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Abstract

The aim of this PhD dissertation is the in-depth study of supply chain and how the nodes

could coordinate their strategies in a decentralized system. We provide the nodes the

opportunity to communicate with each other, without any restrictions. Therefore, we

propose a “free” communication system, including all the possible ways of communication

among the nodes, and examine how communication leads to the system-wide coordination

and, thus, reduces costs, eliminates inefficiencies, and results in better individual profits

for all the participants.

We study supply chains with rational nodes, which have to make private decisions in

order to maximize their utility functions. These decisions are related to the order quantity,

quantity discounts, product prices, inventory levels, etc. Furthermore, these decisions are

usually competitive, because every node has different preferences and different informa-

tion. However, there are cases in which some nodes have incentives to build a coalition;

therefore they act as a single entity. As each node is a distinct decision maker and has

private information and different preferences, we model the supply chain as a game using

tools of Game Theory. Our core objective is to examine how each node decides on his

strategy in a decentralized system.

An increasing body of literature in the area of Supply Chain Management addresses

the way in which the nodes of a chain can act in a cross-linked mode, in order to reduce

both their own costs and the total cost of the chain. Key research work has been published

in premier archival journals tackling problems associated with supply chain coordination;

however, examination of the recent literature reveals that almost all the papers have re-

strictive (e.g., sign of contracts) or unrealistic assumptions (e.g., all the nodes possess the

same information). Thus, there are many open issues deserving attention. It would be

ideal if we could propose ways of coordination without restrictive and unrealistic assump-

tions to align the individual incentives of the nodes with the incentives of the whole chain.

In this regard, we allow nodes to communicate with each other; with respect to any

private information they may possess. Obviously, opportunities for mutual benefits cannot
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be found, unless the nodes share their private information. To proceed in sharing private

information, nodes should be provided with appropriate incentives. It is worth to inves-

tigate how information sharing could be achieved. We consider that all the possibilities

for communication are assumed to be entirely controlled by a mediator. The fundamental

idea is the framework proposed by Gibbard (1973) and Myerson (1979, 1982), the Reve-

lation Principle. The extended Revelation Principle’s framework, by Myerson, Hurwicz,

and Maskin, was awarded the 2007 Nobel Prize in economics. Intuitively, the Revelation

Principle states that the mediator could design a mechanism to enforce all the nodes to

reveal their private information and obey his suggestions about their actions, because it

is in their self-interest. Therefore, by using credible mediator, coordination is attainable.



Chapter 1

Introduction

1.1 General Area of Study

A supply chain (SC) is be defined as “the interrelated series of processes within a firm and

across different firms that produces a service or product to the satisfaction of customers”

(Krajewski et al., 2010). SC is a network of material, service, monetary, and information

flows that link a firm’s customer relationship, order fulfilment, and supplier relationship

processes to those of its suppliers and customers (Cachon and Terwiesch, 2006). The

number of SCs in which a firm participates depends on the mix of services or products it

produces. Furthermore, a firm has not always the same position in a SC; i.e., a firm which

is a supplier in one SC may not be a supplier in another SC. This happens because the

service or product may be different.

The term Supply Chain Management (SCM), refers to the synchronization of a firm’s

processes with those of its suppliers and customers to match the flow of services, materials,

and information with demand (Cachon and Terwiesch, 2006). SCM provides the theoret-

ical background to managers in developing policies matching resources and customers’

demand to improve the efficiency of SC.

Many firms (nodes) could exist in a SC. Firms make private decisions in order to max-

imize their utility functions (own goals or profits). These decisions are related to product

prices, inventory levels, warehouse locations, transportation means, and many other cor-

porate attributes. Each firm, with its own decisions affects the whole SC, which in turn

assimilates the decisions of the other firms and feeds back the influence.

In a globalized society, almost all goods are moved through a SC. Thus, it is important

to study and analyze the decisions that nodes have to make and calculate the costs that

are incurred in a SC. Reducing even a small portion of these costs may result in significant

1



Chapter 1: Introduction 2

savings.

The importance of SCM has motivated both private companies and academic re-

searchers to address problems inherent in SC design and operation. Although research

approaches tackle simplified versions of the problems faced by SCs, and several real-life

SC components or constraints are neglected by academics, the research models typically

address the basic properties of the respective systems and thereby provide the core results

used in the analysis and implementation of SC design and operations in practical applica-

tions.

Most of the times, the nodes of a SC act simultaneously in a competitive and/or coop-

erative environment. In such a complex framework, we propose the use of Game Theory

(GT) to address firm decisions in a SC with respect to the global goals and metrics of the

chain. GT is a mathematical approach for studying and analyzing situations (games) in

which more than one decision maker (player) is involved and players’ success is not based

only on their own choices but also depends on the choices of the others. Specifically, it is

the study of mathematical models of conflict and cooperation between players, who are

rational decision-makers and their unique goal is to maximize their own utility functions

(Myerson, 1991). In a game, every decision can affect all players’ utility functions and not

only the utility function of the node that makes the decision.

The first ideas that can be linked to GT as a scientific discipline appeared in the early

20th century, with the innovative works of Zermelo (1913), Borel (1921) and Von Neu-

mann (1928). The foundation of GT begins with J. Von Neumann and O. Morgenstern,

professors at University of Princeton, who presented the book “Theory of Games and Eco-

nomic Behaviour” in 1944. GT is mainly used in economics, political science, psychology,

biology and other academic fields, especially after 1970.

Nowadays, there are many problems from different scientific areas which are analyzed

as games, because GT has provided a sound theoretical background for approaching many

complex models. A SC is an ideal application area for GT, since distinct nodes make

private decisions that have direct impact on both the decisions and the results of other

nodes. There is a new trend to study and analyze a SC using GT concepts, a fact that is

supported by plethora of scientific publications in this area. Furthermore, GT is becoming

a sought-after area in business schools, which include courses of GT in their curriculum

(Cachon and Terwiesch, 2006).

Despite its wide applicability, GT has several caveats, the most serious being the

fact that there is no more the notion of a solution for the game but that of a solution
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concept. This happens because the proposed solutions: Nash equilibrium, Bayesian Nash

equilibrium, Core, Shapley value and others (Gibbons, 1992) do not have favourable math-

ematical properties. For instance, sometimes no solution concepts exist, or if a solution

concept exists, it is not necessarily unique, or it may not be Pareto optimal, or it may not

maximize the sum of the player’s pay-offs, and the list continues (Owen, 1995).

Researchers model SC as a game since there are many distinct nodes (players) that both

compete and cooperate to produce products or services. Nodes (i.e., firms) are rational

players, who make decisions to maximize their objectives (objectives could be expressed

as utility functions according to GT). How the players select their actions (strategies) and

the impact of these decisions on the entire SC are important research questions with sig-

nificant actual applications. GT provides the enabling framework to managers for getting

answers to SC-associated questions without the actual implementation of strategies and

decisions in practice.

Three areas where GT is the enabler for effective SC study are dynamic decision

making, coalitions, and private information sharing or preserving, across the nodes of

a SC. In the first case, a firm have to make decisions over time, a situation modeled

via dynamic games. Stackelberg, repeated, stochastic and differential games are some

examples of dynamic games, handling different ways decisions are taken by SC nodes over

time (Gibbons, 1992). In the second case, players have incentives to form a coalition,

which, when established, acts as a single entity; this can be approached through the GT

concept of “Cooperative Games” (CG) (Gibbons, 1992). In the last case, which arises in

the majority of practical applications, some of the players, before the game starts, have

already (some) private information about the game (e.g., cost structure, better forecast of

the demand, etc.), thus would require a “better treatment” in terms of the utility function

or payment at the end of the game (Myerson, 1991). Private information is embedded in

Bayesian games where every player is equipped with a set of types, and each element of

this set includes all the players’ private information.

1.2 Motivation

An increasing body of literature in the area of management addresses how the system’s

participants interact to raise both their own profits as well as the overall system gains (My-

erson, 1991). Examples of such systems can be firms (at the enterprise level), SCs with

multiple nodes, energy suppliers, and distributors etc. (Tirole, 1988). The participants in

such systems make private decisions to maximize solely their own utility functions, without

taking into account the global optimum (Cachon and Terwiesch, 2006). Key research work

has tackled problems associated SCM (Corbett and de Groote, 2000). They address the
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way in which the nodes of a chain (players) can act in a cross-linked mode to reduce both

their own costs and the total cost of the SC (in terms of inventories, ordering, transporta-

tion, etc.). The importance of reducing overall costs instead of just tackling individual

node costs is also underlined both by private companies and academic researchers (Cachon

and Terwiesch, 2006).

We seek to develop a framework in which the nodes have both private information and

the option to coordinate their actions, without being directly constrained when they make

their own decisions. If nodes coordinate their strategies, opportunities for mutual benefits

may arise. This proposed framework should comply with some standards. At first, it

should be capable of modeling all the possible nodes’ decisions without any restrictions;

these decisions come as the result of the nodes competition for additional profit shares or

cooperation for overall profit maximization. Moreover, it is very important that all players

are free to choose their own strategies, without resorting to coalitions or contract sign-

ing, keeping their unique objectives to achieve personal gains (maximize/minimize their

expected profits/costs; rational players).

In the last two decades, key research work has been published in premier archival jour-

nals tackling problems associated with SC coordination (e.g., Quantity Discount (QD),

or use Economic Order Quantity (EOQ) models); the reader is referred to Weng (1995),

Chen et al. (2001), Chen (2005), Corbett and de Groote (2000), Cachon and Fisher (2000),

Cachon and Kok (2010). A thorough literature review reveals that almost all contributions

make restrictive or unrealistic assumptions, e.g., requiring contracts or assuming that all

the players have the same information (Weng (1995); Cachon (2003)). It would be ideal

if we could propose ways of coordination without assumptions such as the above, in order

to align the individual incentives of the players with the goals of the whole chain and,

thus, reduce costs, eliminate inefficiencies, and result in no-worse individual profits for all

nodes. Therefore, open research questions and problems still exist, especially with respect

to the potential means for coordinating node strategies.

To extend existing knowledge concerning SC node coordination, we propose a novel

framework in which the players have the option to communicate with each other regarding

any private information they may have. Examining all possible means and ways for com-

munication between the nodes-players might be intractably complex. Thus, we propose

a communication system with a mediator to facilitate effective communication achieving

immediate effects on the SC coordination.

In mediated communication systems, the Revelation Principle (RP) plays an impor-

tant role in the analysis of game (here the SC). The RP is a tool of GT, which offers
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significant insights that allow us to make general statements about the possible commu-

nication mechanisms; it was first proposed by Gibbard (1973) and Myerson (1979) and

1982). Myerson, Hurwicz and Maskin, who extended the RP’s attributes, were awarded

the 2007 Nobel Prize in economics.

Based on the RP, we propose a mediated communication system to coordinate nodes’

actions. It is obvious why the problem constitutes a challenge: We intend to use an ap-

proach which has been awarded the Nobel Prize, and apply it to coordinate the nodes of

a SC, a research that has not been previously pursued. Moreover, in this framework we

have the opportunity to study in detail how the nodes of a SC act to increase their individ-

ual gains as much as they can, without being constrained while selecting their strategies.

Consequently, the total cost of the enterprise network is reduced and at the same time inef-

ficiencies of the SC as a whole are eliminated, a result of paramount importance especially

in today’s economic crisis.

1.3 Expected Outcomes

The objective of this thesis is the development of an appropriate framework, where the

rational nodes of a decentralized supply chain could be coordinated. Our main objec-

tive is to achieve perfect coordination without any restrictive assumptions. Therefore, we

propose a free communication system. In such systems, all the nodes are free to report

everything that they want.

In order to provide the nodes with the opportunity to communicate each other regards

to their private information which they possess, we are in need of using a mediator. Then,

perfect coordination is attainable and leads to additional profits for all the participants.

1.4 Organization of the Thesis

The thesis is organized along six chapters, which provide all developments related to

modeling and coordination of the supply chain, in terms of content, appropriate theoretical

background and proposed solutions. The actual contextual description of the chapters

beyond this introduction are:

• Chapter 2 is presents the literature review around the specific problems addressed

in the dissertation and the basic concepts of Game Theory which will be used.

• Chapter 3 develops a model with two nodes, one of which has private information

expressed in a two-level, discrete form. We devise the analytical solution of the

associated 2-player game and we provide numerical results offering insights on the
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effect of the various model parameters; furthermore, we run a sensitivity analysis for

performance evaluation.

• Chapter 4 discusses the extension of the model developed and solved in Chapter 3,

in a case where there exist many types of private information. In particular, we

formulate the game with three different types (levels) of private information to gain

additional insights on a problem that has been characterized as very intrinsic (Tirole,

1988).

• Chapter 5 analyzes a more complex model where both nodes have private informa-

tion. We develop a game in which each node possesses private information and derive

the analytical optimal solution about node decisions. Furthermore, we prove that

perfect coordination is attainable, when the reservation levels are not exogenously

defined.

• Chapter 6 offers an overall synopsis of the thesis in terms of conclusions, achieve-

ments, and directions for future research.



Chapter 2

Literature Review

In this chapter, we present a comprehensive literature review of SC and SCM. We explain

the need of an appropriate theoretical background, in order to study and analyze the SC

and provide managers with quantitative and qualitative tools, on which they could base

decisions order to maximize their firm’s profits. We consider as an ideal framework to

achieve our goals that of GT, following the work of Cachon, Chen and others that have

previously used frameworks based on GT to model and solve SC problems. Subsequently,

some preliminaries on GT are presented, mainly on Bayesian Games, Communication

Games, RP, mediated communication systems and Incentive Compatible (IC) mediator

plans. Finally, we present some specific approaches of key researchers in the areas of SC

and SCM, and conclude the literature review by identifying restrictions and limitations of

research to-date, facts that motivate our thesis.

2.1 Supply Chain and Supply Chain Management

Economists claim that “prices adjust to match supply with demand”. Managers though

disagree with this principle. For managers, excess demand means lost revenue while for

economists it means that prices rise to match demand with supply; in addition, man-

agers treat excess supply as wasted capital and resources in contrast to economists that

just model it by falling prices. It is extremely hard to match supply with demand and

of course we are in need of tools on top of simple assumptions related to expected price

adjustments emanating from these imbalances. The basic cause of demand and supply

mismatches is that demand may vary and supply is not as flexible as to follow the demand

variability instantaneously.

For managers it is a major challenge to match supply with demand, since this allows

a smooth flow of products and materials. However, a rather small improvement of supply

and demand balancing may have a significant effect on a firm’s profitability. To demon-

7
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strate the importance of this, consider the following example: if British Airways increases

its utilization by 0.33 % (this means only one more passenger in each flight), the firm’s

profits can increase to approximately 65 million dollars (Cachon and Terwiesch, 2006) It is

necessary for enterprises to match supply with demand as much as possible, and it is clear

that creating only great products/services is not sufficient even for just market survival.

As we have mentioned a SC is the interrelated series of processes within a firm and

across different firms that produces a service or product to the satisfaction of customers,

while with the term SCM we refer to the synchronization of a firm’s processes with those

of its suppliers and customers to match the flow of services, materials, and information

with demand. SCs performance and efficiency depends on the decisions and actions taken

by all the nodes in the SC.

The primary objective of each node in a SC is to maximize its own profit, but this does

not result in the optimal overall SC performance (Cachon and Terwiesch, 2006). A char-

acteristic example is the Bullwhip Effect (BE); i.e., the phenomenon in which variability

in order quantities is magnified as we move from retailers to manufacturers, a situation

that has been observed in the majority of SCs and has negative impact on all SC nodes

(more severe in the upstream ones). This reduces the efficiency of a SC leading to ex-

cessive inventory, income reduction, cost spikes etc. (Lee et al., 1997). The nodes could

reduce the overall system costs and expect to achieve better individual profits, if they

could coordinate (Cachon and Terwiesch, 2006).

Moreover, a key factor to achieve coordination in the SC is the incentive conflicts

among the SC’s independent firms. Each node acts to maximize its own profit; thus, a

decision which is optimal for this node, may not necessarily be optimal for another node

in the same SC, creating in this way a conflict between these two nodes. A characteristic

example is the SC with only two nodes; exemplified by Zamatia Ltd. (an Italian maker

of eyewear) and Umbra Visage (retailer of Zamatia in Miami Beach, Florida) (Cachon

and Terwiesch, 2006). Umbra Visage makes only one order each season, because Zama-

tia manufactures its sunglasses in Europe and Asia, thus the replenishment lead time is

long and the selling season for sunglasses is short. Obviously, the manufacturer wants

to sell as much sunglasses as possible to the retailer; however the retailer does not want

to have excessive inventory. Cachon and Terwiesch (2006), with this example, illustrate

the following: “Even if every firm in a SC chooses actions to maximize its own expected

profit, the total profit earned in the SC may be less than the entire SC’s maximum profit”.

The literature is full of measures reflecting the performance of a SC, measures that

encompass inventories and financial indices (Krajewski et al., 2010). Such measures allow
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managers to assess the implications of changes in a SC or to (re)design SC, in order to reach

better match of supply and demand (more efficient SC). Moreover, there are quantitative

models and qualitative strategies in SCM, to help managers use the appropriate tools and

make the right decisions.

2.2 Game Theory Framework

GT is a collection of mathematical models formulated to study decision making in situa-

tions involving conflict and cooperation (Lucas, 1972). When two or more decision makers

(players) participate in such a game, conflict and cooperation naturally arise, according to

the players’ preferences. In the literature of GT, there are two basic categories of games:

the “Non Cooperative Games”(NCG) and the “Cooperative”, CG.

In the first category, players choose strategies simultaneously and independently, at

the initial stage of the game. This does not imply that players necessarily act at the same

instance; it suffices that each one chooses his own action without knowledge of the others’

choices and decisions. In the literature many solution approaches for the NCG have been

proposed, the prevalent of which is the “Nash equilibrium” (Gibbons, 1992).

In the second category, the players are free to make coalitions with only one restric-

tion: a player can be part of at most one coalition. Thus, the analysis focuses on the

coalitions that can be formed, without each player acting separately within the framework

of a coalition. The analysis of CG is entirely different from the model which is used in

NCG, and it is based on the characteristic function form (for further the reader is referred

to Myerson 1991, Chapter 9). Some basic proposed solution concepts for these games are

the core and the Shapley value (Myerson, 1991).

Our objective is to study and analyze SCs. To achieve this we develop a framework

based on GT to model aspects of a SC as a game. Furthermore, we want the nodes to

have as much freedom as they can. Therefore, we focus our analysis on the NCG, since

each player acts separately and is free to choose whatever action he desires. To analyze a

NCG we need a way to represent it. A simple and useful representation which has been

proposed for these games is the “normal form representation” (Myerson, 1991).

Definition 2.2.1 The normal form representation specifies:

• a non-empty set N , which enumerates the players of the game, N = 1, 2, ..., n,

• a non-empty set of options Si, available to each player i, i ∈ N ,

• a pay-off hi, received from each player i, i ∈ N .
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Remark 2.2.1

• The set Si, i ∈ N is called “strategy set” of player i. We assume that every element

of Si includes the strategy of player i and the player has to choose only one element

of his strategy set.

• The term “strategy’ ’means any rule for determining the players’ decision,

• We define a “strategy profile” to be a combination of the strategies that could be

chosen by the players. Let S denote the set of all possible strategy profiles; i.e., the

Cartesian product of all Si’s, so S =
∏
Si,

• hi, i ∈ N is a function from set S into the set of real numbers <.

• A NCG can be described by the form: < N,S1, ..., Sn, h1, ..., hn >.

• A NCG is finite if the set N , as well as sets Si, i = 1, , n are finite.

Definition 2.2.2 In the NCG G :=< N,S1, , Sn, h1, ..., hn > the strategies

(s10, ..., s
(i−1)
0 , si0, s

(i+1)
0 , ..., sn0 ) are Nash equilibrium if the following expression is satisfied:

hi(s10, ..., s
(i−1)
0 , si0, s

(i+1)
0 , ..., sn0 ) ≥ hi(s10, ..., s

(i−1)
0 , si, s

(i+1)
0 , ..., sn0 ), ∀si ∈ Si,∀i ∈ N .

Note that, the players may use mixed strategies; i.e., a tagged player i, instead of

selecting a specific strategy si ∈ Si, selects a probability distribution over his strategy

set Si, and the actual decision si is determined randomly according to this distribution.

The set of mixed strategies; i.e., all the probability distributions over Si, is denoted as

Ŝi. In the case where the set Si is finite, the Ŝi is the (Si) (where (Si) denotes the set of

probability distributions over the set Si). If the players use mixed strategies and the game

is finite, at least one Nash equilibrium always exists (Theorem “Nash”, Gibbons (1992)).

On the other hand, when the players use such strategies, we have to use the expected

values for all problem variables.

2.3 Bayesian and Communication Games

Depending on the information which the players have relevant to the game itself, two

game categories exist: games with complete information and games with incomplete in-

formation. In the first category, all players are fully informed about the structure of

the game, in which they are about to participate; i.e., they are all aware of the form:

< N,S1, , Sn, h1, ..., hn > and this knowledge is common to all the players. The second

category of games, the games of incomplete information, is more realistic because it mod-

els almost all the economic situations where the players have private information about

the game. Obviously, the private information of each player is not common knowledge to
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the remaining players.

In the literature, “Bayesian Games” have been employed to model private information

(Gibbons, 1992). In a Bayesian Game, a finite set of types T i is considered for every player

i, i ∈ N . Every element of set T i incorporates the entire i-player’s private information.

At each run of the game only one element of T i is selected; let this be ti ∈ T i, which is

known only to the player i who is subsequently called a player of “type ti.

Apart from the two basic categories, NCG and CG, there are games which combine

properties from these two categories. Such are the “Communication Games”, in which

the players have the opportunity to communicate with each other before they choose

their actions, without any restrictions. In this way, we can model all expressions of com-

munication, even negative ones, such as misinformation. Communication games may be

considered as a hybrid case between the two basic game categories. Moreover, it has been

proved that the solution concepts for this category have noteworthy properties (Aumann,

1974).

The communication between the players is performed through a mediator. The medi-

ator is a reliable authority, not belonging to the players’ level, having a unique goal: to

help the players to communicate with each other, without incurring any additional cost

to the system. The possibilities for communication and cooperation are assumed to be

entirely controlled by the mediator.

2.4 Incentive - Compatible Mechanism

Myerson (1979) examines IC mechanisms that emanate in games where (some or all) the

players have only private information. The author focuses on a Bayesian collective choice

problem where all players have private information and must make a single decision based

on this information; it can be described by the form: < N,C, T 1, , TN , h1, ..., hN , P >,

where:

• N the set of the players,

• C the set of choices available to the players,

• T i the set of private information of player i, i ∈ N ,

• hi the utility function of player i, i ∈ N ,

• P a probability distribution on T .
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We denote with T the Cartesian product of all T i’s; i.e., T =
∏
T i = T 1 × ... × TN .

So, P (t) is the probability that the vector t, t ∈ N where t = (t1, ..., tN ) is the true vector

of types for the players.

The author studies the case of adverse selection incentives within an IC mechanism

where c ∈ C is the single common decision which the players should make based on their

private information. Note that, the author allows mixed strategies. The utility function

hi for each player i, i ∈ N depends both on the players’ private information T and on the

common decision c; i.e., hi : C×T → <. The adverse selection incentives make sense only

in games where players have private information. Under the light of players’ preferences

coordination and the selection of the common decision, the author suggests their commu-

nication via a mediator. The latter is actually the one who makes the decision, which in

turn is binding for all players.

The model has the following form: First, the mediator devises a mechanism, called

the “mediator plan”, which indicates how he will act based on the players’ reported types.

The mediator plan is a function m : T → (C), where (C) denotes the set of probability

distributions over the set C. The function is a conditional probability distribution over

the set C, given a vector of types t, t ∈ T . Thus, m(c|t) denotes the conditional proba-

bility that the mediator chooses the decision c, when the players report to him the type t.

Obviously, m(c|t) must satisfy the probability constraints.

When the plan is finalized, it is announced to the players, and each of them is asked

to confidentially and non cooperatively report his type t̂i to the mediator (the hat is used

to differentiate the reported from the actual type, and denotes the reported type). Ob-

viously, t̂i ∈ T i otherwise it is not a plausible type. Every player selects the type t̂i he

will report, independently of the others players, because he does not know anything about

what the others have reported. In such a game the strategy of each player coincides with

the function linking the type the player reports and his actual type.

In the reporting phase, each player is free to choose what he/she reports to the me-

diator, as we have assumed that players are rational and try to achieve as much as they

can. Moreover, each player is the only one who knows his/her own true type, and no one

can prevent him/her from lying about it, since he/she may expect advantage from such a

behaviour. The mediator is aware of this, and thus, if he wants all the players to report

their real types, he must include appropriate incentives to the plan. The latter are known

as “adverse selection incentives”.

If a mediator plan includes such incentives, all the players report their types honestly,
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because in this way they achieve the most gains from the game; i.e., universal honesty

is an equilibrium strategy for all players if and only if the mechanism includes adverse

selection incentives. In others words, no rational player would expect more gains from

being the only player to lie about his type, when the others are planning to honesty report

theirs types.

We denote the conditionally expected utility pay-off for the player i, under the medi-

ator plan m, when the player reports to the mediator a type t̂i and his actual type is ti,

given that the rest players report honestly theirs types as: H i
m(t̂i|ti). Then, the mediator

plan m includes adverse selection incentives if and only if:

H i
m(ti|ti) ≥ H i

m(t̂i|ti), ∀i ∈ N, ∀t̂i ∈ T i,∀ti ∈ T i. (2.4.1)

The author proves that the mediator plan can be restricted to the IC mechanisms,

according to the RP. The RP states that any equilibrium of a coordination mechanism

can be replaced by an equivalent IC mechanism; i.e., for any equilibrium in a coordination

mechanism there exists an equivalent IC mechanism with identical pay-offs. So, according

to the RP, it is feasible to derive general properties about equilibriums of all coordination

mechanisms by analyzing only the IC ones. Moreover, the author proves that in such

games, the set of IC mechanism is a non-empty, convex and compact subset of the set

of all expected utility allocations; this property supports and promotes the use of such

mechanisms.

This restriction is significant, in the sense that the set of IC mechanisms is much

smaller than the set of all feasible mechanisms. Moreover, this set has “good” mathemat-

ical properties, because it is constrained by a finite collection of linear inequalities. Thus,

the mediator can restrict his search only to IC mechanisms, when he devises his proposal

to the players. Especially in the case of finite games (finiteness being a non-restrictive

assumption), the set of IC mechanisms it is easy to analyze because it can be defined by

linear inequalities and can be solved by liner programming. In the case of infinite games,

the essential ideas still hold, with the exception that the probability vectors must be re-

placed by measures.

Finally, the author introduces the concept of Incentive Efficient (IE) mechanisms in

order to restrict further the feasible mechanisms. Components of the IE set of mechanisms

includes IC ones not strictly dominated by other IC mechanisms. Let H i(m|ti) = H i
m(ti|ti)

denote the pay-off of player i, when he is of type ti and all other players report honesty

their types to the mediator, under the IC mediator plan m. Then the set of IE mechanisms
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is the set of IC ones, subtracting the IC mediator plan m for which the following holds:

H i(m|ti) < H i(m′|ti), ∀i ∈ N, ∀ti ∈ T i, (2.4.2)

where m′ is an IC mediator plan. Intuitively, the author removes some plans from the

set of IC mechanisms; because there are IC-plans that lead all the players, for every vector

of types t, to better pay-offs (or at least to the same pay-offs).

Myerson (1982) generalizes his previous work (Myerson, 1979) on IC mechanisms.

Now, players have both private information and must make individual decisions, ex-

tending the original framework (Myerson, 1979) that was based just on private infor-

mation. The author focuses on a problem which can be described by the form: <

N,C1, ..., CN , T 1, ..., TN , h1, ..., hN , P >, where:

• N the set of the players,

• Ci the set of choices available to the player i, i ∈ N ,

• T i the set of private information of player i, i ∈ N ,

• hi the utility function of player i, i ∈ N , with hi : C × T → <,

• P a probability distribution on T .

Note that, the utility function hi for each player i, i ∈ N depends both on the players’

private information and their individual private decisions. In order to coordinate the play-

ers’ decisions and raise their gains, the author suggests their communication via a credible

mediator. Thus, a communication game arises. The mediator, apart from the adverse

selection incentives that were introduced to force players to report their actual private

information, has to also incorporate moral hazard incentives in the mediator plan. These

incentives are included to make players respect and implement the mediator’s recommen-

dations in their own individual decisions. Thus, an IC mechanism is expanded to include

both adverse selection (Myerson, 1979) and moral hazard incentives. The author uses the

RP and extends it in situations where the players have to make individual decisions.

The proposed model has the following form: First, the mediator devises his plan, which

defines what he proposes to each player, based on the players reported types. The media-

tor proposes to each player a specific choice si ∈ Si (or a probability distribution over Si).

Then, the plan is announced to the players, and each player is asked to confidentially and

non cooperatively report his type to the mediator. When the mediator receives all the

players’ reports, he makes his recommendations to each player confidentially, according

to the mediator plan. Finally, every player makes his own decision. Note that, both in
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the report phase and when the players make their own decision, they are free to choose

any strategy that maximizes their own utility functions. The mediator is aware of that,

and this is the reason that forces him to include proper incentives to the mechanism, if he

wants all the players to report the real types and follow his recommendations. In such a

game the strategy of each player is what type he reports, given his actual type, and what

choice he selects given the recommendation from the mediator; i.e., the strategy for the

player i, Si incorporates two functions, the one from T i → T i and another from Ci → Ci.

If a mediator plan includes adverse selection and moral hazard incentives, all the play-

ers report honestly their types and obey to the mediator’s recommendations, because in

this way they achieve the most gains from the game; i.e., universal honesty and universal

obedience is equilibrium for every player if and only if the mechanism includes adverse

selection and moral hazard incentives. Because of the utility function maximization, no

rational player would expect more gains when he is the only player lying about his type

or disobeys the mediator’s recommendation, or does both, when all the others players are

planning to honesty report theirs types and obey to the mediator’s recommendations.

The author proves that the mediator plan in such games can be restricted to the

IC mechanisms, according to the RP. Moreover, the author proves the same results as

the original framework (Myerson, 1979); i.e., in the case of finite games, the set of IC

mechanisms is easy to analyze it, because it can be defined by linear inequalities and can

be solved by liner programming, and in the case of infinite games, the essential ideas still

hold.

2.5 Game Theory Models for Contract Design in Supply

Chains

There have been indications that GT can be used to study and analyze real-life situations

in which many decision makers are involved. Lucas (1972) states that GT is the only

quantitative approach about such problems and through this theory a change on what

many people think about the competitive situations has been observed; as a result, man-

agers are influenced on what rules they should implement to make the right decisions. The

interest about GT has arisen due to many and different areas of applications.

Nowadays, there is a plethora of researchers, in the field of SC, who used or developed

frameworks based on GT, in order to analyze in detail the SC; the multitude of research

papers is an indicator that SC is an ideal application of GT. This happens due to the fact

that the players’ decisions in a SC are usually competitive, because every player has dif-

ferent preferences and personal information; this contributes to an increase of the overall
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system’s costs. Thus, we can model the SC as a game due to the following facts: i) each

player is a distinct decision maker, ii) each player has private information and different

preferences, and iii) each decision affects both the decisions of the other players and the

profits or costs for all the participants (Cachon and Netessine, 2004). The common goals

of most researchers are to determine policies which maximize the combined profits of all

nodes and raise the efficiency of the SC as a whole.

Weng (1995) examined the use of QDs as a way to coordinate the SC and achieve

more profits for all the nodes. The different preferences of nodes concerning the level of

orders lead to an increase of the overall inventory-related cost of the SC. A typical solution

offered in the literature is a form of coordination between nodes. The author considers

a SC with one supplier and one buyer (or a group of homogeneous buyers), which trade

a single product. The supplier produces in a lot-for-lot fashion and does not have the

opportunity to stock. A crucial assumption is that the nodes have complete information

about the SC. The model is the typical EOQ model, where the buyer chooses the order

quantity Q. As the nodes are rational, they make their choices to maximize their profits,

without considering the global optimal for the whole SC. Weng (1995) addressed how the

nodes could be coordinated and proved that the QDs is a necessary condition for the nodes

to achieve maximum joint profit, but is not sufficient and requires additional parameters.

A QD is a function that reduces the per unit product price when larger quantity or-

ders are placed. A survey of QD schemes has been performed by Benton and Park (1996).

Moreover, in the last few years there are studies (Kalkanci et al. (2011); Davis et al. (2014)),

in which are made behavioural experiments about how the managers uses QDs in practice.

In Weng’s (1995) work, an assumption is that all the nodes are aware about the sit-

uation they are being involved in (game with complete information). This assumption is

particularly restrictive in practice where individual players tend to keep private their cost

structures or demand data and not always feasible in a SC. In practice since individual

nodes/players tend to keep their cost structures or other interval information private.

Corbett and de Groote (2000) generalized the QDs in case where the players have

private information. They consider that the supplier does not have full knowledge of the

buyers’ unit holding cost (denoted by hb), but is aware of its distribution. Managing the

total inventory-related cost of the SC is the goal proposed in the paper. The problem is

formulated as following: first the supplier proposes a discount as a function of hb, and then

the buyer decides upon choosing a specific order or not ordering at all. In this context,

with the buyer’s choice the supplier receives a signal about the buyers’ unit holding cost.

The authors allow the buyer to lie about his unit cost (denoted by ĥb, obviously ĥb ≥ hb)
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achieving more personal gains. In case of complete information, the supplier offers a sin-

gle optimal joint QD that the buyer has to accept. The authors use the RP to make the

analysis easier and they prove that the optimal order quantity is smaller or equal than the

quantity in the case of complete information but larger than the quantity in case there is

no coordination or cooperation; this is exactly the benefit of coordination.

Cachon and Fisher (2000) studied the way private information of each SC node af-

fects its policies and how information sharing can reduce the total cost of the enterprise

network. In traditional SCs the only information which is shared among the nodes is the

quantity of orders in a pair-wise linear fashion. Today, enabled by information technology

tools, it is possible to share all private information that the nodes possess, quickly and

inexpensively, in order to better handle inventory holding and transferring decisions, thus

reducing costs and eliminating inefficiencies. Sharing the private information results in

reduced lead times and order quantities, thus decreasing the overall cost of the SC via the

effective allocation of the transfer inventory. The authors compare the total cost of the SC

in two cases; first in a traditional SC and second in a SC in which the nodes share their

private information. For both cases, the authors attempt to find the optimal ordering and

stocking policies, using simulation. They show that when all nodes of the SC share their

private information, the total inventory-related cost is reduced.

Fiala (2005) underlined the value of information exchange in the SC and the impor-

tance of the honest exchange of information among the SC participants for coordination.

Corbett et al. (2004) examined how the supplier’s decisions can be affected by the re-

tailer’s private information, allowing the supplier to refuse to work with some retailers.

Ha and Tong (2008) studied information sharing in a model with two competitive SCs,

each consisting of one manufacturer and one retailer. Finally, Ozer and Raz (2011) ex-

amined how asymmetry of information affects the whole chain in a more complex model

with one manufacturer and two competitive suppliers.

Iyer (1999) examined the way demand information affects inventory levels, total cost

and stock management policies of a SC’s nodes. The author assumes stochastic demand

distributed according to a known probability distribution in a SC with one manufacturer

and one retailer. The idea introduced by the model is that it allows the retailer to collect

data regarding actual sales, and use these data to generate the posterior distribution of

the demand. This posterior distribution is then used by the retailer to place his order

to the manufacturer, following the classic Bayesian approach. It can be verified that in

this model, both the expected quantity in the inventory pipeline and the service level are

increased, while the expected quantity left over as stock at the retailer’s node is reduced.

The major issue is then to determine if the retailer has always some incentive to collect
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data and to act based on these data. The author proves that such a system is not Pareto

improving by itself, and in order to reap the Pareto’s gains contractual agreements have

to be set in place.

Chen (2005) addressed the incentives which firms should provide to salespeople if firms

anticipate from them to reveal the market knowledge (private information) which possess

and continue their sales effort intensively. The salespeople’s information is vital for firms,

because almost all the firm’s decisions (forecasts, new product development, production,

inventory planning, etc.) are based on market knowledge. Moreover, the firms should

provide appropriate incentives to the salespeople, in order to enhance their effort in selling

the firm’s products. Note that, firms do not have the opportunity to directly observe the

market situation and the selling effort of the salespeople. These kinds of problems combine

moral hazard and adverse selection incentives. A well-known solution for this problem is

the scheme proposed by Gonik (1978), which states that: a firm asks each sales agent

to provide a forecast about the sales volumes in his area and his pay-off is a function of

two variables: the real sales volumes and the initial forecast, which is quoted to the firm.

So, the sales agent has incentive to make accurate forecasts and continue his sales efforts.

Another solution is the firm to offer a menu of contracts to sales agents (Kreps, 1990), and

the latter to choose one among them. Through the agent’s decision the firm receives a

signal about the market conditions. Thus, the problem goes back to an appropriate design

mechanism by the firm. Chen (2005) studies how the firm can design a menu of contracts

to learn the market condition and motivate the agent to continue his work. He proposes

two bounds, one upper and one lower, for the expected firm’s profits. The upper bound

is obtained when the firm observes the market condition and the agent’s effort, while the

lower bound is obtained when the firm provides only one contract (leaves out the opportu-

nity to understand the market condition). He uses a probabilistic approach and performs

optimization to proceed to the analysis, but he also examines several numerical scenarios

using a simulation approach. Through the simulation results the author provides some

ideas about how specified parameters affect the expected firm’s profits. Moreover, the

author compares Gonik’s solution with the menu of contracts and shows that the Gonik

solution is dominated by a menu of linear contracts.

Another restrictive and not realistic assumption of Weng’s work (1995) is that he con-

siders only one retailer or a group of homogeneous retailers in the SC; i.e., all the retailers

are identical. Chen et al. (2001) extend Weng’s work (1995) to the case where the re-

tailers are non-identical, while the problem remains the same; i.e., identification of the

mechanisms that should be used to achieve (perfect) coordination among the SC nodes.

According to Viswanathan and Wang (2003), coordination is considered to be perfect when

the total cost in the decentralized system (a system in which each node makes decision(s)
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in order to maximize its own pay-off, based on the information it possesses) is equal to the

total cost in the centralized one (a system in which there is only a single decision maker).

The problem of how the nodes coordinate is vital because it is obvious that each node

achieves at least the same gains as those achieved without coordination. The literature

offers a variety of solutions and mechanisms for coordination, the preferred one being a

decentralized solution in which the pay-offs of the nodes are aligned to the system-wide

objectives (Chen et al., 2001).

Chen et al. (2001) find the optimal solution for the centralized system, and then show

that this solution can be reached also in a decentralized system under the appropriate co-

ordination mechanism. For the analysis, they use a SC with one supplier who distributes

a single product to many non-identical retailers, and the latter sell the product to the

market. The supplier does not have the opportunity to sell directly to the consumers.

The demand is considered a decreasing function of the retailer price and must be satisfied

without backlogging. All nodes are aware of all the demand functions and the cost struc-

tures which are both stationary. The authors introduce an addition annual cost for the

retailers; this reflects a compensation which is paid from the retailer to supplier, because

the latter manages each retailer’s inventory needs and transactions. In this model the

nodes have to determine the price in which they should sell the product and their own

replenishment policy. The coordination can be achieved through contracts. The players

are considered rational; i.e., a player accepts a contract only if through it he may achieve

at least the same gains he would achieve without it. The authors, with counterexam-

ples, show that the QDs are not sufficient to achieve perfect coordination in a model with

non-identical retailers, but it is feasible to achieve perfect coordination via periodically

charged, fixed fees and a discount pricing scheme which is based on the retailers’ annual

sales volumes, order quantity, and order frequency. These parameters are included in the

contract which the players are signing. The periodical charges and the fixed fees despite

the fact that is essential to make the contract attractive for all the nodes, do not affect

the total profits or the nodes’ policies; i.e., the pricing and the replenishment strategies.

These costs are only in order to achieve a proper allocation to the SC, which is necessary

to align the nodes’ goals to the system-wide objective. Moreover, the authors investigate

the value of coordination though a comparison between profits when the players can or fail

to coordinate in two cases: identical or non-identical retailers. The results show that the

total profits without coordination are around 30 % smaller compared to the SC system

with coordination.

Bernstein et al. (2006) extend the idea of SC’s coordination among the suppliers and

the retailers trying to achieve coordination through simple pricing schemes. As simple

pricing schemes, the authors consider either constant unit wholesale prices or specific vol-
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ume discounts. The authors examine the conditions which should exist to coordinate

nodes’ decisions and achieve the lowest overall costs, through simple pricing schemes. In

some cases, the pricing schemes are sufficient to achieve node coordination. However, this

is not true in general; thus, the authors propose a sufficient condition, named “Echelon

Operation Autonomy” (EOA), which states that the supplier’s function cost must depend

only on the supplier’s decisions, while the retailer’s function cost may depend both on the

supplier’s and the retailer’s decisions. Under this condition, the authors show that the

perfect coordination is feasible through simple pricing schemes. They extent the vendor

managed inventory (VMI) context to apply the EOA, distinguishing on which node incurs

the carrying costs, either the retailers “VMI-”, or the supplier “VMI+”. However, one of

the most serious drawbacks of VMI, the major investments, still remains a problem, but

the authors provide an addition incentive for this investment. In case, where the EOA

fails to exist, the VMI plays a significant role to the reduction the overall SC’s costs. For

the analysis, the authors use two cases, the decentralized and the centralized system, and

compare results with and without the EOA condition. The authors model the SC as a

Bayesian game, regarding the information each node possess, and show (under the neces-

sary conditions) the existence of Nash equilibrium.

Cachon and Kok (2010) study a SC in which two competitive manufacturers sell their

products through a single retailer, for example a supermarket which sells products from

competitive firms. This SC is appeared many times in practice, but it is quite common

in the literature. The manufacturers compete with each other, while leaving constant

the competition with the customers (demand). The authors allow manufacturers to offer

three types of contracts to the retailer: a wholesale-price contract, a QD contract, and

a two-part tariff (i.e., a per unit price with a fixed fee). The authors refer to the latter

two as “sophisticated” contracts. These contracts are proposed in literature to achieve

coordination in the SC and better pay-offs for the manufacturers. The game which arises

has the following structure: first, the manufacturers simultaneously offer a contract to

retailer; then, the retailer decides the price of each product, determining this way the

product’s demand to achieve more personal gains. The authors make the analysis, derive

the optimal strategies (contacts) for the nodes and show the existence (and the unique-

ness, wherever it is feasible) of Nash equilibrium points, despite the types of products

(i.e., substitute, independent, and complements). They solve the problem using backward

induction; i.e., they first analyze the retailer’s decision and afterwards the game which

arises between the two manufacturers. Moreover, the authors examine several numerical

scenarios about different values of the system’s parameters using a simulation approach.

The authors reach the following results, which are similar to the case where there is only

one manufacturer: i) the sophisticated contracts increase the total SC’s profits, making

possible better profit allocation, and ii) in equilibrium, the manufactures choose the most
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aggressive contract they can from their available set of potential strategies. On the other

hand, there are essential differences in the form of a SC with one manufacturer. These are

the following: i) if the retailer decides to sell only one product, the manufacturer whose

product is selected must leave to the retailer some profit, in order to induce the retailer

to make this selection, ii) both the retailer’s reservation profit (security level) and the

incremental profit (the maximum profit where each manufacturer add to the whole SC)

of each manufacturer are endogenously determined by the system, and iii) the sophisti-

cated contracts are not always preferred neither by the manufacturers nor by the retailer;

in case where the products are close substitutes, the retailer is better off with the more

sophisticated contracts and the manufacturers’ incremental profits are decreased.

Corbett et al. (2004) examined three different types of contracts in a two-node SC and

addressed the value of information. Ha and Tong (2008) studied two types of contracts and

proved that the contact type affects the value of information sharing. Feng and Lu (2013)

examined contracts in a chain modeled as a Stackelberg game, where the manufacturer is

the leader and the retailer the follower. An earlier but comprehensive review of contracts

in SC coordination is provided by Cachon (2003).

As we have mentioned a characteristic problem on SCM is the BE (or whiplash or

whipsaw effect). In the literature, there are many papers about BE and the reasons be-

hind it, with landmark be considered the work of Lee et al. (1997) who addresses the

problem of the BE in a SC, which refers to the amplification of the variance in the order

quantities as one moves from downstream (retailer) to upstream (manufacturer) SC nodes.

Many companies such as Procter & Gamble, Hewlett-Packard having recognized the BE

and attempted to mitigate its implications. In order to counteract the consequences of

the BE, the nodes have to understand its causes. All nodes’ decisions, e.g., production

scheduling, inventory control, etc., relied on the sales orders which they received. Sales

orders do not coincide with customers’ demand, because each node makes decisions to

maximize his profits. Thus the nodes do not make optimal decisions and lead the SC in

excessive operational costs and inefficiencies. The nodes are in need of coordination and

planning along the overall SC. One common mechanism for coordination is the informa-

tion exchange between the nodes. The authors propose mathematical models to identify

and remedy the causes of BE and reach on four basic reasons which cause it: i) demand

forecast updating, ii) order batching, iii) rationing/shortage gaming, and iv) price varia-

tion. The key ideas which should be present in any solution according to the authors are:

i) integrating new information systems for the nodes to share all the private information

which they posses, ii) new organizational relationships among the nodes, and iii) imple-

menting new incentives and measurement systems.
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Cachon (1999) addresses the supplier’s demand variability, examines how this variabil-

ity affects the total SC cost. This work is based on the findings of Lee et al. (1997), who

proves that the supplier’s demand variance depends on batch ordering. Cachon focuses

in a SC with one supplier and N retailers who face stochastic consumer demand, a vital

assumption, because the QD cannot aid cost reduction in stochastic demand-based SCs.

The retailers can order only at fixed intervals and the order quantity equals to some mul-

tiple of a fixed batch size. The author considers that the supplier’s demand variance is a

function of five parameters: i) consumers demand variability, ii) number of retailers, iii)

batch size, iv) retailers’ order interval, and v) alignment of the retailers’ order. He studies

the role of scheduled ordering policies in a SC, and specifically how these policies may

lead to a reduction in the supplier’s demand variance. Assuming balanced orders; i.e.,

the same number of retailers place orders at each time period, the author demonstrates

that it is feasible to reduce further the supplier’s demand variance. This can be achieved

through either lengthening the order interval or reducing the batch size, but the retailers’

holding and backorder costs while and the ordering costs are increased, respectively. The

author proposes a flexible quantity strategy; i.e., lengthening the order interval and at the

same time reducing the order batch size to improve the performance of SC and reduce

the SC costs. The proposed solution is to adjust these two parameters in order to keep

constant the retailer’s order frequency and simultaneously reduce the supplier’s demand

variance. The author uses a probabilistic approach to make the analysis, but also examines

several numerical scenarios through a simulation approach, and the following conclusions

are reached: i) switching from synchronized; i.e., all retailers order at the same time, to

balanced ordering, the holding and the backordering SC’s costs are reduced; this effect is

intensified when the consumers demand variability gets lower, ii) lengthening the order

interval, the supplier’s demand variance is reduced but the retailers’ holding and backorder

costs are increased, and iii) the flexible quantity strategy is effective when the customers’

demand is low and few retailers exist, this benefit is particularly effective, if in the level

of a supplier a high fill rate is required.

Chen et al. (2000) addresses the BE in a SC, and examines how demand forecasting,

one of the four causes of BE according to Lee et al. (1997), is involved in generating it.

They demonstrate that the information sharing among nodes for the actual retail demand

(common proposed solution) can mitigate the BE but not completely eliminate it. More-

over, the authors attempt to quantify the increase in variability from node to node of the

SC. The authors derive a lower bound for the variance of the retailer’s order and prove

that it is a function of three parameters: the lead time L, the number p of observations

(periods) which are used for forecasting the demand, and the correlation parameter r with

the previous demand. In order to examine the solution of sharing demand data from the

retailer to the whole SC, the authors compare the variability in the case that the retailer
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provides the demand data to the manufacturer to the case that he does not, under the

assumption that the nodes have the same inventory policy and forecasting technique, so

that factors do not affect the results. They prove that demand sharing significantly re-

duces the increase in variability.

One of the best illustration of BE is provided by the (well known)“beer game”.

Through this, we understand that the consequences of BE are stemming from the ra-

tional behaviour of nodes, and the SC’s structure. Streman (1989) presents the Beer

Game, an experiment, which simulates a SC. Through this experiment, the author exam-

ines how the decision makers make decisions in real problems and understands the reason

why the players except from their personal gains have to be interested on the total gains.

Each node should decide about what quantity is ordered and when under the objective to

minimize their own costs. An important factor is the level of information which each node

possesses while taking decision(s). Only the retailer knows the real demand; the remaining

nodes receive a signal about the actual demand through the orders received from their

customers; i.e., from their downstream node. First, the demand of the product is constant,

and after few periods doubles, in order to examine how the nodes act in this disturbance.

It is considered that the nodes do not have the opportunity to communicate with each

other or to coordinate their strategies. In the end of game the players calculate their costs

and learn the actual demand. The results identify misperceptions of feedback and shows

that the players do not act based on decision theory and a direct result is the poor SC’s

performance. The total costs and the costs at each node are around ten times larger in

contrast to the optimal solution. Moreover, it is shown that there is an amplification of

variance of the orders’ size and the inventory levels are increased, while moving up to the

SC, an indicator for existence of BE.

Chen and Samroengraja (2000) have dealt with the BE through a variant of the typ-

ical Beer Game, which they called the “Stationary Beer Game”. The key difference in

this variant is that the demand within each time period is modeled as an independent,

identically distributed variable. All the players are aware of both the distribution of the

demand and of its parameters, to better approach reality where companies have some

knowledge about the demand (through a forecast). The goal of Stationary Beer Game is

to minimize the total cost in the entire SC, despite the fact that the players have access

only to local inventory status. The authors prove that the optimal strategy for all the

players is to order quantities up to the respective installation stock, thus attempting to

keep this parameter to a constant target level and not order qualities equal to the mean

value of the distribution. Moreover, they prove that the BE in Stationary Beer Game still

exists but it affects the SC to a much lesser extent.
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Cachon et al. (2007) attempt to examine the strength of the BE in the US industry

and identify the way demand seasonality, and therefore production smoothing, affect order

amplification. Seasonality has led into the idea of production smoothing. The authors use

data from January 1992 to February 2006 were obtained from U.S. Census Bureau and

Bureau of Economic Analysis concerning six retailers, eighteen wholesalers and fifty man-

ufactures to study the existence of the BE and how this evolves. The authors propose two

measures to address volatility in a SC: the amplification ratio and the amplification dif-

ference, defined respectively as (Var(Production))(Var(Demand)) and Var(Production)−
Var(Demand). Moreover, they compare demand volatility based on these two measures at

the different nodes of the SC (retailers, wholesalers and manufactures). They show that

seasonality weakens BE. Furthermore, seasonality leads to more variability at the level

of wholesalers rather than in the retailers and the manufactures, a fact inconsistent to

the typical bullwhip results. A possible explanation is that both retailers and manufac-

tures proceed in smoothing their production or orders. Note that: i) in the data that the

authors used, the seasonality ratio is quite large, ii) almost in all the models, where BE

is addressed in the literature, stationary demand is assumed, and iii) the results of this

work, with adjusted data to compensate for seasonality, are almost identical with those

of previous research presented in the BE literature. Moreover, the authors show that the

promotion pricing/cost shocks and the correlation between two successive demands (which

makes sense only when the data do not have seasonality) amplify the BE. These factors

have been studied with the same results by Lee et al. (1997). Finally, they show that the

BE is reduced over time and that the size of firm affects the BE, without to be clear how

the latter affects the amplification measures.

Shi and Cai (2009) address the BE and suggest ways to remedy its implications based

on a GT framework. The authors develop a GT-based model which, when appropriately

implemented, has a positive effect on the BE in terms of sales volume. More specifically,

they model the SC as a game in which each node sends a message (signal) to the next

upstream node. The signal conveys information about the demand of the node that may

be honest or dishonest. Thus, every node is continuously updated about the demand of

downstream nodes, while incomplete information is the result of true or false signals, a

fact that leads to the modeling via a dynamic game with incomplete information. In this

framework, the authors restrict the consequences of the BE through “trigger strategies”

of the nodes.
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2.6 Open Research Topics

The literature review has revealed many proposed solutions about perfect SC’s coordina-

tion and how this can be achieved, with the work of Weng (1995) being a landmark one.

However, almost all contributions make restrictive or unrealistic assumptions, e.g., requir-

ing contracts or assuming that all the players have the same information (Weng (1995) and

Cachon (2003)). Many papers, under the same objective (i.e., to coordinate a SC) existed

before Weng’s work (1995), the earliest being Harris (1913) about the EOQ model. The

ultimate solution mechanism for coordination is a decentralized one in which the pay-offs

of the nodes are aligned to the system-wide objectives; i.e., all nodes are free to choose their

own strategy but the SC in which they participate has an appropriate structure to enforce

all of them to select the strategies which maximize the total SC profits. However, such a

scheme is almost impossible in practice since via SC nodes’ coordination, each player may

earn more (individual) profits because the total SC profits are increased while the whole

SC is more efficient. The first problem is to specify who could play the role of the unique

decision maker and acts to achieve the optimal for the whole SC and not to optimize

him/her indivudual objectives. The latter remains an open research question, as Chen

et al. (2001) and Bernstein et al. (2006) state. In addition, recent research underlines the

need for further work on SC coordination, seeking models free of restrictive assumptions

such as the notion of complete information. Corbett and de Groote (2000) and Cachon

and Fisher (2000) extended Weng’s model (1995) by introducing private information at

each node, and showed how private information affects the nodes’ decisions.

Cachon and Fisher’s model (2000) is built upon a particularly restrictive assumption:

the nodes are required to tell the truth about their private information, even if this is in

conflict with the individual profit maximization. Furthermore, a limitation of the Cachon

and Fisher’s (2000) approach is the lack of a policy to enforce true information shar-

ing towards evident individual benefits for all nodes involved in the SC; such a policy

would enable all nodes to clearly identify their own benefits and to buy-in global inven-

tory control strategies. In Corbett and de Groote’s model (2000), the basic limitation is

the alternatives which the players have when they do not accept the discount framework.

These alternatives introduce games and potential profits outside the one-to-one relation-

ship between the original nodes, thus shaping coordination mechanisms non-feasible to

achieve in every case. Moreover, Corbett and de Groote (2000) study a SC with only two

nodes, without extending their results to larger SCs, a topic we plan to address in our work.

Chen et al. (2001) and Cachon and Kok (2010) proposed a solution for SC node co-

ordination through the signing of a contract by all nodes. We underline this assumption,

because the players after the signing of a contract are bound by the terms of the contract,
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a very restrictive mechanism not elegant to enforce in practice. The use of contracts to

achieve SC coordination is also a restrictive assumption. Contracts are in principle bind-

ing nodes but quite often are broken or non-fully respected in practice due to dynamic

realities or changing conditions of the market.

Chen (2005) addressed moral hazard and adverse selection incentives in a SC where

the nodes have both private information and private decisions unobservable to the other

nodes. The limitations of this work are: i) the author does not use the RP to determine

Nash equilibrium for the nodes, and ii) the research is constrained to a simple SC with

only two nodes.

In Sterman’s work (1989) addressing the Beer game, and in Chen’s and Samroengraja’s

work (2000) addressing the Stationary Beer game, the nodes do not have the opportunity to

communicate with each other. However, as some of the latest work on the field supports;

e.g., VMI and CPFR (Collaborative Planning, Forecasting and Replenishment) model,

communication between the nodes before they chose their strategies may be a huge step

towards effective SC coordination. This could also be demonstrated when playing the two

versions of the Beer Game; i.e., allowing inter-player communication and observing its

consequences on the BE.

Lee et al. (1997) and Chen et al. (2000) studied the causes of the BE, both reaching

the conclusion that information exchange between the nodes can remedy the BE. On the

other hand, they recognized as an open research question the incentives that should be

provided to the SC nodes in order for them to allow access to their inventory status and

sales data. It is obvious that a node does not easily allow access to his private information

by other nodes. Cachon (1999) extended Lee et al. (1997) studying a specific cause of BE

(the scheduled ordering) without allowing communication among the nodes to achieve a

better global SC performance. Moreover, Cachon et al. (2007) revisited the BE stating

the same restrictions and limitations as in Cachon (1999). Finally, one may say that pro-

viding the opportunity to the nodes even to lie about their private information (if such

a policy could achieve more individual gains for the node that used it) would constitute

an great addition to any proposed model for SC coordination, especially if this is coupled

with mechanisms to impose adverse selection implementation.

In summary, the research literature has recognized the value of coordination as means

to increase profits in a SC. However, it has also pointed out several difficulties in providing

the appropriate incentives to individual agents in order to coordinate their decisions, as

well as in ensuring that coordination agreements will be kept. These difficulties mainly

arise from the fact that coordinating decisions usually do not coincide with equilibrium
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strategies in a competitive setting. In this dissertation we propose to develop a rigorous

mathematical model that will incorporate the adoption of coordination strategies in a

more general game theoretic setting. Specifically:

• Introduction of a mediator in the SC coordination, who receives information and

provides directions to SC node decision makers for their actions.

• Incorporation in the models of SC coordination of the nodes’ incomplete-private in-

formation, as well as allowance of no true-telling (non-passing the correct information

to the mediator).

• Application of the results in SCs that are not limited to the typical two node scheme

of the literature to-date.

• Disengagement of the approach from restrictive ways of coordination; examples of

such restrictive methods are contracts signed before the evolution of the SC, or VMI-

schemes often encountered in SCs. An example of non-restrictive way of coordination

is communication via the mediator, the approach adopted in this thesis.

• Development of adverse selection and moral hazard incentives models in the context

of SC under the RP; this way, SC nodes are free to choose their strategies for

maximizing individual profits, while the overall SC operates in more effective levels

due to the application of these incentives.



Chapter 3

Supply Chain Coordination under

Discrete Information Asymmetries

and Quantity Discounts

As already mentioned in Chapter 2, a large body of literature addresses the way in which

SC nodes interact to reduce both their own costs and the overall SC cost. SCs involve

nodes (players) acting as suppliers, manufacturers, buyers, retailers and customers, who

communicate via orders and deliveries (Goyal and Gupta, 1989). The different preferences

of the players in regard to the level of orders placed, may lead to an increase in the overall

inventory-related cost of the SC. Buyers opt for small orders, in contrast to suppliers who

favour large shipments; the latter results in an increase of the annual inventory holding

cost but a simultaneous decrease of the annual ordering cost for the buyers and of the an-

nual set-up cost for the suppliers occurs (Monahan, 1984). If the nodes could coordinate

their actions, it is evident that they could reduce the global SC costs (Rosenblatt and Lee,

1985). There exist multiple papers addressing SC coordination, a comprehensive review

of which is provided by Cachon (2003).

In a typical game-theoretic view of the relationship between suppliers and buyers, each

player acts to maximize its own profits without taking into account the global optimal and

without entering a coalition. Thus, decentralized solutions are promoted; among them,

the most preferable ones are those in which the pay-offs of the players are aligned with

system-wide objectives (Chen et al., 2001).

The supplier may seek chain coordination if in this case he achieves higher individual

gains. Therefore, he offers an incentive to the retailer to influence the quantity the latter

orders. Such an incentive is a QD; i.e., reduced per unit product price when larger orders

are placed. A survey of QD schemes has been performed by (Benton and Park, 1996).

28
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We adopt QDs as the means for node coordination, since they are widely used in practice

(Mansini et al., 2012), can be easily implemented, and require no additional information

or physical flow between the two players beyond the initial transaction (Burnetas et al.,

2007), in contrast to other coordination mechanisms (e.g. returns policies, back-up agree-

ments, quantity flexibility, etc.). Many firms, such as H. J. Heinz Company use QDs to

reduce their own costs (Altintas et al., 2008). Economies of scale are achieved through

QDs, yielding higher profits for several or even all the players, while allowing each of them

to make its own decisions (Cachon and Terwiesch, 2006).

In this chapter, we study a two-node SC through which a single product is manufac-

tured and forwarded to the market. We assume that both the retail price and the demand

are constant and exogenously defined, a common assumption in the literature (Corbett,

2001). Our goal is to examine node coordination and the resulting players’ benefits, in

terms of operational costs. The retailer has an ordering and a holding cost and needs to

decide on the order quantity (lot size) to place to the supplier, satisfying demand and

minimizing his own cost. The supplier produces under a lot for lot policy; i.e., quantities

equal to the retailer’s orders. There exists a set-up cost for the supplier; thus he prefers

large order quantities from the retailer. To force the retailer’s orders to a higher level and

achieve larger profits, the supplier uses QDs.

Similar SC have been studied by Corbett and de Groote (2000) who considered a

continuously distributed holding cost for the retailer, and Ha (2001) for the case of an

expanded newsvendor model. Our framework differs from the aforementioned ones in two

ways: i) we consider reservation levels that depend upon the retailer’s private knowledge,

in contrast to previous works, where the reservation levels are exogenous, and ii) we assume

discrete asymmetric information; i.e., two possible values for the retailer’s holding cost. In

practice both our assumptions are more realistic: reservation levels depend upon business

relationships that are indeed affected by information that partners keep for themselves.

Furthermore, continuous asymmetries are not very realistic in applications compared to

discrete asymmetries (Lovejoy, 2006). For example, a retailer importing goods from a

manufacturer may store inventory at privately owned warehouses (low cost) or at the

customs location (high cost) - the latter in case duty is paid only when the product is

delivered to the end customer. This discrete treatment of the holding cost’s values leads

to a different solution approach compared to the one proposed by Corbett and de Groote

(2000), thus justifying our research endeavour.

Finally, it is worth noting that a discrete treatment of information asymmetry has

been proposed by Cakanyildirim et al. (2012). The first study considered a supplier-

manufacturer chain, in which the manufacturer has private information about production
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cost. The second study addressed a SC similar to our model, but employed a reverse infor-

mation asymmetry; i.e., production costs at the supplier level take two potential values.

In both cases, the authors derived closed form solutions of the underlying optimization

problems and proved that even with asymmetry of information perfect coordination is

feasible.

The contribution of our work lies in the analytical derivation of QDs offered by a man-

ufacturer to a retailer that enable the establishment of the business relationship and allow

reduced operational costs for both players, without the existence of bilateral contracts and

under discrete information asymmetry emanating from the retailers’ storage options.

The remainder of the chapter is organized as follows: Section 3.1 provides the math-

ematical model for a two-node SC and the GT perspective of the players’ interaction via

orders and discounts. Section 3.2 develops the analytical solution of the game, proving

the joint EOQ result for the case of complete information and devising exact values for

orders and discounts based on global optimization for the case of asymmetric information.

Section 3.3 provides numerical results for sample data sets concerning inventory holding

cost and set-up cost relationships, offering insights on the effect of the various parameters

and providing sensitivity analysis for performance evaluation. Section 3.4 summarizes the

conclusions of our work.

3.1 Model Description

Let us consider a two node SC, with S denoting the supplier or the manufacturer (re-

ferred to as he) and R denoting the retailer or the buyer (she), interacting via orders for

a single product. The market demand D is constant, exogenously defined, and known to

both parties. Shortages or backorders are not allowed. Both players are rational and risk

neutral; hence, they choose their strategies to minimize their own expected cost function.

The retailer has an ordering and a holding cost denoted by KR and HR, respectively,

and decides on the order quantity Q > 0 that she will place to the supplier, satisfying

demand and minimizing her own cost. The retailer’s cost is a function of her order quantity

Q and can be expressed as CR(Q) = KRD/Q+HRQ/2. There exists a set-up cost in the

production phase, included in the supplier cost function and denoted by KS . The supplier

produces under a lot for lot policy; i.e., a quantity equal to the retailer’s order Q. As a

result, the supplier is not a decision maker and his cost is a function of the retailer’s order

quantity, expressed as CS(Q) = KSD/Q and not influenced by any of his potential actions.

It is obvious that if the supplier could decide about the order quantity he would favour

huge quantities because in this way he would reduce his own total costs (the supplier’s
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cost function is a decreasing function of the order quantity Q). Consequently, the total

SC (or joint) cost can be expressed as CJ(Q) and is equal to the sum of the retailer’s and

supplier’s cost, i.e.:

CJ(Q) = CS(Q) + CR(Q) = (KR +KS)D/Q+HRQ/2 (3.1.1)

The retailer selects the order quantity to minimize her own cost function. The opti-

mal value can be directly derived by taking the first order derivative of the cost function,

setting it equal to zero and solving with respect to Q, giving Q∗R =
√

2KRD/HR. This

results in the following costs:

Retailer’s cost: CR(Q∗R) = KRD/Q
∗
R +HRQ

∗
R/2 =

√
2KRDHR.

Supplier’s cost: CS(Q∗R) = KSD/Q
∗
R = KS

√
DHR/2KR.

Joint cost: CJ(Q∗R) = CS(Q∗R) + CR(Q∗R) = (2KR +KS)
√
DHR/2KR.

Note that, the optimal cost for the whole SC is the minimum of the function CJ(Q). This

is achieved when the order quantity is Q∗J =
√

2(KR +KS)D/HR and we observe that

Q∗J > Q∗R. For the overall SC costs the following inequality holds:

CJ(Q∗J) < CJ(Q∗R) (3.1.2)

Thus, a higher than Q∗R order quantity is preferable to reduce the total costs. However, this

is reached at the expense of increased retailer’s cost, rendering her negative to a potential

cooperation. Therefore, to raise the retailer’s order level (preferred case for the supplier)

and achieve reduced costs, the supplier should offer her an incentive when selecting the

order quantity. We allow the supplier to provide QDs to the retailer, in order to affect the

order quantity placed by the latter. As already mentioned, the supplier is rational and

risk neutral so she acts to minimize her own expected cost. When the supplier provides a

QD P (Q), the players’ cost functions become:

CT
S (P (·), Q) = KSD/Q+ P (Q) (3.1.3)

CT
R(P (·), Q) = KRD/Q+HRQ/2− P (Q) (3.1.4)

CT
J (P (·), Q) = CT

S (P (·), Q) + CT
R(P (·), Q) = CS(Q) + CR(Q) = CJ(Q) (3.1.5)

We observe that, the joint cost remains the same, because the discount P (Q) affects only

the allocation of the cost among the two nodes via the increase in the retailer’s order levels.

The problem is formulated as a Stackelberg game, a common way of modeling node

interaction in SC (Chen et al., 2012). The supplier is the leader and sets the QD and
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the retailer is the follower and selects the order quantity. Let Q∗R(P (·)) be the retailer’s

optimal response function; the supplier’s problem then is:

C∗S,CI = min
P (·)
{CT

S (P (·)), Q∗R(P (·))} (3.1.6)

Moreover, we consider the case where HR is known to the retailer but partially known

to the supplier. Assume that the supplier knows that HR is either hL or hH (a common

way to model information asymmetry - see Desiraju and Moorthy (1997)) and has a

prior probability assessment; i.e., the supplier considers HR as a discrete random variable

such that P (HR = hL) = p = 1 − P (HR = hH). We adopt a Bayesian game approach

(Gibbons, 1992). The supplier selects a discount to minimize his expected cost under

the prior distribution, assuming that the retailer will respond optimally and taking into

account the true value of the holding cost known to her. Thus, in the problem with

asymmetric information the formulation of the retailer’s response is a function of the true

holding cost value (Q∗R(P (·);HR)) and the supplier’s problem becomes:

C∗S,AI(hL, hH , p) = min
P (·)
{pCT

S (P (·), Q∗R(P (·);hL)) + (1− p)CT
S (P (·), Q∗R(P (·);hH))}(3.1.7)

3.2 Analytical Solution

In this section, we develop the analytical solution of the game, devising exact values for

the decision variables (i.e., order quantity for the retailer and QD for the supplier) in two

cases: the complete and the asymmetric information. In the second case, the retailer has

private information and the supplier uses a QD mechanism in order to reduce his individual

costs. Moreover, the discount can act as a screening device to induce the retailer to reveal

her private information (Kolay et al., 2004), while the cost for both players is reduced.

3.2.1 The Case of Complete Information (CI)

In this case, we assume that all the parameters of the game: D, KR, KS and HR are

constant and known by both players (complete information). Given this knowledge and

according to the design mechanism theory (Fudenberg and Tirole (1991), p. 254-256)

it is sufficient to consider discount policies with a quantity-price pair (X,Y ), such that

P (Q) = Y if Q = X and zero otherwise. This means that the discount is valid if and only

if the order quantity is equal to X (and not when Q > X). Obviously, the supplier will

only consider pairs such that X ≥ Q∗R.

Due to the Stackelberg game formulation, first we have to determine the retailer’s

strategy. The retailer can achieve as minimum cost to be CR(Q∗R) without any QDs.

Therefore, she cannot accept any solution in which her cost exceeds CR(Q∗R). Hence,
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CR(Q∗R) is the reservation (or security/safety) level for the retailer, typically denoted by

C+
R . The retailer has two options: order quantity Q∗R (optimal order quantity without

receiving any discount) or order quantity X to ensure the discount Y . The retailer’s

choice is based on her cost function since she is a rational player; thus, in order to select

the order quantity X a pay-off at least C+
R should accrue for her; i.e., CT

R(·) ≤ C+
R . This

means that the retailer accepts the discount only if Y ≥ Y0(X), where:

Y0(X) = KRD/X +HRX/2−
√

2KRDHR.

Note that, Y0(Q
∗
R) = 0 as expected. Thus, the retailer’s optimal order quantity becomes:

Q =

Q∗R, if Y < Y0(X)

X, if Y ≥ Y0(X).

Subsequently, we should determine the supplier’s strategy for minimizing his own cost

given the retailer’s strategy. We distinguish two cases according to the retailer’s selection,

because the latter is affected by the value of the discount:

Case CI(I): Y ≥ Y0(X), thus the retailer’s order is equal to X. The supplier has to

minimize his cost given by equation (3.1.6), i.e.

C∗
S,CI = min

X,Y
CT

S ((X,Y ), Q) = min
X,Y
{KSD/X + Y } = min

X
{min

Y
{KSD/X + Y }}

= min
X
{KSD/X + Y o} = min

X
{KSD/X +KRD/X +HRX/2−

√
2KRDHR} (3.2.1)

The optimal value can be directly derived by taking the first order derivative of the cost

function, setting it equal to zero and solving with respect to x∗, giving:

X∗ =
√

2(KR +KS)D/HR = Q∗
J and Y ∗ = KRD/X

∗ +HRX
∗/2−

√
2KRDHR.

Case CI(II): Y < Y0(X), thus the retailer’s order is equal to Q∗
R. The retailer does not accept

the QD leaving the supplier with a cost of C+
S . So, the supplier has to select the lower cost

between C∗
S,CI and C+

S , for which the following holds:

C∗
S,CI =

√
2DHR(

√
KS +KR −

√
KR) < C+

S (3.2.2)

Therefore, the supplier minimizes his own costs by choosing to provide the retailer

with the discount policy (Q∗J , Y
∗) to alter the retailer’s order quantity. Note that, in this

case it is feasible to achieve perfect coordination for the supply chain via the discount

policy (Q∗J , Y
∗). To minimize his costs the supplier provides the discount Y ∗ = Y0(Q

∗
J) if

the order quantity is Q∗J . The result is that the retailer selects the discount to minimize

her own costs as well. This means that the individual incentives of the players are aligned

with the incentives of the whole supply chain. Thus, we have a decentralized solution

(each player is a decision maker), in which the player’s cost functions are aligned to the
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system-wide objectives. The order quantity is Q∗J , with the retailer keeping her costs equal

to her reservation level C+
R , while the supplier’s costs are: C∗S,CI = CJ(Q∗J) − C+

R . This

means that the supplier capitalizes on his knowledge of the retailer’s data and secures all

the gains from coordination for himself by paying the supplier just enough to induce her

to order the higher quantity Q∗J (Corbett, 2001).

3.2.2 The Case of Asymmetric Information (AI)

In this case, we still assume that the parameters: D, KR and KS are constant and known

by the two players. However, for the retailer’s holding cost HR, we assume that there exist

two possible values: a low one hL, which occurs with probability p, and a high one hH

(hH > hL), which occurs with probability 1− p. In terms of the Bayesian formulation, we

refer to these two holding cost values as retailer of type-L and type-H, respectively. We

also assume that the retailer identifies her true holding cost as soon as the game starts,

while the supplier considers that type-L (hL) occurs with probability p and type-H (hH)

with probability 1− p.

When the retailer is type-L, her cost function and reservation level can be written

as CR,L(Q) = KRD/Q + hLQ/2 and C+
R,L =

√
2KRDhL, and when she is type-H as

CR,H(Q) = KRD/Q + hHQ/2 and C+
R,H =

√
2KRDhH . The retailer’s reservation levels

are reached when she selects the order quantity to minimize her own cost function and

the supplier does not provide any discount. Consequently, the retailer’s order quantity is

Q∗R,L =
√

2KRD/hL for the type-L retailer, and Q∗R,H =
√

2KRD/hH for the type-H.

The supplier is not aware of the retailer’s actual holding cost and he assumes a two-value

distribution for it. Since the supplier is rational and risk neutral, his goal is to provide a

discount policy to the retailer in order to minimize his own expected cost accounting for

the holding cost distribution.

The analysis of a Bayesian game is based on the RP according to which it is suffi-

cient to consider discount mechanisms or policies such that: i) the supplier sets one pair

(X,Y ) of order quantity and discount amount respectively for each retailer type, and ii)

the values of (XL, YL) and (XH , YH) are such that it is optimal for the retailer to select

the option (XL, YL) if she is type-L and (XH , YH) if she is type-H. Therefore, the supplier

should design a mechanism under which the retailer will act according to her actual type.

Without loss of generality, we can restrict the set of supplier’s strategies to those that

satisfy the RP and have attractive properties (Myerson, 1979).

Note that, in contrast to the case in section 3.2.1, the retailer now has three options

concerning her order quantity: i) to order without discounts, ii) to order according to her
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type e.g., if she is type-L to order a quantity equal to XL and receive the discount of YL,

and iii) to order a quantity that would allow her to get the discount he would if she was

of the other type. The retailer selects the option that minimizes her own expected cost

(rational and risk neutral player).

If the supplier anticipates the retailer to select the order quantity according to her ac-

tual type, he should include the appropriate incentives in the QD mechanism. Specifically,

in order for the retailer to prefer ordering the quantity with the discount instead of her

own optimal solution without discount, the following holds:

CR,L(XL)− YL ≤ C+
R,L (3.2.3)

CR,H(XH)− YH ≤ C+
R,H (3.2.4)

Moreover, to ensure that the retailer selects the discount pair designed for her real type,

the two inequalities below should be enforced:

CR,L(XL)− YL ≤ CR,L(XH)− YH (3.2.5)

CR,H(XH)− YH ≤ CR,H(XL)− YL (3.2.6)

Inequalities (3.2.3) - (3.2.6) become constraints in the supplier’s optimization problem

(RP, Myerson (1979)). In the literature of mechanism design, inequalities (3.2.3) and

(3.2.4) are referred as individual rationality (IR) or participation constraints, while in-

equalities (3.2.5) and (3.2.6) are known as IC constraints (Fudenberg and Tirole, 1991).

So, the supplier solves the following optimization problem:

(S.1)

C∗S,AI = min
XL,YL,XH ,YH

{p{CS(XL)− YL}+ (1− p){CS(XH)− YH}}

s.t. YL ≥ CR,L(XL)− C+
R,L

YH ≥ CR,H(XH)− C+
R,H

YL − YH ≥ CR,L(XL)− CR,L(XH)

YL − YH ≤ CR,H(XL)− CR,H(XH)

As mentioned before, the supplier prefers larger orders because they reduce his costs;

this preference is reflected in Proposition 3.2.1 below that provides properties for order

quantities XL and XH , for which the supplier offers a discount policy.

Proposition 3.2.1 In any optimal solution of the supplier’s expected cost, we have:

A) XL ≥ Q∗R,L and XH ≥ Q∗R,H ,
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B) XL ≥ XH .

Proof:

A. We prove the first part of the proposition via contradiction. Let (XL, YL) be a quantity-

price pair with XL < Q∗R,L =
√

2KRD/hL. Since CR,L(X) is a convex function mini-

mized at Q∗R,L, there exists X
′
L > Q∗R,L such that CR,L(X

′
) = CR,L(X). Furthermore,

CS(X
′
) < CS(X). Therefore, the pair (X

′
L, YL) is a feasible solution of problem (S.1)

and has a lower objective value than that of (XL, YL); thus, (XL, YL) cannot be optimal.

Similarly, we can prove that XH ≥ Q∗R,H =
√

2KRD/hH .

B. From the IC constraints (3.2.5) and (3.2.6) we can derive the following inequality:

CR,L(XL) − CR,L(XH) ≤ YL − YH ≤ CR,H(XL) − CR,H(XH). After some algebra it fol-

lows that XL and XH must satisfy (hH − hL)(XL −XH)/2 ≥ 0, from which XL ≥ XH .

♦

We analyze problem (S.1) in two stages. Specifically:

C∗S,AI = min
XL,XH

{pCS(XL) + (1− p)CS(XH) + f̃(XL, XH)} (3.2.7)

s.t. XL ≥ XH

XL ≥ Q∗R,L

XH ≥ Q∗R,H

where f̃(XL, XH) is the subproblem of optimal discounts given quantities (XL, XH):

f̃(XL, XH) = min
YL,YH

{pYL + (1− p)YH} (3.2.8)

s.t. YL ≥ CR,L(XL)− C+
R,L (IRL)

YH ≥ CR,H(XH)− C+
R,H (IRH)

YL − YH ≥ CR,L(XL)− CR,L(XH) (ICL)

YL − YH ≤ CR,H(XL)− CR,H(XH) (ICH)

The IR constraints reflect the fact that the retailer has the option to select the order

quantity which is optimal without discount (Q∗R,L or Q∗R,H , according to her actual type),

if through such a policy he achieves lower costs. That means that the retailer cannot

accept any solution in which her cost exceeds C+
R,L or C+

R,H , when she is type-L or type-H,

respectively. The IC constraints ensure that the retailer incurs the lowest possible cost

when selecting the discount pair designed for her actual type. In other words, the retailer

cannot achieve better individual gains if she behaves like to be the other type. For brevity,

we use aL = CR,L(XL)−C+
R,L, aH = CR,H(XH)−C+

R,H , bL = CR,L(XL)−CR,L(XH) and
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bH = CR,H(XL)−CR,H(XH), without explicitly noting the dependence of (XL, XH). From

the two IC constraints, (3.2.5) and (3.2.6), we have the inequality: bL ≤ YL−YH ≤ bH . If

bL > bH the solution space of the optimization problem (S.1) is empty; thus the interesting

case is to assume that bL ≤ bH . Note that, f̃(XL, XH) is a Linear Programming problem.

It is obvious that the feasible region is unbounded and can take one of the three forms

depicted in Figure 5.1, depending on whether point A = (aL, aH) lies inside, above or

below the feasible region, respectively.
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Figure 3.1: The three cases of f̃(XL, XH)’s feasible region

For each case in Figure 5.1, we identify the set of values of (XL, XH) so that the case

holds and we derive the corresponding optimal solution for subproblem (3.2.8).

Case AI(A): Point A lies inside the feasible region, thus bL ≤ aL − aH ≤ bH . After

some algebra, this reduces to XH ≤ T ≤ XL, where T = 2
√
2KRD√

hH+
√
hL

. Note that,

Q∗R,H ≤ T ≤ Q∗R,L. Therefore, taking into account the constraints on XL and XH in

the first stage problem, we conclude that this case arises when Q∗R,H ≤ XH ≤ T and

XL ≥ Q∗R,L. Regarding the optimal solution, it is easily shown that since 0 ≤ p ≤ 1

the function is minimized at extreme point A of the feasible region; i.e., YL = aL

and YH = aH and f̃(XL, XH) = paL + (1− p)aH .

Case AI(B): Point A lies above the feasible region, thus aL − aH < bL. After some

algebra, we obtain XH > T and XL ≥ Q∗R,L and it is obvious that the optimal

solution corresponds to the extreme point D = (YL, YH) = (bL + aH , aH), with

f̃(XL, XH) = p(bL + aH) + (1− p)aH .

Case AI(C): Point A lies below the feasible region, thus aL − aH > bH . This reduces to

XL < T . From Proposition 3.2.1, XL must satisfy: XL ≥ Q∗R,L. Since Q∗R,H ≤ T ≤
Q∗R,L this case is not feasible.

Note that, in case AI(A) the supplier always provides the retailer with the appropriate

discount to lead her to the reservation level. Consequently, the supplier ensures that he

keeps all gains from coordination. In case AI(B), the supplier leads (through the discount)

the retailer to the latter’s reservation level only if the retailer is type-H. For type-L, the

retailer achieves some gains from coordination. This happens due to the fact that the
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retailer has private information and the supplier should pay information rent in order to

acquire the retailer’s knowledge.

Given the solution to subproblem (3.2.8) we can proceed in solving the primary problem

(S.1). We have to study two cases according to the two solutions of subproblem (3.2.8).

Note that, in both cases we have Q∗R,L ≤ XL and the difference between the two cases is

the constraint for quantity XH . Therefore, the objective function of problem (S.1) can be

written as:

F (XL, XH) =p[CS(XL) + CR,L(XL)− C+
R,L] + (1− p)[CS(XH) + CR,H(XH)− C+

R,H ], Q∗
R,H ≤ XH ≤ T,

p[CS(XL) + CR,L(XL)− CR,L(XH)] + (1− p)CS(XH) + CR,H(XH)− C+
R,H , T < XH ≤ XL.

We approach the problem for each branch of the objective function. Let Q∗J,L =√
2(KR +KS)D/hL, Q∗J,H =

√
2(KR +KS)D/hH , f1 =

√
1 + KS

KR
(1 +

√
hL
hH

), f2 =
√

1− p
√

1 + KS
KR

√
hL+

√
hH√

hH−phL
and W =

√
2(1−p)(KR+KS)D

hH−phL
. Proposition 3.2.2 provides the

minimum of function F (XL, XH), obtaining the optimal quantity for which the supplier

offers a discount.

Proposition 3.2.2 The minimum of function F (XL, XH) is achieved at:

(XL, XH) =

(Q∗J,L, Q
∗
J,H), f1 ≤ 2

(Q∗J,L, T ), f1 > 2,
for case AI(A),

(XL, XH) =

(Q∗J,L, T ), f2 ≤ 2

(Q∗J,L,W ), f2 > 2,
for case AI(B).

Proof:

First we solve the unconstrained problem with the objective function formed for case

AI(A); i.e., Q∗R,H ≤ XH ≤ T . The unconstrained minimum is XL = Q∗J,L and XH = Q∗J,H .

To check when this is feasible, note that Q∗J,L > Q∗R,L. Furthermore, since the objective

function is convex in XH it is minimized either at XH = Q∗J,H , when Q∗R,H ≤ Q∗J,H ≤ T ,

or at one of the endpoints Q∗R,H or T . It is always true that Q∗J,H ≥ Q∗R,H . On the other

hand, it follows that Q∗J,H ≤ T when f1 ≤ 2. Combining the above, we conclude that the

optimal solution on the upper branch is achieved at:

(XL, XH) =

(Q∗J,L, Q
∗
J,H), f1 ≤ 2

(Q∗J,L, T ), f1 > 2.
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Similarly, we solve the second branch of the objective function (case AI(B)) corresponding

to T < XH ≤ XL, in which the unconstrained problem has the optimal solution XL = Q∗J,L
and XH = W . Since the objective function is convex in XH , it is minimized either at

XH = W or at one of the endpoints T or Q∗J,L. It is easily proved that:

W

Q∗J,L
=

√
(1− p)hL√
hH − phL

< 1.

Therefore, Q∗J,L ≥ W . On the other hand, after some algebra we get that W > T when

f2 > 2. Thus, the optimal solution of the constrained problem on the lower branch is

achieved at:

(XL, XH) =

(Q∗J,L, T ), f2 ≤ 2

(Q∗J,L,W ), f2 > 2. ♦

Before we proceed to the deviation of the supplier’s optimal policy, we observe that:

f2
f1

=

√
1− p√

1− p hL
hH

.

Since hL < hH , it follows that: f2
f1
< 1.

Theorem 3.2.1 The supplier’s optimal policy is:

i) if f2 < f1 ≤ 2, then X∗L = Q∗J,L, Y
∗
L = CR,L(Q∗J,L) − C+

R,L, X∗H = Q∗J,H , Y
∗
H =

CR,H(Q∗J,H)− C+
R,H ,

ii) if f2 ≤ 2 < f1, then X∗L = Q∗J,L, Y
∗
L = CR,L(Q∗J,L) − C+

R,L, X∗H = T, Y ∗H = CR,H(T ) −
C+
R,H ,

iii) if 2 < f2 < f1, then X∗L = Q∗J,L, Y
∗
L = CR,L(Q∗J,L) − CR,L(W ) + CR,H(W ) − C+

R,H ,

X∗H = W,Y ∗H = CR,H(W )− C+
R,H .

Proof:

The objective function F (XL, XH) is convex in XH for every XL, in both branches. We

consider three cases regarding the ordering of f1, f2.

Case AI(I): f2 < f1 ≤ 2.

In this case, the minimum is achieved in the upper branch. Thus, when XH < T ,

the optimal solution is:

(X∗L, X
∗
H) = (Q∗J,L, Q

∗
J,H) with

(Y ∗L , Y
∗
H) = (CR,L(Q∗J,L)− C+

R,L, CR,H(Q∗J,H)− C+
R,H).
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Case AI(II): f2 ≤ 2 < f1.

The minimum is achieved at XH = T , so we have:

(X∗L, X
∗
H) = (Q∗J,L, T ) with

(Y ∗L , Y
∗
H) = (CR,L(Q∗J,L)− C+

R,L, CR,H(T )− C+
R,H).

Case AI(III): 2 < f2 < f1.

In this case, the minimum is achieved in the lower branch. Thus, when XH > T ,

the solution is:

(X∗L, X
∗
H) = (Q∗J,L,W ) with

(Y ∗L , Y
∗
H) = (CR,L(Q∗J,L)− CR,L(W ) + CR,H(W )− C+

R,H , CR,H(W )− C+
R,H). ♦

From the expressions of the optimal solution in Theorem 3.2.1 we can make the fol-

lowing observations:

1. Perfect coordination is achieved if the retailer’s holding cost is low (XL = Q∗J,L).

2. For case AI(I), we have shown that it is attainable to achieve perfect coordination

for the supply chain regardless of the retailer’s type, under some specific values of

the model’s parameters (f1 ≤ 2). This happens because it is optimal for the supplier

to provide a discount at quantities Q∗J,L and Q∗J,H , for type-L and type-H retailer,

respectively. This result is particularly interesting since it comes against several in-

tuitive statements of previous researchers Corbett and Tang (1999); Ha (2001) and

Ozer and Raz (2011), who claim non-existence of perfect coordination under infor-

mation asymmetry. It is in agreement though with the results in Cakanyildirim et al.

(2012), who identified cases where perfect coordination is feasible under asymmetric

information.

3. In cases AI(I) and AI(II), the retailer is constrained to her reservation level irre-

spective of her type; this happens because the supplier provides an appropriate QD

based on the expectation of the retailer’s holding cost and assimilates all the gains

from coordination. In case AI(III), the supplier does not have the power to lead

the retailer to her reservation level as he pays information rent. This is due to the

disadvantage of the supplier because of the retailer’s private information.

4. It is easily shown that all order quantities, fixed payments and costs of the optimal

solution are proportional to
√
D. Therefore, the demand level does not affect the

structure of the optimal policy, except from scaling by a factor
√
D.

In order to achieve perfect coordination in our model, the value of f1 =
√

1 + KS
KR

(1+
√

hL
hH

)

should be less than 2; f1 is the product of two terms relative to set-up and holding costs.

Therefore, we have to examine the possible values and joint product implications of these

two terms. Regarding holding costs, we have assumed that hL < hH and should separate

only two cases with respect to the holding cost values:
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• First, if hL ' hH , which can be interpreted as elimination of the information asym-

metry, then the second term of f1 tends to the value of 2 and the inequality is

not satisfied irrespective of the other term (
√

1 + KS
KR

). Consequently, the retailer’s

private information becomes almost irrelevant and perfect coordination cannot be

reached since utility costs are minimal for the supplier and he does not seek to

distinguish high and low cases for his discount offering.

• Second, if the low holding cost value is much smaller than the high one (hL << hH);

i.e., asymmetry is a dominant factor for the decisions along the supply chain, then

the second term of inequality (1+
√

hL
hH

) tends to 1 and we have to examine the other

term. When the supplier’s and retailer’s set-up costs are almost equal (KR ' KS),

perfect coordination is achieved since the two players have almost identical set-up

costs and it is profitable for them to jointly establish decisions (perfect coordination).

On the other hand, when KS is small, the supplier does not have any cost function

relevant to the node interactions and all such costs are linked to the retailer; conse-

quently, the costs of the latter are aligned with the costs of the whole supply chain

and, thus, the joint optimal quantity is selected leading to perfect coordination. Fur-

thermore, if KR << KS , it is not possible to achieve perfect coordination, since the

first term of f1 tends to infinity. This can be interpreted as follows: although the

supplier wants to ship extremely large quantities through the chain because of the

high set-up cost, the true decision maker is the retailer who has to be provided with

an enormous incentive from the supplier in order to accept placing such large orders.

As a side effect, the retailer’s private information is very important in establish-

ing the business and may instigate no truth-telling policies without the appropriate

incentive (RP).

In conclusion, we have derived analytical expressions of the optimal QDs and resulting

costs for both players and we can directly implement them in any numerical case. The

powerful aspect of the approach is the use of concepts from the RP to reduce the search

space for optimality; this has rendered our method tractable in obtaining closed form

equations for all problem variables in the final solution.

3.3 Numerical Experiments

To evaluate the proposed QD based mechanism we consider numerical examples that cover

all potential dimensions of the various cost parameters involved in our model. Furthermore,

we investigate the sensitivity of the optimal players’ strategies with respect to changes in

the values of these parameters. The goal is to assess the overall benefits emanating from

the “intelligent” discount that the supplier provides to the retailer, a policy that elevates

the efficiency of the whole supply chain as is theoretically expected. Note that, we have a

model that involves six independent parameters: D, KR, KS , hL, hH and p. As already



Chapter 3: SC Coordination under Discrete Information Asymmetries and QDs 42

mentioned, the contribution of the annual demand D in the strategies of the two players

is straightforward. Thus, the independent parameters are reduced to five.

The approach we use to evaluate the benefits and the efficiency of the proposed solu-

tion is as follows: initially, we calculate the results incurred for a problem instance without

any discount offered by the supplier (when the supplier does not provide any discount, his

expected cost is equal to pCS(Q∗R,L) + (1− p)CS(Q∗R,H)) and the results of the centralized

solution that leads to perfect coordination (ideal case). Subsequently, we perform a com-

parison of the costs (supplier, retailer and joint) in the previous two solutions with the

respective costs reached by solving our proposed discount model. The first comparison

shows the level of improvement achieved via our quantity discount-based policy, whereas

the second comparison provides the gap between our solution and the solution derived

under perfect coordination.

To reduce the complexity of comparisons we proceed in normalizing the values of set-up

and holding costs, by considering ratios instead of actual values. Although one can argue

that individual set-up and holding cost values are important when deriving actual supply

chain costs, what really defines the direction of any managerial decision is the relative

value of these costs. In this sense, we assume that:

Ratio of the fixed (or set-up) costs: Rf = KS/KR,

Ratio of the holding costs: Rh = hH/hL.

Therefore, the evaluation parameters now become: Rf , Rh and p, while the values of KR

and hL are set to 1.

We consider a numerical experiment where the three parameters (Rf , Rh and p) take

200 values each in the following ranges: Rh ∈ (1, 5], Rf ∈ (0, 10], p ∈ [0, 1]. Thus, we ex-

amine 8×106 scenarios, which are programmed and run using MatLab (Davis and Sigmon,

2005). Note that, the ratios of holding and fixed costs are bounded by numerical values,

while for probability p all range values are examined. In this experiment, our solution’s

joint cost is at most 45% and on average 26% better than the cost of the solution without

discounts. Furthermore, the maximum percentage efficiency loss (i.e., the divergence from

the whole supply chain cost under perfect coordination) is just above 11% with average

less than 1.7%; the latter is a particularly encouraging result since it provides an indica-

tion of an attractive upper bound on the difference between our solution and that of the

perfect coordination.

It is important to note that perfect coordination is the ideal scenario but requires either

a single decision maker or a single owner of all the nodes, a fact that is extremely restric-

tive for practical applications. Nevertheless, our approach, which leaves players alone to
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decide on entering the relationship or not and achieves results that are so close (on the

average) to the ideal case, justifies its application to real life supply chain interactions.

To further examine the outcome of our method under more realistic cases, we consider

the same experiment with the ratio of holding costs (Rh) taking values only in the range

(1, 2] (see Becerril-Arreola et al. (2013)). In this case, the maximum percentage of supply

chain efficiency loss is around 5.4% (average 0.7%), while the percentage improvement

in the joint cost remain the same. This result is consistent with our intuition, because

the reduction of the maximum value of Rh is interpreted as elimination of the information

asymmetry. As already mentioned, in the case of complete information it is always feasible

to achieve perfect coordination.

Furthermore, it is useful to compare the minimum percentage improvement in the joint

cost of our solution and the same parameter when no discount is provided. Until now, we

have included results for small values of the suppliers’ set-up costs (i.e., KS ' 0) which is

not reasonable in practice. Therefore, we limit the ratio of fixed costs (Rf ) by raising the

lower bound. Thus, we take again 200 values of each of the three parameters (Rf , Rh and

p) in the following ranges: Rh ∈ (1, 2], Rf ∈ (4, 10], p ∈ [0, 1]. In this case, the minimum

improvement in the joint cost is 22.1%. The mean value of the percentage improvement

is less than 36% and the mean value of the percentage efficiency loss is less than 0.9%.

Thus, as the problem parameters approach real life values (i.e., Rh < 2 and Rf > 4), our

method better supports node interaction.

Subsequently, we present some graphs that capture the sensitivity of the optimal play-

ers’ strategies with respect to changes in the values of the model parameters. In Figure

3.2, we show how the ratio of fixed costs (Rf ) affects costs; the horizontal axis corresponds

to Rf and the vertical axis reflects the values of:

• the joint cost under perfect coordination, represented by the thick solid line,

• the joint cost under our solution, represented by the dotted line,

• the supplier’s cost under our solution, represented by the dashed line (to identify

the part of the total cost attributed to this player), and

• the joint cost without discount, represented by the solid thin line.

In Figure 3.3, the horizontal axis corresponds again to Rf , while the vertical axis

represents cost divergence or improvement from a baseline case. The figure depicts two

distinct lines: the dashed line, which represents the percentage improvement in the joint

cost achieved in our solution, and the continuous line representing the percentage loss for

the joint cost from the ideal solution.

As mentioned before, it is more realistic to consider Rf > 3. So, we focus in the rele-
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Figure 3.3: Joint cost difference evolution in Rf

vant areas of Figures 3.2 and 3.3. We observe that the joint cost under our solution almost

matches the cost of the solution under perfect coordination, without actually enforcing by

any means such coordination. For small values of Rf , the percentage improvement in the

joint cost is small although not negligible (above 5%); as the values of Rf increase, the

percentage improvement increases significantly. This result is a strong indication that our

solution reduces inefficiencies and provides much better results than the case without any

discount. This is consistent with our intuition, because small values of Rf mean that the

supplier does not bear a significant proportion of the total cost, so he has not a powerful

incentive to provide the discount.
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Subsequently, we keep the ratio of fixed cost constant at Rf = 4 and consider 200

different values of the ratio of holding cost in the range (1, 2] for three values of the

probability of the retailer being type-L (p equal to: 0.25, 0.5 and 0.75). The objective is

to examine how the parameters p and Rh affect the percentage improvement in the joint

cost with regards to the solution without any discount and the percentage efficiency loss

from the ideal case. The results are illustrated in Figures 3.4 and 3.5, where the horizontal

axis corresponds to Rh. The vertical axis in Figure 3.4 represents the percentage efficiency

loss from coordination, while in Figure 3.5 represents the percentage cost improvement in

the joint cost. Three distinct lines are depicted in each figure:

• the solid thin line represents the retailer being type-L (p) with probability 0.75

• the thick solid line represents the case where p = 0.5

• the dashed line represents the case where p = 0.25
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Figure 3.4: Efficiency loss from perfect coordination

From Figure 3.4, we can conclude that as Rh increases, the relative divergence of

the proposed QD from the ideal case increases as well, but does not exceed 3.5%, when

p = 0.75, 1.5% when p = 0.5 and 0.4% when p = 0.25. This is not surprising because

hL ' hH can be interpreted as elimination of the information asymmetry. Therefore, we

have an indication that the proposed QD does not diverge from the ideal case. Moreover,

we observe that as the probability of the retailer being type-L increases, so does the gap

between our solution and that of the perfect coordination.

In Figure 3.5, we observe that as Rh increases, the percent improvement in the joint

cost achieved by our QD approach decreases compared to the optimal joint cost; however

it remains at a significant level (over 22.5%), which is also affected in a negative way by

the probability of the retailer being type-L. The latter is expected since a type-L retailer

is associated with a smaller value of the holding cost.
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Figure 3.6: Joint cost difference evolution in Rf for three probability values

3.4 Findings

In this chapter, we considered a two-node SC with one manufacturer producing a single

product in a lot-for-lot fashion and one retailer who orders and stores the same product in

fixed quantities. We modeled the problem of node interaction as a game and for the case

of a unique and known inventory holding cost we proved the joint EOQ result. For the

case of a two-level holding cost (distribution to high and low), we formulated a Stackelberg

game and reached closed form expressions of the QDs that the manufacturer should offer

to minimize his costs while enabling the establishment of the business. We also proved

that even with information asymmetry, perfect coordination is attainable under specific

conditions. The results were evaluated using numerical experiments that suggested supe-

riority of our approach compared to cases with no discounts, thus justifying the potential

for application to real-life business ventures.



Chapter 4

Quantity Discounts in Supply

Chain Coordination under

Multi-level Information

Asymmetry

This chapter is an extension of the previous one. We assume that there are three possible

choices about the retailer’s holding cost. We propose a model with QDs as a way to

capture the retailer’s private information, while our objective is to coordinate the SC and

achieve a better profit allocation for all the participants. The problem is formulated as a

Stackelberg game, where the supplier is the leader and the retailer the follower. We make

some conjectures on how results we have obtained for the case of two possible holding cost

values may or may not be extended in this setting.

4.1 Model description

We consider a SC with two distinct nodes, where the nodes are legally obliged to interact

each other. One node can be thought of as a supplier or a manufacturer (referred to as he)

that produces a single product in a lot-for-lot fashion. The other node can be thought of

as a retailer or a buyer (she), ordering items from the supplier to satisfy market demand.

The retailer has to decide on the order quantity (lot size) to place to the manufacturer,

satisfying demand and minimizing her own cost; shortages or backorders are not allowed.

The manufacturer does not own a warehouse facility, nor can it accommodate inventory

at other premises; thus, completed lots are directly forwarded to the retailer.

We assume that the retailer has private information about the actual holding cost;

47
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but this time where exists three possible choices about the concerning stock warehousing:

a) store inventory at owned warehouse, a fact that provides the minimum per unit hold-

ing cost; b) allocate inventory holding at a 3PL company, a medium-cost value; or c) rent

storage facilities particularly for the retailer, a choice that leads to maximum holding cost.

Both nodes are rational, risk neutral and base their decisions on sound utility func-

tions. They have set-up costs (production-related for the manufacturer and order-related

for the retailer) and interact via order quantities. We assume that both the retail price

and the market demand D are constant, exogenously defined and known to the nodes, a

common assumption in the literature (Corbett, 2001). We make this assumption, due to

the fact that our goal is to examine node coordination (without affect the market demand)

and the resulting players’ benefits, in terms of operational costs.

According to our assumptions, the retailer’s cost CR is a function of her order quantity

Q and can be expressed as: CR(Q) = KRD/Q + hRQ/2, where denote with KR the

retailer’s set-up cost and with hR the retailer’s holding cost. The manufacturer’s cost CM

is solely a function of the retailer’s decision Q and can be expressed as: CM (Q) = KMD/Q,

where KM is the manufacturer’s set-up cost. Note that, the manufacturer is not yet a

decision maker. The total SC cost can be expressed as CJ(Q) and is equal to the sum of

the retailer’s and manufacturer’s cost, i.e.:

CJ(Q) = CM (Q) + CR(Q). (4.1.1)

The retailer selects the order quantity to minimize her own cost function (ratio-

nal). The retailer’s cost corresponds to an EOQ-type cost, thus the optimal lot size

is: Q∗R =
√

2KRD/hR. When the retailer’s order is equal to Q∗R the costs are:

Retailer’s cost: CR(Q∗R) = KRD/Q
∗
R + hRQ

∗
R/2 =

√
2KRDhR.

Manufacturer’s cost: CM (Q∗R) = KMD/Q
∗
R = KM

√
DhR/2KR.

Joint cost: CJ(Q∗R) = CM (Q∗R) + CR(Q∗R) = (2KR +KM )
√
DhR/2KR.

Thus, both nodes are able to accept costs until these values CR(Q∗R) and CM (Q∗R) and

we have an indication about the maximum join cost. The values CR(Q∗R) and CM (Q∗R)

are known to the literature as retailer’s and manufacturer’s reservation levels, respectively.

The reservation level is defined as the cost when the player determines his strategy under

the worst case scenario for him (Gibbons, 1992). Thus, the players’ costs cannot exceed

their reservation levels under any proposed solution.

The manufacturer due to the fact that he has set-up cost, prefers the largest possible
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orders from the retailer, since this would reduce his operational costs. The retailer on

the other hand is responsible for the quantity ordered, and should consider both storage

and set-up costs when he determines the preferred quantity levels, in addition to all other

problem parameters. Moreover, we observe that the optimal cost for the whole chain is the

minimum of the function CJ(Q). Due to the fact that total SC cost CJ(Q) corresponds to

an EOQ-type cost, the minimum of function CJ(Q) is achieved when the order quantity

is:

QJ =
√

2(KR +KS)D/HRPS . (4.1.2)

We observe that Q∗J > Q∗R, so we have CJ(Q∗J) < CJ(Q∗R). Therefore, a higher than

Q∗R order quantity is preferable to reduce the total costs. The difference CJ(Q∗J)−CJ(Q∗R)

denotes the maximum benefits that coordination of the two nodes can incur. Thus, we

have an indication about the profits which arise from node coordination. However, this

is reached at the expense of the retailer’s increased cost, rendering her negative to a po-

tential cooperation. Therefore, to raise the retailer’s order level (preferred case for the

manufacturer) and achieve reduced costs, the manufacturer must offer her an incentive

when selecting the order quantity.

We allow the manufacturer to provide QD to the retailer, in order to force the latter

to increase order levels (retailer’s decision). We observe that when the manufacturer uses

QDs; the joint cost CJ remains the same, because the discount affects only the allocation

of the cost between the two nodes, via the increase in the retailer’s order levels. The aim

of this work is to determine the appropriate QD, which the manufacturer will provide to

the retailer, in order to coordinate the chain. The problem is formulated as a Stackelberg

game, a common way of modeling node interaction in SCM, in which the manufacturer

is the leader and the retailer is the follower. Moreover, we examine the role of QDs as a

way to capture retailer’s private information and coordinate the supply chain. The latter

leads to achieve the maximum profit for the whole chain with result more profits to be

available for the participants.

The asymmetry information reflects the three levels of warehousing cost that the re-

tailer knows when opting for it, while the manufacturer assumes a probability function for

these values. We model the information asymmetry assuming that the retailer’s holding

cost hR is discrete random variable, which could take three different values (a high, a

medium or a low one). We assume that retailer’s holding cost takes the low value hL with

probability p, the medium value hM with probability q, while the high value hH happens

with probability 1− p− q. The retailer learns the real value of hR before making her own

decisions, while the manufacturer considers hR as a discrete random variable such that:

P (hR = hL) = p, P (hR = hM ) = q, P (hR = hH) = 1− p− q. (4.1.3)
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The interaction between the two nodes can be modeled via a Bayesian game. In terms of

the Bayesian formulation, we refer to these three holding cost values as retailer of type-L,

type-M and type-H, respectively.

The manufacturer (leader) sets the QD and the retailer (follower) and selects the order

quantity. In this model and according to the design mechanism theory (Fudenberg and

Tirole, 1991) it is sufficient to consider discount policies with quantity-price pair (X,Y ).

This means that the discount is valid if and only if the order quantity is equal to X, and

then the retailer achieves discount equal to Y . Due to the assumption that the nodes are

rational, the manufacturer selects a discount to minimize his expected cost under the prior

distribution, assuming that the retailer will respond optimally and taking into account the

true value of the holding cost known to him.

4.2 Mathematical framework

In this section, we provide the appropriate analysis and the necessary conditions about

the QD, describing all the necessary constraints about the two decision variables of the

problem; i.e., order quantity for the retailer and QD for the manufacturer. The QD can

act as a screening device to induce the retailer to reveal her private information about the

holding cost (Kolay et al., 2004). The analysis is based on the RP.

As already mentioned, we assume that the retailer identifies her true holding cost as

soon as the game starts, while the manufacturer considers that type-L (hL) occurs with

probability p, type-M (hM ) happens with probability q and type-H (hH) with probability

1 − p − q. According to the retailer’s type, the retailer’s cost function and the retailer’s

reservation level can be written as:

Retailer’s cost


CR,L(Q) = KRD/Q+ hLQ/2 if he is type-L

CR,M (Q) = KRD/Q+ hMQ/2 if he is type-M

CR,H(Q) = KRD/Q+ hHQ/2 if he is type-H,

(4.2.1)

Retailer’s reservation levels


C+
R,L(Q) =

√
2KRDhL if he is type-L

C+
R,M (Q) =

√
2KRDhM if he is type-M

C+
R,H(Q) =

√
2KRDhH if he is type-H.

(4.2.2)

The retailer’s reservation levels are reached when she selects the order quantity to

minimize her own cost function and the manufacturer does not provide any discount.
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Thus, the retailer’s order quantity is:

Optimal retailers order quantity


C∗R,L(Q) =

√
2KRD/hL if he is type-L

C∗R,M (Q) =
√

2KRD/hM if he is type-M

C∗R,H(Q) =
√

2KRD/hH if he is type-H.

(4.2.3)

The analysis is based on the RP according to which it is sufficient to consider QDs

such that: i) the manufacturer sets one pair (X,Y ) of order quantity and discount amount

respectively for each retailer type, and ii) the values of (Xi, Yi) are such that it is optimal

for the retailer to select the option (Xi, Yi) if he is type-i, where i=L,M,H. Therefore, the

manufacturer should design a mechanism under which the retailer will act according to

her actual type. Without loss of generality, we can restrict the set of supplier’s strategies

to those that satisfy the RP and have attractive properties (Myerson, 1979).

The retailer has three options concerning his order quantity: i) to order without dis-

counts, ii) to order according to her actual type and achieve the corresponding discount

e.g., if she is type-L to order a quantity equal to XL and receive the discount of YL, and

iii) to order a quantity that would allow her to get a discount she would if she was of

an another type. The retailer selects the option that minimizes her own expected cost

(rational and risk neutral player). According to the RP it is sufficient to the manufac-

turer to include the appropriate incentives in the QD, in order the retailer to select the

order quantity according to her actual type; i.e., the QD should include IC constraints

(Fudenberg and Tirole, 1991). The IC constraints ensure that the retailer cannot incur

lower costs if she acts in order to achieve different type of discount; i.e., the retailer will

be truthful because it is in her self-interest. Thus, the following should hold:

CR,L(XL)− YL ≤ CR,L(XM )− YM

CR,L(XL)− YL ≤ CR,L(XH)− YH

CR,M (XM )− YM ≤ CR,M (XL)− YL (4.2.4)

CR,M (XM )− YM ≤ CR,M (XH)− YH

CR,H(XH)− YH ≤ CR,H(XL)− YL

CR,H(XH)− YH ≤ CR,H(XM )− YM .

Due to the fact that the retailer could deny the QD (from the manufacturer) and acts

alone; i.e., to order without receive any discounts, base to RP the manufacturer when he

designs the QD he should include IR or participation constraints. These constraints exist

in order the retailer to prefer ordering the quantity with the discount instead of her own
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optimal solution without discount. Thus, the following should hold:

CR,L(XL)− YL ≤ C+
R,l

CR,M (XM )− YM ≤ C+
R,M (4.2.5)

CR,H(XH)− YH ≤ C+
R,H .

The system of inequalities (4.2.4) and (4.2.5) become constraints in the manufacturer’s

optimization problem (RP, Myerson (1979)). Consequently, the manufacturer solves the

following optimization problem:

min
(XL,YL,XM ,YM ,XH ,YH)

p{CM (XL) + YL}+ q{CM (XM ) + YM}+ (1− p− q){CM (XH) + YH}

s.t. YL > CR,L(XL)− C+
R,L

YM > CR,M (XM )− C+
R,H

YH > CR,H(XH)− C+
R,H

YL − YM > CR,L(XL)− CR,L(XM )

YL − YH > CR,L(XL)− CR,L(XH)

YM − YL > CR,M (XM )− CR,M (XL)

YM − YH > CR,M (XM )− CR,M (XH)

YH − YL > CR,H(XH)− CR,H(XL)

YH − YM > CR,H(XH)− CR,H(XM ).

In our model, coordination is achieved when there is only one decision maker who

controls both nodes and makes all the decisions under the objective to minimize the

joint supply chain costs. This means that the order quantities from the retailer to the

manufacturer are equal to:

Q∗i =
√

(2(KR +KM )D/hi) for i=L,M,H. (4.2.6)

The first question which arises is if the coordination of the chain is always attainable

under the appropriate QD; i.e., if the manufacturer could design a QD where XL,X,XH

are equal to Q∗L,Q∗,Q∗. It is easy to show that perfect coordination is not always possible,

which is rational according to the results of (Zissis et al., 2015). Thus, the remarkable

question is to find under which specific parameters’ conditions the chain could be coordi-

nated and to give the managerial explanation.

A second question is to find the appropriate indexes which evaluate the improvement

that is achieved through our proposed way of coordination, comparatively to the solution

without discounts. A final question is about the information rent, which the retailer
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can achieve due to the fact that she possesses private information. It is well known to

the literature that if the manufacturer knows the actual retailer’s holding cost (retailer’s

private information) he has the power to lead the latter to the reservation level. In this

case the manufacturer secures all the gains from coordination for himself by paying the

retailer just enough to induce her to alter the order quantity.

4.3 Findings

In this chapter, we considered a two-node SC with one manufacturer producing a single

product in a lot-for-lot fashion and one retailer who orders and stores the same product

in fixed quantities. We modeled the SC as a Bayesian game, due to the fact that the

retailer had private information about her holding cost. We assumed that the retailer’s

holding cost was discrete random variable, which could take three different values (a high,

a medium or a low one). We formulated a Stackelberg game and wrote down all the

necessary constraints of the QDs that the manufacturer should offer in order to minimize

his costs while enabling the establishment of the business. Moreover, we discussed some

conjectures on the feasibility of coordination in the information asymmetry setting.



Chapter 5

Supply Chain Coordination via

Mediator

In this chapter, we address a two-stage SC with two distinct rational nodes (supplier -

buyer) which interact, in a decentralized manner. Both nodes have discrete private infor-

mation that affects both their reservation levels and the way in which they decide their

actions. In order to achieve the alignment of individual nodes and overall system objec-

tives, we provide the players with the opportunity to communicate concerning any private

information they may possess, through a credible mediator (third trusted party). The

latter designs a mechanism to minimize the total supply costs.

The nodes’ communication takes place before players decide on their actions, without

any restrictions (modeling of misinformation is also accepted). Obviously, opportunities

for mutual benefits cannot be found unless the players share honestly their private infor-

mation (Fiala, 2005). We assume that all the possibilities for communication are entirely

controlled by a credible mediator and use the RP as the technical approach that allows

the derivation of statements about what rules are feasible in the communication system.

Using the RP, we are able to capture the nodes’ private information and prove that perfect

coordination is attainable under bilateral information asymmetries.

In the proposed work the role of mediator can be assumed by auditing firms (Klein,

2002), especially if they are common between the nodes, or by Supervising Authorities.

To proceed with sharing private information, players should be provided with appropriate

incentives. The mediator includes incentives in his proposal mechanism to the nodes, so

that they report honestly their private information because it is in their self interest; such

incentives can be expressed via QD schemes. Therefore, we examine how the commu-

nication system, through the mediator, leads to the system-wide coordination, and then

measure the resulting players’ benefits.

54
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The contribution of this chapter is twofold: i) we introduce the notation of a mediator

as a means of coordination in SCM, by developing a mediator mechanism that is based on

the RP, and ii) we prove that perfect coordination under discrete information asymmetries

on both nodes is possible, when the nodes’ reservation levels are not exogenously defined.

To the best of our knowledge there are not any prior works in the literature which study

and analyse how the nodes could be coordinated under 2-way information asymmetries.

The chapter is organized as follows: Section 5.1 provides the mathematical formulation

about our proposed model and the GT perspective of the players’ interaction via commu-

nication. In Section 5.2 we develop the analytical solution of the game and we prove that

coordination is attainable. Section 5.3 provides insights about the coordination benefits

and mediator’s flexibility. Section 5.4 summarizes the conclusions of our work.

5.1 Model description

We consider a SC with two nodes which trade a single product. One node can be thought

of as a supplier (or producer) denoted by S (referred to as he). The supplier is producing

a single product in a lot-for-lot fashion since he does not own a warehouse facility, nor can

he accommodates inventory at other premises. Completed lots are then directly forwarded

to the other node, who acts as a buyer (she) and is denoted by R. The buyer has the

market power to determine the order quantity (lot size), denoted by Q (Q > 0), to place to

the supplier, satisfying market demand and minimizing her own cost, without taking into

account the global optimum. We assume that shortages or backorders are not allowed,

which are standard assumptions in the literature (Li and Wang, 2007). The nodes are

forced to interact with each other; no alternatives for external interactions are allowed.

Moreover, they are rational, risk neutral and interact exclusively via order quantities. It

is assumed that market demand D (D > 0) is constant, exogenously defined and known

to nodes. We make this assumption since our objective is to examine node coordination

and the resulting benefits, in terms of operational costs.

The buyer who decides on the order quantity Q, has both an ordering and a holding

cost, denoted by KR (KR > 0 ) and HR (HR > 0), respectively. For the holding cost,

it is assumed that it is a percentage of the production cost PS (Krajewski et al., 2010).

Therefore, the buyer’s cost function and can be expressed as:

TCR(Q) = KRD/Q+HRPSQ/2. (5.1.1)

Obviously, the buyer’s cost is a function of her decision Q. As the buyer is a rational
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player, she selects the lot size Q, that minimizes her own costs. TCR(Q) corresponds to

an EOQ-type cost, thus the optimal lot size is QR =
√

2KRD/HRPS and the minimum

cost is TCR(QR) =
√

2KRDHRPS . The supplier has a setup and a per unit production

cost, denoted by KS (KS > 0) and PS (PS > 0), respectively, his cost is solely a function

of the buyer’s decision Q, and it can be expressed as:

TCS(Q) = KSD/Q+ PSD. (5.1.2)

Note that the supplier is not yet a decision maker. If the supplier could decide about

the order quantity, he would favor large quantities because in this way he would reduce

his own operational costs. The optimal buyer’s lot size is QR, which leads to a supplier

cost TCS(QR) = KS

√
DHRPS/2KR + PSD. The total channel cost is denoted by CJ(Q)

and is equal to the sum of supplier’s and buyer’s cost:

CJ(Q) = (KR +KS)D/Q+HRPSQ/2 + PSD. (5.1.3)

We observe that CJ(Q) corresponds to an EOQ-type cost, with setup being the sum of

KR and KS and the optimal joint lot size is QJ =
√

2(KR +KS)D/HRPS . In our model,

perfect coordination (ideal scenario) exists when the buyer decides on the joint optimal lot

size QJ and imposes it to the supplier. Obviously, QJ > QR, thus CJ(QJ) < CJ(QR). It

is clear that a higher order quantity is preferable to reduce the total costs. The difference

CJ(QR)−CJ(QJ) denotes the maximum benefits that coordination of the two nodes can

incur. Thus, we have an indication about the profits which arise from node coordination.

However, this is achieved at the expense of increased buyer’s cost, rendering the latter

negative to such an option. In order to raise the buyer’s order level and achieve reduced

overall costs, the buyer should be provided with the appropriate incentives. In our model,

we focus on employing QD policies for achieving this. Furthermore, the QDs affect only

the cost allocation among the participants and not the total chain cost.

The case which we consider is a decentralized model under incomplete information on

both sides. In this case the nodes decide their actions based only on individual criteria.

We model the information asymmetry assuming that the supplier’s production cost and

the buyer’s holding cost are both discrete random variables, which could take a high or a

low value. According to Yu et al. (2009) a dual sourcing strategy is a common approach,

after the March 2000 fire at Philips microchip plant in Albuquerque, that led two of the

cell-phone giants (Nokia and Ericsson) to chaos. Thus, we assume that the supplier has

alternative choices about production which induce different production cost. After the

production phase, the single product is forwarded to the buyer who is responsible to store

it. The buyer is not aware of the exact cost when the deal is made with the supplier since

this is a function of the production plant and the limited capacities prohibit the a priori
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assumption of “lower price selection” by the supplier. Concerning the buyer’s holding cost,

it is assumed that there are discrete choices which incur different costs. For example, the

buyer could store inventory at owned warehouse (low cost) or/and to rent storage facilities

or at the customs location (high cost). Hence, our model is developed based on the fact

that both nodes have discrete private information. The assumption of discrete private

information is more realistic for practical applications, where the cost or the prices could

take some discrete values; according to Lovejoy (2006) continuous asymmetries cannot be

directly applicable, while discrete ones can.

We assume that the production cost PS takes the low value Pd, with probability q and

the high value Pu (Pu > Pd) with probability 1 − q, while the holding cost HR takes the

low value Hl, with probability p and the high value Hh (Hh > Hl) with probability 1− p.
The supplier learns the real value of PS before making his own decision, while the buyer

considers PS as a discrete random variable such that P (PS = Pd) = q = 1− P (PS = Pu).

Similarly, HR is known to the buyer but partially known to the supplier, who considers it

as a discrete random variable with P (HR = Hl) = p = 1 − P (HR = Hh). According to

the Bayesian formulation (Gibbons, 1992), the supplier can be of type-d or type-u and the

buyer can be of type-l or type-h. Thus, four different combinations of the players’ types

arise: l/d, l/u, h/d,and h/u. Since production and holding costs are independent, proba-

bilities about the cases l/d, l/u, h/d, and h/u are pq, p(1− q), (1− p)q and (1− p)(1− q),
respectively.

The cost of each node is a function of the order quantity Q and depends on the node

type, because each node is aware of his/her own parameter value. Therefore, the costs of

the two nodes are:

Supplier’s Cost

TCS,d(Q) = KSD/Q+ PdD if he is type-d

TCS,u(Q) = KSD/Q+ PuD if he is type-u,
(5.1.4)

Buyer’s Cost

TCR,l(Q) = KRD/Q+HlPSQ/2 if she is type-l

TCR,h(Q) = KRD/Q+HhPSQ/2 if she is type-h.
(5.1.5)

In this context of incomplete information, information sharing between the nodes is

a critical factor for achieving coordination and it should be incorporated in the player’s

strategies. In this chapter we propose that both nodes are able to communicate concerning

any private information they possess through a mediator. We assume that the mediator

proposes QD schemes as incentives to coordinate the nodes’ decisions. Therefore, a com-

munication game arises, which can be viewed as a hybrid game between the two basic
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game categories: the non-cooperative and the cooperative games. This holds because the

communication game combines properties from both categories (Myerson, 2007). The pos-

sibilities for communication are assumed to be entirely controlled by the mediator, who:

i) is considered to be a credible authority, ii) does not coincide with any of the nodes, and

iii) serves a unique purpose of optimizing the chain. The existence of a mediator is only

to facilitate nodes to communicate without incurring any additional cost to them and to

the whole chain.

The mediator announces a plan which describes his role and defines his potential ac-

tions (referred to as the “mediator plan”). Then, both nodes report confidentially their

private information to the mediator. The latter cannot compel truthful behavior by the

nodes and anticipates that either of them may lie to him in an attempt to manipulate the

mediator plan. Note that each node is the only one who knows his/her own true type, and

no one can prevent the nodes from lying about it, since the nodes may expect advantage

from such a behavior. Hence, the nodes may or may not lie about their types, and thus,

the real types and the reported types may not coincide. The mediator is aware of that and

if he anticipates both nodes to report their real types, he should must include appropriate

adverse selection incentives in the mediator plan. According to the RP, all the rational

players will then report honestly their types, because in this way they achieve the largest

individual gains. No rational player would expect higher individual gains from being the

only player to lie about his type, when the others are planning to honesty report their

types.

After receiving the reports from both nodes, the mediator specifies actions for them,

according to the preannounced mediator plan. The latter incorporates any rule that em-

anates from the nodes’ reports and enables the specification of actions. In this work, the

mediator plan is a quantity discount pair (X,Y ) that depends on the reported types; i.e.,

given the types that nodes report to the mediator, he recommends a quantity X that the

buyer should order and a discount Y that the supplier should provide to the buyer, if

the buyer indeed follows his recommendations. Nodes could either accept the recommen-

dation according to the reported type or refuse the plan (nodes cannot alter the specific

quantity-price pair). According to the RP, it is sufficient to consider discounts such that

the mediator sets one quantity-price pair (X,Y ) for each feasible combination of the nodes’

types, in order to be separated the different type combinations. Thus, in our model it is

sufficient to determine four quantity-price pairs.

Before the application of the RP, it is necessary to define the nodes’ reservation levels;

i.e., the costs when the nodes select their strategies under the worst case scenario for

them (Gibbons, 1992). These are required, because the nodes are free to decide whether
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to participate in the mediator plan or act alone. Therefore, the mediator’s plan should

include constraints that ensure voluntary participation of the nodes. Specifically, the

worst case scenario for the buyer is when the supplier’s production cost is high and the

supplier does not provide any discount for opting for it. Because the buyer is able to

distinguish the low value Hl and the high value Hh of her holding cost, the buyer’s cost

function under the worst case scenario is either KRD/Q+HlPuQ/2 when she is type-l, or

KRD/Q+HhPuQ/2 when she is type-h. To minimize her EOQ-type cost (rational player),

she orders quantity equal to QR
l =

√
2KRD/HlPu, or QR

h =
√

2KRD/HhPu, respectively.

This results in the following costs, which are defined as the buyer’s reservation levels,

depending on her type: C+
R,l =

√
2KRDHlPu, or C+

R,h =
√

2KRDHhPu, respectively. To

calculate the supplier’s reservation levels we consider the worst case scenario for him, which

occurs when the buyer’s order is equal to QR
h (minimum quantity order since the supplier’s

cost is a decreasing function of the order quantity). Thus, supplier’s reservation levels are:

C+
S,d = KS

√
DHhPu/2KR +PdD, if he is type-d and C+

S,u = KS

√
DHhPu/2KR +PuD, if

he is type-u.

The mediator designs a mediator plan m as follows:

m = {(Xlu, Ylu), (Xhu, Yhu), (Xld, Yld), (Xhd, Yhd)} (5.1.6)

which determines the quantity-price pair for each combination of node types, using the

prior probability distributions of production and holding costs: P (PS = Pd) = q = 1 −
P (PS = Pu) and P (HR = Hl) = p = 1−P (HR = Hh), because he is not aware of the real

values of them. The mediator’s objective is to minimize the expected value of the total

chain cost E(CJ(Q)) which is equal to:

E(CJ(Q)) = p(1− q)CJ(Xlu) + pqCJ(Xld) + (1− p)(1− q)CJ(Xhu) + (1− p)qCJ(Xhd).

(5.1.7)

Recall that mediator plans are constrained by the participation and adverse selection

constraints.

5.2 Analytical Solution

In this section, we prove that perfect coordination when both nodes have discrete private

information is attainable through a mediator. Furthermore, we devise exact values for

the decision variables; i.e., the order quantity Q for the buyer and the quantity-price pair

(X,Y ) for the supplier, which achieve coordination.

It is crucial for the nodes to reveal voluntarily their private information, if we want to

reach coordination. The RP asserts that any equilibrium of a communication game can
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be reached by an appropriate mechanism (Myerson, 1979). In our model, such a mecha-

nism is a mediator plan, in which the mediator includes incentives of adverse selection to

force nodes to report information honestly. Thus, nodes reveal their private information,

because it is in their self interest. A mechanism is appropriate for reaching an equilibrium

if, under the hypothesis that the other players are honest, no player could reduce his cost

by reporting incorrect information to mediator. The benefit from the RP is that it guar-

antees that it is sufficient to consider only such mechanisms when devising the mediator

plan. This restriction is significant, in the sense that this class is much smaller than the

set of all feasible mechanisms and in general can be characterized by a finite number of

inequalities, when there is a finite number of type combinations (Myerson, 1979).

Therefore, by the RP, it is sufficient to consider mediator plans consisting of four

quantity-price pairs (X,Y ), one for each feasible combination of nodes’ types. Both nodes

report that they are of a certain type, but they are free to report whatever type they desire.

Their objective when they report their type is to minimize their individual expected cost,

according to their prior distribution and conditional on their own known type (rational

and risk neutral players). Consequently, each node’s cost is a function of the mediator

plan and of the reported and real types. For example, the supplier’s expected cost under

mediator plan m when he reports type-d, given that he is type-u is:

CS(m, d|u) = p(TCS,u(Xld) + Yld) + (1− p)(TCS,u(Xhd) + Yhd)

= p(KSD/Xld + Yld) + (1− p)(KSD/Xhd + Yhd) + PuD,
(5.2.1)

while buyer’s expected cost under mediator plan m when she reports type-h, given that

she is type-l is:

CR(m,h|l) = q(TCR,l(Xhd)− Yhd) + (1− q)(TCR,l(Xhu)− Yhu)

= q(KRD/Xhd +HlPdXhd/2− Yhd) + (1− q)(KRD/Xhu +HlPuXhu/2− Yhu).

(5.2.2)

The other expected costs; i.e., CS(m,u|u), CS(m, d|d), CS(m,u|d), CR(m, l|l), CR(m,h|h)

and CR(m, l|h) are similarly defined.

Since the nodes could deny the mediator plan and act alone, their cost under any

plan cannot exceed their reservation levels (C+
R,l, C

+
R,h, C

+
S,d, C

+
S,u). Both players prefer the

solution under the mediator plan m when the following inequalities hold:

CR(m, l|l) ≤ C+
R,l

CR(m,h|h) ≤ C+
R,h
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CS(m, d|d) ≤ C+
S,d (5.2.3)

CS(m,u|u) ≤ C+
S,u.

Moreover, to ensure that both nodes report their private information honestly, because

it is in their self interest, the mediator should include adverse selection incentives in his

mediator plan m, expressed as:

CR(m, l|l) ≤ CR(m,h|l)

CR(m,h|h) ≤ CR(m, l|h)

CS(m, d|d) ≤ CS(m,u|d) (5.2.4)

CS(m,u|u) ≤ CS(m, d|u).

According to the RP, (5.2.3) and (5.2.4) become constraints when the mediator designs

a plan. In the literature of mechanism design, inequalities (5.2.3) are referred to as IR or

participation constraints and inequalities (5.2.4) are known as IC constraints (Fudenberg

and Tirole, 1991).

The mediator designs the plan to minimize the expected value of the channel cost

E (CJ(Q)) (5.1.7); i.e., he solves an optimization problem with the objective function

E(CJ(Q)) under constraints (5.2.3) and (5.2.4). Therefore, the mediator solves the fol-

lowing nonlinear optimization problem:

(M)

C∗J = min
{(Xrs≥0,Yrs≥0),r=l,h,s=d,u}

E(CJ(Q))

s.t. CR(m, l|l) ≤ C+
R,l

CR(m,h|h) ≤ C+
R,h

CS(m, d|d) ≤ C+
S,d

CS(m,u|u) ≤ C+
S,u

CR(m, l|l) ≤ CR(m,h|l)
CR(m,h|h) ≤ CR(m, l|h)

CS(m, d|d) ≤ CS(m,u|d)

CS(m,u|u) ≤ CS(m, d|u)

In problem (M) the objective function coincides with the total channel cost in a cen-

tralized model where a single decision maker controls both nodes. Therefore, the mini-

mum total channel cost under the centralized solution is a lower bound on the optimal

solution of the mediator’s problem (M). If we prove that there exists a feasible solution

{(Xrs, Yrs), r = l, h and s = d, u} to (M) such that Xrs are equal to the coordination

quantities; i.e., QJ
r,s =

√
2(KR +KS)D/HrPs, r = l, h and s = d, u, then this solution is
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optimal for problem (M), and furthermore it allows the mediator to achieve perfect chan-

nel coordination. The main result of the chapter is that coordination is indeed attainable,

as this is stated in the following Theorem.

Theorem 5.2.1 There exists an optimal solution of problem (M), in which:

Xrs =
√

2(KR +KS)D/HrPs, r = l, h and s = d, u.

The proof of the Theorem follows directly from the intermediate properties in Lemma

5.2.1, and Proposition 5.2.1 below. The main steps are outlined as follows: First, by set-

ting Xrs = QJ
r,s, the constraints of (M) become a system of linear inequalities in Yrs. By

appropriate changes of variables we transform this system into an equivalent one, with two

variables only. In Proposition 5.2.1; first, we establish a necessary and sufficient condition

so that the last system is feasible and then, we show that this condition is always true. In

the remainder of the section we present the steps of the proof in details.

Setting Xrs = QJ
r,s, and after some simplifications the constraints of (M) are expressed

as:

qYld + (1− q)Ylu ≥G
√
RH

(
(1 + F )ζ − 2

√
F
)

qYhd + (1− q)Yhu ≥G
(

(1 + F )ζ − 2
√
F
)

pYld + (1− p)Yhd ≤G
1− F√
F

(1−
√
RP

√
Fθ)

pYlu + (1− p)Yhu ≤G
1− F√
F

(1−
√
Fθ) (5.2.5)

(qYhd + (1− q)Yhu)− (qYld + (1− q)Ylu) ≤Gζ(1−
√
RH)(F −

√
RH)

(qYhd + (1− q)Yhu)− (qYld + (1− q)Ylu) ≥Gζ(1−
√
RH)(F − 1/

√
RH)

(pYlu + (1− p)Yhu)− (pYld + (1− p)Yhd) ≥GθZ

(pYlu + (1− p)Yhu)− (pYld + (1− p)Yhd) ≤GθZ

where: G =
√
DPuHh(KR +KS)/

√
2

F = KR/(KR +KS)

RH = Hl/Hh

RP = Pd/Pu

ζ = q
√
RP + 1− q

θ = p
√
RH + 1− p

Z = (1− F )(
√
RP − 1).

Under this reparametrization, it is true that F , RH , RP , ζ and θ take values in the

range (0, 1), while Z < 0. System (5.2.5) can be rewritten using the following variable
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transformations:

yl = qYld + (1− q)Ylu

yh = qYhd + (1− q)Yhu (5.2.6)

yd = pYld + (1− p)Yhd

yu = pYlu + (1− p)Yhu.

Variables yl, yh denote the expected discount to a buyer of type-l or type-h, respectively.

Similarly yd, yu represent the expected discount paid to the buyer by the supplier of type-

d or type-u, respectively. However, finding yl, yh, yd, yu ≥ 0 that satisfy (5.2.6) does not

necessarily mean that there exist feasible discounts in problem (5.2.5). Lemma 1 shows

that this is true if and only if the new variables satisfy a linear relationship.

Lemma 5.2.1 For every non negative numbers yl, yh, yu, yd there exist Yrs ≥ 0, r =

l, h and s = d, u satisfying (5.2.6) if and only if

pyl + (1− p)yh = qyd + (1− q)yu. (5.2.7)

Proof:

Suppose (5.2.6) has a non negative solution in Yrs. Multiplying the first two equations by

p, 1− p and the last two by q, 1− q, respectively and adding, it follows that:

pyl +(1−p)yh = pqYld +p(1−q)Ylu +(1−p)qYhd +(1−p)(1−q)Yhu = qyd +(1−q)yu ≡ w.

Therefore, (5.2.7) is necessary for (5.2.6) to have a solution. To show that it is also

sufficient, if yl, yh, yu, yd satisfy (5.2.7), then one solution of (5.2.6) is:

Ylu = ylyu/w, Yhu = yhyu/w, Yld = ylyd/w, Yhd = yhyd/w. ♦

Note that if (5.2.7) holds, then (5.2.6) admits an infinite number of solutions Yrs

(r = l, h and s = d, u) since the four linear equations are dependent; i.e., there are infinite

choices of discounts for every set of values of yl, yh, yu, yd. This provides flexibility to the

mediator when he designs the plan and he can propose a range for each of the four dis-

counts. The minimum values of discounts are preferable by the supplier because he pays

them to the buyer, where the buyer prefers the maximum values of discounts.

Based on Lemma 5.2.1, coordination is attainable if and only if there exist non negative

numbers yl, yh, yu and yd that satisfy the equivalent system of constraints (5.2.5) and

equation (5.2.7). From the last two inequalities of (5.2.5), we have that yu = GθZ + yd.
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Substituting into (5.2.7) we obtain:

yd = pyl + (1− p)yh − (1− q)GθZ (5.2.8)

yu = pyl + (1− p)yh + qGθZ. (5.2.9)

Therefore yd and yu are uniquely determined by yl and yh, which reduces the numbers

of variables by two. Thus, it suffices to substitute yd, yu in (5.2.5) from (5.2.8) and (5.2.9),

and seek solution yl, yh ≥ 0, that satisfy (5.2.5) and also result in yd, yu ≥ 0. By doing

this we obtain the following necessary and sufficient inequalities:

yl ≥max{0, G
√
RH

(
(1 + F )ζ − 2

√
F
)
}

yh ≥max{0, G
(

(1 + F )ζ − 2
√
F
)
}

ζ(1−
√
RH)(F − 1√

RH
)G 6yh − yl 6 ζ(1−

√
RH)(F −

√
RH)G (5.2.10)

max{0,−qGθZ} 6pyl + (1− p)yh

6min{G1− F√
F

(
1−

√
RPFθ

)
+ (1− q)GθZ,

G
1− F√
F

(
1−
√
Fθ
)
− qGθZ}.

In (5.2.10) we have that: −qGθZ > 0 and the two terms inside the minimum are equal,

which results in further simplification. In summary, to find a feasible solution to problem

(M), it is necessary and sufficient to find non negative values of yl and yh such that:

yl > a+G
√
RH

yh > a+G

d1G 6 yh − yl 6 d2G (5.2.11)

−qGθZ 6 pyl + (1− p)yh 6 eG

where: a = (1 + F )ζ − 2
√
F

a+ = max{a, 0}
e = 1−F√

F
(1−

√
Fθ)− qθZ = 1−F√

F
(1−

√
Fθζ)

d1 = ζ(1−
√
RH)(F − 1/

√
RH)

d2 = ζ(1−
√
RH)(F −

√
RH).

We have finally reduced the problem of finding a coordinating discount plan to a system

of linear inequalities in yl and yh. In Proposition 3.2.1 we show that this system is always

feasible.
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Proposition 5.2.1 i) A necessary and sufficient condition for the system of constraints

(5.2.11) to have a solution is that:

a+ − pmin{d2, a+(1−
√
RH)} 6 e. (5.2.12)

ii) Condition (5.2.12) is always true.

Proof: I) Note that (5.2.11) corresponds to six linear inequality constraints. The first

four define an unbounded polyhedron K in the non negative quadrant of the (yl, yh) plane.

We consider two cases for the form of this set and in each case examine when K has non

empty intersection with the last two constrains. First, we observe a+G
√
RH 6 a+G and

d1 < 0, since F < 1 < 1/
√
RH . Therefore, the point (a+G

√
RH , a

+G) always satisfies

yh − yl = a+G(1−
√
RH) > 0 > d1G and may or may not satisfy yh − yl 6 d2G. We thus

consider two cases:

Case A: a+(1−
√
RH) 6 d2.

In this case, the point (a+G
√
RH , a

+G) ∈ K (Figure 5.1). Furthermore condition

(5.2.12) becomes a+−pa+(1−
√
RH) 6 e. Suppose this is not satisfied; then, for any

(yl, yh) ∈ K we have that yl > a+G
√
RH , yh > a+G. Therefore pyl + (1 − p)yh >

G(a+−pa+(1−
√
RH)) > Ge; thus, the sixth constraint in (5.2.11) is violated; i.e., the

system (5.2.11) is not feasible. On the other hand, if a+−pa+(1−
√
RH) 6 e, we can

find a point (yl, yh) ∈ K that satisfies the last constraint of (5.2.11). To do this, let

yl = a+G
√
RH +δ, yh = a+G+δ, with δ > 0. Then, yh−yl = a+G(1−

√
RH) 6 d2G

and pyl+(1−p)yh = a+Gθ+δ. If we set δ = G(e−a+θ) > 0, then the last inequality

of (5.2.11) is satisfied with equality, then the fifth inequality is also satisfied.

Case B: a+(1−
√
RH) > d2.

In this case, (a+G
√
RH , a

+G) 6∈ K, but (a+G−d2G, a+G) ∈ K. For any (yl, yh) ∈ K
it is true that yl > a+G − d2G and yh > a+G. Then, by following an analogous

reasoning as in Case A, we can find a solution that satisfies the last two constraints

of (5.2.11) if and only if holds a+ − pd2 6 e.

II) To show that condition (5.2.12) is always true, we distinguish four separate cases,

according to the value of min{d2, a+(1−
√
RH)} and the sign of a.

Case 1: a+(1−
√
RH) 6 d2.

In this case condition (5.2.12) can be written as a+θ 6 e.

Case 1a: a ≤ 0. This means that a+ = 0. Then (5.2.12) holds, since e > 0.

Case 1b: a > 0. This means that a+ = a; thus, we must show that a − pa(1 −
√
RH) 6 e; i.e., aθ 6 e, which after some algebra reduces to: θ(ζ −

√
F ) 6 (1 −

F )/(2
√
F ). If ζ −

√
F 6 0 then it is immediate. If ζ −

√
F > 0 then θ(ζ −

√
F ) <

ζ −
√
F < 1 −

√
F , since F, θ and ζ ∈ (0, 1). In addition, (1 − F )/(2

√
F ) =

(1 +
√
F )(1−

√
F )/(

√
F +

√
F ) > 1−

√
F . Therefore, the inequality holds.
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Figure 5.1: The two cases of condition (5.2.12).

Case 2: a+(1−
√
RH) > d2.

In this case condition (5.2.12) can be written as a+ − pd2 6 e.

Case 2a: a ≤ 0. We must show that −pd2 6 e. After substitutions and some

algebra, the inequality becomes: ζ(1− θ)(
√
RH −F ) ≤ (1−F )(1/

√
F − θζ). For the

left hand size, we have: ζ(1 − θ)(
√
RH − F ) ≤ (ζ − ζθ)(1 − F ) ≤ (1 − ζθ)(1 − F ),

while for the right hand size, we have: (1− F )( 1√
F
− θζ) > (1− F )(1− θζ). Thus,

the inequality holds.

Case 2b: a > 0. We must show that a−pd2 6 e. After some algebra, the inequality

becomes: ζ
(
1 + θ − (1− θ)

√
RH

)
≤ (1 + F )/

√
F . Since F,RH , θ and ζ ∈ (0, 1), it

is easy to show that: ζ
(
1 + θ − (1− θ)

√
RH

)
≤ 2 ≤ (1 + F )/

√
F . ♦

We prove Theorem 5.2.1; i.e., the mediator always could design an appropriate plan

to coordinate the whole chain. This means that there exists a feasible plan in which the

individual objectives are aligned with the incentives of the chain. Thus, there exists (non-

negative) discounts Yrs, r = l, h and s = d, u, which should be provided by the supplier to

the buyer to induce the latter to order the joint optimal lot size, because these discounts

optimize the individual costs of both nodes.

The inclusion of the mediator is crucial because it completely eliminates the asymme-

try of information, making possible the centralized solution under private information in a

decentralized model. By assuming a different definition of reservation levels, we prove that

perfect coordination is always attainable under two-way information asymmetry; a particu-

larly interesting finding, since it is in contrast to several statements of previous researchers

who claim non-existence of coordination under information asymmetry (Ha, 2001; Ozer

and Raz, 2011). In our model the reservation levels of the nodes are not exogenously

defined and depend on the private information that the nodes possess. Furthermore, our

work extends the approaches of Cakanyildirim et al. (2012) and Zissis et al. (2015) who

showed the feasibility of perfect coordination under information asymmetry for some cases.
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The nodes decide to report honestly their private information and follow the mediator

plan since this is in their self interest; i.e., the node’s individual cost functions are mini-

mized under the mediator plan m. The difference CJ(QR)− CJ(QJ) is equal to the cost

savings that can be achieved by the mediator mechanism, compared to the case where

the buyer acts alone without receiving any discounts. It represents the mediation benefit

which will be shared among the participants. As mentioned, the mediator does not in-

crease the system cost; he will facilitate the communication between the nodes and help

them to coordinate their decisions, reaching the chain’s optimal level of overall costs. It

is beyond the scope of this work to define the relative power of the nodes and allocate the

mediation benefit between them. However, in Section 5.3 we examine the two extreme

cases; when the supplier minimizes his expected cost under the coordination (minimum

values of discounts) and the case in which the buyer minimizes her expected cost under

the coordination (maximum values of discounts). Hence, all the intermediate cases are

possible according the relative power of the nodes.

5.3 Mediator’s Flexibility

The preceding analysis leads to several interesting questions regarding to the QDs that

coordinate the chain. We have shown that the coordination is always attainable via a cred-

ible mediator. In this section, we conduct computational experiments which offer insights

about the coordination benefits and the sensitivity of the mediator plans that coordinate

the chain, with respect to various model parameters. The main aim of the computational

experiments is to assess the flexibility that the mediator has when he designs the mecha-

nism under which the SC will be coordinated.

Recall that the model involves the following nine independent parameters: D, KR,

KS , Hl, Hh, Pd, Pu, p, and q, while the solution is the coordination of the chain via the

mediator plan m = {(Xrs, Yrs), r = l, h and s = d, u} (Theorem 5.2.1). The mediator is

always able to design a mechanism that coordinates the channel; however the discounts

Yrs, r = l, h and s = d, u are not unique (Lemma 5.2.1). The existence of multiple fea-

sible solutions to the coordination problem is a beneficial feature, since it provides the

mediator with the flexibility to take into account secondary objectives in the design of

the discount plan. The discounts represent net payments from the supplier to the buyer;

so it is reasonable that the supplier prefers as small discounts as possible and the buyer

the opposite. We consider the difference between the minimum and the maximum values

of the expected discounts as the mediator’s flexibility in designing a coordination mecha-

nism that ensures minimum total channel cost. The experiments we perform provide us

with insights about the mediator flexibility and how this affects the payoffs of the nodes,
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indicating the feasible range of the acceptable payoffs. According to the nodes’ relative

power, each of them may be able to enforce a mediator plan that optimizes its individual

costs (as a secondary objective) given the system’s coordination (primary objective).

In the experiments we calculate the maximum and the minimum percentage of the

overall system costs that the buyer bears under the coordinating mechanism m. The max-

imum and the minimum buyer’s cost is presented as a function of the ratio of setup, holding

and production costs, keeping all other parameters constant in each case. Although one

can argue that individual values of the costs are important when deriving actual supply

chain costs, what really defines the direction of any managerial decision is the relative

value of these costs. Since in our model there are only two nodes, the remaining cost is

paid by the supplier. Therefore, depending on which of the nodes has higher bargaining

power, the actual plan that will be implemented will enforce a cost allocation between

the two extreme cases. The lower surface corresponds to the case in which the buyer has

higher bargaining power (i.e., implementation of the maximum values of discounts), and

similarly the higher one for the supplier (i.e., implementation of the minimum values of

discounts). All the experiments have been performed under a large range of parameter

values; although we only present specific cases, the observations and insights we discuss

are quite robust.

In the first experiment it is examined how the ratio of the setup costs (KS/KR) affects

the cost allocation between the nodes, showing also mediator’s flexibility (Figure 5.2). We

assume that there is no prior knowledge about the private information that the nodes

possess, thus in the Bayesian game formulation we use a non informative prior about the

low and the high value of both holding and production costs (i.e., p = q = 1/2).

Figure 5.2: Range of buyer’s cost percentage as a function of the ratio of the setup costs.

In Figure 5.2 we observe that when the supplier has the relative power to enforce his

preferable mediator plan, he can keep his percentage contribution to the total cost fixed
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as the ratio of setup costs increases. If the buyer can enforce the plan which optimizes

her individual cost, she can reduce her percentage contribution making the supplier to get

hurt more significantly as ratio of setup costs increases. We observe that the mediator’s

flexibility is increasing for larger values of the ratio KS/KR, making the mediator more

powerful. A particularly interesting observation that arises from Figure 5.2 is that as the

ratio of the setup costs decreases the mediator’s flexibility is decreasing. The actual deci-

sion maker about the order quantity is the buyer and, when KR >> KS , her individual

objective is almost aligned with the chain (and thus the mediator’s) objective; i.e., to

minimize the total channel cost (5.1.3). A side effect is that in this case the presence of a

mediator is not crucial for channel coordination.

In the next two experiments we investigate the impact of private information of each

participant both on the cost allocation between the nodes and on the mediator’s flexibility.

Figure 5.3 shows how the buyer’s degree of information asymmetry as depicted by the ratio

of holding costs, as well as the corresponding prior probability, affect the coordination

mechanism m. More specifically, in Figure 5.3:

• the x-axis corresponds to the ratio of the holding costs that represents a measure of

the buyer’s information asymmetry,

• the y-axis corresponds to the probability p = P (HR = Hl); i.e., the probability of

the holding cost to take the low value,

• the z-axis corresponds to the percentage of the overall system costs that the buyer

bears under the mediator’s coordinating mechanism m.

Figure 5.3: Range of buyer’s cost percentage as a function of the ratio of holding cost and
the probability of low value of it.

Similarly, Figure 5.4 shows how the cost allocation and mediator flexibility are affected

by the supplier’s private information on the production cost and the probability q. The
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x-axis corresponds to the ratio of the production costs, while the y-axis corresponds the

probability of the production cost PS takes the low value Pu. In both experiments, the

two surfaces correspond to the minimum and maximum buyer’s percentage contribution

to the total channel cost, under the coordinating plan m.

Figure 5.4: Range of buyer’s cost percentage as a function of the ratio of the production
cost and the probability of low value of it.

From Figures 5.3 - 5.4 as the asymmetry of either node decreases; i.e., the ratio of the

holding costs (buyer’s private information) and the ratio of the production costs (supplier’s

private information) take values close to 1, the mediator’s flexibility also decreases. This

is reasonable, because the elimination of two-way information asymmetries moves one of

the nodes to have perfect information on the other, restricting the mediator’s flexibility.

For example, in Figure 5.3, the elimination of information asymmetry means that the

supplier is able to reduce his contribution to the total channel cost even when the buyer

has the power to enforce her preferable mediator plan. The new insight we obtain from

these figures is that as the asymmetry, and as a result the lack of information, increases,

the significance of relative bargaining power is substantially increased.

In the last experiment we examine how the information asymmetry affects the cost

allocation and the mediator’s flexibility (Figure 5.5). We study the cost allocation between

the two nodes, as a function of both players’ private information, using a non informative

prior about the low and the high value of the production and holding cost (i.e., p = q =

1/2). The mediator is only aware about the prior probability distributions of production

and holding costs. Hence, the mediator is faced with the information asymmetry of Hl/Hh

and Pd/Pu, when he designs the coordinating plan. In our experiment the range of both
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ratios is from 1 up to 2. Note that the case of complete information corresponds to ratio

equal to one.

Figure 5.5: Range of buyer’s cost percentage as a function of the information asymmetry.

We observe from Figure 5.5 that as the system information asymmetry increases, the

mediator’s flexibility is reduced. Consistently to the literature, in the case of complete

information the relative node power becomes crucial for the cost allocation, since we know

that the node who has the greater power is able to coordinate the channel and absorb all

the benefits for itself (Corbett, 2001; Ha, 2001).

5.4 Findings

In this chapter we considered a two-stage SC, one supplier producing a single product in a

lot-for-lot fashion, and one buyer that orders and stores the same product in fixed quanti-

ties. Both nodes have private information that affects their decisions and their reservation

levels. Our model provides fundamentally new insights into the nature of information that

nodes possess and how this information affects both the total channel cost and the cost

allocation between the nodes. We have modeled the problem of node interaction via GT

and used the RP to coordinate the nodes’ decisions through communication. The nodes

are free to communicate any private information they may possess, exclusively through

a credible mediator. Misinformation and deception are allowed and both nodes choose if

they will join to the mediator mechanism or not. Our results indicate that both nodes

reveal their private information because it is in their self interest and perfect coordination

even with asymmetry of information is always attainable via the mediator. This result
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is in sharp contrast to previous SCM research, where coordination is not always possible.

Finally, we have reached closed form expressions of the QDs that the supplier should pro-

vide to the buyer in order for the latter to decide on the joint optimal lot size and achieve

coordination of the whole chain.



Chapter 6

Conclusions and

Recommendations for Future

Research

6.1 Synopsis of Research Contributions

The work presented in this thesis provided several contributions in the way in which we

can model and study the communication within Supply Chains and how the nodes of such

systems could be coordinated. We aimed at developing a framework in which the nodes

have both private information and the option to coordinate their actions, without being

directly constrained when they make their own decisions. Below we summarize the key

contributions of the dissertation.

6.1.1 Coordination

The core problem studied in this thesis was the coordination of the nodes decisions in

modern Supply Chains. We proposed an innovative way to achieve such a smooth co-

working of the chain without restricting the nodes’ freedom to make decisions, since we

wanted to address decentralized systems (such as those encountered in almost all real-life

situations), in which all the nodes are independent decision makers. The nodes make their

decisions in order to maximize their own utilities functions and our proposed approach

managed to offer a way in order to align individual node incentives with the incentives of

the supply chain as a whole.

6.1.2 Information Asymmetry Modeling and Node Communication

We studied and analysed two node supply chains based on game theory. In the second

part of the dissertation, we provided the opportunity to the nodes to communicate with

73
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each other through a mediator. The latter allows the honest sharing of private information

in order to enable perfect coordination of the chain. Through this perfect coordination,

without contracts or constraints, the individual profits for all the participants are raised

and better overall solutions are reached.

6.2 Future Research Directions

There is ample room for potential advancements regarding the proposed framework of the

nodes’ communication to converge their decisions (strategies) without any contracts. A

worth pursing research direction is the investigation of SCs with one manufacturer and

many retailers or one retailer procuring the same product from many manufacturer; in this

case we should consider the notion of competition which alters the properties of the game.

Another very promising line of research is the study of SCs with more than two distinct

nodes. For example, to study a SC with manufacturer, distributor and retailer. Finally,

advanced coordination policies (expect of QDs) could be examined for SCs that exhibit

additional complexities (e.g., multi-echelon inventory systems, multiple cost functions,

capacities etc.).
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