core element.

 With scrum, the product is built in a series of fixed-length iterations

called sprints that give teams a framework for shipping software on a

regular cadence. Milestones come frequently, bringing with them a

�9

feeling of tangible progress with each cycle that focuses and energizes

everyone. Short iterations also reinforce the importance of good

estimation and fast feedback from tests — both recurring struggles in

waterfall projects.

 Scrum calls for four ceremonies that bring structure to each sprint: sprint

planning, daily stand-up, sprint demo and sprint retrospective.

 During a sprint, visual artifacts like task boards and burn-down charts,

visible to the team and spectators alike, are powerful motivators. Having

the opportunity to show off new work at the sprint demo is equally

motivating, and the consistent, incremental feedback the team gets from

stakeholders at each demo creates a powerful way to develop products.

 A scrum team has a slightly different composition than a traditional

waterfall project, with three specific roles: product owner, scrum master,

and the development team. And because scrum teams are cross-

functional, the development team includes testers, designers, and ops

engineers in addition to developers.

 Product owners are the champions for their product. They are focused on

understanding business and market requirements, then prioritizing the

work to be done by the engineering team accordingly. Effective product

owners build and manage the product backlog, closely partner with the

business and the team to ensure everyone understands the work items in

the product backlog, give the team clear guidance on which features to

deliver next and decide when to ship the product with the predisposition

towards more frequent delivery.

 Scrum masters coach the team, the product owner, and the business on

the scrum process and look for ways to fine-tune their practice of it. An

effective scrum master deeply understands the work being done by the

team and can help the team optimize their delivery flow. As the

facilitator-in-chief, they schedule the needed resources for sprint

planning, stand-up, sprint review, and the sprint retrospective.

�10

 Scrum masters also look to resolve impediments and distractions for the

development team, insulating them from external disruptions whenever

possible.

 Part of the scrum master's job is to defend against an anti-pattern

common among teams new to scrum: changing the sprint's scope after it

has already begun.

 Scrum masters are commonly mistaken for project managers, when in

fact, project managers don't really have a place in the scrum

methodology. A scrum team controls its own destiny and self-organizes

around their work. Agile teams use pull models where the team pulls a

certain amount of work off the backlog and commits to completing it that

sprint, which is very effective in maintaining quality and ensuring

optimum performance of the team over the long-term. Neither scrum

masters nor project managers nor product owners push work to the team.

 The most effective scrum teams are tight-knit, co-located, and usually 5

to 7 members. Team members have differing skill sets, and cross-train

each other so no one person becomes a bottleneck in the delivery of

work. All members of the team help one another to ensure a successful

sprint completion.

 As mentioned above, the scrum team drives the plan for each sprint.

They forecast how much work they believe they can complete over the

iteration using their historical velocity as a guide. Keeping the iteration

length fixed gives the development team important feedback on their

estimation and delivery process, which in turn makes their forecasts

increasingly accurate over time. [Berczuk, 2007]

 Feature-driven development

 Feature-driven development is an iterative and incremental software

development process. It blends a number of industry-recognized best

practices into a cohesive whole. These practices are all driven from a

client-valued feature perspective. Its main purpose is to deliver tangible,

�11

working software repeatedly in a timely manner. [Felsing & Palmer,

2002]

 Feature driven development is claimed to be suitable for the development

of critical systems.

 FDD combines model-driven and agile development with emphasis on

initial object model, division of work in features, and iterative design for

each feature.

 Jeff De Luca delivered a set of five processes that covered the

development of an overall model and the listing, planning, design and

building of features. The first process is heavily influenced by Peter

Coad's approach to object modeling. The second process incorporates

Peter Coad's ideas of using a feature list to manage functional

requirements and development tasks. The other processes and the

blending of the processes into a cohesive whole is a result of Jeff De

Luca's experience.

 In FDD, the building of an object model is not a long, drawn-out activity.

Instead, building an initial object model in FDD is an intense, highly

iterative, collaborative and generally enjoyable activity involving

‘domain and development members under the guidance of an

experienced object modeler in the role of Chief Architect'.

 The idea is for both domain and development members of the team to

gain a good, shared understanding of the problem domain. It is important

that everyone understands the key problem domain concepts,

relationships, and interactions. In doing so, the team as a whole learn to

communicate with each other and start to establish a shared vocabulary.

The object model developed at this point concentrates on breadth rather

than depth; depth is added iteratively through the lifetime of the project.

Throughout the project, the model becomes the primary vehicle around

which the team discusses, challenges, and clarifies requirements.

�12

 With the first activity being to build an object model, some may conclude

FDD is a model-driven process. It is not. While the model is central to

the process, an FDD project is like a Scrum or XP project in being

requirement-driven. Small, client-valued requirements referred to as

features drive the project; the model merely helps guide. Formally, FDD

defines a feature as a small, client-valued function expressed in the form:

<action> <result> <object> (e.g., “'calculate the total of a sale'”).

 Unlike Scrum and XP that use a flat list of backlog items or user stories,

FDD organizes its features into a three level hierarchy that it

unimaginatively calls the feature list. Larger projects/teams need this

extra organization. It helps them manage the larger numbers of items that

are typically found on an FDD features list than on a Scrum-style

backlog.

 To define the upper levels in the feature list hierarchy, the team derives a

set of domain subject areas from the high-level breakdown of the

problem domain that the domain experts naturally used during the object

modeling sessions. Then within these areas, the team identifies the

business activities of that area and places individual features within one

of those activities. Therefore, in the features list we have areas containing

activities that in turn contain features.

 In practice, building the features list is a formalization of the features

already discussed during the development of the object model. For this

reason, lead developers or Chief Programmers can perform this task

using the knowledge they gained during the modeling. Other members of

the modeling team including the domain experts provide input to, and

verification of the list as necessary.

 Not only does this avoid the problems often encountered when

customers/domain experts that are unused to doing this sort of formal

decomposition try to do it, it provides another level of assurance that the

Chief Programmers do understand what is required.

�13

 In addition, the ubiquitous language the model provides helps phrase

features consistently. This helps reduce frustration in larger teams caused

by different domain experts using different terms for the same thing or

using the same terms differently.

 The third and last of the FDD processes involves constructing an initial

schedule and assigning initial responsibilities. The planning team initially

sequence the feature sets representing activities by relative business

value. Feature sets are also assigned to a Chief Programmer who will be

responsible for their development. At the end of this process, each Chief

Programmer effectively has a subset of the features list assigned to them.

For a Chief Programmer this is their backlog or ‘virtual inbox’ of features

to implement.

 The planning team may adjust the overall sequence of feature sets to take

into account technical risk and dependencies where appropriate. In larger

development efforts, the dependencies that have an impact on the

sequence may be purely technical in nature but are just as likely to

revolve around which feature sets are assigned to which Chief

Programmers, and as we shall see, which classes are owned by which

developers.

 FDD also departs from traditional agile thinking, in that it chooses not to

adopt collective ownership of source code. Instead, it assigns individual

developers to be responsible for particular classes. The initial assignment

of developers to classes takes place during this planning process.

 The advantages of individual class ownership include the following:

 There is someone responsible for the conceptual integrity of that class.

As enhancements are made, the class owner ensures that the purpose and

design of the class is not compromised.

 There is an expert available to explain how a specific class works. This is

especially important for complex or business-critical classes.

�14

 The class owner typically implements a required change faster than

another developer that is not as familiar with the class.

 The class owner has something of his or her own that he or she can take

personal pride in.

 In addition, it can become tricky to maintain true collective ownership of

code as team sizes increase. In my experience, over time, the same

developers naturally gravitate to working with the same parts of the code

again and again and effectively take ownership of them.

 In FDD though, class ownership implies responsibility not exclusivity. A

class owner may allow another developer to make a change to a class

they own. The big difference is that the class owner is aware of, and

approves of, the change and is responsible for checking that the change is

made correctly. [Felsing & Palmer, 2002]

 DSDM

 Dynamic systems development method (DSDM) is an agile project

delivery framework, primarily used as a software development method.

DSDM is an iterative and incremental approach that embraces principles

of Agile development, including continuous user involvement.

 DSDM fixes cost, quality and time at the outset and uses the MoSCoW

prioritization of scope into musts, shoulds, coulds and won't haves to

adjust the project deliverable to meet the stated time constraint.

 DSDM is one of a number of Agile methods for developing software and

non-IT solutions, and it forms a part of the Agile Alliance.

 Dynamic Software Development Method (DSDM) divides projects in

three phases: pre-project, project life-cycle, and post project.

 Nine principles underlie DSDM: user involvement, empowering the

project team, frequent delivery, addressing current business needs,

iterative and incremental development, allow for reversing changes,

�15

high-level scope being fixed before project starts, testing throughout the

lifecycle, and efficient and effective communication.

 Within DSDM a number of factors are identified as being of great

importance to ensure successful projects:

 First there is the acceptance of DSDM by senior management and other

employees. This ensures that the different actors of the project are

motivated from the start and remain involved throughout the project.

[Abrahamsson et al, 2002]

 The second factor follows directly from this and that is the commitment

of management to ensure end-user involvement. The prototyping

approach requires a strong and dedicated involvement by end user to test

and judge the functional prototypes.

 Then there is the project team. This team has to be composed of skillful

members that form a stable union. An important issue is the

empowerment of the project team. This means that the team has to

possess the power and possibility to make important decisions regarding

the project without having to write formal proposals to higher

management, which can be very time-consuming. In order for the project

team to be able to run a successful project, they also need the right

technology to conduct the project.

 Finally DSDM also states that a supportive relationship between

customer and vendor is required. This goes for both projects that are

realized internally within companies or by outside contractors.

[Abrahamsson et al, 2002]

 XP

 Extreme programming (XP) is a software development methodology

which is intended to improve software quality and responsiveness to

changing customer requirements. As a type of agile software

development, it advocates frequent "releases" in short development

�16

cycles, which is intended to improve productivity and introduce

checkpoints at which new customer requirements can be adopted. [Beck,

2000]

 Other elements of extreme programming include: programming in pairs

or doing extensive code review, unit testing of all code, avoiding

programming of features until they are actually needed, a flat

management structure, simplicity and clarity in code, expecting changes

in the customer's requirements as time passes and the problem is better

understood, and frequent communication with the customer and among

programmers. The methodology takes its name from the idea that the

beneficial elements of traditional software engineering practices are

taken to "extreme" levels. As an example, code reviews are considered a

beneficial practice; taken to the extreme, code can be reviewed

continuously, i.e. the practice of pair programming.

 XP focuses on best practice for development. Consists of twelve

practices: the planning game, small releases, metaphor, simple design,

testing, refactoring, pair programming, collective ownership, continuous

integration, 40-hour week, on-site customers, and coding standards.

 The revised XP2 consists of the following primary practices: sit together,

whole team, informative workspace, energized work, pair programming,

stories, weekly cycle, quarterly cycle, slack, 10-minute build, continuous

integration, test-first programming, and incremental design. [Beck, 2000]

 Crystal Methodologies

 Crystal methods are a family of methodologies that were developed by

Alistair Cockburn in the 1990s. The methods come from years of study

and interviews of teams by Cockburn. Cockburn’s research showed that

the teams he interviewed did not follow the formal methodologies yet

they still delivered successful projects.

 The Crystal family is Cockburn’s way of cataloguing what they did that

made the projects successful.

�17

 Crystal methods are considered and described as “lightweight

methodologies”. The use of the word Crystal comes from the gemstone

where, in software terms, the faces are a different view on the

“underlying core” of principles and values. The faces are a representation

of techniques, tools, standards and roles.

 Crystal methodologies is a family of methods for teams of different sizes

and criticality: Clear, Yellow, Orange, Red, Blue.

 The most agile method, Crystal Clear, focuses on communication in

small teams developing software that is not life-critical.

 Between all the methods in the Crystal family, there are seven prevailing

common properties. Cockburn found that the more of these properties

that were in a project, the more likely it was to succeed.

 The seven properties are: frequent delivery, reflective improvement,

close or osmotic communication, personal safety, focus, easy access to

expert users and a technical environment with automated tests,

configuration management, and frequent integration. [Abrahamsson et al,

2002]

 Lean software development

 An adaptation of principles from lean production and, in particular, the

Toyota production system to software development.

 Consists of seven principles: eliminate waste, amplify learning, decide as

late as possible, deliver as fast as possible, empower the team, build

integrity, and see the whole. [Mary & Tom, 2003]

 Adaptive software development

 Adaptive software development is a design principle for the creation of

software systems. The principle focuses on the rapid creation and

evolution of software systems. There is never a period where the

software is finished; there are just stable periods between new releases.

�18

The adaptive development method grew out of the rapid application

development method. These two methods are similar in structure, but

rapid application development allows for a time when the project is

finished, while adaptive software development doesn't.

 Adaptive software development replaces the traditional waterfall cycle

with a repeating series of speculate, collaborate, and learn cycles. This

dynamic cycle provides for continuous learning and adaptation to the

emergent state of the project. The characteristics of an ASD life cycle are

that it is mission focused, feature based, iterative, time-boxed, risk

driven, and change tolerant.

 The word ‘speculate’ refers to the paradox of planning – it is more likely

to assume that all stakeholders are comparably wrong for certain aspects

of the project’s mission, while trying to define it. During speculation, the

project is initiated and adaptive cycle planning is conducted. Adaptive

cycle planning uses project initiation information—the customer’s

mission statement, project constraints (e.g., delivery dates or user

descriptions), and basic requirements—to define the set of release cycles

(software increments) that will be required for the project.

 Collaboration refers to the efforts for balancing the work based on

predictable parts of the environment (planning and guiding them) and

adapting to the uncertain surrounding mix of changes caused by various

factors, such as technology, requirements, stakeholders, software

vendors. The learning cycles, challenging all stakeholders, are based on

the short iterations with design, build and testing. During these iterations

the knowledge is gathered by making small mistakes based on false

assumptions and correcting those mistakes, thus leading to greater

experience and eventually mastery in the problem domain. [Highsmith,

J., 2013]

�19

 2.02 Agile practices

 Acceptance test-driven development

 Acceptance test–driven development (ATDD) is a development

methodology based on communication between the business customers,

the developers, and the testers. ATDD encompasses many of the same

practices as specification by example, behavior-driven development

(BDD), example-driven development (EDD), and story test–driven

development (SDD).

 All these processes aid developers and testers in understanding the

customer's needs prior to implementation and allow customers to be able

to converse in their own domain language.

 ATDD is closely related to test-driven development (TDD). It differs by

the emphasis on developer-tester-business customer collaboration. ATDD

encompasses acceptance testing, but highlights writing acceptance tests

before developers begin coding.

 Acceptance tests are from the user's point of view the external view of

the system. They examine externally visible effects, such as specifying

the correct output of a system given a particular input.

 Acceptance tests can verify how the state of something changes, such as

an order that goes from paid to shipped. They also can check the

interactions with interfaces of other systems, such as shared databases or

web services.

 In general, they are implementation independent, although automation of

them may not be. [Downs, 2011]

 Agile modeling

 Agile modeling (AM) is a methodology for modeling and documenting

software systems based on best practices. It is a collection of values and

�20

principles, that can be applied on an (agile) software development

project. This methodology is more flexible than traditional modeling

methods, making it a better fit in a fast changing environment. It is part

of the agile software development tool kit.

 An important concept to understand about AM is that it is not a complete

software process. AM’s focus is on effective modeling and

documentation. It doesn’t include programming activities, although it

will tell you to prove your models with code. It doesn’t include testing

activities, although it will tell you to consider testability as you model. It

doesn’t cover project management, system deployment, system

operations, system support, or a myriad of other issues. Because AM’s

focus in on a portion of the overall software process you need to use it

with another, full-fledged process such as eXtreme Programming (XP),

DSDM, SCRUM, the Agile Unified Process (AUP), or the Rational

Unified Process (RUP). You start with a base process, such as XP or

RUP or perhaps even your own existing process, and then tailor it with

AM (hopefully adopting all of AM) as well as other techniques as

appropriate to form your own process that reflects your unique needs.

Alternatively, you may decide to pick the best features from a collection

of existing software processes to form your own process. For XP

projects, AM explicitly describes how to improve productivity through

addition of modeling activities whereas with for RUP projects it

describes how to streamline modeling and documentation efforts to

improve productivity.

 Agile modeling is a supplement to other agile methodologies such as

Scrum or extreme programming (XP). It is explicitly included as part of

the disciplined agile delivery (DAD) framework.

 As per 2011 stats, agile modeling accounted for 1% of all agile software

development. [Wiley, J. and Sons, A.M., Effective Practices for Extreme

Programming and the Unified Process]

�21

 Backlog

 The backlog comprises an ordered list of requirements that a scrum team

maintains for a project. It consists of features, bug fixes, non-functional

requirements, etc.—whatever must be done to successfully deliver a

viable product. The project owner orders the Product Backlog Items

(PBIs) based on considerations such as risk, business value,

dependencies, and date needed.

 Items added to a backlog are commonly written in story format. The

product backlog is what will be delivered, ordered into the sequence in

which it should be delivered. It is visible to everyone but may only be

changed with the consent of the Product Owner, who is ultimately

responsible for ordering Product Backlog Items for the Development

Team to choose.

 The Product Backlog contains the project owner's assessment of business

value and the Development Team's assessment of development effort,

which are often, but not always, stated in story points using a rounded

Fibonacci sequence. These estimates help the project owner to gauge the

timeline and may influence ordering of Product Backlog Items; for

example, if the "add spellcheck" and "add table support" features have

the same business value, the Product Owner may schedule earlier

delivery of the one with the lower development effort (because the return

on investment is higher) or the one with higher development effort

(because it is more complex or riskier, and they want to retire that risk

earlier).

 The Product Backlog and the business value of each Product Backlog

Item is the responsibility of the project owner. The size of each item is,

however, determined by the developers, who contribute by sizing in story

points or estimated hours. [Deemer et al, 2012]

�22

 Behavior-driven development

 Behavior-driven development (BDD) is a software development process

that emerged from test-driven development (TDD). Behavior-driven

development combines the general techniques and principles of TDD

with ideas from domain-driven design and object-oriented analysis and

design to provide software development and management teams with

shared tools and a shared process to collaborate on software

development.

 Behavior-driven development is an extension of test-driven development:

[1] development that makes use of a simple, domain-specific scripting

language. These DSLs convert structured natural language statements

into executable tests. The result is a closer relationship to acceptance

criteria for a given function and the tests used to validate that

functionality. As such it is a natural extension of TDD testing in general.

 Although BDD is principally an idea about how software development

should be managed by both business interests and technical insight, the

practice of BDD does assume the use of specialized software tools to

support the development process. Although these tools are often

developed specifically for use in BDD projects, they can be seen as

specialized forms of the tooling that supports test-driven development.

The tools serve to add automation to the ubiquitous language that is a

central theme of BDD.

 BDD is largely facilitated through the use of a simple domain-specific

language (DSL) using natural language constructs (e.g., English-like

sentences) that can express the behavior and the expected outcomes. Test

scripts have long been a popular application of DSLs with varying

degrees of sophistication. BDD is considered as an effective technical

practice especially when the "problem space" of the business problem to

solve is complex. [Solis et al, 2011]

�23

 Continuous integration

 In XP, Continuous Integration (CI) was intended to be used in

combination with automated unit tests written through the practices of

test-driven development. Initially this was conceived of as running all

unit tests in the developer's local environment and verifying they all

passed before committing to the mainline. This helps avoid one

developer's work-in-progress breaking another developer's copy. If

necessary, partially complete features can be disabled before commit,

such as by using feature toggles.

 Continuous Integration is backed by several important principles and

practices that include maintaining a single source repository, automating

the build, make the build self-testing, every commit should build on an

integration machine, keeping the build fast, testing in a clone of the

production environment, making it easy for anyone to get the latest

executable, letting everyone see what is happening and automating

deployment. [Fowler & Foemmel, 2006]

 Continuous Integration is a development practice that requires developers

to integrate code into a shared repository several times a day. Each

check-in is then verified by an automated build, allowing teams to detect

problems early.

 By integrating regularly, they can detect errors quickly, and locate them

more easily.

 Later elaborations of the concept introduced build servers, which

automatically ran the unit tests periodically or even after every commit

and reported the results to the developers. The use of build servers had

already been practised by some teams outside the XP community.

Nowadays, many organisations have adopted CI without adopting all of

XP.

 In addition to automated unit tests, organisations using CI typically use a

build server to implement continuous processes of applying quality

�24

control in general — small pieces of effort, applied frequently. In

addition to running the unit and integration tests, such processes run

additional static and dynamic tests, measure and profile performance,

extract and format documentation from the source code and facilitate

manual QA processes. This continuous application of quality control

aims to improve the quality of software, and to reduce the time taken to

deliver it, by replacing the traditional practice of applying quality control

after completing all development. [Fowler & Foemmel, 2006]

 Domain-driven design

 The philosophy of domain-driven design (DDD) is about placing our

attention at the heart of the application, focusing on the complexity that

is intrinsic to the business domain itself. It also distinguishes h the core

domain from the supporting sub-domains, and place appropriately more

of the design efforts on the core.

 Domain-driven design consists of a set of patterns for building enterprise

applications from the domain model out. In your software career you

may well have encountered many of these ideas already, especially if you

are a seasoned developer in an OO language. But applying them together

will allow you to build systems that genuinely meet the needs of the

business.

 Domain-driven design (DDD) is an approach to software development

for complex needs by connecting the implementation to an evolving

model. The premise of domain-driven design is the following placing the

project's primary focus on the core domain and domain logic, basing

complex designs on a model of the domain and initiating a creative

collaboration between technical and domain experts to iteratively refine a

conceptual model that addresses particular domain problems. [Evans,

2004]

�25

 Pair programming

 Pair programming is an agile software development technique in which

two programmers work together at one workstation. One, the driver,

writes code while the other, the observer or navigator, reviews each line

of code as it is typed in. The two programmers switch roles frequently.

 While reviewing, the observer also considers the strategic direction of the

work, coming up with ideas for improvements and likely future problems

to address. This frees the driver to focus all of his or her attention on the

tactical aspects of completing the current task, using the observer as a

safety net and guide.

 Pair programming is considered to offer benefits such as:

 Increased discipline because by pairing partners they are more likely to

"do the right thing" and are less likely to take long breaks.

 Better code as pairing partners is claimed to produce higher quality

designs.

 Improved team morale as programmers agree that it is much more

enjoyable than programming alone.

 Collective code ownership as pairs rotate frequently and everybody gains

a working knowledge of the entire code.

 Improved mentoring as everyone, even junior programmers, has

knowledge that others don't.

 Better team cohesion as people get to know each other more quickly

when pair programming. [Cockburn & Williams, 2000]

 Test-driven development

 Test-driven development (TDD), is an evolutionary approach to

development which combines test-first development where you write a

test before you write just enough production code to fulfill that test and

�26

refactoring. The primary goal of TDD is specification and not validation.

In other words, it’s one way to think through your requirements or design

before your write your functional code. [Ambler, 2003]

 Test-driven development (TDD) is a software development process that

relies on the repetition of a very short development cycle: requirements

are turned into very specific test cases, then the software is improved to

pass the new tests, only. This is opposed to software development that

allows software to be added that isn't proven to meet requirements.

[Beck, 2000]

 A significant advantage of TDD is that it enables you to take small steps

when writing software. This is a practice that is far more productive than

attempting to code in large steps.

 Kent Beck, who is credited with having developed or ‘rediscovered' the

technique, stated in 2003 that TDD encourages simple designs and

inspires confidence.

 Test-driven development is related to the test-first programming concepts

of extreme programming, begun in 1999, but more recently has created

more general interest in its own right.

 Programmers often apply the concept to improving and debugging legacy

code developed with older techniques.

 TDD is being quickly adopted by agile software developers for

development of application source code and is even being adopted by

Agile DBAs for database development. TDD should be seen as

complementary to Agile Model Driven Development (AMDD)

approaches and the two can and should be used together. TDD does not

replace traditional testing, instead it defines a proven way to ensure

effective unit testing. [Ambler, 2003]

�27

 Agile testing

 Agile is an iterative development methodology, where requirements

evolve through collaboration between the customer and self-organizing

teams and agile aligns development with customer needs. A software

testing practice that follows the principles of agile software development

is called Agile Testing.

 Agile development recognizes that testing is not a separate phase, but an

integral part of software development, along with coding.

 Agile teams use a "whole-team" approach to "baking quality in" the

software product. Testers on agile teams lend their expertise in eliciting

examples of desired behavior from customers, collaborating with the

development team to turn those into executable specifications that guide

coding.

 Testing and coding are done incrementally and interactively, building up

each feature until it provides enough value to release to production. Agile

testing covers all types of testing. The Agile Testing Quadrants provide a

helpful taxonomy to help teams identify and plan the testing needed.

 In contrast with other methodologies, agile testing focuses on repairing

faults immediately, rather than waiting for the end of the project and by

doing so, it is expected to significantly reduce cost. [Crispin, 2003]

�28

 2.03 Criticism of Agile Methodology

 “For all its proponents,” writes Mike Brown of uTest, “Agile has its fair

share of skeptics and detractors. These are people who have a much

different Agile experience—one characterized by chaotic processes,

lower quality, miscommunication and numerous other problems.”

 In 2012, Max Smolaks of TechWeek Europe,reporting on research

conducted by Voke Media to determine what 200 different software

companies thought of their attempt to embrace Agile, wrote:

 “Out of over 200 participants, 64 percent said that switching to Agile

Development was harder than it initially seemed. Forty percent of

respondents did not identify an obvious benefit to the practice. Out of

those who did, 14 percent thought it resulted in faster releases, and 13

percent—that it created more feedback. Seven percent of participants

noted that Agile developers were happier due to reduced future planning

and documentation.”

 These results strongly suggest that for organizations entrenched in years

of non-Agile working practices, making the switch can be difficult, if not

counterproductive.

 Scott Barber explains “I believe that the trend to go Agile is misguided. If

a company is developing good software, the people involved in

developing that software are happy working there, the software

development is sustainable, and the business is being adequately served

by that software, there’s really no need for them to try to be more or less

Agile. Agile has challenges like any other culture, but the single biggest

challenge I find is companies trying to solve development, process,

management, and/or schedule problems by going Agile. Teams who have

�29

grown up in a culture that is fundamentally different from Agile simply

will not find it easy to go Agile.”

 In other words, companies expecting Agile to be a magic bullet to fix

whatever ails their production efforts may be seriously disappointed, as it

demands more of a systemic culture-shift than merely embracing a new

set of tools and procedures.

 Moreover, it isn’t a one-size-fits-all approach. What works for a small

San Francisco startup may be completely inappropriate for an enterprise

with 5,000 employees distributed in cities around the world. Agile might

not also be the right practice for software companies and IT firms that are

subject to regulatory compliance mandates, such as government agencies

and their contractors, where extensive documentation and procedures rife

with checks and balances are essential.

 Naturally, proponents of Agile suggest that virtually all of the problems,

complaints, and negative experiences that companies attempting to use

Agile have reported are due not to a problem with Agile itself, but with a

failure to understand the approach and its limitations. Others, such as

technology strategist Lajos Moczar, claim to understand Agile fully and

yet contend that its guiding principles are flawed. In an article on

CIO.com published in June 2013 and titled “Why Agile Isn’t Working,”

Moczar ignited a firestorm, with pro-Agile and anti-Agile commenters on

his post engaging in mild verbal warfare. “The comments in this thread

have taken a strangely negative religious tone,” noted one participant,

“like watching one sectarian argue doctrine with a member of another

sect.” As with all ideological paradigms, some people embrace—or

denounce—Agile with an almost spiritual fervor.

 However, there are many signs suggesting that despite its potential

drawbacks, the rapid adoption and popularization of Agile is largely

based on the pragmatic demands placed on software production and

�30

information technology in the early 21st century. When everything is

changing so fast, some agility is simply required.

 Agile methodology was supposed to be a solution to solve all of our

problems but some argue that is not. As issues appear when companies

start to implement Agile in their organizations, a research has been done

on seventeen companies using Agile methodology. [Coyle & Conboy,

2010]

 The authors of the research considered the four below as the most

important:

 Developer fear caused by transparency of skill deficiencies

 The Progress of each team member’s work is usually reported on daily

basis. Therefore, every member knows how long it takes each person to

do it. If for some reasons, a task took you more time than it should, you

can have a feeling that everybody is judging you. Furthermore, design

discussion with a whiteboard can highlight technical skill deficiencies or

lacks in communications skills. Research has shown that many

developers have a low self-esteem because of that. To prevent such

problems team members should feel safe to expose their weaknesses.

 A good idea would be a second meeting in a small group after the main

one. Second thing is that developers should know that they can get help

to improve their skills. Junior developers should have a mentor who

would help them with their daily issues. Pairing is also an excellent

practice. More experienced team members could share their knowledge

with those less experienced. [Coyle & Conboy, 2010]

 The need for developers to be a ‘master of all trades’

 It is believed that to be a successful agile developer you need to be a

coder, a tester, an architect, a customer, a quality assurance expert and a

multitude of other things software-related. So how can a tester be an

�31

architect and database expert at the same time? According to the research

some companies were sending their employees to all sorts of trainings.

But it was expensive and not as effective as they thought it would be.

Some claim that balance between “master of all” and “master of none”

should be obtained here. [Coyle & Conboy, 2010]

 A team leader should choose team members carefully. Developers should

have a broad knowledge of all aspects of the software development as

well as business knowledge, but at the same they should be specialists in

certain areas. This could be easy within a small team but in case of larger

ones it can be extremely difficult. [Coyle & Conboy, 2010]

 Increased reliance on social skills

 Because of the constant communication in Agile, team members should

have good communication skills. Quite often we can see a great

developer with poor social skills. This is a great issue when a team

member can’t express their thoughts to the rest of the team. Developers

can often talk to each other but they can’t get along with customers. The

Agile methodology assumes that developers should contact their clients

directly and talk about specific features.

 The most intuitive solution is to send employees to social trainings and,

as the research showed, it is the most effective solution. Also recording

stand-up meetings and analyzing them seems to be a good practice.

Instead of an individual contact with clients, a group of people can be

chosen to talk with them. It has been suggested that when creating an

agile team, each member should have good communication skills right

on the start to prevent problems in future work. [Coyle & Conboy, 2010]

 A lack of business knowledge among developers

 It is a very common problem in case of larger teams and more complex

software. Because each team member can get knowledge from the client

directly, the knowledge is later spread throughout the team. After a while

�32

it appears that every member of the team is a specialist in a narrow area

of software which is being created. It often happens that not every

member has the same knowledge about the domain as the client. This can

cause misunderstandings when a different from usual team member has

to speak to a specific client. It may even end up in losing customer’s trust

in the team.

 It is extremely important that each and every member of the team has

some basic business knowledge, in order to speak with clients on equal

basis. Differences in the knowledge between team members can be

aligned by pair programming and short trainings. While pairing there is a

knowledge flow between the developers. Inviting a domain expert, as

research has shown, it is a great solution to lift team members’

knowledge to an upper level of understanding. [Coyle & Conboy, 2010]

 2.04 Teaching Software Engineering at MIT

 A report by Hal Abelson and Philip Greenspun presents the teaching

methods they employed at teaching software engineering at MIT. They

discuss methods for involving alumni as teaching assistants and coaches

and argue for the method of helping students achieve fluency by

assigning five complete applications for construction in a semester rather

than the traditional single problem in a software engineering semester.

 The report argues that starting in the early 1990s, demand from computer

engineering courses shifted toward server-based Internet applications.

With 1000 users potentially attempting the same action at the same

instant, the technical challenge shifts to managing concurrency and

transactions. Given stateless protocols such as HTTP, software engineers

must learn to develop stateful user experiences. Given the ubiquitous

network and evolving standards for remote procedure calls, students can

learn practical ways of implementing distributed computing.

�33

 To contribute to the information systems of the next 20 years, in addition

to the material in the core computer science curriculum, the students need

to be familiar with the principles of distributed computing, currency and

transactions and how to build a stateful user experience on top of

stateless protocols

 “Scientists measure their results against nature. Engineers measure their

results against human needs. Programmers ... don't measure their results.

As a final overarching deep principle, we need to teach students to

constantly measure their results against the end-user experience. Anyone

can build a Web service. The services that are successful and have impact

are those whose data model and page flow permit the users to accomplish

their tasks with a minimum of time and confusion.” [Abelson &

Greenspun, 2001]

 In regard to teaching skills, Abelson and Greenspun argue that at MIT

they concentrate on teaching principles rather than skills. For example,

there is no course in the computer science department that teaches a

computer language. Students learn Lisp as a notation for the computer

science concepts in their first course. Students write code in Java in the

first software engineering course. But they don't go through one language

feature per lecture as some schools might.

 They argue that they didn’t have to teach computer science students any

skills because they'd “graduate into a job at Hewlett Packard or IBM”

and they would be “sitting next to an experienced engineer, the graduate

would learn his or her craft over a six-year period and emerge, at age 28,

to lead a project or become the chief technologist at a small company”.

[Abelson & Greenspun, 2001]

 With the Web explosion, however, came an explosion in the number of

organizations engaging in software development. Teams are smaller,

�34

deadlines are shorter, and there aren't enough qualified project leaders to

go around. In the superheated job markets of today there is a surprising

number of MIT graduates starting off as CTOs of startup companies or in

lead engineering roles on Web projects for larger organizations. Thus

focus is to teach some of the more important skills of an experienced

engineer, notably rapid application development and dealing with

extreme requirements.

 MIT graduates should be able to take vague and ambitious specifications

and turn them into a system design that can be built and launched within

a few months, with the most important-to-users and easy-to-develop

features built first and the difficult bells and whistles deferred to a second

version. Students should learn how to test prototypes with end-users and

refine their application design once or twice within even a three-month

project.

 As business decision-makers are no longer shy about presenting software

engineers with extreme requirements they teach two methods of dealing

with extreme requirements. The first is via automatic code generation. If

the system requirements can be represented in a machine-readable form

then a portion of the software can be generated by a computer program.

If the requirements change mid-stream, it is only needed to run the code

generator again. The second method of dealing with extreme

requirements is via use of a toolkit. For example, in the case of the three-

month accounting system project, starting with a toolkit such as SAP or

Oracle Applications is probably a much better idea than trying to write all

the code from scratch.

 Students in a traditional computer science curriculum will often spend a

term on each of these: learning the syntax of a language, how to

implement lists, stacks, hash tables, how to interpret a high-level

language, how to build a time-sharing operating system, learn about the

underpinnings of several different kinds of database management

�35

systems and learn about AI algorithms. Students in MIT learn all of the

above in one semester, albeit not very thoroughly.

 In regard to projects, they insist on having a client for every project

undertaken. This is a person who can describe their desired capabilities

for an information system but offers no hint as to how to build it. They

have identified that the best clients are people who are in fact passionate

about some sort of Internet service and completely clueless about all

matters technical such as CEOs, MBA students, non-profit organization

directors, and university administrators. Students have the best

opportunity for success when the client has a clear idea of what features

are essential and when the client responds quickly to email announcing

the availability of a revised prototype. Clients who change their minds

about the application when seeing a first prototype are instructive for the

entire class as it resembles the real world.

 For making sure that projects stay on track, one valuable technique was

to have each student group present privately to the lecturers once per

week during the evening lab hours.

 The best projects were ones with clients who had the means to extend

and maintain the service after the course is over, possibly by hiring the

students who built it. For example, there were students that build a

volunteer matching and event coordination system for a group within

MIT. The group was already up and running doing a dozen or more

events every year and managing thousands of volunteer-days. So they

had a real interest in a better computer support for their work and the

ability to launch the system within the MIT community.

 At the end of the semester the focus is to drill into the students' heads the

cold hard facts of the world: nobody owes them attention. Each student

group prepares an overview page that is a single HTML document, with a

�36

few screen shots, that demonstrates the major functions of the application

that they've built.

 However, according to the report [Abelson & Greenspun, 2001], learning

on projects is not very uniform. Some students end up with projects that

expose them to a big range of challenges but others get to do something

trivial. Also because each project has different goals that are client-

dependent, the students are sometimes not able to have very meaningful

exchanges concerning their projects amongst themselves.

 Abelson and Greenspun identify the ability to bring alumni back to

campus to share their industrial software engineering expertise as

opposed to a more structured tutoring as one of the most important

success factors of their course. They conclude by offering the view that a

significant improvement in teaching students software engineering skills

can be achieved by challenging students to build multiple applications

over a semester, bringing professional software engineers onto the

campus to coach students, a terminal room where students can work

together on a scheduled basis, projects with real clients and an emphasis

on oral and written presentation of results.

 2.05 Teaching agile software development

 Several recent surveys show that agile methodologies like Scrum and

Extreme Programming have been successfully adopted by many

companies for software development. However, the same surveys show

that only few of the agile practices are applied consequently and

thoroughly. This is to a great extent due to the lack of skilled personnel.

[Kropp & Meier, 2013] In their work, Kropp and Meier, proposed a more

holistic approach for teaching agile software development, in which the

required agile practices and values are not only integrated theoretically

into the courses but also practically applied. The proposed concept was

�37

realized in a new a course at Zurich University of Applied Sciences

during 2012. The researchers claim that the evaluation showed very

encouraging results.

 Kropp and Meier argue that “the early adopters of agile approaches were

all highly mature and technically skilled experts in their fields. They had

internalized the agile philosophy, were very productive and produced

high quality results. Today’s agile teams, however, are “normal” software

teams, with architects, seniors and juniors in one team, and many of them

are not yet familiar with the agile philosophy. Even though those teams

have improved in software development to some extent, they are far less

productive than the early adopter expert teams. Survey results show that

quality has partially even gone down and overall costs increased. One

reason for this may be that many of the important agile practices are not

applied as thoroughly as the agile pioneers proposed”.

 They also argue that although agile software development has been

around for more than a decade, teaching agile software development has

only drawn some attention in educational and research conferences in the

last few years. A reason for this might be that agile development is not

based on a green-field theory but has been developed from practice. It is

extensively discussed why software engineering programs should teach

agile software development. They emphasize that software engineers not

only need technical skills but also social and ethical ones, which are both

corner stones of agile development. [Kropp & Meier, 2013]

 In the recent study, in which 140 Swiss IT companies and almost 200 IT

professionals participated it clearly showed that IT companies and IT

professionals following the agile methods are much more satisfied with

their methodologies than their plan-driven counterparts. The study also

showed very clearly, that major goals of introducing agile development

have been reached: A significant improvement in the ability to manage

changing priorities, improvement of the development process in general

and a much faster time-to-market.

�38

 However, although the survey shows very promising results at first view,

there are also quite astonishing findings. It is reported that development

cost, software quality and software maintainability have not improved as

much as expected. It is remarked “this clearly contradicts the intention of

the authors of the agile manifesto, who want to deliver high quality code

that is easily maintainable”. [Kropp & Meier, 2013]

 Lastly the research shows, that there are too few software engineers with

the skills for agile development. This suggests that teachers do not yet

educate the students with the required skills. This assumption is backed

by answers to the survey where almost 70% percent of the participating

companies think that undergraduates have too little knowledge of agile

methods. [Kropp & Meier, 2013]

 The researchers argue that before developing a new agile software

engineering course, it is important to analyze the needed skills and

competences for agile software development. The required competences

can be divided into three major categories:

 Mastering the technical skills or engineering practices, builds the

foundation for being able to develop high quality software. These

engineering practices are especially defined by eXtreme Programming

and include best practices like unit testing, clean coding, test-driven

development, collective code ownership and the like. Engineering

practices are mostly competences that refer to the single individual.

 On the second level come the agile management practices. They define

how agile projects are organized and run. Agile management practices

include iterative planning, short release cycles, small releases, strong

customer involvement and highly interactive teams. Management

practices are typically team aspects, which require the appropriate social

competences.

 On top of these competences come the agile values, which are articulated

in the agile manifesto and are based on characteristics like mutual

respect, openness, and courage.
�39

 Engineering practices can be taught very well in the classroom through

lecturers and be learned by the individuals at their own pace.

 Management competences are best taught through student projects in

teams, as the research confirms.

 These different competence levels have to be considered in an agile

software engineering course and have guided the authors in the design of

the new course.

 Lastly it is argued that Agile values are difficult to teach. The approach

for Kropp and Meier was through many discussions during the lectures

and workshops to transport the message that these values are not just

something the creators of the Agile Manifesto intended to give lip service

to and then forget. They are working values. The concepts of agile values

were introduced in the first part. Usage of the values was propagated in

the second iteration through means like retrospectives, common code

ownership or pair programming.

 It is the authors’ opinion that agile software development cannot be

taught in isolated Software Engineering courses. A challenge will be the

integration of agile development in “other courses like programming,

object-oriented analysis and design, algorithms and data structures,

etc.” [Kropp & Meier, 2013] Special attention needs to be paid to the

fact, that agile software development does not work well together with

big-design up front approaches. This could mean a shift from BDUF to

emergent design as advocates of Scrum propose it. That said, further

work is necessary on how agile development can successfully be

integrated into the computer science curriculum. [Kropp & Meier, 2013]

�40

 2.06 Bringing Agile into the Capstone Course

 In his 2014 report [Kuhl, 2014] John Kuhl from the University of Iowa,

identified the issues that arise when switching the capstone project course

to agile development. In particular he noticed that it was challenging to

quickly, but effectively, train student teams to utilize Scrum in order to

get teams functioning as early as possible in the semester.

 Other problems he faced were related to how to fill the Product Owner

and Scrum Master roles on student teams, how to track team progress,

how to identify problems in teams and provide formative feedback, how

to insure that teams are employing rigorous testing practices throughout

the development cycle and how to evaluate individual student

performance for grading purposes.

 The problem of getting students up to speed with agile/Scrum was

addressed by revising a prerequisite software engineering methodology

course to include coverage of agile development. A short (six week)

project in the prerequisite course was also modified to use Scrum in order

to provide students with some practical experience prior to the capstone

course. At the beginning of the capstone course, four lectures were

devoted to reviewing agile/Scrum development and other important

concepts including testing and continuous integration. These lectures

overlapped with the formation of student teams and development of

product visions and initial product backlogs by teams so they did not

substantively delay the start of project activity. Teams were able to begin

their first development sprint at the end of the second week in the

semester, allowing for the completion of six two-week sprints prior to the

final week of the 14-week semester. The last week of the semester was

reserved for class presentations.

 Filling the Product Owner role on the student teams posed perhaps the

biggest challenge. Since the Product Owner is responsible for

development user stories, prioritizing features, and selecting the set of
�41

features to be implemented in each sprint, the role is critical to team

success. Teams were strongly encouraged to identify a real customer for

their project, and approximately half of the teams were able to do so.

However, it was not practical for any of the customers to commit the

time or effort required for the teams' product owner roles. Other teams

chose self-defined project ideas and thus did not have an external

customer. In both cases, teams were directed by the instructor to select

one team member to serve as the Product Owner. In cases where the team

had a real, external customer, this team member was expected to work

with that customer as closely as possible to develop and prioritize user

stories, select sprint backlogs, and make final feature acceptance

decisions at the conclusion of each sprint. Most of the teams that lacked a

real customer found it most productive to do product management

activities consortially, with the designated Product Owner playing a

limited role. In one case, the team delegated full product management

responsibility to the designated Product Owner. Both scenarios seemed to

work satisfactorily. However, the instructor found it necessary to watch

the teams closely to make sure that product management

responsibilities--particularly acceptance of completed features--were

being adequately addressed.

 The Scrum Master role was found to be less critical. The primary

responsibility of the Scrum Master is to insulate the team from outside

distractions and interface with management and other stakeholders on

behalf of the team. In an academic setting, external influences are

minimal and most teams found that they could function fine without a

designated Scrum Master. Teams were given the option of selecting a

Scrum Master and a few found the role useful for facilitating logistical

issues such as arranging team meetings.

 Tracking of team progress was facilitated by the use of a project

management tool called Pivotal Tracker. Tracker is widely used by agile

teams to manage product and sprint backlog and monitor product

development progress. The tool provides a web-based dashboard that

�42

makes it easy to monitor the creation and management of user stories and

assess team progress in implementing new features. Although the

primary motivation for mandating the use of tracker by teams was to

facilitate project management, the tool provided an excellent window for

the instructor to view how effectively teams were functioning. Via this

tool, the instructor was able to identify several emerging team problems

during the initial sprint and provide formative feedback to the affected

teams to address the identified issues.

 An additional mechanism used to assess team performance and progress

was in-class review/retrospective sessions. At the conclusion of each

sprint, teams were required to provide a brief summary of their post-

sprint review and retrospective meetings to the class and instructor. To

insure that all aspects of team performance were addressed, the instructor

identified a particular area of emphasis for each in-class review--e.g.

testing, feature acceptance, configuration management, etc. Following

each of these reviews the instructor provided detailed formative feedback

to the teams, as needed, to address any identified problems or concerns.

Following the third sprint, teams were required to give an in-class

demonstration of their product.

 Since continuous testing is central to agile development, the capstone

course provided a heavy emphasis on all aspects of testing: unit testing,

integration testing, regression testing, and acceptance testing. By the end

of the third week of the semester, teams were required to submit a Test

Plan addressing all of the above-listed testing areas. Teams were also

required to utilize automated testing tools, of their choosing to expedite

the testing process. In addition to submission of the written Test Plan,

and in-class review was conducted. Following the fourth sprint, teams

were required to conduct an in-class review and demonstration of their

testing procedures and processes.

 Lastly, the difficulty of Individual evaluation of student achievement in

any team-based project course is noted by Kuhl. In this course the

�43

difficulty was exacerbated by the democratized nature of the teams and

the lack of specifically defined roles for team members. [Kuhl, 2014]

 2.07 Teaching Using Simulation Games

 As with MIT’s example, it is often argued that a typical software

engineering course fails to teach its students many of the skills needed in

software development organizations. Because lectures and class projects

alone cannot adequately teach about the software process, researchers at

the University of California, Irvine, have developed a pair of games in

which the process is simulated, giving students an opportunity to practice

it firsthand. [Navarro et all, 2004] It is an efficient way of simulating real

projects and is feasible with larger class sizes as opposed to MITs way of

having each student group work on a real project for clients.

 In their report they maintain that there is a large difference between the

software engineering skills taught at a typical university and the skills

that are required of a software engineer by a software development

organization. This problem seems to stem from the way software

engineering is typically introduced to students: general theory is

presented in lectures and put into practice in an associated class project.

 They argue that although both lectures and projects are essential, they

lack a practical, in-depth treatment of the overall process of software

engineering. In particular, lectures allow only passive learning, and the

size and scope of class projects are too constrained by the academic

setting to exhibit many of the fundamental characteristics of real-world

software engineering processes.

 To address this problem, they have been in the process of researching,

designing, building, and experimenting with two game-based simulation

tools for teaching software engineering: Problems and Programmers, a

�44

physical card game that simulates a software engineering process; and

SimSE, a computer-based environment that allows the creation and

simulation of software engineering processes. Both allow students to

“virtually” participate in a realistic software engineering process that

involves real-world components not present in class projects, such as

teams of people, large-sized projects, critical decision-making, personnel

issues, multiple stakeholders, budgets, planning, and random, unexpected

events. Moreover, the rapid and flexible nature of simulation allows

experiences to be repeated, different situations to be introduced and

practiced, and promotes a general freedom of experimentation in the

training exercise.

 Their research has shown that on average, students found the game quite

enjoyable to play and relatively easy to play. They also felt that it was

moderately successful in reinforcing software engineering process issues

taught in the introductory software engineering course they had taken and

equally successful in teaching software engineering process issues in

general.

 Perhaps most indicative is the positive answer from the students on the

question as to whether the game should be incorporated as a standard part

of a software engineering course, clearly a vote of confidence by the

students who participated in the experiment.

 Students were also asked to answer some open-ended questions about the

game and the researchers found that their responses to these questions

also reflected a positive attitude about the simulation. [Navarro et al,

2004]

�45

 2.08 Teaching Methods

 Based on the software engineering methods, many instructional design

methodologies have been developed and many others are emerging to

face the problem of the course design, each of them carrying the same

advantages and disadvantages, limits, conditions of applications and

problems such as the originating methods.

 Today, the most common methodology in European schools is the Dick

and Carey one [Dick & Carey, 1990], or its several variants. Some of the

typical problems with the application of this method are the marginal role

of students in the instructional design process and the related problems of

satisfaction; the often unbalanced student workload for each subject and

term; the compelling choice of materials and technological tools at the

beginning of the instructional process; the scheduling and the revision of

the plan in case of failure. These problems are very similar to those

arising from the application of traditional software engineering methods

like, for example, the waterfall model.

 In the book Agile Instructional Design, Peter Rawsthorne maintains that

the software engineering methodologies have had influence over

Instructional Design methodologies and, now agile methodologies are

spreading and then they can provide new techniques to instructional

design methodologies. According the author, from the point of view of

learning theories, Agile Instructional Design methods enhance

constructivism as they involve the learner in the curriculum development

process.

 In her 2007 book, De Vincentis [De Vincentis, 2007] argued that

“students need to develop not only excellent numeracy and literacy skills,

but problem solving skills, creative solution skills, strategy skills,

relationship skills, think-on-your-feet skills” to be able to create new jobs

and also be able to switch jobs easier in a fast pace environment.

�46

 The author observes that curricula are essentially based on values and the

essential learning and that life skills are considered through the blending

of discipline based content with values and life skills they. Moreover,

equity and standardization are opposite and teaching is often for testing.

She proposed a student-centric approach based on the following Agile

Education Manifesto based on the Agile Manifesto by placing individuals

and interactions over processes and tools, working education over

comprehensive documentation, customer collaboration over contract

negotiation, and responding to change over following a plan. [De

Vincentis, 2007]

 Current instructional design methodologies have been found to have

various shortcomings when it comes to projects.

 The following are highlighted in a technical report by Domenico Lembo

and Mario Vacca:

 The ineffectiveness of documentation and plan revision

 The project plan related to each subject is made at the beginning of the

course; each time that some problem happens imposing the plan revision,

the new project plan should be rewritten in order to make this document

effective.

 Rewriting documents requires time and efforts to make the document

coherent with the others related to the other subjects.

 The time scheduling of the project

 It is well known that projects are often delayed; it can happen that, in

order to meet deadlines, the realization of some activities could be

accelerated, yielding problems in student understanding skills and

increasing the workload.

�47

 The marginal role of students in the design of course

 Students have little space in the course design: they participate a few

times a year to teachers’ team meetings.

 From an engineering point of view, the students role is essentially limited

to the validation of the instructional contract.

 The unbalanced student workload

 Because of each discipline produces its own workplan applying the more

appropriate method and without a detailed verification of the relations

among the modules or activities of the different disciplines, it could be

possible that in some period the student workloads results unbalanced or

unbearable, producing negative results on the quality of learning. [Lembo

& Vacca, 2011]

 2.09 Virtual methods

 Several approaches have been developed to teach Agile Methods in

software engineering courses through capstone projects. A capstone

project is a cooperative assignment that aims to provide students with an

opportunity to integrate the concepts learned previously, deepen their

understanding of those concepts, extend their area of knowledge;

students are expected to apply their knowledge and skills in a real world

experience.

 Alfonso and Botia [Alfonso & Botia, 2005] compared the results of

teaching Scrum practices in an undergraduate software course with a

previous experience using a waterfall-like rigid process, resulting in a

decrease in risks and process overhead. It is reported on the use of

capstone projects to initiate future software professionals in the

importance of agility, flexibility, and adaptability in professional

�48

contexts. By carrying out a project-work, the students followed an

iterative and incremental teaching approach based on XP, Scrum and

FDD. Mahnic [Mahnic, 2012] taught Scrum through a capstone project

and described the course details, students’ perceptions and teachers’

observations after the course.

 However, these approaches fail to address the teaching constraints in a

university course such as large classes, multiple groups working at a

time, limited space, and limited number of tutors. Using a room for

multiple teams may jeopardize the effective implementation of the Scrum

process since each team may require customized configurations of the

room, whereas physical space and teaching materials for a personalized

class may prove unviable.

 In order to prepare students for their professional experiences in

commercial software development, where Agile Methods are widely

used, some researchers have introduced Scrum in software engineering

courses by means of a capstone project. However, teaching through a

capstone project is a challenging task, due to drawbacks such as

complexity of projects, lack of physical resources, numerous groups of

students and packed schedules, which affect the normal running of the

course.

 Another increasing trend in teaching Scrum practices is the use of

simulation games, which may act as a bridge from academic knowledge

to the industry . Along this line, the research [Rodriguez et al, 2015]

found a number of agile-based games

commonly used in industries and

coaching, designed to strengthen and fix concepts and practices. These

games require physical presence and are useful to learn how to adapt to

changes in software requirements, customer management strategies and

self-organizing dynamics in agile teams, among others; since they are

cornerstone of Scrum. In the academic context, they found PlayScrum, a

card game to allow university-level students to learn Scrum; just as in

Virtual Scrum, students play different Scrum roles in a software

�49

development project. Unlike PlayScrum, Virtual Scrum uses a virtual

world to simulate a real work environment handling 3D displays of the

Scrum artifacts.

 Games such as Agile Hour and XP Game teach XP

practices through a

web site; these practices complement the Scrum ones, by covering

programming practices, and their incorporation in Virtual Scrum would

maximize students’ programming skills. However it is noted that the use

of 2D games results in unsuitable strategies to provide an immersion

experience and realistic display of a Scrum environment.

 In this context, virtual reality arises as an innovative technology that

enhances students’ motivation, understanding and creative learning.

Certainly, virtual worlds have great potential to make the learning

experience both challenging and appealing by providing visuals that are

easier to retain. Moreover, the user representation through avatars allows

more active participation by manipulating the 3D artifacts.

 The use of virtual reality has been addressed in several approaches to

teach in various fields of science and engineering in university courses.

In, the authors explored a 3D learning tool to easily observe and handle

internal structures of a generating unit of energy, reducing the gap

between the real experience and theoretical concepts in the area of

systems of power.

 In, a virtual-lab relied on an HTML Web page for control education is

presented to illustrate the dynamic behavior of an industrial boiler in a

user-friendly way. Diedro-3D is an application that addresses the

challenges that architecture students face when using descriptive

geometry, giving students greater autonomy to study geometry. In, a

project to develop, build up, and evaluate solutions for virtual mobility

and e-learning in biomedical engineering is presented. The authors

included different educational materials to provide students with the

possibility to revise course contents at any time, place, or pace. In, the

�50

authors studied the feasibility of introducing SimuSurvey in regular

surveyor training courses to support students’ learning experience. Along

this line, the use of virtual reality simulations has also been utilized in to

teach earth science concepts, improving students’ spatial abilities. In

addition, a 3D virtual hydraulic model to facilitate the teaching of

hydraulic engineering is presented in, resulting in a reduction of time and

effort in comparison with experiments in a traditional laboratory.

 All the above-mentioned approaches support the notion that virtual

worlds and simulations cater for teachers’ needs in traditional courses,

such as acquisition and maintenance of equipment for each group of

students, the influence of location and time of the class on the

effectiveness of the lesson, and the difficulty of clearly demonstrating

every step to each student in the class at a suitable pace. What is more,

virtual worlds provide students with hands-on experimentation without

hazardous and costly laboratories.

 In the context of the research, Virtual Scrum uses a virtual world to

harness the 3D interfaces for training students in their performance in a

simulated Scrum environment. As far as software teaching with virtual

worlds is concerned, some approaches have been introduced. For

instance, Ye et al. used a virtual world to enhance software engineering

education by exploiting communication and collaboration tools to teach

practices such as problem solving, plan formulation, interpretative

analysis, and adaptation to rapid change, in a virtual office provided by

Second Life. In addition, in order to evaluate the effects of Second Life

when playing games, the authors developed the Second Life version of

two so-called games to introduce software engineering practices:

Groupthink and SimSE. The former focuses on teaching software

specification practices, and the latter aims to train in project management

skills. Likewise Ye et al., Parsons et al. used a 3D virtual world based on

Open Wonderland

(originally Project Wonderland) to support a workshop

activity based on agile software development processes. This workshop

�51

enables students to take part in this activity despite their geographical

distribution.

 The approach tackles problem solving by defining and specifying user

stories, and employing a shared board, in which users may sketch

prototypes of designs. Improving the aforementioned approaches, Virtual

Scrum supports a task board for planning and tracing user stories; a daily

meeting artifact for solving problems, adapting rapidly to changes and

removing impediments; and a burn-down chart for reflecting on the past

sprint and making continuous process improvements during retrospective

meetings. Furthermore, unlike Parsons et al., they concentrate on using

Virtual Scrum to teach Scrum assisting professors and students in the

development of a capstone project.

 According to the data collected from the 45 students surveyed, we found

that using Virtual Scrum, as a teaching aid, was helpful in improving

students’ comprehension of the fundamentals of agile practices and

principles of developing software with Scrum. It is worth noting that the

tool outperformed students’ expectations with regard to the Virtual Scrum

support for planning meetings, which increased students’ commitment;

and follow-up metrics, which allowed students to self-reflect on their

performance in the Sprint Retrospective meetings.

 The students also provided valuable feedback on user interactions and

traceability of the user stories through Virtual Scrum. Based on this

feedback, we will intend to improve user interactions by upgrading the

support of media aids, specially the avatar integration with current social

networks. As for traceability of user stories, we found that students

preferred using 2D tools for dealing with configuration management

rather than a 3D representation of the artifacts; for this reason, we will

complement Virtual Scrum with conventional and open-source

development tools.

 As a further stage in this research, we are planning to incorporate an

intelligent agent to offer students personalized assistance during the use

�52

of Scrum. To tackle this issue, we will equip Virtual Scrum with

performance indicators to obtain more information about students’

interactions with the tool. This information will be useful to proactively

assist the student by suggesting him/her personalized courses of action

that will help them during the Scrum process. [Rodriguez et al, 2015]

 2.10 Agile Teaching / Learning Methodology

 Researchers at the City University of Hong Kong have developed the

Agile Teaching / Learning Methodology (ATLM) [Chun, 2004] that is a

teaching/learning methodology designed for higher-education based on

the best practices and ideas from the field of software engineering and

leveraging upon concepts and ideas from the field of software

engineering and leveraging upon concepts from agile software

methodologies.

 Although ATLM was designed using concepts borrowed from software

engineering, the methodology itself can easily be applied to a wide

variety of courses that might require agility in teaching and learning.

 An e-learning platform has been developed that makes use of a number

of modern collaboration and knowledge sharing technologies such as

blogging, commenting, instant messaging, wiki and XML RSS.

 ATLM has been applied to the teaching of several Computer Science

courses at the City University of Hong Kong for a number of years.

Although used for teaching technology related courses, it is believed that

the methodology itself is general enough to be applied to others

disciplines as well. ATLM encourages communication, knowledge

sharing and the learning process to nurture self-learning individuals.

ATLM has been developed to support both teaching and learning.

�53

 It has been found [Chun, 2004] that the teaching process itself is very

similar to the software development process in many ways. It involves

multiple parties with different objectives, a very tight schedule to get

things done, a fixed deadline, limited resources and a lot of changes

along the way. Both the teaching and software development processes

require detailed planning, tracking and management with continuous

assessment and feedback from all parties. Making sure a course is taught

properly and on schedule can also be challenging similarly to getting a

software project done correctly and on time.

 There are numerous teaching/learning best practices that can be practiced

with ATLM. However, ATLM particularly promotes and emphasizes the

following as part of the methodology: learn by sharing, teach how to

learn and feedback is good.

 ATLM makes use of the fact that students learn over an order of

magnitude better if they also participate in the teaching process. The

methodology facilitates this through knowledge sharing exercises.

 It also emphasizes that in addition to the course content, it is important to

also teach the learning process. ATLM does this through guided and

targeted independent study tasks with knowledge sharing and

collaboration as motivation.

 Lastly, feedback is what makes ATLM agile. Without feedback, the

teacher will not be able to improve the course delivery and teaching.

Without feedback the students will not know if their work is on track and

inline with expectations. ATLM facilitates feedback through informal

weekly quizzes and feedback forms, surveys and online comments.

[Chun, 2004]

�54

 2.11 Anti-practices while teaching Agile

 Researchers at the University of Sao Paolo [Freire et al, 2007] have

identified three organizational anti-patterns that are common and

recurrent both in industrial and academic environments. They have

presented “Bootstrap”, “Split Personality” and “Abandon Complex” in

the form of a small anti-pattern language and offered different solutions

to these anti-patterns.

 Bootstrap addresses the issue of a team that starts to learn XP in a project

with little or no code base. The team is new to XP and needs to be

quickly productive. When starting a project from scratch, they have

shown that allowing a small subset of the team to bootstrap the code base

with the business model classes and then focusing on new business rules

or variation storyotypes, is a simple solution to bootstrap. Using free and

open source software as an initial code base is also a solution that can

help teams strengthen other practices and techniques, such as testing.

When the team is learning XP and other techniques, using storyotypes to

split up the bootstrap story, and allowing code to be committed without

complete test coverage, only during a short period of time, is a solution

to bootstrap.

 Split Personality addresses the issue of a person on the team being

overloaded with the roles of Coach and Customer. When there is the

possibility, one should use one or more Customer Proxies or a real

Customer. When everything else fails, rely on the simple solution of

using a hat or gadgets to distinguish clearly when one is acting as Coach

or as Customer.

 Abandon Complex describes troubles a team might face when the Coach

has to leave. Instead of electing the most experienced developer to act as

Coach, it is suggested by the research that the best solution is to have

Champion of the Court accept responsibility, or practice Coach of the

Week. [Freire et al, 2007]
�55

 2.12 Using Agile to teach Agile at IBM - Agile@IBM

 IBM applied an Agile approach when its current framework by itself was

not enabling the rapid response it needed. IBM’s learning design team

developed an instructional program to teach Agile software development

at a time that there was no time for drawn-out analysis. What they

decided to do is to use Agile methods to teach Agile. [Hall, 2012]

 They created Agile@IBM — a program of instruction designed for

software developers, engineers, testers, and leaders. Although the

learning design team had managed challenging assignments in the past,

Agile@IBM was different. In this case, the stakeholder was challenging

the team to apply a new methodology to their classic design approach.

 The main constraints encountered in the Agile@IBM project were the

ever-changing requirements and short delivery schedules. At IBM, the

frequent focus on technology topics decreases the shelf life learning

content. Then, as learning content changes, so does the roster of content

experts.

 Meanwhile, IBM’s acquisitions strategy and geo-expansion strategy have

created changes in the makeup of its workforce as well as in the culture-

based expectations of its learners. It is also found that it is needed to

deliver learning in countries with technology infrastructure obstacles; in

many cases the usual learning delivery platforms will be unusable in

those locations for the foreseeable future. Finally, IBM operates in a

highly competitive environment in which its immediate business goals

are in a state of constant change.

 It is not only learning design and technology that are changing; the

learning experience itself is changing as well. IBM’s learners used to be

called away from their desks to participate in formal training sessions.

�56

Now they require work-embedded, social, and informal learning

delivered at the point of need in a variety of flexible platforms to

accommodate their travel schedules and time zone differences. The

learners are being asked to be as flexible in their learning habits as they

are in their work habits. Many of them are feeling the loss of classic face-

to-face learning events.

 Ultimately, the role of learning designers is changing. Many of those who

used to work alongside content experts to create self-paced instruction

now find themselves working with the learners to co-create learning

experiences. It is also noticed that the stakeholders are becoming more

involved in the design process and are expecting more flexibility from

them.

 According to the team at IBM’s learning design, delivering module after

module of e-learning is no longer sufficient. “It is as though we once

built trains, and now we design access to trains by designing a track

architecture. As we look at the trains speeding along the tracks and

wonder at the growing infrastructure, we realize that we find it difficult

to predict what will be asked of us in the future.” [Hall, 2012]

 The term Agile is often described as a systems engineering method. Yet

IBM believes that “when we dig deeper we find Agile to be an

overarching collection of practices influenced by many disciplines”.

[Hall, 2012]

 For example, from software engineering, Agile inherits Extreme

Programming and its practices enabling business leaders and software

developers to work together to determine and attain shared, realistic

goals.

�57

 From both systems and software engineering, Agile borrows the Rational

Unified Process and its iterative development methodology, which

delivers useful output every few weeks.

 From manufacturing, Agile gains Lean’s emphasis on the elimination of

waste. From product development, Agile inherits short, daily “scrum”

update meetings that facilitate collaboration and keep teams focused on

their incremental deliverables.

 According to IBM [Hall, 2012], Agile adapts well to additional domains,

including that of corporate learning. Currently, Agile is used by IBM

instructional design teams to enable them to adapt to changing

requirements, reduce risk of projects, increase visibility of projects’

progress, involve stakeholders and learners from the beginning of the

project onward and accelerate the value it brings to the business.

 IBM suggests that those interested in pursuing Agile Learning Design,

will need to follow one or more of these Agile key practices:

 Emphasize individuals and interactions over processes and tools

 With Agile, the team is all important. It is self-directed and regularly

examines its own performance and seeks opportunities to streamline.

Short, daily scrum meetings enable team members to share status and

assist each other in timely fashion. IBM has found that scrum meetings

significantly decreased time to delivery for their leadership development

programs.

 Process is regarded with a healthy degree of suspicion because it is

associated with overhead and project bloat. At IBM, project managers

and team leaders are provided with an Agile learning curriculum [Hall,

2012] as part of their certification requirements so they can help

accelerate adoption of Lean methodology rather than delay it.

�58

 Tools that are intuitive and quickly deployed are generally preferred

 Rapid prototyping finds itself right at home with Agile. According to

Catherine Rickelman [Hall, 2012], IBM found rapid prototyping to be

indispensable because it enabled them to lead discussion within an

unusually large and diverse group of stakeholders.

 Emphasize usable deliverables over comprehensive documentation

 In the past, every day spent designing and developing learning was a day

that employees went without the benefit of that learning. With Agile, the

emphasis is on enabling employees to learn immediately and leveraging

their experiences to drive improvements into the continuously improving

overall learning experience. Rather than developing module after module

of formal self-paced instruction, we emphasize providing access to

content and designing learning experiences that use wikis, blogs, forums,

surveys, and dashboards.

 Documents and other artifacts are kept small in number and in size

 Most are either of a throwaway nature, as is the case with rapid

prototyping, or are living documents, as is the case of backlogs and

“burndown” charts.

 Emphasize collaboration over negotiation

 Agile brings stakeholders into the project as fully embedded team

members, ensuring they have continuous input in the project as well as

in-depth knowledge of its progress. The media specialists, programmers,

and educational specialists comprising the learning design team meet

regularly with stakeholders from the earliest design discussions and

prototypes.

 The learners themselves are viewed as stakeholders

 The use cases enable a team to view the entire project from the point of

view of a typical learner right from the start. Throughout the project,

�59

iterative releases combined with feedback avenues enable a trial-and-

error approach. The result is a significant reduction in risk to the project.

 Emphasize responding to change over adhering to a plan

 Those new to Agile often are surprised that changing requirements are

welcomed, even late in a project. Rather than rein in change, Agile

projects harness it to competitive advantage. Short iterations; lightweight

processes, tooling, and documentation; and early and continuous

feedback from business leaders and learners all work together to ensure

that learning teams don’t fall behind the change curve.

 Problems that no longer exist or are no longer important are easily tossed

aside

 Learners become confident that returning to the sites will expose them to

fresh content and an improved learning experience. Perhaps most

surprisingly, learning designers and developers find that they are able to

maintain a comfortable, constant pace because they are not tethered to

long release cycles and unexpected demands.

 When the Agile@IBM initiative began, the learning professionals at IBM

were new to the idea of Agile Learning Design. Nevertheless, they were

able to successfully manage iterative design and development cycles,

integrate the stakeholders and users from the start, and use their feedback

and involvement to refine not only their solutions but sometimes the

work processes themselves.

 By applying Agile practices, they managed to roll out an extensive set of

successful learning solutions. They began with a workshop for software

development teams, then added workshops for project managers and

team leaders. To promote inter-team collaboration, they deployed town

halls, learning “suites” that gathered blended learning, a community of

practice, and shared stories about best practices and lessons learned from

real software projects.

�60

 They also created video lectures for those who couldn’t attend the face-

to-face workshops. Lastly, live virtual classroom meetings enabled some

software developers who were globally dispersed to work together on

particular areas for improvement. The team also implemented a

performance monitoring dashboard to track progress in the adoption of

Agile practices as they moved toward their intended end state.

 From this process, it was found [Hall, 2012] that social learning

techniques work hand in hand with the Agile approach. Social software is

enabling users to learn from peers who are applying the learning

themselves, as well as from experts who are eager to distribute their

knowledge to as many people as possible. This close collaboration brings

realistic, workable, and current solutions directly to the learners.

 “Seeing immediate results from applying these solutions is what matters

to the learners today”. [Hall, 2012]

�61

 3. METHODOLOGY

 In this section the research methodology and the way data was collected

will be discussed. For this research the population examined were past

students of Greek Open University. In particular students of Computer

Science courses were required to answer a questionnaire regarding their

experience and attitudes towards agile teaching. The students have been

taught agile by participating in a capstone project during their course and

by participating in the research will offer valuable isight into the validity

and effectiveness of the method.

 The first step was to come up with the appropriate questions to support

the aims of the research as the design of the questionnaire is fundamental

to the scope of research. The scope of the research is to collect the data

from the students and point to any differences between them. The

questions were sourced from the literature review that has taken place

before it in regards with agile teaching methods and were designed to

specifically serve the aim of the research.

 The aim of the research is to identify patterns between students that have

been taught agile and the differences in attitudes related to their

experience with it. It will highlight the students’ perception towards the

importance of agile practices teaching, which practices are considered

most relevant, their potential difficulty to master as well as their

importance to potential employers. Lastly, it will try to rebuff the

criticism against agile teaching and also determine whether the focus of

agile teaching in university is aligned with the needs of the market. If

not, will provide suggestions towards it.

 The research took place by uploading the questionnaire online using

Google Forms and sending it out to the selected students. Before sending

out the questionnaire, it was tested internally in a pilot research to ensure

its validity as in its structure, language and questions asked. During the

pilot research it was established that the questions were easily

�62

comprehendible, engaging and offered answers relative to the scope of

the research.

 The questionnaire was sent out to 250 current and formers students at the

Hellenic Open University. All of the students have or are currently

attending a computer science course at the university that included agile

teaching. The students had 15 days to answer and of the total 250

students, 61 have replied to the questionnaire, a percentage of 24.4%.

 The questionnaire that was handed out to the students had three sections:

 The first, included questions regarding the level of familiarity of the

students with the teaching of agile both in university courses as well as in

their work environment and some personal information about them.

 The second, compiled of questions regarding the students’ general

attitudes towards agile teaching, included specific questions about the

perceived effects of agile teaching, its benefits as well as concerns and

criticisms against it. The students were asked to evaluate views towards

agile that are found in bibliography and assess their validity, in context of

their own experience with agile teaching. Furthermore the students were

asked to validate the usefulness and real world usability of agile practices

taught during their course at the university.

 The third section focused on the views students had regarding the quality

and focus of the agile teaching they received, its effect on group work as

well as relevance to industry practices. At this section the students were

also asked whether agile teaching has effectively improved their

employability, a key selling point for most undergraduate programs.

 At the end of the questionnaire, the participants are asked to provide any

other comments they might have regarding agile teaching by filling in an

optional box.

 The data collected by the questionnaire were examined and presented for

statistical analysis to summarize and describe the data and graphs or

�63

tables were used to visualize the data and analyze variable frequencies.

Descriptive statistics were used to summarize the data whereas

inferential statistics were used to identify statistically significant

differences between groups of data. T-test was used for comparing

between student groups with different characteristics, such as levels of

familiarity with agile or use in business. In cases where the groups are

more than two, they will be examined by using analysis of variation

(ANOVA). Both methods provided an insight in regard to the differences

in views between the students as well as the alignment of agile teaching

in the university with the use of agile methods in the workplace.

�64

 4. FINDINGS

 The age of the sample proved to be very

homogenous with the majority (96%) of the

students that participated in the survey being

between 30 and 50 years of age. From the

total number of participants 54.8% were

between the ages of 30 and 40, 41.2% were

between the ages of 40 and 50 while 2%

were under 30 and another 2% were over 50

years of age.

 Apart from their age the participants were required to provide

information regarding their education level. Almost half of them (49%)

hold a bachelors degree, 16% hold a masters degree, 2% hold a Phd

while 33% are still studying to obtain their first degree.

 The next set of the personal questions gathered information regarding the

work experience. In the first question the participants were required to

answer at which sector they work if they do as well as how many years

they have been working on developing software. The results are

highlighted in the graphs below:

�65

<30
30-40
40-50
Over 50

 The last of the personal questions was on where the participants had

originally learnt agile.

 A majority 56.9% learned agile methods through a university course

signifying the importance of agile teaching at software engineering

courses.

�66

 The other options were hands on experience (15.7%), self study (11.8%),

industry (9.8&) and not familiar (5.9%)

 The second part of the questionnaire included questions that highlight the

students’ views regarding learning experience through the capstone

project. The participants were required to answer the questions on a 1-5

scale, with 1 being strongly disagree and 5 being strongly agree. Their

answers to these questions are summarized in the table below:

Table 1: Learning experience

Item Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

The use of agile
methods improve

performance
2% 9.8% 35.3% 41.2% 11.8%

Working in a
capstone project

helped me
accomplish my

learning
objectives more

easily

2% 5.9% 39.2% 45.1% 7.8%

Learning agile
methods through

a capstone
project suited my
way of learning

2% 9.8% 43.1% 37.3% 7.8%

After finishing
the project, I was
able to identify
and use many of

the agile
methods/
practices

2% 7.8% 37.3% 43.1% 9.8%

Working on the
capstone project
reduced my need

for training at
work

3.9% 17.6% 58.8% 19.6% 0%

�67

 For the first 2 questions it should be noted that a majority of over 50%

agrees that the use of agile methods improves performance and that their

work in the capstone project assisted them in accomplishing their

learning objectives. The majority of the participants felt confident

identifying and using many of the agile methods they learnt through the

capstone project after its completion.

 However when asked whether learning agile methods through the

capstone project suited their way of learning, only 45.1% agreed. 11.8%

said it did not while 43.1% percent were indifferent. When asked which

method they considered to be the most effective way of learning agile,

My overall
experience with

the capstone
project was

positive

2% 3.9% 27.5% 49% 17.6%

My experience
on the project
improved my
professional
performance

5.9% 7.8% 35.3% 41.2% 9.8%

The skills I learnt
from the capstone
project improved
my employability

5.9% 9.8% 43.1% 35.3% 5.9%

The number of
different skills

required to be an
agile developer
made it hard to

assemble groups

0% 17.6% 51% 27.5% 3.9%

Group members
were often valued

for their social
skills instead of
technical skills

2% 9.8% 54.9% 21.6% 11.8%

Item Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

�68

opinion was divided

between the students

w i t h 3 7 % p i c k i n g

capstone projects, 33%

picking lec tures or

training and 27% picking

self study.

 N e v e r t h e l e s s , t h e

m a j o r i t y o f t h e

participants (56.6%)

agreed that their overall experience with the capstone project was a

positive one while 51% believes that their experience on the project

improved their professional performance. 41% of the respondents believe

that the skills the learnt from the capstone project improved their overall

employability as well.

 However it should be noted that when asked about whether their

experience with agile methods during the capstone projects reduced the

need for training at work, the participants gave mixed answers.

 Lastly, on the two questions regarding the criticism against the use of

agile methods in group work the participants rebuffed the notions that the

number of different skills required to be an agile developer made it hard

to assemble groups and the in agile groups, members are often valued for

their social skills instead of technical skills. In both question the vast

majority of the participants fluctuated towards the centre of the scale.

 The next question focused on the perceived advantages of using agile

methods as part of their capstone project and its effect on the end result.

Most students agreed that agile methods indeed improve software quality,

increase flexibility, offer faster delivery and boost team morale as

highlighted in the table below:

�69

Self Study
Lectures/Training
Capstone Project
Other

 However the results where not clear in regard to agile methods offering

improved customer satisfaction. More than half of the students that

answered the question selected the option in the middle of the scale

indicating mixed results in their experience.

 When asked about the skills gained from their participation in the

capstone project, the results were very positive (table 3). It has been

highlighted in the bibliography that while these skills are considered very

important for an agile developer, there is a lack of supply in the job

market.

Table 2: Advantages of using agile methods

Item Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Improved software
quality

0 3 14 31 3

Increased
flexibility

1 0 19 22 9

Offered faster
delivery

0 7 20 19 5

Improved team
morale

1 4 16 24 6

Improved customer
satisfaction

2 1 29 12 7

Table 3: Skills gained from capstone project

Item Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Familiarity with
software

development
methods

4 0 18 25 4

Familiarity with
software

development
agile methods

3 1 13 30 4

�70

 The majority of the students agreed that participating in the capstone

project helped them develop the skills in question.

 The next part of the questionnaire focused on the individual agile

practices, their difficulty to comprehend and their perceived usefulness in

business. The fist question aimed to establish how often each practice

was used during the capstone project. The answers to the question are

show in the table below:

Knowledge of
programming
environments

and
programming

skills

4 1 20 22 4

Analysis and
design skills

3 2 21 20 5

Project
management
and planning

skills

3 3 16 21 8

Effort
estimation skills

3 3 19 22 4

Team working
skills

2 2 14 23 10

Communication
skills

2 3 18 18 10

Item Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Table 4: Practice use frequency during capstone project

Item Never Rarely Sometimes Mostly Systematically

Iteration Planning 4 4 27 13 3

Daily Standup 4 13 19 11 4

Unit Testing 6 4 16 16 9

Release Planning 7 5 21 16 2

Retrospectives 8 9 24 5 5

�71

 The most used practices were TDD, Coding Standards, Unit Testing and

Continuous Deployment. The least used were Automated Builds and

Burn-down.

 For measure we asked the students how hard to comprehend they

considered each practice to be:

Burn down 8 10 23 8 2

Continuous
Integration

9 3 21 16 2

Automated Builds 12 8 16 15 0

Velocity 9 5 20 13 4

Refactoring 4 12 17 12 6

Coding Standards 5 8 15 22 1

Test Driven
Development

6 9 11 21 4

Pair
Programming

6 5 21 16 3

Continuous
Deployment

8 4 16 18 5

Behavior Driven
Development

9 7 18 15 2

Item Never Rarely Sometimes Mostly Systematically

Table 5: Practice difficulty to comprehend

Item Very
Little

Little Average Fair Significant

Iteration
Planning

2 8 28 9 3

Daily Standup 6 7 21 13 3

Unit Testing 5 4 24 10 6

Release
Planning

3 6 23 11 3

Retrospectives 4 10 27 4 4

Burn down 4 13 22 6 4

�72

 The most difficult were Pair Programming, TDD and Continuous

Integration with 20 students total claiming they required a fair or

significant amount of effort to comprehend.

 The students were also required to offer their input in regard to the

usefulness of different agile practices in the workplace:

Continuous
Integration

3 5 21 16 4

Automated
Builds

8 7 18 11 4

Velocity 6 6 21 11 5

Refactoring 4 7 22 9 7

Coding
Standards

4 8 17 13 6

Test Driven
Development

5 7 16 13 7

Pair
Programming

5 7 17 14 6

Continuous
Deployment

5 3 24 13 4

Behavior Driven
Development

4 6 24 13 5

Item Very
Little

Little Average Fair Significant

Table 6: Practice workplace usefulness

Item Very
Little

Little Average Fair Significant

Iteration
Planning

2 2 12 12 4

Daily Standup 1 3 15 6 7

Unit Testing 0 2 10 14 6

Release
Planning

2 3 14 9 3

Retrospectives 2 3 16 6 3

Burn down 1 5 14 9 2

�73

 The majority of students considered all practices to be fairly valuable

with not a great variance in their answers. However, the most useful

practices identified were Unit Testing and Coding Standards. This falls in

line with their use during the capstone project where Unit Testing and

Coding Standards were identified as the most used practices there as

well.

 The most useful practices with the least effort were Unit Testing and

Iteration planning while according to the students who participated in the

research Daily Standup and Release Planning required more effort to

comprehend and were less useful.

 A T-test was done to determine the statistical significance in regard to

portions of the sample valuing the capstone course in relevance to their

work experience on work projects. In Group A were people with less than

Continuous
Integration

0 3 13 13 3

Automated
Builds

1 4 16 7 4

Velocity 1 3 18 5 5

Refactoring 1 4 12 9 5

Coding
Standards

1 2 10 12 7

Test Driven
Development

1 4 14 7 5

Pair
Programming

1 3 15 8 5

Continuous
Deployment

2 3 12 11 4

Behavior Driven
Development

1 5 18 6 2

Item Very
Little

Little Average Fair Significant

�74

5 years experience on projects and in Group B people with more than 5

years experience.

 T-test results:

 P value and statistical significance:

 The two-tailed P value equals 0.0965

 By conventional criteria, this difference is considered to be not quite

statistically significant.

 Confidence interval:

 The mean of Group One minus Group Two equals 0.43

 95% confidence interval of this difference: From -0.08 to 0.95

 Intermediate values used in calculations:

 t = 1.7011

 df = 41

 standard error of difference = 0.254

 Another T-test was done to determine whether the sample’s age is

significant in perceiving the skills learned during the capstone course as

significant. The two groups were separated by age with people under 40

forming Group A and people over 40 forming Group B.

 T-test results:

 P value and statistical significance:

 The two-tailed P value equals 0.8653

 By conventional criteria, this difference is considered to be not

statistically significant.

 Confidence interval:

�75

 The mean of Group One minus Group Two equals -0.05

 95% confidence interval of this difference: From -0.69 to 0.58

 Intermediate values used in calculations:

 t = 0.1708

 df = 38

 standard error of difference = 0.315

 A third T-test was done to determine whether students with previous

knowledge on agile methods benefited more from the capstone course. In

Group A were people with none or little experience on agile methods

before the project while in Group B were experienced users of agile.

 T-test results:

 P value and statistical significance:

 The two-tailed P value equals 0.0076

 By conventional criteria, this difference is considered to be very

statistically significant.

 Confidence interval:

 The mean of Group One minus Group Two equals -0.67

 95% confidence interval of this difference: From -1.15 to -0.19

 Intermediate values used in calculations:

 t = 2.7851

 df = 49

 standard error of difference = 0.239

�76

 5. CONCLUSION

 As the knowledge of agile is crucial to most companies nowadays it

becomes significant for computer science courses to teach agile methods

and practices to students.

 This emerging use of agile has opened a gap between the skills taught in

classic academic contexts and the ones required by the software industry.

As a result, different ways of teaching agile have been adopted by

different institutions based on their experience and resources.

 Despite industrial adoption of agile methodologies, their acceptance and

incorporation into academic curricula has been limited. Most popular

software engineering texts, have been updated to include some coverage

of agile methodologies but are still organized around traditional waterfall

methodology.

 Previous researches have claimed that while engineering practices can be

taught very well in the classroom through lectures, management

competences are best taught through student projects in teams.

 Various methods of teaching agile methods have been utilized with

different success levels according the research. In this paper we evaluated

the use of a capstone project as a means to teach agile.

 In order to prepare students for their professional experiences in

commercial software development, where agile methods are widely used,

some researchers have introduced agile in software engineering courses

by means of a capstone project. However, teaching through a capstone

project is a challenging task, due to drawbacks such as complexity of

projects, lack of physical resources, numerous groups of students and

packed schedules, which affect the normal running of the course.

 Nevertheless, the student survey conducted received positive feedback in

regard to the teaching method and the perception of the students towards

it. The majority of the participants in the survey valued the capstone

�77

project as an overall positive experience and highlighted the advanced

understanding of agile methods they achieved after the completion of the

course.

 The skills taught during the project were found to be in line with what is

required in the industry nowadays. The students agreed that teaching

agile methods in software engineering courses is necessary and the

majority of them pointed to the use of capstone projects as the one that

better suits their learning patterns.

 Lastly, it was found that the capstone project had similarly positive

learning effects for both younger and older students. However, it should

be noted that students with previous experience of agile methods were

able to benefit significantly more than their counterparts that had less

experience on agile methods.

 Overall the capstone project was found to be a very efficient and

effective way of teaching agile to students and most concerns about its

use found in bibliography did not appear in the research.

�78

 6. REFERENCES

 Abelson, H. and Greenspun, P., 2001. Teaching software engineering-

lessons from MIT. In Proceedings 10th International World Wide Web

Conference.

 Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J., 2002. Agile

software development methods: Review and analysis.

 Alfonso, M.I. and Botia, A., 2005, April. An iterative and agile process

model for teaching software engineering. In 18th Conference on

Software Engineering Education & Training (CSEET'05) (pp. 9-16).

IEEE.

 Ambler, S.W., 2003. Introduction to Test Driven Development. Agile

Database Techniques: Effective Strategies for the Agile Software

Developer, John Wiley & Sons.

 Andrea, J., 2001. Managing the Bootstrap Story in an XP Project.

Proceedings of XP 2001.

 Beck, K., 2000. Extreme programming explained: embrace change.

Addison-Wesley professional.

 Berczuk, S., 2007, August. Back to basics: The role of agile principles in

success with an distributed scrum team. In Agile Conference (AGILE),

2007 (pp. 382-388). IEEE.

 Briggs, T. and Girard, C.D., 2005, October. Comparison of student

experiences with plan-driven and agile methodologies. In Proceedings

Frontiers in Education 35th Annual Conference (pp. T3G-18). IEEE.

 Chun, A.H.W., 2004, August. The agile teaching/learning methodology

and its e-learning platform. In International Conference on Web-Based

Learning (pp. 11-18). Springer Berlin Heidelberg.

 Cockburn, A. and Williams, L., 2000. The costs and benefits of pair

programming. Extreme programming examined, pp.223-247.

�79

 Coplien, J.O. and Harrison, N.B., 2005. Organizational patterns of agile

software development. Pearson Prentice Hall,.

 Coyle, S. and Conboy, K., 2010. People over process: key people

challenges in agile development.

 Crispin, L., 2003. XP Testing Without XP: Taking Advantage of Agile

Testing Practices. Methods and Tools.

 Cubric, M., 2013. An agile method for teaching agile in business schools.

The International Journal of Management Education, 11(3), pp.119-131.

 da Silva, A.F., Kon, F. and Torteli, C., 2005, June. Xp south of the

equator: An experience implementing xp in brazil. In International

Conference on Extreme Programming and Agile Processes in Software

Engineering (pp. 10-18). Springer Berlin Heidelberg.

 De Vincentis, S., 2007, October. Agile education: Student-driven

knowledge production. In ACEL/ASCD conference, New Imagery for

Schools and Schooling Sydney.

 Deemer, P., Benefield, G., Larman, C. and Vodde, B., 2012. A lightweight

guide to the theory and practice of scrum (version 2.0). Technical report,

http://www.scrumprimer.org.

 Dick, W., Carey, L. and Carey, J.O., 1990. The systems design of

instruction.

 Downs, G., 2011. Lean-agile acceptance test-driven development: better

software through collaboration by Ken Pugh. ACM SIGSOFT Software

Engineering Notes, 36(4), pp.34-34.

 Dutson, A.J., Todd, R.H., Magleby, S.P. and Sorensen, C.D., 1997. A

Review of Literature on Teaching Engineering Design Through Project-

Oriented Capstone Courses. Journal of Engineering Education, 86(1), pp.

17-28.

�80

 Dybå, T. and Dingsøyr, T., 2008. Empirical studies of agile software

development: A systematic review. Information and software technology,

50(9), pp.833-859.

 Evans, E., 2004. Domain-driven design: tackling complexity in the heart

of software. Addison-Wesley Professional.

 Felsing, J.M. and Palmer, S.R., 2002. A Practical Guide to Feature-

Driven Development. IEEE Software, 7, pp.67-72.

 Fowler, M. and Foemmel, M., 2006. Continuous integration. Thought-

Works) http://www. thoughtworks. com/Continuous Integration. pdf, p.

122.

 Freire, A., Kon, F. and Goldman, A., Three AntiPractices while teaching

Agile Methods. Technical report, IME-USP, 2007. 5.

 Goldman, A., Kon, F., Silva, P.J. and Yoder, J.W., 2004. Being extreme in

the classroom: Experiences teaching XP. Journal of the Brazilian

Computer Society, 10(2), pp.5-21.

 Hall, M.J., 2012. Are you ready for agile learning design?. Human

Resource Management International Digest, 20(6).

 Hazzan, O. and Dubinsky, Y., 2007. Why software engineering programs

should teach agile software development. ACM SIGSOFT Software

Engineering Notes, 32(2), pp.1-3.

 Hedin, G., Bendix, L. and Magnusson, B., 2003, May. Coaching coaches.

In International Conference on Extreme Programming and Agile

Processes in Software Engineering (pp. 154-160). Springer Berlin

Heidelberg.

 Highsmith, J., 2013. Adaptive software development: a collaborative

approach to managing complex systems. Addison-Wesley.

 Kropp, M. and Meier, A., 2013. Teaching Agile Software Development at

University Level. IMVS Fokus Report.

�81

 Kuhl, J.G., 2014. Incorporation of Agile Development Methodology into

a Capstone Software Engineering Project Course. In Proceedings of the

2014 ASEE North Midwest Section Conference.

 Kuranuki, Y. and Hiranabe, K., 2004, June. Antipractices: Antipatterns

for xp practices. In Agile Development Conference, 2004 (pp. 83-86).

IEEE.

 Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F.,

Tesoriero, R., Williams, L. and Zelkowitz, M., 2002, August. Empirical

findings in agile methods. In Conference on Extreme Programming and

Agile Methods (pp. 197-207). Springer Berlin Heidelberg.

 Mahnic, V., 2012. A capstone course on agile software development

using Scrum. IEEE Transactions on Education, 55(1), pp.99-106.

 Mary, P. and Tom, P., 2003. Lean software development: an agile toolkit.

 Melnik, G. and Maurer, F., 2002, August. Perceptions of agile practices: a

student survey. In Conference on Extreme Programming and Agile

Methods (pp. 241-250). Springer Berlin Heidelberg.

 Meszaros, G., 2004, August. Using Storyotypes to Split Bloated XP

Stories. In Conference on Extreme Programming and Agile Methods (pp.

73-80). Springer Berlin Heidelberg.

 Mugridge, R., MacDonald, B., Roop, P. and Tempero, E., 2003, May.

Five challenges in teaching XP. In International Conference on Extreme

Programming and Agile Processes in Software Engineering (pp.

406-409). Springer Berlin Heidelberg.

 Navarro, E.O., Baker, A. and Van Der Hoek, A., 2004, January. Teaching

software engineering using simulation games. In ICSIE’04: Proceedings

of the 2004 International Conference on Simulation in Education.

 Palmer, S.R. and Felsing, M., 2001. A practical guide to feature-driven

development. Pearson Education.

 Rico, D.F. and Sayani, H.H., 2009, August. Use of agile methods in

software engineering education. In Agile Conference, 2009. AGILE'09.

(pp. 174-179). IEEE.
�82

 Rodriguez, G., Soria, Á. and Campo, M., 2015. Virtual scrum: A teaching

aid to introduce undergraduate software engineering students to scrum.

Computer Applications in Engineering Education, 23(1), pp.147-156.

 Solis, C. and Wang, X., 2011, August. A study of the characteristics of

behaviour driven development. In 2011 37th EUROMICRO Conference

on Software Engineering and Advanced Applications (pp. 383-387).

IEEE.

 von Wangenheim, C.G., Savi, R. and Borgatto, A.F., 2013. SCRUMIA—

An educational game for teaching SCRUM in computing courses.

Journal of Systems and Software, 86(10), pp.2675-2687.

 Wellington, C.A.

 Wiley, J. and Sons, A.M., Effective Practices for Extreme Programming

a n d t h e U n i f i e d P r o c e s s . S c o t t W. A m b l e r , h t t p : / /

www.agilemodeling.com/essays/agileDocumentation.htm.

�83

 APPENDIX

 Questionnaire

Personal Information

1. Age

2. What is the highest education degree you received?  

3. Currently you are working as?

4. How have you learnt agile methods?

�84

5. Please indicate the number of years you have been working developing

software

6. How many completed software development projects have you been

involved with as an IT professional over the past five years?

0-40

7. How many of the above projects made at least some use of agile

methods?

0-40

Teaching agile methods

Please rate the statements below in line with your experience with agile

methods

8. Agile methods are used at my workplace

9. The use of agile methods improve performance  

�85

10.As a student, which of the following education methods was the most

useful? 

11. As a student, working in a capstone project helped me accomplish my

learning objectives more easily  

12. As a student, learning agile methods through a capstone project suited

my way of learning

13. As a student, after finishing the project, I was able to identify and use

many of the agile methods/practices

14. The number of different skills required to be an agile developer made

it hard to assemble groups

�86

15. Due to the nature of agile methods, group members were often valued

for their social skills (eg. teamwork, leadership, communication) instead

of technical skills (eg. programming, debugging, testing)

16. During your capstone project, how often did you use the following

agile methods/practices? (Agile methods/practices can be found here:

goo.gl/rBPhEq)

17. Please rate the effort required to comprehend and use the agile

methods/practices during your capstone project

�87

18. If you have used agile methods/practices at work, how do you rate

their usefulness? (If you have not used them at work, please skip this

question)

19. Implementing agile methods... (either as a capstone project or at a

commercial project)

20. Working on the capstone project has improved my…

21. Working on the capstone project has reduced my need for training on

agile practices at work

�88

22. My overall experience with the capstone project was positive

23. My overall experience using agile methods/practices was positive

24. Please rate your agile methods knowledge before finishing the project

25. Please rate your agile methods knowledge after finishing the project

26. My overall experience on the project improved my professional

performance

27. The skills I learnt from the capstone project improved my

employability

�89

28. Please write here any additional comments you have regarding

teaching agile (optional)

�90

