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Abstract 

 

We examine a different approach to the portfolio optimization 

problem. We employ stochastic dominance as our tool of optimization 

under uncertainty. Before proceeding to describe the model, its 

application and our results we include some chapters guiding the 

reader through concepts that should be known and understood to 

comprehend the work we are attempting and the reasons behind it.  

We employ a first and second degree of stochastic dominance 

efficiency test on our data, to optimize our portfolio consisted of thirty 

shares listed on S&P500 and we use the index as our benchmark. We 

provide proof of concept for our portfolio outperforming the index.  

We will apply five portfolio performance measures to appraise 

our results and reach a conclusion regarding the viability and 

profitability of a stochastically optimized portfolio. 

As we will demonstrate in the closing chapter of this thesis, such 

a portfolio exists and truly achieves, as an out-of-sample test, showed 

higher than market returns most of the time. 

Keywords: Stochastic dominance, portfolio optimization, portfolio 

management, risk management   
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Introduction 

 

Investors and financial analysts are troubled by the market 

instability and the extreme fluctuations that we observed in the latter 

years. As the financial instruments and their management get more 

complex day by day, it is essential to adjust the models that we use in 

financial decision making. 

Selecting the proper portfolio is a problem that tantalizes the 

economic science. The rapid advancements in information sciences 

allow us to use multi-criteria decision analysis models and specifically 

stochastic dominance of first and second order in our efforts to create 

the optimum portfolio. 

In the process of selecting the optimal portfolio, the investor has 

to choose the assets with the highest yield and distribute his 

disposable income in a way to achieve the best result. 

In this thesis, we have attempted to break down this problem in 

smaller, easier to digest parts and provide the reader with all the basic 

knowledge that will be needed to understand the work that we have 

attempted. We sought to present the various concepts, the model that 

we have applied and our conclusions in a language that would allow 

this document to act as material for the whole scientific community, 

including students who may want to access material on related topics. 

On the first two chapters of the thesis we present the basic 

notion that should be known before any attempt of proceeding and 

reading the actual research is made, we will simplify and present the 

concepts of uncertainty, risk, investing and portfolio management. 

The third chapter is dedicated to utility theory and modern 

portfolio theory, two concepts that we will require to grasp the 
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meaning of the tool that we will be using to optimize our portfolio and 

understand the perspective from which we approach the portfolio 

selection problem. 

Chapter four presents the theoretical background behind our 

tool in both degrees that we will be using and includes a presentation 

of the theory behind the third order of stochastic dominance, which we 

will not employ in our thesis. 

Finally, chapter five and six contain information on the dataset 

that we used for our research, the model that we employed as well 

results and our comments on the said outcomes. 

At the end of the thesis, the reader will find a table of references 

where all the scientific papers that have been used or mentioned in 

this text are displayed and a table of bibliography where all the 

textbooks that have been used are outlined. 

This text concludes with an appendix that presents tables and 

diagrams of results and data that are mentioned throughout this 

thesis and are referenced to it.  
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Chapter 1 

Understanding and measuring risk 

Through this chapter, we will try to provide the reader with some 

insight on the basic concepts that govern the financial science. We will 

define risk, explain the notions of uncertainty, investments under 

uncertainty and finally provide some metrics of risk. 

1.1 Definition of risk 

The concept of risk is intrinsically linked with the financial 

theory. In our efforts to define risk and as we go through the economic 

and general literature the reader will soon come to the conclusion that 

there is not a universal definition of risk. While there are many 

definitions some simple and some more descriptive the most common 

are: 

“possibility of loss or injury.” 

“someone or something that creates or suggests a hazard.” 

“the chance of loss or the perils to the subject matter of an 

insurance contract.”  

“a person or thing that is a specified hazard to an insurer.” 

“an insurance hazard from a specified cause or source.” 

“the chance that an investment (as a stock or commodity) will lose 

value.” 

Taking all these into consideration we will try to define risk, as this 

concept is essential for this thesis, through the definition of riskless 

and risky position on an asset. 
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 We hold a riskless position on an asset when the economic 

outcome of the investment is known and will be realized with 

certainty. A typical example in the bibliography is the Treasury bill 

notes issued by the US Treasury Department to finance the US 

Federal Government debt.  

 An investor willing to pay today 987.65$ to acquire a 3-month 

Treasury bill with a face value of 1000$ holds a riskless position where 

he knows that in 3 months’ time his invested income of 987.65$ will 

grow with certainty by 5% annual rate to 1000$. The certainty derives 

from the fact that the US Federal Government cannot go bankrupt as 

it can always raise more taxes or even print new money to pay its 

obligations. 

 It is easy to define formally the riskless position as the situation 

where the investor expects his investment of I currency units to grow 

to X currency units with a probability of X being realized p(x) = 1. 

 Having set the baseline for the riskless position we can now 

define the risky position as the situation where there are numerous 

economic outcomes for investing I currency units to asset A: 

X = {X1, X2, X3, ……, Xn} 

with probability of X being realized P(Xi) = { P(X1), P(X2), P(X3), ……, 

P(Xn)} and ∑ 𝑃(𝑋𝑖) = 1 

A risky position is a situation where the economic outcome is not 

known with absolute certainty but only an estimation about expected 

outcome can be derived: ΕΠ(χ) = P(X1) * Χ1 + P(X2) * Χ2  + …… + P(Xn) 

* Χn. 

The value of ΕΠ(χ) relative to invested income and the expected rate of 

return is simply an estimation based on the available data and cannot 

exclude extreme fluctuations to investor’s payoff. 
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 A significant distinguishment was made by Frank Knight 

between risk and uncertainty; this will be thoroughly described in the 

following section. 

 Having described the basic differences between the riskless and 

risky position; with both being derived from the fact that the investor 

may hold a riskless or risky asset we can assume that risk in financial 

analysis that we are going to attempt through this thesis is defined as 

a situation where our future payoffs are determined through a random 

known process of which we are aware with certainty the probability 

under which each event is realized. 

 

1.2 Uncertainty 

In the previous section we tried to define the concept of risk in 

finance; now we will introduce the notion of uncertainty as it was first 

described by Frank Knight in 1921. The differentiation between risk 

and uncertainty is quite essential as it will lay the path for us to work 

towards our goal of portfolio optimization through stochastic 

dominance. 

Decision making in finance is decision making under uncertainty: 

the outcome of today's decision depends on quantities (like future asset 

prices, interest rates or exchange rates), which are not known yet. The 

usual approach to deal with this uncertainty is to represent these 

quantities by a stochastic model. As a consequence, the outcome of the 

decision (e.g. the future wealth) is a random variable. 

Stochasticity of the objective adds a new dimension to the decision 

making process: Whereas deterministic problems are characterized by 

costs, returns or wealth as real numbers, these quantities are random 
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distributions in stochastic problems. It is the possible random 

variability which adds the risk dimension to the problem.  

We’ve previously mentioned that future payoffs of a risky 

investment are defined through a random known process. Trying to 

apply this model in real world we come to realize that when talking, 

for instance about the performance of Apple’s share in tomorrow's 

stock market trade we cannot state that there will be 

  an increase of 2% with a probability of 25% 

  an increase of 5% with a probability of 30% 

  a decrease of 3% with a probability of 30% 

  no change in stock’s price with a probability of 15% 

with absolute certainty. The fact that we do not know these 

probabilities of each event being realized but we can only estimate 

them through various econometric models is what introduces the 

concept of uncertainty in our analysis about risk. The probabilities 

under which each economic result may be realized depend on the 

conditions prevailing economy, political environment, the phase of the 

business cycle, monetary policy and many other factors. 

 Although, the main point where all definitions agree is that risk 

is defined in terms of changes in values between two dates, some 

papers argue that because risk is related to variability of the future 

value of a position, due to uncertain events, it is better to consider 

future values only. The principle “bygones are bygones” leads us to this 

future wealth approach. 

 Generalizing this, we can say that the definition of risk 

presented in section 1.1, once we include the notion of uncertainty will 

now state that risk under uncertainty is a situation where our future 

expected payoffs are defined through a random known process for 
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which we can only estimate through observable historical data the 

probability under which each event is realized. 

 Those only lead us to the conclusion that: 

1: Decision makers crudely operate in a world of random uncertainty 

2: Risk is a condition in which the decision makers assign formal 

estimated mathematical probabilities to specify the uncertainty. 

 Understanding this two phrases is the key to explaining the 

need for a model that fits the conditions a decision maker operates in 

and if possible reduces uncertainty to a minimum; that is a role that 

stochastic dominance covers the best possible way.   

1.3 Investing under uncertainty 

Contemplating on the concepts outlined in the two previous 

sections we understand the need for some tools that would help an 

investor compare different investment opportunities presented with 

various characteristics and select the one which will provide him with 

the greatest certainty and expected payoffs in return for taking over 

the risk of the investment.  

 Many criteria have been proposed in this effort to assist 

investors; through this section, we will mention some of them and 

describe the weaknesses that created the need for a better decision 

analysis model. 

 The simplest criterion the reader could use is the state-by-state 

dominance, according to which a preferable investment is the one that 

can guarantee a better outcome in every possible situation than any 

other investment proposed. Although it is a logical metric, it is 

inefficient in the modern world where there are many investment 

opportunities, complex financial instruments, and the expected payoffs 
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depend on many different variables many of which are unrelated to 

the investment plan itself. 

 Another criterion that has been suggested in literature is the 

mean-variance criterion under which a rational investor should choose 

the plan with the greatest mean and smallest variance. At this point, 

it is essential to note that in finance we consider the mean to be 

representative of the plan’s expected payoff while the variance 

suggests the risk that is included in the investment under uncertainty. 

It would be rational to choose to invest our disposable income where 

we are promised greater payoffs with less risk; but what happens if the 

expected payoffs and the risk of a plan are higher than the 

fundamentals of another? That is a case where the mean-variance 

metric remains silent and can’t guide the investor to a proper choice. 

 Finally, the last proposed criterion that tried to cope with all 

deficiencies mentioned earlier is the Sharpe ratio; it is an evolution of 

the mean-variance criterion, and it is simply defined as the ratio of the 

mean to the standard deviation for the proposed investment 

opportunity. Quite elegant in its simplicity, Sharpe’s ratio provides the 

investor with the average of expected payoff per unit of standard 

deviation; providing the decision maker with the information of what 

is his average expected payoff for each unit of risk he is taking over by 

selecting to invest in that plan. Unfortunately, it still is not able to 

classify two investments if the one has greater standard deviation and 

mean than the other. An investment like the latter may be better than 

the former if for example the payoff distribution is asymmetrical 

towards the right tail of the normal distribution. 

 The other disadvantage that all above metrics share derives 

from the fact that, economic theory wise, they do not take into account 

neither investor’s preferences concerning the trade between risk and 

payoff nor the asymmetry of the payoff distribution. Investors 
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preferences determine the trade above regarding a potential income 

loss.  

 Through this last paragraph we outlined the need to include 

utility theory in our investment analysis, and as we will try to 

demonstrate in the following chapters, stochastic dominance will 

analyze investor preferences as will be described through utility theory 

and help us select under those restrictions the optimal portfolio. 

1.4 Measures of risk – weaknesses 

The driving force behind the effort to measure and quantify risk is the 

need to contain the losses that our invested income may sustain; while 

at the same time trying to rate the investments from the one that 

incurs the highest risk to the “safe heaven” of the riskless investments. 

A number of different metrics have been proposed in literature with a 

sole target to quantify the incurred risk and distinguish between 

investments. In this section, only eight of those metrics will be 

presented accompanied by their deficiencies. 

1.4.1 Domar and Musgrave risk indexes 

The first metric that we will present is the Domar and Musgrave Risk 

Index. According to their paper of 1944, they defined risk as the 

additive inverse of the sum of all the negative or relatively low possible 

payoffs of investment. The mathematical representation of this is: 

RI = - 
0i

i i

x

p x


  

Since only the negative possible outcomes are taken into account; the 

RI is expected to be a positive number; thus the higher the RI, the 

riskier the investment. 
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The mathematical description presented above can be used only in an 

investment where the possible payoffs, represented in this formula 

with xi variable, are discrete numbers. As we already know, though, 

the possible outcomes of an investment tend to be infinite, and we 

usually use the normal distribution as a proxy in the analysis. In these 

cases, the formula is written as: 

RI = - 
0

( )f x xdx


  

Last, but not least Domar and Musgrave understood that the rational 

risk-averse decision maker will feel that he invested poorly if his choice 

is not providing, at least, the risk-free interest rate. With that in mind 

they amended their risk index suggesting the following mathematical 

version of the RI: 

RI = - ( )
i

i i i

x r

p x x r


  

With the same modification taking force to the continuous variables as 

well: 

RI = - ( )( )

r

f x x r dx


  

Domar and Musgrave, a measure of risk may be very appealing. 

However they do contain a certain amount of disadvantages; the main 

being that they do not take into account the differential damage of the 

various negative monetary returns. 

1.4.2 Roy’s Safety First Rule 

In his paper of 1952, A. D. Roy suggests that the primary goal of all 

investors is to ensure that they will not find themselves in a nightmare 

or “disaster” scenario. Based on this, he suggested that the risk as 
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perceived by a decision maker is the probability of his future income 

being lower than a “disaster” level of d. The formulation of that is: 

RI = ( )p x d  

Note that Roy’s risk index does not take into account the size of the 

actual loss an investor may sustain but rather the probability of such 

a loss. The main disadvantage of this metric is that since each investor 

determines the d, it lacks the credibility to rank investments 

objectively. 

1.4.3 Variance & Standard Deviation 

In the previous section, we’ve mentioned that in finance we consider 

the standard deviation and the variance to be representative indexes 

of the risk that are incurred in investment. We will now, provide more 

information on this notion. Since as we stated earlier risk occurs when 

there are more than one possible outcomes and in an investment the 

number of potential payoffs tends to be infinite, it would be a 

reasonable act to measure it using one of the common dispersion 

metrics. Risk measured with variance and standard deviation would 

be for a discrete distribution: 

2 2( )( )x i iP x x x   , with Ex   

moreover, for a continuous distribution: 

2 2( )( )x f x x x dx   , with Ex   

Having calculated the variance of a distribution one can easily 

extrapolate the standard deviation as it is known that the standard 

deviation is equal to the square root of the variance. Decision makers 

are interested in the investment’s profitability as best estimated by the 

expected value of the returns. The standard deviation indicates 

possible deviations of the realized returns from their expected value; 
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hence, a high standard deviation is intuitively identified with high 

risk. Because of its simplicity and intuitive grasp as a risk measure, 

this index of risk is widely accepted among professional investors as 

well as academics. 

 Despite it is a widely accepted and applied metric it has its 

drawbacks, the most import being that it takes deviations due to 

asymmetry towards both the right and left tail of the distribution into 

account. While a distribution with high left asymmetry means that 

extreme losses may be more frequently presented; a strong asymmetry 

to the right tail would be translate as a great chance to incur 

superprofits more frequently – a desirable trait in investments. To 

overcome this defect, the semi-variance index was introduced. 

1.4.4 Semi-Variance 

 This index takes into account, only deviations to the left of certain 

critical values, meaning that it measures only the risk of extreme 

losses. The mean of the distribution tends to be selected as the critical 

value.  

For discrete distributions, the semi-variance index is defined as: 

SV = 
2( )( )

i

i i

x A

P x x A


  

while for continuous distributions: 

SV = 2( )( )

A

f x x A dx


  

where the A in both equations presented above is the critical value that 

has been selected. Again, as in the “Safety First” rule the main 

disadvantage of this method is that the selection of the critical value 

A is something left to each investor’s judgment; thus, making the 

ranking subjective according to each’s preferences. 
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1.4.5 Baumol’s Risk Measure 

William Baumol in 1963 published a paper in which he argues that 

risk be perceived and should be measured as the likelihood of earning 

less than some critical level or “floor.” This notion reminds us of Roy’s 

“safety first”, as well as modified Domar and Musgrave risk indexes; 

all of the above agree that risk is interwoven with a minimum required 

return and as such it should be treated.  

According to that, an investment with high standard deviation but 

sufficiently high expected value would be relatively safe. The 

mathematical representation of this concept is: 

RI = E – kσ 

Where k is some constant, selected by the investor, representing his 

safety requirement; that would mean that the higher the risk index as 

depicted above, the safer the investment. The main disadvantages of 

this metric are that is it subjective as each investor would select his 

own k and it does not take into account the probability that a return 

may fall below the “floor”. 

1.4.6 Value at Risk (VaR(α)) 

The metric of Value at Risk is a popular measure of risk which has 

achieved the high status of being written into industry regulations; it 

indicates the maximum possible loss at α confidence level. The 

confidence level at VaR is used in the sense that the α left part of the 

distribution is ignored, and only the less frequent (but possibly more 

damaging) 1-α part is taken into account. In general, it is defined as: 

VaR(α) = μ -L 

where μ is the mean of the distribution and L is the value such that 

( )P x L   . Here the risk is measured as the maximum deviation 

from the mean when the left tail of the distribution is ignored.  
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It suffers, however, from being unstable and difficult to work with 

numerically when losses are not ‘‘normally’’ distributed – which in fact 

is often the case, because loss distributions tend to exhibit ‘‘fat tails’’ 

or empirical discreteness. VaR in general turns out to be not even 

weakly coherent and in particular not subadditive.  

Thus VaR, that was introduced in the attempt of measuring risk for 

weird distributions, can be used only when the computationally 

simpler variance can also be used. Indeed, VaR, if applied to most (not 

elliptical) return distributions is not an acceptable risk measure: 

 it does not measure losses exceeding VaR; 

 a reduction of VaR may lead to stretch the tail exceeding VaR; 

 it may provide conflicting results at different confidence levels; 

 non-sub-additivity implies that portfolio diversification may 

lead to an increase of risk and prevents to add up the VaR of 

different risk sources; 

 non-convexity makes it impossible to use VaR in optimization 

problems; 

 VaR has many local extremes leading to unstable VaR ranking. 

Thus VaR is an inadequate risk measure. 

1.4.7 Condition Value-at-Risk 

The CVaR, which is coincides with the results of the expected shortfall 

in cases of continuous random variables, is an evolution of VaR as 

described above. An alternative measure that does quantify the losses 

that might be encountered in the tail. As a tool in optimization 

modeling, CVaR has superior properties in many respects. It 

maintains consistency with VaR by yielding the same results. The 

main difference is that CVaR focusses on the less frequently occurring 
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but more damaging events of the left tail of the distribution, ignoring 

any possible positive outcomes. For continuous random variables, 

CVaR is the expected value of the losses exceeding VaRk, 

CVaRk = VaRk + E[f(x,y) – VaRk|f(x,y) > VaRk] 

1.4.8 Minmax regret 

This index was proposed by Leonard Savage in 1951. The main thrust 

of this rule is that investors should choose the investment that offers 

the minimum risk of possible losses due to a wrong choice; hence, the 

regret measures danger of making a wrong investment choice. 

The minimax regret criterion is as follows: the investor calculates the 

maximum possible regret for each stock and the stock with the 

minimum of these maximum regrets should be chosen. The stock with 

the minimax regret is the one with the lowest risk. 

Although the notion of alternative costs is intuitively very appealing, 

this measure of risk has two major drawbacks. First, adding one more 

stock may change the relative risk of the stock itself even if the 

additional stock is irrelevant because it is not chosen. The second 

major drawback of the minimax regret is that the regret function 

measures risk due to the wrong choice but it does not take into account 

the likelihood of the different states of nature and, therefore, it does 

not fully gauge the risk of each stock. 
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Chapter 2 

Portfolio composition and management 

 

 Having understood the notions of risk and uncertainty, we made 

the first step in the long process of portfolio optimization. In this 

chapter we will continue to provide the reader with the basic notions 

that are necessary to know and understand before we progress any 

further. We will explain the meaning of portfolio, demonstrate the 

process a portfolio manager follows and depict the different strategies 

that he has to choose from. 

2.1 The concept of portfolio 

In this thesis, we will widely mention the term portfolio. Driven 

by the methodology of the research that we will present it is deemed 

necessary to inform the reader on the meaning and importance of the 

term above. 

The concept of the portfolio is defined as the sum of an investor’s 

assets. These assets may include tradable securities, commodities, 

cars, houses, art, antiques, furniture and more.  

 The main purpose of holding a portfolio of assets is to invest a 

person’s disposable income aiming to maximize expected a return and 

minimize the risk that is intrinsically linked with this return. Each 

portfolio’s composition is different and affected by a series of various 

factors such as investor’s risk appetite, the time frame of the 

investment and individual objectives and constraints. Portfolios may 

be managed by amateur investors as well as professional financial 

analysts. 
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 Every human being gets daily in the process of selecting a 

portfolio. We all acquire good and services, place a part of our income 

to current or savings accounts, we pay a pensions fund contribution 

and make other financial choices. In essence, we distribute our income 

in the best possible way managing our portfolio as efficiently as 

possible. 

 Of course, a portfolio does not remain static over time. An 

investment that today seems promising may be proved injurious over 

time for our collection of assets. Daily, numerous events take place 

that affects the global economy and causes it constantly to shift. These 

lead us to the conclusions that it is essential to monitor constantly 

every portfolio and rebalance it, to achieve client’s investment 

objective.  

 In our analysis, we will focus on one of the riskier portfolios an 

investor may hold, the stock-based investment portfolio. Our effort in 

the following sections will be to provide the reader with the 

fundamentals of portfolio management before progressing to modern 

portfolio theory. 

2.2 Portfolio Management 

 Having understood the principles that govern an investment 

portfolio it is conspicuous why there is the need for help from a 

professional financial analyst in its creation and management.  

 Through the eyes of the professional, portfolio management can 

be described as a process. It is an integrated set of activities that 

combine in logical, orderly manner to produce the desired product. 

Like any other business process, the three elements that rule portfolio 

management are: 

 Planning phase 
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 Execution phase 

 Feedback phase 

Which may be as loose or as disciplined their operators desire. In this 

section we will visit and provide some basic insight, in each step of the 

portfolio management process. 

2.2.1 Planning phase 

 This is the first step in investment planning. The goal here is to 

identify and specify accurately investment objectives and constraints 

based on which the analyst develops investment strategies. Objectives 

of investment are the desired investor outcomes; usually expressed as 

risk and returns. Constraints of the investment may be either internal 

or external, where internal have to do with the investor himself while 

external are tax, legal and regulatory requirements. 

 Using the information that portfolio manager has acquired 

regarding the investor, he proceeds with choosing an investment 

strategy that matches clients profile. There is a wide selection of 

possible investment strategies in the quivers of the manager which we 

will demonstrate thoroughly in the following section. 

 Once a strategy has been selected the manager stars forming 

capital market expectation in micro as well as in macro level. This is 

made possible through various econometric, industry and market 

analysis models that provide forecasts on the expected performance of 

an economy, a sector, industry or even a transboundary market.  

 Finally, at the fourth step of the planning phase, the investment 

manager is ready to construct client’s portfolio structure. At this step, 

the disposable income of the investor is apportioned to various 

financial instruments that manager has access to. Depending on 

whether the investor has a single-period or multi-period perspective, 
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this is known as tactical or strategic asset allocation. The main 

difference between the two is that while the multiperiod perspective is 

more costly to implement, it addresses liquidity issues raised by the 

constant rebalancing of the single period perspective. 

2.2.2 Execution phase 

 Reaching to this node in portfolio management process, we have 

already accumulated information regarding the capital market 

expectations and the strategies that will be used. Combining those 

brings us to the actual portfolio selection where the manager selects 

specific securities for the portfolio. It is evident that this is not a static, 

but rather a dynamic process where constant revision is needed based 

on analysts input, market circumstances or investors objectives shift; 

thus, the execution phase is in constant interaction with the feedback 

phase. 

 A significant part of a manager’s efforts at this phase is the 

portfolio optimization, as it bonds strategies with expectations; 

stochastic dominance would be our tool for achieving that.  

 This phase incurs a large part of implicit and explicit cost such 

as transaction fees, missed trade opportunities and delay costs since it 

is the step where all elaborate plans of the planning phase turn to 

reality. 

2.2.3 Feedback phase 

 In every process, the feedback phase plays a vital part as it 

allows us to identify the underperforming part of said process and 

apply correcting actions to improve both process and outcome. Those 

two parts are known in the investment management process as 

monitoring and rebalancing, and performance evaluation. 
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 The main reason that urges investors to trust portfolio 

managers to handle their disposable income is the hassle-free process 

of keeping their goals satisfied. Monitoring and rebalancing a portfolio 

is something that guarantees the manager that his client’s objectives 

and constrains will continue to be satisfied. To keep those two in line 

we have to monitor investor-related factors as well as economic and 

market-based factors as both of them may affect portfolio compliance 

with investment policy. In any occasion where a condition has not met 

the manager has to rebalance the portfolio, changing the asset 

allocation the most efficient way to ensure that investor’s profile will 

still be honored.  

 Any rebalancing will drive us back to the execution phase 

demonstrating the tight relationship between the two phases that we 

expected. 

 The last step of the feedback phase is the one that completes the 

portfolio management cycle. As in any investment, asset performance 

is periodically evaluated by the investor to ensure progress towards 

the investment objectives as well as portfolio management skills. 

 The usual practice in evaluating portfolio performance is to 

compare ours, with a benchmark with similar targets and constraints 

and determine if we outperformed most of the benchmarks or not. 

 The scientific process of properly evaluating the portfolio, 

thought, would be to measure performance and then attribute it to 

various factors besides management that may have led to this 

outcome; thus leaving the heaping payoff to be attributed to 

management. Once we determine the part of the return that we 

attribute to the manager we can further progress our analysis by 

examining if this is an outcome generated from the strategic asset 

allocation made in the planning phase, tactical decision made by the 
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manager during the monitoring and rebalancing step known as market 

timing or selecting rising star securities in first place. All these factors 

provide both manager and investor with feedback regarding portfolio 

management efficiency. 

 Following this analysis of investment management process and 

the different factors that affect every phase of it, the reader 

understands the complexity of decision analysis that we should 

implement to achieve the best possible outcome. 

2.3 Portfolio management strategies 

 As discussed earlier a crucial part of the portfolio management 

process, determined at the planning phases is the strategy that the 

manager will follow. The extent to which the strategy affects the 

portfolio goes all the way to characterizing the portfolio and even the 

manager for supporting it. 

 The prevailing strategies in investment management can be 

placed into two broad categories, the: 

 Passive portfolio management strategies 

 Active portfolio management strategies 

A middle ground between those two may be found, and a hybrid 

management strategy may arise. The hybrid strategy through does not 

constitute a category of its own as it basically resembles one of the two 

broad categories with some aspects of the other being used depending 

on the manager. The main difference between the two lies on the 

assumption investors make on market efficiency. The most common 

way to distinguish between these strategies is by decomposing the 

returns the managers are trying to provide. 
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2.3.1 Passive management strategies 

 Portfolio managers that choose a passive investment strategy 

generally believe in market efficiency and set at their target the 

construction of a portfolio that tries to capture the market's expected 

return for the risk level their undertaking. The manager of such 

portfolios has a lot less freedom of choice and their role is limited in 

complying with certain well-defined criteria. A passively managed 

portfolio tries to combine the long-term investment horizon with little 

or no change in portfolio composition, features that will ensure the 

containment of transaction costs. The full spectrum of passive 

investment strategies can be separated into two sets of strategies. We 

will proceed by providing insight into each set. 

2.3.1.1 Buy and hold strategies 

 In this set, we classify the strategies that typically are laid out 

by non-professional individual investors. The concept governing a buy 

and hold strategy is the efficient diversification of an investor’s 

portfolio, usually consisted of shares and bonds, in a way that it will 

ensure long-term positive rates of return for the investor. There is not 

a specific technique that an investor willing to apply this strategy will 

use to decide on the assets he will hold. The selection is rather 

arbitrary under the subjective judgment of the individual with a sole 

scope the selection of assets that will allow the investment to follow 

the basic characteristics of a passively managed portfolio. 

2.3.1.2 Index tracking strategies 

 This is the most representative set of passive management 

strategies. The target of those strategies is to mirror the return and 

risk of the selected index. As they are costlier to implement both on the 

number of securities required to purchase and on the analysis they 

required in their design phase they are mostly implemented by 
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financial institutions and professional financial managers. We will 

mention and shortly explain the mechanics of three main techniques 

used in portfolio construction. 

 Firstly, we will visit the full replication technique. As its name 

suggests, this is simply achieved by purchasing all the securities that 

make up the index in proportion to their weights. While this will 

ensure a complete mirroring of index performance, it comes at a very 

high cost since there is a need to buy a large number of different 

securities skyrocketing transaction fees. The second drawback of this 

technique is the transaction costs related to dividends reinvestment, 

required to keep the portfolio balanced on the index. 

 The second technique that we will mention, which is known as 

sampling, was developed in order to tackle the problem of having to 

buy numerous shares. To achieve that, a sample of index 

representative shares is acquired. Instead of purchasing all the shares 

that make up the index, the manager acquires heavily weighted shares 

in proportion to their weights and less significant, index wise, shares 

are purchased in a way that their proportion and characteristics like 

beta, industry and dividend yield represent aggregately a large 

number of smaller index stocks. That ensures that larger positions 

may be taken, thus minimizing transaction costs as well as that the 

dividends are reinvested easily during the portfolio rebalance process. 

The main disadvantage of this is that it most certainly won’t track 

index performance as efficiently as the replication technique. 

 The most modern technique is referred to literature as 

quadratic optimization or programming. In an effort to mirror the 

index as effectively as possible, while at the same time avoiding 

purchase all the shares making up the index computer analyzed 

mathematical models are used to determining a portfolio composition 

minimizing return deviations from the benchmark. As this technique, 



Portfolio optimization under uncertainty utilizing stochastic dominance 
 

35 
 
 

though, relies almost entirely on historical price changes and 

correlations it cannot ensure that, over significant time, changes will 

not drive the portfolio away from the index. 

2.3.2 Active management strategies 

 Conversely to previously presented strategies, this category 

signifies investment managers’ attempt to outperform the market. 

Every manager that identifies to this category firmly believes that in 

the real world the markets are not efficient, and there are 

opportunities for returns exceeding the market projected. This may be 

achieved by either identifying and selecting underrated shares or by 

tactical adjustments to the portfolio. The main advantage of these 

strategies being that they allow returns unrelated to the market index; 

resulting in, if implemented correctly, higher positive and less 

negative returns than their passive counterparts. On the other hand, 

the disadvantage of said strategies is that they incur both systematic 

and non-systematic risk. 

2.3.2.1 Fundamental analysis strategies 

 This is the most subjective active management strategies set. In 

an effort to identify undervalued securities, the manager utilizes 

financial statement analysis, and sector analysis to estimate the 

intrinsic value of stock. Some managers will go even to the extent to 

analyze an economy to try to identify the driving forces behind animal 

spirits that govern, from time to time, a capital market. Once a 

promising security has been identified the manager will open a 

position to aforementioned security and monitor closely. A popular 

approach based on fundamental analysis is the pivot strategy, which 

aims to exploit certain circumstances that may rise in the market. 
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2.3.2.2 Technical analysis strategies 

 Opposite to fundamental analysis, technical analysis strategies 

heavily rely on econometric models based on historical data to analyze 

and identify early market trends. The portfolio is generated on the 

basis that either past stock price trends will continue, or they will 

reverse; always in accordance with the model analysis. Technical 

analysis models will even try to identify possible investor 

overreactions based on the known high correlation between the 

present and past share prices. 

2.3.2.3 Anomalies and Attributes strategies 

 These strategies examine sectors and markets on a whole in an 

effort to either locate sectors or securities that display certain 

attributes such as high P/E ratio, or company book value that may 

signal an imminent share price increase. They, furthermore, try to 

identify and exploit market anomalies which may even allow riskless 

profit; in an effort to achieve that managers use models such as APT. 

  

 Having gone to this extent to grasp the implications and 

complexity of portfolio management we understand the need for proper 

portfolio selection to ensure minimum transaction costs and high 

expected returns for the assumed risk level. 
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Chapter 3 

Investor utility and optimal portfolios 

 

 Continuing our introduction to the fundamental concepts 

related to our thesis we will now focus on the mathematical 

representation of an individual’s preferences, as well as describe the 

different type of investor according to their risk preferences. Finally, 

we will present Modern Portfolio Theory, the theory that shaped the 

portfolio management sector. 

3.1 Utility theory 

 Up to this point in our analysis, we’ve made clear that there are 

two main factors an investor takes into account when he decides upon 

a proposed investment: risk and return.  

We will now present the building block in which our research 

will be based. This notion is no other than the expected utility 

criterion, a theory that takes into account the whole distribution of 

returns making nonessential to define risk separately, thus operating 

better under uncertainty. 

The expected utility theory is a decision analysis tool and as 

such it should be treated. To grasp the mechanics behind the need for 

such a tool let us construct a simple game. There are two players 1 & 

2, and they are presented with the following situation: there is one 

dollar on a table, and player 1 may choose to take it or leave it. If he 

chooses to take it our game end with the first player having one dollar 

and the second zero. If he chooses not to take it, the money quadruples 

and the second player is presented with the choice to either take four 
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dollars or share them with the first player. In case his choice is to take 

them he has four dollars and the first player zero; in the sharing 

scenario both of them have two dollars. 

The rational thing to do for the second player, in case he is 

presented with the chance, is to take the four dollars. We may say that 

he prefers to maximize his returns and have four dollars than two. This 

is consistent with payoffs numerical value where 4$ > 2$. However, 

would that be the case if player 1 and player 2 were related? For our 

argument let’s assume that player 2 is mother and player 1 son. In 

that case, we probably think that she would choose to share the money 

with her son. In other words, she prefers to have two dollars and her 

son happy than four and a disappointed son. We now see that the 

numerical ordering we used earlier is not consistent with player 2 

preferences, to solve that we have to order differently player’s 2 

preferences, and there is the part where utility comes to the rescue. 

Instead of monetary outcomes we assign utility units which 

rank preferences, to both events and say that 2$ have a utility of 6 

while 4$ a utility of 3; thus 6 > 3 and making our analysis consistent 

again. 

Our effort now will be to expand the analysis above and present 

the expected utility theory scientifically as it was developed by von-

Neumann and Morgenstern and is used in investment decision 

analysis. 

The Maximum Expected Utility Criterion is based on six axioms 

that we will demonstrate bellow. If all six axioms hold true, then it has 

been proved that the expected utility criterion should be used to choose 

among alternative investments. Before we start, allow us to define 

some basic symbolism that we will use. We will use an example where 
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the investor would be presented with two investment opportunities 

from which he will have to choose one. These are 

L1 = {p1A1, p2A2, …, pnAn} 

and L2 = {q1A1, q2A2, …, qnAn} 

With Ai being the payoff of the investment and pi or qi the probability 

under which this payoff is realized; it is easily conceived that ∑pi = ∑qi 

= 1. We will, also, use the symbol  which means “prefers” and  

which translates to “indifferent.” We are now ready to proceed:  

3.1.1 Axiom 1: Comparability 

 By this axiom, when our investor is presented with the 

investment choice dilemma he has to state his preference. Acceptable 

answers are A1  A2, A2  A1, A1 A2. The answer “I do not know” is 

not acceptable under this axiom. 

3.1.2 Axiom 2: Continuity 

 If the investor A3  A2  A1, then there must be a probability 

U(A2) with U(A2)  [0,1] such that our investor will be indifferent 

between receiving A2 with certainty or investing in plan L = {(1- U(A2)) 

A1, U(A2) A3}.  

 It is called continuity axiom because if you increase 

continuously U(A2) from 0 to 1, you will eventually hit the value U(A2) 

where L  A2. 

3.1.3 Axiom 3: Interchangeability 

 We are presented with two investment opportunities: 

L1 = {p1A1, p2A2, p3A3} 

and L2 = {p1A1, p2B, p3A3} 
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Payoff B is an investment combining A1 and A3: B = {qA1, (1-q)A3}. 

Under interchangeability axiom, if we are indifferent between A2 and 

B then we will be indifferent between L1 and L2. 

3.1.4 Axiom 4: Transitivity 

 If it holds true that our investor L1 L2 and L2  L3 then under 

this axiom, we derive that L1  L3. This holds true for indifference 

between investments as well. 

3.1.5 Axiom 5: Decomposability 

 We have three investment plans, two simple and a complex. An 

investment plan is called simple when the possible outcomes are 

payoffs while complex where they are other investments. To be 

specific: 

L1 = {p1A1, (1-p1)A2} 

L2 = { p2A1, (1-p2)A2} 

L* = {q L1, (1-q) L2} 

Under this axiom, we may convert the complex investment into a 

simple by decomposing it, specifically: 

L*  L = {p*A1, (1-p*)A2} where p* = qp1 + (1-q)p2 

3.1.6 Axiom 6: Monotonicity 

 Under certainty this Axiom states that if A2 > A1 then A2 A1. 

While under uncertainty is formulated in two ways as: 

Let L1 = {pA1, (1-p)A2} 

and L2 = { qA1, (1-q)A2} 

If A3 > A2, hence A3 A1 then L2  L1 

Second: 
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Let L1 = {pA1, (1-p)A2} 

and L2 = { qA1, (1-q)A2} 

If p < q (or if [1-p] > [1-q]) then L1  L2 

 

Earlier, we tried to provide a preview of the utility theory usage 

through a simple game, now that we articulated the axioms of the 

theory we can try to apply this to investments. Our analysis of the 

axioms demonstrated that preference is a fundamental part of utility 

theory as it is in investment decision making. 

 Applying continuity axiom, we understand that investor 

preferences may be represented by a function. This non-decreasing 

function is called utility function and is symbolized as U(x) and as every 

function, it may be represented by a curve in the Cartesian coordinate 

system. The curve that connects various utility functions that provide 

an investor with the same level of utility is known as indifference curve 

and is measured by a comparison between uncertain investment and 

a certain cash flow.  

A utility function comes in any form and thus there is no 

limitation in the shape of the utility curve, it may be either convex, 

curve, linear or a mix of the three. Although a utility function may be 

in any mathematical formulation and there is no limitation on the type 

of the curve, we will soon find out that each curve type signifies an 

investor stance towards risk; we will elaborate on that later in this 

chapter. 

Up to this point, we showed that U(x) is just another way of 

writing probabilities, and a logical assumption would be that utility 

values should be restricted to probability values in the closed set of 

[0,1]. In our first example, though, as the reader may recall we used a 
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utility unit greater than 1. That is allowed since one of the most 

important theorems states that a utility function is determined up to 

a positive linear transformation, where “determined” means that the 

ranking of the options by expected utility criterion does not change. 

This allows to unbound U(x) from [0,1] and let it take any real value, 

meaning that U(x)  . 

Another important fact that we should keep in mind is that 

utility units, which are called utiles, have no meaning. They depict 

numerically the ranking a person sets to his available choices. Since 

that ranking is arbitrary, even when it is the result of a function, we 

cannot use it to say that L2 is better than L1 but merely say that L2 is 

preferable according to this person to L1. 

Finally, we should be aware that investors tend to focus on the 

change of wealth by x monetary units and not to the total wealth they 

accumulate (w+x monetary units). Although this contradicts the 

expected utility paradigm, it does not contradict Stochastic 

Dominance, which states that if L2 dominates L1 for all U(w+x), the same 

holds true for all U(x) in a given set of preferences. 

3.2 Investor types and utility functions 

 Each individual when it comes to decision making uses his set 

of criteria to rank the possible outcomes and make a decision. The 

same applies to investors, who are usually using the return and the 

risk related to investment as criteria in the decision-making process. 

Closely observing their behavior, we can easily separate them into 

three broad categories: 

 The risk averse investor 

 The risk neutral investor 
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 The risk lover investor 

To clarify the differences between each investor category, we will use 

through this section an example where a representative individual of 

each class will have to choose between two similar investment plans 

with the same expected return but different risk levels. 

 This concept should remind us the expected utility criterion that 

we developed earlier and as we stated there is a connection between 

the convexity of the utility curve and investor’s stance towards risk. 

 We will now visit each investor category, provide its basic 

characteristics and made the final connection between risk appetite 

and utility curve convexity. 

3.2.1 Utility function of the Risk Averse investor 

 We will first examine the risk averse or rational investor. In this 

category, we classify all investors who when presented with the 

investment selection problem we’ve mentioned earlier will choose to 

undertake the plan that has the smallest amount of risk incurred. 

They require an increasing return to match the growing risk they may 

undertake. Most people will identify with this category, and this is why 

it is considered that it represents the rational investor. As it would be 

expected the risk averse investor’s utility function in a Cartesian 

system with horizontal axis calibrated as the potential income level Y 

and the vertical axis as the utility of that income level U(Y) would be 

concave. This is reasonable because this type of investor will suffer a 

greater impact from an income change when he is close to axis start 

point but, he will feel a difference of decreasing importance as it moves 

up the line. 
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The form of the utility diagram provides us with some 

information regarding the utility function. It could have any form as 

long as the first derivative U’(Y) = 
( )dU Y

dY
 is negatively correlated with 

the income Y and the second derivate takes only negative values, 

meaning U’’(Y) =  
2

2

( )
,0

dU Y

dY
  . A typical example may be the 

natural logarithmic function. 

3.2.2 Utility function of the Risk Neutral investor 

 Continuing our analysis, we will examine the type of investor 

that is the most representative of portfolio and fund managers. A 

representative investor of this category, when presented with our 

decision dilemma will be indifferent between the two proposed plans. 

In other words, he will not draw extra utility from the certainty the 

reduced risk may provide since both plans are promising the same 

return. 

 The utility function of an investor of this category is expected to 

be linear, and thus, its diagram will simply be a diagonal line starting 

from axis start point. 

Diagram 1 – The risk averse investor’s utility function 
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Examining this depiction, we can extrapolate that the utility function 

would be of any form as long as its first derivative is any positive 

number, meaning U’(Y) =  
( )

0,
dU Y

dY
   and its second derivative is 

zero. A typical example of this may be the linear function U(Y) = ax + 

b, where  0,a   and  0,b  . 

3.2.3 Utility function of the Risk Lover investor 

 Our final classification category, as irrational as it may seem, is 

the one that includes all decision makers that are drawn to risk and 

not returns. A representative decision maker of this category would be 

an addicted casino player.  

 This type of investor, when presented with our decision dilemma 

will select the plan that incurs the highest amount of risk, although 

there is no difference in said plans returns. His utility is greater at a 

higher risk, not with greater expected income. The utility function of 

this decision maker is supposed to be convex as utility increases with 

risk. 

Diagram 2 – The risk neutral investor’s utility function 
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Examining the diagram of the utility function, we understand that it 

may have any form, as long as its first derivative U’(Y) = 
( )dU Y

dY
 is 

positively correlated with the income Y and its second derivative U’’(Y) 

=  
2

2

( )
0,

dU Y

dY
  . A typical example may be the natural exponential 

function. 

 

As we conclude this section, we come to realize the importance 

of different investor types in portfolio management and the reason the 

expected utility theory is widely used in classifying investments. All 

this knowledge will be essential in our effort to optimize a portfolio 

through stochastic dominance. 

3.3 Modern Portfolio Theory 

 Everything that we presented up to this point was a prelude to 

Modern Portfolio Theory as it was developed by Professor Harry 

Markowitz in 1952 in his article “Portfolio Selection” published in 

Diagram 3 – The risk lover investor’s utility function 
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Journal of Finance. An article that leads to him being awarded the 

Nobel Prize in Economic Sciences in 1990. Our final effort in this 

section will be to present Markowitz’s theory; something that will 

allow the reader to connect the dots between the concepts that have 

been submitted and prepare for the analysis that will follow. 

 The main innovation introduced by Markowitz is to measure the 

risk of portfolio as the joint (multivariate) distribution of returns of all 

assets. He showed that the variance of return was a meaningful 

measure of portfolio risk under a reasonable set of assumptions. More 

important, he derived the formula for computing the variance of a 

portfolio which not only showed the importance of diversification but 

also demonstrated how to diversify efficiently. The assumptions that 

were formulated by Markowitz regarding investor behavior were: 

1. Investors consider each investment alternative as being 

represented by a probability distribution of expected returns 

over some holding period. 

2. Investors maximize one-period expected utility, and their utility 

curves demonstrate diminishing marginal utility of wealth. 

3. Investors estimate the risk of the portfolio on the basis of the 

variability of expected returns. 

4. Investors base decision solely on expected return and risk, so 

their utility curves are a function of expected return and the 

expected variance (or standard deviation) of returns only. 

5. For a given risk level, investors prefer higher returns to lower 

returns. Similarly, for a given level of expected return, investors 

prefer less risk to more risk. 

Under these assumptions, a portfolio is efficient when no other 

portfolio offers higher expected return with the same or lower risk. 
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 In his analysis Markowitz used the metrics of dispersion as a 

measure of risk incurred at a portfolio, a logical choice considering 

the first assumption under which we are working. To include 

uncertainty in his analysis, he used the expected rate of return as 

the metric of portfolio performance. The portfolio expected the rate 

of return is simply calculated as the weighted average of the 

expected rates of return of the individual investments. The weights 

are the proportion of total value for each investment. 

E(Rp) = i iW R  

Where 

 Rp: Portfolio return 

 Wi: Weight of i investment 

 Ri: Expected rate of return on investment 

 To calculate, though, the portfolio Standard Deviation, we will 

first have to calculate the covariance and correlation of individual 

assets making up the portfolio. The covariance is a statistical 

metric that shows us the degree to which two variable, in our case 

the expected rates of return, “move” together. It is easily calculated, 

through the following mathematical formula: 

Covij =  ( ) ( )i i j jE R E R R E R        

  The magnitude of the covariance depends on the 

variances of the individual return series, as well as on the 

relationship between the series. Using the covariance, we’ve 

managed to quantify the relationship between the expected returns 

of two assets. As the function result may be any real number it is 

hard to interpret the outcome between many assets and it does not 

allow comparability. 
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 Since the covariance is affected by the individual series 

variability we “standardize” it, and create the correlation 

coefficient, a metric that can vary only in range -1 to +1; thus 

allowing us to draw conclusions. The mathematical formulation of 

this is: 

rij = 
,i j

i j

Cov

 
 

where 

 rij: Correlation coefficient 

 σι: Standard deviation of Ri 

 σj: Standard deviation of Rj 

Using these tools Harry Markowitz, managed to calculate the portfolio 

standard deviation as: 

2 2

,

1 1 1
i j

n n n

p i i i j i j

i i j

w w w Cov 


  

     

Thus, this formula includes besides the weighted average of individual 

variances, the weighted covariances between all the assets in the 

portfolio.    

 

This notion brings us to the Efficient Frontier, the line that 

represents every set of portfolios, for all possible combinations of a 

given asset or assets, which have the maximum rate of return for every 

given risk level. Meaning that it is the line that represents every 

portfolio for a minimum σp for a certain level of Rp and vice versa. As 

an investor, everyone would target a point along the efficient frontier 
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based on his utility function, which as the reader may recall, reflects 

investor’s attitude towards risk. 

  

As someone may notice, the slope of the efficient frontier curve 

decreases steadily as we move upward. This implies that adding 

equal increments of risk as we move up the efficient frontier gives 

diminishing increments of expected return. Markowitz uses a 

person’s utility curve to determine an efficient portfolio that best 

suits investor’s needs. Two investors will choose the same portfolio 

only if their utility curves are identical. 

 Contemplating on those, we understand that there is no 

absolute optimal portfolio that everyone should choose but rather an 

optimal portfolio is the efficient portfolio that has the highest utility 

for a given investor. It lies at the point of tangency between the 

efficient frontier and the curve with the highest possible utility. This 

revolutionary analysis by H. Markowitz, and many more that 

followed shaped a significant part of financial science as we know it 

today. 

Diagram 4 – Efficient Frontier 
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Concluding this chapter, the reader has accumulated the 

knowledge of the basic principles that will be required and widely 

mentioned in our analysis as well as informed on the forces that 

power the need for better, more analytical models of portfolio 

optimization. We are now ready to proceed on the main theory behind 

the thesis and our research on portfolio optimization with stochastic 

dominance.  
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Chapter 4 

Concepts of Stochastic Dominance 

 

 The driving force behind investment selection is individual’s 

preferences. Previously, we demonstrated utility theory and how the 

maximum expected utility criterion in synergy with the Modern 

Portfolio Theory could lead us to the optimal portfolio. 

 Although, this concept is promising and easy to implement it 

lacks the key characteristic of real world application. It most 

certainly may help us analyze theoretical models and partially 

explain the diverse phenomena that we observe, but it cannot be 

actively used by an investment analyst to propose a portfolio. The 

reason behind this is that we cannot know with certainty the exact 

form of an investor’s utility function. This partial information leads 

us to inconsistencies that we will try to address. 

 In a case where we know exactly the form of the investors 

utility function we achieve complete preference ordering, and we can 

definitively state the optimal portfolio for the specific investor. As we 

turn to real world and the information becomes scarce and difficult to 

accumulate we start to order investor preferences partially into two 

broad sets: 

The efficient set (ES) 

and 

The inefficient set (IS) 

Both sets contain investments that are available to an individual, and 

together they create the feasible set (FS). The foremost difference 
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between the two, being that all the investments in the inefficient set, 

with decision maker preferences in mind, underperform when 

compared to efficient set. 

 To separate the possible investments in those two sets, we will 

need a tool, which is Stochastic Dominance (SD); the theory that we 

will present through this chapter. We will progressively increase our 

degree of information on investor preferences and thus gradually 

explore the orders of stochastic dominance. 

 On a last note before we proceed we should keep in mind that 

stochastic dominance is the optimal tool that an investment analyst 

would use to objectively separate the available investments into those 

that he will present to an investor and those that he won’t. The choice 

of the actual investment plan is a subjective choice made by the 

investor himself as only he knows the true form of his utility function; 

thus, stochastic dominance applies only to the investment analyst’s 

decision and as such a tool it will be examined. 

  4.1 First Order of Stochastic Dominance (FSD) 

 The first degree of stochastic dominance assumes the least 

amount of information on investor preference being available. The 

analyst has to identify the investment that classifies as efficient 

knowing only that all individuals prefer more money than less. 

 At this point and before we go any further let us explain the 

meaning of the term stochastic dominance as it is in the center of our 

thesis. To fully comprehend the term, we will account for the 

significance of the two components; stochastic process and dominance. 

A stochastic process is a random process evolving with time. More 

precisely, it is a collection of random variables Xi indexed by time. The 

study of processes changing with time leads to the study of either 
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differential equations, for continuous variables, or difference 

equations for discrete variables. In our case and as the returns of a 

portfolio or asset can be represented by distributions, we will study the 

density function for continuous variables or the cumulative probability 

function for discrete variables. We will revert on that as our analysis 

progresses. The second term that we have to understand is the concept 

of dominance. We will present dominance in its weak sense, which 

simply states that a security dominates another if it promises the same 

payoff for every occasion and at least better on one occasion to the 

decision maker. Combining the two terms that were described, we get 

stochastic dominance; the concept that in its degrees examine a 

random process, which in finance are asset returns, to identify 

occasions where either an asset or a portfolio dominates another by 

offering the investor at least the same returns and in times better that 

its counterparts. 

 Understanding the meaning of the theory that we will present 

and its use we turn to the first order of stochastic dominance, denoted 

as FSD. The available level of information here should be translated 

into information on investor’s utility function as this is our model for 

numerically ranking an individual’s preferences. The knowledge of 

preferring more money over less translates into the first derivative of 

the utility function being either positive or zero. Thus, we created a set 

which includes all utility function with U’ ≥ 0; we will call that set U1 

where the number one signifies that we are working under FSD. 

 For our paradigm we will work with two investment plans F & 

G. In case the returns of the investments are discrete we will be 

working with the cumulative probability function: 

( ) ( ) ( )
X x

F x P X x P x


    
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While for investment whose returns are better depicted by continuous 

variables we will use the distribution density function: 

( ) ( )

x

F x f t dt


   

Both of them will provide us with the probability the return of the 

investment being below the critical value x. Under the First Degree of 

Stochastic Dominance rule, a preferable investment between the two 

is the one that dominates the other and as such is situated in the 

efficient set. 

 This is easily identified if we examine the probability function. 

The investment that dominates would be the one for which: 

F(x) ≤ G(x) 

holds true for all x, with a strong inequality for at least one x0. 

Considering that the investor prefers more money than less, the 

investment with the smaller exposition to probabilities for low or 

negative returns will be the one ensuring a greater utility level for our 

investor, thus ensuring EFU(x) ≥ EGU(x) for all UU1 with a strong 

inequality for at least one U0  U1. In cases where those hold true, we 

state that investment plan F dominates G under FSD, which is written 

as FD1G. To formulate officially, we define: 

G(x) – F(x) = I1(x) 

Then 

FD1G if and only if I1(x) ≥ 0 for all x and I1(x0) > 0 for some x0. 

To provide an intuition behind the FSD rule, we will work with the 

cumulative probability function for discrete variables and the FSD 

rule: 
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If FD1G holds true, then F(x) ≤ G(x)   1-F(x) ≥ 1-G(x)   x. At this 

point recall that F(x) = p(X ≤ x), if we substitute the latter equation 

into the former we will get 1-F(x) ≥ 1-G(x)   ( ) ( )F Gp X x p X x   . 

Thus, if FD1G holds true, the probability of obtaining higher payoffs 

than the critical value x is larger under distribution F than under 

distribution G. 

 

Diagram 5 – First Degree of Stochastic Dominance 

 Examining further the FSD rule as described we can break it 

down to five points: 

1) FSD requires the two compared distributions not crossing but 

allows tangency 

2) An investment is characterized as inefficient if there is at least 

one other investment dominating the former plan 

3) An inefficient investment may dominate another inefficient 

investment 

4) An inefficient investment cannot dominate an efficient 

investment 

5) All investments within FSD efficient set must intercept. 
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The FSD rule is the best available rule for our set of information, 

as it provides us with the smaller efficient set for the given knowledge 

on preference. That falls in line with the typical description of an 

optimal rule, which is a necessary and sufficient condition for 

dominance without contradicting the maximum expected utility 

criterion. The mathematical representation of this is: 

( ) ( )F x G xE U E U    1 1U U FD G   

There are many different rules which may be either sufficient 

but not necessary or necessary but not sufficient that may help us 

screen the feasible set. A sufficient rule alone may be used, but as it 

may not be powerful enough, it will lead us to Type I errors. A Type I 

error is induced when we accept to the efficient set a dominated 

investment and thus, a sufficient rule alone yields a broad efficient set. 

On the other hand, the necessary rules are condition implied to 

hold true if we have dominance. The three most basic are: 

1) If FD1G then      F GE x E x  

2) If FD1G then ( ) ( )geo geox F x G  

3) If FD1G then ( ) ( )F GMin x Min x  

All three conditions may independently hold, but they do not 

necessarily suggest that there is first degree of stochastic dominance. 

On the contrary, FSD cannot exist if any of the necessary rules outlaid 

does not hold. Using a necessary condition alone to identify dominance 

may lead us to Type II errors. A Type II error is induced when we reject 

from the efficient set a non-dominated investment and that may mean 

poor investment decision. Only the First Degree of Stochastic 

Dominance rule as presented is a sufficient and necessary condition 

for U U1 and thus is the optimal rule. 
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 As the information on investor preference at this level is quite 

limited and consequently we are faced with a rather large efficient set, 

there is the need to include another layer of information on presumed 

preferences creating the second order of stochastic dominance. 

4.2 Second Order of Stochastic Dominance (SSD) 

 As we concluded the presentation of the first order of stochastic 

dominance we have developed a necessary tool that helps us 

discriminate between efficient and inefficient investments. The 

investment analyst should present an individual with plans that are 

in the efficient set and then, the investor chooses from them. We may 

recall, though, that FSD operates under limited assumptions on 

investor preferences, and consequently, it yields a broad efficient set. 

We will now try to limit the efficient investments by adding another 

assumption on investor preference. 

 The new layer of information is based rather on the observation 

than the assumption, that all investors are risk averters. Most people 

prefer a higher return for the same amount of risk and less risk for the 

same level of returns. That said, we add the risk aversion assumption 

to the non-decreasing utility functions of investors examined 

previously. 

 The assumption that we have made up to this point was 

formulated as U’ ≥ 0 generating the equation set U  U1, which meets 

that criterion. By adding risk aversion, we define a new smaller 

equation set U  U2 with U2   U1, which contains all the utility 

functions that have non-negative first derivative and non-positive 

second derivative with at least one point where they are strictly 

positive and negative respectively. Extrapolating from the fact that the 

sign of a function’s derivative suggests its graph, we expect a risk 
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averters utility function graph to be concave. From that simple 

statement on function convexity, we derive Jensen’s Inequality, which 

states that the expected utility is smaller or equal to the utility of the 

expected return with the mathematical representation of this being: 

U(Ex) ≥ EU(x). In addition to the mathematical formulation of the 

utility function, there are two facts intrinsically linked with the nature 

of a risk averter. The first is that a person who averts risk will never 

play a fair game; a game in which the price of the ticket to play the 

game is equal to the expected prize. The second is that risk averters 

will be willing to pay a positive premium to insure their wealth against 

negative outcomes. All these five mathematical and non-mathematical 

notions are linked with risk aversion and we may use them 

interchangeably in our analysis. 

 Before we present the SSD rule, we would like to remind the 

reader that under this model we are working on the assumption of risk 

aversion. This means that although any investor would agree on U   

U1, there may be someone who disagrees on U  U2. The reason that 

makes worthwhile to extend our model to include that assumption is 

the fact that most investors would agree on U  U2, something that is 

indicated by the cost of capital, as investors require higher premiums 

for higher risk concentrations; a behavior that signals risk aversion. 

 We are now ready to present the SSD decision rule; we will use 

the same paradigm of two investment plans F & G with density 

functions f(x) and g(x). We state that F dominates G by second degree of 

stochastic dominance denoted by FD2G for all risk averters if and only 

if: 

2 ( ) [ ( ) ( ) 0

x

a

I x G t F t dt    
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For all x [a,b] and with at least one xo for which there is a strict 

inequality. As the investor would prefer a plan that would be more 

profitable with less risk incurred, we derive that the above definition, 

when FD2G, may be used interchangeably with 

EFU(x) – EGU(x) ≥ 0 

For all U  U2, with at least one Uo  U2 for which there is a strict 

inequality.  

The rule presented previously for the second degree of stochastic 

dominance is a sufficient and necessary condition for dominance, thus, 

making the SSD rule the optimal decision rule when we are in U U2 

information set. 

 To help us grasp this concept better and the reason 

ensuring that any investment dominating another, while not 

dominated itself is an efficient investment under SSD we will use the 

graphical exposition of SSD.  

 

Diagram 6 – Second Degree of Stochastic Dominance 

To slowly build our argument we will start from the SSD 

integral condition. I2(x) ≥ 0, this implies that the area between the two 

distributions that we are studying should be non-negative up to every 

x. When F dominates G we mark the area where F is below G as “+” 
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and the area where G is below F as “-“. When applying the SSD rule, 

we are looking for all the x up to which, the one distribution dominates 

the other. This can happen irrespectively: 

May F dominate G for x ≤ x1 and x ≥ x2 

and 

May G dominate F for x1 < x < x2 

However, to state definitively, we should know that the positive area 

is greater in total than the negative area, that is implied when the 

integral rule 

[ ( ) ( )] 0

x

a

G t F t dt   

holds true. To achieve that there must be a positive space preceding 

every negative area such that the sum of the positive areas is larger 

than the sum of the negative areas accumulated up to x. The following 

inequality represents this: 

1

1

i

i j

j

S S


 



  

Where S1, S2, S3, …, Sn is the absolute value of all areas ordered from 

lowest to highest. In case, the distributions cross more than once, 

hence, we have more negative areas, the inequality is written as 

1 1

k m

i j

i j

S S 

 

   

Where m is the positive areas before the kth negative area. Namely, 

the condition states that the sum of all positive areas m preceding the 

k negative area should be greater or at least equal to the sum of all 

negative areas up to k. Finally, note that to check if I2(x) ≥ 0  x holds 
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true it is sufficient to test the SSD integral rule for the intersection 

points of F and G. 

 To understand the reason why when SSD integral rule holds 

true we are expecting the distribution that dominates the other to have 

a higher utility value for the investor we should analyze the equation 

      '( ) ( ) ( )

b

F G

a

E U x E U x G x F x U x dx    

Examining the equation, we notice that, by the assumption of risk 

aversion (U’’ ≤ 0), the utility is a declining function of x; a fact that 

means that the positive area is multiplied by a larger number U’(x) 

than the negative area and therefore the total integral is non-negative. 

This implies that 

    2F GE U x E U x U U    

The intuition prevailing SSD is that if FD2G, as F has a positive area 

for a lower wealth and U’ is declining the monetary value of the 

positive area in utility terms is larger than the value in utility terms 

of the negative area that F loses in comparison to G. Hence, F will be 

preferred over G by all risk averters. 

 To complete our presentation of SSD, it is crucial to mention the 

sufficient and necessary conditions that are needed to support 

dominance. 

 Let us start with the three most important sufficient rules for 

dominance. As in FSD, if one of this conditions alone is met it does not 

necessarily suggest SSD and if we implement any of these conditions 

alone we risk a Type I error. The first rule suggests that if the FSD 

rule holds true, then that is a sufficient condition for SSD. Although 

any investment relegated to the inefficient set with FSD will also be 

relegated to the inefficient set with SSD, this rule alone will result in 
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a rather large efficient set since it cannot recognize dominance when 

the two distributions cross. The second rule suggests that if the 

MinF(x) > MaxG(x) that is a sufficient rule for SSD; this implies that 

F(x) ≤ G(x)  x. That condition, and any other that is a sufficient rule 

for FSD, hold true for SSD as well since the existence of FSD 

dominance implies SSD dominance. The last sufficient rule that we 

will mention is the “k rule” which states that F dominates G if: 

[ ( ) ( )]

x

a

G t F t dt k     x where k > 0 

It is a sufficient rule since it holds for all x then I2(x) ≥ 0 for some xo. 

 To complete this section, we will shortly mention the three 

necessary rules that are implied by SSD, remember that while SSD 

cannot exist unless all three condition are met, SSD is not signified by 

the fulfillment of one rule alone; if we ignore that we are risking a Type 

II error. 

 The first condition is known as the means, which states: 

( ) ( )F GE x E x  

As a prerequisite for dominance of F over G in U2. Namely that if FD2G 

then the expected returns of F must be greater or equal to the expected 

returns of G. The second rule is the geometric means, which suggests 

that if FD2G then ( ) ( )geo geox F x G . The last condition if the “left tail” 

rule which states that MinF(x) ≥ MinG (x), namely the left tail of G must 

be “thicker.” Although there are more sufficient and necessary rules 

for SSD, the ones described above are the most important and we will 

not include others in our analysis. 

 Concluding our SSD presentation, we note that by adding the 

risk aversion assumption we’ve managed to yield a significantly 

smaller efficient set, but as we are only conducting our work on two 
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assumptions we still have a relative large efficient set. In the following 

section, we will try to use to our advantage one of the distributions’ 

properties to limit even further the efficient set while providing the 

investor with the best of his procurable investment opportunities. 

4.3 Third Order of Stochastic Dominance (TSD) 

 As our analysis progressed, we made various assumptions on 

investor preference driven by reasoning and observation. The next 

degree of stochastic dominance that we will attempt to present is more 

challenging than the previous and for that reason, we need to start by 

addressing the assumption that will increase our level of information. 

 The assumptions that we have formulated were that all investor 

prefer more money than less money (U’ ≥ 0) and that most investors 

are risk averters (U’’ ≤ 0). We are adding now the assumption that most 

investors prefer a return distribution to be positively skewed (U’’’ ≥ 0) 

than negatively skewed. To facilitate our transition to the TSD 

decision rule and understand its importance, it is first deemed 

necessary to provide a definition for skewness and explain the 

economic rationale and importance of skewness in decision making. 

 In statistics skewness is a metric that help us quantify the 

extent and magnitude of a distribution’s asymmetry. Namely, it helps 

us understand and measure the degree to which the two tails of the 

distribution are of an even size, or one tends to be “fatter” than the 

other. It is calculated as the third central moment denoted by 3 , as 

follows: 

3

3

1

( ( ))
n

i i

i

p x E x


   
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For discrete distributions, where with n is denoted the number of 

observations and with (pi, xi) the probability function and for 

continuous distributions: 

3

3 ( )( ( ))f x x E x dx




   

 

To help us understand even better the importance of skewness note 

that the prizes of a lottery are positively skewed due to the small 

probability of winning an enormous prize while the value of an 

uninsured house is negatively skewed because of the small likelihood 

of a heavy loss due to fire. Distributions that are symmetric have zero 

skewness. 

 

 

. 

 

  

 Understanding now the meaning and mathematical calculation 

of the term skewness we turn to the interrelationship between 

skewness and U’’’ to start connecting the dots that will lead us to TSD. 

 It was Friedman and Savage, and Kahneman and Tversky that 

suggested a positive approach toward understanding investor 

preference. Their suggestion consists of the notion that by observing 

investor behavior we can draw conclusions regarding their 

preferences. Following their doctrine and observing behavior, we will 

soon notice that most people tend to insure their homes and are willing 

to buy lottery tickets. Through home insurance individuals reduce the 

Diagram 7 - Distributions with negative, positive and zero skewness 
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variance of future value and annihilate the skewness, generalizing 

that we may say that people tend to insure against negative skewness 

and are willing to pay a premium for positive skewness 

 Using a Taylor series expansion about the point (w+E(x)) we can 

prove that ceteris paribus, the higher the 2

x  the lower will be the 

expected utility of a risk averter due to the fact that U’’ ≤ 0 and the 

higher the positive skewness, the higher the expected utility, provided 

that U’’’ ≥ 0. Summarizing, the investor utility will increase as the 

variance tends to zero (U’’≤ 0) or as the skewness tends to be zero or 

positive (U’’’ ≥ 0). 

 To expand this analysis to investor preference in the stock 

market, we will first have to mention that stock rates of return are 

positively skewed as at most a stock price can drop to zero resulting in 

a -100% rate of return. 

 In the case of lotteries and home insurance it is hard to separate 

the effect of changes in the variance and changes in the skewness; 

hence, we could not definitively conclude that U’’’ >0 from the fact that 

individuals buy insurance and lottery tickets. Stock market rates of 

return can be used to ascertain whether U’’’ is indeed positive: The 

effect of the variance can be separated from the effect of the skewness 

by conducting multiple regression analysis. To be more specific, the 

following cross-section regression can be performed: 

2

1 2 3 3 4 4 ......i i i i k ikR a a              

where ik  is the kth central moment of the ith mutual fund (the first k 

moments are included in the regression), 2

i  = 2i  is the variance, and 

Ri is the ith stock average rate of return. The regression coefficients (if 

significant) determine how the various moments of the distribution 

affect the expected rate of return Ri.  



Portfolio optimization under uncertainty utilizing stochastic dominance 
 
 

68 
 
 

 The market dynamic for price determination of risky assets is 

as follows: Suppose that a firm takes an action such that the skewness 

of the returns on the stock increases. Then, if investors like positive 

skewness, the demand for the stock will increase the stock’s price and, 

therefore, for a given future profitability, the average rate of return 

with the new high price will be lower. 

 Two last notes before presenting the TSD decision rule would be 

that relying on the observation that the higher the investor’s wealth, 

the smaller the premium he is willing to pay to insure against a given 

loss we support even further the assumption of U’’’ ≥ 0. At this point, 

we should stress enough that our hypothesis is supported by empirical 

data for most but not all investors. 

 As in previous degrees of dominance, the optimal investment 

rule for U  U3 information set would be given in the form of the rule 

that follows: 

Let F(x) and G(x) be the cumulative distributions of two investments 

under consideration whose density functions are f(x) and g(x), 

respectively. Then F dominates G by Third Degree Stochastic 

Dominance (TSD) if and only if the following two conditions hold: 

a) 
3( ) [ ( ) ( )] 0

x z

a a

I x G t F t dtdz     for all x 

b) ( ) ( )F GE x E x  (or I2(b) ≥ 0) 

with at least one strict inequality, namely: I3(x) ≥ 0 and I2(b) > 0   

EFU(x) ≥ EGU(x) for all U  U3, the same holds true if I3(x) > 0 and 

I2(b) = 0   EFU(x) ≥ EGU(x) for all U  U3. 

To have dominance, we require that either: 

I3(x0) > 0  
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OR 

I2(b) > 0 

Which guarantees a strong inequality holds for some U  U3. 

 Although it is tempting to believe that for TSD dominance, the 

dominating investment is sufficient to have larger skewness alone, this 

is not true. It is possible for F to dominate G even if they have the same 

or zero asymmetries. The conclusion draw from that is that it is 

possible to have TSD, without having FSD or SSD but the result may 

not be necessarily linked with skewness. 

 To understand how TSD is possible without its existence being 

related directly with skewness, we will try to provide an intuitive 

explanation of the rule. The most notable impact of assuming U(x)’’’ ≥ 0 

is that it implies that U(x)’’ is a non-decreasing function, although U(x)’’’ 

may not be a declining function itself. Besides that, the assumption 

that we’ve formulated on the third derivative of the utility function 

also implies that U(x)’ is a declining convex function. By that we allow 

U’ to decline at the same pace at some range and because of the 

required condition U(x)’’’ ≥ 0, for some x, it must be strictly convex at 

some range. Based on that we will explain how it is possible to have 

TSD without SSD even for symmetric distributions. We have: 

'

( )( ) ( ) [ ( ) ( )

b

F G x

a

E U x E U x G x F x U dx    

 Because U'(x) is a declining convex function, we allow a first 

positive area to be followed by a second larger negative area such that 

SSD does not hold, but TSD may hold. If U’ is strictly declining, that 

makes the following area to worth less in utility terms; thus in utility 

terms in U  U3 the positive area worth more hence FD3G is possible. 

Of course, the larger negative area that is allowed is a function of the 

positive area that precedes it as well as the relative location of these 
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two areas on the horizontal axis. Finally, we should note that a convex 

U’(x) is required to have TSD but U’(x) = 0 is possible in some ranges. 

 Concluding our presentation of the third order of stochastic 

dominance it is essential to mention that TSD is a necessary and 

sufficient decision rule for all 3 2 1U U U U    and as such it is the 

optimal rule for that information set. However, we can here establish 

various sufficient and necessary rules for 3U U  dominance. 

 We will start by mentioning two basic sufficient rules for 

dominance. As always the use of those standards should be avoided as 

they may lead us to Type I errors and yield a larger than the optimum 

efficient set. 

1)FSD is a sufficient rule for TSD 

 To understand this, suppose that FD1G, then F(x) ≤ G(x) for all 

x with a least one strict inequality. This implies that: EF(x) > EG(x) and 

l3(x) > 0 because FSD implies that the superior investment has a 

higher mean and that I1(x) = [G(x) - F(x)] is nonnegative. However, 

because the integral of I1(x) is l2(x); l2(x) > 0 and l3(x), which is the 

integral of l2(x) is also non-negative. 

2)SSD is a sufficient rule for TSD 

 If FD2G then that means that the fundamental rule for SSD 

holds true, namely I2(x) ≥ 0; but because the I3(x) may be written as 

3 2( ) ( )

x

a

I x I t dt   ≥ 0, that would inevitably mean that I3(x) ≥ 0. I2(x) > 0 

for all x implies that it holds also for x = b; hence, EF(x) > EG(x). Thus, 

FD2G implies that the two conditions required for TSD dominance 

hold; hence, FD3G. 

 Finally, we will describe three necessary rules for TSD. Again, 

the use of those standards should be avoided as they may lead us to 
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Type II errors and assign an efficient investment to the inefficient set. 

We should, though, keep in mind that third order stochastic dominance 

may not exist if any of those necessary rules are broken. 

1)The means 

Unlike FSD and SSD, TSD explicitly requires that EF(x) > EG(x) to 

have FD3G. This condition on the expected values is a necessary 

condition for dominance in U3. Note that for FSD and SSD we had to 

prove that this condition was necessary for dominance but TSD, there 

is nothing to show because it is explicitly required by the dominance 

condition. 

2)The geometric means if FD3G then ( ) ( )geo geox F x G  

3)The “left tail” condition 

Like FSD and SSD, for FD3G, the left tail of the cumulative 

distribution of G must be "thicker" than the left tail of F. In other 

words, MinF(x) > MinG(x) is a necessary condition for FD3G. 

 At this point, we have provided an outline of the properties, 

mechanics and formulation of all three degrees of stochastic 

dominance as they will be used in the following chapter to optimize our 

portfolio. The reason why this model presents a tempting alternative 

to investment analysts should be clear. It allows them to identify 

prosperous investments, consistent with the objectives of investor 

majority, with limited need for information, something that allows 

opportunities for cost-effective solutions in investments management.

  

 On a last note, it is essential to mention that stochastic 

dominance may be extended even further to include risk-seeking 

investors, nth order stochastic dominance, as well as it may extend to 
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include the decreasing absolute risk aversion model. In this thesis, we 

will limit ourselves to the three degrees presented in this chapter. 
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Chapter 5 

Portfolio optimization under Stochastic 

Dominance 

 

 For us to proceed to the essence of this thesis and demonstrate 

the use of stochastic dominance as an optimization instrument, we will 

have to construct a portfolio that will be well diversified while limiting 

the securities selection to a number that would be rational and 

achievable for an investor. 

5.1 Data Selection Process 

Taking into consideration the constant flow of information and 

the ease of access that modern world allows to an individual, the global 

securities universe should be considered when dealing with an 

investment selection problem. Through this section, we will try to 

unveil and guide the reader through our reasoning for selecting the 

stocks that make up our portfolio.  

Before deciding on the individual shares, we dealt with a series 

of dilemmas, the first of which was if the trading venue should be in 

an emerging or a developed market. The answer to that question arises 

from the fact that we are working on a proof of concept and working on 

an emerging market would entrust our portfolio with numerous 

problems and market inefficiencies that will make harder to identify 

the root of an exceeding return. Having decided on the venue category, 

our following criterion should be market depth, data availability, 

ability to verify information and previous researches on the specific 

market. 
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Keeping those in mind, we will soon come the conclusion that 

the Standard & Poor’s 500 Composite Index fits best all the criteria. 

S&P500 created in 1957 as the first market capitalization weighted 

index in the United States. It includes the 500 largest U.S. 

corporations having their stock traded on either NYSE or NASDAQ. 

The index constituents are selected by a committee assessing a broad 

range of variables such as market capitalization, liquidity, domicile, 

public float, sector classification, financial viability, length of time 

publicly traded and listed exchange. 

The vast range of criteria that are used to decide on introducing 

or substituting a listed company on the S&P500 index, its active 

maintenance, and its widespread use led the National Bureau of 

Economic Research listing common stocks traded on S&P500 as a 

leading indicator of U.S. business cycles. It is easily understood the 

reason that drove us to select S&P500 to serve as a proxy for our 

portfolio.  

The next step in this process was to acquire historical data on 

stock and index prices, extending to reasonable time into the past that 

would allow us not alone to construct our model based on them but to 

test it as well. Data on the closing price, total returns index (RI) and 

market capitalization were extracted from Reuters’ DataStream for 

the period from December 31st, 1999 until Friday, June 3rd, 2016, both 

on daily and monthly intervals.  In addition to the above information 

were acquired on the sector and sub-sector that under which each 

share was classified.  

Combining the average market capitalization values on 

monthly intervals and sector classification on shares listed 

continuously on the S&P500 index during the whole period, we have 

managed to arrange the stocks per market capitalization and per 

sector. We have limited the maximum number of stocks that an 
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investor would like to keep in his portfolio at a given time at thirty. 

This restriction when applied to the stocks arrangement that we have 

achieved, allowed us to select the top three shares, in average market 

capitalization terms, from each sector.  

Table 1 – Data Descriptive Statistics 

 

Thus, resulting in a well-diversified portfolio that included 

stocks from all industry sectors as demonstrated in the previous table 

of descriptive statistics. 

 Finally, during this phase, we calculated the descriptive 

statistics values that would be needed in our analysis (see appendix 

Sector Stock Mean Std. Dev Variance Kurtosis Skewness J-B

Index S&P500 0,00301 0,04372 0,00191 0,89694 -0,49643 44,39561

Home Depot 0,00640 0,07578 0,00574 0,24418 -0,19245 63,55438

The Walt Disney Company 0,00861 0,07395 0,00547 1,50566 -0,25099 20,39798

Wal-Mart Stores 0,00176 0,05609 0,00315 1,25228 -0,24394 27,02654

Procter & Gamble 0,00431 0,05314 0,00282 10,89232 -1,82913 621,13747

The Coca Cola Company 0,00424 0,05154 0,00266 1,12645 -0,40933 34,31398

PepsiCo Inc. 0,00692 0,04534 0,00206 2,90578 -0,37426 4,67182

Exxon Mobil Corp. 0,00593 0,04973 0,00247 1,65243 0,33431 18,57561

Chevron Corp. 0,00764 0,06065 0,00368 0,80543 0,16356 40,41085

Schlumberger Ltd. 0,00928 0,09310 0,00867 1,20861 -0,08916 26,60233

JPMorgan Chase & Co. 0,00654 0,09158 0,00839 0,99984 -0,18672 33,98321

Bank of America Corp 0,00566 0,12030 0,01447 9,07154 0,49227 310,54523

Citigroup Inc. -0,00224 0,12600 0,01588 8,80171 0,36610 280,69183

Johnson & Johnson 0,00636 0,04745 0,00225 1,68151 -0,27687 16,78628

Pfizer Inc. 0,00341 0,05796 0,00336 -0,04522 -0,11255 76,53472

Merck & Co. 0,00367 0,07302 0,00533 1,16066 -0,22220 29,39136

General Electric 0,00144 0,07700 0,00593 1,59984 -0,15057 16,83632

3M Company 0,00860 0,05791 0,00335 0,83304 0,10193 38,88519

United Technologies 0,00822 0,06508 0,00424 3,45162 -0,64050 15,14365

Apple Inc. 0,02419 0,12360 0,01528 3,28243 -0,64943 14,50230

Microsoft Corp. 0,00400 0,08970 0,00805 3,00356 0,32042 3,37110

International Bus. Machines 0,00436 0,07349 0,00540 4,10527 0,60198 21,92557

Dow Chemical 0,00815 0,11328 0,01283 19,43227 2,35658 2398,74776

Du Pont (E.I.) 0,00472 0,07807 0,00609 1,57330 0,29857 19,63466

Praxair Inc. 0,00958 0,06195 0,00384 2,43827 0,04053 2,64402

AT&T Inc 0,00375 0,06658 0,00443 2,07812 0,15379 7,75240

Verizon Communications 0,00427 0,06864 0,00471 5,31860 0,92408 72,16425

CenturyLink Inc 0,00255 0,08117 0,00659 5,25392 -0,05593 41,80238

Duke Energy 0,00753 0,06258 0,00392 3,41374 -0,71021 17,96622

Southern Co. 0,01004 0,04688 0,00220 3,28570 0,23941 2,55191

Exelon Corp. 0,00715 0,06219 0,00387 1,77096 -0,11982 12,87037

Inform. Tech.

Materials

Telecom. Services

Utilities

Consumer Discr.

Consumer Staples

Energy

Financials

Health Care

Industrials
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for the full table). To ensure that our computations are not affected by 

events such stock splits or reverse splits, dividend payments et cetera 

we used Return Index to calculate monthly stock yields. Return Index, 

is a calculated index for each stock from the date that it was issued 

until today, providing a representation of the share return adjusted 

towards external factors to demonstrate the actual performance. Its 

price on the stock issue date is 100 and then it is calculated with the 

following mathematical formula: 

1

1

1
* *(1 * )

100

t t
t t

t

PI DY
RI RI

PI N




   

The index assumes 260 weekdays in a year, and that dividends 

are reinvested to purchase additional units of equity or unit trust at 

the closing price application on the ex-dividend date. 

 Observing Table 1, a reader with a keen eye will notice 

that most stock excess returns present distribution signs of 

abnormality, a characteristic that it is reinforced by the values of the 

Jarque-Bera test performed for each stock and the index. This is a 

goodness of fit test of whether sample data have the skewness and 

kurtosis matching a normal distribution. If the data comes from a 

normal distribution, the J-B statistic asymptotically has a chi-squared 

distribution with two degrees of freedom, so the statistic can be used 

to test the hypothesis that the data are from a normal distribution. 

The hypothesis of the test where: 

Ho:  
22 2

2

1
( 3 )

6 4

n
J B S K X     which signifies that the excess 

returns distribution is normal and 

H1:  
22 2

2

1
( 3 )

6 4

n
J B S K X      which signifies that the excess 

returns follow a non-normal distribution 
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Where n is the number of observations, S2 the sample variance, 

K the sample kurtosis and 2

2X  the chi-squared distribution with two 

degrees of freedom. 

 The null hypothesis is rejected for all distributions tested 

at 95% confidence level indicating that we could not work under the 

normality assumption for our observations. Stochastic dominance 

proves to be the tool of choice to work towards portfolio optimization 

under those condition as it does not require a normal distribution to 

operate appropriately and thus we do not have to try to normalize the 

returns a process that may result in loss of information. 

 The mean and variance of the excess returns are relatively 

small, indicating that the selected stocks should be classified as “blue 

chips” belonging to the most reliable and stable stocks representing 

each category. It should, as well, be noted that the are evidence of 

strong leptokurtic distributions while only a handful presents 

mesokurtic characteristics and in addition to the negative skew that is 

presented allows us to understand the reason for relative small 

variances and means. 

5.2 Description of the Stochastic Dominance test 

We employ the Scaillet and Topaloglou (2010) test for Stochastic 

Dominance Efficiency. Let the asset returns be described by a strictly 

stationary process {Yt} taking values in Rn. The observations consist 

of a realization of {Yt ; t = 1,...,T}. We denote by F(y), the continuous 

cumulative distribution function of Y=(Y1,…Yn)' at point y=(y1,…yn)'. 

Let a portfolio consisting of n assets and the vector λ of portfolio 

weights in L, where L = {λ ∈ Rn: e' λ=1} with e being a vector of units. 

Let G(z,λ;F) denote the cumulative density function of the portfolio 

return λ'Y at portfolio return point z given by 
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( , ; ) : { ' } ( )
nR

G z F I u z dF u    

where I( ) denotes the indicator function taking the value of 1 if  λ’uz 

and 0 otherwise and z is a given risk level. Define for z ∈R: 

1( , ; ) : ( , ; )J z F G z F   

2 1( , ; ) : ( , ; ) ( , ; )

z z

J z F G u F du J u F du  
 

    

Following Scaillet and Topaloglou (2010) work the hypothesis for 

testing SDE of order j (j=1 for first SDE and j=2 for second SDE) can 

be written compactly as:  

0 : ( , ; ) ( , ; )j

j jH J z F J z F   z   and L  , 

1 : ( , ; ) ( , ; )j

j jH J z F J z F   for some z  and some L  

Under the null hypothesis, 
0

jH  there is no portfolio λ formed from the 

set of assets that dominates the benchmark τ at any order j, i.e. the 

reference portfolio τ is stochastic dominance efficient. In this case, the 

function ( , ; )jJ z F is always lower than the function ( , ; )jJ z F for any 

possible portfolio λ constructed from the set of alternative assets for 

any point z. Under the alternative hypothesis 
1

jH , we can build a 

portfolio λ that for some points z, the function ( , ; )jJ z F is greater than 

the function ( , ; )jJ z F , i.e. the benchmark portfolio τ is not SDE. 

We test the null hypothesis by employing the Scaillet and Topaloglou 

(2010) test which uses a Ŝj Kolmogorov-Smirnov type test statistic of 

order j: 

Ŝj:= √𝑇
1

𝑇
𝑠𝑢𝑝

𝑧,𝜆
[𝐽

𝑗
(𝑧, 𝜏; 𝐹̂) − 𝐽

𝑗
(𝑧, 𝜆; 𝐹̂)] 

where 𝐹̂ is the empirical distribution of F. We reject if where 
0

jH  if Ŝj 

>cj is some critical value (for the test properties, see Scaillet and 
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Topaloglou, 2010). Given that the distribution of Ŝj is not known, we 

calculate the p-value corresponding to cj by bootstrap. We use Abadie’s 

(2002) block bootstrap method.  

 In the case where the null hypothesis is rejected we trace the 

stochastic dominance efficient portfolio. We will now describe the 

method that we use to identify said portfolio by Daskalaki, 

Skiadopoulos, and Topaloglou (2016). Portfolio λ is termed to dominate 

a benchmark portfolio τ under the first order and second order 

stochastic dominance efficiency criteria (FSDE, SDEE) respectively if 

it satisfies the following respective equations 

, [ ( , ; ) ( , ; )]zMax G z F G z F    

, [ ( , ; ) ( , ; ) ]

z z

zMax G u F du G u F du  
 

   

The resulting portfolio is also termed efficient. Therefore, as we have 

already outlined in previous sections, a portfolio is defined to be 

effective when it stochastically dominates all other portfolios 

constructed from a given asset universe for any given stochastic 

dominance efficiency criterion under consideration. Notice that the 

construction of optimal portfolios under the FSDE and SSDE criteria 

does not require an assumption of the specific form of a utility function. 

This is because both SDE criteria are consistent with a broad class of 

utility functions. FSDE is appropriate for both risk lovers and risk 

averters and permits a preliminary screening of investment 

alternatives eliminating those which no rational investor will ever 

choose. The SSDE criterion adds the assumption of global risk 

aversion. 
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5.3 Portfolio optimization under FSDE 

To identify the portfolios that are stochastic dominance efficient under 

the first degree of stochastic dominance we employee the Scaillet and 

Topaloglou (2010) test as it has been presented in the previous section. 

We will guide the reader through the mechanics of the test that we 

employed to identify the efficient portfolios and construct the 

optimized under FSDE portfolio.  

5.3.1 Mathematical formulation of the test 

To test for first order stochastic dominance efficiency (FSDE), we 

optimize the test statistic  

Ŝ1:= √𝑇
1

𝑇
𝑠𝑢𝑝

𝑧,𝜆
[𝐽

1
(𝑧, 𝜏; 𝐹̂) − 𝐽

1
(𝑧, 𝜆; 𝐹̂)] 

The above formulation permits testing the dominance of a given 

portfolio strategy τ over any potential linear combination λ of the set 

of the available assets. Hence, we implement a test of stochastic 

dominance efficiency and not a standard stochastic dominance. The 

mathematical formulation of the problem is the following: 

, 1

1

1
[ ]

T

z t t

t

Max S T L Q
T





   

such that 

( 1) ' ,t t tM L z Y ML t      

( 1) ' ,t t tM Q z Y MQ t      

' 1e    

{0,1}, {0,1},t tQ L t    

Where M is the greatest portfolio return. The model is a mixed integer 

program maximizing the distance between two binary variables 
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1

1 T

t

t

L
T 

 , 
1

1 T

t

t

Q
T 

 , which represent 𝐽1(𝑧, 𝜏; 𝐹̂) and 𝐽1(𝑧, 𝜆; 𝐹̂) respectively; 

sums are taken over all possible values of portfolio returns. According 

to the first inequality, Lt equals 1 for each return t for which z ≥ τ′Yt, 

and 0 otherwise. Similarly, the second inequality ensures that Qt 

equals 1 for each scenario for which z ≥ λ′Yt. These two inequalities 

ensure that the two binary variables are cumulative distribution 

functions. The third equation defines the sum of all weights to be unity. 

 To solve the problem, we discretize the variable z, and we solve 

smaller problems P(r) in which z is fixed to a given return r. Then, we 

take the value for z that yields the maximum distance 

 It takes six hours to solve the model and yield the efficient 

portfolios for all 29 iterations that were employed.  The problem is 

solved with Gurobi solver on a dual core HP Pavilion with 2.20 GHz 

Intel i5 processor and4 GB of RAM. The Gurobi solver uses the branch 

and bound technique. We model the optimization problems by using 

GAMS (General Algebraic Modeling System). 

 5.3.2 Model implementation and results 

 Following the description of the Scaillet and Topaloglou (2010) 

test, we implement it in the mathematical form that we presented 

previously as it has been formulated by Daskalaki, Skiadopoulos, and 

Topaloglou (2016). We simulated the application of the model in real 

market conditions through in sample and out of sample analysis. This 

was achieved by separating our dataset in two periods, before and after 

January 1st, 2014, the model was executed for the first time containing 

historical monthly data from all the years preceding that date up to 

January 1st, 2000. That would result in 168 observations for 30 shares 

plus the index for its first execution. For each following month and up 

to May 31st, 2016, the model was executed again including the 
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observation of the actual realized excessive returns that the individual 

shares and the market yielded the previous month, increasing its level 

of information. That resulted in 29 iterations in total, increasing the 

number of observation gradually from 168 initially to 196 on its last 

execution that would be on May 1st, 2016.  

 In every execution, the model provided a number of results 

equal to the number of observations that were provided for the specific 

iteration. Even following the rejection of the portfolios that presented 

a negative test statistic the number of optimal portfolios for each 

iteration under FSDE was vast, as it was expected. To tackle this, we 

choose to calculate the mean optimal portfolio for each iteration, under 

the restriction of a possitive test statistic; that resulted in one portfolio 

optimized under FSDE per period representing the average outcome 

of optimization. 

 
Diagram 8 - FSDE vs Index Portfolio performance 



Portfolio optimization under uncertainty utilizing stochastic dominance 
 

83 
 
 

 The excessive returns of the portfolio optimized under FSDE 

compared to the S&P500 index for the same period are being displayed 

on Diagram 8. A table presenting index and FSDE excessive returns 

per month is available on appendix for further consideration. The chart 

shows the expected value that a dollar invested in either the index or 

the FSDE portfolio will have in each period taking into account the 

excessive returns that each investment option offers. Analyzing the 

graph, we will notice that the optimized portfolio offers at most periods 

higher value, as a result of higher excessive returns, to the investor 

when compared to the market portfolio. This comes at a cost as a 

reader with a keen eye will notice that is more volatile since the line 

that represents the FSDE portfolio exhibits far more extreme 

fluctuations when compared to the smoother S&P500 representation. 

To that effect we may attribute the underperformance of the FSDE 

portfolio during the first four months of its life. As our portfolio has 

included more volatile stocks, it tends to magnify the market 

performance, as a results our first results are to magnify the negative 

market performance and from that point on, use that information on 

our model as well as monthly rebalancing to achieve the desired result. 

A set of portfolio performance measures has been calculated and 

is available for the reader in appendix; we will expand further on those 

and discuss our findings in the following chapter. 

5.4 Portfolio optimization under SSDE 

Once again we will use the Scaillet and Topaloglou (2010) test as it has 

been presented in a previous section to identify the SSDE optimal 

portfolios. We will guide the reader through the mathematical 

formulation of the test that we employed to determine the efficient 

portfolios and construct the optimized under SSDE portfolio. 
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5.4.1 Mathematical formulation of the test 

The model for second order stochastic dominance efficiency is 

formulated regarding standard linear programming. Numerical 

implementation of first-order stochastic dominance efficiency is much 

more computationally demanding because we need to develop mixed 

integer programming formulations. To test for second order stochastic 

dominance efficiency (SSDE) of portfolio τ over any potential linear 

combination λ, we optimize the test statistic  

Ŝ2:= √𝑇
1

𝑇
𝑠𝑢𝑝

𝑧,𝜆
[𝐽

2
(𝑧, 𝜏; 𝐹̂) − 𝐽

2
(𝑧, 𝜆; 𝐹̂)] 

The mathematical formulation of the problem is the following: 
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The model is a linear programming maximizing the distance between 

the sum of all scenarios of two variables, 
1 1

1 1T T

t t

t t

L W
T T 

  for each given 

value of z, which represent 𝐽2(𝑧, 𝜏; 𝐹̂) and 𝐽2(𝑧, 𝜆; 𝐹̂) respectively.  

According to the first inequality, Ft equals 1 for each return t for which 

z ≥ τ′Y, and 0 otherwise. Analogously, the second and third inequalities 

ensure that the variable Lt equals z - τ′Yt for the scenarios for which 
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the difference is positive, and 0 otherwise. The fourth and last 

inequalities ensure that Wt equals z - λ′Yt for the scenarios for which 

the difference is positive, and 0 otherwise. The fifth equation defines 

the sum of all weights to be unity. 

 It takes only 10 minutes to solve the model and yield the 

efficient portfolios for all 29 iterations that were employed.  The 

problem is solved with Gurobi solver on a dual core HP Pavilion with 

2.20 GHz Intel i5 processor and 4 GB of RAM. The Gurobi solver uses 

the branch and bound technique. We model the optimization problems 

by using GAMS (General Algebraic Modeling System). 

 5.4.2 Model implementation and results 

 We followed the mathematical form that we presented 

previously as it has been formulated by Daskalaki, Skiadopoulos, and 

Topaloglou (2016). We used the same dataset segmentation as stated 

for the FSDE and we run the model for 29 iterations yielding one 

efficient portfolio per period. This significant reduction in the number 

of efficient solutions that were determined by the first and second 

order of stochastic dominance efficiency indicates the important 

difference in results that may be achieved simply by increasing our 

level of information by one level.  
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Diagram 9 - SSDE vs. Index portfolio performance 

Diagram 9 plots the monthly performance of the SSDE 

optimized portfolio when compared to the index performance for the 

same period. The performance is measured by displaying the returns 

that an investor would accumulate for every one dollar he chooses to 

invest in either our optimized portfolio or the index taking into 

consideration the excessive returns both investment options provide. 

 It should be noted that our expectations are verified and the 

SSDE optimized portfolio not only outperforms the index most of the 

time, but there are also strong indications of outperforming the FSDE 

optimized portfolio as it would be expected. Once more, and this time 

more easily, we notice that the optimized portfolio exhibits higher 

volatility than the market, this trait allows us to capitalize higher 

gains on bull market conditions, but it will result in stronger than 

market losses in bear market. This is the cause of the 
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underperformance of our portfolio during the first four months of its 

life. Once the model increases its level of information and there is a 

tendency for higher returns our SSDE optimized portfolio will result 

in a higher than market profit level. Furthermore, the constant 

rebalancing will ensure that our investor's income is protected against 

negative market movements, and the premium they luxuriate 

compensates the risk they are undertaking. 

 A more thorough analysis on the performance of each 

portfolio accompanied by its relative measures will follow in the next 

chapter. 

5.5 Performance evaluation measures 

Following work by DeMiguel et al. (2009), Kostakis et al. (2010) and 

Daskalaki and Skiadopoulos (2011) we employ five commonly used 

parametric performance measures: the Sharpe ratio (SR), opportunity 

cost, portfolio turnover, a measure of the portfolio risk-adjusted 

returns net of transaction costs and upside potential and downside risk 

ratio (UPratio) proposed by Sortino and van der Meer (1991). 

 To fix ideas, let a specific strategy denoted by c. The estimate of 

the strategy’s SRc is defined as the fraction of the sample mean of out-

of-sample excess returns 𝜇𝑐̂ divided by their sample standard deviation  

𝜎𝑐̂, i.e. 

𝑆𝑅𝑐̂ =
𝜇𝑐̂

𝜎̂𝑐
 

To test whether the SRs of the two portfolio strategies based on the 

index and stochastically optimized portfolio are statistically different, 

we use the statistic proposed by Jobson and Korkie (1981) and 

corrected by Memmel (2003). The use of SR is in line with the finance 

industry practice however it is suitable to assess the performance of a 
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strategy only in the case where the strategy’s returns are normally 

distributed. 

Next, we use the concept of opportunity cost (Simaan, 1993) to 

assess the economic significance of the difference in performance of the 

two optimal portfolios, respectively. Denote by rsd,rm ,the optimal 

portfolio realized returns obtained by an investor with the optimized 

portfolio under stochastic dominance and the investment opportunity 

set restricted to tracking the index, respectively. The opportunity cost 

θ is defined to be the return that needs to be added (or subtracted) to 

the portfolio return rm so that the investor becomes indifferent (in 

utility terms) between the two strategies imposed by the different 

investment opportunity sets, i.e. 

   1 1m sdU r U r             

Therefore, a positive (negative) opportunity cost implies that the 

investor is perceived to be better (worse) off in case of investing in a 

stochastic dominance optimized the portfolio. Notice that the 

opportunity cost takes into account all the characteristics of the utility 

function and hence it is suitable to evaluate strategies even when the 

assets return distribution is not normal. To calculate the opportunity 

cost, we use an exponential and a power utility function alternatively. 

 The portfolio turnover (PT) is computed so as to get a feel of the 

degree of rebalancing required to implement each one of the two 

strategies. For any portfolio strategy c, the portfolio turnover, PTc is 

defined as the average absolute change in the weights over the T-K (T-

168) rebalancing periods in time and across the N (30) available assets, 

i.e. 

, , 1 , ,

1 1

1
(| |)

T K N

c c j t c j t

t j

PT w w
T K



 

 

 

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where  , ,c j tw , , , 1c j tw   are the derived optimal weights of asset j under 

strategy c at time t and t+1, respectively; 
, ,c j tw 

 is the portfolio weight 

before the rebalancing at time t+1; the quantity  , , 1 , ,| |c j t c j tw w   shows 

the magnitude of trade needed for asset j at the rebalancing point t+1. 

The PT quantity can be interpreted as the average fraction (in 

percentage terms) of the portfolio value that has to be reallocated over 

the whole period. 

 We also evaluate the two investment strategies under the risk-

adjusted, net of transaction costs; returns measure proposed by 

DeMiguel et al. (2009). This metric provides an economic 

interpretation of the PT; it shows how the proportional transaction 

costs generated by the portfolio turnover affect the returns from any 

given strategy. To fix ideas, let pc be the proportional transaction cost 

and rc,p,r+1 the realized portfolio return at t+1 (before rebalancing). The 

evolution of the net of transaction costs wealth NWc for strategy c, is 

given by: 

, 1 , , , 1 , , 1 , ,

1

(1 ) 1 (| |)
N

c t c t c p t c j t c j t

j

NW NW r pc w w   



 
     

 
  

Therefore, the return net of transaction costs is defined as: 

, 1

, 1

,

1
c t

c t

c t

NW
RNTC

NW



    

The return-loss measure is calculated as the additional return needed 

for the index tracking investor to perform as well as the optimized 

portfolios. Let μm, μsd the monthly out-of-sample mean of RNTC from 

the strategy with the market and the optimized portfolios, 

respectively, and σm, σsd, be the corresponding standard deviations. 

Then, the return-loss measure is given by: 
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sd
m m

sd

return loss


 


     

To calculate NWc,t+1, we set the proportional transaction cost pc equal 

to 50 basis points per transaction for stocks and the index (for a similar 

choice, see DeMiguel et al., 2009). 

 Finally, we calculated the upside potential and downside risk 

ratio (UPratio) proposed by Sortino and van der Meer (1991). This ratio 

contrasts the average excess return on some target with a measure of 

the shortfall from the same benchmark, as suggested by Sortino et al. 

(1999). We use the S&P500 index as the benchmark. Let rsd be the 

realized return of a portfolio in month t = 1,…,n of the model; n = 29 is 

the number of months in the simulation period 01/2014-05/2016. Let 

rm be the return of the benchmark (S&P500 index) at the same period. 

Then the UPratio is 
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5.6 Discussion on Results 

 In this section, we will proceed in describing and commenting 

on our results. All tables and charts that are mentioned throughout 

this and following sections are provided for the reader in the appendix 

of the thesis. 

 We used the Scailet and Topaloglou (2010) test for stochastic 

dominance to test if null hypothesis that the constructed portfolio 

stochastically dominates the benchmark set holds true. The test 

statistics returned for each iteration of the trial for the both degrees of 
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stochastic dominance are available in appendix Table 5. We determine 

that we accept that the null hypothesis holds true meaning that the 

optimized under FSDE and SSDE portfolios dominate the benchmark 

market portfolio represented here by the S&P 500 index. This holds 

true both for the first and second degree of stochastic dominance. 

 Once, we have constructed the optimal portfolios and verified 

through the test above that they stochastically dominate the 

benchmark portfolio we note, the excessive returns that are achieved 

during the out-of-sample period for our portfolios and the reference 

index. These data are available in appendix Table 6, and their 

graphical plot has been included in Diagram 10. As it may be noted in 

most periods, the optimized portfolio achieves returns significantly 

higher than the index. Even in occasions where they underperform the 

index the cumulative gain of previous periods in synergy with the 

higher returns of following periods, are high enough to ensure a 

constant growth in investors income greater than the one provided by 

the index. 

 To verify said deduction and present it in a more comprehensive 

manner we calculated the monetary value of an investment in the 

index and both our portfolios in dollars. These data are available in 

Table 7, and their graphical plot in Diagram 11 both included in the 

following pages. Once we deconstruct the difficulty of comparing 

percentile returns and convert them to actual dollar values, we start 

to mold a picture regarding the performance of the three proposed 

investment options and is easier to compare the outcome that an 

individual will enjoy. The optimized portfolios provide our investor 

with a higher income when compared to the market portfolio thus 

constituting a better investment option. Unfortunately, the investor to 

achieve higher returns would have to accept a higher level of volatility 
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in his future income, which is compensated by the higher level of 

returns he enjoys in every possible scenario. 

 Following this, we compare the out-of-sample performance of 

the two optimal portfolios and the benchmark using the five standard 

measures of performance. Table 8 reports results for each one of the 

five performance measures. In the case of opportunity cost, we assume 

various levels of (absolute/relative) risk aversion (ARA, RRA=2,4,6) for 

the individual investor. To assess the statistical significance of the 

superiority in SRs, we also report the p-values of Memmel’s (2003) 

noted as JKM test p-value. The null hypothesis is that the SRs 

obtained from the benchmark portfolio, and the optimized portfolios 

are equal.  

 Considering the Sharpe ratio of all three investment 

opportunities, results determine that a stock portfolio optimized with 

either first or second order of stochastic dominance be a preferable 

investment relative to the market index. When comparing the ratios 

between the two optimized portfolios, it becomes evident that the 

SSDE investment provides a higher return for every unit of volatility 

that the investor undertakes as a risk. JKM test p-values only 

strengthen our results and verify that indeed there is a statistically 

significant difference between the Sharpe ratio of the benchmark, 

FSDE and SSDE portfolios; a fact that justifies investor preference of 

a stochastically optimized portfolio over the benchmark when only the 

Sharpe ratio is being used as a decision tool. 

 Shifting our attention to the opportunity cost, we notice that it 

is positive on most occasions. This indicates that an investor would 

require a premium to substitute an investment in a stochastically 

optimized portfolio with an index tracking investment. It worth to 

notice thought that the opportunity cost follows two different paths in 

the portfolio that have been optimized with the first and a portfolio 
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that has been optimized with the second degree of stochastic 

dominance. Since the opportunity cost increases as the degree of risk 

aversion increases for the FSDE portfolio, it is easy to assume that an 

investor would require a higher premium and would be less willing to 

trade a portfolio that has been optimized using FSDE with an index 

replicating portfolio. In this occasion, the volatility of the expected 

returns is not high enough to avert an individual from our portfolio; 

instead, the skewness of the expected returns is such that compensate 

the investor for the extra risk he is undertaking by investing in our 

portfolio.  

On the other hand, the opportunity cost for the SSDE portfolio 

retreats as we increase the level of risk aversion, in these case the 

investor would require a decreasing premium as his loathe of risk 

increases to select our portfolio over the markets and he would even 

require a premium for ARA of 6 in order to invest in our portfolio than 

the index. This should be attributed to the higher volatility of expected 

returns presented by the portfolio that has been optimized with the 

second order of stochastic dominance. Although higher returns are 

promised to an investor and up to a point those returns would be high 

enough to make him rather select our portfolio than markets, as its 

risk aversion increases the skewness of the expected returns is not 

sufficient to compensate for the perceived risk and the investor would 

feel more comfortable with the less volatile market portfolio. 

 Following, we examine the return-loss measure that 

takes into account transaction costs. The sign of this measure is rather 

important as it indicates the actual performance of our portfolio net of 

transaction costs; which in our occasion are expected to have a 

significant impact on the investor’s future income as a result of the 

monthly rebalancing of the portfolio. The positive sign here confirms 

that both our optimized portfolios are superior to the index, even when 
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we deduct the cash outflow generated by the transactions needed to 

maintain our positions. It is worth noticing that although the FSDE 

portfolio has a lower turnover when compared to the SSDE portfolio, 

the returns net of transaction costs indicates that a good proportion of 

the SSDE portfolio superiority is lost in the more aggressive 

transaction while the FSDE portfolio achieves a better economic 

overall result. 

Finally, we compare the two portfolios using the UPratio 

proposed by Sortino et al. which shows a strong preference towards the 

SSDE optimized portfolio when compared to the FSDE portfolio UPratio. 

This may be expected as the SSDE portfolio yields significantly higher 

returns when compared to the benchmark index portfolio. 
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 Chapter 6 

Conclusions 

 

 On this final section, we will comment on the impact of our 

findings in the portfolio construction process as has been presented in 

previous chapters and mention a few other paths that may be pursued 

in the future in the direction of portfolio optimization through 

stochastic dominance. 

 6.1 Impact on portfolio management 

 As we have seen previously portfolio management is a process 

that consists of many stages and follows one of two main strategies, 

active or passive management. 

 Our findings have a significant impact on this process. As we 

have demonstrated that a portfolio optimized with stochastic 

dominance, either of first or second degree will always result in a 

portfolio that outperforms the index and will yield returns that will be 

preferable to most investors. This result allows the fund managers to 

replicate our process and try to optimize their portfolios while 

rebalancing the weights of the selected shares monthly always to 

include the latest market information to the investment set. 

Examining the outcome from the investor point of view, we can now 

understand why somebody who does not possess the skills, the 

equipment or the capital to perform such an analysis would be willing 

to invest in shares of a mutual fund that would be managed by a 

professional and ensure profits such as those achieved by our 

portfolios. 
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Throughout this thesis, we outlaid some basic concepts that are 

needed to understand the variables that affect an investor motives in 

a choice of investment strategy, motives that in turn guide portfolio 

managers to choices as their primary goal is to provide value to their 

customer through acceptable risk undertaking. This signifies that 

although a fund manager may be willing to accept an additional level 

of risk as his expertise, experience and knowledge suggests ensuring a 

higher level of return, he will be restrained up to a point by his goal of 

maintaining a happy clientele. 

 Considering that our optimized portfolios outperform the 

market suggests that active portfolio management and optimization 

through SD degrees will ensure the manager a satisfied clientele, 

higher than market returns and a prosperous fund. Introducing this 

tool in investment management, the fund management achieves all of 

his primary and secondary goals, while it is easy to amend the model 

and the yielded portfolio to meet separate investor needs  

 Those above suggest that there is a strong call for active rather 

than passive portfolio management as it allows the model to adjust 

better to new information while as we demonstrated the transaction 

costs remain at acceptable levels and does not significantly affect the 

net returns. 

6.2 What lies ahead 

 On our final section, which may be viewed as an epilog, we will 

suggest some different approaches to the same optimization problem 

we may explore in the future to achieve even the same or higher 

returns while decreasing the incurred investment risk. 

 Before we move any further, it is imperative to mention that 

judging our final results it is evident that we have achieved the main 
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goal of this thesis. We have managed to create and optimize a portfolio 

that was based on only 30 out of 500 shares listed on S&P500, which 

we then optimized using SD and achieve an investment proposal that 

it is at all times preferable to the index; in essence, we have beaten the 

market. Our portfolio besides the theoretical outperformance of the 

market was a viable and profitable investment choice even considering 

the transaction costs that we had to undertake to maintain our 

optimized positions. This, though, didn’t come at no cost as it became 

apparent that to achieve those higher returns we had to accept with 

them a higher volatility level of our future income. 

 Higher volatility for higher returns is something that should be 

expected during the portfolio construction phase since returns are in 

essence our premium for undertaking the increased risk. However, 

there is room for further improvement in our model which may allow 

us to reduce even further our volatility levels. Firstly, we should recall 

that the choice of the stocks to compose our portfolio was arbitrary. We 

have simply selected the three stocks per sector with the higher 

market capitalization, but there is no scientific ground for not selecting 

stocks with mid or low capitalization. If in the future, we choose to 

enforce our model to all 500 shares of the S&P500 we most likely will 

achieve very different results. We know now, as our proof of concept 

demonstrated, that we should expect a portfolio yielding higher 

returns than the index at all times but we do not have a clear 

indication of the course that the volatility will follow. This exercise 

may achieve a portfolio with even lower volatility while still 

outperforming the market or a portfolio as volatile as our but with 

significantly higher returns. 

 An analyst may even choose to reduce portfolio volatility by 

selecting to include in the portfolio some fixed income securities or 

indices and then optimize said portfolio using stochastic dominance. 
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The returns still are expected to be higher than the market returns 

while the investor will enjoy a more stable future income level. The 

actual results may be the subject of future research.  

On a final note, we should stress out that stochastic dominance 

has been proven to be a powerful tool in finance which allows 

optimization on different levels, with minimum information and 

should be used even from the security selection phase. 

 

 

  

  



Portfolio optimization under uncertainty utilizing stochastic dominance 
 

99 
 
 

 

 

References 

 

Acerbi, C. and Tasche, D., 2002, ”On the coherence of expected 

shortfall”. Journal of Banking and Finance, 26 (7), 1443–1471. 

Artzner, P. Delbaen, F. Eber, J. and Heath, D., 1999,. ”Coherent 

measures of risk”. Mathematical Finance, 9 (3), 203–228. 

Benjamin R. Auer, Frank Schuhmacher, 2013, Performance 

hypothesis testing with the Sharpe ratio: The case of hedge funds, 

Finance Research Letters, Vol. 10, pp.196 – 208 

Charoula Daskalaki, George Skiadopoulos, Nikolas Topaloglou, 2015, 

Do commodities provide diversification benefits? A stochastic 

dominance efficiency approach, SSRN, 

http://ssrn.com/abstract=2684842 

Elias Tzavalis, Lecture note on Stochastic dominance 

Elias Tzavalis, Lecture notes on Continuous-time portfolio 

management 

Elias Tzavalis, Lecture notes on Stochastic calculus intro 

G. Szego, 2002, ”Measures of Risk”. Journal of Banking and Finance, 

26 (7), 1253– 1272. 

Haim Levy, 1992, Stochastic Dominance and Expected Utility: Survey 

and Analysis, Management Science Vol. 38, No. 4, pp. 555–593 

Harry Markowitch, 1952, Portfolio Selection, The Journal of Finance, 

Vol. 7, No. 1, pp. 77-91 

http://ssrn.com/abstract=2684842


Portfolio optimization under uncertainty utilizing stochastic dominance 
 
 

100 
 
 

Hassan Tehranian, 1980, Empirical Studies in Portfolio Performance 

Using Higher Degree of Stochastic Dominance, The Journal of 

Finance, Vol. 35, No. 1, pp. 159-171 

Investopedia, http://www.investopedia.com 

James E. Hodder, Jens Carsten Jackwerth, Olga Kolokolova, 2014, 

Improved Portfolio Choice Using Second-Order Stochastic Dominance, 

Review of Finance , pp. 1-25 

Kahneman, Daniel and Tversky, Amos, 1979, “Prospect Theory: An 

Analysis of Decision Under Risk,” Econometrica, Vol 47, pp. 263–291. 

Memmel Christoph, 2003, Performance Hypothesis Testing with the 

Sharpe Ratio, Finance Letters, Vol. 1, No. 1, pp. 21 - 23  

Merriam-Webster Online dictionary, http://www.merriam-

webster.com/ 

Miloš Kopa, Thierry Post, 2009, A Portfolio Optimality Test Based on 

the First-order Stochastic Dominance Criterion, Journal of Financial 

and Quantitative Analysis, Vol. 44, No. 5, pp. 1103-1124  

Miloš Kopa, Thierry Post, November 6th 2015, Portfolio Choice based 

on Third-order Stochastic Dominance, With an Application to Industry 

Momentum 

Milton Friedman and Leonard J. Savage, 1948, “The Utility Analysis 

of Choices Involving Risk,” The Journal of Political Economy, LVI, No. 

4, pp. 279–304. 

Nikolas Topaloglou, Hercules Vladimirou, Stavros A. Zenios, 2011, 

Optimizing international portfolios with options and forwards, Journal 

of Banking and Finance, Vol 35, pp. 3188 – 3201 

Oliver Ledoit, Michael Wolf, 2008, Robust performance testing with 

the Sharpe ratio, Journal of Empirical Finance, Vol. 15, pp.850 – 859 

http://www.investopedia.com/
http://www.merriam-webster.com/
http://www.merriam-webster.com/


Portfolio optimization under uncertainty utilizing stochastic dominance 
 

101 
 
 

Olivier Scaillet, Nikolas Topaloglou, 2010, Testing for Stochastic 

Dominance Efficiency, Journal of Business & Economic Statistics, Vol. 

28, No. 1, pp. 169-180 

Pflug, G., 1998, ”How to measure risk”? Working Paper, IIASA and 

University of Vienna. 

Rockafellar, R. and Uryasev S., 2002, ”Conditional Value-at-Risk for 

general distri- butions”. Journal of Banking and Finance, 26 (7), 1443–

1471. 

Sortino, F., van der Meer, R., 1991, Downside risk – capturing what’s 

at stake in investment situations. Journal of Portfolio Management, 

Vol. 17, No.4, pp. 27–31. 

Sortino, F., van der Meer, R., Plantinga, A., 1999, The Dutch triangle 

– a framework to measure upside potential relative to downside risk. 

Journal of Portfolio Management, Vol. 26 No. 1, 50–58. 

Thierry Post, 2003, Empirical Tests for Stochastic Dominance 

Efficiency, The Journal of Finance, Vol. 58, No. 5, pp. 1905 – 1931 

Thierry Post, Miloš Kopa, 2013, General linear formulations of 

stochastic dominance criteria, European Journal of Operational 

Research 230 (2013) 321–332 

Thierry Post, Yi Fang, Miloš Kopa, 2014, Linear Tests for Decreasing 

Absolute Risk Aversion Stochastic Dominance, Management Science, 

Articles in Advance, 13 Aug 2014 

Timo Kuosmanen, 2004, Efficient Diversification According to 

Stochastic Dominance Criteria, Management Science Vol. 50, No. 10, 

pp. 1390–1406 

Vijay S. Bawa, James N. Bodurtha Jr., M. R. Rao and Hira L. Suri, 

1985, On Determination of Stochastic Dominance Optimal Sets, The 

Journal of Finance, Vol. 40, No. 2, pp. 417-431 



Portfolio optimization under uncertainty utilizing stochastic dominance 
 
 

102 
 
 

Yusif Simaan, What is the Opportunity Cost of the Mean-Variance 

Investment Strategies?, 1993, Management Science, Vol. 39, No. 5, 

pp.578 – 587 

Zhen Guo, March, 2012, Stochastic Dominance and Its Applications in 

Portfolio Management 

  



Portfolio optimization under uncertainty utilizing stochastic dominance 
 

103 
 
 

 

Bibliography 

Edward E. Qian, Ronald H. Hua, Eric H. Sorensen, 2007, Quantitative 

Equity Portfolio Management, Modern Techniques and Application, 

Chapman & Hall/CRC 

Edwin J. Elton, Martin J. Gruber, 1995, Modern Portfolio Theory and 

Investment Analysis 5ed, John Wiley & Sons Inc. 

Edwin J. Elton, Martin J. Gruber, Stephen J. Brown, William N. 

Goetzmann, 2014, Modern Portfolio Theory and Investment Analysis, 

Wiley 

Elias Tzavalis, Athanasios Petralias, 2009, Επενδύσεις (Investments), 

AUEB Publications 

Frank K. Reilly, Edgar A. Norton, 1995, Investments 4ed, The Dryden 

Press 

Frank K. Reilly, Keith C. Brown, 2012, Analysis of Investments and 

Management of Portfolios, Cengage Learning 

Frederic S. Mishkin, 2013, The Economics of Money, Banking, and 

Financial Markets, Pearson 

Gordon J. Alexander, William F. Sharpe, Jeffery V. Bailey, 1993, 

Fundamentals of Investments 2ed, Prentice-Hall Inc. 

Gregory F. Lawler, 1995, Introduction to Stochastic Processes, 

Chapman & Hall 

Haim Levy, 2016, Stochastic Dominance: Investment Decision Making 

Under Uncertainty, Springer 

Harry M. Markowitz, 1991, Portfolio Selection, Basil Blackwell 



Portfolio optimization under uncertainty utilizing stochastic dominance 
 
 

104 
 
 

Jack Clark Francis,1986, Investments: Analysis and Management, 

McGraw-Hill 

John L. Maginn, Donald L. Tuttle, Jerald E. Pinto, Dennis W. 

McLeavey, 2007, Managing Investment Portfolios: A dynamic Process, 

John Willey & sons 

Joseph L. McCauley, 2013, Stochastic Calculus and Differential 

Equations for Physics and Finance, Cambridge University Press 

Keith Redhead, 1995, Introduction to Financial Investments, Prentice 

Hall Europe 

Peter C. Fishburn, 1982, The Foundations of Expected Utility, D. 

Reidel Publishing Company 

Richard C. Grinold, Ronald N. Kahn, 1995, Active Portfolio 

Management, Irwin 

Songsk Sriboonchitta, Wind-Keung Wong, Sompong Dhompongsa, 

Hung T. Nguyen, 2010, Stochastic Dominance and Applications to 

Finance, Risk and Economics, Chapman & Hall/CRC 

Vijay S. Bawa, Stephen J. Brown, Roger W. Klein, 1979, Estimation 

Risk and Optimal Portfolio Choice, North-Holland 

  



Portfolio optimization under uncertainty utilizing stochastic dominance 
 

105 
 
 

Appendix: Charts & Tables 

 

In the following pages, the reader may find the complete tables 

and charts that are mentioned in chapters 5 and 6 of this thesis. 

Information on the methodology and applications used to 

extrapolate the data are provided in the form of a short description in 

a section preceding each page. A complete list of tables and a list of 

diagrams is available in the pages following the contents at the start 

of the thesis. 
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Table 2 - Detail Data Descriptive Statistics 

This table provides the full data descriptive statistics analysis data performed on the initial observations consisting of the 

monthly excess returns on the market and shares. The data were calculated using Data Analysis tool of Microsoft Excel. 

Sector Stock Mean Std. Error Median Std. Dev Variance Kurtosis Skewness Range

Index S&P500 0.00301 0.00311 0.00876 0.04372 0.00191 0.89694 -0.49643 0.27760

Home Depot 0.00640 0.00540 0.00902 0.07578 0.00574 0.24418 -0.19245 0.42765

The Walt Disney Company 0.00861 0.00527 0.01235 0.07395 0.00547 1.50566 -0.25099 0.50669

Wal-Mart Stores 0.00176 0.00400 0.00356 0.05609 0.00315 1.25228 -0.24394 0.36517

Procter & Gamble 0.00431 0.00379 0.00726 0.05314 0.00282 10.89232 -1.82913 0.47813

The Coca Cola Company 0.00424 0.00367 0.00502 0.05154 0.00266 1.12645 -0.40933 0.30897

PepsiCo Inc. 0.00692 0.00323 0.00673 0.04534 0.00206 2.90578 -0.37426 0.39278

Exxon Mobil Corp. 0.00593 0.00354 0.00260 0.04973 0.00247 1.65243 0.33431 0.35029

Chevron Corp. 0.00764 0.00432 0.01139 0.06065 0.00368 0.80543 0.16356 0.38694

Schlumberger Ltd. 0.00928 0.00663 0.00791 0.09310 0.00867 1.20861 -0.08916 0.64727

JPMorgan Chase & Co. 0.00654 0.00652 0.00839 0.09158 0.00839 0.99984 -0.18672 0.53566

Bank of America Corp 0.00566 0.00857 0.00302 0.12030 0.01447 9.07154 0.49227 1.26410

Citigroup Inc. -0.00224 0.00898 0.00371 0.12600 0.01588 8.80171 0.36610 1.26418

Johnson & Johnson 0.00636 0.00338 0.00775 0.04745 0.00225 1.68151 -0.27687 0.33472

Pfizer Inc. 0.00341 0.00413 0.00165 0.05796 0.00336 -0.04522 -0.11255 0.32687

Merck & Co. 0.00367 0.00520 0.00570 0.07302 0.00533 1.16066 -0.22220 0.46452

General Electric 0.00144 0.00549 -0.00036 0.07700 0.00593 1.59984 -0.15057 0.52815

3M Company 0.00860 0.00413 0.01013 0.05791 0.00335 0.83304 0.10193 0.34779

United Technologies 0.00822 0.00464 0.00849 0.06508 0.00424 3.45162 -0.64050 0.55796

Apple Inc. 0.02419 0.00881 0.02871 0.12360 0.01528 3.28243 -0.64943 1.03219

Microsoft Corp. 0.00400 0.00639 0.01143 0.08970 0.00805 3.00356 0.32042 0.75195

International Bus. Machines 0.00436 0.00524 0.00572 0.07349 0.00540 4.10527 0.60198 0.58037

Dow Chemical 0.00815 0.00807 -0.00355 0.11328 0.01283 19.43227 2.35658 1.28033

Du Pont (E.I.) 0.00472 0.00556 0.00949 0.07807 0.00609 1.57330 0.29857 0.52336

Praxair Inc. 0.00958 0.00441 0.01187 0.06195 0.00384 2.43827 0.04053 0.43395

AT&T Inc 0.00375 0.00474 0.00279 0.06658 0.00443 2.07812 0.15379 0.48110

Verizon Communications 0.00427 0.00489 0.00309 0.06864 0.00471 5.31860 0.92408 0.60573

CenturyLink Inc 0.00255 0.00578 0.00998 0.08117 0.00659 5.25392 -0.05593 0.75249

Duke Energy 0.00753 0.00446 0.01469 0.06258 0.00392 3.41374 -0.71021 0.49026

Southern Co. 0.01004 0.00334 0.01342 0.04688 0.00220 3.28570 0.23941 0.36481

Exelon Corp. 0.00715 0.00443 0.00553 0.06219 0.00387 1.77096 -0.11982 0.43699

Inform. Tech.

Materials

Telecom. Services

Utilities

Consumer Discr.

Consumer Staples

Energy

Financials

Health Care

Industrials
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Table 3 - Detail Data Descriptive Statistics Cont'd 

 

Sector Stock Min. Max. Sum Obs. Largest(4) Smallest(1) Confidence Level(95,0%) J-B

Index S&P500 -0.16832 0.10928 0.59258 197 0.08911 -0.16832 0.00614 44.39561

Home Depot -0.20744 0.22021 1.26089 197 0.16044 -0.20744 0.01065 63.55438

The Walt Disney Company -0.26973 0.23696 1.69547 197 0.18583 -0.26973 0.01039 20.39798

Wal-Mart Stores -0.21245 0.15271 0.34683 197 0.14265 -0.21245 0.00788 27.02654

Procter & Gamble -0.36169 0.11644 0.84896 197 0.09741 -0.36169 0.00747 621.13747

The Coca Cola Company -0.16716 0.14181 0.83474 197 0.10973 -0.16716 0.00724 34.31398

PepsiCo Inc. -0.20045 0.19233 1.36324 197 0.09101 -0.20045 0.00637 4.67182

Exxon Mobil Corp. -0.11965 0.23064 1.16729 197 0.11278 -0.11965 0.00699 18.57561

Chevron Corp. -0.15393 0.23301 1.50454 197 0.14679 -0.15393 0.00852 40.41085

Schlumberger Ltd. -0.33895 0.30832 1.82909 197 0.20848 -0.33895 0.01308 26.60233

JPMorgan Chase & Co. -0.28195 0.25371 1.28761 197 0.21734 -0.28195 0.01287 33.98321

Bank of America Corp -0.53287 0.73123 1.11576 197 0.28232 -0.53287 0.01690 310.54523

Citigroup Inc. -0.57768 0.68649 -0.44147 197 0.23324 -0.57768 0.01770 280.69183

Johnson & Johnson -0.16494 0.16978 1.25315 197 0.10241 -0.16494 0.00667 16.78628

Pfizer Inc. -0.17693 0.14994 0.67234 197 0.11111 -0.17693 0.00814 76.53472

Merck & Co. -0.26131 0.20321 0.72360 197 0.16853 -0.26131 0.01026 29.39136

General Electric -0.27703 0.25112 0.28296 197 0.17450 -0.27703 0.01082 16.83632

3M Company -0.14594 0.20186 1.69433 197 0.15314 -0.14594 0.00814 38.88519

United Technologies -0.32211 0.23584 1.61957 197 0.13586 -0.32211 0.00914 15.14365

Apple Inc. -0.58235 0.44984 4.76600 197 0.26140 -0.58235 0.01737 14.50230

Microsoft Corp. -0.34813 0.40382 0.78858 197 0.23570 -0.34813 0.01260 3.37110

International Bus. Machines -0.22773 0.35264 0.85817 197 0.17659 -0.22773 0.01033 21.92557

Dow Chemical -0.38245 0.89788 1.60480 197 0.23136 -0.38245 0.01592 2398.74776

Du Pont (E.I.) -0.20807 0.31528 0.92929 197 0.20264 -0.20807 0.01097 19.63466

Praxair Inc. -0.19880 0.23515 1.88663 197 0.14239 -0.19880 0.00870 2.64402

AT&T Inc -0.18883 0.29227 0.73938 197 0.15420 -0.18883 0.00936 7.75240

Verizon Communications -0.21446 0.39128 0.84023 197 0.13638 -0.21446 0.00964 72.16425

CenturyLink Inc -0.34467 0.40783 0.50182 197 0.14239 -0.34467 0.01140 41.80238

Duke Energy -0.27261 0.21765 1.48372 197 0.14129 -0.27261 0.00879 17.96622

Southern Co. -0.12919 0.23562 1.97806 197 0.11287 -0.12919 0.00659 2.55191

Exelon Corp. -0.18509 0.25190 1.40878 197 0.12968 -0.18509 0.00874 12.87037

Inform. Tech.

Materials

Telecom. Services

Utilities

Consumer Discr.

Consumer Staples

Energy

Financials

Health Care
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Table 4 - Variance-Covariance Matrix 

This table provides the variance-covariance matrix of the initial observations consisting of the monthly excess returns on the 

market and shares. The data were calculated using Data Analysis tool of Microsoft Excel. 

 

 

Apple Inc. Microsoft Corp. Exxon Mobil Corp.
Johnson & 

Johnson
General Electric AT&T Inc

JPMorgan 

Chase & Co.
Wal-Mart Stores Procter & Gamble Pfizer Inc.

Verizon 

Communications

The Coca Cola 

Company
Chevron Corp. Home Depot

The Walt Disney 

Company
Merck & Co.

Bank of 

America Corp

International 

Bus. Machines
PepsiCo Inc. Citigroup Inc. Schlumberger Ltd. 3M Company

United 

Technologies
Dow Chemical Du Pont (E.I.) Duke Energy Southern Co. Exelon Corp. Praxair Inc.

CenturyLink 

Inc
S&PCOMP(RI)

Apple Inc. 0.01520 0.00507 0.00108 -0.00001 0.00251 0.00024 0.00330 0.00019 -0.00081 0.00007 0.00126 0.00012 0.00221 0.00266 0.00315 -0.00044 0.00271 0.00429 0.00001 0.00371 0.00371 0.00139 0.00178 0.00274 0.00236 -0.00001 -0.00027 0.00004 0.00298 0.00073 0.00275

Microsoft Corp. 0.00507 0.00800 0.00097 0.00053 0.00289 0.00173 0.00338 0.00111 -0.00027 0.00096 0.00280 0.00098 0.00173 0.00219 0.00205 0.00105 0.00310 0.00335 0.00073 0.00409 0.00175 0.00089 0.00164 0.00280 0.00248 0.00026 -0.00073 -0.00014 0.00157 0.00239 0.00232

Exxon Mobil Corp. 0.00108 0.00097 0.00246 0.00060 0.00131 0.00108 0.00107 0.00018 0.00059 0.00096 0.00126 0.00083 0.00226 0.00056 0.00115 0.00102 0.00086 0.00095 0.00045 0.00167 0.00221 0.00087 0.00113 0.00135 0.00147 0.00105 0.00051 0.00103 0.00099 0.00119 0.00103

Johnson & Johnson -0.00001 0.00053 0.00060 0.00224 0.00138 0.00076 0.00051 0.00077 0.00113 0.00124 0.00076 0.00107 0.00060 0.00052 0.00082 0.00149 0.00129 0.00060 0.00117 0.00177 0.00048 0.00100 0.00090 0.00119 0.00128 0.00082 0.00072 0.00066 0.00077 0.00072 0.00081

General Electric 0.00251 0.00289 0.00131 0.00138 0.00590 0.00177 0.00350 0.00091 0.00096 0.00159 0.00157 0.00116 0.00184 0.00251 0.00307 0.00115 0.00515 0.00237 0.00122 0.00581 0.00274 0.00221 0.00275 0.00515 0.00376 0.00113 0.00041 0.00069 0.00228 0.00160 0.00246

AT&T Inc 0.00024 0.00173 0.00108 0.00076 0.00177 0.00441 0.00117 0.00104 0.00067 0.00114 0.00337 0.00107 0.00116 0.00123 0.00112 0.00180 0.00094 0.00114 0.00130 0.00162 0.00093 0.00077 0.00109 0.00180 0.00135 0.00151 0.00041 0.00092 0.00094 0.00231 0.00125

JPMorgan Chase & Co. 0.00330 0.00338 0.00107 0.00051 0.00350 0.00117 0.00834 0.00112 0.00065 0.00182 0.00133 0.00103 0.00171 0.00334 0.00325 0.00093 0.00752 0.00321 0.00110 0.00783 0.00305 0.00195 0.00247 0.00537 0.00377 0.00113 -0.00021 0.00000 0.00241 0.00152 0.00271

Wal-Mart Stores 0.00019 0.00111 0.00018 0.00077 0.00091 0.00104 0.00112 0.00313 0.00021 0.00073 0.00124 0.00065 0.00040 0.00174 0.00039 0.00049 0.00113 0.00093 0.00077 0.00146 0.00000 0.00055 0.00074 0.00108 0.00086 0.00035 0.00007 -0.00001 0.00074 0.00073 0.00076

Procter & Gamble -0.00081 -0.00027 0.00059 0.00113 0.00096 0.00067 0.00065 0.00021 0.00281 0.00068 0.00006 0.00107 0.00033 0.00027 0.00024 0.00088 0.00117 -0.00019 0.00078 0.00117 0.00031 0.00096 0.00067 0.00152 0.00093 0.00070 0.00087 0.00076 0.00041 0.00074 0.00051

Pfizer Inc. 0.00007 0.00096 0.00096 0.00124 0.00159 0.00114 0.00182 0.00073 0.00068 0.00334 0.00138 0.00097 0.00110 0.00106 0.00159 0.00225 0.00257 0.00083 0.00105 0.00301 0.00088 0.00086 0.00127 0.00149 0.00151 0.00111 0.00049 0.00060 0.00085 0.00071 0.00122

Verizon Communications 0.00126 0.00280 0.00126 0.00076 0.00157 0.00337 0.00133 0.00124 0.00006 0.00138 0.00469 0.00097 0.00138 0.00119 0.00159 0.00201 0.00090 0.00177 0.00123 0.00171 0.00083 0.00083 0.00105 0.00159 0.00157 0.00132 0.00030 0.00090 0.00121 0.00254 0.00138

The Coca Cola Company 0.00012 0.00098 0.00083 0.00107 0.00116 0.00107 0.00103 0.00065 0.00107 0.00097 0.00097 0.00264 0.00097 0.00069 0.00099 0.00130 0.00099 0.00039 0.00124 0.00154 0.00069 0.00093 0.00061 0.00135 0.00123 0.00092 0.00042 0.00087 0.00069 0.00155 0.00087

Chevron Corp. 0.00221 0.00173 0.00226 0.00060 0.00184 0.00116 0.00171 0.00040 0.00033 0.00110 0.00138 0.00097 0.00366 0.00127 0.00172 0.00069 0.00184 0.00141 0.00061 0.00263 0.00291 0.00136 0.00175 0.00219 0.00208 0.00130 0.00058 0.00099 0.00195 0.00164 0.00150

Home Depot 0.00266 0.00219 0.00056 0.00052 0.00251 0.00123 0.00334 0.00174 0.00027 0.00106 0.00119 0.00069 0.00127 0.00571 0.00212 -0.00006 0.00327 0.00202 0.00083 0.00360 0.00171 0.00182 0.00205 0.00296 0.00241 0.00079 0.00019 0.00012 0.00171 0.00126 0.00197

The Walt Disney Company 0.00315 0.00205 0.00115 0.00082 0.00307 0.00112 0.00325 0.00039 0.00024 0.00159 0.00159 0.00099 0.00172 0.00212 0.00544 0.00139 0.00361 0.00227 0.00113 0.00454 0.00277 0.00188 0.00255 0.00429 0.00323 0.00096 0.00012 0.00108 0.00201 0.00136 0.00223

Merck & Co. -0.00044 0.00105 0.00102 0.00149 0.00115 0.00180 0.00093 0.00049 0.00088 0.00225 0.00201 0.00130 0.00069 -0.00006 0.00139 0.00530 0.00140 0.00067 0.00114 0.00230 0.00083 0.00073 0.00107 0.00145 0.00166 0.00133 0.00052 0.00135 0.00071 0.00163 0.00108

Bank of America Corp 0.00271 0.00310 0.00086 0.00129 0.00515 0.00094 0.00752 0.00113 0.00117 0.00257 0.00090 0.00099 0.00184 0.00327 0.00361 0.00140 0.01440 0.00224 0.00163 0.01207 0.00258 0.00265 0.00318 0.00691 0.00464 0.00093 0.00059 0.00006 0.00254 0.00158 0.00286

International Bus. Machines 0.00429 0.00335 0.00095 0.00060 0.00237 0.00114 0.00321 0.00093 -0.00019 0.00083 0.00177 0.00039 0.00141 0.00202 0.00227 0.00067 0.00224 0.00537 0.00037 0.00348 0.00215 0.00118 0.00151 0.00190 0.00222 0.00090 0.00000 0.00016 0.00177 0.00143 0.00197

PepsiCo Inc. 0.00001 0.00073 0.00045 0.00117 0.00122 0.00130 0.00110 0.00077 0.00078 0.00105 0.00123 0.00124 0.00061 0.00083 0.00113 0.00114 0.00163 0.00037 0.00204 0.00184 0.00064 0.00096 0.00088 0.00100 0.00123 0.00090 0.00048 0.00063 0.00078 0.00151 0.00084

Citigroup Inc. 0.00371 0.00409 0.00167 0.00177 0.00581 0.00162 0.00783 0.00146 0.00117 0.00301 0.00171 0.00154 0.00263 0.00360 0.00454 0.00230 0.01207 0.00348 0.00184 0.01579 0.00376 0.00298 0.00391 0.00735 0.00554 0.00155 0.00050 0.00069 0.00306 0.00229 0.00364

Schlumberger Ltd. 0.00371 0.00175 0.00221 0.00048 0.00274 0.00093 0.00305 0.00000 0.00031 0.00088 0.00083 0.00069 0.00291 0.00171 0.00277 0.00083 0.00258 0.00215 0.00064 0.00376 0.00862 0.00200 0.00243 0.00396 0.00275 0.00098 0.00020 0.00138 0.00228 0.00147 0.00233

3M Company 0.00139 0.00089 0.00087 0.00100 0.00221 0.00077 0.00195 0.00055 0.00096 0.00086 0.00083 0.00093 0.00136 0.00182 0.00188 0.00073 0.00265 0.00118 0.00096 0.00298 0.00200 0.00334 0.00202 0.00355 0.00283 0.00054 0.00039 0.00055 0.00187 0.00131 0.00146

United Technologies 0.00178 0.00164 0.00113 0.00090 0.00275 0.00109 0.00247 0.00074 0.00067 0.00127 0.00105 0.00061 0.00175 0.00205 0.00255 0.00107 0.00318 0.00151 0.00088 0.00391 0.00243 0.00202 0.00421 0.00364 0.00304 0.00079 0.00026 0.00096 0.00235 0.00147 0.00188

Dow Chemical 0.00274 0.00280 0.00135 0.00119 0.00515 0.00180 0.00537 0.00108 0.00152 0.00149 0.00159 0.00135 0.00219 0.00296 0.00429 0.00145 0.00691 0.00190 0.00100 0.00735 0.00396 0.00355 0.00364 0.01277 0.00635 0.00064 -0.00044 0.00070 0.00355 0.00240 0.00302

Du Pont (E.I.) 0.00236 0.00248 0.00147 0.00128 0.00376 0.00135 0.00377 0.00086 0.00093 0.00151 0.00157 0.00123 0.00208 0.00241 0.00323 0.00166 0.00464 0.00222 0.00123 0.00554 0.00275 0.00283 0.00304 0.00635 0.00606 0.00060 -0.00007 0.00061 0.00288 0.00282 0.00242

Duke Energy -0.00001 0.00026 0.00105 0.00082 0.00113 0.00151 0.00113 0.00035 0.00070 0.00111 0.00132 0.00092 0.00130 0.00079 0.00096 0.00133 0.00093 0.00090 0.00090 0.00155 0.00098 0.00054 0.00079 0.00064 0.00060 0.00390 0.00177 0.00203 0.00082 0.00074 0.00079

Southern Co. -0.00027 -0.00073 0.00051 0.00072 0.00041 0.00041 -0.00021 0.00007 0.00087 0.00049 0.00030 0.00042 0.00058 0.00019 0.00012 0.00052 0.00059 0.00000 0.00048 0.00050 0.00020 0.00039 0.00026 -0.00044 -0.00007 0.00177 0.00219 0.00163 0.00029 -0.00027 0.00014

Exelon Corp. 0.00004 -0.00014 0.00103 0.00066 0.00069 0.00092 0.00000 -0.00001 0.00076 0.00060 0.00090 0.00087 0.00099 0.00012 0.00108 0.00135 0.00006 0.00016 0.00063 0.00069 0.00138 0.00055 0.00096 0.00070 0.00061 0.00203 0.00163 0.00385 0.00070 0.00039 0.00059

Praxair Inc. 0.00298 0.00157 0.00099 0.00077 0.00228 0.00094 0.00241 0.00074 0.00041 0.00085 0.00121 0.00069 0.00195 0.00171 0.00201 0.00071 0.00254 0.00177 0.00078 0.00306 0.00228 0.00187 0.00235 0.00355 0.00288 0.00082 0.00029 0.00070 0.00382 0.00157 0.00169

CenturyLink Inc 0.00073 0.00239 0.00119 0.00072 0.00160 0.00231 0.00152 0.00073 0.00074 0.00071 0.00254 0.00155 0.00164 0.00126 0.00136 0.00163 0.00158 0.00143 0.00151 0.00229 0.00147 0.00131 0.00147 0.00240 0.00282 0.00074 -0.00027 0.00039 0.00157 0.00655 0.00157

S&PCOMP(RI) 0.00275 0.00232 0.00103 0.00081 0.00246 0.00125 0.00271 0.00076 0.00051 0.00122 0.00138 0.00087 0.00150 0.00197 0.00223 0.00108 0.00286 0.00197 0.00084 0.00364 0.00233 0.00146 0.00188 0.00302 0.00242 0.00079 0.00014 0.00059 0.00169 0.00157 0.00190
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Table 5 - FSDE and SSDE Portfolio test statistics 

In the following table we display the Scailet and Topaloglou (2010) test 

statistics for the first and second order of stochastic dominance for the 

null hypothesis that the stochastically optimized portfolio generated 

by each iteration dominates on the specific period the benchmark 

portfolio (S&P500 index) 

 
Date

FSDE Test 

Statistc

SSDE Test 

Statistic

31/1/2014 0.01049 0.01567

28/2/2014 0.01042 0.01552

31/3/2014 0.01031 0.01541

30/4/2014 0.01044 0.01538

30/5/2014 0.01072 0.01609

30/6/2014 0.01065 0.01586

31/7/2014 0.01063 0.01647

29/8/2014 0.01064 0.01648

30/9/2014 0.01057 0.01583

31/10/2014 0.01061 0.01573

28/11/2014 0.01059 0.01587

31/12/2014 0.01068 0.01645

30/1/2015 0.01058 0.0165

27/2/2015 0.01103 0.01682

31/3/2015 0.01089 0.01632

30/4/2015 0.01066 0.01615

29/5/2015 0.01051 0.016

30/6/2015 0.01053 0.016

31/7/2015 0.01040 0.01582

31/8/2015 0.01033 0.01563

30/9/2015 0.01023 0.0156

30/10/2015 0.01022 0.01564

30/11/2015 0.01005 0.01545

31/12/2015 0.01009 0.01533

29/1/2016 0.00975 0.01501

29/2/2016 0.00984 0.01503

31/3/2016 0.00959 0.01512

29/4/2016 0.00978 0.01573

31/5/2016 0.00945 0.01583
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Table 6 - Portfolio Monthly Excessive Returns 

This table provides the excessive returns in percentage that each 

portfolio (S&P500, FSDE Optimized, SSDE Optimized) yielded in the 

period 31/1/2014 to 31/5/2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Date S&P 500 COMP. FSDE Optimized SSDE Optimized

31/1/2014 -3.4593% -4.7509% -6.2972%

28/2/2014 4.5704% 4.6628% 4.2770%

31/3/2014 0.8362% 2.7413% 2.7469%

30/4/2014 0.7366% 4.6473% 6.7914%

30/5/2014 2.3443% 2.4972% 3.6876%

30/6/2014 2.0623% 2.5927% 3.2459%

31/7/2014 -1.3817% -1.0237% -0.7935%

29/8/2014 3.9981% 5.3670% 5.2489%

30/9/2014 -1.4040% -1.1485% -1.6244%

31/10/2014 2.4416% 3.7421% 6.4947%

28/11/2014 2.6877% 3.7706% 6.4268%

31/12/2014 -0.2553% -1.7852% -3.1922%

30/1/2015 -3.0037% 0.5449% 4.5098%

27/2/2015 5.7457% 3.9540% 2.9949%

31/3/2015 -1.5841% -2.7210% -3.0764%

30/4/2015 0.9586% 1.5114% -0.1362%

29/5/2015 1.2850% 1.3256% 2.8045%

30/6/2015 -1.9367% -3.5417% -3.6784%

31/7/2015 2.0885% 0.2125% 0.1215%

31/8/2015 -6.0401% -5.8819% -4.9487%

30/9/2015 -2.4735% -1.5182% -0.2439%

30/10/2015 8.4288% 6.8091% 6.4624%

30/11/2015 0.2790% -0.1912% -0.4769%

31/12/2015 -1.5905% -3.7032% -5.0666%

29/1/2016 -4.9889% -2.6369% -2.9852%

29/2/2016 -0.1624% 0.4689% 0.0417%

31/3/2016 6.7662% 8.5676% 10.1673%

29/4/2016 0.3695% -4.2396% -8.9733%

31/5/2016 1.7674% 1.9222% 4.6254%
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Diagram 10 - Portfolio Monthly Excess Returns 

The following chart plots a graphical representation of the yielded excess returns that were presented in Table 6.  

 

-10.0000%

-5.0000%

0.0000%

5.0000%

10.0000%

15.0000%

Portfolio Returns

S&P 500 COMP. FSDE Optimized SSDE Optimized



Portfolio optimization under uncertainty utilizing stochastic dominance 
 
 

112 
 
 

Table 7 - Portfolio dollar performance 

In this section, we express the monetary value, in dollars, of the excess 

returns that an investor will accumulate through our separate 

portfolios. It should be noted that although the stochastically 

optimized portfolios underperform when compared to the market in 

the first four months, the money outcome from the fifth period and 

onwards is always positive for the investor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Date S&P 500 COMP. FSDE Optimized SSDE Optimized

31/1/2014 0.97$                 0.95$                 0.94$                

28/2/2014 1.01$                 1.00$                 0.98$                

31/3/2014 1.02$                 1.02$                 1.00$                

30/4/2014 1.03$                 1.07$                 1.07$                

30/5/2014 1.05$                 1.10$                 1.11$                

30/6/2014 1.07$                 1.13$                 1.15$                

31/7/2014 1.06$                 1.12$                 1.14$                

29/8/2014 1.10$                 1.18$                 1.20$                

30/9/2014 1.08$                 1.16$                 1.18$                

31/10/2014 1.11$                 1.21$                 1.26$                

28/11/2014 1.14$                 1.25$                 1.34$                

31/12/2014 1.14$                 1.23$                 1.29$                

30/1/2015 1.10$                 1.24$                 1.35$                

27/2/2015 1.17$                 1.28$                 1.39$                

31/3/2015 1.15$                 1.25$                 1.35$                

30/4/2015 1.16$                 1.27$                 1.35$                

29/5/2015 1.17$                 1.28$                 1.39$                

30/6/2015 1.15$                 1.24$                 1.33$                

31/7/2015 1.17$                 1.24$                 1.34$                

31/8/2015 1.10$                 1.17$                 1.27$                

30/9/2015 1.08$                 1.15$                 1.27$                

30/10/2015 1.17$                 1.23$                 1.35$                

30/11/2015 1.17$                 1.23$                 1.34$                

31/12/2015 1.15$                 1.18$                 1.27$                

29/1/2016 1.09$                 1.15$                 1.24$                

29/2/2016 1.09$                 1.16$                 1.24$                

31/3/2016 1.17$                 1.25$                 1.36$                

29/4/2016 1.17$                 1.20$                 1.24$                

31/5/2016 1.19$                 1.22$                 1.30$                
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Diagram 11 - Portfolio Dollar Performance 

The following chart plots a graphical representation of the yielded dollar returns that were presented in Table 7 for easier 

comparison between the fulfilment of each portfolio. It is becoming obvious that a stochastically optimized portfolio will most 

of the time ensure higher monetary returns for an investor. 
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Table 8 - Portfolio Performance Measures 

Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, 

annualized Return-Loss, U-P Ratio) when the benchmark set includes the S&P 500 Equity Index. The p-values of Memmel's 

(2003) test are also reported; the null hypothesis is that the SR obtained from the index is equal to that derived from the 

optimized portfolios. The results for the opportunity cost are reported for different degrees of absolute risk aversion 

(ARA=2,4,6) and varying degrees of relative risk aversion (RRA=2,4,6). The dataset spans the period from Jan. 2000-May. 

2016. The out-of-sample analysis is conducted over the period from Jan. 2014-May. 2016. 

 
Metric S&P500 FSDE Optimized SSDE Optimized

Sharpe Ratio 0.33541 0.3692 0.4243

JKM Test P-value 0.0362 0.0017

Portfolio Turnover 6.87% 9.33%

Return-Loss 13.24% 10.32%

UPratio 59.79% 239.86%

Opportunity Cost

Exponential Utility

ARA=2 10.72% 6.68%

ARA=4 18.55% 1.55%

ARA=6 26.37% -3.59%

Power Utility

RRA=2 10.72% 6.68%

RRA=4 18.55% 1.55%

RRA=6 26.37% -3.59%




