
Integrated Methods and Systems
for Optimization and Decision

Support

Stathis Plitsos

Department of Management Science and Technology

Athens University of Economics and Business

A thesis submitted for the degree of

Doctor of Philosophy

September 2017

This thesis is dedicated to

my parents, Giorgos and Margarita,

for supporting me in many different ways

during the hard period of my research.

Acknowledgements

I would like to personally thank my supervisor, Dr. Ioannis Mourtos,

for his patience, understanding and chances he offered me during my re-

search. Additionally, I would like to thank Prof. Dimitrios Magos and

Prof. Christos Tarantillis for their support on this work. I could not let

aside Dr. Pavlos Eirinakis who helped me in many different ways during

the period of my research.

Furthermore, this research has been funded by

• a European research project, namely “ARTISAN” (GA no. 287993);

• the National Research Fund under the umbrella of Archimedes III

sub-project 28, namely “Assignment problem and all-different Sys-

tems” (MIS: 379389);

• the National Research Fund under the umbrella of Thales 85418,

namely “From Graph Theory to Matroids: Algorithmic Issues and

Applications” (MIS: 379437).

Finally, I feel honoured working with such brilliant colleagues and profes-

sors in the E-Business Research Centre (ELTRUN) the past 5 years. In

my opinion, ELTRUN remains one of the top places for a PhD candidate

in Greece, given the research projects and ideas worked and put in action

along with the academic results achieved.

Abstract

This thesis falls within the scope of Combinatorial Optimization and Deci-

sion Support Systems (DSS). Its purpose is to introduce algorithmic com-

ponents for different optimization problems along with a DSS for each

problem as further result. Motivated by the so-called integrated meth-

ods for optimization, we study three different optimization problems, and

present new algorithms that combine the complementary strengths of the

three major types of optimization methods, i.e., Mathematical Program-

ming, Constraint Programming and Heuristics.

The first problem we focus on, is the multi-index assignment. In this

part of work we propose several components that can be employed across

different types of assignment, i.e, a constraint propagation mechanism, a

tabu-search meta-heuristic, a new variant of the Feasibility Pump heuris-

tic that employs cutting planes, along with a new Branch & Cut method

for the problem at hand. The computational experimentation shows that

indeed these components when employed together reduce the time to op-

timality or the integrality gap for large instances where a competitive

commercial solver runs out of memory. An important aspect of this ap-

proach is its versatility, for example in terms of including a subset of the

selected components or an alternative FP variant as a primal heuristic.

Furthermore, the existence of these components in terms of code paves the

way towards the development of a DSS for the problem at hand, which

can facilitate several types of use, given its general-purpose design and

the various applications of the multi-index assignment problem.

The second problem is the energy-aware production scheduling. Here, we

present an energy-aware production scheduling DSS as designed, imple-

mented and evaluated in a real context. In short, this work contributes

to decision support for energy-efficient manufacturing by a metaheuristic

algorithm that hierarchically optimizes flexible job-shop scheduling prob-

lems, a set of data requirements, the integrated deployment of this DSS as

a web-service and the evaluation of the DSS in real settings. The adopted

scheduling framework incorporates various operational issues, while the

data entities accompanying it meet generic energy-related requirements,

as obtained from the literature and the textile industry. Apart from ex-

amining theoretical aspects regarding the design of energy-aware DSS,

this work presents the significant tangible benefits obtained from the use

of such systems within the textile manufacturing industry. Hence, the

applicability of the proposed DSS, as deployed in two significantly differ-

ent users and production environments, is shown to be both feasible and

effective.

Last, we focus on the the binary multi-dimensional knapsack problem.

Motivated by our research on the multi-index assignment problem and

the new variant of the Feasibility pump heuristic that has been designed

and tested, we broaden our focus on the multi-dimensional knapsack prob-

lem, where its structure is general enough to encompass all binary opti-

mization problems. Here, we describe a new primal-dual method for this

problem, which is a strongly NP-hard combinatorial optimization prob-

lem with many applications. Current exact approaches and commercial

solvers run into difficulties even for a small-to-medium number of con-

straints and variables. The proposed primal-dual method employes the

linear relaxation of the problem at hand, enhanced by global lifted cover

inequalities to improve the upper bound and a new version of the Feasi-

bility Pump heuristic that uses this family of inequalities in the pumping

procedure to obtain better and feasible lower bounds. Since this is only

preliminary work, this new variant of feasibility-pump is tested on liter-

ature instances, for a good portion of which there are still no optimal

solutions available. The results of the heuristic are interesting enough

to trigger further research and development for the proposed primal-dual

method.

The contribution of this effort, given that we focus on two such large

research areas, is multi-fold. Intuitively, an optimization algorithm on

its own is not a DSS, while a DSS without an efficient algorithm cannot

support efficiently decision making. The examination of different opti-

mization problems in terms of structure and applications, has motivated

the generation of quite diverse integrated optimization methods, while for

5

the two of the problems two DSS have been developed and tested, with

one of these in a real and demanding context. Given that there are various

choices of algorithmic components towards optimization, this thesis could

shed some light on the design of efficient optimization algorithms given

the structure and the applications of the problem, while also demonstrat-

ing the use and study of such algorithms not only from a computational

or analytical perspective, but from a DSS viewpoint.

6

Contents

1 Motivation and outline 1

1.1 Background . 1

1.2 Structure of the thesis . 3

1.3 Contribution of the thesis . 4

2 The multi-index assignment problem 6

2.1 Problem definition and motivation . 6

2.2 Research background . 9

2.3 The all-different system . 10

3 Feasibility-pump heuristics 12

3.1 Background . 12

3.2 Embedding cutting planes in feasibility-pump 21

3.3 Computational results . 22

4 Integrated methods for three-index assignment 27

4.1 Motivation and overview . 28

4.2 Cutting planes . 29

4.3 Constraint propagation . 30

4.4 Tabu-search . 31

4.5 Branch & cut . 34

4.6 Computational results . 35

4.6.1 3-index axial assignment . 36

4.6.2 3-index planar assignment . 40

4.7 Beyond three-index assignment . 42

i

5 Decision support for multi-index assignment 44

5.1 Requirements analysis . 44

5.1.1 Description of use cases . 45

5.1.2 Non-functional requirements 47

5.1.3 Data view . 48

5.2 Algorithms . 49

5.3 Overview of screens . 51

5.3.1 Solve a new (k, s)APn instance 51

5.3.2 View a (k, s)APn solution obtained from a single algorithm . . 55

5.3.3 Load costs of a (k, s)APn instance and solve it 55

5.3.4 Solve a new all-different instance 55

6 Decision support for energy-aware production scheduling 64

6.1 Motivation . 65

6.2 Research background . 67

6.3 Problem definition, data requirements and algorithm 70

6.3.1 Energy-aware production scheduling problem with resource con-

straints . 70

6.3.2 Data requirements & information flows 72

6.3.3 Iterated local search method 75

6.4 Energy-aware production scheduling in the textile industry 77

6.4.1 Decision support and production scheduling in the textile industry 77

6.4.2 User requirements and system functionality 78

6.4.3 Implementation details . 79

6.5 Impact and benefit on industrial users 80

6.5.1 Large-size enterprise - Industrial User A 84

6.5.2 Small-to-medium enterprise - Industrial User B 84

6.5.3 Computational experiments and evaluation 85

6.5.4 Deployment and experiences 87

6.6 Concluding remarks . 88

7 Towards primal-dual methods for binary multi-dimensional knap-

sack 89

7.1 Local and global lifted cover inequalities 90

7.1.1 Lifted cover inequalities . 91

7.1.2 Global lifted cover inequalities 93

7.2 Primal-dual method and FP heuristic 94

ii

7.3 Computational results . 95

8 Concluding remarks 100

A Appendix A 103

A.1 MAPS use case analysis . 103

A.2 Overview of MAPS screens . 104

A.2.1 Register . 104

A.2.2 Log-in . 115

A.2.3 View saved solved instances 115

A.2.4 Save a (k, s)APn instance solution 115

A.2.5 Delete a saved (k, s)APn instance 121

A.2.6 Save an all-different instance solution 122

A.2.7 Delete a saved all − different instance 124

A.2.8 View the MAPS manual . 124

A.2.9 Edit the user account . 124

A.2.10 Log out . 127

A.2.11 Delete personal account . 130

Bibliography 132

iii

List of Figures

4.1 Tabu moves on a solution of the (3, 1)AP3 and a solution of the (3, 2)AP3 33

4.2 CPLEX performance on 3-index axial instances 39

4.3 Integrality gap differentiation of exact schemes on planar instances . . 43

5.1 Main use case diagram . 46

5.2 Domain diagram . 48

5.3 Entity-Relationship diagram . 49

5.4 Use Case 4 - Solve a new (k, s)APn instance: Main screen 52

5.5 Use Case 4 - Solve a new (k, s)APn instance: Correct parameters . . . 53

5.6 Use Case 4 - Solve a new (k, s)APn instance: False parameters 53

5.7 Use Case 4 - Solve a new (k, s)APn instance: Results 54

5.8 Use Case 5 - View a (k, s)APn solution from a single algorithm: Selec-

tion of instance . 55

5.9 Use Case 5 - View a (k, s)APn solution from a single algorithm: View

details . 56

5.10 Use Case 5 - View a (k, s)APn solution from a single algorithm: View

cost vector . 56

5.11 Use Case 6 - Load costs of a (k, s)APn instance and solve it : Main

screen . 57

5.12 Use Case 6 - Load costs of a (k, s)APn instance and solve it : Correct

entries example . 57

5.13 Use case 9 - Solve a new all-different instance: Initial screen 58

5.14 Use case 9 - Solve a new all-different instance: Inserting values for

constraints, variables and domains . 58

5.15 Use case 9 - Solve a new all-different instance: Defining variables and

domains 1 . 59

5.16 Use case 9 - Solve a new all-different instance: Defining variables and

domains . 60

5.17 Use case 9 - Optimize an all-different instance 60

iv

5.18 Use case 9 - Minimizing an all-different instance 61

5.19 Use case 9 - Load the costs-file of an all-different instance 61

5.20 Use case 9 - All-different costs-file.csv example 61

5.21 Use case 9 - Solve a new all-different instance: Viewing solution statistics 62

5.22 Use case 9 - Solve a new all-different instance: Viewing solution vector 62

5.23 Use case 9 - Solve a new all-different instance: Downloading OPL script 63

6.1 Data model . 73

6.2 Energy-aware production scheduling DSS architecture 76

6.3 Resource-constrained shop floor scheduling at the process level 81

6.4 Resource-constrained multiprocessor shop floor scheduling 82

6.5 Reactive shop floor scheduling . 83

A.1 Use Case 1 - Register: Main screen 105

A.2 Use Case 1 - Register: False entry . 114

A.3 Use Case 1 - Register: Correct registration 114

A.4 Use Case 2 - Log in: Main screen . 115

A.5 Use Case 2 - Log in: False entry . 116

A.6 Use Case 2 - Log in: Successful log-in 116

A.7 Use Case 3 - View saved solved instances: (k, s)APn instances 1 . . . 117

A.8 Use Case 3 - View saved solved instances: (k, s)APn instances 2 . . . 117

A.9 Use Case 3 - View saved solved instances: all-different instances 1 . . 118

A.10 Use Case 3 - View saved solved instances: all-different instances 2 . . 118

A.11 Use Case 3 - View saved solved instances: Empty list of (k, s)APn

instances . 119

A.12 Use Case 3 - View saved solved instances: Empty list of all−different
instances . 119

A.13 Use case 7 - Save a (k, s)APn instance solution: Solution selection . . 120

A.14 Use case 7 - Save a (k, s)APn instance solution: Saving the solution . 120

A.15 Use case 7 - Save a (k, s)APn instance solution: Description input . . 121

A.16 Use case 7 - Save a (k, s)APn instance solution: Solution is saved . . . 121

A.17 Use case 8 - Delete a saved (k, s)APn instance solution: Selecting solution122

A.18 Use case 8 - Delete a saved (k, s)APn instance solution: Solution deleted122

A.19 Use case 10 - Save an all-different instance solution: Entering instance

information . 123

A.20 Use case 10 - Save an all-different instance solution: Solution of the

instance saved successfully . 123

v

A.21 Use case 11 - Delete a saved all−different instance solution: Selecting

solution . 124

A.22 Use case 8 - Delete a saved (k, s)APn instance solution: Solution deleted125

A.23 Use case 12 - View the MAPS manual: Selecting the manual 125

A.24 Use case 12 - View the MAPS manual: Viewing the manual 126

A.25 Use case 12 - View the MAPS manual: Going to the top 126

A.26 Use case 12 - View the MAPS manual: Returning to the manual index 127

A.27 Use case 13 - Edit the user account: Editing the user information . . 127

A.28 Use case 13 - Edit the user account: Error in entry 128

A.29 Use case 13 - Edit the user account: User account info updated . . . 128

A.30 Use case 14 - Log out: Selecting to log out 129

A.31 Use case 14 - Log out: User is logged out 129

A.32 Use case 15 - Delete personal account: Selecting to delete personal

account . 130

A.33 Use case 15 - Delete personal account: Confirm deletion of account . 131

vi

List of Algorithms

1 Pseudocode of the basic version of feasibility-pump 14

2 Pseudocode of the Objective feasibility-pump 15

3 Pseudocode of the FP2 heuristic . 16

4 Pseudocode of the OFP2 heuristic . 17

5 Pseudocode of the OFRP1 heuristic 19

6 Pseudocode of the OFRP2 heuristic 20

7 Pseudocode of the OFP3 heuristic . 23

8 Pseudocode of the ORFP3 heuristic 24

9 Pseudocode of the setToOne(xj, forceFlag) function 31

10 Pseudocode of the setToZero(xj, forceFlag) function 32

11 Pseudocode of the backTrack() function. 32

12 Pseudocode of the basic version of feasibility-pump with global lifted

inequalities . 96

13 Pseudocode of the primal-dual algorithm for the 0− 1 MKP 97

vii

Chapter 1

Motivation and outline

This thesis falls within the scope of Combinatorial Optimization (also referred to as

Discrete Optimization) and Decision Support Systems (DSS). The purpose of this

effort is to introduce algorithmic components for different optimization problems, not

only from a Combinatorial Optimization point of view, i.e., mathematical analysis

and algorithmic results, but also from a DSS perspective. This means that, apart

from the design and implementation of efficient optimization methods, we focus also

on the requirements generated by the application of the corresponding optimization

problems and the design, implementation and evaluation of DSS that address these

requirements by incorporating these optimization methods.

1.1 Background

Over the past decade, there is a broad interest and motivation for Integrated Opti-

mization Methods [55]. Integration refers to three major types of optimization meth-

ods, namely, Mathematical Programming (MP), Constraint Programming (CP) and

Heuristic methods. That is, instead of using methods of a single optimization type,

one could exploit their complementary strengths by combining them in a meaningful

and effective manner. Each optimization type offers different methods and advan-

tages that can be selected and integrated appropriately considering the structure and

the difficulties of the problem at hand. For example, Mathematical Programming

offers the so-called linear relaxation, plus problem-specific or general-purpose poly-

hedral analysis, which reveals valid inequalities for the derivation of cutting planes.

Constraint Programming offers inference techniques and modelling flexibility, i.e., a

higher level mathematical formulation for the problem as opposed to Mathematical

Programming where the problem formulation can become quite challenging. Heuristic

1

methods and algorithms offer a clever search strategy of the solution space. Although

these algorithms are highly problem-specific, they provide very good results.

Still, optimization calls for a multifaceted approach. Over the past 15 years, re-

search has shown that there is much to be gained by exploiting the complementary

strengths of different approaches to optimization instead of using each one individu-

ally. The result of such combinations of optimization methods is often encompassed

under the recent domain of integrated methods for optimization [55]. There is a grow-

ing literature arguing in favour of several combinations of the methods presented

above, displaying better computational performance compared to the use of a single

optimization method. Nevertheless, a rising problem seems to be that if there are

many solution methods, there are even more ways to combine them. Hence, there is

a field of research on the ‘appropriate’ combination of solution methods.

Apparently, such optimization methods, given an application context modelled

after the optimization problem they tackle, can facilitate decision making whether

it is a minimization or a maximization of an objective. Decision support systems

showed up early in the academic literature [77]. The inclusion of any algorithm, not

necessarily an optimization one, in a system with appropriate architectural design,

generates a Decision Support System (DSS) for the problem or decision at hand [101],

thus enhancing decision making. In general, a DSS can be part of an organization

emphasizing on flexibility, adaptability, quick response and support for the personal

decision making styles of individual users, while it is user initiated and controlled

[101]. Intuitively, an optimization algorithm on its own is not a DSS, while a DSS

without an efficient algorithm cannot support efficiently decision making.

Since this thesis combines two major in size research areas, and considering that

it discusses different optimization problems with different DSS as further results,

the structure and discussion of each topic is modular. Rather than introducing all

optimization problems and DSS with the research background at once, this thesis

presents and discusses thoroughly each topic separately. That is, each optimization

problem and DSS is introduced with the associated literature review, algorithmic

components and experimental analysis. This helps the reader to navigate through

this work without loss of focus, while keeping each chapter more self-contained and

concise.

2

1.2 Structure of the thesis

Let us now provide an outline of this thesis; Chapter 2 introduces the multi-index

assignment problem. This includes a description of the problem, the motivation deriv-

ing from the various applications of the axial and planar families of this problem and

an Integer Programming mathematical model along with a Constraint Programming

model using the all-different system.

Chapter 3 describes in detail a general-purpose Integer Programming heuristic,

namely Feasibility Pump (FP), which is extensively studied and used as shown in

the current literature. We focus on this heuristic because its general-purpose nature

can tackle the structural differences of the two families of multi-index assignments,

namely, axial and planar ones. Additionally, Chapter 3 presents a new variant of this

heuristic that employs problem-specific cutting planes for multi-index assignment,

followed by computational experimentation of this new FP variant along with the

existing ones.

Chapter 4 presents an integrated method, i.e., an exact algorithm for multi-index

assignment that incorporates different optimization components. These are: problem-

specific cutting planes, as described in the literature, the aforementioned new FP vari-

ant, a tabu-search meta-heuristic and a mechanism that performs constraint propaga-

tion for the problem at hand. Note here, that these components remain functional for

all families of assignment problems, while as discussed, the versatility of combinations

of these components towards new integrated methods is quite interesting.

Chapter 5 presents a DSS for multi-index assignment that includes some of the

aforementioned components. This DSS is thoroughly discussed, starting from the

elicitation of user requirements, to the implementation of the system and the demon-

stration of the workflow, in terms of system screens. Let us highlight that integrated

solvers coupled by such a DSS are not reported in the literature. Additionally, we con-

sider such interfaces an important step for the adoption of such methods in practical

situations, while the versatility of integrated methods yields a breadth of parameter-

ization for which such a DSS could be of help. Therefore the work presented here

could be of both practical and academic use beyond the scope of the optimization

problem underlying it.

In Chapter 6 we shift our focus to a different optimization problem, for which this

thesis contributes to DSS design and not to the optimization method employed. This

is the energy-aware production scheduling problem, for which a DSS is described, i.e.,

user requirements, algorithmic components, data requirements and model followed by

3

the system architecture. The proposed DSS has been used by two industrial users in

the textile manufacturing sector under the framework of a European research project,

namely ARTISAN [1]. Results of this research include the evaluation of the proposed

DSS in terms of use and energy savings for the two industrial users.

Chapter 7 follows a different track by focusing on a third optimization problem

for which we propose an optimization method but not a DSS. The problem is the

multi-dimensional knapsack which is generic enough to include all binary optimization

problems. Hence, in this chapter we focus on the design and development of a primal-

dual algorithm that uses a family of general-purpose cutting planes appropriately

chosen for this problem, along with the aforementioned FP variant that employs these

cuts so as to obtain better feasible solutions. This last chapter is rather exploratory

and attempts to transfer the optimization ideas developed in Chapters 3 and 4 to a

far more generic class of problems. Therefore it presents only preliminary findings

and mostly shapes the path for future research.

We complete our exposition with a short concluding chapter.

1.3 Contribution of the thesis

Considering that we examine three different optimization problems and propose two

different DSS, the contribution of this work is multi-fold. Regarding the multi-index

assignment problem, in this thesis we propose several components that can be em-

ployed across different types of assignment, i.e, a constraint propagation mechanism,

a tabu-search meta-heuristic, a new variant of the Feasibility Pump heuristic that

employs cutting planes, along with a new Branch & Cut method for the problem

at hand. The computational experimentation shows that indeed these components

when employed together reduce the time to optimality or the integrality gap for large

instances where a competitive commercial solver runs out of memory. An impor-

tant aspect of this approach is its versatility, for example in terms of including a

subset of the selected components or an alternative FP variant as a primal heuris-

tic. Furthermore, the existence of these components in terms of code paves the way

towards the development of a DSS for the problem at hand, which can facilitate sev-

eral types of use, given its general-purpose design and the various applications of the

multi-dimensional assignment problem.

Regarding the energy-aware production scheduling problem, we present an energy-

aware production scheduling DSS as designed, implemented and evaluated in a real

4

context. In short, this work contributes to decision support for energy-efficient manu-

facturing by a metaheuristic algorithm that hierarchically optimizes flexible job-shop

scheduling problems, a set of data requirements, the integrated deployment of this

DSS as a web-service and the evaluation of the DSS in real settings. The adopted

scheduling framework incorporates various operational issues, while the data entities

accompanying it meet generic energy-related requirements, as obtained from the lit-

erature and the textile industry. Apart from examining theoretical aspects regarding

the design of energy-aware DSS, this work presents the significant tangible bene-

fits obtained from the use of such systems within the textile manufacturing industry.

Hence, the applicability of the proposed DSS, as deployed in two significantly different

users and production environments, is shown to be both feasible and effective.

Regarding the binary multi-dimensional knapsack problem, we describe a new

primal-dual method for this problem, which is a well known (and strongly NP-

hard) combinatorial optimization problem with many applications. Current exact

approaches and commercial solvers run into difficulties even for a small-to-medium

number of constraints and variables. The proposed primal-dual method employes the

linear relaxation of the problem at hand, enhanced by global lifted cover inequalities

to improve the upper bound and a new version of the Feasibility Pump heuristic that

uses this family of inequalities in the pumping procedure to obtain better and feasible

lower bounds. Since this is only preliminary work, this new variant of feasibility-pump

is tested on literature instances, for a good portion of which there are still no opti-

mal solutions available. The results of the heuristic are interesting enough to trigger

further research and development for the proposed primal-dual method.

Overall, the examination of different optimization problems in terms of structure

and applications, has motivated the generation of quite diverse integrated optimiza-

tion methods, while for the two of the problems two DSS have been developed and

tested, with one of these in a real and demanding context. Given that there are var-

ious choices of algorithmic components towards optimization, this thesis could shed

some light on the design of efficient optimization algorithms given the structure and

the applications of the problem, while also demonstrating the use and study of such

algorithms not only from a computational or analytical perspective, but from a DSS

viewpoint.

5

Chapter 2

The multi-index assignment
problem

This section describes the multi-index assignment problem, i.e., a combinatorial prob-

lem that is well-studied across the literature. Indeed, several optimization problems

include an assignment structure, hence the problem at hand encompasses numerous

applications. In this section, we formally define the multi-index assignment problem,

i.e., we provide its mathematical formulation and also discuss its application. Fur-

thermore, since different approaches are followed towards its study, we present an

additional Constraint Programming model using the all-different system.

The remainder of this chapter goes as follows; in Section 2.1 we provide the moti-

vation and describe the mathematical model. Section 2.2 presents the research back-

ground of the multi-index assignment, i.e., approximation studies, exact algorithms,

polyhedral analysis and heuristics that have showed up in the literature. Finally, Sec-

tion 2.3 presents the Constraint Programming model for the problem at hand using

the all-different system.

2.1 Problem definition and motivation

Several optimization problems include an assignment, i.e., two disjoint sets that must

comply to an one-to-one relation [75]. Formally, the 2-index assignment problem is

defined on two sets I and J, where |I| = |J | = n, plus a weight per pair (i, j) ∈ I × J
and asks for a minimum-weight collection of n such pairs with the property that each

element of I ∪ J appears in exactly one of them.

In a similar manner, the 3-index assignment problem [87] considers a third set

K also of cardinality n plus a weight per triple (i, j, k) ∈ I × J ×K and asks for a

collection of n such triples with the property that each element of I ∪ J ∪K appears

6

in exactly one triple. This problem is called the axial 3-index problem because there

is a second assignment problem defined on 3 sets, namely the planar 3-index problem

[44]. The latter differs by asking for a collection of n2 triples with the property that

each pair of elements in (I × J) ∪ (I × K) ∪ (J × K) appears in exactly one triple

(thus, each element in I ∪ J ∪K appears in n triples). Both problems can easily be

modelled via (linear) Integer Programming (IP), using a binary variable per triple,

as presented in Table 2.1.

Table 2.1: Integer Programming models for 3-index assignment problems
Axial assignment Planar assignment∑

i∈I
∑

j∈J xijl = 1, l ∈ L,
∑

i∈I xijl = 1, j ∈ J , l ∈ L,∑
i∈I
∑

l∈L xijl = 1, j ∈ J ,
∑

j∈J xijl = 1, i ∈ I, l ∈ L,∑
j∈J
∑

l∈L xijl = 1, i ∈ I,
∑

l∈L xijl = 1, i ∈ I, j ∈ J ,

xijl ∈ {0, 1}, i ∈ I, j ∈ J , l ∈ L. xijl ∈ {0, 1}, i ∈ I, j ∈ J , l ∈ L.

In fact, axial assignment is originally defined on k disjoint n-sets [87], while planar

assignment is an alternative representation of a long-standing combinatorial structure

called mutually orthogonal Latin squares (MOLS) [36]. A Latin square of order n is

an n × n matrix in which values 1, 2, . . . , n appear once in each row and column;

hence if sets I, J and K index the rows, columns and values of an n × n matrix, it

becomes evident that each 3-index planar assignment is a Latin square of order n and

vice-versa. For the definition of MOLS, see [65]. IP models can be defined also for

k-index axial and planar assignment problems, using a binary variable for each of the

nk k-tuples.

A more general IP model that also encompasses other assignment types has been

introduced by Appa et al. [6], by defining the (k, s) assignment problem, denoted as

(k, s)APn. The parameter s determines the assignment type, with s = 1 and s = 2

yielding axial and planar assignment respectively. Formally, the (k, s)APn assumes

k disjoint n-sets and asks for a collection of ns k-tuples with the property that each

s-tuple of elements appears in exactly one k-tuple. Hence, Table 2.1 presents the

IP models for (3, 1)APn and (3, 2)APn. The mathematical formulation and complete

definition lies in [8]; Here, is provided a short description and the mathematical model

as obtained by that study.

The problem is formulated as follows:

min
∑
{wmK · xmK : mK ∈MK},

s.t.
∑
{xmK : mK\S} = 1 for every mS ∈MS, S ∈ Qk,s,

7

xmK ∈ {0, 1}nk
,for every mK ∈MK

where,

K a set of indices, K = {1, ..., k},

S ⊆ K, subset of indices,

Qk,s the collection of all distinct S, i.e. Qk, s = {S ⊆ K : |S| = s}, with

|Qk,s| =
(
k
s

)
,

k disjoint n-sets M1,M2, ...,Mk and let mi ∈Mi, for i ∈ K,

S = {i1, i2, ...is} such that i1 < i2 < ... < is,

MS = Mi1 ×Mi2 × ...×Mis and mS ∈MS,

xmK binary variables and the mapping w : MK −→ R

There are exactly s fixed indices in each constraint. MK\S is the set of indices

appearing in the sum, whereas MS is the set of indices common to all variables in

an equality constraint. The (0,1) matrix of the constraints A
(k,s)
n has nk columns

and
(
k
s

)
· ns rows, i.e. ns constraints for each of the

(
k
s

)
distinct S ∈ Qk,s and each

constraint includes nk−s variables.

Apart from their nice combinatorial structure, assignment problems enjoy a broad

range of applications, thus requiring an effective optimization approach. For example,

axial assignment applies to data-association problems [91], to the classification and

pairing of human chromosomes [17] and to wafer-to-wafer yield optimization in 3D

electronic circuit printing [103]. Planar assignment shares the diverse applications of

Latin squares [65] from the statistical design of experiments [54] to error correcting

codes [86]. The size of these real problems varies significantly but normally assumes

k ≥ 3 and n ≥ 50.

Despite the extensive literature on assignment problems, discussed in the next

section, there is a gap in exact optimization methods that tackle large-scale instances.

In addition, although assignment problems for different values of k and s share a

common structure, most existing computational methods focus on a specific s and

frequently on a specific k. This appears reasonable given that the (k, s)APn becomes

NP-complete already for k = 3 : for s = 1 this follows from an early result on

3-dimensional matching [61], while for s = 2 it is shown by Frieze [44]. Moreover,

the fast-growing size of the (k, s)APn’s Linear Programming (LP) relaxation made it

8

memory-wise intractable even for small n, thus discouraging the design of appropriate

‘Branch & Cut’ (B&C) methods. This is indicated by the fact that existing exact

methods normally rely on ‘Branch & Bound’ (B&B) and subgradient algorithms for

solving a Langrangean relaxation, as in [13] or [71], with limited (if any) use of cutting

planes, e.g., at the top node of the B&B tree by [94] or [72]. Notably, all existing

approaches focus on small instances (e.g., for s = 1, k = 3 and n ≤ 30), although

related applications ask for much larger ones [33] and B&C approaches can cope with

large instances on other optimization problems, e.g., Lysgaard et al. [69].

Several non-exact methods have also been proposed for the 3-index axial prob-

lem in the form of either approximation methods for special (or even polynomially

solvable) cases as in [26] or meta-heuristics (e.g., [59]) that indeed deal with large in-

stances. A metaheuristic for the 3-index planar problem has been presented by Magos

[70]. Let us note here that these approaches focus on a specific type of assignment,

thus it is doubtful whether they could become applicable for different values of k and

s.

The remainder of this chapter goes as follows; Section 2.2 presents the research

background of the Multi-index assignment, i.e., approximation studies, exact algo-

rithms, polyhedral analysis and heuristics that showed up in the literature the past

years. Finally, Section 2.3 presents the Constraint Programming model for the prob-

lem at hand using the all-different system.

2.2 Research background

As already mentioned, Pierskalla [87] introduces the (k, 1)APn (i.e., the axial k-index

assignment problem) and the first B&B method, which is a primal-dual scheme for

upper and lower bound acquisition, with an analogous scheme appearing in [52] for

k = 3; the branching strategy in both cases fixes single variables to zero or one. Also

for the (3, 1)APn, Balas and Saltzman [13] present an elegant B&B method that uses

dual heuristics to obtain lower bounds, based on a Lagrangian relaxation tightened

with facet-defining inequalities, and primal heuristics for obtaining upper bound; Qi

et al. [94] present a B&B algorithm in which these inequalities are added to the LP-

relaxation but only at the top node. Kim et al. [63] use the Hungarian algorithm and

a Lagrangian relaxation to obtain tighter lower bounds for the (3, 1)APn. Pustaszeri

et al. [93] use a B&B algorithm for the (5, 1)APn, using the LP-relaxation and

branching over the variables with the smallest extrapolation error, while also using

some preprocessing techniques.

9

Andrijich and Cacceta [4] focus on the general case of the (k, 1)APn, using the

primal heuristics and the Lagrangian relaxation presented by Balas and Saltzman

[13]. Pasiliao et al. [84] propose and compare two B&B algorithms for the (k, 1)APn,

where the first one uses the standard formulation of Pierskalla [87] and branching

over variables sharing the same index, while the second relies on a permutation-based

formulation and branching over permutations in a subset of indices. The last known

exact approach, proposed by Walteros et al. [107] for the (k, 1)APn but for the special

case of the so-called ‘star’ costs, is a ‘Branch & Price’ algorithm. Hence, no B&C or

integrated method has been proposed for axial assignment problems.

Non-exact methods include the approximation algorithms of Crama and Spieksma

[26] for the (3, 1)APn with triangle inequalities, of Bandelt et al. [15] for the (k, 1)APn

with cost coefficients of four special forms and of Burkard et al. [22] for the (3, 1)APn

with decomposable cost coefficients (which is a polynomially-solvable case). Several

meta-heuristics, such as variable depth interchange, variable neighborhood search and

greedy randomized adaptive search are examined by [59].

Concerning the planar multi-index assignment problem, the first exact approach is

the B&B algorithm of Vlach [106] for the (3, 2)APn. A more elaborate B&B algorithm

also for k = 3 appears in [71], where a relaxation heuristic and a local-improvement

tackle the upper bound and a dual heuristic solving a Lagrangian relaxation of the

problem obtains lower bounds. A B&C algorithm for the the (4, 2)APn, which also

implements constraint propagation during branching, appears in [7] but for finding

only a single (and not a minimum-weight) assignment.

Approximation algorithms for planar problems focus only on the (3, 2)APn, e.g.,

Dichkoskaya and Kravtsov[32]. A tabu-search algorithm that improves a given feasible

solution has been proposed by Magos [70]. Recent literature for the (3, 2)APn focuses

mainly on the completion of partial Latin squares, e.g., see Soicher et al. [100].

Despite the great literature size of the problem at hand, there exists no reference

for a DSS that encorporates different algorithmic components and assists in a general

manner the solution of a (k, s)APn instance.

2.3 The all-different system

When modelling in Constraint Programming (CP), it is convenient to have at one’s

disposal some constraints corresponding to a set of constraints, i.e. global constraints.

These constraints can be associated with more powerful filtering algorithms because

10

Table 2.2: Planar and Axial 3-index assignment CP models
Axial assignment (s = 1) Planar Assignment (s = 2)
all different(x1

i : i ∈ {0, ..., n− 1}), all different(xij :
i ∈ {0, ..., n− 1}, ∀j ∈ {0, ..., n− 1}),

all different(x2
i : i ∈ {0, ..., n− 1}), all different(xij :

j ∈ {0, ..., n− 1}, ∀i ∈ {0, ..., n− 1}),
x1
i , x

2
i ∈ {0, ..., n− 1}, ∀i ∈ {0, ..., n− 1}. xij ∈ {0, ..., n− 1},

∀i, j ∈ {0, ..., n− 1}.

they can take into account the simultaneous presence of simple constraints, to further

reduce the domains of the variables.

The all-different system is a global CP constraint; it is a generalization of the ‘6=’

operator and imposes to the variables it involves that they receive pairwise different

values. For example, having three variables,

x1, x2, x3 ∈ {1, 4, 5, 7},

all different(x1, x2, x3) implies that x1 6= x2, x1 6= x3, and x2 6= x3

hence a feasible solution could be x1 = 4, x2 = 5, x3 = 1.

As examined in [5], the all-different system describes and generalizes assignment

structures. Table 2.2 gives an example of how the axial and planar assignment prob-

lem may be modelled after the all-different system.

11

Chapter 3

Feasibility-pump heuristics

This chapter describes a general-purpose heuristic for mixed integer programs (MIP),

namely feasibility-pump, along with two new variants that include constraint propa-

gation and cutting planes in order to provide better feasible solutions. This is applied

to the multi-index assignment problem, as defined in Chapter 2, yet it becomes easy

to see that the approach is generic enough to be applied to any MIP; this line of work

will be further developed in Chapter 7.

The remainder of this chapter goes as follows; Section 3.1 presents the research

background, i.e., the existing feasibility-pump variants. In Section 3.2 we present

the integration of constraint propagation and cutting planes in this heuristic, while

in Section 3.3 presents the computational results of all feasibility-pump variants,

including the new ones, when employed on literature and generated instances for the

3-index axial and planar assignment problem.

3.1 Background

The feasibility-pump (FP) is a rather recent [40], yet extensively studied Linear Pro-

gramming (LP) based heuristic for mixed integer programs. At each iteration (pump-

ing cycle), FP rounds the current LP solution and sets the distance from the derived

integer vector as the objective to be minimized at the next iteration, thus guiding

the LP towards feasibility. To better display how the basic version of FP, hereafter

denoted as FP1, consider that we wish to find a feasible solution for a generic MIP

problem of the form

12

(MIP) min cTx (1)

Ax ≥ b (2)

xj ∈ Z, ∀j ∈ J (3)

where A is a n × m matrix. Let P := {x : Ax ≥ b} denote the polyhedron

of the LP relaxation of the given MIP . We represent with [·] the scalar rounding

to the nearest integer and define as x̃ the rounding of a given x obtained by setting

x̃j := [xj] if j ∈ J and x̃j := xj otherwise.

Following this we will consider the L1-norm distance between a generic point x ∈ P
and a given integer point x̃ defined as,

∆(x, x̃) =
∑
j∈J

|x− x̃|

Given an integer point x̃, the closest point x∗ ∈ P can be determined by solving

the LP

min{∆(x, x̃) : Ax ≥ b}

If the L1-norm distance is equal to zero, then x∗j(= x̃j) is integer for all j ∈ J , so

x∗ is a feasible solution. Conversely, given a point x∗ ∈ P , the integer point x̃ can be

obtained by rounding x∗. If this minimization of the distance is performed iteratively,

two trajectories of integer and LP-feasible points are generated, the distance of which

is consecutively reduced, hence leading to a feasible integer solution. Algorithm 1 is

the Pseudocode of FP1

A variant of FP, proposed by Achterberg and Berthold [3], guiding the LP not only

towards feasibility but also towards optimality is the ‘Objective FP’ (OFP1). This

variant uses a convex combination of the distance ∆(x, x̃) and the original objective

function vector c (assuming c 6= 0), i.e.,

∆S
α(x, x̃) = (1− a)∆(x, x̃) + α

√
|S|
||c||

cTx, a ∈ [0, 1],

where || · || is the Euclidean norm of a vector and
√
|S| is the Euclidean norm of the

vector of coefficients in ∆(x, x̃). In each cycle, α is geometrically decreased by a fixed

factor φ ∈ (0, 1), i.e. αt+1 = αtφ and a0 ∈ [0, 1]. Algorithm 2 is the pseudocode of

OFP1 with the αt and φ parameters set to values as in [3].

13

Algorithm 1 Pseudocode of the basic version of feasibility-pump
1: nIT := 0
2: distance =∞
3: initialize list l
4: x∗ = argmin{cTx : Ax ≥ b}
5: if x∗ is integer then
6: return x∗

7: end if
8: while distance 6= 0 or nIT < maxIterations do
9: nIT = nIT + 1
10: x∗ = argmin{∆(x, x̃) : Ax ≥ b}
11: distance = ∆(x, x̃)
12: if x∗ is integer then
13: return x∗

14: end if
15: if ∃ j ∈ J : [x∗j] 6= x̃j then
16: x̃ = [x∗]
17: if cycle detected then
18: ρj = rand(−0.3, 0.7)
19: for i = 0 to n do
20: if |x∗j − x̃j|+max{ρj, 0} then
21: flip x̃j //Random restart
22: end if
23: end for
24: empty list l
25: end if
26: keep the hash of x̃ in list l
27: else
28: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
29: end if
30: end while

14

Algorithm 2 Pseudocode of the Objective feasibility-pump
1: t := 0
2: distance =∞
3: at = 1
4: φ = 0.9
5: initialize list l
6: x∗ = argmin{cTx : Ax ≥ b}
7: if x∗ is integer then
8: return x∗

9: end if
10: while distance 6= 0 or nIT < maxIterations do
11: x∗ = argmin{∆S

α(x, x̃) : Ax ≥ b}
12: distance = ∆S

α(x, x̃)
13: if x∗ is integer then
14: return x∗

15: end if
16: if ∃ j ∈ J : [x∗j] 6= x̃j then
17: x̃ = [x∗]
18: if cycle detected then
19: ρj = rand(−0.3, 0.7)
20: for i = 0 to n do
21: if |x∗j − x̃j|+max{ρj, 0} then
22: flip x̃j //Random restart
23: end if
24: end for
25: empty list l
26: end if
27: keep the hash of x̃ and αt in list l
28: else
29: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
30: end if
31: t = t+ 1
32: αt = αtφ
33: end while

15

Furthermore, Fischetti et al. [41] successfully combine FP with Constraint Pro-

gramming (CP) methods as shown by the improved computational behavior of ‘feasibility-

pump v2.0’ (FP2, OFP2); at this variant, each rounding decision is followed by prop-

agation on the linear constraints. In that regard, FP2 defines another interesting

combination of CP and Integer Programming (IP) methods. Algorithms 3 and 4 are

the pseudocode of FP2 and OFP2 respectively.

Algorithm 3 Pseudocode of the FP2 heuristic
1: nIT := 0
2: distance =∞
3: initialize list l
4: x∗ = argmin{cTx : Ax ≥ b}
5: if x∗ is integer then
6: return x∗

7: end if
8: while distance 6= 0 or nIT < maxIterations do
9: nIT = nIT + 1
10: x∗ = argmin{∆(x, x̃) : Ax ≥ b}
11: distance = ∆(x, x̃)
12: if x∗ is integer then
13: return x∗

14: end if
15: if ∃ j ∈ J : [x∗j] 6= x̃j then
16: round x∗ and propagate
17: if cycle detected then
18: ρj = rand(−0.3, 0.7)
19: for i = 0 to n do
20: if |x∗j − x̃j|+max{ρj, 0} then
21: flip x̃j //Random restart
22: end if
23: end for
24: empty list l
25: end if
26: keep the hash of x̃ in list l
27: else
28: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
29: end if
30: end while

Following these variants of FP, several other emerged in the current literature.

In this study we focus on the variants that deal with linear optimization problems.

De Santis et al. [30], by interpreting the feasibility-pump as a Frank-Wolfe method

applied to a non-smooth concave merit function. Following this, De Santis et al.

16

Algorithm 4 Pseudocode of the OFP2 heuristic
1: t := 0
2: distance =∞
3: at = 1
4: φ = 0.9
5: initialize list l
6: x∗ = argmin{cTx : Ax ≥ b}
7: if x∗ is integer then
8: return x∗

9: end if
10: while distance 6= 0 or nIT < maxIterations do
11: x∗ = argmin{∆S

α(x, x̃) : Ax ≥ b}
12: distance = ∆S

α(x, x̃)
13: if x∗ is integer then
14: return x∗

15: end if
16: if ∃ j ∈ J : [x∗j] 6= x̃j then
17: round x∗ and propagate
18: if cycle detected then
19: ρj = rand(−0.3, 0.7)
20: for i = 0 to n do
21: if |x∗j − x̃j|+max{ρj, 0} then
22: flip x̃j //Random restart
23: end if
24: end for
25: empty list l
26: end if
27: keep the hash of x̃ and αt in list l
28: else
29: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
30: end if
31: t = t+ 1
32: αt = αtφ
33: end while

17

[29] extend their previous results and propose new concave non-differentiable penalty

functions for measuring solution integrality and define another FP variant, namely

objective re-weighted FP (hereafter denoted as ORFP1) that uses a general class of

functions for measuring solution integrality. In this variant the L1-norm is replaced

with a weighted one of the form

∆W,θ(x, x̃) =
1− θ
||∆||

∆W (x, x̃) +
θ

||c||
cTx

with

∆W (x, x̃) =
∑
j∈J

wj|xj − x̃j|,

J = 1, ..., n

where, ||∆|| =
√
|J |, θ ∈ [0, 1] decreased at each iteration k by a factor ν (i.e.,

θk+1 = νθk) and wj,∀j ∈ J , are positive weights depending on the merit function

φ chosen. The results of this study concluded that a combination of two such merit

functions

φ(x) = λφ1(x) + (1− λ)φ2(x)

where λ ∈ [0, 1] and modifying the λ parameter at each iteration k as soon as the

algorithm stalls, with

φ1(x) = min{1− exp(−αx), 1− exp(−α(1− x))},

φ2(x) = min{[1 + exp(−αx)]−1, [1 + exp(−α(1− x))]−1},

α > 0,

wkj = λk|gkj |+ (1− λk)|hkj |, j = 1, ..., n,

gkj ∈ ∂φ1(x̃k), hkj ∈ ∂φ2(x̃k),

provides the best possible results. De Santis et al. [29] suggest that constraint

propagation could be used in the rounding phase, however, this has not been tested.

Employing such a tool in ORFP1, implies a new variant of this heuristic which is

hereafter denoted as ORFP2. Algorithms 5 and 6 are the pseudocode for ORFP1

and ORFP2 respectively.

Finally, Boland et al. [19] investigate the benefits of enhancing the rounding

procedure with an integer line search that efficiently explores a large set of integer

points.

18

Algorithm 5 Pseudocode of the OFRP1 heuristic

1: k := 0
2: distance =∞
3: θk = 1
4: ν = 0.9
5: λk = 0.5
6: initialize list l
7: x∗ = argmin{cTx : Ax ≥ b}
8: if x∗ is integer then
9: return x∗

10: end if
11: while distance 6= 0 or nIT < maxIterations do
12: x∗ = argmin{∆W,θ(x, x̃) = 1−θ

||∆||∆W (x, x̃) + θ
||c||c

Tx) : Ax ≥ b}
13: distance = ∆k

W,θ(x, x̃)
14: if x∗ is integer then
15: return x∗

16: end if
17: if ∃ j ∈ J : [x∗j] 6= x̃j then
18: round x∗

19: if cycle detected then
20: ρj = rand(−0.3, 0.7)
21: λk = 0.5λk

22: for i = 0 to n do
23: if |x∗j − x̃j|+max{ρj, 0} then
24: flip x̃j //Random restart
25: end if
26: end for
27: empty list l
28: end if
29: keep the hash of x̃ and αt in list l
30: else
31: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
32: end if
33: k = k + 1
34: θk = θkν
35: end while

19

Algorithm 6 Pseudocode of the OFRP2 heuristic

1: k := 0
2: distance =∞
3: θk = 1
4: ν = 0.9
5: λk = 0.5
6: initialize list l
7: x∗ = argmin{cTx : Ax ≥ b}
8: if x∗ is integer then
9: return x∗

10: end if
11: while distance 6= 0 or nIT < maxIterations do
12: x∗ = argmin{∆W,θ(x, x̃) = 1−θ

||∆||∆W (x, x̃) + θ
||c||c

Tx) : Ax ≥ b}
13: distance = ∆k

W,θ(x, x̃)
14: if x∗ is integer then
15: return x∗

16: end if
17: if ∃ j ∈ J : [x∗j] 6= x̃j then
18: round x∗ and propagate
19: if cycle detected then
20: ρj = rand(−0.3, 0.7)
21: λk = 0.5λk

22: for i = 0 to n do
23: if |x∗j − x̃j|+max{ρj, 0} then
24: flip x̃j //Random restart
25: end if
26: end for
27: empty list l
28: end if
29: keep the hash of x̃ and αt in list l
30: else
31: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
32: end if
33: k = k + 1
34: θk = θkν
35: end while

20

Such methods are the common theme of several papers over the last decade and

have been applied successfully to several combinatorial optimization problems. In

that direction, the concept of ‘Integrated Methods for Optimization’ [55] anticipates

further integration of exact and heuristic optimization methods, thus also motivating

this work.

3.2 Embedding cutting planes in feasibility-pump

The nature of this heuristic seems intriguing considering that it allows the use of

different optimization methods, such as constraint propagation. Therefore this study

proposes the inclusion of cutting planes in each pumping cycle; note that this differs

substantially from the use of cuts in the restart-phase to avoid FP ‘cycling’ [18]. The

intuition is that cuts added before the pumping phase tighten the LP thus offering FP

an improved starting point, while cuts added in each pumping cycle enforce feasibility

and possibly drive FP faster to a good integer feasible vector (thus reducing the

number of cycles). To test this assumption, we focus on the multi-index assignment

problem, i.e., (k, s)APn, as defined in Chapter 2, particularly the 3-index axial (s = 1)

and planar (s = 2) assignment problem, thus problem-specific cuts are used for this

purpose.

For the (3, 1)APn, we use the two families of inequalities induced by cliques of the

intersection graph, which are not included in the IP formulation. As shown by [12],

these inequalities are facet-defining (i.e., the strongest possible in polyhedral terms)

and are the only such inequalities arising from cliques of the intersection graph. Both

families can be separated in O(n3) steps through the algorithms of [11]. Inequalities

arising from odd-holes of size 5 and also separable in O(n3) steps appear in [94] but

not used here, since computationally less effective; i.e., these inequalities are rarely

violated if clique inequalities are separated first and their addition does not improve

the lower bound. Families of clique inequalities for the (k, 1)APn appear in [72],

generalizing for all k the ones of [12] and also separable in polynomial time.

For the (3, 2)APn, there are no clique inequalities other than the ones used (as

equalities) in its IP formulation. Inequalities arising from odd-holes are presented

in [37], while a much broader class is identified in [73], accompanied by a standard

separation routine that runs in O(n8) steps. This procedure separates all odd-hole

inequalities hence employed also here.

Since we treat this optimization problem as a minimization one, this novel FP

variant implies that cut-addition is used to improve the upper-bound, whereas typical

21

B&C utilizes cuts only for improving the lower bound. This new variant of FP is

denoted as ORFP3. Algorithms 7 and 8 are the pseudocodes for OFP3 and ORFP3.

3.3 Computational results

All components and methods are coded in ANSI C, using the IBM-ILOG CPLEX

12.5 callable library. The experiments are conducted under Linux Ubuntu 14.04, on

a quad-core machine (Intel i7, 3.6GHz CPU speed, 16GB RAM). Each experiment

includes 5 instances of the same size and the same range of (randomly generated) cost

coefficients, thus the average results over each such set of 5 instances are reported per

experiment.

All FP variants are allowed up to 2000 pumping cycles, except when employed

into a B&C algorithm where the maximum number of pumping cycles is reduced

to 20. Parameters α and φ of the OFP1, OFP2 and OFP3 are set as in [3], while

parameters θ, ν and λ of the ORFP1, ORFP2 and ORFP3 variants are set as in [19].

The main performance metric is the (average) integrality gap, defined as IG =

[(z∗ − zLP)/zLP] · 100, where z∗ is the value of the solution found by the FP variant

and zLP the value of the LP-relaxation. The CPU time required is also reported (in

seconds). Additionally, we report the success ratio if less than 1, i.e., the percentage

in each set of 5 instances for which a solution is found. Last, the average number of

pumping cycles needed by each variant to find a feasible solution is also presented.

We test these algorithms on four classes of non-polynomially solvable instances

in the literature, denoted as bsn [13], gpn [47], clustern and quadn [45], n being the

instance size (the classes in [22, 26] are polynomially solvable hence excluded).

• The class bsn uses integer cost coefficients sampled uniformly from the interval

[1, 100].

• The class gpn uses cost coefficients sampled uniformly from the interval [1, 300];

in addition, each instacne is generated via an algorithm ensuring that the

uniqueness of the optimal solution.

• The class clustern [45] uses coefficients sampled uniformly from three intervals

[0, 49], [450, 499], [950, 999], where each interval is selected with a probability

equal to 1/3.

• The class quadn [45] uses cost coefficients with a value 10000 · z2, where z is

uniformly distributed in the interval [0, 1].

22

Algorithm 7 Pseudocode of the OFP3 heuristic
1: t := 0
2: distance =∞
3: at = 1
4: φ = 0.9
5: initialize list l
6: x∗ = argmin{cTx : Ax ≥ b}
7: if x∗ is integer then
8: return x∗

9: end if
10: while distance 6= 0 or nIT < maxIterations do
11: add cuts //clique or odd-hole cuts for axial and planar assignment respectively
12: x∗ = argmin{∆S

α(x, x̃) : Ax ≥ b}
13: distance = ∆S

α(x, x̃)
14: if x∗ is integer then
15: return x∗

16: end if
17: if ∃ j ∈ J : [x∗j] 6= x̃j then
18: round x∗ and propagate
19: if cycle detected then
20: ρj = rand(−0.3, 0.7)
21: for i = 0 to n do
22: if |x∗j − x̃j|+max{ρj, 0} then
23: flip x̃j //Random restart
24: end if
25: end for
26: empty list l
27: end if
28: keep the hash of x̃ and αt in list l
29: else
30: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
31: end if
32: t = t+ 1
33: αt = αtφ
34: end while

23

Algorithm 8 Pseudocode of the ORFP3 heuristic

1: k := 0
2: distance =∞
3: θk = 1
4: ν = 0.9
5: λk = 0.5
6: initialize list l
7: x∗ = argmin{cTx : Ax ≥ b}
8: if x∗ is integer then
9: return x∗

10: end if
11: while distance 6= 0 or nIT < maxIterations do
12: x∗ = argmin{∆W,θ(x, x̃) = 1−θ

||∆||∆W (x, x̃) + θ
||c||c

Tx) : Ax ≥ b}
13: distance = ∆k

W,θ(x, x̃)
14: if x∗ is integer then
15: return x∗

16: end if
17: if ∃ j ∈ J : [x∗j] 6= x̃j then
18: round x∗ and propagate
19: if cycle detected then
20: ρj = rand(−0.3, 0.7)
21: λk = 0.5λk

22: for i = 0 to n do
23: if |x∗j − x̃j|+max{ρj, 0} then
24: flip x̃j //Random restart
25: end if
26: end for
27: empty list l
28: end if
29: keep the hash of x̃ and αt in list l
30: else
31: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
32: end if
33: k = k + 1
34: θk = θkν
35: end while

24

Recall from Karapetyan and Gutin [59] that, with cost coefficients sampled in a

range [a, b], the optimal solution as n increases tends to an, i.e., the minimum possible

assignment weight. Notice that all the above classes sample from an interval that does

not increase with n, hence the optimal solution in each instance tends to a constant or

n; in addition, their cost coefficients always follow a uniform distribution. Therefore,

to enrich this computational study, we generated two further classes of instances:

• the class axialn whose coefficients are integer numbers sampled from U [1, nk],

and

• The class normaln whose coefficients are integer numbers sampled from normal

distribution with µ = 1000 and σ = 200.

Focus is given on instances for n ∈ {25, 54, 66, 80, 100}. For each instance 5 different

objective functions are generated hence the results reported per instance are averages

over 5 objective functions.

Table 3.3 shows the results of the FP variants when tested on these instances.

In general, OFP1 is the fastest variant, but sometimes fails to find a feasible solu-

tion. When constraint propagation and cuts are incorporated (in variants OFP2 and

OFP3), the quality of solution improves in most cases while feasibility is reached in

all instances and the number of pumping cycles is reduced; as expected, this comes

at the expense of time. ORFP1 is comparable to OFP1, however constraint propaga-

tion and cuts (ORFP3) indeed improve the solution quality and reduce the number

of pumping cycles in the majority of the instances, while the computational time

remains comparable to ORFP1. That is, the best upper bound is reached only if cuts

and constraint propagation are integrated into the reweighed FP-variant [29]. There-

fore, cut addition in each pumping cycle is clearly beneficial although quite expensive.

Note that no results for the clustern and quadn instances are presented, because the

objective value of their linear relaxation is zero, hence the integrality gap cannot be

computed; still, the performance of FP variants in terms of quality of lower bounds,

time and pumping cycles is as in the instances reported in Table 3.3.

Having discussed extensively the FP heuristic and its application to the (k, s)APn,

let us now move forward to the integration of this heuristic in an exact algorithm.

This raises further questions, first on the performance of the exact algorithm using

this heuristic and secondly, if this approach can tackle large instances of the (k, s)APn.

That is the topic of the next chapter.

25

Table 3.1: (3, 1)APn, FP variants: integrality gap, cycles, time
Instance OFP1 OFP2 OFP3 ORFP1 ORFP2 ORFP3
axial25 Gap 257.09 551.78 181.08 270.19 363.25 154.92

Cycles 7 12 3 21 9 5
Time 0.17 2.02 0.9 0.46 (0.8) 1.56 1.25

axial54 Gap 517.22 729.58 985.86 520.72 1,062.69 485.25
Cycles 11 7 4 8 11 4
Time 12 (0.6) 65.06 85.31 10.42 (0.8) 95.56 46.26

axial66 Gap 588.91 1,233.59 1,165.46 814.86 634.44 477.92
Cycles 5 14 4 7 4 4
Time 12.3 (0.8) 287.51 251.12 23.86 122.41 122.54

axial80 Gap 647.02 1,364.05 1,392.16 818.07 1,290.83 747.96
Cycles 5 7 4 8 10 4
Time 31.68 466.15 581.06 49.38 (0.8) 592.23 310.14

axial100 Gap 860.82 3,070.28 999.21 850.36 1363 1,093.36
Cycles 3 7 3 4 10 6
Time 52.3 (0.6) 1,401.86 2,306.47 65.72 (0.8) 1,867.76 1,251.77

bs25 Gap 216.54 190.73 92.73 69.15 180.61 40.07
Cycles 50 7 3 3 20 3
Time 0.96 (0.8) 1.34 0.89 0.1 (0.4) 2.97 0.9

bs54 Gap 61.57 38.52 85.18 28.71 81.11 20.37
Cycles 4 4 4 4 10 4
Time 5.33 (0.8) 42.7 63.93 5.7 (0.8) 81.81 48.61

bs66 Gap 63.25 70.3 47.88 35.35 35.15 25.76
Cycles 11 8 4 6 7 4
Time 22.96 (0.8) 187.32 185.77 16.83 (0.6) 178.88 133.58

bs80 Gap 53.75 48.0 28.25 34.06 45.5 19.25
Cycles 10 5 4 10 9 3
Time 38.07(0.4) 366.77 498.53 48.88 (0.8) 535.71 260.34

bs100 Gap 11 59.2 24 16.5 16.8 15
Cycles 3 8 3 13 5 5
Time 38.96 (0.2) 1,462.98 1,770.24 116.94(0.8) 1,124.84 1,135.26

gp25 Gap 0.87 2.36 2.32 0.72 4.26 0.71
Cycles 1 2 2 1 31 1
Time 0.1 (0.8) 0.62 0.63 0.1 4.43 0.52

gp54 Gap 0.88 1.85 1.1 0.88 0.67 0.42
Cycles 3 3 1 2 7 1
Time 3.42 25.33 20.04 2.97 42.18 14.68

gp66 Gap 0.63 0.63 0.78 0.63 1.34 0.78
Cycles 1 1 1 2 6 2
Time 8.55 (0.8) 61.26(0.8) 89.38 11.36 (0.8) 144.34 (0.8) 68.23

gp80 Gap 1.29 1.2 1.02 0.95 1.22 0.68
Cycles 29 3 2 14 7 3
Time 120.06(0.4) 261.38 302.21 74.96 (0.8) 440.67 236.08

gp100 Gap 2.19 3.95 3.95 2.96 2.89 2.36
Cycles 9 4 4 5 11 3
Time 77.89 (0.6) 1,012.17 1,884.71 75.82(0.8) 1,961.55 1,079.67

normal25 Gap 4.64 5.87 5.88 5.73 6,23 3.6
Cycles 5 4 3 14 8 3
Time 0.12 (0.8) 0.83 1.01 0.27 1.30 0.81

normal54 Gap 6.35 7.28 7.54 5.88 5.83 6.06
Cycles 4 4 3 16 7 4
Time 5.89 (0.8) 42.96 64.03 18.18 (0.8) 59.35 43.58

normal66 Gap 6.34 5.36 6.12 5.18 6.43 5.58
Cycles 4 4 3 17 7 4
Time 15.93 (0.6) 108.04 162.78 39.49 176.66 116.24

normal80 Gap 9.14 6.71 8.11 7.25 5.54 5.78
Cycles 18 4 4 6 7 4
Time 68.09 (0.8) 323.56 653.21 50.30 (0.8) 176.66 310.31

normal100 Gap 8.91 8.92 8.65 7.87 7.76 6.95
Cycles 4 4 4 8 8 5
Time 80.30 (0.6) 987.52 1,999.58 116.65 (0.6) 1,523.25 1,094.26

26

Chapter 4

Integrated methods for three-index
assignment

In this chapter we address the question of whether an exact method can solve large

instances of the 3-index axial and planar problems. A relevant question is whether

algorithmic and software components that work effectively for different types of as-

signment are plausible. Here, we propose a Branch & Cut (B&C) solver integrating

several components, namely cuts that are specific per assignment type, branching

on ‘Special Ordered Sets of type I’, a tabu scheme that is simple enough to remain

applicable for all assignment problems, a constraint propagator that can also be used

for all assignment problems and feasibility-pump (FP) as an LP-based heuristic that

also sustains applicability across different assignment problems. In fact, our method

uses the improved FP-variant that employs both constraint propagation and cutting

planes at each ‘pumping cycle’ (see Section 3.2). That is, cuts are used in a primal-

dual mode to improve the lower bound in a typical manner and guide the heuristic

towards a better upper bound. This experimentation shows that the proposed B&C

method outperforms a commercial solver, particularly for large-size instances and for

planar problems.

The remainder of this chapter flows as follows; Section 4.1 presents the motivation

for an exact method that can handle large-size instances of the problem at hand.

Section 4.2 presents the cutting planes for axial and planar multi-index assignment,

Section 4.3 presents the constraint propagation mechanism that works for any type of

assignment, Section 4.4 presents the proposed tabu meta-heuristic, while Section 4.5

describes in detail the exact algorithm that employes the components above. Section

4.6 a detailed computational analysis and Section 4.7 our concluding remarks.

27

4.1 Motivation and overview

As discussed in Chapter 2, the multi-index assignment problem participates in sev-

eral optimization problems, thus making it a core problem of its kind. Apart from

their nice combinatorial structure, assignment problems enjoy a broad range of ap-

plications, thus requiring an effective optimization approach. For example, axial

assignment applies to data-association problems [91], to the classification and pairing

of human chromosomes [17] and to wafer-to-wafer yield optimization in 3D electronic

circuit printing [103]. Planar assignment shares the diverse applications of Latin

squares [65] from the statistical design of experiments [54] to error correcting codes

[86]. The size of these real problems varies significantly but normally assumes k ≥ 3

and n ≥ 50.

Despite the extensive literature on assignment problems, discussed in Chapter

2, there is a gap in exact optimization methods that tackle large-scale instances. In

addition, although assignment problems for different values of k and s share a common

structure, most existing computational methods focus on a specific s and frequently on

a specific k. This appears reasonable given that the (k, s)APn becomes NP-complete

already for k = 3 : for s = 1 this follows from an early result on 3-index matching

[61], while for s = 2 it is shown by Frieze [44]. Moreover, the fast-growing size of the

(k, s)APn’s Linear Programming (LP) relaxation made it memory-wise intractable

even for small n, thus discouraging the design of appropriate ‘Branch & Cut’ (B&C)

methods. This is indicated by the fact that existing exact methods normally rely

on ‘Branch & Bound’ (B&B) and subgradient algorithms for solving a Langrangean

relaxation, as in [13] or [71], with limited (if any) use of cutting planes, e.g., at the

top node of the B&B tree by [94] or [72]. Notably, all existing approaches focus on

small instances (e.g., for s = 1, k = 3 and n ≤ 30), although related applications ask

for much larger ones [33] and B&C approaches can cope with large instances on other

optimization problems, e.g., Lysgaard et al. [69].

Several non-exact methods have also been proposed for the 3-index axial prob-

lem in the form of either approximation methods for special (or even polynomially

solvable) cases as in [26] or meta-heuristics (e.g., [59]) that indeed deal with large in-

stances. A metaheuristic for the 3-index planar problem has been presented by Magos

[70]. Let us note here that these approaches focus on a specific type of assignment,

thus it is doubtful whether they could become applicable for different values of k and

s.

28

This study addresses the question of whether an exact method can provide optimal

or provably near-optimal solutions for large instances of the 3-index axial and planar

problems, by exploiting cutting planes that apply for different values of k as in [72].

A relevant question is whether algorithmic and software components that work effec-

tively for different types of assignment are plausible. This attempt is also motivated

by the recently formulated notion of integrated methods for optimization [55], i.e.,

methods that exploit the complementary strengths of IP, Constraint Programming

and (meta-)heuristics.

Therefore, we propose a B&C algorithm integrating several components, namely

cuts that are specific per assignment type but apply for different values of k, branching

on ‘Special Ordered Sets of type I’, a tabu scheme that is simple enough to remain

applicable for all values of k and s, a constraint propagator with similar properties

and feasibility-pump (FP) as an LP-based heuristic that also sustains applicability

across different assignment problems. In fact, the improved FP-variant described in

Chapter 3 is used that employs both constraint propagation and cutting planes at

each ‘pumping cycle’. That is, cuts are used in a primal-dual mode to improve the

lower bound in a typical B&C manner and assist the heuristic in improving the upper

bound.

Focusing on the 3-index axial and planar assignment problems, we experiment with

the individual components and the B&C method on medium and large-size literature

instances and on further instances generated for this study. This experimentation

shows that indeed the FP variant produces better feasible solutions compared to

existing variants, as described in chapter 3, while the B&C method outperforms

CPLEX [25] in terms of time and number of nodes in the search tree, especially for

large-size instances (several of which remain memory-wise intractable for CPLEX if

solved to optimality). The improvement could be attributed more to cutting planes in

the axial case, whereas in the planar case constraint propagation and the FP variant,

although slower than in the axial case, are the components yielding a more significant

improvement.

4.2 Cutting planes

The IP formulation of the (k, s)APn gives rise to the so-called intersection graph

that has one node per variable (i.e., nk nodes) and an edge between any two nodes

whose corresponding variables cannot both receive value 1, i.e., for any two variables

appearing in the same constraint; the formal definition can be found in [72]. Induced

29

subgraphs of the intersection graph give rise to well-known families of inequalities

like cliques and odd-holes, as originally presented by Padberg [82]. In fact, the IP

formulation contains some of these clique inequalities as equalities. The used cut

families in this implementation are discussed below.

For the (3, 1)APn, are used the two families of clique inequalities that are not in-

cluded in the IP formulation. As shown by Balas and Saltzman [12], these inequalities

are facet-defining (i.e., the strongest possible in polyhedral terms) and are the only

such inequalities arising from cliques of the intersection graph. Both families can be

separated in O(n3) steps through the algorithms of Balas and Qi [11]. Inequalities

arising from odd-holes of size 5 and also separable in O(n3) steps appear in [94] but

not used here, since computationally less effective; i.e., their addition improve only

slightly the lower bound. Families of clique inequalities for the (k, 1)APn appear in

[72], generalizing for all k the ones of Balas and Saltzman [12] and also separable in

polynomial time. The separation procedure presented by Magos and Mourtos [72] is

employed as the main cut generation algorithm for the (k, 1)APn.

For the (3, 2)APn, there are no clique inequalities other than the ones used (as

equalities) in its IP formulation. Inequalities arising from odd-holes are presented

in [37], while a much broader class is identified in [73], accompanied by a standard

separation routine that runs in O(n8) steps. This procedure separates all odd-hole

inequalities hence employed also here.

Let us also mention that all general-purpose cuts offered by CPLEX have also

been tested without however offering any further improvement.

4.3 Constraint propagation

A mechanism that performs constraint propagation for all classes of (k, s)APn is im-

plemented (i.e., for all values of k, s and n) and is capable of supporting any heuristic.

This mechanism includes an oracle returning which variables participate in which

constraint; two propagating functions setToOne and setToZero and a backtracking

function, invoked when infeasibility is detected.

A stack of size nk is used, i.e., equal to the number of binary variables, to store the

variables that are set to a value together with a flag per variable indicating whether

the variable pushed is set-by-choice (e.g., by a heuristic) or set-by-force (i.e., forced

to a value by constraint propagation). This allows backtracking to jump to the last

set-by-choice variable and set it to its complement hence making it set-by-force. At

any point, the stack being empty (full) implies that infeasibility is reached (a feasible

30

solution is found). Algorithms 9-11 display in detail how the propagation mechanism

works.

Algorithm 9 Pseudocode of the setToOne(xj, forceFlag) function

1: /*forceFlag is used to indicate if the variable is set by force or by choice*/
2: if xj is undefined then
3: /*undefined is a variable that is not set to any value, i.e., 0 or 1*/
4: xj = 1;
5: fetch the constraints that xj participates in;
6: for every constraint ci of the above do
7: fetch the variables that participate in ci;
8: for every variable x` of the above do
9: forceFlag = TRUE
10: if (setToZero(x`, forceFlag)==FALSE) then
11: return FALSE;
12: end if
13: end for
14: end for
15: push xj in the stack
16: return TRUE;
17: else if xj == 1 then
18: return TRUE;
19: else
20: return FALSE;
21: end if

Once a variable is set to one, setToOne calls setToZero for all variables appear-

ing in some constraint together with that variable. Once a variable is set to zero,

setToZero checks if in any constraint this variable appears, there remains a single

variable not set to a value, and calls for this variable setToOne (if this fails, in-

feasibility is detected). Using these two functions, this code implements a recursive

depth-first propagation on the constraints of (k, s)APn. Since the number of these

constraints is
(
k
s

)
· ns [6], i.e., it increases with s, constraint propagation is more ef-

fective for planar rather than axial problems. Stronger propagation is possible via

the representation of the (k, s)APn as a set of all-different constraints [9], but not

implemented here, as it is too expensive computationally.

4.4 Tabu-search

The tabu-search mechanism presented here applies to the (k, s)APn for any values of

k and s. It uses a fixed-size list to keep track of the tabu moves and terminates the

31

Algorithm 10 Pseudocode of the setToZero(xj, forceFlag) function

1: /*forceFlag is used to indicate if the variable is set by force or by choice*/
2: if xj is undefined then
3: /*undefined is a variable that is not set to any value, i.e., 0 or 1*/
4: xj = 0;
5: fetch the constraints that xj participates in;
6: for every constraint ci of the above do
7: fetch the variables that participate in ci;
8: if there is only one undefined variable x` in ci then
9: forceFlag = TRUE
10: if (setToOne(x`, forceFlag)==FALSE) then
11: return FALSE;
12: end if
13: end if
14: end for
15: push xj in the stack
16: return TRUE;
17: else if xj == 0 then
18: return TRUE;
19: else
20: return FALSE;
21: end if

Algorithm 11 Pseudocode of the backTrack() function.

1: fetch the variable xj that was set to one or zero by choice;
2: undo the changes that were caused by this choice;
3: /*i.e., pop the variables set by force from the stack and mark them as undefined*/
4: if (xj == 1) then
5: forceFlag = TRUE
6: if setToZero(xj, forceFlag)==FALSE then
7: return FALSE;
8: end if
9: else

10: forceFlag = TRUE
11: if setToOne(xj, forceFlag)==FALSE then
12: return FALSE;
13: end if
14: end if
15: return TRUE;

32

Figure 4.1: Tabu moves on a solution of the (3, 1)AP3 and a solution of the (3, 2)AP3

x0 → swap(2, 1, 3)→ x1 → interch(2, 3)→ x2

index 1 2 3 1 2 3 1 2 3

(3, 1)AP3 1 2 3 1 2 3 1 3 2
2 3 1 2 1 1 2 1 1
3 1 2 3 3 2 3 2 3

(3, 2)AP3 1 1 3 1 3 3 1 3 3
1 2 2 1 2 2 1 2 2
1 3 1 1 1 1 1 1 1
2 1 2 2 3 2 2 2 3
2 2 1 2 2 1 2 1 2
2 3 3 2 1 3 2 3 1
3 1 1 3 3 1 3 1 3
3 2 3 3 2 3 3 3 2
3 3 2 3 1 2 3 2 1

procedure, if no solution of better quality is found after a fixed number of iterations.

Recall that a solution of the (k, s)APn is a collection of ns disjoint k-tuples,

each such tuple representing a variable set to one in the corresponding vector. The

tabu-move is defined as a swap of values in the same index, denoted hereafter as

swap(index, value1, value2). Applying this move to a solution x0 leads to another

solution x1 that differs from x0 in exactly 2 · ns−1 variables set to one [6, Remark

7]. If within a fixed number of iterations of tabu-swaps no better solution is found,

a restart is performed defined by the interchange move which is defined as the swap

of all values in 2 indices, i.e., interch(index1, index2). In this way, the algorithm

restarts from a different neighbourhood hoping that a new better feasible solution

will be found. Figure 4.1 displays these tabu moves on solutions of (3, 1)AP3 and

(3, 2)AP3; at the second index of x0, values 1 and 3 are swapped, hence attaining a

new feasible solution x1, while by interchanging indices 2 and 3 of x1 a new feasible

point x2 is attained.

The value of a swap move is calculated with respect to the coefficients of the

2 · ns−1 variables affected by that move. For example, the value of the first move in

Figure 4.1 for the (3, 1)AP3 is c332 + c211 − c231 − c312. At each iteration, tabu-search

selects the swap of minimum value not appearing in the tabu list, among all indices

and all value pairs per index. Since each swap affects 2 · ns−1 variables in a feasible

solution, each tabu iteration requires O(k ·ns+1) steps, i.e., it gets more demanding as

s increases. If within 50 iterations no better feasible solution is found the interchange

move is performed to restart the algorithm from a new neighborhood. The cost of

33

the move is again calculated with respect to the coefficients of the variables affected

by that move, hence the interchange move with the less possible objective value is

chosen. Note that this is a simple yet fast and (the first) generic for the (k, s)APn

tabu mechanism.

4.5 Branch & cut

Let us now describe the integration of all the above within a B&C method. As

evident from Table 2.1, each constraint in the IP model defines a Special Ordered

Set of type I (SoS-I). Hence, the B&C performs SoS-I branching and prioritizes (i)

each variable in an SoS-I in increasing order with respect to their reduced cost at the

LP-optimum of the top node and (ii) each SoS-I in increasing order with respect to

their minimum integer infeasibility. For example, suppose that the variables of the

constraint x1 + x2 + x3 + x4 = 1 have reduced costs at the top node 100, 200, 400, 500

respectively. Furthermore, assume that there is a known fractional solution of x1 = 0.1

and x4 = 0.9. In SoS parlance, the weighted average of the set is 0.1·100+0.9·500
0.1+0.9

= 460.

The set is then split before the variable with reduced cost exceeding the weighted

average, i.e., x1, x2, x3 will be in one subset and x4 in the other. This means that

when branching over this SoS-I, one branch will have x1 = x2 = x3 = 0 and the other

x4 = 0. The node selection criterion is ‘best bound’.

Alternative branching strategies have also been examined, namely

• prioritizing variables in respect with their reduced costs at each node and con-

straints according to the sum of the reduced costs of variables in their support;

• prioritizing variables according to the number of active constraints (including

cuts) in which they participate [85];

• a combination of the two above strategies.

These branching strategies form a representative set, since the first is guided mainly

by optimality and the second by feasibility (i.e., it performs well if obtaining a feasible

solution is hard). Interestingly, none of these elaborate strategies performed better

than the simpler one that has been selected, as shown by preliminary experimentation

(not presented here).

The efficiency of a B&C scheme often depends on the frequency and the intensity

of cut addition, e.g., it is common to add cuts at several, but not all, nodes usually of

small depth [69, 34]. To investigate the maximum depth and the maximum rounds of

34

cut addition, several experiments on different strategies are performed. The following

strategies have been examined:

• Aggressive: adding cuts at nodes that are up to 10% of the maximum tree

depth, for one round and up to n/k cuts per round;

• Bold: adding cuts at nodes that are up to 10% of the maximum tree depth, for

one round and up to n/k2 cuts per round;

• Moderate: adding cuts at nodes that are up to 5% of the maximum tree depth,

for one round and up to n/k cuts per round;

• Light: adding cuts at nodes that are up to 5% of the maximum tree depth, for

one round and up to n/k2 cuts per round.

Also, cuts added at some node are maintained in all its antecedent nodes. However,

the decision of whether a cut is added or not at the cut addition phase is left to

CPLEX. Preliminary experimentation with these cut addition strategies showed that

the Light strategy has the most robust performance across the testing bed.

Although there are several heuristics for (k, s)APn that are tailor-made for specific

values of k and s, here we focus on the effectiveness of general-purpose heuristics that

work over any assignment type. Hence the emphasis on FP variants, any of which can

be employed as the primal heuristic. Calling such an expensive heuristic too often

would be a burden in terms of solution time, hence the simple strategy of calling this

heuristic a few times (or only at the top-node) is preferred and then using just the

default heuristic of CPLEX; this gives also a more sound basis of comparison. As

usual, the tabu-search can be invoked whenever a new or an improved solution is

found either by the heuristic or by branching.

4.6 Computational results

All components and methods are coded in ANSI C, using the IBM-ILOG CPLEX

12.5 callable library. The experiments are conducted under Linux Ubuntu 14.04, on

a quad-core machine (Intel i7, 3.6GHz CPU speed, 16GB RAM). Each experiment

includes 5 instances of the same size and the same range of (randomly generated) cost

coefficients, thus the average results over each such set of 5 instances are reported per

experiment.

All FP variants are allowed up to 2000 pumping cycles, except when employed

into a B&C algorithm where the maximum number of pumping cycles is reduced

35

to 20. The main performance metric is the (average) integrality gap, defined as

IG = [(z∗ − zLP)/zLP] · 100, where z∗ is the value of the solution found by the

FP variant and zLP the value of the LP-relaxation. The CPU time required is also

reported (in seconds). Additionally, the success ratio if less than 1 is reported, i.e.,

the percentage in each set of 5 instances for which a solution is found. Last, the

average number of pumping cycles needed by each variant to find a feasible solution

is also presented.

Regarding the exact algorithms, preliminary computational experience showed

that for certain large instances, i.e., n ≥ 50 for the axial and n ≥ 20 for the planar

case, CPLEX runs out of memory way before reaching the optimal solution. For

this reason and in order to have a sound basis of comparison, a time limit of 3

hours is set on all exact schemes and the integrality gap is calculated, i.e., IG =

[(zIP − zLP)/zLP] · 100, where, zIP is the upper bound and zLP is the lower bound

reached within this time-frame. To test the effect of each component (i.e., SoS-

I branching, cuts and ORFP3 as the most competitive FP-variant), the results of

four exact methods are shown compared to the CPLEX default (i.e., single-threaded

mode, pre-solver turned off, with all other CPLEX features left to default settings).

Each method has an additional component compared to the previous one; that is,

the SoS-I scheme uses only the respective branching strategy, SoSCuts uses SoS-

I branching and cuts, SoSCutsFP includes also ORFP3 and, last SoSCO-T uses

all the aforementioned components plus the tabu-search. For all four methods, all

general-purpose CPLEX cuts and the pre-solver are turned-off, the single-threaded

mode is used and the CPLEX heuristic is set on default settings, except from the

SoSCO-T where it is turned off. The results are discussed next.

4.6.1 3-index axial assignment

We experiment with four classes of non-polynomially solvable instances in the litera-

ture, denoted as bsn [13], gpn [47], clustern and quadn [45], n being the instance size

(the classes in [22, 26] are polynomially solvable hence excluded).

• The class bsn uses integer cost coefficients sampled uniformly from the interval

[1, 100].

• The class gpn uses cost coefficients sampled uniformly from the interval [1, 300];

in addition, each instacne is generated via an algorithm ensuring that the

uniqueness of the optimal solution.

36

• The class clustern [45] uses coefficients sampled uniformly from three intervals

[0, 49], [450, 499], [950, 999], where each interval is selected with a probability

equal to 1/3.

• The class quadn [45] uses cost coefficients with a value 10000 · z2, where z is

uniformly distributed in the interval [0, 1].

Let us recall from Karapetyan and Gutin [59] that, with cost coefficients sampled

in a range [a, b], the optimal solution as n increases tends to an, i.e., the minimum

possible assignment weight. Notice that all the above classes sample from an interval

that does not increase with n, hence the optimal solution in each instance tends to a

constant or n; in addition, their cost coefficients always follow a uniform distribution.

Therefore, to enrich this computational study, two further classes of instances are

generated:

• the class axialn whose coefficients are integer numbers sampled from U [1, nk],

and

• The class normaln whose coefficients are integer numbers sampled from normal

distribution with µ = 1000 and σ = 200.

Instances for n ∈ {25, 54, 66, 80, 100} are examined. For each instance 5 different

objective functions are generated hence the results reported per instance are averages

over 5 objective functions.

Table 2 shows the results of the FP variants when tested on these instances.

In general, OFP1 is the fastest variant, but sometimes fails to find a feasible solu-

tion. When constraint propagation and cuts are incorporated (in variants OFP2 and

OFP3), the quality of solution improves in most cases while feasibility is reached in

all instances and the number of pumping cycles is reduced; as expected, this comes

at the expense of time. ORFP1 is comparable to OFP1, however constraint propaga-

tion and cuts (ORFP3) indeed improve the solution quality and reduce the number

of pumping cycles in the majority of the instances, while the computational time

remains comparable to ORFP1. That is, the best upper bound is reached only if cuts

and constraint propagation are integrated into the reweighed FP-variant [29]. There-

fore, cut addition in each pumping cycle is clearly beneficial although quite expensive.

Note that, no results for the clustern and quadn instances are presented, because the

objective value of their linear relaxation is zero, hence the integrality gap cannot be

computed; still, the performance of FP variants in terms of quality of lower bounds,

time and pumping cycles is as in the instances reported in Table 2.

37

Table 3 shows the average percentage of the decrease in the upper bound achieved

by tabu-search on a subset of instances, i.e., [(z∗ − zt)/z∗] · 100 where z∗ and zt are

the values of the solutions found by an FP variant and tabu-search respectively. Ad-

ditionally, the required time for tabu-search to improve a given solution is reported.

It is obvious that tabu-search often improves significantly its starting solution, al-

though this depends on the quality of this solution. The smaller decrease achieved

regarding ORFP3.0 indicates that tabu-search succeeds fewer times in improving the

solution obtained by ORFP3.0, whereas in most cases it does improve the upper

bound obtained by other variants.

Table 4.1: (3, 1)APn, tabu-search: objective value reduction (%), time
Instance OFP1-T OFP2-T OFP3-T ORFP1-T ORFP2-T ORFP3-T

axial25 objRed 25.04 40.33 12.56 23.70 27.26 9.29
Time 0.05 0.03 0.11 0.07 0.0 0.05

axial54 objRed 24.27 23.19 25.40 20.74 27.24 16.08
Time 0.47 0.58 0.01 0.01 0.01 0.01

axial66 objRed 17.37 39.63 43.56 18.68 28.72 8.72
Time 0.66 0.02 0.02 1.03 0.53 1.03

axial80 objRed 0.19 34.63 30.03 6.81 28.45 5.79
Time 3.60 0.04 1.82 2.29 0.94 1.83

axial100 objRed 4.0 38.36 7.57 8.90 20.45 17.75
Time 2.99 0.09 3.55 2.31 3.54 3.55

bs25 objRed 33.67 33.00 3.71 7.40 27.14 0.0
Time 0.0 0.0 0.05 0.07 0.03 0.14

bs54 objRed 23.63 9.95 21.87 4.5 23.70 0.87
Time 0.36 0.29 0.01 0.71 0.29 1.13

bs66 objRed 18.88 22.06 13.18 11.17 11.14 3.41
Time 0.02 0.02 0.02 0.02 0.53 0.53

bs80 objRed 24.40 13.21 6.59 10.36 12.86 4.79
Time 0.04 0.04 1.84 0.07 0.95 1.83

bs100 objRed 0.0 18.5 5.93 3.58 4.42 3.78
Time 8.85 0.09 0.11 2.28 3.59 3.64

gp25 objRed 0.32 0.48 0.79 0.0 2.19 0.0
Time 0.12 0.13 0.12 0.15 0.09 0.15

gp54 objRed 0.36 1.17 0.54 0.36 0.01 0.0
Time 0.87 0.87 0.87 0.87 0.88 1.15

gp66 objRed 0.0 0.0 0.0 0.0 0.56 0.0
Time 2.6 2.6 2.6 2.6 1.95 2.6

gp80 objRed 0.57 0.44 0.28 0.19 0.49 0.0
Time 3.67 2.76 3.68 3.45 1.86 3.68

gp100 objRed 31.03 27.01 39.51 0.82 0.30 0.0
Time 2.98 0.09 1.82 0.09 0.09 8.77

Table 4 shows the results of the exact algorithms. When looking at the per-

38

formance of CPLEX default, one can easily notice the difference in the number of

nodes and solution time among different classes of instances. Figure 4.2 shows this

differentiation of the required time in CPU seconds where the new instances (axialn,

normaln) for n ≥ 66 require the maximum time (3h). The literature instances bsn

and gpn are solved significantly faster compared to axialn and normaln ones. This

is more evident in instances with n ≥ 25. Given that all literature instances use an

non-increasing with n range of cost coefficients, this verifies that the optimal solution

asymptotically tends to n, i.e., the minimal possible assignment weight [59]. However,

this phenomenon is rarely evident in the axialn instances, because the range widens

as n increases, thus making these instances ‘harder’ to solve.

Figure 4.2: CPLEX performance on 3-index axial instances

When looking on the bsn, gpn and quadn classes (Table 4), the new exact algo-

rithms perform comparably to CPLEX, in terms of nodes. However, this does not

apply in terms of time, that is, these new schemes are time-wise more expensive due

to the computational time required by ORFP3. This means that CPLEX suffices

for these classes, mostly because of the particularity described above. Regarding the

clustern class, it is obvious that the SoSCuts and SoSCutsFP exact schemes improve

on CPLEX in terms of both nodes and time. Additionally, when looking on the axialn

and normaln classes, an improvement on CPLEX in terms of nodes, time and inte-

grality gap (presented in the table if non-zero) is notable, which indicates that these

B&C methods indeed prune the search tree more effectively. When comparing the

new B&C methods with each other on the axialn and normaln classes, it seems that

39

sometimes ORFP3 reduces the number of nodes but increases the time to optimality.

However, this burden, in terms of time, seems to pay off for larger instances (n ≥ 66)

given the integrality gap that is reached within the time-frame of 3h. When the

tabu-search (column ‘SoSCO-T’) is used, the results are again comparable to the per-

formance of CPLEX; this happens because, as the quality of the FP variant improves,

tabu-search rarely improves it. Overall, the improvement over CPLEX appears more

substantial for the axialn, clustern and normaln classes, and can be summarized as

follows:

• regarding the axialn class (66 ≤ n ≤ 100), the integrality gap reached by the

SoSCutsFP scheme within 3h is on average 12.06% smaller than the one reached

by CPLEX;

• regarding the clustern class whose instances are all solved to optimality, the

SoSCuts scheme reduces on average for all instances (25 ≤ n ≤ 100) the number

of nodes for up to 70.51% and the required time for up to 52.44% when compared

to CPLEX;

• regarding the normaln class (80 ≤ n ≤ 100), the integrality gap reached by

the SoSCutsFP scheme within 3h is on average 20.57% smaller than the one

reached by CPLEX.

4.6.2 3-index planar assignment

For the (3, 2)APn, let us focus on the instances with cost coefficients sampled from

U [1, nk]. As previously, 5 different objective functions for n ∈ {10, 20, 30, 40, 50} are

generated, thus, the average results over these 5 functions per instance are reported.

Table 5 shows the results of the FP variants. As for the axial case, OFP1 requires

less time than the other variants, however it provides the poorest quality of solutions

on average. When constraint propagation and cuts are employed (OFP3) the number

of pumping cycles is reduced and the solution quality improves. Regarding ORFP1,

it provides solutions of better quality than OFP1 in a comparable amount of time.

When constraint propagation and cuts are employed (ORFP3) the number of pumping

cycles is reduced and the solution quality is further improved. However, time-wise

ORFP3 is far more expensive. This is obviously due to the cut addition (recall that

the separation of odd-hole cuts takes O(n8) steps).

It is also worth noting that tabu-search fails in all instances to improve a given

solution of a planar assignment. This is attributed to the fact, that the quality

40

Table 4.2: (3, 1)APn, exact methods: nodes, time, integrality gap within 3 hours
Instance CPLEX SoS-I SoSCuts SoSCutsFP SoSCO-T
axial25 Nodes 627 565.4 429 520.4 587

Time 1.21 1.12 0.98 2.37 2.68
axial54 Nodes 368,075 335,959 354,046 313,483 380,417

Time 4,608.23 4,073.78 5,126.36 4,654.48 5,615.26
axial66 Nodes 445,512 400,366 359,688 366,384 327,937

Time 3h 3h 3h 3h 3h
Gap 34.24 38.2 29.97 31.79 51.196

axial80 Nodes 179,122 180,121 167,720 173,515 165,235
Time 3h 3h 3h 3h 3h
Gap 133.07 92.33 106.53 74.02 94.91

axial100 Nodes 71,284 66,864 72,323 70,859 68,889
Time 3h 3h 3h 3h 3h
Gap 193.11 192.76 154.97 153.48 210.41

bs25 Nodes 399 247 205 187 445
Time 0.89 0.65 0.67 1.52 2.07

bs54 Nodes 64 99 80 72 630
Time 4.93 7.99 8.51 56.23 68.96

bs66 Nodes 0 0 0 0 357
Time 7.22 12.26 14.77 147.14 162.65

bs80 Nodes 7,270 586 465 446 869
Time 686.67 72.28 59.16 318.12 352.50

bs100 Nodes 511 659 118 570 804
Time 112.01 187.30 120.86 1,297.36 1,351.56

gp25 Nodes 0 0 0 0 0
Time 0.39 0.2 0.19 0.67 0.66

gp54 Nodes 0 0 0 0 0
Time 9.31 3.92 4.61 18.08 18.10

gp66 Nodes 0 0 0 0 0
Time 20.82 14.05 12.41 79.48 79.42

gp80 Nodes 0 0 0 0 0
Time 46.72 33.19 30.63 263.84 265.10

gp100 Nodes 889 23,934 1,097 893 360
Time 216.45 4,469.35 735.61 1,643.05 5,603.17

cluster25 Nodes 289 388 258 361 568
Time 0.82 0.88 0.76 1.85 2.70

cluster54 Nodes 5,282 1,330 667 507 1,194
Time 62.87 24.72 19.25 54.86 68.45

cluster66 Nodes 4,975 1,205 937 583 1,271
Time 122.81 57.75 44.29 143.6 171.59

cluster80 Nodes 5,901 902 734 1,050 1,102
Time 282.42 97.40 98.77 394.76 440.21

cluster100 Nodes 6,968 1,636 1,018 529 1,025
Time 674.92 355.66 294.86 1,127.91 1,250.70

quad25 Nodes 105 176 58 58 589
Time 0.52 0.52 0.39 1.23 2.38

quad54 Nodes 0 0 0 0 550
Time 3.39 5.18 6.72 51.87 68.21

quad66 Nodes 318 228 185 154 1,070
Time 16.87 24.34 24.20 116.72 157.41

quad80 Nodes 746 186 142 266 871
Time 68.53 51.76 52.83 379.85 459.32

quad100 Nodes 306 656 313 180 672
Time 68.53 302.87 159.84 143.45 1,180.39

normal25 Nodes 100 84 68 69 100
Time 0.52 0.39 0.38 1.16 1.65

normal54 Nodes 24,557 17,680 16,786 16,972 15,009
Time 348.38 253.41 314.70 369.75 518.29

normal66 Nodes 86,725 75,181 61,144 48,830 58,384
Time 2,301.12 2,080.07 2,023.60 1,894.42 3,761

normal80 Nodes 125,863 139,554 115,368 122,508 41,741
Time 3h 3h 3h 3h 3h
Gap 1.44 1.13 1.34 1.0 1.72

normal100 Nodes 24,646 22,870 20,835 21,328 16,947
Time 3h 3h 3h 3h 3h
Gap 3.48 3.15 3.29 3.11 3.46

41

of the solution found by any FP variant is substantially better than in an axial

assignment problem. Therefore results of tabu-search on solutions of the (3, 2)APn

are not presented.

Table 6 shows the results of the exact algorithms for the planar instances (using

again the ’Light’ cut strategy that outperforms all others as in the axial case). All of

the new algorithmic schemes perform better than CPLEX in terms of nodes and time.

Among them, the SoSCutsFP scheme requires more time, which is reasonable given

the time required by ORFP3. The effect though of ORFP3 is far more evident on

larger instances: the number of nodes visited by the schemes that employ cuts is much

smaller but time is longer due to the time required by the separation algorithm, i.e.,

CPLEX and SoS-I scheme spend less time at each node. However, as shown in Figure

4.3, the integrality gap reached by SoSCutsFP scheme is the minimum possible, which

indicates that indeed all these components prune significantly the search tree. The

effect on the integrality gap is also depicted in Figure 4.3.

Table 4.3: (3, 2)APn, exact methods: nodes, time, integrality gap within 3 hours
Instance CPLEX SoS-I SoSCuts SoSCutsFP
n = 10 Nodes 813 695 597 624

Time 2.9 1.66 1.6 1.92
Gap 0 0 0 0

n = 20 Nodes 403,464 350,702 300,106 296,380
Time 3h 3h 3h 3h
Gap 24.47 27.63 29.25 17.07

n = 30 Nodes 42,738 37,188 18,029 18,030
Time 3h 3h 3h 3h
Gap 89.36 80.39 87.51 26.20

n = 40 Nodes 11,986 10,266 7,927 5,927
Time 3h 3h 3h 3h
Gap 159.68 137.33 160.38 46.92

n = 50 Nodes 1,374 1,685 1,332 23
Time 3h 3h 3h 3h
Gap 199.34 202.56 202.44 53.64

4.7 Beyond three-index assignment

This chapter presents a solver for the 3-index axial and planar problem that integrates

constraint propagation, problem-specific cuts, SoS-I branching and feasibility-pump

enhanced by cut addition in each pumping cycle. This solver performs better than

42

Figure 4.3: Integrality gap differentiation of exact schemes on planar instances

CPLEX, particularly for larger instances and more evidently in the planar case. Fur-

ther experimentation may offer deeper insights on both the performance of such an

approach and on the ability to solve exactly even larger-scale instances or other multi-

index assignment problems. An important aspect of this approach is its versatility, for

example in terms of including a subset of the selected components or an alternative

FP variant as a primal heuristic. To demonstrate that, Table 7 shows some indicative

results for larger values of k, using different algorithmic components (column ‘Cus-

tom’): for k = 4 these are only ORFP1 and SoS-branching, while for k = 5 they

include ORFP3, SoS-branching and cuts. Overall, this work, apart from addressing a

literature gap concerning exact methods on large instances of a widely-studied class

of problems, offers sufficient motivation for further research.

Table 4.4: (4, 1)APn and (5, 1)APn, exact methods
Instance CPLEX Custom
k = 4, n = 10 Nodes 516 343

Time 0.76 0.60
Gap 0 0

k = 5, n = 10 Nodes 22,785 17,364
Time 170.71 135.04
Gap 0 0

43

Chapter 5

Decision support for multi-index
assignment

This chapter presents a Decission Support System (DSS) for the multi-index as-

signment problem. Considering that numerous applications include an assignment

structure or are modelled after the mathematical model of the problem at hand, it

would be useful to have a system that includes algorithmic components and can ef-

ficiently provide solutions regardless of the application context. Therefore, in this

chapter we present a general-purpose DSS for the (k, s)APn, namely MAPS (Multi-

index Assignment Problem Solver). The analysis of this system includes the user

requirements of the system, the workflow of the use-cases and the algorithmic compo-

nents incorporated in the system. This work is part of a research project, supported

by the National Research Fund, namely Archimedes III sub-project 28, focusing on

the Multi-index Assignment problem and all-different Systems.

The remainder of this chapter goes as follows; In Section 5.1 we present the re-

quirements analysis of the proposed DSS; Section 5.2 lists and shortly describes the

employed algorithms and Section 5.3 presents the DSS in terms of final user screens

and usage.

5.1 Requirements analysis

This section describes the user requirements, functional and non-functional, along

with the data requirements of the integrated solver (MAPS). We present a list of

proposed use cases in subsection 5.1.1, which we consider sufficient for DSS design

but non-exhaustive as real-life applications may raise additional such cases. Never-

theless, it indicates some basic non-functional and functional user requirements of an

integrated solver.

44

In the rest of this section we describe in Subsection 5.1.2 the non-functional re-

quirements, while Subsection 5.1.3 presents the required data entities with their as-

sociations.

5.1.1 Description of use cases

The major functionality provided by the system is depicted in the following use case

diagram (Figure 5.1). This diagram includes the entities (external systems or human)

that interact with the system, i.e., actors, and specifies in a more detailed way the

functionality of MAPS.

Table 5.1 presents a list of the aforementioned use cases, while each of these use

cases is described thoroughly in Appendix A.

Table 5.1: List of use cases
Use Case ID Use Case Name

1 Register

2 Log in

3 View saved solved instances

4 Solve a new (k, s)APn instance

5 View a (k, s)APn solution from a single algorithm

6 Load costs of a (k, s)APn instance and solve it

7 Save a (k, s)APn instance solution

8 Delete a saved (k, s)APn instance solution

9 Solve a new all-different instance

10 Save a all-different instance solution

11 Delete a saved all-different instance solution

12 View the MAPS manual

13 Edit user account

14 Log out

15 Delete personal account

45

Figure 5.1: Main use case diagram

46

5.1.2 Non-functional requirements

The architecture of MAPS should also satisfy some non-functional requirements, pre-

sented in Table 5.2, which will ensure the normal operation of the system and the

provision of a proper environment for the desired functionalities.

Table 5.2: Non-functional requirements
id Requirement Description

1 Storage The system will contain a database where all
user data can be stored, following a relational
schema.

2 Back-up The system should be supported by a back-up
mechanism for the contents of the database.

3 Security The system should be secured against sabotages
arising from all types of hacking attacks.

4 Privacy An authentication process will be required for
accessing the functionalities offered by the sys-
tem. Essential user data such as the password
have to be encrypted before storing.

5 Scalability The system should be able to handle the po-
tentially increased number of users. Addition-
ally, the system must be able to run on any
of the major modern hardware platforms and
operating systems. Specifically, it must run on
Windows, Linux, Solaris or Mac-OS operating
systems and any hardware architecture that is
supported by these operating systems.

6 Availability The system should ensure that users have al-
ways access to data and associated assets 24/7
with 99.9% reliability. This requirement entails
stability in the presence of localized failure.

7 Usability Easy to use. User documentation should not be
necessary for ordinary tasks.

8 User Interface Should give access to all system functionalities
providing easy navigation through all features.

9 Interoperability Individual components should be able to ex-
change information and use the information ex-
changed.

47

5.1.3 Data view

The following domain diagram (Figure 5.2) presents the main entities that build-up

the required dataset of this system. Additionally, we include a short description of

each entity.

Figure 5.2: Domain diagram

User: This entity models every user within the system. Its attributes are an id,

a username, a password, an email, a first and last name and a website.

KsAPnSolvedInstance: This entity models any (k, s)APn solved instance. Ob-

jects of this class are solved instances saved by a user. Its attributes are an id, a

name, a description, the algorithm with which the instance has been solved, the in-

tegrality gap (intGap), the optimality gap (optGap), the objective value of the linear

relaxation (lpValue), the objective value of the integer solution (ipValue), the solution

time, the seed with which the cost coefficients were pseudo-randomly generated, the

solution vector (solVector) and the cost vector (costVector).

AllDiffSolvedInstance: This entity models any all-different solved instance.

Objects of this class are solved instances saved by a user. Its attributes are an id,

a name, a description, the generated ILOG model, the solution vector (solVector),

the total branches (branches), the failures during the search for a solution (fails), the

total time (time), the search speed in branches/second (speed), the objective value

48

(objValue) and the solution status (status), i.e., an identifier showing if a solution has

been found if the instance is infeasible or if during the solution process an unexpected

error occurred.

Following the domain diagram, Figure 5.3 shows the generated entity-relationship

diagram.

Figure 5.3: Entity-Relationship diagram

5.2 Algorithms

Following the analysis of requirements, this section lists the encoded algorithms that

build-up the callable library and the core of this system for the (k, s)APn. Consid-

ering that there is much to be gained by exploiting the complementary strengths of

approaches to optimization, Constraint Programming (CP) and Integer Programming

(IP) methods among with heuristics and meta-heuristics are employed.

The main goal of this attempt is to have a solver that includes state-of-the-art

encoded algorithms for the (k, s)APn. In this context, to enhance MAPS some stan-

dard greedy heuristics, some versions of a state-of-the-art heuristic for Mixed Integer

49

Programming (MIP) called Feasibility pump, and a tabu-search meta-heuristic for

all classes of multi-index assignment problems, including axial and planar ones, are

deployed. All these components were described in detail in Chapters 3 and 4, however

we sustain some of their basic features here for self-containment of this chapter. Fur-

thermore, four new versions of the feasibility-pump heuristic are deployed and tested,

also not existing in the research literature. These new versions include problem spe-

cific cutting planes in this heuristic. This is the novelty of this idea, i.e. including

exact optimization approaches into heuristics.

Preceding the development of the heuristics, a mechanism that performs constraint

propagation has been developed that works for all classes of the (k, s)APn. Given the

problem dimensions, i.e. parameters k, s and n, this mechanism builds an index of

variables that exist in a constraint and vice versa. Additionally, this mechanism

can support the development of any heuristic for the (k, s)APn wishing to include

constraint propagation.

Note again, that the aim of this section is not to describe in detail the employed

algorithms. However, for completeness is provided a list with the encoded algorithms.

Further details can be found in Chapters 3 and 4. Hence, the employed algorithms

are the following:

• a constraint propagation mechanism that works for all classes of the (k, s)APn;

• Best-in greedy heuristic;

• Worst-out greedy heuristic;

• Basic version of Feasibility Pump, hereafter denoted as Feasibility Pump v1.0 ;

• Feasibility-Pump with constraint propagation, hereafter denoted as Feasibility

Pump v2.0 ;

• Objective Feasibility-Pump, hereafter denoted as Objective Feasibility Pump

v1.0 ;

• Objective Feasibility-Pump with constraint propagation, hereafter denoted as

Objective Feasibility Pump v2.0 ;

• Basic version of Feasibility Pump with cutting planes, hereafter denoted as

Feasibility Pump v1.0 with cliques ;

50

• Feasibility Pump with constraint propagation and cutting planes, hereafter de-

noted as Feasibility Pump v2.0 with cliques ;

• Objective Feasibility Pump with cutting planes, hereafter denoted as Objective

Feasibility Pump v1.0 with cliques ;

• Objective Feasibility Pump with constraint propagation and cutting planes,

hereafter denoted as Objective Feasibility Pump v2.0 with cliques ;

• Tabu-search meta-heuristic;

• a standard Branch and Bound (B&B) algorithm obtaining optimal solutions.

The inclusion of any new algorithm does not affect the data-model of the system

or any functionality described previously. It only affects the user interfaces, where

the new option of a new algorithm should be available on the respective screens.

5.3 Overview of screens

This section presents the overview of some core use cases in terms of system screens.

By ‘core’ use cases we imply these that are related to solving an instance of te problem.

Each use case is described in the respective subsection with screen-shots from the main

and alternative flows. The screens of the remaining use cases that are listed in the

previous section can be found in Appendix A.

5.3.1 Solve a new (k, s)APn instance

Once the user has selected to solve a new (k, s)APn instance he has to fill the dimen-

sions of the instance, i.e.

• parameter k: with value between 3 and 6;

• parameter s: with value between 1 and k − 1

• parameter n: this field can be filled either with a single value, or with multiple

values (e.g. 4,5,7,9), or with a range of values (e.g. 5-10). Every value should

be in the range [2, 49].

The user must also select the algorithm or algorithms with which he wishes to solve

the new instance. Note that for multiple values or a range of values for parameter n

the user may

51

Figure 5.4: Use Case 4 - Solve a new (k, s)APn instance: Main screen

• select only a single algorithm;

• select not to solve the instances to optimality.

If the given dimensions are not correct, the user is appropriately prompted to correct

them. Once the user has given correct parameters of the instance he can view the

results from the selected algorithms and compare. Furthermore, he can download

the table of the results in LaTeX (tex), PDF and Comma Separated values (CSV)

format.

52

Figure 5.5: Use Case 4 - Solve a new (k, s)APn instance: Correct parameters

Figure 5.6: Use Case 4 - Solve a new (k, s)APn instance: False parameters

53

Figure 5.7: Use Case 4 - Solve a new (k, s)APn instance: Results

54

5.3.2 View a (k, s)APn solution obtained from a single algo-
rithm

Once the user has selected from the table of the results which instance he wishes to

see, he is transferred to the screen with the details of the solution.

Figure 5.8: Use Case 5 - View a (k, s)APn solution from a single algorithm: Selection
of instance

If the user wishes to see the solution vector he can do it by clicking on the ‘Solution

Vector’ drop-down list. Additionally, he can download the cost vector in CSV format.

5.3.3 Load costs of a (k, s)APn instance and solve it

Once the user has selected from the main menu to load the cost vector of a (k, s)APn

instance and solve it, he is prompted to enter the dimensions of the instance and load

a CSV file with the cost vector. Multiple values or a range of values for parameter n

are not permitted.

5.3.4 Solve a new all-different instance

Once the user has selected to solve a new all-different system, he first has to enter the

number of the all-different constraints, the number of the variables and the number

of the domains in which the variables take their values. Note that only numerical

values (positive) are accepted. Additionally, there have to exist at least two variables,

otherwise the all-different instance has no meaning.

55

Figure 5.9: Use Case 5 - View a (k, s)APn solution from a single algorithm: View
details

Figure 5.10: Use Case 5 - View a (k, s)APn solution from a single algorithm: View
cost vector

56

Figure 5.11: Use Case 6 - Load costs of a (k, s)APn instance and solve it : Main
screen

Figure 5.12: Use Case 6 - Load costs of a (k, s)APn instance and solve it : Correct
entries example

57

Figure 5.13: Use case 9 - Solve a new all-different instance: Initial screen

Figure 5.14: Use case 9 - Solve a new all-different instance: Inserting values for
constraints, variables and domains

58

Figure 5.15: Use case 9 - Solve a new all-different instance: Defining variables and
domains 1

After entering the dimensions of the instance, the user has to define which variables

exist in which constraint, and from which domain the variables take their values. Note

that any all-different constraint must have at least two variables. Every variable

must take its value from a single domain and each domain should at least include one

variable. Also note that the domains can either be formed as ranges, e.g. 4-10, or

have discrete values e.g. 1,6,8,19. Any other form of a domain is not acceptable.

The user can also solve to optimality an all-different system by enabling the

‘Optimize’ selection. Once this check-box is enabled, the user can select either to

maximize or minimize the objective value of the all-different system. Note here that

a file with costs, in CSV format can also be uploaded. If no costs-file is uploaded,

then the system will automatically generate random integer values for cost coefficients

within the range [0, 1000]. An example for the format of the costs file is given in Figure

5.20.

Finally, the user can view the statistics of the solution of the all-different system

and the solution vector. Note here that the system generates an Optimization Pro-

gramming Language (OPL) script, right after the user has defined an all-different

system. Additionally, he can download the generated OPL script by clicking in the

download button or solve a new instance of an all-different system.

To conclude, let us highlight that integrated solvers coupled by such a DSS are

not reported in the literature. Additionally, we consider such interfaces an important

step for the adoption of such methods in practical situations, while the versatility of

59

Figure 5.16: Use case 9 - Solve a new all-different instance: Defining variables and
domains

Figure 5.17: Use case 9 - Optimize an all-different instance

60

Figure 5.18: Use case 9 - Minimizing an all-different instance

Figure 5.19: Use case 9 - Load the costs-file of an all-different instance

Figure 5.20: Use case 9 - All-different costs-file.csv example

variable,cost

x1, 27.10

x2, 2.72

x3, 3.45

x4, 56.89

x5, 9.70

61

Figure 5.21: Use case 9 - Solve a new all-different instance: Viewing solution statistics

Figure 5.22: Use case 9 - Solve a new all-different instance: Viewing solution vector

62

Figure 5.23: Use case 9 - Solve a new all-different instance: Downloading OPL script

integrated methods yields a breadth of parameterization for which such a DSS could

be of help. Therefore the work presented here could be of both practical and academic

use beyond the scope of the optimization problem underlying it.

63

Chapter 6

Decision support for energy-aware
production scheduling

Modern manufacturing companies are forced to become energy-aware under the pres-

sure of energy costs, legislation and consumers’ environmental awareness. Production

scheduling remains a critical decision making process, although demanding in compu-

tational terms and sensitive on data availability and credibility. Hence, incorporating

energy-related criteria in production scheduling has become more important.

This chapter describes an energy-aware production scheduling decision support

system (DSS), composed by an Iterated Local Search algorithm that offers hierar-

chical optimization over multiple scheduling criteria and a generic yet concise data

model whose entities are extracted from the literature and actual user requirements.

The results of embedding this DSS in an integrated system used by two textile manu-

facturers show that it indeed supports efficiently energy-aware production scheduling.

The remainder of this chapter goes as follows; In Section 6.1 we provide the

motivation and the context of the problem at hand. Section 6.2 provides the research

background motivating this study. Section 6.3 presents the production scheduling

problem followed by the user and data requirements and the algorithmic scheme.

Section 6.4 discusses the application of the proposed DSS along with implementation

issues and Section 6.5 presents the evaluation and the benefits measured in a real

context.

This is a joint work with P. Repoussis, I. Mourtos and C.D. Tarantillis, a significant

result of a European research project, namely ARTISAN (GA no. 287993), that is

published in the Decision Support Systems journal [90].

64

6.1 Motivation

Public and industry concerns over energy efficiency and environmental sustainability

have grown considerably over the last decade. Particularly in the industrial sector,

energy efficiency becomes an even more important pillar since it accounts for more

than one third of energy consumption worldwide [108, 83] of which the manufacturing

sector accounts for about 73%. Despite these numbers, industrial practices towards

energy-efficient manufacturing have traditionally been viewed as a ‘cost of business’,

and positioned as the voluntary responsibility of companies. Nowadays, this percep-

tion is changing as stricter legislation, industrial standards and energy costs require

that companies not only adopt a strategy of minimal compliance, but also treat such

a strategy as a catalyst for sustainable practices. Furthermore, consumers are becom-

ing increasingly aware of whether the product they purchase comes from a sustainable

source and is produced through eco-friendly methods that, ideally, guarantee mini-

mum environmental impact [74]. Betraying the consumer’s confidence can damage

a company and its brand image [35]. Altogether, legal compliance, energy costs and

customers’ increasing ecological awareness [21] are driving companies towards mea-

surable energy efficiency improvements, thus motivating in broad terms this research

effort.

Although the manufacturing sector has advanced towards energy efficiency, the

economic benefits arising from energy efficiency have not been fully exploited [78].

Both academic and business studies indicate that there is an “energy efficiency gap”

and highlight that there are strong barriers which impede energy-efficient manufac-

turing. Systems supporting relevant decisions can help minimize these barriers by

monitoring energy consumption and carbon emissions, thus pinpointing areas for

savings [28] as a basis for energy-based optimization and intelligent decision making

[104]. Several enterprise systems have been enhanced by energy management capa-

bilities, although typically limited to energy monitoring, analysis and reporting [21].

These Energy Management Systems (EMS) do not support management decisions in

a coherent way due to a lack of integration of information from shop-floor to top-floor

[105]. Apparently, apart from the gap between industrial needs and the academic

literature [21, 81], there is also a gap between the solutions available and the support

of sophisticated decision making such as production scheduling [109].

Indeed, scheduling is an important decision-making process in manufacturing that

drills down to deciding on

(i) which tasks to execute,

65

(ii) where to process the production tasks and in which sequence and

(iii) when to execute the production tasks.

Typically these decisions are strongly coupled, thus ideally taken simultaneously [53].

Due to the complexity and the increasing production volumes, such decisions can-

not be addressed without an automated optimization support. This functionality is

typically considered part of a Manufacturing Execution System (MES) [53] and is

normally supported by an Enterprise Resource Planning (ERP) system through data

exchange. Note that, apart from reducing monetary cost, good production schedules

can reduce the environmental load through energy demand reduction [53]. Still, due to

its nature, scheduling remains computationally complex and data intensive, because

it requires not only production data but also the availability status of resources, e.g.,

machines, even in real-time. In fact, the more complex a scheduling system is, the

more information to be collected and managed [53], and the more competitive the

algorithms to be used for obtaining valid schedules of good quality.

This study focuses on energy-aware flexible shop scheduling production environ-

ments and is motivated by the scarce optimization algorithms (and the limited back-

ground on the data required) for energy-aware support at the shop floor. The adopted

production scheduling framework is as generic as possible and takes into account vari-

ous operational aspects and utility or resource constraints. In particular, the machines

of each process step share and consume one or more ‘resources’, e.g., electricity. The

constraints can be imposed in one or more process steps, and the maximum levels per

resource may also vary across the planning horizon (e.g., flexible electricity consump-

tion pricing). The goal is to find the optimum schedules for different scenarios of

peak energy utility consumption and to also minimize indirect energy consumption.

An Iterated Local Search (ILS) is used introducing new compound moves and an

adaptive perturbation mechanism. It also offers optimization using either energy or

temporal scheduling criteria. On one hand, the energy-related criteria include the

total energy consumed by machines during production and idle time (direct energy)

along with the energy consumed by subsidiary equipment (indirect energy). On the

other hand, the temporal scheduling criteria, namely makespan, total flow time and

total machine idle time, can be optimized hierarchically over all possible combinations.

Although temporal, these objectives also target both direct and indirect energy con-

sumptions. That is, minimizing the makespan increases total throughput and reduces

the number of shifts, thus reducing the indirect energy consumption (e.g., heating);

minimizing total flow time reduces total production time, hence total direct energy

66

consumption (e.g., machine gas consumption); and minimizing total idle time reduces

the energy consumed by machines in idle mode. Hence, hierarchical optimization over

these temporal criteria covers all major aspects of energy consumption, whereas indi-

vidual minimization of a single temporal objective is insufficient as also shown by the

pilot use and experimentation. Furthermore, by imposing time-varying restrictions on

the energy consumption of machines, the optimization algorithm provides schedules

that alleviate energy peaks by distributing more ‘uniformly’ the consumption across

time. That is, energy-awareness amounts not only to energy-driven optimization

objectives, but also to energy-consumption constraints.

To the best of our knowledge, an explicit description of the data entities sup-

porting energy-aware production scheduling is at the moment not available, although

scheduling-related entities have been presented early enough (e.g., object-oriented

modelling [88]). To identify these data entities, a set of user requirements is for-

mulated as acquired from the academic literature and validated within the textile

manufacturing domain. The algorithm is aligned with these entities and remains op-

erative even if certain data are missing or are less credible. Thus, in this study is

proposed a DSS for energy-aware production scheduling composed by an algorithm

and a generic, concise and validated data model.

Overall, this work contributes to decision support for energy-efficient manufactur-

ing by

(a) a metaheuristic algorithm that hierarchically optimizes flexible shop scheduling

problems,

(b) a set of data requirements in the form of a data model,

(c) the integrated deployment of the above as a web-service and

(d) the evaluation of the proposed DSS in real settings and the tangible benefits

obtained by its use.

6.2 Research background

It is being increasingly required that energy-intensive industries need tools and meth-

ods to optimize production processes that take into consideration energy-related cri-

teria [21]. Several approaches for achieving this have been proposed. Indicatively,

accurate changes on resources or processes can effectively reduce energy usage [60].

67

Prior studies have been conducted to evaluate the energy-burden of different pro-

cesses [98], which are used as a roadmap to identify alternatives in the production

process. However, these changes impose a significant initial investment, because they

may involve radical changes in the manufacturing process [16]. An alternative, less

costly approach, is the modification of production settings, such as the temperature

of the machines. Although several studies focus on such practical changes [16], it

seems that these approaches are usually related to specific processes that can lead to

new problems, e.g. lower product quality [81]. As simple and well-suited for their

domain these approaches may appear, they tend to be static. Hence the need for

dynamic adaptations to production conditions in future factories [60].

The optimization of energy use via production scheduling has received particular

focus in the past decade. One early attempt formulates a multi-objective optimization

problem for an electroplating line [102]. Another study has shown that up to 65% of

the energy consumption comes from non-productive machine modes (e.g., stand-by

or idling) [31]. Embedding energy aspects into scheduling can be tackled by both

exact and heuristic approaches. Exact mathematical programming based methods

can obtain optimal solutions but require considerable time given that the job-shop

and flow-shop scheduling problems are NP-hard [80]. Indeed, by integrating energy

constraints in a set of 100 instances, Artigues et al. [10] show that the solution time

for a mixed integer programming model is high. This is also outlined by Fang et

al. [38] by testing an exact method against heuristic algorithms to minimize the

makespan, the peak consumption and the carbon footprint of the production process.

This trade-off between the solution quality and the required time is usually resolved by

the requirements of the application domain. Regarding the manufacturing domain,

fast re-scheduling is often required in the presence of unpredictable events such as

machinery malfunctions.

Metaheuristic methods trade optimality so as to provide high quality feasible so-

lutions within reasonable time, while their current state-of-the-art for production

scheduling algorithms includes genetic and hybrid evolutionary algorithms [81, 95].

Indicatively, Shrouf et al. [99] focus on scheduling on just a single machine, taking

into consideration the variable energy cost during daytime hours and use a genetic

algorithm to provide feasible schedules of good quality. Rager et al. [95] use a combi-

nation of genetic and memetic algorithms to acquire schedules minimizing the energy

demand of multiple parallel machines by first splitting production orders into oper-

ations that have constant energy demand. This results in a schedule defined by the

68

underlying ‘identical parallel machine’ environment and the resource-levelling objec-

tive. Notably, the approach of [95] has been tested in the textile domain particularly

at the dying stage of yarns.

The problem addressed here is more generic: it includes various operational con-

straints (e.g., non-identical machines, sequence-dependent set-up times) and is ap-

plicable with minor modifications to almost any shop scheduling environment. Also,

the proposed algorithm seems highly competitive and incorporates novel local search

components and re-start mechanisms to escape from local optima. Moreover, this

algorithm performs, apart from minimization of the direct and indirect energy as a

single objective, hierarchical optimization over three different criteria, i.e., makespan,

total flow time and total idle time. Note here that hierarchical optimization in man-

ufacturing typically covers two criteria [38, 95, 81] and has never targeted total idle

time. However, an approach that covers three completely different criteria appears in

the human resources allocation domain [23]. This is rather surprising since minimizing

total idle time (where the idle time of a machine is possibly weighted by its stand-by

consumption) indeed minimizes machine energy use in non-production mode; thus, if

minimized together with makespan in some hierarchical fashion, it does encompass

energy-awareness in scheduling decisions. Another innovative feature of this approach

is that it deals effectively with several time-varying resource constraints, thus encom-

passing the sharing of one or more energy resources (e.g., electricity, gas, steam) by

multiple machines.

To identify the entities that build up the data model, user requirements for pro-

duction scheduling are collected from the literature [53] and validated from require-

ments as extracted from the textile industry, i.e., from two textile manufacturers that

are the end-users of the proposed DSS plus several other textile producers (mostly

SMEs). Then, the framework of [109] is utilized regarding the integration of data

from enterprise systems (ERP, MES, EMS), thus offering a coherent data model for

energy-aware production scheduling. This is of no surprise, since the proposed al-

gorithm is insufficient if not relying on appropriate data, and vice-versa: the data

entities to be incorporated in the data model are selected exactly because they are

required for supporting scheduling decisions.

69

6.3 Problem definition, data requirements and al-

gorithm

In this section are presented the modules that build-up the proposed DSS, namely the

scheduling problem with resource constraints (Section 6.3.1), the data requirements

(Section 6.3.2) and the components of the proposed ILS algorithm.(Section 6.3.3).

6.3.1 Energy-aware production scheduling problem with re-
source constraints

Production scheduling can be defined as the allocation of available production re-

sources over time to perform a series of activities. Suppose that a set of unrelated

parallel machines Mj (j = 1, ...,m) have to process a set of production orders or jobs

Ji (i = 1, ..., n). Each job i has a release date, a due date and consists of a ki num-

ber of operations Oi1, ..., Oiki , while each operation Oij is associated with a subset of

machines µij and a (normally machine-dependent) processing time pij. At any time,

each job can be processed by at most one machine and each machine can process at

most one job. It takes each job a different amount of time to be processed by each

machine.

Once a job is processed on a machine, it cannot be interrupted before completion.

Additionally, whenever a machine finishes the processing of an operation, a set-up

(changeover) time occurs before processing the next operation. The length of the

set-up can be sequence dependent (i.e., the set-up depends on the job just completed

and on the one about to be started) and/or machine dependent (with or without a

predefined frequency). Overall, the objective is to find a sequence for the processing

of the jobs in the machines so that a given objective function is optimized. A schedule

is for each job an allocation of one or more time intervals to one or more machines.

To that end, the associated scheduling problem is to find a schedule that satisfies a

given set of precedence restrictions among the operations of each job and respects its

due and release dates.

The above production scheduling problem can be formally depicted as flexible

multi-processor job-shop scheduling problem with unrelated parallel machines, due

dates, and set-up times that depend on both the job sequence and the machine.

There is significant research work on production scheduling problems with parallel

machines and makespan minimization [89], but significantly fewer for unrelated par-

allel and sequence-dependent set-up times. Note that minimizing the makespan on

70

two identical machines is NP-hard [56]. For mixed integer mathematical formulations

as well as exact and metaheuristic solution approaches see Rocha et al. [96].

Additionally, machine availabilities, shifts and resource constraints are taken into

consideration in this framework. Regarding the former, each machine is coupled with

a number of qualified employees. There are 3 different shifts per day, while the person-

shift allocation plan is known in advance. Based on this qualification matrix and the

available personnel per shift, one can determine the machine availability during the

planning horizon.

Furthermore, it is assumed that machines consume one or more energy utilities,

e.g., electricity, gas and/or steam. The utility consumption is directly related with

the time elapsed, and may also depend on the machine mode, i.e., start-up, clean-

up, stand-by and production mode. The time spent during the first three modes is

considered as ‘idle time’, which practically is a necessary, yet non-productive time.

The amount of energy consumed by machines is considered as direct irrespectively

of whether the machine is in idle or production mode; i.e., ‘direct productive’ and

‘direct idle’ energy are considered as different, but both types are consumed directly

by production machinery in the shop floor. However, there may also exist additional

subsidiary energy-consuming equipment (e.g., air-conditions) in a shop floor related

to the production process. As described in [109], although these amounts of con-

sumed energy are indirect, they are important and should be taken into account.

Energy-aware production scheduling is expected to minimize both direct and indirect

energy consumptions, while the restriction of energy peaks can be achieved by adding

resource consumption constraints.

In this study, two types of objectives are taken into consideration. The first type is

a single energy-related criterion and considers the total direct and indirect energy. In

more detail, the energy consumed during production, Eproduction, and idle time, Eidle,

(i.e., direct energy) along with the indirect nergy consumed by subsidiary equipment

(e.g., air-conditions), Eindirect are taken into account. The goal is to minimize the

sum of these three energy consumptions. The second type includes three temporal-

scheduling criteria considered and treated as single objectives in a lexicographic order

(hierarchical tri-objective), namely makespan (Cmax), total flow time (Ft), and total

idle time Dt. The minimization of the makespan (completion time of the last job

in the schedule) is expected to maximize the utilization of machines [38], to reduce

the required shifts of the machine personnel and to increase the throughput. Thus,

it reduces mainly the indirect energy consumed by subsidiary equipment. The mini-

mization of the total flow time is related to the time the machines spend in production

71

mode, hence it can be seen as minimization of the direct energy consumption. To

the contrary, the minimization of the machine idle time is related to both direct and

indirect energy consumptions.

In the remainder of this chapter, the notation f |g|h is used to indicate the hier-

archy of the temporal scheduling objectives. For example, the Cmax|Ft|Dt indicates

that Cmax is the (dominant) primary objective, Ft is the secondary objective and Dt

is the last objective in consideration.

6.3.2 Data requirements & information flows

Production scheduling requires several data entities, such as the machines, the em-

ployees, the production orders and the status of the machines. Introducing energy-

aware related criteria in production scheduling implies embedding energy-related data

in the data model. Indeed, manufacturing-related data entities appeared pretty early

in the literature [39], yet without incorporating energy-related data. Furthermore,

production management data entities can also be found in simulation-related litera-

ture [97] or object-oriented modelling, again disregarding energy-related data [88].

The entities proposed here can be classified into three information flows (see also

[109]):

• Operational flow : information regarding specific orders, the types of products

and the materials used for each product.

• Production process flow : information regarding the production processes, such

as machines, process steps, production and product tracking.

• Energy consumption flow : information regarding energy consumption that is

either measured by energy sensors or specified by traditional audits.

Based on the description of the problem (see Section 6.3.1) and the above flows,

the proposed data model is shown in Figure 6.1. Blue color is used for operational,

red for production process and green for energy consumption entities; black color

distinguishes operational entities that are used only for scheduling. The description

of these entities is as follows;

• Employee: Models each employee that works in the enterprise.

• MachinePersonnel: Displays which employee can work on which machine.

• Shift: Models the shifts of the employees within a facility.

72

Figure 6.1: Data model

73

• ShiftEmployee: Displays which employee is assigned to which shift.

• Resource: Models the consumable resources, e.g., electrical energy, gas, steam.

• CostProfile: The time-varying cost profile per resource across time.

• ResourceBoundary: The maximum resource consumption per machine.

• Sensor: Models each metering device measuring the consumption of a resource.

• SensorMachineGroup: Maps a group of machines to a sensor.

• ResourceConsumption: Models the direct energy consumption.

• Machine: Models each machine that exists in a production environment.

• MachineAvailability: Models the availability of a machine.

• Specs: Models the specifications of a machine for a product.

• Process: Models a process of the manufacturing procedure.

• ProcessStep: Models a part of a process.

• Product: Models the products.

• ProductStepSequence: Models the process step sequence for a product.

• TimeFences: The time fences of a product in a process step.

• ProductMachineSequence: Models the machine sequence for a product.

• OperationType: Models the different operation types that may occur during

the processing of a product across a machine sequence.

• ProductOperationType: Models the sequence of operation types across ma-

chines for a product.

• ChangeOverTime: Models the changes over time, of all possible combinations

of OperationTypes.

• ProductionOrder: Models the production orders that have been placed.

• Schedule: Models the schedules that may be produced.

74

• ScheduledProductionOrder: Maps production orders over different possible

schedules.

• ScopeType: An enumeration defining every possible scope type for a schedule

within the system.

• OptimizationType: An enumeration defining every possible optimization

type for a schedule.

• ScheduleType: An enumeration defining the two different types of schedule.

As expected, the entities in this model reflect data entities in existing ERPs, MESs

and EMSs. The novelty of this model is the combination of these flows that support

energy-aware production scheduling. This is a prerequisite for applying these algo-

rithmic components that support production scheduling. Furthermore, this requires

interfaces that allow the data exchange between

• the proposed DSS and existing systems;

• the elements comprising the DSS,

as shown in Figure 6.2. This is in simple terms the high-level architecture of the

proposed DSS. The interaction with external systems is performed via ‘Interface 1’

(this reflects a series of interfaces, one per enterprise system), while the database with

the algorithmic components interacts through ‘Interface 2’. Note here that the latter

interface can also deal with issues of data consistency. This prevents the algorithmic

components from having erratic input data.

6.3.3 Iterated local search method

An ILS method has been developed for solving the hierarchical production scheduling

problem with utility constraints. ILS is a perturbation-based multi-restart local search

metaheuristic algorithm introduced originally by [68], in which the initial solutions

for local search are generated by perturbing local optimum solutions obtained during

previous searches. The implementation originates from a starting solution s, local

search is initially applied until a local optimum solution s∗ is found. At this point, a

random perturbation is applied that leads to an intermediate state s′. Local search is

triggered starting from s′ until a local optimum solution s∗′ is reached. If s∗′ improves

s∗, then it becomes the next solution for local search; otherwise, the procedure is

75

Figure 6.2: Energy-aware production scheduling DSS architecture

restarted from a new starting solution s. The oscillation between perturbation and

local search is repeated for a number of iterations.

We adopt a sequential insertion-based construction scheme to generate starting

heuristic solutions. At each iteration, one operation is selected and added in the

permutation of a machine. The rule followed is to schedule the operation as early as

possible. All available machines and all feasible insertion positions (with respect to

machine availabilities, release and due dates, precedence relationships and resource

constraints) for each operation are examined. The main effort is to schedule the

operation that performs best with respect to the hierarchy of objectives. Based on

this greedy criterion, a restricted candidate list of positions at the available machines

is generated for each operation, and one position from this list is selected randomly.

Note that every iteration the actual schedule partially constructed solution is updated.

An iterative improvement local search scheme is employed. In particular, the so-

lution neighbourhoods are generated by applying the relocate and exchange operators

[111] on a representation based on the permutation of operations on the machines.

Equal selection probability is assumed for each operator, while a best admissible strat-

egy is followed for moving in the solution space. For the evaluation of the neighbour-

hoods, a lexicographic search scheme has been developed that considers all feasible

76

inter and intra machine move combinations. The main effort of this scheme is to

expedite the process by avoiding unnecessary feasibility checks.

Lastly, a ‘ruin-and-recreate’ mechanism is applied for perturbation. In particular,

a number of jobs is randomly removed from the schedule and the greedy randomized

construction scheme described above is applied to reschedule them. The number of

the rescheduled jobs is determined by a self-adapted length that is regulated based

on the search progress.

6.4 Energy-aware production scheduling in the tex-

tile industry

In this section are described the implementation details of the proposed DSS as part

of the ARTISAN system [1], whose aim is the reduction of the energy use in textile

manufacturers. The ARTISAN system integrates data from several enterprise systems

and from real-time energy monitoring to assist the enterprises in reducing the energy

consumption through monitoring and allocating energy consumption per production

order and also through energy-aware production scheduling. This has been achieved

by deploying and validating the proposed DSS for energy-aware production schedul-

ing. The whole ARTISAN system, including the proposed DSS, has been installed

and tested in two industrial partners, a small-to-medium enterprise (SME) focusing

on production of yarns and a large-size enterprise (LSE) with a vertical production

line.

6.4.1 Decision support and production scheduling in the tex-
tile industry

The primary scope of the proposed DSS is to reduce the direct and indirect energy

consumption by delivering scheduling scenarios and master production plans that

significantly improve all time-related factors of the underlying production processes

(i.e., total running, deadhead and set-up times of different sub-processes and ma-

chines) under constrained resources.

Energy audits on the premises of the industrial users have shown that the most

energy-consuming process in the textile manufacturing chain is the finishing mill.

Hence, this particular process is to be optimized. In ARTISAN, the finishing mill is

modelled as a multi-step (multi-stage) production flow shop facility, where a produc-

tion step is made up of one or more related and/or unrelated parallel machines (or

production lines / machine groups). The term job refers to a ‘production order’ and

77

a product is also called an ‘article’. The speeds, capacities and programs/settings

of the machines are known and they may depend - among others - on the articles

and the process quantities (lot size). In addition, set-up times and costs are incurred

(changeover time/cost) when machines have to be reconfigured and/or cleaned be-

tween operations on different articles. The length of the set-up can be sequence

dependent (i.e., the set-up depends on the job just completed and on the one about

to be started) and/or machine dependent (with or without a predefined frequency).

Each machine directly consumes one or more limited resources, namely electricity,

gas, steam, water and compressed air, that should not exceed certain thresholds

per certain groups of machines or for the entire process. Steam is produced by a

continuous steam production unit, while water is heated by a gas-powered combined

heat and power unit. Both of them have a predefined capacity limitation. Regarding

electricity, cost profiles as well as maximum capacities for different hours per day are

provided. Additionally, limitations may also occur in terms of drainage, rinse water

and emissions. Furthermore, there is indirect energy consumption from auxiliary

energy conservation installations (e.g., air-conditioning facilities, lighting, heating,

etc.) that they are related to each machine or each process step(s). This production

environment fits perfectly with the job-shop problem described in Section 6.3.1.

Regarding the optimization criteria, the total energy consumed during machine

idle time has been pointed out as important both in the related literature [31] and

by the experts (production engineers, floor managers, energy auditors) of the textile

manufacturing domain in the context of the ARTISAN research project. This partly

relates to the fact that machines cannot be easily shut down and then restarted, in

order to avoid energy consumption while producing nothing, and partly to the fact

that the energy consumption of several machines is comparatively large even if they

are idle. However, minimizing only the total idle time may increase the makespan or

vice-versa, although what a manufacturer seeks is the minimization of total direct and

indirect energy consumed. Consequently, apart from a technical novelty, supporting

the hierarchical minimization of the three aforementioned temporal-scheduling criteria

is also a mandatory requirement.

6.4.2 User requirements and system functionality

Apart from the problem characteristics and the operational aspects, various user

requirements are taken into consideration. Although these requirements have been

collected from the textile manufacturing domain, they are also identified as basic user

requirements from the academic literature [53]. A production scheduling software

78

should provide, schedules for short-term periods or for a specific group of machines

and production orders and master schedules for longer periods of time that affect

every process in the production floor. It is important that the user reviews such

schedules and selects among several “simulated” schedules the one to be implemented

in the shop floor. For each schedule, the user wishes to alter provisionally the factory

environment settings, e.g., the availability of a machine. When unexpected events

occur, such as machinery malfunctions, re-optimizing the master schedule is necessary.

Last, schedules are expected to be provided in a reasonable amount of time and

presented in Gantt charts.

The proposed DSS (as part of the ARTISAN system) provides two services sup-

porting the user to generate master production scheduling scenarios. These two ser-

vices are titled “Resource Constraint Shop Floor Scheduling at the process level”

(narrow scope) and “Resource Constraint Multiprocessor Shop Floor Scheduling”

(middle scope). Apart from the scope (single and multiple process steps), a major is

that the second takes into account cross-processing resource limitations and capacity

thresholds across the process steps. The third service, “Reactive Shop Floor Schedul-

ing” (middle scope) aims at assisting the user to responsively adjust the planned

production schedule due to the occurrence of expected or less expected (e.g., machine

breakdown) disturbing events. Its primary scope is the on-demand re-optimization

of the current production schedule as new information arrives. Apart from ordinary

static information, this function exploits all available time-related (article tracking)

and energy consumption data of the processes and takes into account time profiles of

the planned energy consumptions for each production phase (i.e., set-up, production,

and cleaning) of a machine (or a process step).

6.4.3 Implementation details

The successful industrial application of the proposed DSS depends on resolving many

practical issues when embedding this DSS in an actual system, such as ease of use,

data availability, application development and maintenance.

Regarding the ease of use, after consulting with the end-users, following the wa-

terfall model, the work-flow of the proposed services has taken its shape. Figures

6.3, 6.4 and 6.5 are the service blueprints of these services along with some indicative

screen-shots. The scenario of use of these services is the following; after the user

selects what kind of scheduling is to be performed (Resource Constraint Shop Floor

Scheduling, Multiprocessor Shop Floor Scheduling or Reactive Shop Floor Schedul-

ing), it is important to identify the scheduling horizon, that is the time-span of the

79

optimization. For the defined horizon, the user should be able to see and verify the

production orders that have due dates within this horizon. At any point, editing the

production configuration is also important, e.g., excluding a machine from a particu-

lar schedule or changing the specifications of an article on a machine. This essentially

allows the user to test several scenarios for the job floor, being able to include aspects

like machine maintenance that are not explicitly formulated as part of the optimiza-

tion problem. Right before producing a feasible schedule, the user has to define the

optimization criteria which the scheduling algorithm tries to minimize, either one or

multiple in a hierarchical order. Once the algorithm provides the schedule, the user

can see it as a Gantt-chart and choose among a list with other simulated or confirmed

schedules, for the same planning horizon, whether the schedule in hand is “confirmed”

(it is the schedule to be executed) or “simulated” (i.e., one more schedule scenario in

the pool of simulated ones).

Data availability implies that the requested pieces of information are available

and reliable. The integration of energy-monitoring aspects in a factory environment

is a new requirement, hence it is expected that energy-related data may be absent.

In fact, the smaller industrial user did not have an EMS and only recently started

using metering equipment for electricity consumption. Beyond that, tracking of pro-

duction orders on machines is not available in real-time for this user and has been

inserted using historical data. Energy-constraints are set over machines and not over

production orders. Furthermore, the required time for a machine to change from one

operation (e.g. dyeing blue) to another (e.g. dyeing red) is not available (for both

users) but have been manually inserted.

The integration of the DSS with the ARTISAN system and the existing systems

(e.g., MES), implies the implementation of interfaces enabling the data exchange

between these systems. Apart from that, these interfaces ensure that changes on

the DSS will not affect the proper function of individual components. This is an

important aspect regarding the maintenance of the DSS.

6.5 Impact and benefit on industrial users

This section presents the benefits from the use of the proposed DSS in textile manu-

facturing. Sections 6.5.1 and 6.5.2 present the structure of the production lines and

the specific scheduling requirements of two industrial users, namely an LSE (User A)

and an SME (User B). Additionally the hierarchy preferences over the optimization

criteria is discussed. Next, Section 6.5.3 contains various computational experiments

80

F
ig

u
re

6.
3:

R
es

ou
rc

e-
co

n
st

ra
in

ed
sh

op
fl
o
or

sc
h
ed

u
li
n
g

at
th

e
p
ro

ce
ss

le
ve

l

81

F
ig

u
re

6.
4:

R
es

ou
rc

e-
co

n
st

ra
in

ed
m

u
lt

ip
ro

ce
ss

or
sh

op
fl
o
or

sc
h
ed

u
li
n
g

82

F
ig

u
re

6.
5:

R
ea

ct
iv

e
sh

op
fl
o
or

sc
h
ed

u
li
n
g

83

and the reduction of energy consumption as calculated by both users. Section 6.5.4

concludes with a qualitative evaluation.

6.5.1 Large-size enterprise - Industrial User A

For User A focus is given on the processes related to the finishing department, whose

key characteristic is that most machines run on high temperatures. Therefore, the

heating-up and the cooling-down consumptions are significant. Therefore, it is com-

mon practice that many machines work in standby mode for long periods of time,

i.e., all week except weekends. All optimization scenarios are performed assuming a

mid-term planning horizon (more than a month).

A data set containing 642 production orders on 122 articles that have to go through

14 process steps with 38 machines in total (in all 14 process steps) is examined. It is

worth highlighting that this problem size is considered as large-scale in the literature.

No restrictions are imposed regarding the machine availability and no shortages are

considered regarding the machine operators across the shifts. The machine capacity

is the main bottleneck. User A prioritises the optimization criteria as Cmax|Dt|Ft so

as to favour more the reduction of shifts (and thus indirect energy consumption) and

then the standby-consumption; however, this user is also interested in the hierarchy

Dt|Cmax|Ft.

6.5.2 Small-to-medium enterprise - Industrial User B

The production in User B has fragmented production volumes, hence it becomes

difficult to maintain a continuous production schedule. In particular, the small pro-

duction lots cause frequent stops of machineries for setting-up the new production

orders. Therefore, the machine idle times can be significant but the total flow time

is also important. To that end, Use B selects the optimization hierarchy Dt|Ft|Cmax.
A data-set containing 33 production orders on 20 articles, each passing through

24 process steps and a total of 29 machines is examined. The main restriction is

represented by the operators dedicated to warp change (shift) and loom preparation.

They are highly specialized, therefore the availability of the machine is strictly linked

to this last rule. All optimization scenarios are performed assuming a thirty day

planning horizon. Hence, this is a small-sized data set over a long horizon.

84

Table 6.1: Results for monthly production schedules with different optimization pri-
orities

Month Hierarchy Cmax Ft Dt

M1
Ft|Cmax|Dt 8803 297780 122346
Dt|Cmax|Ft 8803 366077 71474

M2
Ft|Cmax|Dt 9201 403351 103536
Dt|Cmax|Ft 9201 470706 64300

M3
Ft|Cmax|Dt 8802 657615 131496
Dt|Cmax|Ft 8802 683585 88289

6.5.3 Computational experiments and evaluation

The proposed DSS has been evaluated in both industrial users by comparing the

energy consumption of the machines before and after the adoption of the optimized

schedule. This has been calculated externally, using energy consumption data in com-

bination with the optimized schedules offered. Overall, the schedules provided by the

proposed DSS have a considerable impact on the energy consumption in both users.

The calculation at User A has shown an average reduction in energy consumption by

15.9% per month, mainly by reducing the number of shifts hence the indirect energy

consumption but also by reducing the idle time of machines. User B has reported a

slightly higher reduction of 16.5% in average that is, to the largest part, attributed

to much smaller idling times of machines. This is of no surprise, since User A has

a large manufacturing site with very high fixed energy costs but a rather smooth

production that utilizes machines quite well thus allowing for no significant savings

because of reducing the idle times. In contrast, User B has a smaller installation, in

which fixed energy consumption is not particularly high; however, because of small

lot sizes and only fewer machines, it suffers from long idle times especially in some

energy-intensive machines that consume in stand-by mode approximately the same

energy as in production mode.

Besides the observed energy consumption at the industrial users, various compu-

tational experiments have been performed to study the interrelationships among the

optimization criteria, and in particular between the total flow time Ft and the total

idle time Dt. Table 6.1 shows the results obtained for three different monthly plan-

ning periods (first column - M1, M2 and M3) for different objective function priorities

(second column) for User A. The last three columns show the values (in thousands of

minutes) for each optimization criterion per month.

The results of Table 6.1 show that, for this particular test-bed, the selection of the

optimization hierarchy can play a critical role. In all cases, the makespan seems to be

85

insensitive. On the contrary, the values of Ft and Dt are much in conflict, and they

are significantly affected by the choice of the optimization hierarchy. Whenever focus

is primarily given on minimizing Ft, the idle times are significantly increased and vice

versa. For example, in month M3 the lowest total flow time is 657615 minutes for

completing all orders of the production schedule and this comes with a total of 131496

thousand minutes idle time. Instead, if the total idle time is minimized first, the

result is a 48% improvement from 131496 to 88289. The price is an increase of 3.7%

regarding the total flow time from 657615 to 683585. The managerial implication

here is that if direct idle energy consumption is more critical than indirect energy

consumption, priority should be given to Dt; if, to the contrary, indirect energy

dominates total energy consumption, then focus should be given to Ft or to Cmax

regarding the optimization hierarchy. Note that the results for User B are pretty

similar but less illuminating since that user’s data set is quite small-sized.

An additional set of computational experiments have been performed to study

the effect of resource constraints on the optimization criteria. For this purpose, six

indicative problem instances are generated from I1 to I6 based on the shop floor char-

acteristics and the production scheduling attributes of both industrial users. Tables

6.2 and 6.3 summarize the results obtained. The first set of columns show the basic

structural properties and the actual size of each problem instance in terms of number

of jobs, operations and machines. The second set of columns indicate the hierarchy

of objectives. In all experiments, the Cmax|Ft|Dt problem is solved. The last set of

columns provide the results obtained by solving the scheduling problem without any

resource constraints (RC0) and with up to 3 resource constraints (i.e., RCi is instance

RC0 with i resource constraints, i = 1, 2, 3) on the machine and process step level.

The three renewable resources correspond to electricity, gas and high pressure steam.

Without loss of generality it can be assumed that the available parallel machines

at each process step are identical, there are sequence dependent changeover (set-up)

times, all production orders have the same release date and half of the production

order have a due date earlier than the end of the planning horizon. To that end,

the first group of problem instances (I1 to I3 in Table 6.2) are identical to the sec-

ond group of problems (I4 to I6 in Table 6.3); however, in the instances of the first

group all machines are available at all times, while in the ones of the second group

the availability of machines varies (up to 20% machine unavailability throughout the

planning horizon).

Overall, the following observations can be made. At first, as resource constraints

are added, the quality of the schedules is significantly affected and all optimization

86

Table 6.2: Results with renewable resource constraints
Instance Criterion Resource Constraints

RC0 RC1 RC2 RC3

I1

Operations 100 Cmax 1037 1565 2755 3241
Jobs 10 Ft 8779 13740 23005 25327

Machines 20 Dt 3621 6123 18847 22927

I2

Operations 123 Cmax 1504 2269 3995 4320
Jobs 12 Ft 12378 19373 32437 35711

Machines 20 Dt 5395 9123 28082 34161

I3

Operations 148 Cmax 2395 3615 6364 6881
Jobs 14 Ft 20894 32701 54752 60278

Machines 20 Dt 8437 14267 43914 53420

Table 6.3: Results with renewable resource constraints (cont.)
Instance Criterion Resource Constraints

RC0 RC1 RC2 RC3

I4

Operations 100 Cmax 1045 1737 2897 2979
Jobs 10 Ft 9209 15245 23524 27659

Machines 20 Dt 5357 9364 19811 25765

I5

Operations 123 Cmax 1515 2519 4201 4699
Jobs 12 Ft 12985 21495 33169 38999

Machines 20 Dt 7982 13952 29518 38390

I6

Operations 148 Cmax 2414 4012 6692 7487
Jobs 14 Ft 21917 36283 55987 65828

Machines 20 Dt 12482 21818 45160 67032

criteria are deteriorated; however, the effect on the total idle time seems to be very

strong (total idle time gets many times higher) compared to the other optimization

criteria. This is an indication that there is a trade-off between violating a resource

(energy consumption) versus huge machine idle (or stand-by) times. Moreover, once

machine unavailability occurs (see Table 6.3), the effect of adding energy resource

constraints is even greater.

6.5.4 Deployment and experiences

The qualitative evaluation of the proposed services, has been performed following the

ISO/IEC 9126 standard for evaluation of software quality. The personnel that has

used these services has rated it in terms of efficacy (2.63/3), efficiency (2.68/3), un-

derstandability (2.51/3), satisfaction (2.63/3), learnability (2.44/3) and adaptability

(2.40/3). All these scores show that the proposed DSS meets in a satisfying degree

the end-users’ expectations.

87

6.6 Concluding remarks

This study presents an energy-aware production scheduling DSS as designed, imple-

mented and evaluated in a real context. In short, this work contributes to decision

support for energy-efficient manufacturing by a metaheuristic algorithm that hierar-

chically optimizes flexible job-shop scheduling problems, a set of data requirements,

the integrated deployment of this DSS as a web-service and the evaluation of the DSS

in real settings.

The adopted scheduling framework incorporates various operational issues, while

the data entities accompanying it meet generic energy-related requirements, as ob-

tained from the literature and the textile industry. Apart from examining theoretical

aspects regarding the design of energy-aware DSSs, this work presents the significant

tangible benefits obtained from the use of such systems within the textile manu-

facturing industry. Hence, the applicability of the proposed DSS, as deployed in two

significantly different users and production environments, is shown to be both feasible

and effective.

88

Chapter 7

Towards primal-dual methods for
binary multi-dimensional knapsack

This chapter paves the way towards future research, given the methods and algorithms

obtained from Chapter 3. Here, we describe a new primal-dual method for the binary

multi-dimensional knapsack problem, which is a well known (and strongly NP-hard)

combinatorial optimization problem with many applications.

A binary multi-dimensional Knapsack Problem (0-1 MKP) is a problem of the

form

max{cTx : Ax ≤ b, x ∈ {0, 1}n},

where c ∈ Zn+ is the objective function vector, A ∈ Zm×n+ is the matrix of constraint

coefficients, and b ∈ Zm+ is the vector of right hand sides. In other words, the 0-1 MKP

is the special case of integer programming in which all variables are binary, all con-

straints are of less-than-or-equal-to type, and all objective and constraint coefficients

are positive integers.

Given the above formulation, it is obvious that the problem at hand is so general

in nature that encompasses all binary Integer Programming (IP) problems. Hence,

there is a vast literature on the 0-1 MKP. Previous surveys on applications, complexity

results, approximation algorithms, heuristics, upper bounds and exact algorithms are

thoroughly covered by Fréville [42], Kelleler et al. [62] and Fréville & Hanafi [43].

Note here that the 0-1 MKP is strongly NP-hard [46], though, if the number of

constraints is bounded by a constant, it can be solved in pseudo-polynomial time

by dynamic programming. Recent surveys focus mainly on heuristics [20, 92, 64],

genetic algorithms [67] or primal-dual methods [51] used as heuristics to obtain close-

to-optimal solutions. Still, current exact methods can run into difficulties even for

89

instances with n ≤ 200 and m ≤ 5, although larger instances can be solved if they

have special structure.

In this work focus is given on a new primal-dual method for the problem at

hand. This new algorithm uses the linear relaxation of the 0-1 MKP, enhanced by

global lifted cover inequalities [57] to improve the upper bound and the proposed

variant of the feasibility-pump heuristic (Chapter 3) that employs this family of cuts,

improving the lower bound. Note here that, this algorithm is not a Branch and Cut

(B&C) method. It is an algorithm that hopefully converges, iteration after iteration,

to an optimal solution when the two bounds, i.e., upper and lower, are identical. The

starting point of this research is the separation algorithm of valid global lifted cover

inequalities, i.e., cover inequalities that take into consideration all the constraints

of a 0-1 MKP [57]. The proposed separation algorithm by Kaparis & Letchford

[58] starts from a fractional solution and produces heuristically valid cuts that apply

for the whole constraint matrix. Motivated, by the previous work (Chapter 3) on

the feasibility-pump (FP) heuristic that employs cutting planes in order to produce

a better integer solution, we employ this separation algorithm [57] to enhance the

solutions provided by FP, and use the feasible solution to generate new cuts added

to the linear relaxation of the 0-1 MKP. When this is performed iteratively, it is

expected that the feasible solutions provided by FP will get better and better, while

the generated cuts, taking into consideration this solution will tighten more and more

the relaxation. When the lower and upper bounds hopefully converge, an optimal

solution is found.

The remainder of this chapter goes as follows: In Section 7.1 we describe the lo-

cal and global lifted cover inequalities along with the separation algorithm proposed

by Kaparis & Letchford. Section 7.2 describes the primal-dual method along with

the integration of local ang global lifted cover inequalities in this new variant of the

feasibility-pump heuristic. Finally, in Section 7.3 we provide preliminary computa-

tional results of the FP variant that uses local cover inequalities [48] and conclude

this chapter with remarks and further research motivation.

7.1 Local and global lifted cover inequalities

This chapter is strongly based on [57, Section 2] and [58, Section 2], where the core

theory and algorithms for the separation of local and global lifted cover inequalities

are presented. Throughout this chapter, the following notation and terminology is

90

used. The feasible region of the linear programming relaxation of the problem will

be denoted by

P := {x ∈ [0, 1]n : Ax ≤ b},

where n, A, and b are assumed to be fixed throughout this chapter. The convex hull

of feasible integer solutions will be denoted by

PI := {x ∈ {0, 1}n : Ax ≤ b}.

Additionally it is assumed that the i-th knapsack constraint, i.e., the i-th inequality

in the system Ax ≤ b, takes the form

n∑
j=1

aijxj ≤ bi.

With the i-th constraint the 0-1 knapsack polytope is associated

Qi := conv{x ∈ {0, 1}n :
n∑
j=1

aijxj ≤ bi}.

Then, PI ⊆
⋂m
i=1Qi ⊆ P and for most problems of practical interest both contain-

ments are strict.

7.1.1 Lifted cover inequalities

Consider a 0-1 knapsack polytope of the form

Q := conv{x ∈ {0, 1}n : aTx ≤ b}.

. The set C ⊆ N = 1, ..., n is a cover if it satisfies
∑

j∈C aj > b. Given any cover C,

the cover inequality
∑

j∈C xj ≤ |C|− 1 is clearly valid for Q. Moreover, the strongest

cover inequalities are obtained when the cover C is minimal, in the sense that no

proper subset of C is also a cover. In general, even minimal cover inequalities do not

induce facets of Q. To make them facet-inducing, one must compute appropriate left

hand side coefficients for the variables in N \C, a process called lifting. The resulting

lifted cover inequalities (LCIs) take the general form∑
j∈C

xj +
∑
j∈N\C

ajxj ≤ |C| − 1,

where the lifting coefficients aj satisfy 0 ≤ aj ≤ |C|−1. Normally, lifting is performed

sequentially, i.e., one variable at a time.

91

In general, different lifting sequences may give rise to different LCIs. However, it

is not necessary to solve a sequence of 0 − 1 knapsack problems to perform lifting.

Several authors have presented results which make lifting much easier. First, Balas

and Zemel [14] showed how to compute, in linear time, upper and lower bounds for

the lifting coefficients which differ by at most one. For some variables, the upper and

lower bounds coincide and the lifting coefficient is therefore immediately determined.

Second, Zemel [110] presented a dynamic programming algorithm to compute exact

lifting coefficients for the remaining variables. The algorithm runs in O(|C||N \ C|)
time and is very fast in practice. Finally, Gu et al. [49] showed how to strengthen the

BalasZemel bounds without significantly increasing the time taken to compute them.

As a result, even more lifting coefficients can be quickly fixed, leaving less work for

Zemels algorithm to do.

Furthermore, lifting can be viewed in the following way: first take the face of Q

defined by the equations xj = 0, ∀j ∈ N \C. The cover inequality
∑

j∈C xj ≤ |C| − 1

induces a facet of this face. Then, rotate this cover inequality to make it a facet of

the original knapsack polytope. As noted by Wolsey and others [48, 79], an analogous

procedure can be performed with faces defined by equations of the form xj = 1. More

precisely, for any cover C and any subset D ⊂ C, the inequality∑
j∈C\D

xj ≤ |C \D| − 1

induces a facet of the restricted polytope

conv{x ∈ {0, 1}|C\D| :
∑
j∈C\D

ajxj ≤ b−
∑
j∈D

aj}

Standard sequential lifting then yields an inequality of the form∑
j∈C\D

xj +
∑
j∈N\C

ajxj ≤ |C \D| − 1,

which induces a facet of the polytope

conv{x ∈ {0, 1}|N\D| :
∑

j∈N\D

ajxj ≤ b−
∑
j∈D

aj}

Finally, this can be lifted to obtain a facet of Q of the form∑
j∈C\D

xj +
∑
j∈N\C

ajxj +
∑
j∈D

βjxj ≤ |C \D|+
∑
j∈D

βj − 1.

92

The process of computing coefficients for the variables fixed at 1 (i.e., the vari-

ables in D) is sometimes called down-lifting. The computation of coefficients for the

variables fixed at 0 (i.e., the variables in N \C) is sometimes referred to as ‘up-lifting’.

The use of down-lifting enables one to construct LCIs which cannot be obtained using

up-lifting alone. Computional results in Gu et al. [48] show that using down-lifting

as well as up-lifting leads to a much more effective cutting plane algorithm.

As in the case of up-lifting, it is not actually necessary to solve a sequence of

0 − 1 knapsack problems to perform down-lifting. Gu et al. [50] claim that Zemels

algorithm can be adapted to compute all down-lifting coefficients in O(|C|n3) time.

Although this is polynomial, it is time-consuming in practice. A faster and simpler

alternative for down-lifting is to solve the LP relaxation of the auxiliary 0−1 knapsack

instances, which takes only O(n2) time in total. Of course, one should round down

the optimal value of each lifting LP to the nearest integer, both to make the LCI as

strong as possible, and to avoid having fractional lifting coefficients.

7.1.2 Global lifted cover inequalities

Kaparis & Letchford [57] introduced a new family of cuts based on LCIs. As men-

tioned above, the idea of using facets of the knapsack polytope to tackle more complex

0− 1 integer programs was already present in Crowder et al. [27]. They argued that,

provided the constraint matrix A is sparse, the intersection of the individual Qi should

give a reasonable approximation to PI itself.

However, in most instances of the 0−1 MKP the constraint matrix A is dense, i.e.,

all variables participate in every knapsack constraint. In this situation, one cannot

expect that valid inequalities derived from individual rows will always be useful, and it

seems more sensible to attempt to derive valid inequalities which somehow take into

account the global structure of the problem. Resorting to general-purpose cutting

planes such as Gomory cuts is not an option, since these perform poorly for the 0− 1

MKP (Letchford & Lodi [66]). Inequalities of a more ‘combinatorial’ nature seem to

be needed. Some explorations in this direction have been performed, for example, by

Martin & Weismantel [76].

The 0 − 1 MKP has the following nice property: to check if the inequality∑
j∈C xj ≤ |C| − 1 is valid for PI , it suffices to check if it is valid for Qi for some i,

This property is not shared by general 0− 1 integer programs. Indeed, in general it

is NP-hard to check if such an inequality is valid, even for |C| = 1, as is easily shown.

Given a cover inequality
∑

j∈C xj ≤ |C| − 1 that is valid for PI , and a subset D ⊂ C,

93

an inequality of the form∑
j∈C\D

xj +
∑
j∈N\C

ajxj +
∑
j∈D

βjxj ≤ |C \D|+
∑
j∈D

βj − 1.

is a global lifted inequality (GLCI) if it is valid for PI . A global LCI need not be valid

for any of the individual Qi .

The lifting process is thoroughly described by Kaparis & Letchford [57] and in-

cludes the computation of up-lifting and down-lifting coefficients. Instead of solving

an instance of a 0 − 1 MKP with the respective knapsack constraint in order to lift

the derived valid inequality, Kaparis & Letchford [57] simply solve the LP-relaxation

of these 0 − 1 MKP instances, and round down to the nearest integer, in order to

get the lifting coefficients. Although the resulting GLCIs are no longer guaranteed to

induce facets of PI , they can still be much stronger than standard LCIs as discussed

in that paper.

Since this is a preliminary examination of this method, in this work only the local

cover inequalities without lifting and the separation algorithm introduced by Gu et

al. [49] are employed to

• tighten the LP-relaxation of the 0− 1 MKP;

• enhance the performance of feasibility-pump when used at each pumping cycle,

forcing in this way the heuristic to converge faster to a feasible solution for the

problem at hand.

7.2 Primal-dual method and FP heuristic

In this section we focus on a new primal-dual method for the problem at hand. This

new algorithm uses the linear relaxation of the 0-1 MKP, enhanced by global lifted

cover inequalities [57] to improve the upper bound and the proposed variant of the

feasibility-pump heuristic (Chapter 3) that employs this family of cuts, improving the

lower bound. Note here that, this algorithm is not a Branch and Cut (B&C) method.

It is a primal-dual algorithm that hopefully converges, iteration after iteration, to an

optimal solution when the two bounds, i.e., upper and lower, are identical.

As described in the previous sections, the global lifted cover inequalities take into

consideration the constraint matrix as a whole. That is, the proposed separation

algorithm by Kaparis & Letchford [58] starts from a fractional solution and produces

heuristically valid cuts that apply for the whole constraint matrix. Note here, that the

94

lifting procedure takes into consideration an integer point which is a round-up of the

respective fractional solution. Motivated, by the previous work (Chapter 3) on the

feasibility-pump (FP) heuristic that employs cutting planes, we propose employing

this separation algorithm [57] to enhance the solutions provided by FP, and use the

feasible solution to generate new lifted cuts added to the linear relaxation of the 0-1

MKP. When this is performed iteratively, it is expected that the feasible solutions

provided by FP will get better and better, while the generated cuts, taking into

consideration this solution will tighten more and more the relaxation. When the

lower and upper bounds hopefully converge, an optimal solution is found.

Focusing first on the proposed FP variant, as described in Chapter 3, cutting

planes can be employed to force feasibility by tigtening the LP-relaxation and by

assisting the heuristic into converging on an integer solution when used in the pumping

cycles. Algorithm 12 is the pseudocode of the basic version of the FP variant. All,

variants of FP proposed in Chapter 3 have been encoded and tested, i.e., including

the variants with different objective functions with constraint propagation and cuts.

However, since it is quite straightforward for the reader to understand the cut addition

phase in the pumping cycles, we provide the pseudocode only for the basic version.

Following this, Algorithm 13 is the pseudocode of the proposed primal-dual algo-

rithm for the 0− 1 MKP.

7.3 Computational results

All components and methods are coded in ANSI C, using the IBM-ILOG CPLEX

12.5 callable library. The experiments are conducted under Linux Ubuntu 14.04, on

a quad-core machine (Intel i7, 3.6GHz CPU speed, 16GB RAM). Each experiment

includes 30 instances of the same dimension, i.e., number of variables and constraints,

thus the average results over each such set of 30 instances are reported per experiment.

All FP variants are allowed up to 2000 pumping cycles, except when employed

into a B&C algorithm where the maximum number of pumping cycles is reduced

to 20. The main performance metric is the (average) integrality gap, defined as

IG = [(z∗ − zLP)/zLP] · 100, where z∗ is the value of the solution found by the

FP variant and zLP the value of the LP-relaxation. The CPU time required is also

reported (in seconds). Last, the average number of pumping cycles needed by each

variant to find a feasible solution is also presented.

95

Algorithm 12 Pseudocode of the basic version of feasibility-pump with global lifted
inequalities
1: nIT := 0
2: distance =∞
3: initialize list l
4: x∗ = argmin{cTx : Ax ≥ b}
5: if x∗ is integer then
6: return x∗

7: end if
8: while distance 6= 0 or nIT < maxIterations do
9: nIT = nIT + 1
10: add global lifted cover inequalities to the LP that minimizes ∆(x, x̃)
11: x∗ = argmin{∆(x, x̃) : Ax ≥ b}
12: distance = ∆(x, x̃)
13: if x∗ is integer then
14: return x∗

15: end if
16: if ∃ j ∈ J : [x∗j] 6= x̃j then
17: x̃ = [x∗]
18: if cycle detected then
19: ρj = rand(−0.3, 0.7)
20: for i = 0 to n do
21: if |x∗j − x̃j|+max{ρj, 0} then
22: flip x̃j //Random restart
23: end if
24: end for
25: empty list l
26: end if
27: keep the hash of x̃ in list l
28: else
29: flip the TT = rand(T/2, 3T/2) entries x̃j j ∈ J with highest |x∗j − x̃j|
30: end if
31: end while

96

Algorithm 13 Pseudocode of the primal-dual algorithm for the 0− 1 MKP
1: iteration = 0
2: maxIterations = 1000
3: upperBound = 0
4: lowerBound =∞
5: xIP = 0n

6: xLP = 0n

7: while iteration 6= maxIterations do
8: solve the LP relaxation and set the fractional vector xLP
9: add global lifted inequalities to the LP
10: reoptimize and and set the fractional vector xLP
11: if xLP is integer then
12: xIP = xLP
13: break
14: end if
15: set the upperBound to the objective value of LP
16: use the FP variant to get a feasible solution xIP
17: set the lowerBound to the objective value computed using xIP
18: if upperBound = lowerBound then
19: break
20: end if
21: iteration = iteration+ 1
22: end while
23: return xIP

97

We test these algorithms on a class of non-polynomially solvable instances in the

literature, denoted as mknapcbn [24], n being the instance number as obtained from

the OR-library [2].

Table 7.1: 0-1 MKP, FP variants: integrality gap, cycles, time
Instance Dimensions FP1 FP3 OFP1 OFP3 ORFP1 ORFP3
mknapcb1 Variables 100 Gap 47.60 45.22 54.86 53.93 56.86 55.73

Constraints 5 Cycles 23 44 4 5 3 3
Time 0.01 0.04 0.00 0.02 0.00 0.01

mknapcb2 Variables 250 Gap 45.47 43.62 53.86 53.73 55.77 55.65
Constraints 5 Cycles 40 25 4 4 4 4

Time 0.02 0.07 0.00 0.03 0.00 0.04
mknapcb3 Variables 500 Gap 43.77 39.31 54.26 54.20 56.42 55.94

Constraints 5 Cycles 31 33 4 4 4 3.83
Time 0.02 0.21 0.01 0.09 0.01 0.10

mknapcb4 Variables 100 Gap 46.57 38.93 48.49 48.36 53.22 51.39
Constraints 10 Cycles 73 381 5 5 5 6

Time 0.01 0.53 0.00 0.03 0.00 0.03
mknapcb5 Variables 250 Gap 45.04 38.36 50.13 49.97 54.76 54.47

Constraints 10 Cycles 107 162 3 4 5 5
Time 0.06 0.89 0.01 0.11 0.01 0.10

mknapcb6 Variables 500 Gap 43.24 44.89 51.63 51.53 54.33 54.78
Constraints 10 Cycles 94 105 4 6 5 6

Time 0.11 2.13 0.02 0.28 0.02 0.26
mknapcb7 Variables 100 Gap 34.02 27.43 28.92 37.25 31.27 31.07

Constraints 30 Cycles 289 567 15 17.40 25 26
Time 0.19 65.06 0.05 0.21 0.09 0.42

mknapcb8 Variables 250 Gap 28.68 31.89 37.60 35.44 39.68 37.41
Constraints 30 Cycles 61 35 14 13 17 20

Time 0.12 0.96 0.10 0.78 0.12 1.02
mknapcb9 Variables 500 Gap 40.69 34.33 41.88 42.18 40.03 40.49

Constraints 30 Cycles 55 26 7 7 12 11
Time 0.20 2.91 0.10 1.79 0.20 1.99

As shown by the results in Table 7.3, the variants that use cuts, are marginally

better in terms of integrality gap compared to the standard variants. Most likely,

this marginal improvement is achieved merely by the reduction of the upper bound

when cuts are added to the LP relaxation of the problem. In some cases, the number

of pumping cycles is reduced, this is not standard though. Recall that the employed

cuts are unlifted cover cuts, thus are weaker compared to the lifted ones. Again, time-

wise the new variants are more expensive, since there is an extra computational time

required for the separation of cover cuts. Most likely, when lifted, hence tighter, cover

cuts are used the performance of these new variants could outperform the standard

variants. However, our effort up to this point allows for such families to easily be

incorporated while our results remain motivating.

To summarize, this chapter describes a new primal-dual method for the binary

multi-dimensional knapsack problem, which is a well known (and strongly NP-hard)

combinatorial optimization problem with many applications. Indeed, its structure

and mathematical formulation are so general in nature that it encompasses all binary

Integer Programming problems. Current exact approaches and commercial solvers

run into difficulties even for a small-to-medium number of constraints and variables.

The proposed primal-dual method employes the linear relaxation of the problem

at hand, enhanced by global lifted cover inequalities to improve the upper bound

98

and a new version of the feasibility-pump heuristic that uses local unlifted cover

inequalities in the pumping procedure to obtain better and feasible lower bounds.

This new variant of feasibility-pump is tested mainly on literature instances, for a

good portion of which there are still no optimal solutions available. The results of

the heuristc are interesting enough to trigger further research and development for

the proposed primal-dual method.

99

Chapter 8

Concluding remarks

This thesis discusses optimization methods and Decission Support Systems (DSS)

in an integrated approach. That is, algorithmic components for optimization are

designed, considered and analyzed as part of a DSS that could be used for appli-

cations of respective problems. To do so, three different optimization methods are

deployed for three different optimization problems, namely, the energy-aware pro-

duction scheduling problem, the multi-index assignment and the multi-dimensional

knapsack problem. For all three problems various algorithms are proposed and tested

computationally, while for the first two problems two different DSS are proposed.

Since these problems have no common structure and different applications, we study

and present each problem separately, along with the algorithmic components, the

proposed DSS and the computational results. In particular, the proposed DSS along

with their user requirements, which are analyzed and discussed thoroughly, are results

of two research projects.

First we focus on the multi-index assginment problem. In this part of the the-

sis we address the question of whether an exact method can solve large instances

of the 3-index axial and planar problems. Furthermore, a subset of the algorithmic

components deployed and tested, has been incorporated in a DSS, namely MAPS

(the Multi-index Assignment Problem Solver), designed with higher-level user re-

quirements so as to fit the various applications of the problem at hand. A relevant

question is whether algorithmic and software components that work effectively for

different types of assignment are plausible. Motivated also by the so-called integrated

methods for optimization, we propose a Branch & Cut (B&C) solver integrating sev-

eral components, namely cuts that are specific per assignment type, branching on

‘Special Ordered Sets of type I’, a tabu scheme that is simple enough to remain appli-

cable for all assignment problems, a constraint propagator that can also be used for

all assignment problems and Feasibility Pump (FP) as an LP-based heuristic that also

100

sustains applicability across different assignment problems. In fact, here is used the

improved FP-variant that employs both constraint propagation and cutting planes

at each ‘pumping cycle’. That is, cuts are used in a primal-dual mode to improve

the lower bound in a typical manner and guide the heuristic towards a better up-

per bound. This experimentation shows that the new FP variant produces better

feasible solutions compared to existing one, while the B&C method outperforms a

commercial solver, particularly for large-size instances and for planar problems. In-

deed, this solver performs better than CPLEX, particularly for larger instances and

more evidently in the planar case. Further experimentation may offer deeper insights

on both the performance of such an approach and on the ability to solve exactly

even larger-scale instances or other multi-index assignment problems. An important

aspect of this approach is its versatility, for example in terms of including a subset of

the selected components or an alternative FP variant as a primal heuristic.

Following this we focus on the energy-aware production schedulling. The results

of its study are part of a European research project, namely ARTISAN, focusing on

reducing the energy-consumption in the textile-manufacturing sector by 10%. Indeed,

modern manufacturing companies are forced to become energy-aware under the pres-

sure of energy costs, legislation and consumers’ environmental awareness. Production

scheduling remains a critical decision making process, although demanding in com-

putational terms and sensitive on data availability and credibility. Hence, incorpo-

rating energy-related criteria in production scheduling has become more important.

In this part of the thesis we describe an energy-aware production scheduling DSS,

composed by an Iterated Local Search algorithm that offers hierarchical optimization

over multiple scheduling criteria and a generic yet concise data model whose entities

are extracted from the literature and actual user requirements. The results of embed-

ding this DSS in an integrated system used by two textile manufacturers show that

it indeed supports efficiently energy-aware production scheduling. In short, this work

contributes to decision support for energy-efficient manufacturing by a metaheuristic

algorithm that hierarchically optimizes flexible job-shop scheduling problems, a set

of data requirements, the integrated deployment of this DSS as a web-service and

the evaluation of the DSS in real settings. The adopted scheduling framework in-

corporates various operational issues, while the data entities accompanying it meet

generic energy-related requirements, as obtained from the literature and the textile

industry. Apart from examining theoretical aspects regarding the design of energy-

aware DSS, this work presents the significant tangible benefits obtained from the use

of such systems within the textile manufacturing industry. Hence, the applicability

101

of the proposed DSS, as deployed in two significantly different users and production

environments, is shown to be both feasible and effective.

Finally we focus on the binary multi-dimensional knapsack problem as part of our

ongoing research effort that shapes also future work. In this last part of the thesis

we describe a new primal-dual method for the binary Multi-Dimensional Knapsack

Problem, which is a well known (and strongly NP-hard) combinatorial optimization

problem with many applications. Indeed, its structure and mathematical formulation

are so general in nature that it encompasses all binary Integer Programming problems.

Current exact approaches and commercial solvers run into difficulties even for a small-

to-medium number of constraints and variables. The proposed primal-dual method

employes the linear relaxation of the problem at hand, enhanced by global lifted

cover inequalities to improve the upper bound and a new version of the feasibility-

pump heuristic that uses local unlifted cover inequalities in the pumping procedure

to obtain better and feasible lower bounds. This new variant of feasibility-pump

is tested mainly on literature instances, for a good portion of which there are still

no optimal solutions available. The results of the heuristc are interesting enough to

trigger further research and development for the proposed primal-dual method.

102

Appendix A

Appendix A

A.1 MAPS use case analysis

Table A.1: Use case 1 - Register
Use case 1 Register

Brief descrip-
tion

This use case states the actions taken in order to
register in MAPS.

Primary actors Visitor

Pre-conditions

Post-conditions Visitor is a registered member of MAPS.

Basic flows Tasks Information required

1. User enters the re-
quired details.

first name, last name,
username, password,
website

2. System checks if
the inserted information
is correct.
3. User is prompted to
log in.

Alternative
flows

Tasks Information required

In Task 2, if the inserted
information is not cor-
rect, prompt the user to
correct it.

103

Table A.2: Use case 2 - Log in
Use case 2 Log in

Brief descrip-
tion

This use case states the actions taken in order to
log in.

Primary actors Registered member

Pre-conditions User has successfully completed registration.

Post-conditions User is logged in.

Basic flows Tasks Information required

1. User enters his user-
name and password.

username, password

2. System checks if
the inserted information
is correct.
3. User is logged in.

Alternative
flows

Tasks Information required

In Task 2, if the inserted
information is not cor-
rect, prompt user to in-
sert a correct username
and password.

A.2 Overview of MAPS screens

A.2.1 Register

Once the user has selected to register in the system, he is prompted to provide some

personal information including

• username: must be unique. No duplicate usernames are allowed;

• password: has to be at least 8 characters;

• first and last name: each one has to be at least 3 characters;

• email: must be of the form someone@somewhere.something ;

• his personal web-page: must follow the template of a valid URL.

The user has to submit all of the above information. If any piece of the required

information is not correct, the user is prompted to correct it.

Once the user has inserted correctly the required information, he is prompted to

log-in.

104

Table A.3: Use case 3 - View saved solved instances
Use case 3 View solved instances

Brief descrip-
tion

This use case states the actions taken in order to
view previously solved instances.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User views a list of solved instances.

Basic flows Tasks Information required

1. User is prompted
to select the category of
instances he wishes to
view, i.e. (k, s)APn or
all-different instances.
2. System retrieves the
solved instances of the se-
lected category.

instance category, in-
stance id

3. System displays the
instances of the selected
category.

Alternative
flows

Tasks Information required

Figure A.1: Use Case 1 - Register: Main screen

105

Table A.4: Use case 4 - Solve a new (k, s)APn instance
Use case 4 Solve a new (k, s)APn instance

Brief descrip-
tion

This use case states the actions taken in order to
solve a new (k, s)APn instance.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User views the results of the solved instance.

Basic flows Tasks Information required

1. User enters the dimen-
sions of the instance.

parameter k, parameter
s, parameter n

2. User selects from a
list the algorithms, with
which he wishes to solve
the instance.

algorithm id

3. System solves the in-
stance with the selected
algorithms.
4. System presents the
results of the selected al-
gorithms in a table.

parameter k, parameter
s, parameter n, algo-
rithm name, integrality
gap, optimality gap, LP
value, IP value, solution
time

5. User is prompted to
export the table of re-
sults in tex, csv or pdf
format.
6. User is prompted to
save or view a particular
solution.

Alternative
flows

Tasks Information required

106

Table A.5: Use case 5 - View a (k, s)APn solution from a single algorithm
Use case 5 View a (k, s)APn solution from a single algo-

rithm.
Brief descrip-

tion
This use case states the actions taken in order to
view a (k, s)APn solution from a single algorithm

Primary actors Registered member

Pre-conditions User is logged in and has solved the instance, the
solution of which he wishes to view.

Post-conditions User views the detailed results of the solution.

Basic flows Tasks Information required

1. User selects from a list
the solution he wishes to
view
2. System retrieves the
detailed results for the
selected solution.

solution id

3. System presents the
detailed results of the se-
lected solution.

parameter k, parameter
s, parameter n, solution
vector, integrality gap
optimality gap, IP value,
LP value, solution time

4. User is prompted
to export the cost coeffi-
cients vector.
5. User is prompted to
resolve the same instance
or to return to the results
presented in use case 4.

Alternative
flows

Tasks Information required

107

Table A.6: Use case 6 - Load costs of a (k, s)APn instance and solve it
Use case 6 Load costs of a (k, s)APn instance and solve

it
Brief descrip-

tion
This use case states the actions taken in order to
load the cost coefficients of a (k, s)APn instance
and solve it.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User has loaded the costs of an instance and solved
it.

Basic flows Tasks Information required

1. User enters the dimen-
sions of the instance.

parameter k, parameter
s, parameter n

2. User loads a csv file
with the cost coefficients.
3. User selects from a
list the algorithms, with
which he wishes to solve
the instance.

algorithm id

4. System solves the in-
stance with the selected
algorithms.
5. System presents the
results of the selected al-
gorithms in a table.

parameter k, parameter
s, parameter n, algo-
rithm name, integrality
gap, optimality gap, LP
value, IP value, solution
time

6. User is prompted to
export the table of re-
sults in tex, csv or pdf
format.
7. User is prompted to
save or view a particular
solution.

Alternative
flows

Tasks Information required

108

Table A.7: Use case 7 - Save a (k, s)APn instance solution
Use case 7 Save a (k, s)APn instance solution.

Brief descrip-
tion

This use case states the actions taken in order to
save a (k, s)APn instance solution.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User has solved a (k, s)APn instance.

Basic flows Tasks Information required

1. User selects the solu-
tion to be saved
2. System retrieves the
solution information

solution id, parameter k,
parameter s, parameter
n, algorithm name, in-
tegrality gap, optimality
gap, LP value, IP value,
solution time

3. User is prompted to
add a short description of
the solution.

solution description

4. System saves the se-
lected instance.

Alternative
flows

Tasks Information required

Table A.8: Use case 8 - Delete a saved (k, s)APn instance solution
Use case 8 Delete a saved (k, s)APn instance solution.

Brief descrip-
tion

This use case states the actions taken in order to
delete a saved (k, s)APn instance solution.

Primary actors Registered member

Pre-conditions User is logged in and has saved a (k, s)APn in-
stance solution.

Post-conditions User has deleted a (k, s)APn instance solution.

Basic flows Tasks Information required

1. User selects the solu-
tion to be deleted.
2. System deletes the se-
lected solution.

solution id

Alternative
flows

Tasks Information required

109

Table A.9: Use case 9 - Solve a new all-different instance
Use case 9 Solve a new all-different instance.

Brief descrip-
tion

This use case states the actions taken in order to
solve a new all-different instance.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User has solved a new all-different instance.

Basic flows Tasks Information required

1. User enters the num-
ber of all-different con-
straints.

constraints number

2. User enters the num-
ber of variables.

variables number

3. User enters the num-
ber of variables.

variables number

4. User defines the dis-
crete domain for each
variable.

variable domain

5. For each constraint,
the user enters the vari-
ables that participate in
it.

variables, constraints

6. Given the above in-
put, the system gener-
ates an ILOG script.

variables, constraints

7. System solves the all-
different instance.
8. System presents the
all-different instance so-
lution.

solution vector

9. User is prompted to
save the solution or ex-
port the generated ILOG
script.

Alternative
flows

Tasks Information required

1. After defining the all-
different system, the the
user wants to optimize it
2. The user defines
if he wishes to mini-
mize or maximize the all-
different system

optimization type

3. The user inserts the
costs of the variables

variables, costs

4. The system continues
from task 6 of the basic
flow

110

Table A.10: Use case 10 - Save a all-different instance solution
Use case 10 Save a all-different instance solution.

Brief descrip-
tion

This use case states the actions taken in order to
save a all-different instance solution.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User has solved a all-different instance.

Basic flows Tasks Information required

1. User selects the solu-
tion to be saved
2. System retrieves the
solution information

variables number, con-
straints number, ILOG
script, solution vector

3. User is prompted to
add a name and a short
description of the solu-
tion.

solution description, so-
lution name

4. System saves the se-
lected instance.

Alternative
flows

Tasks Information required

Table A.11: Use case 11 - Delete a saved all-different instance solution
Use case 11 Delete a saved all-different instance solu-

tion.
Brief descrip-

tion
This use case states the actions taken in order to
delete a saved all-different instance solution.

Primary actors Registered member

Pre-conditions User is logged in and has saved a all-different in-
stance solution.

Post-conditions User has deleted a all-different instance solution.

Basic flows Tasks Information required

1. User selects the solu-
tion to be deleted.
2. System deletes the se-
lected solution.

solution id

Alternative
flows

Tasks Information required

111

Table A.12: Use case 12 - View the MAPS manual
Use case 12 View the MAPS manual.

Brief descrip-
tion

This use case states the actions taken in order to
view the MAPS manual.

Primary actors Registered member, visitor

Pre-conditions

Post-conditions User can read the manual.

Basic flows Tasks Information required

1. System retrieves and
presents the table of con-
tents of the manual.

manual ToC

2. User selects the sec-
tion he wishes to read.
3. System retrieves and
presents the contents of
the selected section.

section contents

Alternative
flows

Tasks Information required

Table A.13: Use case 13 - Edit user account
Use case 13 Edit user account.

Brief descrip-
tion

This use case states the actions taken in order to
edit user account.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User’s personal information is updated.

Basic flows Tasks Information required

1. System retrieves and
presents user’s personal
information.

username, password, first
name, last name, email,
website

2. User edits his personal
information.
3. System checks if the
submitted information is
correct.

Alternative
flows

Tasks Information required

1. In step 3, if the
submitted information is
not not correct, user is
prompted to correct it.

112

Table A.14: Use case 14 - Log out
Use case 14 Log out.

Brief descrip-
tion

This use case states the actions taken in order to
log out.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User is logged out.

Basic flows Tasks Information required

1. System logs out the
user.

Alternative
flows

Tasks Information required

Table A.15: Use case 15 - Delete personal account
Use case 15 Delete personal account.

Brief descrip-
tion

This use case states the actions taken in order to
delete the personal account.

Primary actors Registered member

Pre-conditions User is logged in.

Post-conditions User is logged out and has deleted his personal
account.

Basic flows Tasks Information required

1. User confirms that he
wishes to delete his ac-
count.
1. System logs out the
user.
1. System deletes user’s
account.

user id

Alternative
flows

Tasks Information required

113

Figure A.2: Use Case 1 - Register: False entry

Figure A.3: Use Case 1 - Register: Correct registration

114

A.2.2 Log-in

Once the user has selected to log-in he has to enter his username and password.

Figure A.4: Use Case 2 - Log in: Main screen

If either the username or the password are incorrect, the user is prompted to retry.

Once the user has inserted correctly his username and password he can use the

integrated solver.

A.2.3 View saved solved instances

Once the user has selected to view the solved instances he has saved, a list of these

instances appear separated in two categories, i.e. the (k, s)APn instances and the all−
different instances. The following screen-shots display the list and the categorization

of the solved instances. Each user has a quota of 10 instances, i.e. he can not save

more than 10 instances. The size of quota can be seen at any point in the bar above

the saved instances.

If there are no saved instances then the list is empty and the user is informed

appropriately.

A.2.4 Save a (k, s)APn instance solution

Once the user has solved a (k, s)APn instance he can save simply by selecting it.

Consequently, he is asked to insert a description of the instance, and finally save it.

115

Figure A.5: Use Case 2 - Log in: False entry

Figure A.6: Use Case 2 - Log in: Successful log-in

116

Figure A.7: Use Case 3 - View saved solved instances: (k, s)APn instances 1

Figure A.8: Use Case 3 - View saved solved instances: (k, s)APn instances 2

117

Figure A.9: Use Case 3 - View saved solved instances: all-different instances 1

Figure A.10: Use Case 3 - View saved solved instances: all-different instances 2

118

Figure A.11: Use Case 3 - View saved solved instances: Empty list of (k, s)APn
instances

Figure A.12: Use Case 3 - View saved solved instances: Empty list of all−different
instances

119

Figure A.13: Use case 7 - Save a (k, s)APn instance solution: Solution selection

Figure A.14: Use case 7 - Save a (k, s)APn instance solution: Saving the solution

120

Figure A.15: Use case 7 - Save a (k, s)APn instance solution: Description input

Once he saves the solution, he is automatically redirected to the table with the

results of this instance.

Figure A.16: Use case 7 - Save a (k, s)APn instance solution: Solution is saved

A.2.5 Delete a saved (k, s)APn instance

Once the user has solved and saved a (k, s)APn instance he can delete it by going to

the main page and selecting the instance he wishes to delete.

121

Figure A.17: Use case 8 - Delete a saved (k, s)APn instance solution: Selecting solu-
tion

Once he selects it, the instance is deleted, hence removed from the list of the saved

solutions.

Figure A.18: Use case 8 - Delete a saved (k, s)APn instance solution: Solution deleted

A.2.6 Save an all-different instance solution

Once the user has solved an all − different instance he can save it by entering the

name and the description of the instance.

122

Figure A.19: Use case 10 - Save an all-different instance solution: Entering instance
information

Figure A.20: Use case 10 - Save an all-different instance solution: Solution of the
instance saved successfully

123

A.2.7 Delete a saved all − different instance

Once the user has solved and saved an all − different instance he can delete it by

going to the main page and selecting the instance he wishes to delete.

Figure A.21: Use case 11 - Delete a saved all−different instance solution: Selecting
solution

Once he selects it, the instance is deleted, hence removed from the list of the saved

solutions.

A.2.8 View the MAPS manual

The user at any point can view the manual of MAPS by selecting it in the main

Menu.

A.2.9 Edit the user account

Once the user has selected to edit his account he views the following screen where he

can alter some of his personal information. The fields that are editable are related

with the

• password: has to be at least 8 characters;

• first and last name: each one has to be at least 3 characters;

• email: must be of the form someone@somewhere.something ;

• his personal web-page: must follow the template of a valid URL.

124

Figure A.22: Use case 8 - Delete a saved (k, s)APn instance solution: Solution deleted

Figure A.23: Use case 12 - View the MAPS manual: Selecting the manual

125

Figure A.24: Use case 12 - View the MAPS manual: Viewing the manual

Figure A.25: Use case 12 - View the MAPS manual: Going to the top

126

Figure A.26: Use case 12 - View the MAPS manual: Returning to the manual index

If any piece of the required information is not correct, the user is prompted to correct

it.

Figure A.27: Use case 13 - Edit the user account: Editing the user information

A.2.10 Log out

The user can at any point log out from the solver. Please note that when that happens

any unsaved work is lost. When the user selects to log out from the main menu he is

automatically directed to the log in screen.

127

Figure A.28: Use case 13 - Edit the user account: Error in entry

Figure A.29: Use case 13 - Edit the user account: User account info updated

128

Figure A.30: Use case 14 - Log out: Selecting to log out

Figure A.31: Use case 14 - Log out: User is logged out

129

A.2.11 Delete personal account

The user can delete his personal account also from the ‘Edit user account’ screen.

Once he selects to delete the account he is prompted to confirm his selection. Please

note that if he does so, all saved and unsaved work will be lost. After this selection

the user is automatically logged out and redirected to the log in screen.

Figure A.32: Use case 15 - Delete personal account: Selecting to delete personal
account

130

Figure A.33: Use case 15 - Delete personal account: Confirm deletion of account

131

Bibliography

[1] Artisan project. http://www.artisan-project.eu/.

[2] Or-library. http://people.brunel.ac.uk/ mastjjb/jeb/info.html.

[3] T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Op-

timization, 4(1):77–86, 2007.

[4] Sharlene M Andrijich and Louis Caccetta. Solving the multisensor data as-

sociation problem. Nonlinear Analysis: Theory, Methods & Applications,

47(8):5525–5536, 2001.

[5] G. Appa, D. Magos, and I. Mourtos. Lp relaxations of multiple all different

predicates. In Integration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems, pages 364–369. Springer, 2004.

[6] G. Appa, D. Magos, and I. Mourtos. On multi-index assignment polytopes.

Linear Algebra and its Applications, 416(2-3):224–241, 2006.

[7] Gautam Appa, Dimitris Magos, and Ioannis Mourtos. Searching for mutually

orthogonal latin squares via integer and constraint programming. European

Journal of Operational Research, 173(2):519–530, 2006.

[8] Gautam Appa, Dimitris Magos, Ioannis Mourtos, and Jeannette CM Janssen.

On the orthogonal latin squares polytope. Discrete Mathematics, 306(2):171–

187, 2006.

[9] Gautam M Appa, Leonidas S Pitsoulis, and H Paul Williams. Handbook on

modelling for discrete optimization, volume 88. Springer science & business

media, 2006.

[10] Christian Artigues, Pierre Lopez, and Alain Häıt. The energy scheduling prob-

lem: Industrial case-study and constraint propagation techniques. International

Journal of Production Economics, 143(1):13–23, 2013.

132

[11] Egon Balas and Liqun Qi. Linear-time separation algorithms for the three-index

assignment polytope. Discrete Applied Mathematics, 43(1):1–12, 1993.

[12] Egon Balas and Matthew J Saltzman. Facets of the three-index assignment

polytope. Discrete Applied Mathematics, 23(3):201–229, 1989.

[13] Egon Balas and Matthew J Saltzman. An algorithm for the three-index assign-

ment problem. Operations Research, 39(1):150–161, 1991.

[14] Egon Balas and Eitan Zemel. Facets of the knapsack polytope from minimal

covers. SIAM Journal on Applied Mathematics, 34(1):119–148, 1978.

[15] Hans-Jürgen Bandelt, Yves Crama, and Frits CR Spieksma. Approximation

algorithms for multi-dimensional assignment problems with decomposable costs.

Discrete Applied Mathematics, 49(1):25–50, 1994.

[16] ZM Bi and Lihui Wang. Optimization of machining processes from the perspec-

tive of energy consumption: A case study. Journal of Manufacturing Systems,

31(4):420–428, 2012.

[17] Pravesh Biyani, Xiaolin Wu, and Abhijit Sinha. Joint classification and pairing

of human chromosomes. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 2(2):102–109, 2005.

[18] Natashia L Boland, Andrew C Eberhard, F Engineer, and Angelos Tsoukalas.

A new approach to the feasibility pump in mixed integer programming. SIAM

Journal on Optimization, 22(3):831–861, 2012.

[19] Natashia L Boland, Andrew C Eberhard, Faramroze G Engineer, Matteo Fis-

chetti, Martin WP Savelsbergh, and Angelos Tsoukalas. Boosting the feasibility

pump. Mathematical Programming Computation, 6(3):255–279, 2014.

[20] Vincent Boyer, Moussa Elkihel, and Didier El Baz. Heuristics for the 0–1

multidimensional knapsack problem. European Journal of Operational Research,

199(3):658–664, 2009.

[21] K. Bunse, M. Vodicka, P. Schönsleben, M. Brülhart, and F. O. Ernst. Inte-

grating energy efficiency performance in production management–gap analysis

between industrial needs and scientific literature. Journal of Cleaner Produc-

tion, 19(6):667–679, 2011.

133

[22] Rainer E Burkard, Rüdiger Rudolf, and Gerhard J Woeginger. Three-

dimensional axial assignment problems with decomposable cost coefficients.

Discrete Applied Mathematics, 65(1):123–139, 1996.

[23] Antonella Certa, Mario Enea, Giacomo Galante, and Concetta Manuela

La Fata. Multi-objective human resources allocation in r&d projects planning.

International Journal of Production Research, 47(13):3503–3523, 2009.

[24] Paul C Chu and John E Beasley. A genetic algorithm for the generalised as-

signment problem. Computers & Operations Research, 24(1):17–23, 1997.

[25] CPLEX. Ibm-ilog-cplex manual, 2013.

[26] Yves Crama and Frits C.R. Spieksma. Approximation algorithms for three-

dimensional assignment problems with triangle inequalities. European Journal

of Operational Research, 60(3):273 – 279, 1992.

[27] Harlan Crowder, Ellis L Johnson, and Manfred Padberg. Solving large-scale

zero-one linear programming problems. Operations Research, 31(5):803–834,

1983.

[28] H. LF De Groot, E. T. Verhoef, and P. Nijkamp. Energy saving by firms:

decision-making, barriers and policies. Energy Economics, 23(6):717–740, 2001.

[29] M De Santis, S Lucidi, and F Rinaldi. Feasibility pump-like heuristics for mixed

integer problems. Discrete Applied Mathematics, 165:152–167, 2014.

[30] Marianna De Santis, Stefano Lucidi, and Francesco Rinaldi. A new class of

functions for measuring solution integrality in the feasibility pump approach.

SIAM Journal on Optimization, 23(3):1575–1606, 2013.

[31] Tom Devoldere, Wim Dewulf, Wim Deprez, Barbara Willems, and Joost R Du-

flou. Improvement potential for energy consumption in discrete part production

machines. In Advances in Life Cycle Engineering for Sustainable Manufacturing

Businesses, pages 311–316. Springer, 2007.

[32] SA Dichkovskaya and Mikhail Konstantinovich Kravtsov. Investigation of poly-

nomial algorithms for solving the three-index planar assignment problem. Com-

putational Mathematics and Mathematical Physics, 46(2):212–217, 2006.

134

[33] Trivikram Dokka, Yves Crama, and Frits CR Spieksma. Multi-dimensional

vector assignment problems. Discrete Optimization, 14:111–125, 2014.

[34] I. Dumitrescu, S. Ropke, JF Cordeau, and G. Laporte. The traveling salesman

problem with pickup and delivery: polyhedral results and a branch-and-cut

algorithm. Mathematical Programming, 121(2):269–305, 2010.

[35] ECR-Europe. Ecr europe blue book-using traceability in the supply chain to

meet consumer safety expectations, 2004.

[36] Leonhard Euler. Recherches sur une nouvelle espece de quarres magiques.

Zeeuwsch Genootschao, 1782.

[37] Reinhardt Euler, Rainer E Burkard, and R Grommes. On latin squares and

the facial structure of related polytopes. Discrete Mathematics, 62(2):155–181,

1986.

[38] Kan Fang, Nelson Uhan, Fu Zhao, and John W Sutherland. A new approach

to scheduling in manufacturing for power consumption and carbon footprint

reduction. Journal of Manufacturing Systems, 30(4):234–240, 2011.

[39] Ross R Farrell and Thomas C Maness. A relational database approach to a

linear programming-based decision support system for production planning in

secondary wood product manufacturing. Decision Support Systems, 40(2):183–

196, 2005.

[40] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical

Programming, 104(1):91–104, 2005.

[41] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical Program-

ming Computation, 1(2-3):201–222, 2009.

[42] Arnaud Fréville. The multidimensional 0–1 knapsack problem: An overview.

European Journal of Operational Research, 155(1):1–21, 2004.

[43] Arnaud Fréville and SaÏd Hanafi. The multidimensional 0-1 knapsack problem-

bounds and computational aspects. Annals of Operations Research, 139(1):195–

227, 2005.

[44] AM Frieze. Complexity of a 3-dimensional assignment problem. European

Journal of Operational Research, 13(2):161–164, 1983.

135

[45] Armin Fügenschuh and Benjamin Höfler. Parametrized grasp heuristics for

three-index assignment. In European Conference on Evolutionary Computation

in Combinatorial Optimization, pages 61–72. Springer, 2006.

[46] Michael R Garey and David S Johnson. Computers and intractability: a guide

to the theory of np-completeness. 1979. San Francisco, LA: Freeman, 58, 1979.

[47] Don A Grundel and Panos M Pardalos. Test problem generator for the multidi-

mensional assignment problem. Computational Optimization and Applications,

30(2):133–146, 2005.

[48] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Lifted cover

inequalities for 0-1 integer programs: Computation. INFORMS Journal on

Computing, 10(4):427–437, 1998.

[49] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Sequence

independent lifting in mixed integer programming. Journal of Combinatorial

Optimization, 4(1):109–129, 2000.

[50] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Sequence

independent lifting in mixed integer programming. Journal of Combinatorial

Optimization, 4(1):109–129, 2000.

[51] Säıd Hanafi and Christophe Wilbaut. Improved convergent heuristics for

the 0-1 multidimensional knapsack problem. Annals of Operations Research,

183(1):125–142, 2011.

[52] P Hansen and L Kaufman. A primal-dual algorithm for the three-dimensional

assignment problem. Cahiers du CERO, 15:327–336, 1973.

[53] I. Harjunkoski, C. T Maravelias, P. Bongers, P. M Castro, S. Engell, I. E.

Grossmann, J. Hooker, C. Méndez, G. Sand, and J. Wassick. Scope for industrial

applications of production scheduling models and solution methods. Computers

& Chemical Engineering, 62:161–193, 2014.

[54] Michael James Higgins. Applications of Integer Programming Methods to Solve

Statistical Problems. PhD thesis, University of California, Berkeley, 2013.

[55] J. N. Hooker. Integrated methods for optimization, volume 100. Springer, 2012.

136

[56] Selmer Martin Johnson. Optimal two-and three-stage production schedules with

setup times included. Naval Research Logistics Quarterly, 1(1):61–68, 1954.

[57] Konstantinos Kaparis and Adam N Letchford. Local and global lifted cover

inequalities for the 0–1 multidimensional knapsack problem. European journal

of operational research, 186(1):91–103, 2008.

[58] Konstantinos Kaparis and Adam N Letchford. Separation algorithms for 0-1

knapsack polytopes. Mathematical programming, 124(1):69–91, 2010.

[59] Daniel Karapetyan and Gregory Gutin. Local search heuristics for the multidi-

mensional assignment problem. Journal of Heuristics, 17(3):201–249, 2011.

[60] Stamatis Karnouskos, Armando Walter Colombo, Jose L Martinez Lastra, and

Corina Popescu. Towards the energy efficient future factory. In Industrial

Informatics, 7th IEEE International Conference, pages 367–371. IEEE, 2009.

[61] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[62] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. 2004.

[63] Bum-Jin Kim, William L Hightower, Peter M Hahn, Yi-Rong Zhu, and Lu Sun.

Lower bounds for the axial three-index assignment problem. European Journal

of Operational Research, 202(3):654–668, 2010.

[64] Xiangyong Kong, Liqun Gao, Haibin Ouyang, and Steven Li. Solving large-

scale multidimensional knapsack problems with a new binary harmony search

algorithm. Computers & Operations Research, 63:7–22, 2015.

[65] CF Laywine and GL Mullen. Discrete mathematics using latin squares. Wiley,

New York, 1998.

[66] Adam N Letchford and Andrea Lodi. Strengthening chvátal–gomory cuts and

gomory fractional cuts. Operations Research Letters, 30(2):74–82, 2002.

[67] Bernhard Lienland and Li Zeng. A review and comparison of genetic algo-

rithms for the 0-1 multidimensional knapsack problem. International Journal

of Operations Research and Information Systems (IJORIS), 6(2):21–31, 2015.

[68] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search.

International Series in Operations Research & Management Science. Springer,

2003.

137

[69] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algo-

rithm for the capacitated vehicle routing problem. Mathematical Programming,

100(2):423–445, 2004.

[70] D Magos. Tabu search for the planar three-index assignment problem. Journal

of Global Optimization, 8(1):35–48, 1996.

[71] D Magos and P Miliotis. An algorithm for the planar three-index assignment

problem. European Journal of Operational Research, 77(1):141–153, 1994.

[72] D. Magos and I. Mourtos. Clique facets of the axial and planar assignment

polytopes. Discrete Optimization, 6(4):394–413, 2009.

[73] D Magos and I Mourtos. A characterization of odd-hole inequalities related to

latin squares. Optimization, 62(9):1169–1201, 2013.

[74] J. Manget, C. Roche, and F. Münnich. Capturing the green advantage for

consumer companies. The Boston Consulting Group, pages 1–2, 2009.

[75] Silvano Martello and Paolo Toth. Linear assignment problems. Annals of Dis-

crete Mathematics, 31:259–282, 1987.

[76] Alexander Martin and Robert Weismantel. The intersection of knapsack poly-

hedra and extensions. In International Conference on Integer Programming and

Combinatorial Optimization, pages 243–256. Springer, 1998.

[77] James L McKenney and Morton M Scott. Management decision systems:

computer-based support for decision making. Harvard Business School Press,

1971.

[78] L. Mundaca. Markets for energy efficiency: Exploring the implications of an

eu-wide tradable white certificate scheme. Energy Economics, 30(6):3016–3043,

2008.

[79] George L Nemhauser and Laurence A Wolsey. Integer programming and com-

binatorial optimization. Wiley, Chichester. GL Nemhauser, MWP Savelsbergh,

GS Sigismondi (1992). Constraint Classification for Mixed Integer Program-

ming Formulations. COAL Bulletin, 20:8–12, 1988.

[80] Klaus Neumann and Jürgen Zimmermann. Resource levelling for projects with

schedule-dependent time windows. European Journal of Operational Research,

117(3):591–605, 1999.

138

[81] C. Pach, T. Berger, Y. Sallez, T. Bonte, E. Adam, and D. Trentesaux. Reactive

and energy-aware scheduling of flexible manufacturing systems using potential

fields. Computers in Industry, 65(3):434–448, 2014.

[82] Manfred W Padberg. On the facial structure of set packing polyhedra. Mathe-

matical Programming, 5(1):199–215, 1973.

[83] Cheol-Woo Park, Kye-Si Kwon, Wook-Bae Kim, Byung-Kwon Min, Sung-Jun

Park, In-Ha Sung, Young Sik Yoon, Kyung-Soo Lee, Jong-Hang Lee, and Jong-

won Seok. Energy consumption reduction technology in manufacturing?a se-

lective review of policies, standards, and research. International Journal of

Precision Engineering and Manufacturing, 10(5):151–173, 2009.

[84] Eduardo L Pasiliao, Panos M Pardalos, and Leonidas S Pitsoulis. Branch and

bound algorithms for the multidimensional assignment problem. Optimization

Methods and Software, 20(1):127–143, 2005.

[85] Jagat Patel and John W Chinneck. Active-constraint variable ordering for

faster feasibility of mixed integer linear programs. Mathematical Programming,

110(3):445–474, 2007.

[86] KT Phelps. A general product construction for error correcting codes. SIAM

Journal on Algebraic Discrete Methods, 5(2):224–228, 1984.

[87] William P Pierskalla. The multidimensional assignment problem. Operations

Research, 16(2):422–431, 1968.

[88] Sharma N Pillutla and Barin N Nag. Object-oriented model construction in pro-

duction scheduling decisions. Decision Support Systems, 18(3):357–375, 1996.

[89] Michael Pinedo. Scheduling: theory, algorithms and systems. Prentice-Hall,

Englewood Cliffs, NJ, 1995.

[90] Stathis Plitsos, Panagiotis P Repoussis, Ioannis Mourtos, and Christos D Taran-

tilis. Energy-aware decision support for production scheduling. Decision Support

Systems, 2016.

[91] Aubrey B Poore and Sabino Gadaleta. Some assignment problems arising from

multiple target tracking. Mathematical and Computer Modelling, 43(9):1074–

1091, 2006.

139

[92] Jakob Puchinger, Günther R Raidl, and Ulrich Pferschy. The multidimensional

knapsack problem: Structure and algorithms. INFORMS Journal on Comput-

ing, 22(2):250–265, 2010.

[93] Jean-François Pusztaszeri, Paul E Rensing, and Thomas M Liebling. Track-

ing elementary particles near their primary vertex: a combinatorial approach.

Journal of Global Optimization, 9(1):41–64, 1996.

[94] Liqun Qi, Egon Ballas, and Geena Gwan. A new facet class and a polyhedral

method for the three-index assignment problem. In Advances in Optimization

and Approximation, pages 256–274. Springer, 1994.

[95] Markus Rager, Christian Gahm, and Florian Denz. Energy-oriented scheduling

based on evolutionary algorithms. Computers & Operations Research, 54:218–

231, 2015.

[96] Pedro Leite Rocha, Martin Gomez Ravetti, Geraldo Robson Mateus, and

M. Panos Pardalos. Exact algorithms for a scheduling problem with unrelated

parallel machines and sequence and machine-dependent setup times. Computers

& Operations Research, 35:1250–1264, 2008.

[97] Nancy Ruiz, Adriana Giret, Vicente Botti, and Victor Feria. An intelligent

simulation environment for manufacturing systems. Computers & Industrial

Engineering, 76:148–168, 2014.

[98] Y Sakamoto, Y Tonooka, and Y Yanagisawa. Estimation of energy consumption

for each process in the japanese steel industry: a process analysis. Energy

Conversion and Management, 40(11):1129–1140, 1999.

[99] Fadi Shrouf, Joaquin Ordieres-Meré, Alvaro Garćıa-Sánchez, and Miguel

Ortega-Mier. Optimizing the production scheduling of a single machine to min-

imize total energy consumption costs. Journal of Cleaner Production, 67:197–

207, 2014.

[100] Leonard H Soicher. Optimal and efficient semi-latin squares. Journal of Statis-

tical Planning and Inference, 143(3):573–582, 2013.

[101] Ralph H Sprague Jr. A framework for the development of decision support

systems. MIS quarterly, pages 1–26, 1980.

140

[102] Corinne Subai, Pierre Baptiste, and Eric Niel. Scheduling issues for environ-

mentally responsible manufacturing: The case of hoist scheduling in an elec-

troplating line. International Journal of Production Economics, 99(1):74–87,

2006.

[103] Mottaqiallah Taouil and Said Hamdioui. Layer redundancy based yield im-

provement for 3d wafer-to-wafer stacked memories. In European test symposium

(ETS), 2011 16th IEEE, pages 45–50. IEEE, 2011.

[104] A. Valente, E. Carpanzano, A. Nassehi, and S. T. Newman. A step compli-

ant knowledge based schema to support shop-floor adaptive automation in dy-

namic manufacturing environments. CIRP Annals-Manufacturing Technology,

59(1):441–444, 2010.

[105] K. Vikhorev, R. Greenough, and N. Brown. An advanced energy manage-

ment framework to promote energy awareness. Journal of Cleaner Production,

43:103–112, 2013.

[106] Milan Vlach. Branch and bound method for the 3-index assignment problem.

Ekonomicko-Matematicky Obzor, 3(2):181–191, 1967.

[107] Jose L Walteros, Chrysafis Vogiatzis, Eduardo L Pasiliao, and Panos M Parda-

los. Integer programming models for the multidimensional assignment problem

with star costs. European Journal of Operational Research, 235(3):553–568,

2014.

[108] Nils Weinert, Stylianos Chiotellis, and Günther Seliger. Methodology for

planning and operating energy-efficient production systems. CIRP Annals-

Manufacturing Technology, 60(1):41–44, 2011.

[109] E. Zampou, S. Plitsos, A. Karagiannaki, and I. Mourtos. Towards a framework

for energy-aware information systems in manufacturing. Computers in Industry,

65(3):419–433, 2014.

[110] Eitan Zemel. Easily computable facets of the knapsack polytope. Mathematics

of Operations Research, 14(4):760–764, 1989.

[111] G. Zobolas, C.D. Tarantilis, and G.Ioannou. A hybrid evolutionary algorithm

for the job shop scheduling problem. Journal of the Operational Research Soci-

ety, 60:221–235, 2009.

141

