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ABSTRACT

In survival analysis, the idea of hazard function is might be of more interest than

the probability density function to a patient who had survived a certain time period

and wanted to know something about its survival progress. Thus, in clinical trials

the attention is focused on the estimation of hazard function and not in p.d.f.

It is easily understood that a hazard function can not be always increasing or

decreasing, which happen in many known survival models. It is necessary to be

find parametric models which can describe the behavior of the hazard function

properly. Most of the distributions that are used very common for the analysis of

survival data (e.g. Weibull and exponential) are not able to give hazard functions

with flexible shapes.

HERA is a clinical trial about breast cancer which compares patients who had

received treatment and patients in the observation group. However, in both cases

the hazard function is non-monotonic, but it increases for some period and then

turns decreasing. A two Weibull mixture model with shape parameters 1.38, 1.10

and scale parameters 1.46, 34.2 for the observation group, another Weibull mixture

model with shape parameters 1.74, 0.96 and scale parameters 1.59, 47.18 for the

one year treatment group and a mixture model with shape parameters 1.26, 1.51

and scale parameters 3.20, 52.9 for the two year treatment group can describe the

hazard functions sufficiently in all cases. It seems that the first Weibull distribution

of the model corresponds to patients with small survival probability until a certain

time and the other to patients with longer survival time. Also the mixture model

can be used in cases where we are not interested in survival time only but we

include some patients’ characteristics..

It is known that the hazard function from a Weibull distribution can be ei-

ther increasing or decreasing. So a finite mixture of Weibull distributions can be

considered as proper for survival data with non-monotonic hazard rates.
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Chapter 1

Introduction

1.1 The importance of clinical trials

Health and fighting off diseases are two major issues that concern humanity every

day. As time passes, the necessity of the increasing of life expectancy and the

development of quality of life has been growing. Clinical trials play a great role in

this effort and, as a result, they are considered essential. Clinical trials are research

studies that explore whether a medical strategy, treatment, or device is safe and

effective for humans. These studies also may show which medical approaches work

best for certain illnesses or groups of people (see Pocock, 2013).

We need to know: Does a treatment work? Does it work better than other

treatments? Does it have any side effects? Clinical trials are designed to answer

these questions and improve health and quality of life for patients. Until well-

designed trials have been carried out, we simply do not have enough evidence to

know if a treatment is both effective and safe. Without trials, there is a risk that

people will be given treatments which do not work and which may even be harmful.

It may come as a surprise to many people that sometimes doctors do not know

which treatment is the best. When doctors make decisions about how to treat

a particular illness or condition, they use their medical knowledge, based on the

textbooks they have read, the results they have observed in previous patients,

similar observations by their colleagues, what they have heard at conferences and
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what they have read in medical journals. Clinical trials produce the best data

available for health care decision-making and provide a different kind of knowledge,

based on statistics.

Experimenting and testing have long been a part of medicine, and there are

many different kinds of trials (Phase I, Phase II, Phase III and Phase IV trials)

(see Friedman et al., 2015). Phase I trials are designed to determine the maximum

amount of the drug that can be given to a person before adverse effects become

intolerable or dangerous. Usually, in Phase I trials, a small group of 2-100 healthy

volunteers is recruited. Once a dose or range of doses is determined, the next

goal is to evaluate whether the drug has any biological activity or effect. Phase

II trials are performed on larger groups (100-300) and are designed to assess how

well the drug works, as well as to continue Phase I safety assessments in a larger

group of volunteers and patients. Phase III trials are the full scale evaluation

of treatment and are designed to compare efficacy of the new treatment with

the standard treatment. Phase III clinical trials are presented below particularly.

Phase IV studies include all studies performed after drug approval and related to

the approved indication. These are post-marketing surveillance studies. The focus

of these trials is on how drugs work in the real world.

Phase III clinical trials are the most rigorous and extensive type of scientific

clinical investigation of a new treatment. These are usually the most expensive and

time-consuming of the trials. Phase III trials are usually large, and may include

hundreds or even thousands of patients. They often compare the effects of newer

drugs or treatments with standard treatments if there are any. They provide a

better test of whether new treatments work better than existing treatments, and

firmer evidence about how common and serious any side effects are.

To make sure that each group contains a similar mix of people, many trials are

randomized. This means that people are allocated at random to one of the groups

in the trial, often by using a computer program. When people are randomized they

have an equal chance of being in either of the trial groups. Random allocation helps

ensure we are comparing two very similar groups of patients, so if one group does

better than another, it is very likely to be because the treatments being compared

have different effects,and not because of differences between the people in the
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groups. Randomized clinical trials have been generally recognized as the best way

to compare different approaches to preventing and treating illness.

Almost all Phase III trials are randomized. In randomized clinical trials, one

group of people, the experimental group, is given the new treatment. The other

group, called the control group, is given the standard treatment. If no standard

treatment exists, the control group may not be given any specific treatment or

may be given a placebo. Some trials may compare more than two groups.

A placebo is a treatment, with no active ingredient, which is designed to ap-

pear very like the treatment being tested. By comparing peoples responses to the

placebo and to the treatment being tested, researchers can tell whether the treat-

ment is having any real benefit, rather than patients simply feeling better because

something is being done. There are several ways in which the results of trials can

be made as reliable and accurate as possible. One of these is to make the trial a

blind trial. In a blind trial the participants are not told which group they are in.

This is because if they knew which treatment they were getting it might influence

how they felt or reported their symptoms. Some trials are double-blind, which

means that neither participants nor the doctors and others treating them know

which people are getting which treatments. This also avoids the doctors hopes

and expectations influencing the results of the trial

Many people believe that clinical trials are only related to new drug treatments,

especially in the field of cancer. But clinical trials can also be used to test and

compare all sorts of different types of treatments across a range of conditions, in-

cluding surgery, physiotherapy and rehabilitation programs, screening, prevention

(such as vaccines), complementary therapies, radiotherapy and chemotherapy.

Clinical trials are designed by doctors, scientists and others, and are conducted

together with patients. The first step is to decide which questions need answering,

and then to look carefully at the results of any trials that have already been done

and any other research evidence. Then doctors, nurses, patients and researchers

work together with statisticians and trial managers to design the trial. This is

written down in the trial protocol. All trial protocols have to be approved by a

research ethics committee which checks that the trial is ethical. In particular they

should check that the questions being addressed in the trial have not already been
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answered, and that people are asked to take part in an appropriate way, with clear

information to help them decide whether to take part.

A clinical trial may find that a new strategy, treatment, or device can improve

patient outcomes or offer no benefit or cause unexpected harm. However, whatever

the result the conduct of the trial is very important because the result of it is able

to advance medical knowledge and help improve patient care. In our days, people

from all over the world have the opportunity thought the Clinicaltrials.gov (a free

online database) to learn more about clinical trials as descriptions, locations, and

other vital information about more than 100,000 clinical trials.

1.2 Motivation of the thesis - HERA trial

Besides skin cancer, breast cancer is the most commonly diagnosed cancer among

American women. As of March 2017, there are more than 3.1 million women

with a history of breast cancer in the U.S (this includes women currently being

treated and women who have finished treatment). Also it is estimated that in

2017 just under 30% of newly diagnosed cancers in women will be breast can-

cers (http://www.breastcancer.org accessed at 12/04/2017). Thus more and more

trials about breast cancer treatment are conducted the last few years.

Breast cancer and especially a clinical trial about breast cancer in women,

which called HERA, is the motivation of this thesis. HERA (HERceptin Adjuvant)

trial is an international, multicentre, randomized, open-label, phase 3 trial. HERA

enrolled 5102 women with HER2-positive early-stage invasive breast cancer who

had completed all locoregional therapy (surgery with or without radiotherapy) and

(neo)adjuvant chemotherapy. Patients were randomly allocated to three groups:

observation, trastuzumab treatment for 1 year and trastuzumab treatment for 2

years. trastuzumab is a monoclonal antibody that interferes with the HER2/neu

receptor and it has established efficacy against breast cancer. The standard of care

is 1 year of trastuzumab, but the optimum duration of treatment is unknown.

Initial trials (see Piccart-Gebhart et al., 2005; Romond et al., 2005; Slamon

et al., 2011) compared 1 year of trastuzumab treatment with a no trastuzumab

control group and showed that there is a persistent benefit of 1 year of treatment
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compared with observation alone. So the purpose of HERA trial is firstly to update

the comparison of 1 year of trastuzumab versus observation at a median follow-up

of 8 years and secondly is the unique trial which allow comparison of two different

durations of treatment (1 year vs. 2 years of trastuzumab).

Figure 1.1: Profile of HERA trial
(IHC=immunohistochemistry, FISH=fluorescence in-situ hybridisation,
LVEF=left ventricular ejection fraction, ITT=intention to treat.)

The updated comparison of 1 year of trastuzumab versus observation is based

on 3399 patients who enrolled in the two groups (1702 patients in 1 year of

trastuzumab group and 1697 patients in observation group). Also because of the
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initial positive results of the 1 year treatment,in event-free patients in the obser-

vation group were offered crossover to receive trastuzumab and finally 884 of the

1697 patients in the observation group selectively crossed over to trastuzumab.

The comparison of 2 years versus 1 year of trastuzumab is based on a 12-month

landmark analysis (see Dafni, 2011) of the 3105 women who remained alive and dis-

ease free for at least 12 months after randomisation to one of the two trastuzumab

treatment groups (1553 patients in 1 year of trastuzumab group and 1552 patients

in 1 year of trastuzumab group). Figure 1.1 show the profile of HERA trial (see

Goldhirsch et al., 2013).

The primary end point was disease-free survival (DFS), defined as time from

randomization to the first occurrence of any of the following disease-free survival

events: recurrence of breast cancer at any site, the development of ipsilateral or

contralateral breast cancer (including ductal carcinoma in situ but not lobular

carcinoma in situ), second nonbreast malignant disease other than basal-cell or

squamous-cell carcinoma of the skin or carcinoma in situ of the cervix, or death

from any cause without documentation of a cancer-related event. Secondary end-

points includes overall survival, sites of first relapse and adverse events (particu-

larly cardiac safety).

The final results of HERA (see Goldhirsch et al., 2013) confirmed that one year

of trastuzumab treatment remains the standard of care for people with early-stage

HER2-positive breast cancer. The results also showed that after a median follow-

up of eight years, the improvements in disease-free survival and overall survival

for women who received trastuzumab remained statistically significant compared

with observation.

The story of HERA trial is interesting since after the first interim analysis

where the new drug showed statistically significant improvement, it was decided

to give the opportunity to the observation arm to switch, i.e. to receive therapy

with trastuzumab. This, in a great extend created some ambiguity later on since

any analyses was blurred due to this crossover. A natural question that arised is

what the effect of trastuzumab would be if no crossover was present. Such problems

related to crossover are not new in the literature and there are several other trials

with similar questions. The literature contains several procedures to handle the
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crossover but no method is considered as perfect so far, leaving a challenge to

the researchers. One approach can be based on estimating the survival function

for the observation arm before the crossover and then simulating the hypothetical

survival paths of all those that crossovered in order to compare what the effect

would be at this case. To this direction, it is very important to determine the

survival function in a parametric manner, i.e. by assuming a specific parametric

form in order to be able to simulate from. For HERA data Regan et al. (2012)

used a simplistic Weibull assumption for the survival functions but simple plots

of the survival function revel a non-monotonic behavior which cannot be captured

by the Weibull distribution. So, the purpose of current thesis is to examine more

deeply this assumption and in particular to examine in detail the survival function

for all arms of HERA trial, using different parametric models.

Therefore, our own interest focuses on finding the best parametric model for

the relevant survival functions in HERA data. For the thesis we use the most

recent HERA database as elaborated after the latest data cleaning 2012 (clinical

cut-off date April 12,2012). We will try to estimate the hazard functions of 1694,

1698 and 1967 patients who belong to the observation group and the 1 and 2 year

treatment arms respectively. R version 3.3.1 software will be used for the analysis

of data.

Figure 1.2 display the non-parametric estimator of the hazard function for each

of the three groups of the trial. The function estimates the hazard function us-

ing kernel-based methods (see section 2.3). The statistical properties of many of

these estimators are reported and compared in Hess et al. (1999). As we can see

in Figure 1.2 the hazard function for the 1964 patients in the observation group

is non-monotonic and it increases at the beginning and after about 1 year falls

continuously. Also the hazard function of 1698 patients in the 1 year trastuzumab

group increases at the beginning and after almost 2 years decreases. The same

happens and for patients in 2 year trastuzumab group with the difference that

here the hazard increases again at 7 years but falls very quickly after some days.

For the results we have excluded 10 patients totally (3 from observation group,

4 for 1-year treatment group and 3 from 2-year treatment group) with DFS time

equal to 0 to avoid numerical problems. That means that distributions such as
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Figure 1.2: Non parametric estimator of the hazard function for the patients
in the observation group and the 1 and 2 year treatment groups. (We have
excluded patients with DFS time equal to 0 to avoid numerical problems)

Weibull or exponential which are used very often in survival analysis are not able

to describe our data successfully. For example Weibull distribution has only mono-

tonic behavior and hence does not seem to be suitable. We try to examine if the

idea of a mixture of Weibull distributions can make good fit in our data.

1.3 Problem and structure of the thesis

In many applied sciences such as medicine, modelling and analyzing lifetime data

are of central interest.Several lifetime distributions have been used to model such

kind of data. The quality of the procedures used in a statistical analysis depends

heavily on the assumed probability model or distributions. Because of it, consid-

erable effort has been expended in the development of large classes of standard
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probability distributions along with relevant statistical methodologies. However,

there still remain many important problems where the real data does not follow

any of the classical or standard probability models.

The parametric survival distributions most commonly used in regression mod-

elling (e.g. Weibull, log-normal, log-logistic etc.) have unimodal or monotone

hazard rate functions and as a result, these distributions are incapable of mod-

elling hazard functions with more complicated shapes.

There are many cases in survival analysis where hazard rate decrease at the

beginning and afterwards increase and look like a bathtub, or first increase and

then decrease and look like an inverted (upsidedown) bathtub.We can say that

these hazard functions can be described by three phases in which the hazard rate

initially increases/decreases ,then becomes essentially constant, and ultimately

decreases/increases.

In diseases, such as cancer, many times the hazard rate increases for a finite

period of time until reaches a peak and then declines gradually. The main purpose

of this thesis is to examine whether mixtures of Weibull distributions, which lead

to flexible hazard function, can be considered as models for survival data with

non-monotonic survival function.

So in Chapter 2 of this paper we will describe some survival models (exponen-

tial, Weibull, gamma and generalized gamma, log-normal and log-logistic) which

are used commonly in the analysis of failure time but they have not very flexible

hazard functions. Also we will describe the poly-Weibull distribution which differs

from the others because it starts from the hazard function and then are calculated

the other functions. At the end of this chapter we will refer to the idea of ker-

nels that constitute a very popular non-parametric way for estimation of a hazard

function.

In Chapter 3 we will introduce the finite mixture of Weibull distributions. At

first we will mention in mixture models generally and after we see the structure

of a 2-finite Weibull mixture model. We will describe the Maximum-Likelihood

Estimation (MLE) approach about the parameters of the model and then we will

bring in the EM algorithm which is used for finding MLEs parameters. Finally,

using simulated data we will see how efficient can be the algorithm.
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In Chapter 4 we will apply the idea of mixture of Weibull distributions in real

data. As we mentioned before, HERA trial is the motivation of this thesis. Except

for the Weibull mixture model we will apply all the parametric models which are

used commonly in survival analysis and we will compare the models between them.

Moreover we will see the characteristics of the sample and with Cox model we will

examine which of them influence the survival time. Also with the log-rank test we

will confirm the results of HERA trial which indicate that a 1-year treatment with

trastuzumab can improve the duration of life for patients with breast cancer.

Concluding in Chapter 5 we will sum up if the Weibull mixture model is suit-

able for describing our data and what additionally there is about cases with non-

monotonic hazard functions.
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Chapter 2

Survival models

2.1 Survival analysis and survival data

Survival analysis is used to analyze data in which the outcome variable is the time

until the occurrence of an event of interest. The event can be death, occurrence

or recurrence of a disease, length of stay in a hospital e.t.c. The response is often

referred to as a failure time, survival time, or event time. Subjects are usually

followed over a specified time period and the focus is on the time at which the

event of interest occurs.

Survival times are typically positive numbers and can be measured in days,

weeks, years, etc. Incompletely observed responses are censored. Censoring is

present when we have some information about a subject’s event time, but we

don’t know the exact event time. The censoring can be either left or right. Right

censoring occurs when a subject leaves the study before an event occurs(for ex-

ample the subject is lost to follow-up during the study period or withdraws from

the study) or the study ends before the event has occurred. Left censoring occurs

when the event of interest has already occurred before enrolment but this is very

rarely encountered. Essentially the presence of censoring is the most important

difference between survival analysis and other statistical methods such as logistic

regression.
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The dependent variable in survival analysis is composed of two parts:

• the survival time Ti

• the event status, which records if the event of interest occurred or not (in-

dicator) δi.

That is for a random sample of size n, with Xi denotes the failure time of the ith

subject and Ci denotes the censoring time for the ith subject, the observation is

of the form (Ti,δi) where,

Ti=min(Xi,Ci) and

δi =

1 if Xi ≤ Ci (not censored observation)

0 if Xi > Ci (right-censored observation)

One can then estimate two functions that are dependent on time, the survival

and hazard functions. The survival and hazard functions are key concepts in

survival analysis for describing the distribution of event times.More detailed:

• Survivor Function

S(t) = Pr(T ≥ t) = 1− FT (t)

where FT (t) is the cumulative distribution function. The survival function

gives the probability that a subject will survive beyond a specified time t.

The survival function is non-increasing. At time t = 0, S(t) = 1. In other

words, the probability of surviving past time 0 is 1. At time t =∞, S(t)

= S(∞) = 0, i.e. as time goes to infinity, the survival curve goes to 0. In

theory, the survival function is smooth but in practice, we observe events on

a discrete time scale

For a continuous random variable:

S(t) =

∫ ∞
t

f(u) du

where f(t) = lim∆t→0
1

∆tPr(t ≤ T ≤ t+ ∆t), i.e. is the p.d.f

12



• Hazard Function

For a continuous random variable:

h(t) = lim
∆t→0

1

∆t
Pr(t ≤ T ≤ t+ ∆t|T ≥ t)

= lim
∆t→0

1

∆t

Pr([t ≤ T ≤ t+ ∆t] ∩ [T ≥ t])
Pr(T ≤ t)

= lim
∆t→0

1

∆t

Pr(t ≤ T ≤ t+ ∆t)

Pr(T ≤ t)
=
f(t)

S(t)

As it is obvious, if we know one of the above functions (f(t),S(t),h(t) or H(t))

we can calculate the others. In survival analysis except for these functions there

are many other quantities of interest such as mean and median survival time which

subsequently are estimated from knowing either the hazard or survival function.

Also it is generally of interest in survival studies to describe the relationship of a

factor of interest (e.g. treatment) to the time to event, in the presence of several

covariates, such as age, gender, race, e.t.c.. A huge number of models are available

to analyze the relationship of a set of predictor variables with the survival time.

Methods include parametric, non-parametric and semi-parametric approaches.

2.2 Model fitting

There are essentially three approaches to fitting survival models:

1. Parametric survival models where we assume a specific functional form for

the hazard function. Some common distributions which are used widely

are exponential, Weibull, gamma and generalized gamma, log-normal and

log-logistic and we describe them below.
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2. Semi-parametric survival models, where we make mild assumptions about

the hazard function.

3. Non-parametric strategy that focuses on estimation of the regression coeffi-

cients leaving the baseline hazard function completely unspecified. Kernels

are used very often for the estimation of the coefficients and we introduce

this way of estimation below.

In this thesis we will focus on parametric survival models and we will try to

find out the distribution which describe our data as well as possible. Also we will

deal with the idea of kernels because we first need a non-parametric estimator to

examine if the assumption about the distribution in parametric survival analysis

is proper.

2.2.1 Common families of survival distributions

• Exponential distribution

Let’s denote T∼ Exp(λ). For t > 0 we have:

Probability density function: f(t)= λe−λt,

where λ > 0 (rate or inverse scale parameter)

Cumulative distribution function: F(t)= 1- e−λt

Survival function: S(t)= e−λt

Hazard function: h(t)= λ

The exponential model is the simplest parametric model because as we can

see in Figure 2.1 one of the characteristics of exponential distribution is

that the hazard function is constant over time and equals to paramater λ,

i.e. the probability to die within a particular time interval depends only on

the length but not on the location of this interval. Also exponential is a

memoryless probability distribution, i.e. if an event has not occurred after

14
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Figure 2.1: Density, cumulative, survival and hazard functions for exponen-
tial distribution for different values of parameter λ

30 seconds, the conditional probability that occurrence will take at least 10

more seconds is equal to the unconditional probability of observing the event

more than 10 seconds relative to the initial time. The model is very sensitive

to even a modest variation because it has only one adjustable parameter,

the inverse of which is both mean and standard deviation.

• Weibull distribution

Let’s denote T∼ W(a,b). For t > 0 we have:

Probability density function: f(t) = a
b ( tb)

a−1e−( t
b
)a ,
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where a > 0 (shape parameter) and b > 0 (scale parameter)

Cumulative distribution function: F(t)= 1- e−( t
b
)a

Survival function: S(t)= e−( t
b
)a

Hazard function: h(t)= a(1
b )
ata−1
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Figure 2.2: Density, cumulative, survival and hazard functions for Weibull
distribution for different values of shape parameter a and scale parameter
b = 1
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We can say that Weibull distribution is a generalization of the exponential

distribution and except for the scale parameters it also depends on a second

shape parameter. The second parameter in the model allows great flexibility

of the model and different shapes of the hazard function. The convenience

of the Weibull model stems on the one hand from this flexibility and on

the other from the simplicity of the hazard and survival functions. As it

is obvious from Figure 2.2 a value of a > 1 indicates that the failure rate

increases with time and a value of a < 1 indicates that failure rate decreases

over time. For a = 1 the Weibull distribution reduces to an exponential

distribution with scale parameter= 1
λ , where the failure rate is constant over

time as we see above. The Weibull distribution is inappropriate when the

hazard rate is indicated to be unimodal or bathtub-shaped

• Gamma distribution

Let’s denote T∼ G(a, b). For t > 0 we have:

Probability density function: f(t) = ta−1e−( t
b
)

baΓ(a) ,

where a > 0 (shape parameter) and b > 0 (scale parameter)

and Γ(a) =
∫∞

0 ta−1e−t dt is the gamma function

Cumulative distribution function: F(t)= 1− Γ(a, t
b
)

Γ(a) =
γ(a, t

b
)

Γ(a) ,

where Γ(a) is the Gamma function evaluated at a

and γ(a, t) =
∫ t

0 x
a−1e−xdx is the lower incomplete gamma function

Survival function: S(t)= 1-
γ(a, t

b
)

Γ(a)

Hazard function: h(t)= ta−1e−
t
b

ba(Γ(a)−γ(a, t
b
))

Gamma distribution can be considered as a generalization of the exponen-

tial because with shape parameter a=1 and scale parameter b= 1
λ identify

with exponential distribution. The gamma distribution is of limited use in

survival analysis because the gamma models do not have closed form expres-

sions for survival and hazard functions because both include the incomplete
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Figure 2.3: Density, cumulative, survival and hazard functions for gamma
distribution for different values of shape parameter a and scale parameter
b = 1

gamma integral. However, as we can see in Figure 2.3 gamma distribution

sometimes gives flexible shapes about hazard function. When a > 1, the

hazard function is concave and increasing and when a < 1 the hazard func-

tion is convex and decreasing. The case a = 1 corresponds to the exponential

distribution, where the hazard function is constant.

• Log-normal distribution

Let’s denote T∼ LN(µ, σ). For t ε(−∞,+∞) we have:
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Probability density function: f(t) = 1√
2πσt

e−
(lnt−µ)2

2σ2 ,

where µε(−∞,+∞) (location parameter) and σ > 0 (scale parameter)

Cumulative distribution function: F(t)= Φ( lnt−µσ ),

where Φ is the cumulative function of the standard normal distribution,

Φ(t) =
∫ t
−∞

1√
2π
e−

x2

2 dx

Survival function: S(t)= 1− Φ( lnt−µσ )

Hazard function: h(t)= f(t)
S(t) =

1√
2πσt

e
− (lnt−µ)2

2σ2

Φ( lnt−µ
σ

)
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Figure 2.4: Density, cumulative, survival and hazard functions for log-normal
distribution for different values of location and scale parameters
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Log-normal distribution is not used very much in survival analysis because

it hasn’t got closed form expressions for survival and hazard functions and

it is essential to compute the above integrals which make estimation a little

bit difficult. The log-normal distribution may be convenient to use with

non-censored data, but when this distribution is applied to censored data,

the computations quickly become formidable. As we can see in Figure 2.4

the hazard function has a strange form. It has value zero at t = 0, increases

to a maximum and then decreases, approaching zero as t heads to infinity.

Because of the decreasing form of the hazard function for older ages, the

distributions seem implausible as a lifetime model in most situations. Nev-

ertheless, it makes sense if interest is focused on time periods of younger

ages. Despite its unattractive features, the log-normal distribution has been

widely used as failure distribution in diverse situations, such as the analysis

of electrical insulation or time to occurrence of lung cancer among smokers

(see Stone et al., 2004; Tai et al., 2007).

• Log-logistic distribution

Let’s denote T∼ LL(A,B). For t > 0 we have:

Probability density function: f(t) =
b
a

( t
a

)b−1

(1+( t
a

)b)2
,

where a > 0 (scale parameter) and b > 0 (shape parameter)

Cumulative distribution function: F(t)= 1
(1+ t

a
)−b

=
( t
a

)b

1+( t
a

)b

Survival function: S(t)= (1 + ( ta)b)−1

Hazard function: h(t)= f(t)
S(t) =

b
a

( t
a

)b−1

1+( t
a

)b

Log-logistic distribution is an alternative model to the Weibull distribution.

The general shape of the hazard function of a log-logistic distribution is very

similar to that of the log-normal distribution. As we can see in Figure 2.5

the log-logistic distribution has a fairly flexible functional form and it is one

of the parametric survival time models in which the hazard rate may be
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Figure 2.5: Density, cumulative, survival and hazard functions for log-logistic
distribution for different values of shape parameter b and scale parameter
a = 1

decreasing, increasing or even hump-shaped, which mean that is it initially

increases and then decreases.

• Generalized Gamma distribution

Let’s denote T∼ GG(a, d, p). For t > 0 we have:

Probability density function: f(t) =
( p

ad
)td−1e−( ta )p

Γ( d
p

)
,

where a, d, p > 0
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Cumulative distribution function: F(t)=
γ( d
p
,( t
p

)a)

Γ( d
p

)

where Γ(.) is the Gamma function

and γ(., t) is the lower incomplete Gamma function

Survival function: S(t)= 1−
γ( d
p
,( t
p

)a)

Γ( d
p

)

Hazard function: h(t)=
( p

ad
)td−1e−( ta )p

Γ( d
p

)−γ( d
p
,( t
p

)a)

The Generalized Gamma distribution can be viewed as a generalization of

the Exponential, Weibull and Gamma distributions and differs from the

other ones because it has 3 parameters. For p=1, Generalized Gamma dis-

tribution correspond to Gamma distribution, for d=p identifies with Weibull

distribution and for a=d=1 it is an Exponential distribution. The number

of the parameters declares that the hazard function can be severally flexible

and this is a big advantage about survival analysis. The distribution has al-

ready been used to fit the survival curve for breast cancer data (see Ardoino

et al., 2012, Abadi et al., 2012)

• Poly-Weibull distribution (see Demiris et al., 2015)

Poly-Weibull distribution is an extension of Weibull distribution. The Poly-

Weibull distributions arises in applications involving competing risks in sur-

vival analysis. The idea is that an individual is subject to m independent

sources of risk that operate additively. We assume further that the distri-

bution of each of the components may be sufficiently described by a Weibull

form with density function f(t) = νλtν−1e−t
ν
. (This is an alternative pa-

rameterization about Weibull distribution. which is used mostly in Medical

Statistics and its form is simplier than the form we describe above. In this

form of distribution ν is the scale parameter and is the same as parameter a

above and λ which corresponds to 1
ba is the scale parameter. Also the form

of hazard function is h(t) = νλtλ−1 ). Then, the observed event time is said

to follow a poly-Weibull distribution.

The hazard function of a Poly-Weibull distribution arises as the sum of the
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m independent Weibull hazards functions:

h(t) =

m∑
i=1

νiλit
νi−1

So, we can find that the form of survival function is:

S(t) = exp(−
∫ t

0
h(s) ds) = exp(−

m∑
i=1

λit
νi)

and the density function has the following form:

f(t) = h(t)S(t) =
m∑
i=1

νiλit
νi−1exp(−

m∑
i=1

λit
νi)

The difference with the other distributions which we introduced before and

are used very commonly in survival analysis is that all the idea begin from

the Hazard function and the other functions arise from it. Conversely,in all

cases above we started from the probability density function and after we

found the type of the Hazard and the Survival function.

The advantage over the Weibull distribution is that allows not only increas-

ing, constant or decreasing hazard functions with zero or non-zero asymp-

totes but also non-monotone hazard functions, like hazards with ”bathtub”

shapes. Unfortunately, the main disadvantage of Poly-Weibull distribution

is the inability to work when causes of death is unknown and not reported.

2.3 Hazard function estimation with kernels

While parametric models provide convenient ways to analyze lifetime data, the

necessary model assumptions, when violated, can lead to erroneous analyses and

thus need to be checked carefully. In these cases a non-parametric approach is con-

sidered essential, as the estimation is more flexible, model-free and data-driven.

Also the non-parametric approach is useful because it is one of the ways to ex-

amine whether the assumptions in a parametric survival analysis are logical. So
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one method to estimate the Hazard function without assumptions about the dis-

tribution of the data is to use the kernel estimators which are used very often at

Survival analysis.

The estimation of hazard rates for continuously observed data is conceptually

close to density estimation. As probability density function is the derivative of

cumulative distribution function, we can also consider the hazard rate function as

the derivative of the cumulative hazard function, i.e. H(t) =
∫ t

0 h(x) dx. A hazard

rate estimate can thus be obtained, analogous to a density estimate, by smoothing

the increments of an estimate of H(t).

Watson and Leadbetter (1964a) were the first who propose and study such

a smoothed hazard estimator using the cumulative hazard estimate based on an

independent and identically distributed sample of lifetimes. They propose the

following type hazard estimator:

ĥn(t) =

∫
Wn(t− x)dHn(t),

where Wn is a sequence of smooth functions approaching the Dirac delta function

for large n. This delta-sequence method is quite general and covers several types

of smoothing methods, including the kernel method. Hazard estimators in this sit-

uation are ordinarily obtained by smoothing the increments of the Nelson-Aalen

estimatorHn(·) for the cumulative hazard function H(t). The Nelson-Aalen esti-

mator is a non-parametric estimator of the cumulative hazard rate function in case

of censored data and it is used in survival analysis to to estimate the cumulative

number of expected events. The estimator is given by the following type:

Ĥ(t) =
∑
ti≤t

di
ni
,

where di is the number of events at ti and ni is the total number of individuals at

risk at ti.

Thus, using the Nelson-Aalen estimator for the cumulative hazard function

H(t) and choosing Wn(t) = 1
bK( t−xb ) for a particular choice of kernel K and band-
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width b = bn, we end up at the following kernel hazard estimator:

ĥ(t) =

∫
1

b
K(

t− x
b

)Hn(t)

=
∑
ti≤t

∫
1

b
K(

t− xi
b

)
di
ni

Asymptotic properties on consistency are typically obtained under the following

assumptions:

i the true hazard rate is k-times differentiable for k ≤ 0

ii for the bandwidth force that bn −→ 0 and nbn −→∞

iii the kernel is of order k and defined as:∫
K(x)dx = 1,

∫
K2(x)dx <∞,

∫
xjK(x)dx = 0 for 1<j<k,

and

∫
xkK(x)dx is finite but nonzero

Kernels have interesting statistical interpretation and lead to smooth estima-

tions. Obviously questions are created about the choice of the function, the order

and the bandwidth of the kernel. Also the rate of convergence of the kernel hazard

estimation depends on the order of the kernel, the bandwidth and the differentia-

bility of the hazard function.

The choice of the kernel is important but not crucial. Often non-negative

kernels are used in practice.

Epanechnikov kernel: K(x) = 0.75(1− x2), −1 ≤ x ≤ 1 and

Gaussian kernel : K(x)=(2π)
−1
2 exp(−x

2

2 )

constitute the most common choices. Typically, the order k of the kernel is chosen

to be an even number with k = 2 being the standard choice.

The choice of the bandwidth is of crucial importance and regulates the trade

off between the bias and variance of the estimator of hazard function h(t). A

small bandwidth yields a less smooth curve, with smaller bias but larger variance,

as compared to a larger bandwidth. Bandwidth choice is particularly crucial for
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hazard estimation near the right boundary of the data as the variance increases to

infinity there.

The bandwidth for a kernel hazard estimate can be fixed at all points (global

bandwidth b) or can vary for different points (local bandwidth b(t)). Usually a

global bandwidth is employed for a smooth density or regression. However, for the

hazard estimation situation discussed here there are compelling reasons to adopt

local rather than global bandwidth choices. The main reason about preference

in local bandwidth is that the variance of the kernel hazard estimate extends to

infinity as t approaches the right boundary of the data and thus the variance tends

to dominate the bias in the right tail and this needs to be compensated for by a

larger bandwidth.

The optimal local bandwidth of ĥ(t) which minimizes the leading term of MSE(

ĥ(t)) is:

b(t) = n−1/(2k+1){ 1

2k

h(t)

[1− F (t)][1−G(t)]

V

[h(k)(t)Bk]2
}1/(2k+1)

where Bk = (−1)kk!
∫
xkK(x)dx and V =

∫
K2(x)dx <∞

For the optimal global bandwidth, we have to restrict the range of t to a compact

interval [ 0, τ ] with F (τ) < 1 and G(τ) < 1. The global optimal bandwidth which

minimizes the leading term of

MISE(ĥ(t))= E
∫ τ

0 [ĥ(x)− h(x)]2dx is:

bopt = n−1/(2k+1){ 1

2k

∫ τ

0

h(x)

[1− F (x)][1−G(x)]
dx

V

B2
k

∫ τ
0 [h(k)(y)]2dy

}1/(2k+1)

In order to understand the significance of the bandwidth choice we will use

the ’ovarian’ data (Survival in a randomized trial comparing two treatments for

ovarian cancer with n=26 patients) from the package ’survival’ in R software

(see Therneau, 2015) and and with the assistance of package ’muhaz’ (a package

for estimation of the hazard function from right-censored data using kernel-based

methods, see Hess and Gentleman, 2015 ) we will estimate the hazard rate. In

Figure 2.6 we can see how different is the estimation of the hazard function for

various values of the bandwidth. For the value 40 of the bandwidth we observe
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that is far from the reality but the optimal bandwidth gives a great estimation.
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Figure 2.6: Estimation of the hazard function using kernels for different
values of (global) bandwidth (kernel function=Epanechnicov)

Also, another issue that is worth to mention is that the kernel smoothing

method needs to be employed very carefully near the boundary as there is a bias

problem in such regions. This problem usually referred to in the literature as

boundary effects. Boundary effects may be attributed to the fact that the support

of the kernel exceeds the available range of data and are not unique to hazard

estimates.

An unmodified kernel estimate is unreliable in the boundary region, which
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is the region within one bandwidth of the largest or smallest observations. To

remedy the boundary effects, different kernels, referred to as ’boundary kernels’

can be used within the boundary region. As a consequence, varying kernels are

employed at each location t and the bandwidths are affected accordingly. The

resulting kernel estimate with varying kernels and varying local bandwidths takes

the form below:

ĥ(t) =

∫
1

b(t)
Kt

(
t− x
b(t)

)
dh(x) (2.1)

So, it is obvious that kernels are very useful in statistics because it is not

need to assume anything about the distribution of the population, while even

the distribution will be estimated by data. In case of hazard function, a kernel

smoother which is a statistical technique for estimating the real valued function

h(x) by using its noisy observations, when no parametric model for the function

is known. The estimated function is smooth, and the level of smoothness is set

by a single parameter. Some examples about kernel smoothers are the Gaussian

kernel smoother, the nearest neighbor smoother, the kernel average smoother, the

local linear regression and the local polynomial regression. Library muhaz in R,

which we use about a non-parametric estimation of the hazard function of our

data, makes use of nearest neighbor smoother.
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Chapter 3

Mixture of Weibull

distributions

One of the problems that is encountered in survival analysis is the inappropriate-

ness of the common distributions which are described in Chapter 2 and used widely.

Most of these distributions can not fit well data with strange (non-monotonic)

shapes about the hazard function. So in parametric survival analysis, the neces-

sity of distributions with more flexible shapes about hazard function is considered

huge.

An idea is to use a mixture of one of the known distributions or a mixture with

more than one of them. We know that the hazard function in Weibull distribution

can be either ascending (shape parameter>1) or descending (shape parameter<1)

(see Figure 2.2). So, for example, if the hazard rate increases at the beginning

and after a few time decreases, it is a good idea to use a mixture of two Weibull

distributions, where the first one will have shape parameter greater than 1 and

the second one will have shape parameter smaller than 1. We prefer Weibull

distribution rather than other distributions because it has simple forms about

hazard and survival functions and it has been used in many surveys in the past.

The usage of mixture model for parametric survival models is no new. See

for example the work of Mc Lachlan and Mc Giffin (1994) about finite mixture

models in survival analysis. More specifically, for mixtures of Weibull one can see
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the early work of Farawell (1982), Greenhouse and Silliman (1996) and recently

by Farcomeni and Nardi (2010). The latter model is similar to the one used in

this thesis. A thorough examination on the failure rate of the mixture of Weibull

distributions can be found in Jiang and Murthy (1998).

3.1 Mixture models

Before we introduce the idea of finite mixture of Weibull distributions, we refer to

mixture models generally. All the construction of mixture models rely on the Law

of Total Probability according to:

if B1, B2, · · · is a partition of the sample space S, then for any event A we have

P (A) =
∑∞

i=1 P (A|Bi)P (Bi)

This theory can be used and in cases where instead of probabilities we have random

variables or density probability functions.

Supposing that the population consists of K sub-populations and for each sub-

population we know its density, we can calculate the probability density function,

the cumulative distribution function, the survival and the hazard functions of all

the population.

Probability density function (pdf):

g(t) =

K∑
j=1

pjfj(t),

where fj(t) is the pdf of the j-th sub-population and pj is the probability that a

random selected individual comes from the j-th population, pj > 0 and
∑K

j=1 pj =

1

Cumulative distribution function (cdf):

G(t) =
K∑
j=1

pjFj(t),

where Fj(t) is the cdf of the j-th sub-population associated with fj(t)
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Survival function:

S(t) =

K∑
j=1

pjSj(t)

Hazard function:

h(t) =

K∑
j=1

wj(t)hj(t),

where hj(t) is the hazard function of the j-th sub-population and

wj(t) =
pjSJ(T )∑K
j=1 pjSj

,

K∑
j=i

wj(t) = 1 with Sj(t) = 1− Fj(t)

We can see that the hazard rate for a general K-finite mixture model is a weighted

mean of the hazard rate for the sub-populations with weights varying with t, t ≥ 0.

Mixture models find huge applications in many fields of Statistics (see for exam-

ple Mc Lachlan and Basford, 1987; Frhwirth-Schnatter, 2006; Schlattmann, 2009;

Karlis and Santourian, 2009; Huang Y. et al, 2015). The most important applica-

tion of mixture models is that beginning from a simple model of one distribution

we can construct very flexible models. Mixture models of known distributions can

have a variety of properties and thus they are very useful in real data. For example

we can have models with skewness functions, or functions with fat tails and more

than one modes. Hence, models like those offer great flexibility, because we can

model phenomena with various properties. Other marked applications of mixture

models are in Cluster analysis, in Random effect models and also they are very

useful as a way of simulation.

3.1.1 Weibull mixture model

As we had described the idea of mixture models, we can now introduce the special

case of the 2-finite Weibull mixture model (see Farcomeni and Nardi, 2010) .

If f1(t) follows Weibull(a1, b1) and f2(t) follows Weibull(a2, b2) distributions where

a1, a2 > 0 are shape parameters and b1, b2 > 0 are scale parameters, the
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Probability density function (pdf) for 2-finite Weibull mixture model is:

g(t) = pf1(t) + (1− p)f2(t)

= p[
a1

b1
(
x

b1
)a1−1e

−( x
b1

)a1
] + (1− p)[a2

b2
(
x

b2
)a2−1e

−( x
b2

)a2
]

The corresponding Cumulative distribution function is:

G(t) = pF1(t) + (1− p)F2(t)

= [1− e−( t
b2

)a2
] + p[e

−( t
a2

)b2 − e−( t
b1

)a1
]
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Figure 3.1: Probability density function for 2-finite Weibull mixture model
for different values of the parameters a1, a2, b1, b2 and p
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The Survival function is:

S(t) = p[e
−( t

b1
)a1

] + (1− p)[e−( t
a2

)b2
]

And the hazard function is:

h(t) =
g(t)

S(t)
=

pf1(t) + (1− p)f2(t)

p[e
−( t

b1
)a1

] + (1− p)[e−( t
b2

)a2
]

with t ≥ 0
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Figure 3.2: Cumulative distribution and Survival functions for 2-finite
Weibull mixture model for different values of the parameters a1, a2, b1, b2

and p
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Figure 3.3: Hazard function for 2-finite Weibull mixture model for different
values of the parameters a1, a2, b1, b2 and p

In Figures 3.1, 3.2 and 3.3 we can see the Density function, the Cumulative

distribution function, the Survival function and the Hazard function for the 2-finite

Weibull mixture model respectively. As we can notice the Hazard function of the

model can take various shapes and especially the green line which corresponds to

shape parameters a1 = 3 > 1 and a2 = 0.8 < 1 and scale parameters b1, b2 equal to

1 looks like the non-parametric estimation of the hazard function of HERA data

(see Figure 1.2, Chapter 1).
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3.2 Estimation of model parameters

There are many methods for estimating the parameters of mixture distributions.

Both graphical and analytical approaches have been used. About the analyti-

cal methods we know that these methods start from Pearsons (1894) method of

moments, through the formal maximum likelihood approaches, general curve fit-

ting, Bayesian and so on. In this thesis we will describe the maximum likelihood

method and it will be used for estimating the parameters of the mixture Weibull

distribution.

3.2.1 Maximum-Likelihood estimation for mixture mod-

els

We know that the likelihood is the probability of observing our data, as a function

of the parameters. For observations x1, x2, · · ·xn the likelihood function is:

L(θ) =
n∏
i=1

f(xi; θ)

For easiness, we use the log-likelihood function:

l(θ) =

n∑
i=1

log f(xi; θ)

and in case of mixture models the log-likelihood function becomes as below:

l(θ) ==

n∑
i=1

log g(xi) =

n∑
i=1

log[

K∑
k=1

pkf(xi; θk)]

The maximum likelihood estimates of the parameters are obtained by taking the

partial derivatives of the log-likelihood function with respect to each of the param-

eters of the model and setting to zero. The derivative of l(θ) with respect to one
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parameter, say θj is:

dl

dθj
=

n∑
i=1

1∑K
k=1 pkf(xi; θk)

pj
df(xi; θj)

dθj

=

n∑
i=1

pjf(xi; θj)∑K
k=1 pkf(xi; θk)

1

f(xi; θj)

df(xi; θj)

dθj

=
n∑
i=1

pjf(xi; θj)∑K
k=1 pkf(xi; θk)

dlogf(xi; θj)

dθj

In an ordinary parametric model the derivative of the log-likelihood is

n∑
i=1

d log f(xi; θj)

dθj

So maximizing the likelihood for a mixture model is like doing a weighted likelihood

maximization, where the weight of xi depends on cluster, is

wij =
pjf(xi; θj)∑K
k=1 pkf(xi; θk)

The problem is that these weights depend on the parameters we are trying

to estimate. Lets look at these weights a bit more. We define the discrete

random variable Z which says, which component X (data) is drawn from, so

Z ∼ Multinomial(p1, p2, · · · , pK), where pj is the probability that the hidden

class variable Z is j. Now we can see that the numerator in the weights is the

joint probability of getting Z = j and X = xi and the denominator is the marginal

probability of getting X = xi , so the ratio is the conditional probability of Z = j

given X = xi

wij =
pjf(xi; θj)∑K
k=1 pkf(xi; θk)

=
P (Z = j,X = xi)

P (x = Xi)
= P (Z = j|X = xi; θ).

Thus if we try to estimate the mixture model, then, were doing weighted

maximum likelihood, with weights given by the posterior cluster probabilities.
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3.2.2 MLEs for a 2-finite Weibull mixture model

Our interest is to estimate the hazard function of the data using the Maximum

Likelihood method. In Survival analysis, we assume that the data contain the

failure/censored random variable Ti and the failure/censored indicator δi (if the

i − th observation is failure, i.e. the event has occurred, then δi = 1 and if it is

censored, i.e. the event has not occurred, then δi = 0) , i=1,2, · · · n. Then the

likelihood function under random censoring scheme for the data is given by

L(θ) =

n∏
i=1

[f(ti)]
δi [1− F (ti)]

1−δi

where θ is the parameter vector for the assumed model.

Taking log on both sides of the equation we have the log-likelihood function

log(L(θ)) =

n∑
i=1

[δi log f(ti) + (1− δi) log{1− F (ti)}]

In the case of the mixture of 2 Weibull distributions with θ = (a1, a2, b1, b2, p)

the log-likelihood function becomes

log(L(θ)) =

n∑
i=1

[δi log g(ti) + (1− δi)(ti)]

=
n∑
i=1

{δi log[p[
a1

b1
(
x

b1
)a1−1e

−( x
b1

)a1
] + (1− p)[a2

b2
(
x

b2
)a2−1e

−( x
b2

)a2
]]

+(1− δi) log[e
−( x

b2
)a2 − p[e−( x

b2
)a2 − e−( x

b1
)a1

]]}

The maximum likelihood estimates of the parameters are obtained by taking the

partial derivatives with respect to a1, a2, b1, b2, and p and setting to zero. However,

the maximum likelihood estimating equations that we obtain do not give closed

form solutions for the patameters θ = (a11, a2, b1, b2, p). So it requires a numerical

iterative procedure for finding the MLEs of the model parameters. EM algorithm

is used very common for this operation.
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3.3 EM algorithm

EM algorithm (see Dempster et al., 1977) is a moderate new iterative algorithm for

estimation with the Maximum Likelihood (ML) method. In fact, is a mathematical

maximizing method with great statistical interpretation and offers important help

in simplification of estimation problems with the ML method. The algorithm is

known in Statistics for many years and it has been described in its general form.

The algorithm is used when we have missing data or we can express the problem

like we have missing data. Such examples are:

• trimmed distributions (distributions that we can not observe some values)

• mixture models (as missing data we consider the labels that will say us from

which sub-population originate each observation)

• censored data (many times in survival analysis for some patients we know

that they live more than a specific time T but we do not know the exact

time)

• missing data (in many data sets there are missing observations that we want

to know)

Algorithm owes its name in the two steps that constitute it. The E-step (Ex-

pectation step) and the M-step (Maximization step). The main idea is that in

E-step we estimate missing data with the information we have until that mo-

ment (i.e. the observations and the values of estimation until that moment) and

in M-step we use these estimations in order to maximize the likelihood function,

renewing the estimations’ values.

3.3.1 EM algorithm for mixture models

It is very important when we want to use the EM algorithm to find a way to define

proper missing data that enable us to maximize the likelihood function.

Here we discuss the EM algorithm for finding the MLEs of the parameters of

a general K-finite mixture model with parameters Θ = (p1, · · · , pK , θ1, · · · , θK),

where pj are the mixing parameters and θj are the parameters for the density
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function fj , j = 1, 2, · · · ,K .

− Let t = (t1, · · · , tn) denotes the observed random sample obtained from the

mixture density.

− In this case the missing data is the knowledge of which distribution each ob-

servation in the sample comes from. These missing data can be represented

by the random vector Z = (Z1, Z2, · · · , Zn) where Zi = (Zi1, Zi2, · · · , Zik
and

Zij =

1 if Ti belongs to distribution j

0 otherwise

(i = 1, 2, · · · , n and j = 1, 2, · · · ,K).

− The EM algorithm handles the unobservable data to the problem by working

with the current conditional expectation of the complete-data log likelihood

given the observed data. Based on T = (T1, · · · , Tn) and Z, the complete

data likelihood function will be

Lc(θ|t, z) =
n∏
i=1

K∏
j=1

{[pjfj(ti; θj)]Zijδi [pjSj(ti; θj)]Zij(1−δi]}.

Each iteration of the EM algorithm constitutes of two steps.

1 Expectation or E-step

At E-step we compute the conditional expectation of the complete-data log-

likelihood for Θ given the current estimate of the parameter vector and the

observed data, which at the (m + 1) th iteration can be expressed as below:

Q(Θ,Θ(m)) = Eθ(m) [logLc(θ;T )]

=

n∑
i=1

K∑
j=1

EΘ(m)(Zij |t)δi log[p
(m)
j fj(ti|θ(m)

j )]

+

n∑
i=1

K∑
j=1

EΘ(m)(Zij |t)(1− δi) log[p
(m)
j Sj(ti|θ(m)

j )]
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And we end up that

Q(Θ,Θ(m)) =
n∑
i=1

K∑
j=1

[log(pj)EΘ(m)(Zij |t)

+δi log[fj(ti|θ(m)
j )]EΘ(m)(Zij |t) + (1− δi) log[fj(ti|θ(m)

j )]EΘ(m)(Zij |t)]

The equation is linear in the unobservable data zij and the E-step (on the (m

+ 1) th iteration) simply requires the calculation of the current conditional

expectation of Zij given the observed data t, where Zij is the random variable

corresponding to zij . Thus,

EΘ(m)(Zij |t) = z
(m)
ij

And as we saw before, at description of Maximum Likelihood Estimation

here zij are the posterior probabilities which can be expressed using the

Bayess theorem as

z
(m)
ij =

p
(m)
j [δjfj(ti|θ(m)

j ) + (1− δi)Sj(ti|θ(m)
j )]∑m

j=1 p
(m)
j [δjfj(ti|θ(m)

j ) + (1− δi)Sj(ti|θ(m)
j )]

2 Maximization or M-step

At M-step we maximize the conditional expectation of the complete-data

log-likelihood Q(Θ,Θ(m)) with respect to the parameters in order to obtain

new parameter estimations Θ(m+1). We can maximize the term containing

pj and the term containing θj independently since they are not related. For

each parameter we take the derivative of Q(Θ,Θ(m)) with respect to each of

them severally and we set egual to zero. For some distributions it is possible

to get closed-form analytical expressions for θj but for others, like Weibull

distribution, there is not this possibility. To find the expression for pj , we

use the Lagrange multiplier λ with the constraint
∑K

j=1 pj = 1. Under this

constraint, if we take the derivative of Q(Θ,Θ(m)) with respect to pj and

40



setting equal to zero, we get

n∑
i=1

1

pj
z

(m)
ij + λ = 0

Summing both sizes over j and using
∑m

j=1 z
(m)
ij = 1, we get that λ = −n.

So we end up to

p
(m+1)
j =

1

n

n∑
i=1

z
(m)
ij (3.1)

The E-step and M-step are iterated until the algorithm converges.

3.3.2 EM algorithm for a 2-finite Weibull mixture model

Now, we are going to describe the EM algorithm for estimating the parameters of a

K-finite Weibull mixture distribution step by step. In this way we will construct the

procedure for the EM algorithm in statistical package R. The procedure extensively

is:

• Step 1 Begin with initial values of p
(0)
j , a

(0)
j and b

(0)
j for j = 1, 2, · · · ,K (

a=shape parameter and b=scale parameter > 0)

• Step 2 Using the initial values of p
(0)
j , a

(0)
j and b

(0)
j at m-th iteration calculate

the conditional expectation of zij from the type above

• Step 3 At the (m+1)-th iteration, find the MLEs of p
(m+1)
j , a

(m+1)
j and b

(m+1)
j

as follows:

1 Find the MLE for p
(m+1)
j from (3.1)

2 Estimate a
(m+1)
j , and b

(m+1)
j maximizing the weighted log-likelihood

function as it arises from the type of Q(Θ,Θ(m)) with z
(m)
ij as weights.

• Step 4 Repeat Steps 2 and 3 until the algorithm converges with a desired

accuracy.
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3.3.3 Convergence of the algorithm

The algorithm stops when a convergence criterion is satisfied. There are many

convergence criteria.

The first category of criteria stops the iterations, when the relative increase of

log-likelihood between two consecutive iterations is smaller than a very very small

value tol (eg. tol=10−10). So the criterion has the below form:∣∣∣∣∣L(r+1) − L(r)

L(r+1)

∣∣∣∣∣ ≤ tol,
where L(r) is the log-likelihood function after the r iteration.

The other category of criteria stops the iterations, when the values of the

parameters do not change between two consecutive iterations, i.e. the biggest

difference between each parameter in two consecutive iterations is smaller than a

very very small value tol. So the criterion has the below form:

maxj(|θ(r+1)
j − θ(r)

j |) ≤ tol

Virtually, both of convergence criteria examine if there is a change from itera-

tion to iteration and no if the algorithm convergence. Unfortunately, there is not

a criterion that check clearly if the EM algorithm convergences.

3.3.4 Advantages and disadvantages of the algorithm

A few of the advantages of EM algorithm generally (applying to our case too) are

the following:

• Monotonous convergence: in every iteration the likelihood function in-

creases. This situation allow us to decide when we will stop the repetitions,

but under no circumstances it is not certain that we have not been entrapped

in a local and no in a total maximum of likelihood function.

• Estimations are in the allowed limits if the initial values are in the allowed

limits. This is no assured, when we use other methods of maximization. For
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instance, the algorithm Newton-Raphson is able to lead in a solution out of

the allowed space.

• Easy programming: virtually the algorithm we just described can be easily

implemented in almost every statistical package.

The disadvantages of algorithm are the following:

• The result is determined by the initial values, hence we need good primary

values. We have to emphasize that in the case of EM, good initial values

are equivalent to fast convergence in few iterations, while in other methods,

if we don not have good initial values, this may could be mean that the

algorithm never converges

• We can find local and no total maximum. Therefore we need to start from

different initial values in order to be sure. As a consequence the calculating

load is bigger.

• Slow convergence: the convergence of algorithm is much slower than other

algorithms. Of course, there are ways to accelerate the algorithm, but this

is not very easy be occurred.

• Other algorithms use the second derivatives of log-likelihood function. This

means that we can easily estimate standard errors of the estimators. Some-

thing like this is not true for the EM algorithm.

3.3.5 Simulation study about the EM algorithm

It is very important to examine how well the algorithm can work and how close to

reality are the results that we obtain. The only way to check the adequacy of the

algorithm is to simulate data from a known distribution with known parameters

and after the implementation of the algorithm to check how close are the values of

parameters that we obtain from the algorithm with true values. Also another key

issue is how the algorithm is affected by the initial values and how this influences

the convergence of it.

43



In this section of the thesis we will simulate data from:

i) a 2 finite Weibull mixture model

ii) a 2 finite Gaussian mixture model.

and we will deal with all the above issues. For the Weibull mixture model we

have described the steps of the algorithm in detail in previous section and for the

Gaussian mixture model we will describe briefly the steps of the algorithm.

• Two-finite Weibull mixture model

We generate 1000 values from a Weibull distribution with shape parameter

a1 = 2 and scale parameter b1 = 3 and 1000 values from a Weibull dis-

tribution with shape parameter a2 = 1 and scale parameter b2 = 4. The

probability an observation comes from the first distribution is 0.3 and from

the second Weibull distribution is 0.7.

As we can see in Table 3.1 the algorithm operates very well, because the

estimated values for all the 5 parameters are very close to the true values.

Also in Figure 3.4, we see that the algorithm converges very quickly and

more specific at about first 40 iterations.

Parameters True values Estimated values with EM algorithm
a1 2 1.9822
b1 3 2.9192
a2 1 0.9888
b2 4 3.9959
p 0.3 0.2793

Table 3.1: Estimated values with EM algorithm for simulated data from a
2-finite Weibull mixture model

• Two-finite Gaussian mixture model

Every normal distribution is a version of the standard normal distribution

whose domain has been stretched by a factor σ (the standard deviation)

and then translated by µ (the mean value). So we can express the pdf of a

Normal distribution as:

f(x|µ, σ) =
1

σ
φ(
x− µ
σ

)
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Figure 3.4: Convergence of EM algorithm about each parameter of the 2-
finite Weibull mixture model

For simplification of the mathematical forms which will follow below, we will

use this type for the Normal distribution and not the analytical.

Hence, the density for the mixture of two Gaussian populations is

f(x|θ) = p
1

σ1
φ(
x− µ1

σ1
) + (1− p) 1

σ2
φ(
x− µ2

σ2
),

where θ = (p, µ1, µ2, σ1, σ2) and more specific: µ1 and σ1 are the mean and

the standard deviation of the first normal distribution, µ2 and σ2 are the
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mean and the standard deviation of the second normal distribution and p

represents the proportion an observation comes from the first normal dis-

tribution. We don’t know in which of the two populations an observation

comes from, so we let

Zi =

1 if Xi belongs to the first Normal distribution

0 if Xi belongs to the second Normal distribution

This indicator variable is the missing data in this case of the mixture model

and Zi ∼ Benroulli with parameter p.

Therefore, the complete likelihood is given by

Lc(θ|X,Z) =
n∏
i

pzii
1

σzi1

φ(
xi − µ1

σ1
)zi(1− pi)1−zi 1

σ1−zi
2

φ(
xi − µ2

σ2
)1−zi

At the E-step:

We compute the expectation of Zi conditional on the observed information

and the current parameter estimates θ(k)

w
(k)
i = EZi|Xi,θ(k) [Zi] =

p(k) 1

σ
(k)
1

φ(
xi−µ

(k)
1

σ
(k)
1

)

p(k) 1

σ
(k)
1

φ(
xi−µ

(k)
1

σ
(k)
1

) + (1− p(k)) 1

σ
(k)
2

φ(
xi−µ

(k)
2

σ
(k)
2

)

At the M-step:

We set the first derivatives of Q(θ|θ(k)) = EZi|Xi,θ(k) [L0(θ|X,Z)] with respect

to each parameter equal to zero and we obtain the following results about

the parameters:

p(k+1) =
1

n

n∑
i=1

w
(k)
i

µ
(k+1)
1 =

∑n
i=1w

(k)
i xi∑n

i=1w
(k)
i
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µ
(k+1)
2 =

∑n
i=1(1− w(k)

i )xi∑n
i=1(1− w(k)

i )

σ
(k+1)
1 =

∑n
i=1w

(k)
i (xi − µ(k+1)

1 )2∑n
i=1w

(k)
i

σ
(k+1)
2 =

∑n
i=1(1− w(k)

i )(xi − µ(k+1)
2 )2∑n

i=1(1− w(k)
i )

We generate 1000 values from a Normal distribution with µ1 = 2 and σ2
1 =

1.5 and 1000 values from a Normal distribution with µ2 = 6 and σ2
2 = 0.3.

The probability an observation comes from the first Normal distribution

is 0.3 and the probability an observation comes from the second Normal

distribution is 0.7.

As we can see in Table 3.2 the estimated values that we obtain from the EM

algorithm about the parameters of the Normal mixture model is very close

to the real values. We used as initial values, (a) values close to and (b) far

from them that we simulate, but the result was exactly the same. The only

difference as we can see in Figure 3.6 is that the algorithm converges to the

final estimated value slower in case that we had started with values far from

the true.

Parameters True values Initial values Estimated values with EM algorithm
case a case b

µ1 2 3 10 2.0041
µ2 6 9 40 5.9915
σ2

1 1.5 1 7 1.4648
σ2

2 0.3 0.5 17 0.3057
p 0.3 0.5 0.9 0.3042

Table 3.2: Estimated values with EM algorithm for simulated data from a
2-finite Gaussian mixture model
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Figure 3.5: Converge of EM algorithm about each parameter of the 2-finite
Gaussian mixture model
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Chapter 4

Data analysis with HERA data

In order to understand how efficient can be the idea of a Weibull mixture model is

necessary to fit this model in real data, which has the attribute of a non-monotonic

hazard function. In HERA trial the hazard function in each of the three groups

looks like an inverse ”bathtub” (see Figure 1.2). HERA (Herceptin Adjuvant) trial

is a phase III randomized trial involving women with HER2-positive early-stage

invasive breast cancer. For this thesis, we use the most recent HERA database as

elaborated after the latest data cleaning during 2012 (clinical cut-off date April

12,2012). Between Dec 7, 2001, and June 20, 2005, a total of 5102 patients were

randomly allocated to three groups: observation, trastuzumab for 1 year, and

trastuzumab for 2 years. More specific, the HERA trial population consists of 1677

patients randomly assigned to the observation group and 3402 to trastuzumab,

receiving treatment for one year (1702 patients) or two years (1700 patients) (see

Figure 1.1). We included these two groups for three reasons: a major peak in

the rate of relapse occurs 18 to 24 months after surgery, effective treatment of

HER2-positive breast cancer may require prolonged attenuation of HER2 activity

and tamoxifen, which is an effective targeted therapy for breast cancer, is most

beneficial when given for longer than one year.

For each patient was recorded some baseline and tumor characteristics, which

described below thoroughly.

• Region of patient (1: Western and Nothern Europe, Canada, South Africa,
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Australia, New Zealand 2: Asia Pacific, Japan 3: Eastern Europe 4: Central

and South America)

• Race of patient (1: Caucasian 2: Oriental 3: Other)

• Age of patient (1: <35 yrs 2: 35-49 yrs 3: 50-59 yrs 4: ≥60 yrs)

• Menopausal status (1: pre-menopausal (regular period) 2: peri-menopausal

(irregular period) 3: post-menopausal (no longer having period))

• Nodal status (1: Not Assessed 2: Negative ( lymph nodes do not contain

cancer) 3: 1-3 positive (contain cancer) lymph nodes 4: ≥4 positive (contain

cancer) lymph nodes)

• Estrogen-Receptor (1: ER Positive (cancer has receptors for estrogen, which

means that cancer cells, like normal breast cells, may receive signals from

estrogen that could promote their growth) 2: ER Negtive (cancer has not

receptors for estrogen))

• Progesterone-Receptor (1: PR Positive (cancer has progesterone receptors,

which means that cancer cells may receive signals from progesterone that

could promote their growth) 2: PR Negative (cancer has not progesterone

receptors))

• Adjuvant Chemotherapy (1: No Anthracyclines 2: Anthracyclines, no Tax-

anes 3: Anthracyclines and Taxanes, (Anthracyclines and Taxanes are chemother-

apeutic agents))

• ECOG Performance Status (1: 0≡ Fully active, able to carry on all pre-

disease performance without restriction 2: 1≡ Restricted in physically stren-

uous activity but ambulatory and able to carry out work of a light or seden-

tary nature, e.g., light house work, office work)

• Grade of tumor (1: G1 ≡ the tumor cells and the organization of the tumor

tissue appear close to normal and they tend to grow and spread slowly 2:

G2≡ the tumor cells and the organization of the tumor tissue look slightly
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abnormal and they are slow-growing 3: G3 ≡ the tumor cells and the orga-

nization of the tumor tissue are malignant and they tend to grow and spread

rapidly 4: GX ≡ Grade cannot be assessed)

• Tumor size in cm (1: 0-2cm 2: 3-5cm 3: >5cm)

At first, we will present the frequency distributions for all the characteristics

above. Consequently applying with the long-rank test, we will examine if the

survival time differs between patients in the observation group and the patients

who received trastuzumab (either for one or two years), as well as we will find which

of the characteristics of patients affect their survival time sing a semi-parametric

multivariate Cox model. Ultimately we will try to examine if a finite mixture

model of Weibull distributions is more appropriate than other parametric models

commonly used in survival analysis, in order to estimate the patients’ hazard

function in each of the tree groups of three groups of HERA trial.

4.1 Descriptive statistics and crosstabs

It is apparent that, what concerns us is first and foremost is to obtain a quick

general image of the sample which we use for the realization of the research. Thus,

in this section we will initially present frequency tables for all the characteristics

of patients in the trial who suffer from breast cancer.

Initially, in HERA trial enrolled 5102 patients but after the random assignment

in one of the three groups, 3 patients excluded and the results are obtained by the

remaining patients (see Figure 1.1). As we can observe from Tables 4.1 and 4.2

our sample consists of 5099 patients from whom 1697 are in the observation group

and 3402 are in the treatment- trastuzumab group (we consider 1-year treatment

and 2-year treatment groups as one). In Table 4.1 are presented the number of

patients according to their characteristics overall and in Table 4.2 by treatment

group.
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Table 4.1: Frequencies about patients’ characteristics

Characteristic Number of patients (n%)

Region

W., N. Europe, Canada and Australia 3645 (71%)

Asia Pacific, Japan 609 (12%)

Eastern Eu-rope 561 (11%)

Central and South America 284 (6%)

Age at study entry (years)

<35 378 (8%)

35-49 2264 (44%)

50-59 1639 (32%)

≥60 818 (16%)

Race

Caucasian 4254 (83%)

Oriental 644 (13%)

Other 201 (4%)

Menopausal status

Post-menopausal 2319 (45%)

Pre-menopausal 717 (14%)

Peri-menopausal 2063 (41%)

Nodal status

Not assessed 563 (11%)

Negative 1646 (32%)

1-3 positive nodes 1464 (29%)

≥4 positive nodes 1426 (28%)

Estrogen-Receptor status

Negative 2789 (55%)

Positive 2309(45%)

Unknown 1 (0%)

Progesterone-Receptor status

Continued on next page
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Table 4.1 – continued from previous page

Characteristic Number of patients (n%)

Negative 3098 (61%)

Positive 1774 (35%)

Unknown 227 (4%)

Adjuvant chemotherapy

No Anthracyclines 302 (6%

Anthracyclines, no Taxanes 3469(68%)

Anthracyclines and Taxanes 1328 (26%)

ECOG Performance status

0 4683 (92%)

1 414 (8%)

Missing 2 (0%)

Grade of tumor

G1 106 (2%)

G2 1652 (32%)

G3 3089 (61%)

GX 225 (4%)

Missing 27 (1%)

Size of tumor (cm)

0-2 2233 (44%)

3-5 2417 (47%)

> 5 311 (6%)

Missing 138 (3%)

From the total patients, 3645 (71%) come from Western and Nothern Europe,

Canada, SouthAfrica, Australia or New Zealand, 609 (12%) come from Asia Pacific

or Japan, 561 (11%) from Eastern Europe and 284 (6%) from Central and South

America. The majority of the women with breast cancer (44%) are between the

age of 35 and 49, 32% of them are among 50-59 years old, 16% are more than

60 years and only 8% of women are smaller than 35 years old. Also 83% of the
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patients are Caucasian, 13% are Oriental and only 4% of them are from other

races.

From the women in the trial 2319 are in post-menopausal situation, 717 are in

the pre-menopausal situation and 2063 of them have irregular period. 32% of the

patients have negative nodal status, 57% have positive nodal status and for 563

patients the lymph nodes has not been assessed. Also 55% and 61% of the patients

have negative estrogen and progesterone receptor status respectively whereas 45%

and 35% of the patients have positive estrogen and progesterone receptor status

respectively. From the total of patients, 302 have been in a procedure of adjuvant

chemotherapy with no-Anthracyclines, 3469 have been in a procedure of adjuvant

chemotherapy with Anthracyclines and 1328 have been in a procedure of adjuvant

chemotherapy with Anthracyclines and Taxanes. Almost all the patients (92%)

have 0 ECOG performance status and only 8% of the patients have 1 as ECOG

performance status.

The majority of the patients (61%) have a tumor of grade G3, 32% have tumor

of grade G2, 2% have tumor of grade G1 and 4% of them have tumor of grade

GX. For 2233 patients the size of tumor is between 0 and 2 cm, 2417 patients have

tumor with size among 2 and 5 cm and only 311 patients have a tumor with size

more than 5cm.

Finally, from Table 4.2 we can understand that cohorts for comparison in

analysis are well balanced in terms of demographics and baseline disease charac-

teristics. This is important because in this way, results are more dependable, as

the comparison not be affected by the characteristics of patients.
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Table 4.2: Frequencies about patients’ characteristics by

group

Characteristic Observation group (n%) Treatment group (n%)

Region

W., N. Europe, Canada and Australia 1224 (72%) 2421 (71%)

Asia Pacific, Japan 202 (12%) 407 (12%)

Eastern Eu-rope 177 (10%) 384 (11%)

Central and South America 94 (6%) 190 (6%)

Age at study entry (years)

<35 126 (8%) 252 (8%)

35-49 752 (44%) 1512 (44%)

50-59 546 (32%) 1093 (32%)

≥60 273 (16%) 545 (16%)

Race

Caucasian 1415 (83%) 2839 (83%)

Oriental 213 (13%) 431 (13%)

Other 69 (4%) 132 (4%)

Menopausal status

Post-menopausal 770 (45%) 1549 (45%)

Pre-menopausal 234 (14%) 483 (14%)

Peri-menopausal 693 (41%) 1370 (41%)

Nodal status

Not assessed 178 (10%) 385 (11%)

Negative 555 (33%) 1091 (32%)

1-3 positive nodes 490 (29%) 974 (29%)

≥4 positive nodes 474 (28%) 952 (28%)

Estrogen-Receptor status

Negative 928 (55%) 1861 (55%)

Positive 769 (45%) 1540 (45%)

Unknown 0 (0%) 1 (0%)

Continued on next page
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Table 4.2 – continued from previous page

Characteristic Observation group (n%) Treatment group (n%)

Progesterone-Receptor status

Negative 1065 (63%) 2033 (60%)

Positive 545 (32%) 1229 (36%)

Unknown 87 (5%) 140 (4%)

Adjuvant chemotherapy

No Anthracyclines 99 (6%) 203 (6%)

Anthracyclines, no Taxanes 1158 (68%) 2311 (68%)

Anthracyclines and Taxanes 440 (26%) 888 (26%)

ECOG Performance status

0 1546 (91%) 3137 (92%)

1 149 (9%) 265 (8%)

Missing 2 (0%) 0 (0%)

Grade of tumor

G1 38 (2%) 68 (2%)

G2 559 (33%) 1093 (32%)

G3 1015 (60%) 2074 (61%)

GX 77 (5%) 148 (4%)

Missing 8 (0%) 19 (1%)

Size of tumor (cm)

0-2 764 (44%) 1469 (43%)

3-5 781 (47%) 1636 (48%)

> 5 107 (6%) 204 (6%)

Missing 45 (3%) 93 (3%)
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4.2 Log-rank test and multivariate Cox model

We are interested in examining if survival time differs between patients in the

observation group and patients in the treatment group (trastuzumab group for

1 year and trastuzumab group for 2 years are considered as one group for this

analysis). Also we need a model which will describe the relationship between

survival time and exploratory variables, i.e. the characteristics of patients. It

should be noted that for all survival analysis, which follows, we have excluded 10

patients with DFS and OS time equal to 0 to avoid numerical problems, so we

conduct the analysis with a sample of 5089 patients (observation group n=1694,

trastuzumab for one year n=1968, trastuzumab for two years n=1967).

4.2.1 Log-rank test

The Log-rank test (see Mantel , 1966) is the most well-known and widely used

test for comparison of survival curves. It is a nonparametric test and appropriate

to use when the data are right skewed and censored. It is used to test the null

hypothesis that there is no difference between the population survival curves (i.e.

the probability of an event occurring at any time point is the same for each pop-

ulation). In other words, Logrank test examines the difference between observed

and expected number of events among groups The test statistic is calculated as

follows (for two groups):

X2
log−rank =

(O1 − E1)2

E1
+

(O2 − E2)2

E2

Where O1 and O2 are the total numbers of observed events in groups 1 and 2,

respectively, and E1 and E2 the total numbers of expected events. In our trial the

first group, include the patients in the observation cohort and the second group

include the patients who received trastuzumab for 1 or 2 years.

Exactly the hypothesis testing is:

H0: S1(t) = S2(t)

H1: S1(t) 6= S2(t) where S1(t) and S2(t) are the survival functions for the first and

the second group respectively
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Before we move on, it is important to define the endpoints on which we will base

our log-rank test. The endpoint is a direct indicator of the disease progression that

is used to describe a health effect (or the possibility of this particular health effect)

occurring from the expose at a risk factor. In our analysis the clinical outcome is

presented by:

• Disease Free Survival (DFS) is determined as the time from date of surgery

until first relapse of tumor or death from any cause

• Overall Survival (OS) is defined as the time from surgery until death from

any cause

Group Number of patients Number of events Log-rank test (p-value)
Disease Free Survival

Obseravtion group 1964 570 0.00
Treatmment group 3395 943
Overall Survival
Obseravtion group 1964 350 0.00
Treatmment group 3395 552

Table 4.3: Log-rank test for Disease Free Survival and Overall Survival

As we can see in Table 4.3 the number of RFS events for patients in the

observation group is 570 and 943 for patients in treatment group. Also the number

of OS events for patients in the observation group is 350 and 552 for patients in

treatment group. The p-value for the log-rank test for both DFS and OS is equal

to 0.00 which mean that at a level of significance α = 5% we reject the null

hypothesis, i.e. there is difference between the survival curves of patients in the

observation and treatment group. Therefore, the results of the trial are confirmed

and actually the medicine administration seems to improve the lifetime of patients.

With the help of Kaplan-Meier plot we will acquire an image on how the

survival functions of the patients in the observation and treatment group differ

and behave in time.

The Kaplan-Meier estimator (see Kaplan and Meier, 1958), also known as

the product limit estimator, is an estimator for estimating the survival function
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from lifetime data.The KaplanMeier method can be used to estimate the survival

curve from the observed survival times without the assumption of an underlying

probability distribution. The method is based on the basic idea that the probability

of surviving k or more periods from entering the study is a product of the k

observed survival rates for each period, i.e. the cumulative proportion surviving,

given by the following:

S(t) = p1 × p2 × p3 × · · · pk

Here, p1 is the proportion surviving the first period, p2 is the proportion surviving

beyond the second period conditional on having survived up to the second period,

and so on. The proportion surviving period i having survived up to period i is

given by: pi = (ri − di)/ri, where ri is the number alive at the beginning of the

period and di the number of deaths within the period.
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Figure 4.1: Kaplan-Meier plot for Disease-free Survival by patients’ group
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Figure 4.2: Kaplan-Meier plot for Overall Survival by patients’ group

Previously, based on the Log-rank test we saw that there is a difference be-

tween the survival curves of patients in the observation and treatment groups.

Graphically this can be seen, using the Kaplan-Meier plot, where the horizontal

axis shows time in days and the vertical axis, the estimated survival probability.

(see Figure 4.1 and 4.2 for DFS and OS respectively)

4.2.2 Cox PH model

The log rank test is used to test whether there is a difference between the survival

times of different groups but it does not allow other explanatory variables to be

taken into account. Cox’s proportional hazard model is analogous to a multiple

regression model and enables the difference between survival times of particular

groups of patients to be tested while allowing for other factors (see Cox, 1972).

In this model, the response (dependent) variable is the hazard, i.e. the risk event

60



occurs. Coxs method does not assume any particular distribution for the survival

times, but it rather assumes that the effects of the different variables on survival

are constant over time, in other words, the hazard ratio does not depend on time.

The model can be written as:

h(t;Z) = h(t)exp(bZ) = h0(t)exp(b1Z1 + b2Z2 + + bpZp)

where h(t) is the hazard at time t , Z1, Z2 · · ·Zp are the explanatory variables,

and h0(t) is the baseline hazard when all the explanatory variables are zero. The

coefficients b1, b2 · · · , bp are estimated from the data.

We consider likelihood methods for estimating the model parameters. Specifi-

cally, Cox used the idea of a partial likelihood. However, partial likelihood assumes

that all of the survival (or censor) times are distinct. In reality, this is probably

true in most cases, but in practice, there are often datasets that have many tied

survival times.There needs to be a way of accounting for these tied data. There

are several proposed modifications to the likelihood to adjust for ties. For example

see Efron (1974) and Breslow N.E (1975). In our study we will rely on Breslow

method that works well when the ties are relatively few.

Now, we will present the Cox model for the DFS endpoint, which is the primary

endpoint in HERA trial. After having included all the characteristics and based

on a stepwise method, we will arrive at the final model, including the most impor-

tant characteristics. In Table 4.4, we can see that the characteristics, which are

statistically significant and seem to influence the survival time of patients, are first

of all the group they belong to, their race, the menopausal and the nodal status as

well as the estrogen-receptor status of them, the type of adjuvant chemotherapy

and the size of tumor (all the p-values for these characteristics are smaller than

the significant level α = 0.05).

61



Characteristics Parameter
Estimate

Hazard
Ratio

Standard
Error

p-value

Group (ref=Observation)
Treatment -0.3060 0.7364 0.0531 0.00
Race (ref=Caucasian)
Oriental -0.2465 0.7815 0.0844 0.0034
Other -0.1983 0.8201 0.1357 0.14
Menopausal-status
(ref=Post-menopausal)
Pre-menopausal 0.2076 1.2307 0.0758 0.0062
Peri-menopausal -0.0288 0.9716 0.0572 0.61
Nodal-status (ref=Negative)
Not Assessed 0.9092 2.4822 0.1004 0.00
1-3 positive nodes 0.4281 1.5344 0.0784 0.00
≥4 positive nodes 1.0302 2.8016 0.0750 0.00
Estrogene-Receptor
(ref=Negative)
Positive -0.2837 0.7530 0.0530 0.00
Unknown 1.9224 6.8375 1.0036 0.055
Adjuvant-Chemotherapy
(ref=No Anthracyclines)
Anthracyclines -0.1597 0.8524 0.1204 0.18
ANthracyclines and Taxanes -0.2676 0.7652 0.1299 0.039
Tumor size in cm (ref=0-2)
2-5 0.1883 1.2072 0.0568 0.0009
> 5 0.6040 1.8293 0.0944 0.00
Missing 0.2106 1.2344 0.1548 0.17

Table 4.4: Multivariate Cox proportional hazard model for DFS (we needed
5 steps until the final model)
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4.3 Estimation of hazard function

4.3.1 No covariates in the model

The problem in HERA trial is that none of the known distributions which are

used in parametric survival analysis can estimate the hazard function of neither

the patients in the observation group nor the patients who received Transtuzumab

for 1 or 2 years. So it is important to find a proper model which can describe the

failure time of our data properly. In previous section we use the non-parametric

Cox PH model but may not be a good choice about patients who had experienced

a very high early risk of relapse/death followed by several years of reduced, but

not still negligible.

The idea is to use a mixture of Weibull distributions in order to estimate the

hazard function and the parameters of the model, because as we saw before a

Weibull mixture model can give hazard functions with flexible shapes. Also, we

will examine how some of the most commonly used models in survival analysis can

fit the hazard function both for patients in the observation group and patients in

the two treatment groups. Totally, we will fit the following parametric models:

• Generalized Gamma

• Weibull

• Log-Normal

• Log-Logistic

• Gamma

• Mixture of 2 Weibull

• Mixture of 3 Weibull

For the common distributions (gamma, generalized gamma, Weibull, log-normal

and log-logistic), in order to estimate the hazard function, i.e. the parameters of

the model, we use the R package ”flexsurv” (see Jackson, 2017) and especially the
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function flexsurvreg. This function fits parametric models for time-to-event sur-

vival data. On the other hand for the estimation of parameters in the finite mixture

model we use the EM algorithm as it was described in the previous chapter.

In Tables 4.5, 4.6 and 4.7 are presented all these models and their log-likelihood

as well as the number of etsimated parameters and the value of Akaike Information

Criterion for patients in the observation and the treatment groups respectively.

The Akaike information criterion (AIC) is a measure of the relative quality of

statistical models for a given set of data and it is used very often as a method

for model selection. Given a collection of models for the data, AIC estimates the

quality of each model, relative to each of the other models. Hence, AIC provides

a means for model selection. The AIC value of a model is is given by:

AIC = 2k − 2 log(L̂),

where L̂ is the maximized value of the likelihood function of the model and k are

the number of free parameters to be estimated. Given a set of candidate models

for the data, the preferred model is the one with the minimum AIC value.

We can see that based on the value of AIC the Generalized Gamma model is

selected as the best among the basic models, because it has the smallest value in

all cases (for the observation and the two treatment groups). This was expected

since the shape was closed to the observed one. The second best parametric model

seems to be the Log-Normal.

Distribution Log-likelihood No. of parameters AIC
Generalized Gamma -2072.303 3 4150.607
Weibull -2124.277 2 4252.555
Log-Normal -2110.698 2 4225.396
Log-Logistic -2131.107 2 4266.214
Gamma -2089.456 2 4182.911
Mixture of 2 Weibull -2065.341 5 4140.682
Mixture of 3 Weibull -2063.09 7 4541.180

Table 4.5: Results from fitting some parametric models in observation group
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Distribution Log-likelihood No. of parameters AIC
Generalized Gamma -1881.454 3 3768.909
Weibull -1912.495 2 3828.990
Log-Normal -1903.939 2 3811.878
Log-Logistic -1915.730 2 3835.460
Gamma -1888.691 2 3881.878
Mixture of 2 Weibull -1866.05 5 3742.100
Mixture of 3 Weibull -1865.164 7 3744.328

Table 4.6: Results from fitting some parametric models in 1 year treatment
group

Distribution Log-likelihood No. of parameters AIC
Generalized Gamma -1909.02 3 3824.041
Weibull -1926.922 2 3857.843
Log-Normal -1920.159 2 3844.317
Log-Logistic -1928.845 2 3861.689
Gamma -1910.201 2 3824.401
Mixture of 2 Weibull -1901.481 5 3812.962
Mixture of 3 Weibull -1900.000 7 3814.000

Table 4.7: Results from fitting some parametric models in 2 year treatment
group

Nevertheless, while in Figures 4.3, 4.5 and 4.7 the Survival function looks

quite satisfactory in case of Generalized Gamma distribution (for some models

like Weibull and Gamma, which have also the worst AIC value, the fitted curves

lies outside the confidence band as it is obtained from the Kaplan-Meier curves),

in Figures 4.4, 4.6 and 4.8, where we plot the hazard rate against time, we can

see certain deviations even for the Generalized Gamma model and the Log-Normal

model which have the smallest AIC value. Unfortunately, we can see that the peak

of the hazard is much earlier in both parametric models for all cohorts.

However, the mixture of 2 Weibull distributions improves the AIC (see Tables

4.5, 4.6 and 4.7). Also we can see that the estimated hazard function from the 2

Weibull mixture model is more close to the non-parametric and the peak of the

hazard function in this model is not far from real peak of the data. This is true for
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patients in the observation group as well as the patients in two treatment groups

(see Figures 4.4, 4.6 and 4.8)

Well, the best model for our data seems to be the 2-finite Weibull mixture

model with AIC=4140.682 in the observation group, AIC=3742.100 in the 1 year

treatment group and AIC=3813.268 in the 2 year treatmnet group. In Table 4.8 the

estimated values for all the parameters of the model are presented as well as their

standard errors. Standard errors were derived using bootstrap. The bootstrap

method introduced in Efron (1979) is a very general resampling procedure for

estimating the distributions of statistics based on independent observations.

Parameter Estimated value Standard error
Observation group
shape 1 1.3882 0.1112
scale 1 1.4674 0.2001
shape 2 1.1035 2.0596
scale 2 34.2052 6.2372
p 0.2111 0.0306
1 year Treatment group
shape 1 1.7449 0.3865
scale 1 1.9331 0.1484
shape 2 0.9631 0.2053
scale 2 47.1835 9.4137
p 0.1482 0.0292
2 year Treatment group
shape 1 1.2518 0.0861
scale 1 3.6612 0.5011
shape 2 7.4669 0.0204
scale 2 15.5827 3.5892
p 0.3072 0.0448

Table 4.8: Estimated values and standard errors for the parameters of the
2-finite Weibull mixture model as they are obtained from the EM algorithm
(for each of 3 groups)

We observe that the estimated values for the two shapes parameters are close

to 1, which mean that shape parameters from 2 Weibull distributions close to

1 can give a mixture model in which the hazard function can have a shape like
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”inverse bathtub” as happen in our data. Also in all groups we can see that the

the scale parameter of first Weibull distribution have a small value while the scale

parameter of second distribution is much bigger.

Another important issue is to check if a mixture of more than two Weibull

distributions can describe our data properly. Now, if we apply a mixture o 3

Weibull distributions we can see from Tables 4.5, 4.6 and 4.7 that the model with

3 distributions does not improve the value of AIC. In Figure 4.8 it is obvious that

adding a distribution has not to offer something better in the estimation of hazard

function. So, it is preferable to use a model with 2 distibutions because the model

is more simple and also we have to estimate 5 parameters instead of 7.

Ending, it is important to try to give an interpretation in two distributions

which constitute the model. As we observe in Figure 4.10 the first Weibull dis-

tribution corresponds to patients who have important probability to survive for

many years while the second Weibull distribution represents the patients who don’t

survive more than almost 4 years.

The improvement offered by the mixture model can have interesting conse-

quences. The superiority of the 2-finite model reveals the inhomogeneity of the

patients. It would be very interesting to examine further the characteristics of

the two groups of women, i.e. early responders versus the late responders. Also

shows that the simple Weibull used for simulation in Regan et al. (2012) can be

improved further by assuming a 2-finite mixture of Weibull distributions for better

approximating the behavior of patients.

4.3.2 Adding covariates to the model

Until now, we hadn’t used covariates in our models. Merely, we tried to estimate

the survival time of patients without thinking of factors that may influence their

survival time. So, it is a good idea to extent the idea of the mixture of Weibull

distributions when we allow covariates at the model. The extension is rather simple

because only few things change.

The basic different is that now the scale parameters b1 and b2 of two Weibull

distributions are not just values but vectors with different values for each ob-

servation. Generally let Xij be the jth covariate associated with patient i, for

67



j = 1, 2, · · · , d and i = 1, 2, · · · , n. The covariates now can be included in the

mixture model with m components as follows:

log(bm) = XT
i βm,

where Xi = Xi1, Xi2, · · · , Xid,

bm = b1m, b2m, · · · , bdm
and βm = β1m, β2m, · · · , βdm.

Therefore it is needed to estimate dmore parameters about the coefficient of the

covariates in each of the 2 Weibull distributions. Of course covariates can be either

qualitative or quantitative. This assumption about scale parameters corresponds

to the classical acceleratd failure time models, which are used very much in survival

analysis, where the effect of covariates is to accelerate or decelerate a baseline

survival time T0 by a factor exp(−βiTXj). Thus negative values of βi
TXj lead

to a better survival prognosis while positive values result in an increased risk of

failure. We assume that the probability p an observation belongs to first Weibull

distribution does not be affected by the exploratory variables. Also the shape

parameters of the model do not be influenced.

About the EM algorithm the basic difference between the model without co-

variates and the model which allow covariates is that now the parameter θ in

Q(Θ,Θ(m)) is not a vector with length equal to the number of parameters but

a matrix with n rows like the sample size and columns equal to the number of

parameters. As we said before only the scale parameter will be different for each

observation. Thus the we have that Q(Θ,Θ(m)) at E-step is given by the following

type:

Q(Θ,Θ(m)) = Eθ(m) [logLc(θ;T )]

=

n∑
i=1

K∑
j=1

EΘ(m)(Zij |t)δiln[p
(m)
j fj(ti|θ(m)

ij )]

+

n∑
i=1

K∑
j=1

EΘ(m)(Zij |t)(1− δi)ln[p
(m)
j Sj(ti|θ(m)

ij )]
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And we end up that

Q(Θ,Θ(m)) =
n∑
i=1

K∑
j=1

[log(pj)EΘ(m)(Zij |t)

+δiln[fj(ti|θ(m)
ij )]EΘ(m)(Zij |t) + (1− δi)ln[fj(ti|θ(m)

ij )]EΘ(m)(Zij |t)].

As before, at M-step we maximize Q(Θ,Θ(m)) with respect to the parameters

to obtain new parameter estimations Θm+1. We can again maximize the term

containing pj and the term containing θj independently since they are not related.

Estimation of pj is given from

p
(m+1)
j =

1

n

n∑
i=1

z
(m)
ij

where z
(m)
ij =

p
(m)
j [δjfj(ti|θ(m)

ij ) + (1− δi)Sj(ti|θ(m)
ij )]∑m

j=1 p
(m)
j [δjfj(ti|θ(m)

ij ) + (1− δi)Sj(ti|θ(m)
ij )]

.

Estimations about the other parameters is given by maximizing the second and

third terms of Q(Θ,Θ(m)) which constitute a weighted log-likelihood function with

weights zij which are given by the above form.

Now we will try to apply such a model in our data for women with breast

cancer from HERA trial. As we saw before in Cox PH model (see Table 4.4) the

group that each patient belongs to influence the survival time. Thus we will apply

for all 5089 patients (we have excluded 10 patients from 5099 with DFS time equal

to 0 to avoid numerical problems) a mixture of two Weibull distributions, taking

into account the qualitative variable which indicate the patients’ group.

From Table 4.9 we can see that a mixture of 2 Weibull distributions is the model

which can describe our data more properly even in case that we assume that the

survival time of patients depends on their clinical group. The mixture model has

the smallest value for Akaike Information Criterion and equals to 116895.56 and

the second better model is the Generalized Gamma model with AIC= 11745.67.

With the application of Weibull mixture model in our data the value of criterion

is improved a lot in contrast with the other popular survival models.
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Distribution Log-likelihood No. of parameters AIC
Generalized Gamma 5867.83 5 11745.67
Weibull -5968.448 4 11944.90
Log-Normal -5889.96 4 11787.93
Log-Logistic -5938.36 4 11884.74
Gamma -5980.47 4 11968.96
Mixture of 2 Weibull (without covariate) -5865.873 5 11741.75
Mixture of 2 Weibull -5835.78 9 11689.56

Table 4.9: Results from fitting some parametric models with covariate the
patients’ group

Parameter Estimated value Standard error
scale 1 intercept 0.3392 0.1002

1 year trmnt vs. observation 0.4374 0.1196
2 year trmnt vs. observation 0.6781 0.1213

shape 1 1.4269 0.0482
scale 2 intercept 3.5177 0.1834

1 year treatment vs. observation 0.4833 0.1241
2 year treatment vs. observation 0.4773 0.1243

shape 2 1.0496 0.1050
p 0.1919 0.0134

Table 4.10: Estimated values and standard errors for the parameters of the
2-finite Weibull mixture model as they are obtained from the EM algorithm
with covariate the patients’ group

Furthermore, in Table 4.10 are presented the estimated parameters as arises

from the EM algorithm after the usage of the patients’ group as covariate in the

mixture model and their standard errors that we obtain from Bootstrap method.
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Figure 4.3: Kaplan-Meier survival curves and the fitted survival models for
patients in the observation group
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Figure 4.4: Nonparametric hazard functions and parametric estimated func-
tions in the observation group
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Figure 4.5: Kaplan-Meier survival curves and the fitted survival models for
patients in the 1 year treatment group
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Figure 4.6: Nonparametric hazard functions and parametric estimated func-
tions in the 1 year treatment group
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Figure 4.7: Kaplan-Meier survival curves and the fitted survival models for
patients in the 2 year treatment group
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Figure 4.8: Nonparametric hazard functions and parametric estimated func-
tions in the 2 year treatment group
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Figure 4.9: Non parametric hazard function and parametric fuctions esti-
mated from mixture of 2 and 3 Weibull distributions
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Figure 4.10: Kaplan-Meier survival curves and the fitted survival model as
well as the fitted survival functions for each of the 2 Weibull distributions
separately
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Chapter 5

Conclusions

Survival analysis and general Biostatistics play an important role in our days

because field of health and improvement of people’s lifestyle are of great interest.

The last few years, the number of clinical trials is increasing in a great extent for

the above reasons.

In all clinical trials, the basic necessity is the estimation of patients’ survival

time. In HERA trial -in which this thesis lean on- the estimation of survival

and hazard functions is not a simple issue, as survival time of patients does not

come from a known distribution. The hazard function of patients in each of three

groups that there are in trial is non-monotonic. More specific the hazard function

is increasing for some period and then turns decreasing.

Unfortunately, few parametric models can handle this. So we aim at producing

flexible models for such cases starting from the widely used Weibull regression

model. In this thesis we examined the different shapes that can be obtained by a

mixture model of Weibull distributions.

Actually, with the idea of mixture of Weibull distributions we manage to esti-

mate the non-monotonic hazard function successfully and better than using other

parametric survival models which are used in survival analysis widely. Also the

model has the opportunity to allow covariate information and this is a big asset

since permit its using in many cases and especially in data for cancer where a

variety of factors affect the survival time of patients.
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So it is obvious that a mixture of Weibull distributions outweights other popu-

lar survival models such as Weibull, Log-Normal or Generalized Gamma, because

Weibull distribution can have only increasing or decreasing hazard function de-

pending on the value of its shape parameter. Therefore a Weibull mixture model

can give more flexible shapes in hazard function and the number of distributions

in the model depend on the data and the actually shape of the function.

For sure, there are and other models in bibliography which can be used for

the estimation of hazard functions that have a shape like ”bathtab” or ”inverse

buthtub”. An extension in our attempt with the Weibull mixture model is to use

in model Weibull dustributions with one more parameter or mixture model with

more than one distributions. These ideas may give more complicated models but

it is very possible to achieve better estimations.
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