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ABSTRACT

Nikolas Karatzas

“Prospective Statistical Surveillance in Public He#&h”
May 2012

Current research is a study of public health sulaece and refers to the
applications of statistical quality control for thg@urpose. Sonesson and
Bock(2003) presented a review paper and we aredbapen this study. We
develop the methods presented in this paper. Saneliusly, we present
simulations and the theoretical background behimesé methods. Finally, as
Sonesson and Bock presented bibliography until year 2003, we are
interested in presenting bibliography for the pdr003-2012.

At this study we give an idea of how we may apphg tmain principles of
Statistical Quality Control to the surveillance pdblic health. Methods such
as the CUSUM scheme and measures such as the Av&uag Length and the
expected delay are used for the construction o¥ellance systems in the
public health field. The optimality of these systens an important factor
since the public health surveillance demands trst bessults from us.

These systems’ purpose is to detect peaks in thenmme&mber of “events” in
which case we should have an alarm. As a conse@dhe purpose of these
systems is to detect possible epidemics and thraaugirospective view we
should be warned in order to proceed in the appad@mpreventive actions.
We make a separation to our methods based on gwemion according to if
the incidences are following a Poisson process @t NVe also have three
types of systems which are based on the tempopakia and spatial-temporal
surveillance factors. For each case of these factwwe analyse different

methods.
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MNEPIAHYH
Nwodraog Kapatldg
«IIpoontikn) Xtatietiki] HHopakorovOnon tng Anpocrog Yyeiag»
Mdiog 2012

H mapovoa gpyacia eivar pia perétn pe aVTIKEILEVO TNV TOPAKOAOVONGN NG
ONuoctlog vyelog KoL OVOQEPETOL OTIC EPUPUOYEG TOL GTATIOTIKOD EAEYYOL
Tol0TNTAC Yo avtd 10 okomd. Ot Sonesson & Bock(2003japovcioacav pia
KPLTIKN €pyacio Kot PACIGTAKOUE GE AVTH TN UEAETN. AVATTOGOOVUE TIG
pebdoovg mov mapovoidlovior e avty TV gpyocia. Tavtoyxpova
TOPOVGLALOVIE TPOCOUOIMOELS Kol TO Bewpntikd vrdPabpo avidv TOV
uefdomv. Téhog, evdlopepduacte otnv mopovciacn Piproypaeiog yio nv
nepiodo 2003-2012and ™ otiyun mov N perétn tov Sonesson & Boclkivet
Biproypaeio péypt to étoc 2003.

2 avtn ™ perétn divoope pia 16€a Yo TO TAOG UTOPOVUE VO EQPOAPUOGOVUE TIG
Baocikég apyéc tov Zratiotikod ‘EAgyyov Ilowdtntoag otnv mapakoiovOnon g
omuoctog vyeiag. MéBoodor 6mmwe to Stdypappo CUSUM kar pétpa 6mwg to
ARL xot 1 oavapevopevn kabvotépnon péxpt vo éxovpe ovvayepud(ED)
LPNOULOTOLOVVTAL Y10 TV KATAGKELT] GLOTNUATOV TApaKOAOVONoNG 6T0 TEdiO
™G onuooctog vyeiag. H péyiom Aettovpyia avtdv TV cvoTNUATOV €ival £vag
ONUOVTIKOG mapdyoviag ov Adfoope vmoyn Ot11 1n mopokoAovONoM NG
onuodoiag vyeiag anattel and €pag, T0 KAADTEPA SLVATE ATOTEAEGULATA.

O oKOTOC OVTOV TOV CLOTNUATOV &ival va aviyvevovv aAlayég 610 HEGO
aplBpo KpovopdteV, TEPInT®O™N TNV onoia Oa Enpeme va €YovpHe cuvayepuo.
Katd cvvéneia, 0 6KOTOC QVTOV TOV CUGTNUATOV £ival Vo oviyvEVOVV TOOVES
EMOMNUIEC KOl e POl TPOOTTIKN ONTIKN O Empene va Tpogldomoinfovpe oVT®G
MOOTE VO TAPOVUE TO KATAAANAQ HETPO ATOTPOTNG ULOG OAVAALOYNG KATAGTAONG.
Kévovpue éva dtaympiopd otic uebdoovg pog pe Pdon to av akoAovbodv i Oyt
v Poisson dwadikacia. Emiong, éyxovpe 3 1OmOVE ovoTNHATOV Yoo TNV
moapakoAovOnon g onuoctog vyeiog Paci{Opevol oTovG TAPAYOVTEG TOL
YPOVOL, TOL YMOPOL KOl TOL YWPO-xpovov. ['a kdbe évav amd avtovg TOLG

ToPayovTeG, AVAAVOVE OLaPOpPETIKEG HeBOOOVG.
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Chapter 1
Introduction

Statistical process control has its foundationshi@ industrial field and has
been used with different ways and methods for theraetion of useful
conclusions and prevention of unpleasant situati¢@mg. the production of
dysfunctional products). For that purpose statadtiquality control has been
widely spread the last thirty years and that isté@son why it has been adopted
and developed especially by the states whose ecgneiased in the industrial
production.

On the other hand, and beyond the financial motives field has been
widely spread in the academic community. The chaftShewhart have been
just the beginning of the development of some newthuds such as the
Cumulative sum methods and the Exponential weightedving average
method. A huge amount of questions have been argivemd even greater is the
number of new ideas which have been generated.

The idea of the statistical process control is useevadays in different
fields and for different reasons. The constructadnsystems which give us the
opportunity to proceed in the surveillance of sdi@etors is the main purpose of
this development. For example, in the financial teecsomeone may be
interested in the stock market and the surveillaotéhe price of some stocks.
Actually, we would like to have a system, where freces of the stocks might
be monitored in order to take preventive measumgl{ as an investment) if
their course is out-of-control.

In this study, we are interested in the statistiggdcess control applied in
the field of public health. Public health is a vesgnsitive issue not only for the
individuals but also for the communities. Monitagithe public health is a big
challenge as there are numerous factors (e.g. defawn alarm, delay of
reporting, not accurate records etc.) that can pkevfor example an outbreak of
an epidemic. Furthermore, constructing a systemafdrealth natured problem,

means taking a huge risk as what is at stake @d.the case of an epidemic) are

~1~



peoples’ lives. We have to be precise in our catiohs, quick in our detections
and confident for our conclusions.

Sonesson and Bock(2003)[140] presented a definifm public health
surveillance that we believe that it is represamtat‘Public health surveillance
is the on-going systematic collection, analysis anterpretation of outcome-
specific data that are essential to the planningplementation and evaluation
of public health programs, closely integrated witie timely dissemination of
these data to those who are responsible for praeardnd control”.

Imagine now all the available data that exist ie thfferent organizations,
hospital records, private doctors’ records etc. Aheount of data which we can
analyze is large. We can tackle with the problemttad data collected, in two
different ways in order to exploit all the informm@h we can. The first is the
retrospective surveillance. In this case the datafixed and we proceed in the
analysis of all the available data at the same tiflee second way is the
prospective surveillance or on-line monitoring.tims case we are interested to
analyze the data through time and at different tipgents. We proceed in a
repeated analysis of data accumulating over time \@@ make some decisions
at some time points about the state of our procds® timeliness of these
decisions (for simplicity we use discrete time)essential for our analysis since
we want to detect an increase in the number (orréte) of incidences (e.g. a
disease or car accidents etc.) as quickly as ptessiborder to proceed in the
appropriate actions. In this paper we discuss om ¢hse of the prospective
surveillance since it is a more complicated and eniateresting situation from a
statistical point of view.

For the on-line public health surveillance we haveonsider some factors
that do not exist in the industrial process contrbhese are for example the
time delay caused by the delay of the reportingremident, the seasonal effect
of a disease in the population, lack of accuracyssmmg reporting data, the
biased reporting, the false or the delay of thegdisis etc. As we can easily
understand, public health surveillance may inclsdeh factors which make our
role more difficult but as we discuss in this studlgere are several ways to
overcome such disadvantages of our process. Epalegical data need special
treatment and their features are special. Thahésreason why we have to deal

with them in a special way.
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In this study we focus, though, more in the statet part of the
prospective surveillance of public health. That nst the epidemiological
problems mentioned above but the statistical sohgiand methods which lead
us to conclusions about the state of our proceksisiTthe main purpose of this
study is to examine different methodologies for gr@spective case of public

health surveillance and evaluate them through défié measures.

1.1 Issues of the Public Health Surveillance

Such a measure might be the Average Run Lengthiwisizised mostly in
the industrial process control. For the monitorioigpublic health surveillance
we are dealing with other measures such as the deahplelay, the probability
of detecting a true alarm, the detection of a cleangthe mean in a specified
limited time delay etc. These measures are predemtehapter 3 of this study
and can be used to measure the reliability of @sults or for the comparison
between methods.

In order to construct a surveillance method we needspecify some
factors. These are thalarm statisticand thealarm limits Each time we are
interested in developing a surveillance method,hage to choose these factors
and deal with the proper properties of the systdéraroexpressed in terms of an
optimality criterion. This is another issue whichgiven in chapter 4.

In order to make our system an optimal one we msg these measures.
For example measures such as the delay, which wetiomed above, can be
used in order to construct an optimal criterion evhwill lead us to an optimal
system. It is rational for someone to think thag ghorter the delay the better is
the method. A temporal delay between the alarm #red real out-of-control
state is almost certain to happen but the minimazabf such a delay will give
us the opportunity to take the appropriate actiahshe shortest time interval.
The time delay between the system’s alarm and #s& change of a process
(e.g. an increase in the rate of a disease) caof Ireterest and its minimization
is our main goal. That is the case for the mosthaf methods in public health

since the time delay is of special interest. Thisasure is significant in this



case if we consider the fact that a long delay migiean an outbreak of an

epidemic and maybe the loss of lives.

1.2 Structure of the Study

In the second chapter we mention some general giscef the SPC
applied in the public health surveillance and weega full description of them
as long as a symbolism necessary for the betteenstanding of this study.

In the third chapter we give some measures of eatedn which we use in
the public health in order to compare different moring systems and which
gives us an overall view of the performance of surveillance.

In the fourth chapter we mention some issues asagawe are concerned
about the optimality of a method. Three optimaltenia and a general
description and criticism for their function arevgn. In this study the criterion
of the minimum expected delay is of special intéres

Our study consists of three main parts which aferred to different cases
of our surveillance. The first two parts are reéstito the cases of the Poisson or
non Poison processes (processes with time deperesgnend in these parts we
describe different methods according to their rekatwith the factor of time.
We could say that in these first two parts we aealohg with the temporal
surveillance and in the third part we present tlasec of spatial surveillance.
With such a way we manage to give a complete viéwhe aspects of the on-
line surveillance in public health. Space and tiame the two “dimensions” from
which our methods are constructed.

In the fifth chapter we give two methods for theseaof using the time
between events to study the Poisson process. Téwmesthe Sets method and the
Cuscore method.

In the sixth chapter we present the case of ushieggniumber of events to
study the Poisson process. On the contrary frompiterious chapter, in this
case the time intervals are fixed and are not usedde corresponded with the
incidences. The Poisson CUSUM method is descrithedotughly and the case
of the alarm statistic to be the maximum value lbé tconditional likelihood

ratios is given descriptively due to the complichtsalculations which did not
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allow us to run a simulation. However, the studyLod (1993)[84] is more than
enough if the reader wants more information abbig issue.

The next method which is described in the severtapter, is developed
through weekly reports from the CDC. That is thestidrical Limits method.
This is a method which is constructed in a wayaokte with the seasonality of
some diseases using historical data to set thd bimihe process.

Until this point of the study, we had to do with bsyptimal Poisson
processes. In the last chapter of the first panafpter 8) we present the case of
likelihood ratio and the Shiryaev-Roberts ratio hwds which are optimal
Poisson processes.

In public health surveillance it is common to asguanPoisson process for
the cases of disease but when this assumption isappropriate, complicated
time dependent processes have been used. In tlomdegart which consists of
the 9" chapter, we present different issues and modelgtwhre dealing with
processes with time dependencies. A general dasenipand bibliography is
given for each case if the reader is interestedetamine these issues more
thoroughly. This is a huge scientific section arte tevolution of different
models in order to develop reliable systems of rmnmg, seems to be
uncountable. On the other hand, the calculationkartae construction of such
models very difficult and complex.

In the last part of our study which is given in pher 10, we present the
case of spatial surveillance. This field seems #&ingthe epidemiologist’s
interest the last few years, since the interesimisved to the clustering of
diseases or geographical patterns etc. Consideriig amount of
epidemiological books which are referred in thetsgaeature of surveillance,
we realize that this is going to be a highly deyehgy sector in the future.

Finally, some thoughts are given in the last chapteorder to make a
general conclusion of our study and give some dioes for further

investigations in the future.



1.3 General Issues

To make this study a reality we are influenced hg paper of Sonesson
and Bock who gave us a review of the prospectiveeillance in public health
until the year 2003. Several cases and methodsubl@health are summarized
in a few pages. This is a paper which is stronglgommended for the reader if
they want to have a good knowledge about the issais&d in this field. We are
based on this paper for our study and we presenihdu literature on the issues
mentioned in Sonesson and Bock(2003)[140] for teaqd 2003-2012.

We tried to make as much calculations as possiblernder to present
reliable and visual conclusions to the reader tgtogimulations. We tried to
give an overall view of the public health issuesl dar this purpose we worked
in the statistical packages of S-plus and Minitdbe code which is developed
in these packages in order to have the resultseptes in the main part of our
study is given to the Appendix. For the convenient¢he reader we partitioned
the Appendix in parts so that any confusion canabeided. Furthermore, we
describe in the code the steps we followed, so iteatomprehension will be
easy even for a reader who is not fully familiatiwstatistical packages such as
S-plus.



Chapter 2
General Concepts

With the term “statistical surveillance” we mearetbn-line monitoring of

a stochastic procesX ={X,,t=12 ,w}th the aim of detecting an important

change at an unknown time point as quickly as possible. At each decision
time points, we want to make a decision about the state of precess. We
denote the in-control process (s) and the out-of-control process E/s).

The two states we are interested, can be exprezsséallows:

D(s) ={7r > s}
C(s)={r<¢

In order to achieve this decision we have to use tccumulated
observations X, ={X,,t <s }f our process is in out-of-control stat&(s) then
we say thatX, € A § Where A(s) is our alarm set in which case our system

triggers an alarm.
For the statistical surveillance in public healtle vare interested in the

time of an alarm. Our system triggers an alarm dtmee pointt, where this

time point can be expressed as follows:

ta =min{p(X,) > )},
wherep(X, )is our alarm function andy(s)is a control limit.

In most cases, the change is referred in a shifthefinitial mean of the
process. The random process that determines the stahe system is denoted
by u(t) for t=1,2,... In other words, we assume our process has amlinitean
value g, fort = 1,2,...7-1 and at time point = r we have a change in the
process and the level of the mean valugis moved and remains to a new level
u, fort =17, ¢+ 1,...In this sense we can express the two states mesttion

above, as follows:



D(s) ={ (S) = 1o}
C(s) ={u(s) = w;}

The initial and the new level qf are regarded as known values and the
time r where the change occurs is regarded as a randamab¥& with the
density:

7z, =P(r=t) and Zﬁt =1-r,

The intensity of a change is denoted by:
Vi =P(r=t|r2>t)

When we have to specify a distribution fer we use the geometric
distribution. This specification of the distributioof z, is suitable when the
intensity of a shift is constant for each time poin

For our simulations we make the assumption that surveillance is
stopped when we have an alarm. Only one alarm ssipte in our cases. That is
called active surveillance as it is defined in Frisén and de &&4891)[46]. In
most of our cases in this study we are dealing \atttive surveillance problems.
Additionally, we have to make the assumption tikgi)-u(i) are independent

random variables.

Table 2.1: Symbols for the general concepts of Puikl Health surveillance

General Concepts Symbolism
Stochastic Process X={X,,t=12..}
Time of Change T
Decision Time S
In-Control Process D(s)
Out-of-Control Process C(s)
Alarm Set A(s)
Time of an Alarm t,
Intensity of a Change Vi




Chapter 3
Measures of f#aluation

In order to test our method’s performance it is coom to use the
measures of the significance level and the powedne Tproblem for these
measures is that we do not take into account sonp®itant factors such as the
dependence on the length of the period of survedléaand the exact time point
that the change occurs. In order to consider swadtofs in our surveillance
method we have to generalize the two measures oreedi above.

Before continuing to the presentation of these mess, it is vital, for us,
to evaluate the statistical properties. For exantpbre are procedures in which
long series are used and others that we care ®rmp#rformance not too long
from the start. Generally, in order to evaluateuavsillance system we have to
consider some important factors such as the avidithalof information. This
could mean the time delay generated from the repgrprocess or the time
delay generated from the process of identifying aodfirming an outbreak of a
disease.

Another problem is the simplicity of a method. Thigctor is usually
determined objectively, according to the applicatiof our surveillance. There
are applications that the simplicity of a methodvisal and we can just use the
Average Run Length (ARLpol. However, there are applications that a great
amount of information is needed. In these applmagi we have to use more
complex methods and more than one measure for pates’s evaluation. An
example here can be the supervision of the foet¢afrthrate during labour which
was presented by Frisén(1992)[36]. If an abnormalitas occurred it is
important for us to detect the problem as soon assiple so that immediate
actions will have to be taken such as a caesaremgtios. It is easily
understandable that in this application we havelé¢al with the dependence of
the time factor. Acting too late may have as a lethe loss of a life.

Several studies are referred in such measures. ¥ample might be the
study of Andersson(2003)[3]. These measures ofuatadn are commonly used

in order to compare different methods. A graphieahluation of such measures
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are given in the paper of Frisén and Gottlow(2088)[ for a constructed
statistical program. There are other studies thowich in order to compare
different methods, proceed in the development ofm&oother criteria. For
example in Sego et al.(2008)[126] and Sego (200)[1it was used the steady-
state average run length instead of the ARL.

In this chapter we are examining different types roéasures for the

purpose of evaluating methods in surveillance dflpuhealth.

3.1 Average Run Length (ARL)

A common measure of evaluation is the average emgth until we have
an alarm. If our process is in-control and we hawealarm then this alarm is
false. The distribution of the false alarms is eegqwed by the following

equation:
ARLo= E[t, |7 = o]

Approaching this issue from a general perspective,have a rule which
we use to extract the limits of our method and frarhich we define the in-

control or out-of-control state of our process. Tisa
ARLo= ARL

The ARL measure is used for the design of the control tshar different
applications. Its disadvantages, though, are ddlstgnificance. ThARL gives
us limited information and is calculated considgrithe assumption that the
surveillance begins at the same time when the chatgurs. This assumption
simplifies the problems for us in theory but in ptiae, the change occurs at an
unknown timer since the surveillance started.

On the other hand this measure is common to be usedomparing
different methods. Comparisons of methods with sleneARL is common in
statistical surveillance as we can find out easihich is the quickest method in
realising the change. These comparisons of the opmdnce of different
methods with the sam&RL may depend on different ways on the value.dfor
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the average run length we assunwl. The dependence of the average run
length after the change atis demonstrated by another measure which we are
presenting belowHKrobability of Successful Detectipn

In the simulation presented below we have sucbmaparison between the
Shewhart and the CUSUM method for the same averagéength.

Simulation

In this simulation we are going to compare the mdt of the CUSUM
and the Shewhart test for the samBL Suppose we have a mean for the
timet =1, 2,...,z-1 and a meary, for the timet = r,7+1,....The timet = 7 is
when the change in the mean occurs. We generate Iformal distribution 140
replicates with a mean of x4, = @&nd 140 observations with a mean of
4, =15.The standard deviation i =1 .So our change in the meanlishe.We

divide the observations for each case in 20 sampteszen=7 and we assume
that we take each of these samples in the timeodstt=1,2,...,40 Practically
that means that we have a time point of change at21. We remind the

statistic of the tabular CUSUM scheme for the cakan increase to be:

S =mad0.Y; - (o +K) + ')
Wherek is given by the following:

k =@=%= 0.75 for our case.

The observations are given in the table below:
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Table 3.1: Generated observations from N(0,1) and (4.5,1)

Time po =0 t =15
1 0,185573 1,75188
2 -0,247210 1,19523
3 0,355101 1,45971
4 0,357489 1,51561
5 0,333314 1,49897
6 -0,010791 1,24824
7 -0,580087 1,67122
8 0,205866 1,17702
9 0,081491 1,67445
10 -0,040827 1,53925
11 0,201591 1,46459
12 -0,914889 0,98769
13 -0,785749 1,07834
14 -0,134363 1,61910
15 0,326480 2,11732
16 -0,145937 1,41975
17 -0,343590 1,04650
18 -0,475557 1,83593
19 0,051910 1,04705
20 0,234598 1,28201

For a parameter limih=5¢ for the CUSUM method and the shift in the
mean mentioned above, we have the following CUSUMrt
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Cumulative Sum

Time

Figure 3.1: The CUSUM scheme for the 40 observatiengenerated from Normal

distribution and for a limit h=5¢

From the CUSUM'’s chart we see that the averagelemgth is about 27
observations. Now for the same valueARL we can figure out easily the limits

which we are going to need for the Shewhart’s chart

ARL= 1

Y
where p is the probability one point plots out of contrdctually, we can

symbolize this probability as follows:

p=P(X,|> h) (for the two-sided method)
and

p = P(X; > h)(for the one-sided method)

With h we denote the limits of our chart. So, for our mpde we have:
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b=t -1 _ o370
ARL 27

& P(X, > h) = 0037 <
& 1-P(X, <h)= 0037 <
& 1-d(h) = 0037 <

& ®(h) = 0.9630

So our limit’'s h value is aboutl.79. And so we have the following
Shewhart chart for the observation of the mean:

Sample Mean

Time

Figure 3.2: The one sided Shewhart scheme for théddbbservations generated from
Normal distribution and a limit extracted from the CUSUM h=1.79

We conclude that the CUSUM’s method triggers anrralat the time of
alarmt, =27 (or at the 2% sample). On the other hand, based on the saRle
from the CUSUM’s method, the system of the Shewbkamtethod triggers an
alarm at the timet, =35.From these comparison we take that the CUSUM
system is much better than the Shewhart methodesiincealizes the change in

the mean much sooner with the same average rurtHemg the sections below

we are presenting measures of evaluation basedetime delay In terms of

time delay the CUSUM'’s delay i§y —7=6.0n the other hand the time delay
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for the Shewhart scheme is largeép — 7 =14.This big difference for our case is
natural since the CUSUM method is designed in a wagt considers the

cumulative sums of our observations. Thus, immedeatd large changes in the

mean are detected much sooner than the Shewhaetlsod.

3.2 Probability of a False Alarm(PFA)

In this measure we are dealing with the probabibfya false alarm not
later than a time from the start. The probability of a false alarotwally can be
interpreted as theype | error of a testing hypothesis. That is to reject thel nul
hypothesis when we accept it. In our case an alantriggered when our
process is not out-of-control. The interpretatiorthwthe previous measure of

the Average Run Length for the null hypothesARL,) is the same.

Definition:
TheProbability of a False Alarm is the probability hag an alarm when there is n
real change in the process and it is given by dilewing expression:

PFA(t) = P(ty =t|7 > 1)

This measure is a function ofand is denoted by, .For example for the

Shewhart test we havea, =1- (2o(h)-1)' where @ is the normal probability
distribution function. From the example above werd@a(h) = 0.9630. Thus, for

our example, the probability of a false alarm i®wh in the figure 3.3:
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Figure 3.3: The visual projection of the PFA for ttre Shewhart scheme of the

example in section 3.1

A summarizing measure of the false alarm distribntiis the total

probability of a false alarm

P(t,<7) =Y P(r=)P(t, <t|z =1)

t=1

An assumption is needed at this point for the disttion of z.Usually we

assume thatr ~ Geometric (p) where p is our parameter and reflects the
probability we have an alarm. That is our “succes$his assumption is
appropriate when the intensity of a shift is comstéor each time pointAs a

result, the first factor in the sum of the totabpability of a false alarm does

not depend on the method but only on the true isitgrv. The second factor
depends only on the run length distribution whenchange has occurred.
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3.3 Probability of Successful Detection

A measure to demonstrate the dependence of the &Rdr the change, on
the timerz, is theProbability of Successful Detectiofror this measure we are

interested in the delay between the time when thenge occurred and the time
of our system’s alarmtf — 7).

An example would be the case of an infectious disea$®re we have to
detect its outbreak in a given time interval. If We not detect the outbreak in
time, we will not be able to prevent an epidemio.@ly a limited time delay is
permitted, since many lives may be at risk. If vakd the appropriate preventive
measures in a short time after a change, an outbmtlh be avoided and that is
the reason why this measure is so important. THaydies denoted byl. There
are some applications that only a limited time getan be tolerated, in which

we can consider therobability of Successful Detection.

Definition:

The Probability of Successful Detection is the probi&pilhat the change is detect
with a delay that is no longer than d, given thiaere was no alarm before t
change. It is given by the following expression:

PSDd,t)=P(t,—z<d|t, 27 =t)

The Probability of Successful Detectias given for the Shewhart method

and for a change in the mean from:

PSD(d,t, (1)) =1- (@ (h-py))°.

In the previous example we had for the Shewharthmeta time delay of

aboutd=14. Thus, the probability of successful detection is:

PSD(d,t, u(t) =1- (@ (h-p;))? <
< PSDd =14t =7, u(r) = 15) =1-[® 179-15) <
< PSOd =14t =7, u(r) = 15) = 0.9989
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The following graph gives us a visual image of tReobability of
Successful Detection according to the time delay dar example’s Shewhart

scheme:

1.0

0.9

0.8
\

Probability of Successful Detection
0.6
\

0.5

T T T T
5 10 15 20

Delay

Figure 3.4: The visual projection of the PSD for te Shewhart scheme of the

example in section 3.1

3.4 Predictive Value

If we have an alarm in our surveillance we havehoose the appropriate
preventive actions. Fulfilling that purpose in ptiae, means knowing how
much trust to put in an alarm. Additionally, it @& us information about which
action would be appropriate. It is simpler for ifsthe same action can be used
whenever an alarm occurs. Thus, a constant predictalue with respect to the
time isa good property.

For different methods, we have different false aladistributions as a
function of time. That fact leads to the principleat the proportion of false
alarms compared with justified alarms at a specifime point will differ
between the methods and so will tlrast in an alarm. This criterion gives us a
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guantitative idea of how strong an alarm is, asiadication of a change.
Moreover, it tells us how probable a change in past is, when we have an
alarm and as a result it can inform us what wilppan if no actions will be
taken in the future. In order to express thatst, we use the measure of the

Predictive Value

Definition:
The Predictive Value is the probability that theopess is out of control when
alarm is triggered and it is given by the followiegpressions:

PV(t)=P(C(t)|t, =t) or PV(t) =P(zr <t|ta =t)

3.5 Conditional Expected Delay

A measure of evaluation with respect to a true geam the vast literature
is summarized by the average out-of-control rungten ARL = E[t, |z =1].In

this measure we make the assumption that the chaoge&rred exactly the same
time when the surveillance started. As we mentiopeelviously in the field of
public health this assumption is unrealistic andelass. In public health
surveillance the ability to detect a change depemghe time that the change
occurred. So, we should take into account the olsses of later changes.

That is a case which we are not going to use irs thtiudy but it is
mentioned since it is referred in the vast literatwf the evaluation of a
method. Our measure is tltenditional expected delags a function of the time

pointt.

Definition:
The Conditional Expected Delay is the average deillae for a motivated alar
when the change occurs at a time point t andgiven by the following expression:

CED(t) = E[t,—7|t, > 7 ={]
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3.6 Expected Delay

Since the case of=1, as we saw before, is not the only case we are
interested in, we can calculate the expected dé&ayther values ot. In fact
we are based on the distributionfwhich is often geometrical, to consider the

expected delay.

Definition:

The Expected Delay is a weighted average of the beiween the change and tge
time that an alarm is triggered for motivated alamand it is given by the followin
expression:

ED, = i P(z = t)P(t 5 > t)CED(t)
t=1

3.7 Sensitivity-Specificity

As mentioned above in a surveillance system we havevaluate also its
timeliness and the quality of the data collectedpdrtant delays in detection
may appear because of delays in reporting or comnfig a diagnosis and data
may be missing, wrong, misinterpreted etc. For tredson we use measures
such as sensitivity and specificity.

In order to confirm our research a lot of times wWe some further
diagnostic tests in order to confirm if a diseaseyresent or not. In this study
we are not referring further in such measures batpsesent them for general
knowledge reasons.

An example of these measures could be the studyRaeifhamre and
Ekdahl(2006)[119] who used the sensitivity and puossitive predictive value to
compare the Poisson CUSUM (which we examine latethis study) and two
other methods applied in different regions.

We have the following 2x2 table with the number pdople for every

possible combination, which will help us determigithese two measures:
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Table 3.2: The 2x2 table for the number of inciderd according to the positive or

negative result of the diagnostic test and the presce or absence of a disease

Presence of Disease Absence of Disease
D* D™
Diagnostic Test a b
Positive T*
Diagnostic Test C d
Negative T~
Definition:

Sensitivity of a diagnostic process is the probgbthe diagnostic test to be positi
given that someone has the disease. It is givehebfollowing expression:

#T*ND")
#(DF)

sensitiviy=P(T* |D*) =

Definition:
Specificity of a diagnostic process is the prokigbthe diagnostic test to be negatige
given that someone does not have the diseaseagiltaa by the following expression

#(T nD")
#(D7)

specificiy=P(T~ |D™) =

Where our symbolism in these definitions representantities of the 2x2

table mentioned above:

Table 3.3: Interpretation of the symbols in the defhitions of Sensitivity and

Specificity
Symbolism in Interpretation in
Definitions 2x2 Table
T"~D* a
T-AD" d
Dt atc
D~ b+d
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Chapter 4
Optimality Criteria

Optimality of different methods is a classical issin surveillance. How
they link to different measures of evaluation andwhwe make optimal a
method through likelihood functions is the objeetivof the paper of
Frisén(2009)[40]. A discussion on this study wassented by Knoth(2009)[69].
Further reading in optimality is given by Frisén{®0[41] where the study of
Shiryaev on the quickest detection problems isuBsed.

At this point, we will use the measures of the poerg section to formulate

and discuss some criteria of optimality for surlaaikce.

4.1 Minimal Expected Delay

A general utility function was proposed by Shiryagh®963)[128].In that
case we are dealing with the expected delay oflanm He treated the case of
constant intensity of a change where the gain ofalarm and the loss of a

probable false alarm are a linear function of tladue of the delayfa—z. This

utility can be expressed d$ = E{u(r,tA)}, where:

h(t/.\ —T),t/.\ <T
ai(ta — 7) +a2,0therwise

U(T,tA) = {

The functionh(ta —7) is usually a constark, since we have a constant cost
of triggering a false alarm independently of howlgdhe false alarm is given.

In this case we have:

U= bP(tA <T)+(11ED+az

~ 23 ~



Achieving a maximal utility corresponds tonainimal expected delay from
the change-point for a fixed probability of a falakarm. This criterion is also
known as theExpected Delay criterionThe full likelihood ratio method which
we are going to examine in chapter 8 satisfies triserion. TheED criterion
seems to be a suitable optimality criterion in @lpu health setting because of

its generality of including changes occurring dffelient time points.

4.2 Minimax optimality

This criterion concerns thminimax of the expected delay after a change
Despite the fact that several possible change tiaes considered (thus this
criterion is related to th&D criterion), we use theconditional expected delay
as it is stated in chapter 3. Instead of using xpeeted value, which requires a
distribution of the time of change, we use the waaue of CED(t) avoiding at
the same time any requirement of information abitnet distribution ofc. There
is a lot of theoretical research based on thisecion.

Pollak(1985)[97] uses the worst valueofo give an approximate solution
to the criterion ofminimal expected delayHe starts the procedure avoiding the
properties which are dependent to the time of cleang

Moustakides (1985)[91] uses a still more pessimistiiterion, since it is
based on the worst possible circumstances. The twepssible case is
considered, by using not only the worst value o tthange time, but also the

worst possible outcome oX,_jbefore the change occurs.

Ritov(1990)[108] considers a loss function whichnist identical to that of
Shiryaev(1963)[128] but depends on the time of genand the time of the
alarm ta. In this case we consider the worst possible thatron for each
decision times, P(r =s+1|t>s).With this assumption the CUSUM method
minimizes the loss function.

Further studies for theminimax optimal criterion are given by
Yashchin(1993)[171], Lai(1995)[76]&(1998)[77] andiL& Shan(1999)[78].
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4.3 Average Run Length

In this case optimality may be defined msnimal ARL for a fixed ARL,.
The assumption that these two expectations makethat there are equal
distributions for all observations under each ot ttwo alternativesARL'’s
position in statistical quality control is a domtimay one, since it is the most
common used measure for an evaluation of a methbdrefore its usage as an
optimality criterion in the industrial quality comi and the other developing
fields is widely known. However, its dominating ptaen among other optimal
criteria is doubted; especially when the field ofarest is the public health.

We present some of the consequences of the usagigcbfa measure as an

optimal criterion. Frisén(2003a)[37] shows tlthere are valuess such that a
surveillance system with alarm atta :min{s:ztS:lX(t)>cs} gives the

minimal ARL for a fixed value ofARL.

Thus, a linear combination with equal weights tb @dservationsfulfills

this criterion of optimality (minimaRARL for a fixed value ofARL,) .On the

other hand, methods with equal weights for old aeacdent observations are not

appropriat¢or at least rarely they are appropriate metho&s), this statement
shows that this optimality criterion could be doedbt In the field of public
health it is more probable not to have equal weadiot our observations. Time
is an important factor which can relate with otHactors such as the spatial
factor and so the case of the equal weights intprads almost impossible.

Additionally, in the applications for which this bmal criterion is
appropriate, the knowledge of the alarm statistic éach time of decision is
not enoughWe should also have to determine the alarm limfor this statistic
for eachs.

Frisén proceeded in the construction of a two-pargthod which fulfills

the criterion of minimal ARL for a fixed ARL,.The method has the alarm limits:

c=L,c =0,i=12,...k—-1 and ¢, = -

where k :%SX_L) for the standard normal distribution functidn

From the above we have thliatis restricted to those values and as a result

k is an integer. It was proved at the same papert thia two point method
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fulfills the criterion of minimal ARL by having ARL arbitrarily close to the
minimal value of one, for a fixed value 8RL,.

This method, though, has very bad properties. fieshels only on the first
observation regardless if an alarm is given at tiim@ at another timé.

For that reason Frisén used the LCUSUM method witime of an alarm
at ta = min{s:z;X(t) > L+S7ﬂ} (it is described in the paper’s appendix) which

minimizes theARL for a fixed false alarm probability.

Pollak and Siegmund (1985)[99] pointed out that thaximal value of
CED(t) is equal toCED(1) for many methods and with a minimax perspective
this can be a motivation for the use @&RL since CED(@) = ARL —1.However

this argument is not relevant for all methodED(1) is not the maximal value
for the EWMA method as presented by Frisén and Ssoe(2002)[47]).

Thus we see that this optimal criterion has mangadvantages. Frisén
pointed these flaws with the three statements noaetl above. Even if this
criterion is used in a method there is a strongdation that it is not reliable.
We see that methods useless in practiceARé optimal and that this criterion
cannot be used for all the methods.

Hence, we should use this criterion of optimalityly with care and we
have to be cautious about the properties of eacthogewe use. The Average
Run Length can give us some information as desiwgpmeasure of evaluation

but as an optimal criterion has many flaws and dvsantages.
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PART |

Detection of Increased
Rates of Incidence In a
Poisson Process
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Chapter 5

Using the time
betweenevents to study the
Poisson process

When we are referred to a Poisson process an iseteaate of incidence
corresponds to an increased intensity of the Paoispoocess. Thus, the
possibility of detecting an increased intensity éegs on the method we use to
monitor the process. The way we observe our protesaportant too. Different
technigues of handling a Poisson procedure are ioeed below.

Here, we observe the time intervals between twoeasky health events of
our procedure. With the term “adverse health evewts mean the presence of a
disease. Thus, we can measure these time intewitlisthe following two ways:

a) In the case of thecontinuous time,the intervals are distributed
exponentially.

b) In the case of aliscrete time scalewe count the number of acceptable
events between adverse events.

Both these ways include no loss of information abdhe process.
Increased intensity or an increased rate of a dis&an be interpreted with two
ways respectively:

a) In the case of theontinuous timgincreased rate means shorter intervals
between two adverse events.

b) In the case of theliscrete timeincreased rate means smaller number of
acceptable events.

In the same way we have different designs of meshadcording to the
case we are interested in:

a) In the case of the continuous time between two esb/events, which is
distributed exponentially as we mentioned above,ane interested in the
design of methods like theexponential CUSUM and the

EWMA(exponentially weighted moving average)
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b) In the case of the discrete time there are methsdsh as theSets
method and theCuscore method.
In the field of the surveillance in public healtthe first case of the
continuous time is very rare which is why we areated, in this study, to the

second case of the discrete time.

5.1 The Sets Method

The original sets method was proposed by Rina CH@fg)[15] for the
surveillance of congenital malformations. Sincerthéhere have been a lot of
improvements for this method. We give a generakcdesion of this method.

The sets method focuses on the lengths of the vaterbetween events
with the presence of a disease. These lengths agesuned with the number of
healthy cases between two events with the diseasarne interested in. A first
assumption we make is that these lengths are Higed geometrically. An
alarm is triggered in our system whenconsecutive intervals are shorter than
some threshold value. That is our system’s functwmch we are going to
present by simulations in this section.

This method is really simple, easy to understand aan be applied in
many different cases for a variety of diseases. e\mv, this method presents
some disadvantages as far as we are concerned aloaptimality. The sets
method is not constructed from likelihood ratioshieh is an optimal method
(we are going to describe this method later) analsabers for the alarm decision
only the data which are based on the lastonsecutive intervals. So, we might
have as a result a huge amount of loss of inforomatin this chapter we are
going to describe the method through some appbosti and present the
improvements that have been made by some researcher

We are studying the Rina Chen’s application of tlkengenital
malformations. In this example we are interestedhia intervals between two
newborns with a congenital malformation. The length these intervals is
measured by the number of healthy newborns. Theutations are simple and
this simplicity makes the method easy to be used.ahe presenting the cases of

small and large scale systems (one hospital andraéwnospitals respectively).
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The normal births between two births with the sfieanalformation monitored,

is defined as aet Each time the epidemiologists diagnose a new oasksease
(the disease in our example is the congenital mal&dion of newborns), they
move on to an analysis of the lastintervals (sets).These intervals or sets
constitute our sequence of interest.

The size of aset (the malformed newborns are excluded) is a geametr
variable. We have an alarm, if a sequence of sppears in a way that each set
is below a fixed size. In practice, this sequenceniore frequent to happen for
the case when the malformed newborns have an isetkeate and less frequent
to happen when the rate of malformed babies is abrifthe hypothesis we test

is expressed as follows:

H,: The rate of malformed newborns is normal.

H,: The rate of malformed newborns is increased.

5.1.1 Probabilities and Expectations

We are interested in estimating the number of itdaexpected to be born
before an alarm is triggered. Thus, we study thealmer of normal births< until
we have a success where in our example the “sutdsss newborn with

malformation.
The random variableX; is the size of thei” set and it is assumed to

follow a geometric distribution. We remember thiaXi~geom(p)then:

P(X=x)=p*{-p)’
E(X)zl__p
P

1-p

2

Var(X) =

We use the following notation:
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Table 5.1: The terms and their explanation we useof the Sets method

Terms

Explanation

Po

Py

The normal rate of the malformed
newborns. Often an estimation fqu,

iIs given by the rate of malformations

over several past years.

The increased rate of the malformed
newborns. We also assume that:

P,=7%*Pg-

The number of the expected births in
a sequence initiated after the increase

which signals an alarm.

The expected time duration in which

the a, infants are born.

The probability that, under the

hypothesidd,, a given sequence

signals an alarm.

The expected number of false alarms

during a time interval.

The expected number of births during

a time interval.

Thus, the hypothesis test we mentioned previoualy lte expressed as follows:

Ho: P= DBy
Hl: P=p, 0Or p=y*p,
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% The case under the null hypothesks,

We suppose we are in the case where the null hgsidhstandsThen,

underH,, we have theexpected sizef the set:

1-pg
o

E(X) == =¢; (5.1)

Then theprobability a size of a set to be smaller th&gX;)is:

c-1

P(X; < E(X;)=¢cg) = 1- pg)*
(Xi < E(Xj) =¢p) )z,opo( Po)” < (5.2)

P(X; < E(X;)=¢cg) =1-(1— pg)® =1-e™ = 0632

(Since we have for a very Iargel— that (1- p,)* =e™* for any k>0).
Po

Generally it is stated that:

P(X, <kg)=1-(1-p,)* =1-e™ (5.3)

The moment generating function of, given X; <k=c, is:

1 ke-1 1— (1— ke etkco
M (t) T kg z Po (- po)x e = Po - (- Po) t
1-@-po) ™ x=o 1-(1- pp) 1-(@- pp)e
thus

E(X; | X; <kg) =M'(0) =c0{1—kL1},i = 12...

% The case of the alternative hypothesis

With the same way we act in the case when we adei, :

¢ —E(x)=1tP lmrEpe 1,17k 1
P, 7 * Po 4 Po Y
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From (5.3) we have:

P(X; <kg)=1-(@1-p)** =1-(1-p,)¥* =1-€"(5.4)

Similarly we calculate:

_ Kk
E(XiIXi<kCo)—Cl{1 eky_l} (5.5)

5.1.2 A System for Surveillance in a Single Hospita

We are now interested in consecutive sets in a single hospital. The rule
of an alarm is based on the size of each set waystlihat fact actually means
that an alarm will be triggered by a sequence o$,sié each size of these sets is

below a certain size.

If, in our simulation, X, fori =1,2,3,...,nis the size of each set, thennn
consecutive sets, which is our sequence, we wieha X ,..With this term we

define the largest size of the sets in our sequence

Then we shall have th@obability that a sequence will trigger an alarr:

P(X e <kG) (5.6)

The probability is defined in our hypothesis testfallows:

Ho: Py = P(X, 0 <kG) = (1-€")" (5.7)

max —

H,:P =P(X,. <kg)=(@1-e*)" (5.8)

max —

In the case of the null hypothesis we want the piolity to be
significantly low so that the probability of a falsalarm will be low and in the

alternative case we want the probabilify to be high so that an alarm s

~ 34 ~



justified and will be triggered when the rate ofetimalformed newborns is

increasing.

Supposing thatl-e™) = 09&o thatP, will be large) we should have:

ky =—In 001 k =29% (5.9
Ve

And so for the null hypothesis we should have tbkofving equation_for

the size of a sequence of sets

In P,

nzm (5.10)

It is reasonable to assume that under the null thgsis the number of

expected newborns having the particular malfornraiso

b*p, (5.11)

Also, we can assume the number of sequences (efn§iamongb newborns to
be:

b*p,—(n-1) (5.12)

So, the average number of false alaisigiven by:

r={b*p,-(n-1}*P, (5.13)
Reasonably, the probabilitf?, is given by the following equation:

r
P, =
{b* p, - (n-1)}

(5.14)

We also can define fronf5.5) the number of the expected births in a

sequence which signals an alarm after an increase
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Ky
a = n*cl{l— o _1} (5.15)

Simulation

For our example of congenital malformations of newis, we are
interested to make a surveillance system in a sifmgispital. Suppose now that
we calculated the number of births in a particilaspital to be about 400 births
per month. We also suppose that we have one falsenain 20 years. Our
surveillance system realizes as an important chatogeignal an alarm, an
increased rate seven times the normal rate of coibge malformations in

newborns. From these data we have:

y=1

r=1

b =400+12+20=96000
k :4'7651: 0658

2 10
1000('1000C" " '1000(

For these fixed “normal” rates we have the follogitable:

We have the following ten fixethormal” rates p, =

Table 5.2: The table with the results from the simlation of the Sets method for different

baseline rates

P, x10™* P, C, n a t,
1 0.13157895 9999 3 4088 10.220697
2 0.06172840 4999 4 2725 6.813117
3 0.03875969 3332 4 1817 4.541623
4 0.02906977 2499 5 1703 4.257346
5 0.02272727 1999 5 1362 3.405536
6 0.01865672 1666 5 1135 2.837663
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1167 2.918447
1021 2.553385
908 2.269449
817 2.042299

7 0.01607717 1428
0.01392758 1249
0.01228501 1110
10 0.01098901 999

oo o o O

To calculate the results of the table above we wdrin S-Plus. The code
is given toAppendix A.1For this example we could make several conclusion

depending in the kind of results we are interested

> For a normal rate of congenital malformations pf= (one

1000(
malformation per ten thousand births), we have that expected size of
a set, under the hypothesis that the rate is “ndrn& 9999 births.

> For the same case, we have that an alarm shoukigmaled after
3 consecutive sets, each smaller th@®b8+9999= 6579 births.

> Also for the same case, the probability having ladaalarm after 3
consecutive sets is 0.132 or 13,2% and the prolghihat an increased

rate seven times the normal rate would be deteafes a sequence of 3

sets, isP, = P(X,,,, <k¢)=@1-e)"=0.9710r 97,1%.

> The expected number of newborns included in thevalsequence

which will trigger an alarm after an increase, 38.

> The expected time where we will have an alarm afber increase
in the rate is 10,2 months.

We also can make some general comments of vitabrmance for this method:
> The probability having an alarm when the normaleratill stands

is small for a large (fixed) ‘normal’ rate. Thusetmarer the disease, the

more probable having a false alarm.
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0,0010+
0,0008-
2 0,0006-
s 0
£
20,0004
0,0002
0,0000- T T T T T T T T
0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14
Probability of False Alarm
Figure 5.1: The PFA according to the baseline ratef a disease(newborn’s
malformation) for a single hospital
> Using the same logic, we need fewer infants andsseqgbently less

time to realize the change in the rate of a frequisease compared with

a rare disease.

0,0010+

0,0008

0,0006-

Normal Rate

0,0004+

0,0002

0,0000

T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500
Number of Newborns to Signal an Alarm

Figure 5.2: The number of newborns until the signabf an alarm according to the

baseline rate of a disease (newborn’s malformationfor a single hospital

~ 38 ~
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Normal Rate

0,0004

0,0002-

0,0000-

2 3 4 5 6 7 8 9 10 11
Time to Signal an Alarm

Figure 5.3: The time until the signal of an alarm &cording to the baseline rate of a

disease (newborn’s malformation) for a single hospal

> From the above we realize that the sets method qu®g in this

section is better for detecting changes in thegatiediseases with a large
base-line rate. The probability of a false alarnsignificantly large for

small “normal” rates and simultaneously our systemalizes far more
sooner the change when we have large “normal”’ ré&edsequently, our
method is much better when the disease is frequeaplpeared in the
population of interest.

Especially, when we are interested for rare disgam®l an alarm
is triggered in our system, we should not take doanted that this is a
true alarm. It is better to assume that this alasmmore than a warning.
Then the epidemiologists should investigate theecas order to find
proof leading to an alarm.

For this reason, we should take a larg€number of false
alarms)nto the single hospital system in order to haveharter time
delay between the change and triggering a warnifag.a result, we
should have a true alarm in a shorter time intetwatl on the other hand

this fact leads to more frequent false alarms. &or example we should
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have the following table for a number of false alarr =5 in 20 years.

The code is given ilppendix A.2

Table 5.3: The table from the simulation of the Set method for different baseline

rate and 5 number of false alarms in 20 years(r=5)

P, x10™* P, C, n a t,

1 0,657895 9999 1 1363 3,406899
2 0,274725 4999 2 1362 3,406558
3 0,179856 3332 2 908 2,270812
4 0,137363 2499 3 1022 2,554408
5 0,108696 1999 3 817 2,043322
6 0,089928 1666 3 681 1,702598
7 0,077882 1428 4 778 1,945631
8 0,067751 1249 4 681 1,702257
9 0,059952 1110 4 605 1,512966
10 0,053763 999 4 545 1,361533
> For a normal rate of congenital malformations pbf:woo( (one

CM per ten thousand births), we have that an alahould be signaled
after 1 set smaller than 6579 births instead obBsecutive sets when we

have one false alarm in 20 years.
> The expected number of newborns which will be bamntil our

system realizes the increase and trigger an alaraB863 instead of 4088

newborns in the case when we had one false alar?d® ipears.
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Variable
—@— r=5
—— r=1

0,0010+

0,0008

0,0006-

Normal Rate

0,0004-
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0,0000
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500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Newborns to Signal an Alarm

Figure 5.4: Comparison of the number of newborns util the signal of an alarm
according to the baseline rate of a disease (newhts malformation), for one and five

false alarms in 20 years

> Additionally the time duration until our system teas the

increase in the rate and triggers an alarm is mash, compared with the
case of the one false alarm. Specifically, our sysin the case of 5 false
alarms in 20 years will have realized an increasa rare disease in 3 to
4 months compared with the previous case wherenanease of a rare

disease is detected in 10 to 11 months.
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0,0010 il
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0,0008-
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Time to Signal an Alarm

Figure 5.5: Comparison of the time until the signalof an alarm according to the
baseline rate of a disease (newborn’s malformation)for one and five false alarms in

20 years

> As we mentioned above, this increase in the nunolbéalse alarm
has a side effect. That is the large probabilityhating a false alarm. In
our case this probability is 65,7%(number of faldarms in 20 years is
5) while in the previous case is 13,2%(number d$daalarms in 20 years
is 1) for the smallest ‘normal’ rate .Additionallywe have that the
probability an increased rate seven times the nbrmaée would be

detected after a sequence of 1 setPis P(X,,, <k¢)=(@1-e")"=0.99

or 99%.

~ 42 ~



Variable
—@— r=5
—i— r=1

0,0010+

0,0008
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Figure 5.6: Comparison of the PFA according to thebaseline rate of a disease

(newborn’s malformation), for one and five false ahrms in 20 years

5.1.2.1 A Second Approach to find the n

In the approach mentioned above, we calculatechthmber of sets using
a cross-checking technique f(.10) and (5.14) equations. Here, we are going
to use the same cross-checking technique but f®(51v) and(5.14) equations.
In this section we act based on the probabilityaofalse alarm. We simulate
some tests for a case and we choose the appropriaéased on the similarity of
the values. In our example we have a number ofefalarmsr =1and we have
k= 0658 for y=7.Lets take the example of the baseline rate of

7o =5%10"*.For the simulations, we used S-plus and the cadgiven in the

Appendix A.3
Then we should have the following table:
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Table 5.4: The decision of the appropriaten for a baseline rate of 5/10000 and one false

alarm in 20 years

n _ r P,=@1-e")"
° bxp,—(n-1)}
1 0,0208333 0,482114
2 0,0212766 0,232434
3 0,0217391 0,112060
4 0,0222222 0,054025
5 0,0227273 0,026046
6 0,0232558 0,012557

From the table above we see that the minimum deffiee between the two

equations exists forn=5.50 we should taken=5 for the case of

r, =5%10".Making comparisons for all the cases of the normate in our

example we should have the following table:

Table 5.5: Comparing the decision oh according to the process we chose to use for

different baseline rates.

n from equations (5.10) n from equations (5.7)
and (5.14) and (5.14)
3 3

P, x10™

© 00 N OO 0o A W N PP
o oo o oo o0 o o b~ b
D O O O o o1 o1 0o b~

=
o
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We notice that there is a difference in two caseg £3+%10* and

7, =6%10"). In this approach the number of sets for these tases is larger

than the previous one and so the number of newborclsided in a sequence
which signals an alarm after an increase and thee texpected our system to
realize the change, will be larger. Specificallgetnumber of newborns will be
2271 instead of 1817 births and 1362 instead of51bBths respectively for
each case.

The advantage of this approach is that the proitghilf a false alarm for
these two cases is smaller (2.6% instead of 5.4 {5)).Also the probability
that an increased rate seven times the baselirewauld be detected after a
sequence of 5 sets is 0.9his method is better for smaller increases to be
detected with some reasonable probability but aftera larger number of

diagnoses.

5.1.2.2 A Third Approach to find the n

At this point we could use another approach to ulalie the number of
consecutive sets from which the increase will beéeded. In the approach
mentioned above, we calculated the number of setsing a cross-checking
technique for(5.10)and(5.14) equations and fof5.7) and(5.14) equations.

Previously, we used a fixed value for Here, we are searching for the
appropriatey-value which will lead us with more precise calculatiotts the
appropriaten. In this section we are going to figure out theusing a_criterion
which maximizes the probability of detecting a chann the baseline rate.

We take the symbolism for time reasons Mf= p, *b.With M_we denote

the expected number of cases between false alafings, the value oM is

chosen prior to our system’s beginning. Using tligmbolism the(5.14)

equation is calculated as follows:

r
Po(n) = m (516)
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A way to express the exact valueMfis by the following equatioh

__ 1-RM)
[1_ Po (1)] * Po(n)

(5.17)

So for equatior(5.7) we have:

PN=>01-e*)"=P0=1-e* (5.18)

The equation(5.17)for M now should be:

M- (s.10)
e “*x(l-e )"

As we said above the value & is chosen prior to the system’s start.

Thus, for a givem, we can find th&-value. We also have fgrfrom (5.8) that:

_—Inji-R(n)""}
- k(n)

y(n) (5.20)

From these equations we have thaniincreases thek will increase ¢
will decrease). But, if the number of sets is iragieg then the probability to
detect a change is decreasingence, there is a maximum value for that
probability F,.

The main idea for this method is that for a giverwe can determine the
value ofn which maximizes that probability. This procedusefeasible ag(n)

is a monotone decreasing functionrof

The rule to determine the is based on the fact thdte efficiency of a single
analysis ofn intervals does not increase much relative to an atysis involving
n+1 intervals. The actual valuef n used for the alarm detection is determinedjas
the smallest value for which:

y(n)-y(n+1)<1

! This is shown in Kenett & Pollak(1983)[67]



Note: A false assumption is common to be made at thisitpdhat is the one

false alarm expected iN cases. Then we should have fBy n ¢he following

equation from(5.16)

R = o

Solving the equation(5.16) for M and for one false alarm we have the
approximation equation fok. This equation would be correonly if we have
in our researcha finite number of gaps (caseshnh real life this is not true.
When we want to make tests with that system, incfice means continuous
analyses for infinite cases. Thus, this approxim@athas a significant difference
from the exact value. Taking the ratio of the apgnuation equation forM

(from 5.16)and the equatiof6.17)to prove that fact, we have that

M, r=L+n—1 andM === Fo(
PP I:)0 (n) [1_ F)o (1)] * F)0 (n)

Eventually from these two equations we should héneefollowing ratio:

M 1-(1—-e™)"
M, e*s{(n-1*0—e™)"+1}

appr

Taking for example the case n£5 andk=0.76 we should have

M__ 0957 ..

M. 0547

appr
Interpreting this result, we can say thating the specified values oh

and k, the actual time interval between false alarms i4.75 times the ones

assumed with the approximation oM, .That is a substantial difference

2 The exact equation is shown in Kenett & Pollak@}&7]



between the approximate and the exact function. Fothese reasons we use

the exact equation.

Simulation

For the example we used in the previous section, have that
b=96000.Suppose we are interested for a disease withormal rate of

o =ﬁ.Then the prior value oM (the expected number of cases within

which one false alarm is expected) would Me= p,*b=48.We also suppose

that the probability to detect the hypothetical ©ba in the ratio is 0.95. For
this case we should have from our cddee following table:

Table 5.6: Choosing the appropriaten using the gamma rule.

n M kappa gamma
1 48,1208 0,021 142,654
2 47,7920 0,169 21,752
3 48,0619 0,368 11,080
4 48,0668 0,569 7,668
5 48,0542 0,759 6,041
6 48,0219 0,936 5,092
7 47,9463 1,101 4,468
8 48,0081 1,254 4,029

For the table above we have the smallastor which the rule for the
gammas holds. That is=5.Comparing with the previous simpler method we see
that the number of sets needed to detect the chanfee too. The problem in
that case was that we included the number of falaems. In this section we do
not have to make any arbitrary assumptions and meebased on a reliable rule
which leads us to more precise and absolute coraigs

All of these approaches are presented by Rina Ghsehidies. Especially

for the case of searching the appropriatethe last approach seems to be the

% The code we used in S-plus is giverAppendix A.4



best since it does not take into account assumpttbat may lead to unreliable
conclusions. To be exact in our conclusions, thist Imethod is better to detect
small changes in the rate of a disease. That igehson why it is preferred for
the case of rare diseases. The first two approaahe®ased on the approximate
equation for the expected number of diagnoses givan period time. The last

approach is better since it relies on the exactéqu.

5.1.3 A System for Surveillance in Several Hosp#al

In this section we are dealing with the increasé¢hi@ rate of a disease in a
larger area. For this reason we use all the avkElabformation from several
hospitals. Our purpose is to detect increases whodur at the same time in an
area of interest. The data we use in this systesrtlae same with those recorded
for the system of a single hospital.

What differ from the previous section are the aideaccording to which
an alarm would be triggered. In this large scalstegn we are proceeding in an
analysis of the data at the end of a constant vialeof time. In this constant
interval we record the number of the sets and th&e. In this system we have

an alarm if each of then completed sets is smaller than a vakyg,. Then we
correlate the value ofk, with the probability of an alarm under the null

hypothesis. This probability of false alarm givehat at least one set is

completed, is denoted bg,.So, we have the following equations fkfand q,:

qO = P(Xmax < kmCO | M = m)or qo = (1_ e—km)m (521)

and

ko =-InA-qg"™) (5.22)

The probability of false alarm is denoted Iyas we saw in the previous

case of the single hospital. We denote wytithe years for which the analysis
takes place with a frequency aftimes per year. Then we should have the

following equation:
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1
P, = o (5.23)

We make the assumption that the average numbealst falarms is one
(here we have aaveragenumber since we have several hospitals).

We mentioned above thah is the number of the completed sets. We
symbolize withM the number of sets terminated within a certainiquer Then

the probability P, should be:

Py = ZP(Xmax <KmnCo,M =m) =

m=1

:ZP(Xmax<kmCO|M :m)*P(M :m):

m=1

~Go* Y P(M =m) =

m=1

= 0o *{1-P(M =0)}

(5.24)

With the termP(M =0)we denote the probability that none of the sets is

completed during the surveillance in our time-ivi@dr If we do not have a
single set completed, in other words means thatase not diagnosed a single

case with the disease monitored. Therefore, unidemull hypothesibl ,and for

the N cases we checked for our disease of interest,ave:h
P(M =0)=(@1-7,)" (5.25)

So from the(5.24) and(5.25) equations we have the following:
P, =q, *{1- - 7,)"} (5.26)

and

P
° __ (5.27)

R
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Simulation

In order to proceed in a simulation, suppose we ehdo apply a
surveillance system in an area where a number dpitals exists. We are
interested in a type of cancer. For the purposeusfsurveillance, we proceed in
an analysis every 3 months of the 12.000 hospikdlizndividuals with an

average of one false alarm in 40 years. For tha dabve we have:

y =40

d=4
Thus from(5.23) we have:

1

P, = i 0.00625

And so we should have the following tafile

Table 5.7: The table for the simulation of the Setsnethod for different baseline rates for

surveillance in several hospitals

P, (o do Kappa Kappa*c,
for m=5

0,0001 9999,00 0,0089436 0,493176 4931
0,0002 4999,00 0,0068734 0,460999 2304
0,0003 3332,33 0,0064255 0,453189 1510
0,0004 2499,00 0,0063018 0,450968 1127
0,0005 1999,00 0,0062655 0,450310 900
0,0006 1665,67 0,0062547 0,450113 750
0,0007 1427,57 0,0062514 0,450054 642
0,0008 1249,00 0,0062504 0,450036 562
0,0009 1110,11 0,0062501 0,450031 500
0,0010 999,00 0,0062500 0,450029 450

So, we have the following conclusions:

* The code we used in S-plus is giverAppendix A.5
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> In the following graph we have a visual image ofwhdhe
probability of a false alarm, given that at leasteoset is completed,

works according to the baseline rate (normal rafeg disease.

0,0010

0,0008+

0,0006-

Normal Rate

0,0004+

0,0002+

0,0000- T T T T T T T
0,0060 0,0065 0,0070 0,0075 0,0080 0,0085 0,0090
Probability of False Alarm

Figure 5.7: The PFA according to the baseline rateof a disease (newborn’s

malformation) for several hospitals

> Additionally, interpreting the table above, we hahat if five sets
have terminated within a three month interval, the@ should have an
alarm if each of the sets do not exceed a limitisTlIimit is given in the

last column(Kappa*c,).For a visual illustration of the limits of an alarm

according to the baseline rate check the followgnagph:
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Figure 5.8: The limits for which we have an alarm fi each of the sets do not exceed

them (case of several hospitals)

> For example, for the case of the normal rate aficidents-‘events’
per 10000 individuals, we should have the limit bf27 cases. The

proper interpretation would be that we have anral#éireach of the five

sets does not exceed the value of 1127

Note: If we would want to find the probability a gammiaie (the normal rate)
increase to be detected, then our interest shoeldhle probability under the

alternative hypothesis. That probability should be:

P=Y@-e*)"P(M =m) (5.28)

m=1

Further discussion on these matters can be showherstudy of Gallus et
al.(1986)[50] in which the optimality of the setethod was approached and for
which R.Chen was based to analyze the last proeedtfindingn. Additionally
other studies for this subject can be the one o&dbus et al.(1991)[51] in
which from the main idea of the sets method a Rwisspproximation is made to
a Negative Binomial process and the one of Cheal.¢1997)[21]. The study of
H.Arnkelsdottir(1995)[5] is really good and inteteg) since it presents some
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measures (such as the Probability of Successfub®@itn and the Predictive

Value) in order to evaluate the sets method.

5.2 The Cuscore Method

As mentioned above, the sets method’s main disadgenis the loss of
information since that technique is based on tls¢ haconsecutive intervals. In
order to solve this problem, a modification is reged in a way that all
observations until the last alarm are taken intooamt.

This new method is called Cuscore method and ibased on a score.
Values of 1 or -1 are given to each interval betwaelverse events depending
on whether or not it is longer than a thresholdueal The statistic, which is
based the ‘alarm’ event, is formed from the cumivikascore.

With this technique, we avoid any loss of infornwati which might be
caused by the use of ontyconsecutive sets. Despite the fact that this nmetho
solves this problem (takes into account all the ilabde sets), it has an
important disadvantage. That is the type of repartobservations. When we
intend to match the observations 1 and -1 with rén&l data, we have as a side
effect a direct loss of information owing to theckhotomization of data which
leads to a suboptimal method.

To make our procedure an optimal one, we are gtongonstruct a method
based on the minimization of the out-of-control egfed delay for a given rate
of false alarms. The problem we are dealing withhis time when our system is
able to detect the-increase in the baseline rate.

Suppose we haveX; independent observations. Witk we denote the
number of ‘normal’ cases between two ‘events’. Adty, X; is the size of the

seti. The events distribution can be approximated byoasson process with a

parameterl. The assumptions we make are the small event pibbaand the

independence between the eveni$us, the observations can be supposed to

follow an exponential distribution with a paramefgkt. Under the baseline rate

we have:
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Fot) =1-e™" (5.29)
And under the alternative hypothesis of the inceglsate we have:
F,(t)=1-e7" (5.30)
With 42 are denoted the events of interest. So with we denote the
average number of events of interest (i.e. the dmbwith congenital

malformations) under the baseline rate. Our idetoiassign a score of 1 or -1

in each sek;:

Score(X;) = 1if X, <R

Score(X;) = -1 otherwise

With R we denote the threshold value which in practicenlsglizes the

lowest ‘normal’ size of our set. A lower size thRnof a set, is an indication of

an _increased rateShould this increase be statistically significart will be

indicated by a sequence of consecutive sets. HBheevofR is predefined and in

essence, is defined &asmultiple of the expected value

R=k=*E(x) (5.31)

or under the baseline rate (null hypothesis) th8X1pequation becomes:

R=kx*c, (5.32)

In the case of public health we are interestechmincrease of the rate of a

disease since a decrease is not our concern. Harecare dealing with the one-

sided problem. For the one-sided case, the cunudacore’s statistic is defined

from the following:
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S =0

(5.33)
S =max{S_, + scorgX,)0}

Our alarm rule is that an alarm is triggered asgl@as S =n.Wheren is a

fixed positive. The number of sequences from thgimeng of our procedure
until the alarm, is denoted by (N = first i until the alarm). In essence, we can
regardN as a random variable which represents the numbéswaits’ required
to trigger an alarm. From this meaning we can ggsiinp to the conclusion that
the expectation ol is the Average Run Length of our method.

Advising from the study of Munford(1980)[92] andgmeeding with some

algebra we conclude in the following expressiorE¢N) or ARL

n(n+1)
2p

E(N): n
n___1-p 1—(1‘—"} p#05
2p-1 (2p-1) p

Under Poisson procespg,which is the probability an observation is shorter

05
(5.34)

than the decision threshold, & given by the following for the baseline and the

increased rate of the tested hypothesis respegtivel

Ho:po=1-€¥
0- Po . (5.35)
Hlip]_:l—e_y

5.2.1 The Procedure

In order to optimize our procedure we aim at the oticontrol expected
delay of the scheme described above. The assungptiosm make is that the

increase factor is detected and that the expected d&aWN)=D,, is fixed.

Then the procedure minimizes the out-of-contARL orE;(N). Our method

works following the steps described below:
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— . 1
1.We have an initial value ai=1 and for this value we calculafg =D—.
0

2.For n>1 we calculate the value op, using the equation of G.Gallus et
al.(1986)[50] which is defined aB =[1+D, - D, *P]™".We take a starting

value of p, the value of p, for n-1 and we act recursively for some
iterations.

3.We calculate the value ¢&ffrom k=—-In(1- p,).

4.We find the value ofp, from (5.35).

5.We take the value of the expected delayN)from equation(5.34).

6.We choose the appropriate parametessidn for the minimumg;(N).

Note: It is concluded from simulations that the absolméenimum of E;(N)
with respect tam, is the first minimum om. So the procedure is stopped as soon
as a value ofE (N)is found that is higher than the one obtained @arevious

iteration.

Simulation

For the example in the sets method of the problem congenital
malformation in newborns, we had 400 births per thoand one false alarm in
20 years of study. We are going to have our resioltshe 10 different baseline
rates which corresponds to 10 different valueshef 1, of the Poisson process.
We are interested in detecting an increase in trenal rate ofp, = y * powhere
y=17.

For this simulation we developed a code in S-plusd ahe Minitab
statistical packages. This code is giverAppendix B

From these data we have that we are studying 240timsoand so the in-

control expected number of malformatiobs, is:
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Table 5.8: The expected number of malformations fodifferent baseline rates

Ay x107 D,

10
19
29
38
48
58
67
77
86
96

© 00 N OO O A W N P

=Y
o

The main idea is to choose the minimum out-of-cohaxpected delay. In
such a way we optimize our method. Thus, after sumulation and for the

different values of the expected number of malfotiovas we have the following

table for the parameters of the optimal Cuscorehmet

Table 5.9: The parameters of the Cuscore method fodifferent baseline rates

Ao x107 D, Po kappa Py E n
1 10 0,104167 0,110001 0,536990 1,86223 1
2 19 0,255630 0,295217 0,873374 2,45598 2
3 29 0,204474 0,228751 0,798358 2,82151 2
4 38 0,174905 0,192257 0,739668 3,17975 2
5 48 0,307976 0,368135 0,923994 3,43215 3
6 58 0,287570 0,339073 0,906847 3,54635 3
7 67 0,271499 0,316766 0,891104 3,65764 3
8 77 0,258387 0,298927 0,876621 3,76593 3
9 86 0,247404 0,284227 0,863248 3,87134 3
10 96 0,238017 0,271831 0,850852 3,97403 3
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From this table we can derive the following grapbm which we easily
conclude that the delay, in detecting a statisticadignificant increase, is
smaller for a rare (we are referred in the frequewné appearance) disease.
Something expected. When a disease has a small ofagppearance in the
examining population it is easy for the system ¢alize an increase, especially

when this increase is large such as in this ¢as@).

0,0010

0,0008

0,0006-

0,0004

Baseline Rate of Malformations

0,0002 -

0,0000

T T T T T
2,0 2,5 3,0 3,5 4,0
Out-of-Control Expected Delay

Figure 5.9: The expected delay until the alarm fothe Cuscore method for different rates

of newborns’ malformations

5.3 Sets method vs Cuscore method

The sets method is appeared in the recent liteeatarbe compared with
other methods (e.g. the CUSUM scheme based on souhich we examine in
the next chapter). Examples of this, is the stutigego et al.(2008)[126] where
two of the sets method’s modifications are givengaf which is the Cuscore
method). The evaluation of the performance of thesdhods was made with
respect to the steady-state of the average runthemgtead of the ARL. The
Cuscore test also is applied in the study of Ched Broom(2003)[19] for the

case oflymphoma and colon cancer death data.
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In this section we compare the sets method andCilnecore scheme based
on the expected number of ‘events’ taken to detéet first true alarm after
matching the rate of false alarms. In other wordsaxe interested in the out-of-
control expected delay in such an optimal way ae tlwo methods were
developed by the G.Gallus et al.(1986)[50] and Gl&dli(1992)[102]. For the
example above of the congenital malformations wikewate the out-of-control
expected delay for the same parameters.

For the sets method, G.Gallus et al.(1986)[50] elkdted the expected

delay from the following equation:

E(N) =

1-p"
p"(1-p)

(5.36)

For the example above we have the following table

Table 5.10: Comparing the Sets and the Cuscore metld using the measure of the

Expected Delay for the performance

Expected Delay
Ay x107 Po kappa P, n Cuscore Sets Method
Method
1 0,104167 0,110001 0,536990 1 1,86223 1,86223
2 0,255630 0,295217 0,873374 2 2,45598 2,45598
3 0,204474 0,228751 0,798358 2 2,82151 2,82151
4 0,174905 0,192257 0,739668 2 3,17975 3,17975
5 0,307976 0,368135 0,923994 3 3,43215 3,52117
6 0,287570 0,339073 0,906847 3 3,54635 3,65962
7 0,271499 0,316766 0,891104 3 3,65764 3,79478
8 0,258387 0,298927 0,876621 3 3,76593 3,92649
9 0,247404 0,284227 0,863248 3 3,87134 4,05485
10 0,238017 0,271831 0,850852 3 3,97403 4,18005

® The code we used in S-plus for the Expected Defldlye Sets method is givenAppendix C

~ 60 ~




Variable
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—— Sets method
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Figure 5.10: Comparing the performance of the Setsand Cuscore method using the

measure of the expected delay until an alarm.

From the table and the graph above, we conclude thare is no
difference between the Cuscore and the sets metbo@ small frequency of
appearance of the malformation. There is no diffieee between the two
methods for rare diseases. The difference is gieerarger baseline rates of a

disease.

Another interpretation of the above is that for @mal rate of5x10™*or
higher the Cuscore method is more effective. Theeeked delay until our
system triggers an alarm, in terms of the expectbrded events (congenital
malformations in our example), is smaller for thes€Core method than the Sets
method. Especially for the case of the baseline rat malformation per a
thousand births, the difference is ab&9t.

As long as the normal rate is getting larger, we #Heat the gap between
these two methods is bigger. Thus we should priaferCuscore method since it
is much more effective, realizes the change in‘ttegmal’ rate sooner than the
sets method and it gives us reliable conclusiorsetiaon all the available data.
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Chapter 6

Using the number of events
In fixed Intervals to study
the Poissormprocess

In the previous section, in order to detect an @ase in the baseline rate of
a disease, we used the measure of the discretebi@veeen two adverse events.
In this section the time intervals are fixed and tbese intervals we calculate
the number of ‘events’.

If the number of events is recorded for fixed timéervals, information on
the process will be lost. As a result, the sunagte method will be suboptimal
for detecting the change in the process as quiadypossible. Thus, there is
only one reason to use fixed intervals. That is phactical restrictions of the
reporting system.

Procedures for monitoring rare health events arsebaon sequential
statistical methods for detecting a shift in thederlying disease rate. For fixed
time intervals, a commonly used method is the Rois€USUM method. The
Poisson CUSUM compares the recorded number of sveneach time period
with the expected number and uses the cumulated c(fudeviations to form an
alarm statistic.

A lot of comparisons of the Poisson CUSUM with athmethods have
been made. Such compared methods are the Sets anatlidbthe Cuscore of the
previous chapter. As far as we are concerned abatecent literature of the
period 2003-2012, the most commonly used is the GMSmethod for count
data. The Poisson CUSUM performance is evaluatedTestik(2007)[153].
Especially, in the field of public health this methis widely spread and applied
in different situations. For example, Limaye et{2008)[85] applied the counted
CUSUM for the case of the hospital infections frahldren’s hospital.

Additionally, several modifications of the Poiss@USUM appear in the

recent literature. Such an example is the BerndQUWiSUM, in the Sego et al.
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(2008)[126] and Sego (2006)[125] studies, whichves mentioned above is
compared with the sets method and two of its maodiions. It was found that
the Bernoulli CUSUM is better, followed in order ltlge Cuscore and the sets
method respectively. The same result for the mdéghe cases is derived by the
study of Joner et al.(2008)[62], where the BernoGUSUM is compared with a
scan statistic for prospective surveillance.

To apply in theory the CUSUM scheme with count distaelatively easy,
since we make the assumption that the mean numbewrents is steady for a
whole time period. In practice though, this is rnate. The mean number of
events is likely to vary over time if we considdretfactor of the population
growth. That is the reason why a modification uswgights is needed. That
was shown in Shu et al.(2010)[131] and Shu et AlL(@3[132]. The weights
correspond to the time the events occurred. Moregglte are assigned for the
recent observations and fewer weights are assigodbe older observations. A
comparison was made with the conventional CUSUM.

Another CUSUM method when the events to be monddir an outbreak
follow a Poisson distribution, is developed by Joms(2010)[64].

Further reading on comparisons of the Poisson CUS other methods
can be made through some interesting papers suchBadujani and
Calzolari(1984)[8], Pollak and Kenett(1983)[98], s et al.(1986)[50],
Chen(1987)[18] and Radaelli(1992)[102].

Most of these comparisons favor the Poisson CUSUéthmd but on the
other hand there are proof for the opposite. Fangxle in Chen(1987)[18] the
sets method is evaluated with fixed intervals andas found that it is a better
method for a baseline rate equal or smaller thaades per year. The evaluation
was made with respect to the time delay measuri furst alarm.

The conclusion mentioned above stands even forelangreases in the
baseline rate. The CUSUM scheme has shorter timaygddéor a baseline rate
larger than this value (5 per year). Further stoflyhe same paper showed that
the CUSUM scheme is preferred if it is appliediate intervals longer than one
month.

A second scheme that has been developed is theocheththe maximum
value of the conditional likelihood ratios. This thed is a complicated one and

it demands a great amount of calculations and gtroomputing power. “For
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these reasons we are not going to present detailimimation but only some

general features in this study.

6.1 The Poisson CUSUMethod

The Poisson CUSUM scheme works through some paemmethich are
referred in the general features of the CUSUM mdthaucas(1985)[88]
presented a general review of this method and gevehe appropriate tables to
search for the parameters of our system accordinghé average run length
measure.

For the CUSUM method, we usually use continuousadat our analysis.
A first difference for the Poisson version is tha¢ are dealing with discrete
data. On the other hand, the interpretation of tlkseults and the general
conclusions (i.e. the planning of our method) ie game with the case of the
continuous data.

To construct our method we use the Poisson distiobuto model the
number of counts observed per sampling intervalotder to use the Poisson
CUSUM method in practical terms means that we h@mvenake the assumption
that we have the ability to record the number otits in a fixed sampling
interval. With the term ‘counts’ we mean the “ev&nhof our sampling interval.
In the public health field, as we mentioned abowe, are interested in the case
of the increase in the rate of a disease.

In this method we are dealing with the average langth as a measure of
performance. With this term (average run length) wean the average number
of sampling intervals before an out-of-control saggnFor the Poisson CUSUM
the time between out-of-control signals is propamnal to theARL

6.1.1 General Features of the CUSUM method

Cumulative sum methods are known for their abiltty detect sudden
changes in the mean of a variable. Especially wthes change is quantitative

large, the CUSUM scheme is very effective. For tmsthod the assumption_is
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made that the variable exhibits no serial autodatren. The most common case
is when the observations are normally distributedt In this case we are
studying the Poisson distribution.

In the CUSUM method we are dealing with the paramst andk. For our
better understanding, though, we have to mentiomesanformation abouth
which represents our limit.

The h value is chosen based on a fixed value of ratéalsfe alarms. High
values of the limith give us a low probability of a false alarm andcavér
probability of detecting a real change in the stadymean (in the following we
are going to see tables which define the valueb ahdk based on fixed values

of ARL,for the Poisson version). It is common to use aigdbork to be %.1f we

assume that this is true then tdRL, is defined as follows:

ARLy = 2e° —c-1) (6.1)
where c = h+ 1166.

120000

ARLoO
|

| |

|

20000 40000 60000 80000

0
|

Figure 6.1: The performance of the Average Run Lent until a false alarm according to
the limit h of the CUSUM scheme
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Figure 6.2: The performance of the PFA until an alam according to the limit h of
the CUSUM scheme

This is given by Siegmund(1985)[133]. As it is red in Lawson and
Kleinman(2005)[82] Siegmund’s equation may be sdhapproximately for the
thresholdh as a function of theARL,, whenk=1/2:

h= [ARL@ +4j|n(ARL0 +1j— 1166 (6.2)
ARL,+2) | 2

When k = 1/2this equation is formed as follows:

- [ZKZARLO +2

2 jiln(zszRL0 +1)— 1166 (6.3)
ARLg +1

2k
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6.1.2 Features of the Poisson CUSUM method

In this scheme we cumulate the difference betwermlaserved value,

and a reference value If this sum equals or exceeds the decision intevnadlie

h, an alarm is triggered. For the Poisson CUSUM, tiagistic is given below:
S =max0Y -k+S_) (6.4)

Another feature of the Poisson CUSUM method is thast Initial
Response(FIR) which was presented by Lucas(198%)[B8ing this feature
means that if a change takes place soon after gatesi’s beginning, the
CUSUM scheme is going to realize the change imntetijjaln practical terms it
gives us a shorter average run length than the Isilpisson CUSUM method.
For the case of the simple Poisson CUSUM the he¢ad salue forS; is set to
be 0. On the other hand for the case of the PoisStiSUM with the FIR
feature, the head start value f&; is set to be equal tb/2. With such a head

start our method will signal an alarm more quickfyour process is out of
control soon after it started.

Another issue for this method is the proper chaédhe values ok and
the decision intervah. The value ofk is chosen by the acceptable count rate and
the count rate that is to be detected quickly. gsihese two criteria for the
choice ofk value, leads us to build tables to choose the matar h. The
appropriate choice of these parameters, the tahhgbs the exact procedure is

given below via a conducted simulation.

6.1.2.1 The k-parameter

The k-value is chosen to be between the acceptable psosealfl, )and
the mean level of counts that the CUSUM schema iddtect quickly4,). The
means Ay andiare mean numbers of counts per sampling intervdie T

“acceptable” process mearfl, is)the mean number of counts when the process
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is in control. The “unacceptable” process me@y) is the mean number of
counts when the process is out-of-control.

At this point we should mention that the desiredueafor A, is zero.
However, we usually do not use such a valueiforSetting 4, with the value
of zero, means that the CUSUM is designed witfi andk=0.That means that
for any occurrence of a count will give us an alaiherefore in practicg,, is

chosen to be near to the current mean level. Thereace value for the Poisson
CUSUM could be selected to be close to:

K = /11_/10
In(41) - In(4o)

(6.5)

When k >1, thek value will usually be rounded to the nearest igtreg

6.1.2.2 The h-parameter

After determining thek value, the decision interval valleis chosen using

proper tables. A proper choice of the valuehoshould_give a largé&RL when

the counts are at the acceptable lexetl a smalARL value after the change has

occurred

These tables are given in thgpendix D.1landD.2 (for the case with the
FIR feature and the case without the FIR featurspeetively) where we have
the simulated table of th&RL's, for the values oh, k and S, crossed with the
mean of counts. In the case of the in-control statel the mean of normal
counts, this represents th@RL, which we want to be a large number. In the
case of the out-of-control state and the mean |lefetounts that the CUSUM
scheme is to detect quickly, this representsARg, which we would like to be

a small number.
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Simulation

We suppose that in fixed time intervals we haveuaber of ‘events’X
that follows the Poisson distribution. Then we sldoliave:

X; ~ Poissorg1) for each of the=1,2,...,nperiods of interest.
Suppose now that the acceptable number of eventg +s4 and we have a

sudden change in the mean of the events for abe&t7.The code we used in

S-plus is given in théAppendix D.3 We generate from Poisson 20 values for

each case which represent the number of eventseitiixed time periods:

Table 6.1: The generated observations from Poissadistribution with a parameter 4 for

the in-control state and 7 for the out-of-control sate

Time Periods Ao=4 =T

6
10

10
10
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o With the FIR feature
For these mean numbers of the two states of coniwel have that thé&-
value should be:

M-y 3

K= _ = 535
In(4) —In(4g)  195— 139

Hence, the value dfappa is 5Moreover we are interested in a valuehof
equal or larger than seven. So we have the ARL's tfee 2 cases and we
conclude that a proper value could be the onenhfdkO.

The average run length until a false alarm is 39id &ahe average run

length until our system realizes the change is alBoor 4 periods.

Table 6.2: The table with the Average Run Lengthsdr the in-control and out-of-control

state of the Poisson CUSUM scheme (using the FIRdtire)

Mean as a multiple ofk
h k S, =h/2 4/5=0.8 7/5=1.4
7 5 4 94.9 2.37
10 5 5 397 3.35
15 5 8 3630 4.36

With the values ok=5 andh=10 we have the following graph including
the FIR feature where we have an alarm with a delfa$ time periods after the

change:
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Figure 6.3: The Poisson CUSUM scheme using the FIfeature and limit h=10. Alarm at

the 239 observation

o Without the FIR feature
In this case where the FIR feature is not incluaed for the value of the

parameter okappawhich we found above, we have the following table:

Table 6.3: The table with the Average Run Lengthsdr the in-control and out-of-control

state of the Poisson CUSUM scheme (without using ¢hFIR feature)

Mean as a multiple ofk
h k S =0 4/5=0.8 7/5=1.4
7 5 0 108 4.09
10 0 422 5.59
15 5 0 3740 8.09

Therefore we choose a valueloto be 10.For this value as before we have
the following conclusions.

The average run length until a false alarm is 422 &ahe average run
length until our system realizes the change is alfoor 6 periods which is a

larger number of periods compared with the previcase of the FIR feature.
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We see that the procedure with the FIR feature giwer Poisson CUSUM an
advantage. That is the quicker realizing of thengein the mean and in terms

of the time delay it is more effective. The PoissodSUM is given below:

Cumulative Sum
30 40
1 1

20
|

10

Time Period

Figure 6.4: The Poisson CUSUM scheme without usinthe FIR feature and limit h=10.

Alarm at the 23 observation

6.1.2.3 Poisson Approximation to a Normal Process

If the in control value ofl is larger or equal than 2, we can transform the
counts to a standard normally distributed randomrialde using the
transformation of Rossi et al.(1999)[120]:

p-31+2/p
X =
24

(6.6)

Wherep is the observed count,is the expected count anxdis our normal
random variable. For values smaller thiat®2 our results and conclusions cannot
be reliable as Rogerson and Yamada(2004a)[117] sdow

Another issue for this approach is that the dekaghorter with the Poisson
CUSUM. After the transformation of the data, thdajeof the detection of an

outbreak becomes longer in the CUSUM scheme. Thissttansformation leads
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to longer time delays of detection of a change.t™aas shown in Hawkins and
Olwell(1998)[55].

6.2 The maximum value of the Conditional

Likelihood ratios

Another approach for the case of the fixed intesvial the maximum value
of the conditional likelihood ratios as the alartatsstic (proposed in Lie et
al.(1993)[84]). In this case we are based on aesenf sequential tests and
interested in the characteristics of the whole pssc

Lie et al.(1993)[84] presented a sequential bindrikelihood ratio test of
the probability that an infant has Down’s syndroniée procedure was called
the y-methodand was based on a parametric model for matergal specific
proportions of Down’s syndrome cases, assuming ¢haertain fraction of the
cases is attributable to causes unrelated to maktee.

However what is interesting in Lie’'s paper is themparison with the
Poisson CUSUM method. According to that paper, Bmsson CUSUM has
been shown to be 44% slower in detecting a modenateease in Down’s
syndrome risks that occurs additively over all rmaté ages. In most cases the
CUSUM method seems to be 20 to 30 per cent lessitthem to additive

increases in terms of the average run length.
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Chapter 7
The Historical Limits
Method

The detection of patterns in the occurrence of ases and other health
events presents an important challenge to publi@lthesurveillance. For that
purpose a window based method was firstly propossd Stroup et al.
(1989)[47] & (1993)[46].

Aberrations in usual distributions of disease imride may provide an
early signal of an epidemic or may provide cluesitgportant risk factors
associated with the occurrence of a disease in rdicpgar space and time.
Detection of an out-of-control state of a diseasdhe subject of our study in
this case and to achieve that goal we are basexh@xisting data set.

The particular study is based on the weekly repoftaip to 50 diseases
made by the state health departments and whichsabenitted by the National
Notifiable Diseases Surveillance System (NNDS) bé tCenters for Disease
Control (CDC).These reports are disseminated in Ntegbidity and Mortality
Weekly Report (MMWR) and are available to epidemgibts, clinicians and
other public health professionals.

There are some studies which are dealing with ttospective case of this
method. A very interesting study is the one of Rid®erez’s. Rigau-Perez et
al.(1999)[107] used as historical data, the repfmdsn 5 years in which it was
not reported a dengue outbreak in the geographé@ axf Puerto Rico. From
each of these years it was chosen a three montdomin(15 weeks total) with
the fewest dengue cases in Puerto Rico. By compaailh the possible three
month windows it was decided the use of the windoawm April to June as this
“window” had the less ‘events’ in the particularearof study. In this study the
mean was the measure of comparison and so it wiasilated from the total of
60 weekly reports. The results of this retrospeztapplication were used to
develop a surveillance method with predictive capads. A comparison of

these results was made with the data gathered dfterperiod of interest
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(current period) and tests were made in order d But if there is a significant
difference between the results of this comparisad the outcome of the real
data. In the end these comparisons conclude inngleisurveillance method
(with high sensitivity and specificity) which funonhs as an indicator for
evaluation of dengue prevention and controllingrab@ble outbreak.

Another study for the prospective case should be dhe of Wharton et
al.(1993)[162] who used data from the NNDSS for mdnth period.

In Stroup et al. (1993)[146] three algorithms wersed for estimating the
standard error of a simulated ratio (from a knowstribution). Those are the
bootstrap, the jackknife and the delta methods. #m evaluation of these
methods for the best given variance, a model isdusg which results can be
compared with true or model-simulated values. Meexp the three methods
were applied to real data from the NNDS and measyrerformance by the
epidemiologic confirmation of increased activity.

Conclusions showed that the simple bootstrap whsclhased on random
sampling from the fifteen past data, and the jadkkmprocedures are not the
most appropriate. They produce exaggerated lownedts of the variance used
for the ratio in ourgraph method (which in fact means that we have a little
difference between the past and the current vallibgse confident estimations
have as a result values for the ratio very closé tnd this underestimation will
lead to a very sensitive method with often out-ofitrol states. On the other
hand, the delta method produced the best estinfatieeotrue limits in our graph
method.

Based on a moving window Shore and Quade (1989][130posed the
short memory method and compared it with the Pais€&lJSUM method.
Another example of the use of the window based wetls the detection of
increasedy-radiation levels in Sweden. In this case two caosiwe 24-hours
periods are compared by the Swedish Radiation Etiote Institute (Kjelle
(1987)[68]).

Further research has been conducted the last fewsyen the Historical
Limits Method. In fact this method has been theeabjof comparison with other
methods. An example is the paper of Choi et al.(@{24] where the historical
limits method is compared with six other methodaqmf them is the Serfling

method which is described in the chapter 9.3 ofstlstudy).Measures of
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evaluation for this comparison is the sensitivitiie specificity, the positive
predictive value and the short time lag. These mésh were applied in
simulated and real data for an overall view. Themperformance of the HL
method is mentioned compared to other methods.

The seasonality of a disease is the main interésh® study of Pelecanos
et al.(2010)[96]. The seasonal factor in many caseselated with a possible
outbreak but constructing a system based on a seasmtbreak will lead to
inconclusive and false results in the future. Diéfiet algorithms for seasonal

data are compared in this study.

7.1 The Time Window

These reports are referred to national data andgoaf is to use as short a
time period as possible for weekly publication imder to empower the
usefulness of our surveillance method. Howeverrdhe an important problem.
That is the variability in the weekly reports cadd®y factors irrelevant with our
process such as the time delay of the reportingabge of outbreaks. For
avoiding the contingency of the instability of otgsults, we choose a 4-week

time window.

7.2 The method

The purpose of our method is to facilitate the s of surveillance data
and to offer in other sources of information. Thethod may not be useful for
conditions with long-term historical trends andistmore effective if the base-
line rate of a disease is completely unknown.

The reports, mentioned above, consist of an enosmamount of data
which need a clear and effective statistical aniaglySor this reason, a bar graph
with the ‘ability’ to detect important changes imetbaseline rate was developed.
This graphic method was developed to describe thmparison between the
current and the past data in a simple optical wake second reason for
developing such a graph is to highlight and drae #ttention of the reader in

the indication of changes in long-term trends oidemics.
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Reporting cases to an organization who observesctrdgrol of diseases
(e.g. CDC) is a simple process but there are somoblems. For example
reporting cases may vary by factors unrelated te thsease process (e.qg.
reporting practices or time of month).

In order to reduce such variability from these aajsve aggregate disease
reports over a month period. The choice of the 4&k#é “current period” is not
random. It is extracted from the fact that weekllyctuation in disease reporting
is noticed (it is usually due to irregular repogirrather than to disease
incidence).

Let nowx,be the number of cases of a given disease repotedn

organization in the four week period ending withe tburrent week. We also

have the observations,...,x;which represent 15 previous totals and from

which we take a baseline report. These observatirepsesent the values of a
three month window (the corresponding month and daeounding months) in
each of the five previous years.

In such a way we create a baseline rate. Each wemeompare the number
of cases we are interested in with these 15 previobservations (or the
baseline rate).

In the following table we have a visual view of thiene window of interest
where

X, . IS the number of cases of the current period (kaby 2012).
X,...,X5: IS the historical observations of a three monihdew from which we

take our confidence interval.

Table 7.1: The table with the observations in theime-window of interest

January February March
2012 X,
2011 X, X, X,
2010 X, X X
2009 X, Xg Xq
2008 X140 X, X,
2007 X5 X, X
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Hence, the question: “is the number of cases of thonth different from
last month” is being transformed to the questiois: the number of cases this
year different from last year”. With this transfoatnon of our question we avoid
the variance caused by seasonality. Seasonal édisea® observed to have an
outbreak in a particular season. These seasonatases of a rate of a disease
should not be taken into account because an epwmdaminot based on a
temporary increase in the normal rate but on a {targhn and at least a more
permanent increase.

An assumption made in our method is that..,x,; and x,are independent

random variables with the same distribution funetidor most diseases, the
three month window produces data which satisfy tAssumption. Thus, we
calculate a two sided confidence interval for txpected number of cases for a
four week period. We compare this confidence indéand the observed current

value x, and we conclude whether the disease process i®focdntrol for the

current month or not.
From the epidemiological and statistical view ofstimatter, we could say
that we are interested in what sense the expectember of ‘events’ is

approaching the observed (real) value wfand if this number of cases is

exceeding the control limits. These questions drgignificant importance since

we do not know if a value from the previous yeaes lexceeded the in-control
state. To solve this problem we use the law of éangimbers and so we expect
that in large samples the estimation of a meanefmn a median) calculated
from the sample, is very likely to approach thelrealue of the parameter for

the entire population. The problem of the windows&a method is that taking a
sample from the previous 15 months is not a la@ae. To continue with our

method we use a ratio gf

where m is a measure of central tendency of the 15 baselalaes. For this
measure we evaluate the mean or the median of thebdseline values,
depending in our desired level of sensitivity ofetimethod with regard to

aberrations in the baseline.
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Summarizing up, this is a parametric method whisesuthe 15 baseline
values to compute a normal theory confidence irdkrusing the mean (or the

median) of the baseline period in the denominator.

7.3 Diseases for which our method is

appropriate

Our method is most appropriate for diseases that ndd appear a
significant level of trend in the past (historicalata). Additionally these
diseases should occur often enough so that a fewscwill not be the reason of
having a signal of alarm in our surveillance. Ietdata are not preanalyzed for
trend and period effects and the variance of thees cases is assumed to be
the same as the variance of the observations ebticsl data, ougraph may be

less powerful.

7.4 The Graph

In order to develop our graph, we have to thinktlod arithmetic ratio of
current to historical incidence. In the axis xfwe have the value of the ratio
and on the axis oy we have the diseases of interest. We also haverfcal
axis on the value ot of the ratio axis. This value actually means tttadre is
no change in the events of the current period caegavith the last 5 year’s
data.

In the case of spatial surveillance, which we aoéng to examine in the
third part of our study, thg-axis does not represent the diseases but different
geographic areas (e.g. countries, states, cities ®hce our graph presents the
evolution of a particular rare disease in differeountries or cities. In fact, we
are interested in the detection of an outbreak mnasea or in the spatial
clustering of a particular disease. More detadls $patial surveillance of public
health are shown in thé%part of this study.

The point where the hatched area begins is basethemrmean and two

standard deviations of the 15 values of events oecuin the past. These arethe
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two factors from which we develop a statistical m@ation of a confidence
interval.

We give the upper and lower control limits for atioaof a disease.
Additionally, two figures are given for each caSénese are the deviation bar
charts of rare reported notifiable diseases (<1@@8es reported during the
preceding year), from the Centers for Disease Qdntnd Prevention’s
Morbidity and Mortality Weekly Report for the UndeStates of America:

<> For the case of the significant increas®e have an alarm if the
number of ‘events’ of the current period is exceedihe limit based on
the past ‘events’. This limit is defined a®m+2s.Thus, our alarm rule

should be stated age have an alarm if:

Xy > M+2s <

X 2s
D1+ s
m m

y>1+2—S
m

An alarm in the case of an increase in the ratéfiestus about a foreseen
outbreak of a disease and that is the case wherentist epidemiologists
are of interest.

CASES CURRENT

DISEASE DECREASE INCREASE 4 WEEKS
Giardiasis 800
Hepatitis A, acute 83
Hepatitis B, acute 130
Hepatitis C, acute 30
Legionellosis 105
Measles 1
Meningococcal disease 57
Mumps 313
Pertussis 286
T 1
025 0.5 1 2 < 8 16

Ratio (Log scale)*
=] Beyond historical limits

~81 ~



Figure 7.1: Selected notifiable disease reports, oparison of provisional 4-week
totals December 26, 2009, with historical dataRatio of current 4-week total to
mean of 15 4-week totals (from previous, comparableand subsequent 4-week
periods for the past 5 years). The point where théatched area begins is based on

the mean and two standard deviations of these 4-wk¢otals.

X For the case of the significant decreas® have an alarm if the
number of ‘events’ of the current period is lowéan the limit based on
the past ‘events’. This limit is defined as—2s. Thus, our alarm rule

should be stated age have an alarm if:

%o <1—§<:>
m m
y<1—Z§

An alarm in the case of a decrease in the ratefipetius about the
effectiveness of some measures taken in orderdbkléawith an outbreak
of a disease in the past. Its role is mostly rgisxdive and gives us a

clear view if we have faced an outbreak or not.

CASES CURRENT
DISEASE DECREASE INCREASE 4 WEEKS

Giardiasis 367
Hepatitis A, acute % 19
Hepatitis B, acute 65
Hepatitis C, acute 26
Legioneliosis 83
Measles 2
Meningococcal disease 18
Mumps &
Pertussis 407

| T T T 1 T |

00625 0.125 025 05 1 2 4

Ratio (Log scale)®
Beyond historical limits
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Figure 7.2: Selected notifiable disease reports, oparison of provisional 4-week
totals January 28, 2012, with historical data Ratio of current 4-week total to
mean of 15 4-week totals (from previous, comparableand subsequent 4-week
periods for the past 5 years). The point where théatched area begins is based on

the mean and two standard deviations of these 4-wkd¢otals.

The parametersn ands are the mean anthe standard deviation of the
baseline data. Then our confidence interval or tipper and lower limits are

best described by the following expression for thgo y of our interest:

22
m m

Note: This method does not adjust for non-normal and agricorrelated data.
So using this method means the acceptance of thengstions of the normally

distributed data and the uncorrelated number ofesabetween periods.

7.5 Problems

The main disadvantage of the window-based methasdghat they are
suboptimal procedures. For example the ability évedt a gradual change is low
(Svereus (1995)[49]), if we proceed in the compamisof two consecutive
moving windows of fixed lengths. Additionally, ugjrtime windows will have
as a result a great loss of information as only daéa referred in our period of
interest will be taken into account.

Surveillance data are reported sequentially in tiffileat is the reason why
they may not satisfy the assumptions necessaryuwral time series analyses.
These problems appear especially for incidence #@tavhich the numbers of
reported cases are subject to seasonal effectsreggparting delays. If at least
one of our assumptions is not accepted, then thihagdeused to set the limits of
our graph may be affected. In fact, if there is ited knowledge for the
empirical performance of the method in the abseofcéhese two assumptions,

this affection is greater.
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On the investigations of these problems there atetaf useful studies
including Kafadar and Stroup(1992)[65], Efron anibshirani(1986)[32], Bose
A.(1988)[9], Liu(1988)[86], Kunsch(1989)[75].

What we should have in mind, is that there is nogke method which can
be used to detect all epidemics or all types ofredieons. Incomplete or
inaccurate reporting is expected to affect our radtbut even in this case these
problems can be turned out to be useful considetivegfact that we can use the
available data to detect trends or patterns. Ad dtata, followed by the proper
evaluation, are useful and that is a rule thathia tield of public health should

be unbreakable.
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Chapter 8
Optimal
Survelillance Methods

In the previous chapters, we examined some sub@btisurveillance
methods. In this chapter we are dealing with meshathich can satisfy at least
one optimality criterion. Such an optimal criterias we saw irthapter 3is the

minimization of the expected delay for a fixed @bibty of a false alarmWe

examine this criterion mostly for two reasons. fiples in several studies and
in the field of public health is a priority.

In this chapter we are dealing with likelihood meadis which can fulfill
properties of the system expressed by the optimaércon mentioned above.
Such methods are the Likelihood Ratio and the St@wRoberts method.

8.1 Likelihood Ratio Method

Frisén and de Maré (1991)[46] showed that the mination of the
expected delay for a fixed probability of a falséaran leads to the full
Likelihood Ratio method. This method is fully dedad from the following.

The partial likelihoods are denoted hys,t) and are defined as follows:

_ 1% 1C(9)
f (x| D(9)

L(s,t)
The full likelihood is a weighted sum of the partial likelihoods as are
going to see later.
The Likelihood Ratio method has an alarm set cdirggsof those X for
which the full Likelihood Ratio exceeds a limit. &, the time of an alarm for
the Likelihood Ratio method can be expressed aditbetime that the posterior

probability of a change exceeds a lirKit
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t, =min{s;P(r <s| X =x.) > K}

The first time that the full Likelihood Ratio exad® a time-varying alarm
limit is an equivalent way of describing the timean alarm for the likelihood

ratio method:

th = min{s;zs“w(s,t) * L(s,t) >

t=1

Prz >s) K
Pr(zr <s)1-K

Prec=1)
Prc <s)

partial likelihoodsL(s,t) andK is the limit at the decision tim& Therefore, for

where w(s,t) = .The w(s,t) are the weights which correspond to the

the time of an alarm we have the following rule:

. —m'”{szg Et<s) 50> z:gzgl—KK}

Thus, in order to solve this problem we have to makly one important
assumption. That is the distribution afWe assume thatis a random variable
which follows a particular distribution. For thisasable it is common to use a
geometricdistribution.

A lot of studies have as a subject the LikelihocatiB method for a change
in several distributions. One example is the Paisapproach of the Likelihood
Ratios as it is going to be described below. Anotaeample is the case of a
normal distribution. In this case, tHeR methodis optimized for the values of
the change siz@ and the change intensityis used in the alarm statistic. For

the case of normal distribution we have an alarm at

th= min{s; § Pr(r:t)*elew }exp{y > X(l)}>ex%( }Pr( >s)}
t=1 2 it K
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8.2 Shiryaev-Roberts method

In the method described above (Likelihood Ratio moel) the conditional
likelihood ratios are weighted according to thetdimution of the change point.

In this case we examine the “Shiryaev—Roberts” modttvhere_the partial
likelihood ratios have equal weight$hat is the main difference between these
two methods. Th&R methods the limit of theLR method

Zslw(s,t) L(s,t) > K

t=1

when v tends to zerq since both the weights, t @hd the limitK tend to

constants. Shiryaev and Roberts suggested thataam as triggered at the first

time s for which:

i L(s,t) > K

t=1

whereK is a constant. Thus, the time of an alarm, enhdrveiéh the optimality

criterion, for the Shiryaev-Roberts method can kpressed as follows:

t, = min{s;zs: L(s,t) > K}
=1
In practical terms the Shiryaev-Roberts method das used as an
approximation of the Likelihood Ratio method. If wensider a low intensity of
a shift, the parameter of the geometric distribatie close to 0 and as a result
the weights (of the LR method) are becoming (almesinstants. So there is no
need in using them in our alarm statistic and theme we achieve this
approximation. Many studies have examined this eratFor example Frisén
and Wessman (1999)[48] demonstrated that the SRhadetis a good
approximation for intensitiey less than0.20 in the case of a change in the
mean of a normal distribution. In the same studgthar property is used. That

is theconstant Predictive Value
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8.3 Linear approximations of the Likelihood

Ratio method

A lot of studies are dealing with the matter ofdar approximations of
Likelihood Ratio method. We study different kind bihear approximations of
the LR method mainly for two reasons. Firstly, weed to construct a method
which is easier to use and analyze, but has singaod properties as the LR
method. Another reason is to get a tool for the lgsia of approximate
optimality of other methods. Different approximatg might be of interest for
different situations.

An approximation, which is denoted HyinLR is achieved by a Taylor

approximation of the alarm function and gives aaral for the firsts for which:

ZWLinLR (s,t) = X(t) > Liinr

t=1

Other approaches could be tlixponentially Weighted Likelihood Ratio
(EWLR) method and theExponentially Weighted in Likelihood Ratio
(EWLInLR) Further explanations are given in the study aéé&m (2003a)[37].In
the appendix of this study are given all the neaggsalculations which lead in
the approximations mentioned above. Also some eseng simulations are

given in Frisén and Sonesson (2002)[47].

8.4 The LR and SR methods for a Poisson

process

The Likelihood Ratio method and the Shiryaev—-Robdeartethod may be
applied for the case of a positive shift in a Porsprocess too as it is shown in
the study of Sonesson and Bock(2003)[140]. Paréidy| the construction of
these two methods can be applied both in the cdenwdata are represented by
the time between evenasid whendata are represented by the number of events

in fixed intervals(as they are described in the chapters 5&6).
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8.4.1 Data are represented by the time between t&ven

Here we shall derive the Likelihood Ratio methoddathe Shiryaev—
Roberts method for the case of an increased rateoddence when the cases are
assumed to follow a Poisson process.

If the cases are distributed by Poisson with a patar v, the time
intervals X follow an exponential distribution with a parametg/v. Now
imagine that we have to deal with a shift in theemsity of our process from,
to v,, considering our two statesD(s)={r>s and C(s)={r<s
respectively.Remember that for this case we make assumption that the

timescale forr follows the number of events. So, for exponenyiaistributed

time intervals denoted b}, we should have the following probability density

F(x AIv) = expl—1
1o _1/v0 1/v,

functions:

And
1 X
f(x 1/v))=—— expl— '
(l'l ) 1/v, pJL 1/v1}

Thus ourlikelihood functionsshould be for each case:

S
f (x1/v, | D) = Vos—t+1 exp{—v0 in}

And

s
f(xa/v, |C) =y, STt exp{—vl ¥ X }
i=t

Thusthe partial likelihoodshould be:

v s—t+1 S s
L(s,t) = [vlJ exp{—vl_ XXV, XX }

0 1=t 1=t
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8.4.1.1 Time of an Alarm for the LR method

The time of an alarm for the Likelihood Ratio mattand a constarK is,:

t =min S ZS: M* L(S,t)>ML
A t—1 Pre<s) Prz<s)1-K
=

s-t+1
. S v, S K
t =minys; Y Pr(=t)* — expy (-v;+v,) XX >Pre>s)——
A t=1 Vo ° i=t 1-K

8.4.1.2 Time of an Alarm for the SR method

For the same case of an increased rate of incidevioen the cases are

assumed to follow a Poisson procefise time of an alarm for the Shiryaev-

Roberts metho@nd a constant is:

s (v s-t+1 S
t =minis Y (1] exp{(—v1+v0) > X }>C
A t=1\Vo i=t

8.4.2 Data are represented by the number of events

fixed intervals

For the second case we derive the Likelihood Ratiethod and the
Shiryaev—Roberts method when our observations sbridia number of events
X, recorded in fixed intervals of lengthk. The number of events in fixed
intervals of lengttk follows the Poisson distribution. So the densiindtion is:

Xi

P(X V) = exp{—vo}vo
! X!
Thus ourlikelihood function for the case of the in-contsgihteshould be:
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TS X
P(X;V, | D) = exp{— k(s-t+1)v, }Vosl_tl

I1x!
i=t

With the same way we derivibe likelihood function for the case of the out-of-

control state

PII
PO, |C) = expl-k(s—t+Dv |1 =

[1%!
i=t

Thusthe partial likelihoodshould be:

Y5 X
L(s,t):(\\//lj =

0]

exp{K(s—t+1)(—vy +Vo)}

8.4.2.1 Time of an Alarm for the LR method

For that casethe time of an alarm for the Likelihood Ratio medhand a

constaniK is:

S

s 2t Xi
t,=minys; > Pr(r:t)*(vlj | exp{k(s—t+1)(—v1+vo)}>Pr(r>s)L
t=1 Vo 1-K

8.4.2.2 Time of an Alarm for the SR method

For the same case of the number of events in fixeervals of lengthk,

the time of an alarm for the Shiryaev-Roberts mdthnd a constant is:
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S (v Ziszt X
t, =minis, Y (1j exp{k(s—t+1) (-1 +Vp)}>C

8.5 Conclusions

In both cases the Likelihood Ratio and the Shiryd®aberts method are
preferable to the suggested methods for the cakeBapters 5 & 6. Thé&R and
the SR methods fulfill optimality criteria when the meth®df the previous
chapters are suboptimal methods. The problems gued handled better using
the ratio of the likelihood functions, as the exygetdelay will be shorter for a

fixed value of the probability of a false alarm.

Table 8.1: The methods, their alarm functions, thenumber of their parameters and

optimality
Method Alarm Number of parameters Optimality
function of in the Alarm functions
L(s,t)

- < :
Likelihood ZWS('[) L(s.1) 2 m|n{E(tA—r|tA >r)}
Rati t=1

ato for a fixed P(ta < 7)
Shiryaev- Z L(s.1) 1 Same as in LR
Roberts t=1 methodfor v— 0

Sometimes the Likelihood Ratio method (which meahs use of the
posterior distribution) is named “the Bayes methediile the Shiryaev-Roberts
method is considered a frequentistic one. That o$ fully true. In fact no
especially Bayesian assumptions are necessary fier tR method. The
identification of such a method as a Bayesian oe@ethds on the situation
whether the distribution of is considered as a “prior” probability, an observed

frequency distribution or just reflects which sitiomm optimality is desired.
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In recent literature there are several applicatiamisthe LR method in
public health because of its optimal properties. Iime study of
Andersson(2003)[3] a comparison is given betweenltR method and the non-
parametric approximation of the LR method for these of detecting influenza
epidemics. Another comparison is also availabl&mdersson(2004)[4] between
the LR method and the maximum likelihood ratio nmoeth

For the case of Chang(2008)[13] the SR method appin monitoring
surgical performance is compared with two differ&dSUM schemes.

The optimality of methods is a very interesting jgadb for further
research. Expressing methods through likelihoodtfioms gives us a whole new
field of study in order to link methods with optifitg criteria. An interesting
study in this area is the one of Frisén(2007)[39{2%09)[40].
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PART Il

Detection of Increased
Rates of Incidence In a
Non Poisson Process
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Chapter 9
Processes with Time
Dependencies

In the previous chapters we are dealing with meshedich can be applied
in a Poisson process. Actually that is our mainuagstion. There are, though,
cases where the ‘events’ of a disease are notdfittea Poisson process. If the
assumption of a Poisson process for the casesdifemse is not appropriate, we
have to approach our problem from a different view.

Since public health surveillance data are usedegutar time intervals, the
time series of the number of diseases often exhibie dependence such as
autocorrelation and seasonality. For that reasenetinas been a great amount of
papers which are dealing with the modeling of théisee series and provide
forecasts of future incidence values. The possddeiations from the modeled
series can be thought of as an indication of a gkaim the pattern of disease.
Moreover, no assumption of stationarity is neededhe general surveillance
setting but, if it exists the situation is simp&d.

A first choice could be the Box-Jenkins (seasonaljtoregressive
integrated moving average models (ARIMA) presentad Box & Jenkins
(1970)[10]. Box-Jenkins models have been used Bt literature. Some studies
are thefollowing:

Choi and Thacker(1981)[23], Helfenstein(1986)[57]Nobre et
al.(2001)[95], Reis and Mandl(2003)[106], Schnell al(1989)[124], Zaidiet
al.(1989)[172].

Additionally, there is statistical software from wh we can calculate the
Box—Jenkins modeling. Such an example for statdtsoftware is the statistical
software for Public Health Surveillance (SSS1) deped by the CDC (Stroup
et al(1994)[148]). This software gives the ability of ayzing surveillance
data, including the Box—Jenkins method.
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Predictions estimate the expected incidence vatuekthese are compared
with the most recently observed disease incidenakie. Several steps are

necessary to proceed in the time series analysis:

X Stationarity =~ Speaking not strictly for a time series

{Xt}witht = 0£1..., we can support that it is stationary if it hag thame

properties similar to those of the “time-shiftedérses { Xih}for each
integer h. Now let be a time serie$ Xt} with E(Xt2)<oo. The mean

function of { Xt} is :

px (1) = E(X¢)

The covariance function dfXt}is:

7x (1,8) = CoU X, , X)

for all integersr ands. According to these, we can give the definition of

stationarity:
{Xt}is a stationary stochastic process for all t, ietmean of the process

is constant (uy (t)is independent of t ) and the covariance betwéXi}

and { Xt1} (yx (t,t-1)) depends only on the time lag k.

For the case of non constant mean, traditional sfi@mations are
required to generate a stationary series from tbe stationary series.
Time lag differencing is used when non stationaryeams are
encountered. For the case of the existence of dbperies between the

variances and the time, square root transformatayesrequired.
X Identification and estimatian ldentification of an adequate

stochastic process to describe the observed timessés needed. The

tools used for identification are the autocorredatifunction (ACF), the
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partial autocorrelation functiofPACF) and the inverse autocorrelation
function (IACF).

The ACF indicates the ordd€p) of the moving average part. The PACF
and IACF indicate the ordd€n) of the autoregressive part.

In the case when the orders of the process arardeted, we proceed in
the estimation of the parameters with the helphd tmaximization of a

likelihood function.

X Diagnostic checking In this case we are interested in the
residuals. Residuals have to fulfill three propesti
a. The mean of the residuals should not be signifigant
different from zero.
b. The distribution of residuals should be normal.

C. There should be no residual autocorrelation.

An appropriate t-test for the significant differenfrom the zero value of
the mean would be appropriate for the first propeiithe Kolmogorov—

Smirnov test for the normality of the residuals gseaniel (1995)[28])

and the Box-Ljung statistic (Ljung and Box (1978)[B can be used
respectively to verify the last two properties.

When the analysis of the residuals is complete,nioelel can be used to
forecast values and their corresponding confidelhnoés. The forecasts
are assumed to be normal in order to calculate9%f% interval. That is

the estimating value plus or minus the square robtthe forecast

variance.

9.1 Process Control methods and Box—Jenkins

models

Williamson and Hudson(1999)[164] give a descriptmina combination of
the Box—Jenkins models and statistical processrobmiethods. In this paper a

two-stage monitoring system is described.
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An ARIMA model is developed as it is given aboveorGequently, the
residuals from the prediction are assumed to be@apmately independent and
identically distributed and they are tracked intatistical process control. This
system was performed on data from the NNDSS. Inbrackle and Williamson
(1999)[158] this idea was further investigated ahé ARL performance was
investigated applying the Shewhart, the moving agermethod and the EWMA
method to these residuals for four different typéshift.

Watier et al. (1991)[160] proposed an autoregressive integrateing
average type of model-based warning system wheralért threshold value is a
function of the upper side of the prediction intekvThe idea was applied to
data for Salmonella in France.

Nobre and Stroup (1994)[94] used the forecast erray calculate a
probability index function to detect deviations ringpast observations applied to

data for measles cases reported through the NNDSS.

9.2 Integer-valued Autoregressive Models

Another type of models is the integer-valued augoessive model§INAR)
for the analysis of time series. They have beeristli theoretically by many
authors (Al-Osh and Alzaid(1987)[2], Du and Li (19€81], Latour(1997)[79]
& (1998)[80]) and an application can be found inr@aal et al(1999)[12]. This
class of models is an interesting alternative te tieal-valued time-series
models which do not respect the nonnegative integduned characteristics of
surveillance values. Real-valued models appliedhdonegative integer-valued

observations may be an inappropriate strategy, @alhe for the analysis of rare

events An INAR process of ordep is defined by:

p
XED 80 X +&
i=1

An epidemiologic interpretation of this formula tg consider thaf Xt} is

the prevalence of the disease at titn@he prevalence at timeis the sum of
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individuals remaining infected with a probabilityin the time interval(t—1,t)

and individuals contracting the disease in the samerval (represented bg ).

The Steutel and van Harn’s convolution operatore(®! and van Harn
(1979)[143]), denoted ¢”, is defined by:

X
ao Xy =Y,
k=1

{V;ke N} is a sequence of identically and independentlgtributed

random variables which follow a Bernoulli distribart with parameten. If we
consider an integer-valued autoregressive procéssraer 1, the first formula

can be rewritten as:

Xe=Y1+Yo+..+Yy  +6

INAR models are identified using the same toolsfas ARIMA models
(ACF, PACF). Autoregressive parameters are estithat®ng either the Yule—
Walker estimation technique or the conditional tesguares method.

Cardinal et al. (1999)[12] concluded that an INAR model provides a
smaller relative prediction error than ARIMA modef®r meningococcal

disease.

9.3 Serfling’s Method

In this case Serfling (1963)[127] presented a systehere a statistical
analysis takes place for weekly pneumonia and erika deaths in 108 US
cities. This system is the foundation for severalp@rs in epidemiological
literature. The way it works is through a regressimodel which fits the non
epidemic data and predicts a non epidemic leveveur

Costagliolaet al. (1991)[26] applied Serfling’s method to the French
influenza-like syndrome data collected from a sealttinetwork from 1984 to
1988. In this paper the cases for the periods abibwee cases per sentinel
general practitioner (SGP) were deleted. The reggomsequation
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27 *t 4 =t

27 *t . 4=t .
yt:a+bt+olcos?+czsm +C3 008~ +Cy SiN +€

is fitted in order to predict the expected non @&mc level for the following

winter. In this equationy, is the number of cases per SGP in weéelnd g are

the residuals for which the assumption that thellof®e a centered normal
distribution is made. The parameters are estimatethe least-squares method.

The disadvantages of this method are the limitadisve have to make in
order to develop an effective monitoring system.eThrst limitation of this
approach is that we have to define at what numbdecases per SGP we can
consider that past observed data should be deltexh fitting the model. The
second limitation is that the model assumes a sedsgoeriod and very specific
terms in the regression equation. This means thatprocess under study must
be relatively regular over time. Thirdly, this methcan be applied not in all the
types of time series as it exhibits different feat in terms of seasonality,
number of cases, etc.

However, this approach represents a simple tooanalyze surveillance
data for _relatively well-known diseaseas it was shown by Flahaulét
al.(1995)[34].

9.4 Log-linear Regression Mdel

The following model is a very interesting tool fohe detection of an
epidemic as it adopts for the majority of data @wderistics of a statistical
solution.

Farringtonet al. (1996)[33] presented an algorithm which is constedc
based in reports from Communicable Diseases Suarmé Centre (CDSC).

This model is described as follows:

log(x;) = a+Dbt;
E(Xi) =4
Var(X;) = ky;
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The main idea, for this model, is that for each kweéewe have a baseline
X (number of events).The assumption we make is thaxt follow a
distribution with mean g and variance ky;, where k is the dispersion

parameter. Estimates are obtained by a quasi-hkeld method.
As far as we are concerned about the probable srand seasonality of the
time-series we solve these problems by fitting meéir time variable in our

regressionlog(y; )and by using observations from comparable periodshe

threshold calculation(as in thedistorical Limits method of chapter 7),
respectively. This calculation involves the probleai serial correlations
between baseline counts which is tackled with thesoaption of their
estimations in the threshold expression. The infkeeof baseline counts in time
periods coinciding with past outbreaks is reducgdcbnstructing weights based
on adequate residuals (Davison and Snell, (199])[29we associate low
weights with large residuals then our problemssoked in a great degree. This
method’s main disadvantage is that if we adjudbrtover dispersion, then our
method becomes very sensitive and as a resulttéctie small increases in rare
diseases.

Since 1996, this method has been applied to thectien of aberrations
for a set of 200-350 different types of organismeparted from laboratories.
Each week, an excess score is given for each osgaand if this score is higher

than one, an alarm is triggered.

9.5 Other Parameter-driven Models

Zeger(1988)[173] presented another Poisson logalimegression model as

an alternative to observation-driven models destiln the previous sections.
In observation-driven models{Xt} is a function of past observations
X, Xi-2...-

In this parameter-driven model an unobserved ststthgrocess generates

the dependence between random variables of theepsoof interest. For the

case of parameter-driven models, methods with linesodels which -are
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presented by West and Harrison (1989)[161] and odthbased on the Kalman
filter (Kalman(1960)[66]) seem to be useful. An exae for this last case is the
study presented by Stroup & Thacker(1993)[144] velpplied the Kalman filter
to the surveillance of AIDS data.

Another application of the Kalman filter is the djuof Smith and West
(1983)[137]. Kidney failures with various possibtdhhanges are studied in a
Bayesian framework. Representing the problem agasesspace model, the
multiprocess Kalman filter was used to calculatelioe posterior probabilities
for the various states. Further literature can denfl in Smithet al.(1983)[138]
and Gordon and Smith(1990)[53].

In Whittaker and Fruhwirth-Schnatter(1994)[163] te@me approach was
used for detecting the onset of growth in bactemotal infections. An alarm
was triggered if the posterior probability of a dlge exceeded a fixed constant.
In Schlainet al(1992)[122] the use of a Shewhart—-CUSUM methodoigntd,
applied to recursive residuals from a continuoumsetifirst-order autoregressive
model, where the parameters of the model were naotisly updated by using a
Kalman filter, can be found. Other examples of tagproach can be found in
Schlainet al(1993)[123] and Stroup and Thacker(1993)[144].

Other parameter-driven models called hidden Markogdels (HMMs),
have been applied to the monitoring of surveillandata (Le Strat and
Carrat(1999)[83], Ratlet al(2003)[104]) and the analysis of hospital infection
data (Cooper & Lipsitch (2004)[25]). The basic idesato associate with each

X¢, an unobserved random variabl§ that determines the conditional
distribution ofX,. Parameter estimations are obtained by the maxitiun of a

likelihood function.

Some other examples of time series modeling can fbend in
Healy(1983)[56], Ngecet al.(1996)[93], Simonsert al.(1997)[135] and Quenel
and Dab(1998)[101].

An interesting study on this subject is the oneCafwling et al.(2006)[27]
where time-series and CUSUM models are comparedh vilte Serfling’s
method. It was shown that time series and CUSUM et®dre more effective
when applied on short-term data. The study was dvasethe surveillance of

influenza data from honk Kong and the US.
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A review of several statistical approaches as vaslisome methodologies
and time-series models, which we mentioned in thiapter with the appropriate
simulations, are given in the review study of Unkelal.(2012)[156].

Finally, we should recommend the book of Lawson &
Kleinman(2005)[82].The study of Yann Le Strat(20[%)0] in this book gives
an overall review of temporal surveillance incluginifferent types of time-

series models.
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PART llI

Detection of Increased
Rates of Incidence In a
Spatial Process
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Chapter 10
Spatial Surveillance

In the previous section we studied some casesnie fior the detection of
an outbreak of a disease. Monitoring cases in tamé analyzing temporal data,
though, do not always give the statistical reselpsdemiologists need in order
to decide the appropriate actions. There are masg€ for which we construct
methods for surveillance systems, from a prospectiew, in order to detect a
change in the data. This analysis often does nataio any information about
the spatial factor. As a result, our system is fieetive since it ignores the
spatial structure of the data. All surveillance hwms discussed so far are
examples of this. One of the main purposes of tmweillance systems that are
in use is to detect changes in observed data. Iggdhe spatial structure of the
data, we ignore a wide part of its foundations awodwe are led to use less
information.

Because of this loss, we construct suboptimal sUarece methods. An
example is a local change which is smoothed (anerefiore not detected)
because of aggregation of the data. The case opadiadly spreading shift
process is another example. These are two casesewthe spatial component
contains the important subject-matter informatiobhe significance of the
spatial factor varies according to the diseasetaedype of our problem but the
exclusion of such information will severely limitonh only the ability for
detection but also our understanding of the process, further statistical
analysis in a second level is needed. That issgedial analysis.

Actually, most public health surveillance systeme aleveloped with
respect to the space and the time of the ‘eventsternational or national
organizations collect reports with the events reealr in each state, country or
some specific locations. Such organizations for neple might be the
International Clearinghouse for Birth Defects Marihg Systems or the
Centers for Disease Control and Prevention whidhects data from all over the
USA. Another example is the European co-operatiorindy the winter of 1993—
1994 (Fleming and Cohen (1996)[35]) where the iaflma epidemic started-in
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Scotland and spread south to the rest of the E@opeuntries via England and
France.

In order to develop a spatial surveillance methbdré are two types of
situation we desire to deal with. For the firstusition we are dealing with
various forms of level changes with possible sgdatiapendence between the
locations of observation. The second case conceoh®nly level changes in the
case when the data collected are spatially coredldiut also the detection of
changes in spatial patterns. An example of thigasous forms of clustering of
diseases. The case of child leukemia has beenapie in many retrospective
studies.

For the temporal part there are applications fomwdtivariate surveillance.
For example a multivariate version is appliedthe sets methqdusing data on

malformations from multiple sources. In that caeed time periodswvere used

contrary to the univariate version, which usestihe between events. Here, the
number and size of terminated sets within the tpeeiod are used. An alarm is
given if each of the terminated sets is smallemthacertain number. However,
as previously discussed, it would be preferabldase the surveillance system
on the initial interval data. In Strougt al. (1988)[145] the possibility of using

multiple time series for the detection of excessatds from pneumonia and

influenza was discussed. Here, one-step-aheaddstg@re used.

Constructing surveillance methods for spatial peses is a complicated
problem. For the spatial analysis we consider déhd assumptions for the
observed process and different ways of observind) randeling this process. In
the case of spatial surveillance a change in arpatar of the distribution of the
observations might have a clear spatial interpretate.g. a stronger tendency
for clustering. In Lawson (2001)[81] a discussionhow to generalize various
kinds of spatiotemporal models to allow for prosgpee surveillance is given.
Various problems when applying surveillance methtalspatial public health
situations were pointed out.

In the study of Kulldorff (2001)[72], the issue aihe prospective
monitoring of clusters is also presented by usinm@&dification of the spatial
scan statistic proposed in a previous study of (iKslldorff (1997)[71]). The

new statistic is a combination of the spatial aremporal features. The
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spatiotemporal scan statistic is used prospectivefyfixed time windows as it
is combined with the cumulative sum methods.

Dealing with spatial surveillance means the acceptaof the assumption
that there is a spatial model for the observed .dAteother approach based on
this spatial model is proposed by Jarpe (1999)[991is approach was used in
the surveillance of clustering in a spatial logdar model with a fixed lattice:
the Ising modellin this case we proceed in the sufficient redurctof the spatial
structure in order to tackle with the problem oé tloss of information based on
the spatial factor. The result of the proper reduttis a univariate statistic
involving the sufficient spatial factors for eachmée point. A complete
separation of the spatial and the temporal factoas possible.

The same purpose of the reduction of the spatialcstire is studied
through the method of the likelihood ratio by Jar@000)[60]. The main
subject is to deal with a shift in the process wigispect to the spatial factor as
time increased. A likelihood ratio statistic whiatvolves a sufficient reduction
in the spatial structure is proposed. In this cabeugh, a complete separation
of the spatial and temporal components was notipts®wing to the nature of
the problem. Different ways of treating the multie structure in the spatial
surveillance situation was discussed. As an appboa the problem of an
increased rate of radiation was investigated. Aaleation and comparison with
the system that is currently in use in Sweden, Whig€ based on a moving
window, was made. The situation with a spreadingftsprocess would
correspond well to the surveillance of influenzdere the disease spread across
Europe from Scotland (Fleming and Cohen (1996)[35])

Several issues are analyzed in the studies of Vaial Lawson (2011)
[157], Assuncédo and Correa(2009)[6] and Gallego(®{9] for the purpose of
the prospective timely detection of incident diseatusters in space and time.

In public health, this idea is widely spread thestldew years since it
considers not only the temporal feature of a cas&va saw in the parts | & II.
The space factor is proved to be very importanmionitoring the public health.
That is the reason why, several approaches have teeecloped as we described
them above.

Kulldorff(2005)[73] presented a very good study ibawson and
Kleinman’s(2005)[82] book where he describes thie f the scan statistics for

~111 ~



geographical diseases. He uses mostly Poisson oroB#i distributed data and
shows how these scan statistics are implementesdime maps or methods such
as the CUSUM scheme. Moreover he gives some iddaproceeding in
geographical clusters of the disease monitored.

A spatiotemporal extension of the spatial scan istiat appears in
Kulldorff et al.(2005)[74]. Different ways of comsicting space—time scan
statistics based on surveillance theory is preskentethe study of Sonesson
(2007)[139]. Sonesson showed how spatial-tempoEnsstatistics can be
embedded in a CUSUM framework and applied thesehotd to the detection
of an increased rate of Tularemia in Sweden. Thaesapproach was used by
Marshall et al.(2007)[89] in order to construct B&UM method for monitoring
the local Knox statistic tests for space and tirestering each time there exists
a new observation.

A space-time scan statistic for the detection obatbreak in public health
is presented in Takahashi et al.(2008)[150]. An roved spatial system is
presented in Johnson(2008)[63] for the case of \test Nile virus in U.S.
through generalized linear mixed models. The IdCabx statistic is used.

Some prospective scan based methods are reviewedadadall et al.
(2008)[168]. Issues that are related to the sptmporal scan based statistics’
evaluation are referred.

Tsui et al.(2011)[154] developed a general framdwéor spatial and
spatiotemporal surveillance based on likelihoodioradtatistics. The CUSUM
scheme and Shiryayev-Roberts statistics are speeis¢s under such a general
framework.

An application of the Poisson CUSUM in rare evetitem different
regions was developed bByogerson and Yamada (2004a)[117]. The purpose of
this paper is to construct a multiregional sunemide system with the help of a
Poisson CUSUM which is applied in infrequently appsd counts from
different locations. On the CUSUM scheme for theatsgd case it was also
presented by Rogerson and Yamada (2004b)[118], mpacison between
univariate and multivariate CUSUM approaches. Salerultivariate CUSUM
schemes are given in the paper of Jiang et.al.(§61L The multivariate case

gives us thoughts for further applications in thiéure for the spatial case.
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Spatio-temporal surveillance is the objective of dewo and
Lawson(2006)[111]. Several methodologies are disedson this paper in order
to construct an effective surveillance system wsgbatial features included.
These methodologies are based on hierarchical spaeemodels.

A review for spatial, and spatial-temporal systdimest can be used to
facilitate the early detection of infectious diseamitbreaks is given in Chen
et.al.(2011)[14].

A review of the available software for spatio-temglosurveillance of
diseases is given in Robertson and Nelson(2010}[110

A general review and interesting issues for spatialstering and space-
time scan statistics are given for further studyha book of Tango(2010)[152].

In the following sections we are going to examirtee tusage of the
cumulative sum methods in spatial surveillance. s on data from different
regions (neighboring or not) and we present how @GhESUM applies to public
health problems. Data may be normally distributed i is common to use the
Poisson model too. We also present the variety mblems coming up as

someone examines this type of monitoring in publkalth.

10.1 Cumulative Sum Methods and Spatial

Surveillance

In this section we are going to see the CUSUM metapplied in a region.
If we want to take into account all the availabhdormation generated from the
spatial factor, then we should divide our regionimterest. In this section we
divide the region in 9 locations/areas. A graphicahge of our location is given

below:
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From the projection of our area illustrated abowe assume that we are
interested in a squared region 3x3 which is divided9 smaller squared
locations of equal size 1x1. In a few words we gate normally distributed
data for each one of these areas with a mean af ard standard deviation of
one. We generate 20 values for each region and waikenthe assumption that
these 20 values correspond to different periodadji

With different colors we want to present the dif#at rate of change in the
mean of the different areas. The changes are dextiin the following table:

Table 10.1: The table with the changes in the meafior each region

Regions Change in the Mean
1,3,7,9 +0.3
2,4,6,8 +0.5

5 +1

For each region we also make the assumption thagintains its CUSUM
scheme. We take a value k¥1/2 and we want to figure out the limit for a

fixed value of ARLy(say ARLy = 120.Then from the equatior{6.2) we have:
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he| AR *+4 ) (AR 1) 1166~1.0164¢In61- 1166~ 301
ARLy + 2 2

The generated values before and after the changieeimmean for each one
of the nine regions are presented in the tablethefAppendix E.1 We proceed
in calculating the statistics of the CUSUM scheme dach of the nine locations
and we have the CUSUM graphs respectivelAppendix E.2

We conclude that for the small change in the medh3) (areas 1, 3, 7, 9)
we have the longest delay in realizing the alarmgion 1: 9 time periods,
region 9: 10 time periods). Additionally, we havdase alarm for the '3 area
and no alarm at all for thé"7area.

For the change in the mean of +0.5 we have a tiglaydof 5 periods for
the areas 2, 6, 8 and for th¥ tbcation we have a time delay of 8 periods.

For the biggest change in the mean (+1.0) we hdne dmallest delay

(region 5: 3 time periods).

10.2 Problems

These nine systems for each region give a uniqu8& @V scheme and we
can realize which area has an outbreak or not. Hewéhis thought most of the
times do not give us reliable conclusions. Thatfas two main reasons; the

unrealistic limith and the small changes in the mean of a diseasene @reas.

10.2.1 The problem of limit h

If we have a fixed average run length until thestfialarm of aboul20, we
have to construct a more reliable and a more reallanit. The value of ARL
practically means that for each region we should have an avwertage of 120
periods before our system trigger an alarirhus, the value of the limit=3.01
is too low and we have as a result frequent alatima¢ may be neither true nor
reliable.
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If we want to have a CUSUM scheme for each onehefriine regions we
have to adjust our threshold which we are goingise in each case. Adjusting
this threshold, leads us to use the number of areawhich the location of
interest is divided. That i;m=9. If we have a fixed ARL=120and k=1/2 with
the purpose of maintaining all the regional chatlign for all 9 areas we use the

approximation given in Raubertas(1989)[105]:

-1

1/m
ARLy = 1—(1—%} (10.1)
ARL

This is based on the fact that tA&RL follows an exponential distribution

approximately.Thus for the newARLy we have the following:

-1

1 1/m 1 1/9 -1
ARLy =|1-|1- = 1—(1——] =107599
ARL, 120

Then the newh is given as follows from thé6.2) equation:

he| 2Rlo+ 41 (ARl 1] 1166~ 100185¢6.2897— 1166~ 5135
ARLy +2 2

In a few words, with this value oARLy and therefore the new value bf

we achieve that the average time until the firgtrial (false alarm) over the
regions is equal t&RL For these values we proceed in our simulatiomgishe
data which were generated before, for the 9 loc&tioWe construct the
CUSUMs for each of the nine locations with the nkmits. The appropriate
graphs are given in th&ppendix E.3

From the simulation, we notice that now we have areanrealistic but
pessimistic limit and as a result it is difficulorf the system to detect small
changes of the mean. The areas 3, 7, 9(with thdlestdncrease in the mean)

this time do not trigger an alarm. Additionally, r@tgion 3 where before we had
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a false alarm now we do not have an alarm at aibnFthe regions with the
small increase in the mean only th® ttiggers an alarm (region 1: delay of 12
time periods).

For the group of areas with a normal increase ab+#0 the mean, only the
8" area does not trigger an alarm. The others triggeralarm but there is a
large delay especially for thé"4ocation (alarm at the 4Dobservation).

The fifth’'s area CUSUM with the largest increasethe mean gives an
alarm with a delay of 8 time periods.

Generally, four regions do not trigger an alarm divé trigger an alarm.
Comparing these results with the CUSUMs of the 1imk3.01, we see that the
alarms are fewer. In the case of tB@®1 limit, only one area did not trigger an
alarm. Moreover, in that case we had a false alaon Using the approximation
of the limit h=5.135 we improve our system from the view of not havafalse
alarm and from the perspective that the average tmtil the first alarm over
the set of the 9 charts, is equal ARL From this point of view, this is a more
realistic limit and we are confident for our deoiss if we have an alarm. The
absence of false alarms makes our system morebteli®n the other hand, this
value of the limith is absolutely conservative and leads both to tingeace of

alarms and to larger time-delays in realizing thamge in the mean.

10.2.2 The problem of small changes

It is understandable that epidemiologists couldsras outbreak (i.e. of a
disease) which takes place in a lot of regions. wes saw in the simulation
above, small changes in each region are hardlyctedeand even if regional
alarms are triggered this is usually done with egéatime delay. Thus, small
changes in the rate of a disease are a probleredoh region’s system. That is
why a more overall system has to be constructedmall change in one region
may not give us an alarm but if small changes taksce in the neighbor
regions, then it is easier for the total systendédect the change and trigger an
alarm. There are two ways to solve this problem prateed in the construction
of a proper system:
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<> The first is to maintain the CUSUM charts for local
Neighborhoods around each region.

Raubertas (1989)[105] suggested the CUSUM methadonty for each
location but also for its surrounding neighborhodthat is the main idea
of constructing the appropriate statistics for "pgpropriate locations. In
other words, we use someeights based on the distance between the
locations. These weights are increasing, if thetadise is small and
decreasing if the distance is large.

Our purpose is to detect a change in the mean ef @anmore regions
through local statistics. An immediate detectionaoghift from the null
hypothesis (where there is no spatial pattern alhdemgions have zero
means) to the situation where one or more regwitsess an outbreak of
the event is of interest. Rogerson(2005)[114] &t $tudy in the book of

Lawson and Kleinman(2005)[82] gave us a detailegspntation of how

this method works.
At each location, we construct a local statistig, bbsing a Gaussian

kernel, represented by a weighted sum of the regiwalues:

Yit = ZWij Xjr (10.2)
i

Where w; are theweightsand are expressed as follows:

whereo is the width of the Gaussian kernel (chosen tancamie with the

likely size of any emergent spatial cluster), adgd is the distance from

the centre of regionto the centre of region
An issue for this methodology is the case of thealoons near edges

where there are not as many neighboring locatiansather regions. As

a result, the sum of the squared WeigEt]swijz, and the variance of the
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local statistic (which is based on the sum of thaased weights), will be
smaller for regions near edges than for other negiwhich have more
neighbor regions.

Giving solution to this problem, modified scaled iglets are used in
order to have equal variances for all the statsstitthe different regions.

Modified weights are expressed by the following agjon:

' V\IIJ
W =——— (10.4)

ijij

Using the normally generated data from the previsusulation of the 9
regions, the centre of our area of interest isftfth location. In order to
find the appropriate weights for this region we @aw figure out the
distances. We presented above the squared regiontefest which is
divided in 9 areas. We make the assumption thattthial area is of
dimension 3x3(e.g. in kilometers). For our convewie, we proceed in
the example with the scale of kilometers (and withdaransform the
distances in meters). We also assume that the 8titmts are squared
areas with equal dimensions. Therefore each areaf idimension 1x1.
The distances are calculated considering the cemteeach area.
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Thus, we have the following table with the distasiagy for the fifth
location:

Table 10.2: The distances of the 9 regions from th&" region

1 2 3 4 5 6 7 8 9

i 5|J2 1 2 1 0 1 52 1 3

The weights for this area are calculated we=1. For the corner areas
1,3,7,9 and the areas 2,4,6,8 the weights are exjoak the distances are

the same. For the areas 2,4,6,8 the weights arngdelow from(10.3)

1 1
Weo =W = Weg = Weg = ——eXpy— — ¢ = 0.3422
52 54 56 58 314 p{ 2}

For the areas 1,3,7,9 and 5 the weights are cdkedilaith the adjustment
(from 10.4 equation) we mentioned above:

1 2
Weq = Weq = We7 = Weg = exp——=0.2076
51 53 57 59 m F{ 2}

1

W = ——=exp0;= 0.5643
55 \/ﬂ p{ }
Then we calculate the sum of the squared weights:

9
2 2 a2
D W) = W5y + W)

2 2 2 2
o+ WEg = 4% W5y + 4% W5, + Wi &
j=1

9
& Y Wgj = 01724+ 0.4684+ 0.3184= 0.9592

=1

So, using the adjustment for the corner areas we:ha
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W51' = W53’ = W57' = W59 = W 1 = 02076 = 02119

' 5
3w, /0.9592
j ool

And for the centre area {Socation) we have:

W = W _ 05643 _ (0

So, for these weights we calculate the statistidor the (centre) area 5

(from (10.2 equation). The new values from which we calculéhe

CUSUM statistic are given below:

Table 10.3: The transformed observations of the'® area after we include the

weights

Time Period Values of area 5 with
the Weights of Neighbor
regions
-0,47538
-0,55773
1,22710
0,07724
-1,48427
-0,52506
1,39312
-1,87274
0,80134
0,98338
0,33103
0,74165
0,74571
0,46018
0,88657
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16 0,51832
17 0,02801
18 -0,45050
19 -1,31354
20 -1,62783
21 2,75034
22 0,72749
23 2,54517
24 1,45112
25 2,57387
26 1,26622
27 3,08814
28 2,42695
29 2,05999
30 2,46690
31 2,01955
32 1,91117
33 -0,41139
34 -0,17642
35 1,55448
36 1,24310
37 0,89420
38 2,09192
39 0,70456
40 1,15628

For the value oh to be3.01we have an alarm at the "2®bservation (3
time periods delay). Nothing changed in the timetlod alarm, compared
with the system without the weights of the neightbegions of the §

area.
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Cumulative Sum

Time Period

Figure 10.1: The CUSUM scheme for the weighted obsetions of the 5" region

for a limit h=3.01.Alarm at the 23 observation

With the more appropriate value bfbut a more conservative approach
we have an alarm at the ®4bservation. For this value &f though, we
see great improvement using the weights. Withoetwieights, we had an
alarm at the 28 observation and now we have an alarm at th& 24
observation for area 5The delay has decreased and with this way we
manage to transform a conservative approach of thestem (of the limit

h=5.135) to a monitoring system with a short tirdelay.
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Cumulative Sum
10
I

Time Period

Figure 10.2: The CUSUM scheme for the weighted obsetions of the 5" region
for a limit h=5.135.Alarm at the 24" observation

For spatial disease surveillance with data from esal locations,
Raubertas (1989)[105] suggested theisson CUSUM methodor each
of these locations. To account for the positivetspaorrelation between
nearby locations, the author suggested pooling iwitheighborhood
observations, using closeness as weight. Making thbdification the
sensitivity of the Poisson CUSUM is improved. Wevlaan alarm as
soon as one of the CUSUM systems of a locationasgan alarm. The

measures ofARLy and ARL are proposed for the system’s evaluation.

For Poisson variables, one can monitor yhe
Yit = ZWinjt ,
j

where the x; is the observed count in regignat timet, and w; is a

weight associated with the distance from regida regionj.
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These observed quantities are then compared wighr ttorresponding

expectations,Zwij/IO’J-t for regionj at timet, and used in a CUSUM for
i

regioni.

For the issue of the thresholds, Monte Carlo simaia of the null
hypothesis may be used as it is referred in Rogg&i05)[114].
Observed counts are realizations from Poisson ornféb distributions
with parameters set equal to the corresponding esp@ns. The

thresholds should be determined usisfRly with a desired average run
length ofARLy, where s<m. The value ofs is determined via simulation

with the purpose of achieving the desired averagelength. The greater
the correlation between the local regional statsstithe lowers will be

relative tom (Rogerson and Yamada (2004a)[117]).

X The second solution is to develapglobal spatial statistic within
a CUSUM chart In spatial surveillance we are facing problems
involving both spatial and temporal components. deal with these
problems we can use different approaches. One ebamg the
Rogerson’s approach. According to this approach pveceed in the
surveillance in time of a purely spatial statistdhich describes the
spatial pattern for each time point. This is theseawhen using a
univariate test statistic designed for a retrospectest and following it
through time by using a surveillance method. Thgr@ach was used in
Rogerson (1997)[112], where a modification of thetrospective test
suggested in Tango (1995)[151] for both, general fotused clustering,
was used prospectively within a CUSUM method. Regarused Tango’s

statistic for a general test clustering:
Ce =(r—p)'A(r-p) (10.5)

wherer and p are mx1 vectors containing the observed and expected
proportions of cases in thme regions of interestA is a mxm matrix

containing elementsy; that measure the closeness of regido regionj.
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The function of a; according to Tango is expressed with respect to the

distanced; between two regions:

with a; =1. The scale parameteris related to the size of the cluster;

larger values ofr are effective in detecting larger clusters. Tanges
=5 .The test statistic relies on successive compaomati of Tango’s
statistic as new observations become available.

Tango’s test, like the most of the tests for théed&on of clusters, is
used in a retrospective way. We are interestedydghoin monitoring the
diseases in some locations. That actually meansave for prospective
surveillance. The main idea in this prospectiveecassto detect emerging
clusters and minimizing the delay of their occurmensimultaneously.

It is not appropriate the fact of using Tango’stistiac after each new
observation. That is because we test multiple hgpses. For that reason,
we calculate the expected value and variance ofTthrego statistic after
the next observation, conditional upon the currealtue of the statistic.
The expected value and the variance are used tosfimam the Tango
statistic that is observed after the next obsepmainto a z-score. These
z-scores are used in the CUSUM scheme. The CUSUMrogth
developed in this paper gives us the needed préosgeview and at the
same time solves the problem mentioned above. k®revaluation of the

system, the measures ARLy, ARL; and the Median Run Length were

used.

Rogerson and Sun (2001)[116] show how a similarrapaph may be used
to monitor changes in the nearest neighbor statisti

The same approach was used in Rogerson (2001)[1a3fhis case the
purpose of our method is to combine the Knox statisuggested in
Knox (1964)[70], for space and time interactionsthwcumulative sum

methods. Rogerson developed a local version ofKhex statistic and
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presents its usage in a retrospective way, in ortteridentify the
particular observations that are associated withcsptime interactions.
Then the local Knox test is used to demonstrate hloev Knox statistic
can be mixed with the CUSUM methods for the purpo$dahe online
monitoring of probable changes in space-time intBoms as new data
are collected. With such a way, a simple retrosipectsystem is

transformed in a system with a prospective view.
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Chapter 11
Conclusions and
Future Research

For the purpose of this study we were influencedhry study of Sonesson
and Bock(2003)[140] who presented a review of pabhiealth surveillance
technigues using the SPC. We developed the metkedsribed in this paper
and we made some simulations for the extractiofuaher conclusions on these
issues. Additionally, in each case we presentedhéur studies for the period
2003-2012 which may guide the reader for furthesegach in the future.

Constructing a surveillance system for public hieak a very complex
process which requires taking into considerationesal factors such as the
seasonality, the frequency of appearance, the freredspatial and the temporal
approach of a disease etc. It is essential to nihkeappropriate decisions for
the appropriate type of disease and proceed indéwelopment of a monitoring
system according to several features of this diseas

An outbreak of rare diseases is the object of stofdgeveral papers since
this case is difficult to detect. That is becauserethe slightest increase in the
rate of a disease might mean an outbreak. The sstathe baseline rate of a
disease the hardest our system is to detect anre@akb That is the case of
several comparisons between different methods ahtttwallow us to study
their behavior. Using rare diseases (the most diffitype of diseases to detect
an outbreak) gives us an extra motive since theictsassumptions and their
small rate of occurrence make the detection of angle more difficult and
therefore we have the most appropriate type of aisefor a comparison
between methods.

In order to compare methods we may use the measafrevaluation we
mentioned in the "8 chapter of this study. In terms of the average lamgth, we
want a small run length when an alarm has occuaretla large run length when
our system triggers a false alarm. Therefore, thalkst the probability of false

alarm and the highest probability of successfuleddbn, the better will be-a
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method. The same idea is given for the measuréhefpredictive value where
we want as high a value as possible. The trushaalarm is a very sensitive
issue in the public health surveillance and so waihd like to have the largest
possible value for the predictive value. In ternighe expected delay to detect
a change, it is rational to think that we should/dn@ small value if we want an
effective monitoring system. Especially in publiedith, where the delay is an
important factor which may determine our preventangions, this measure is
used regularly.

In our study we gave an example of a comparisomwéen the sets method
and the Cuscore where we -calculated the expectate tdelay. In this
comparison, we came to the conclusion that the Guescs more effective for
rates of a disease up to 5 ‘events’ per 10000 iicldials.

In the most cases in public health, though, we nagdnuch information
we may derive from the data as possible. Combirsiegeral evaluation methods
in public health surveillance is of vital importamcWhen we are dealing with
human lives we need to present as much data asbp@s¥hus, there is a strong
need to compute as much measures of evaluatioroasilje for a method. In
theory, such need does not exist, but the sensjtiof such a field demands
from us, in practice, the construction of the petfsurveillance system. For
example, in the study of Frisén and Wessman (199))[it was used the
property of theconstant Predictive Value to be fulfilled for th& $hethodfor
the case of a change in the mean of a normal Oigiion. It could be expected
that this is the case also for a shift in a Poispormcess but this remains to be
verified.

The predictive value as a measure actually presesnthe balance between
the false alarms and the time delay. The knowledfehis measure is very
useful for us and provides us with important infatnon for the system’s
behavior. Especially in the field of epidemiologihis would be useful as the
investigators should not ignore an alarm since lanma could be interpreted and
provide significant information whether it is toaté or too early.

Beyond the measures of evaluation of a method, aced the issue of the
optimality. Several approaches are constructed isulaoptimal way. Methods
such as the sets method are suboptimal ones. Oothe hand, the likelihood

ratio method, which is an evolution of the Shiryaeweberts method, is an
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optimal one in terms of the minimum expected deddyealizing an alarm for a
fixed probability of a false alarm. We presented #oisson case for theR and
SRmethods and we conclude that they are preferablese them in our Poisson
issues because they give optimal results. Usingh smethods in order to
construct some new statistics is a continuous eingié.

Another issue, is the popular Cumulative schemespeEially, when we
are taking into account the small incidence rabe tisage of such schemes is
something standard even for comparison reasonsh(sas in the study of
Rolfhamre and Ekdahl(2006)[119]). The Poisson CUSUMcas suggested, is
used by more and more scientists in order to oleseounts. However, several
modifications can be made. Such a modification rigd the Bernoulli CUSUM
which is referred in several recent studies andersffa field of further
investigation.

A new modification of the CUSUM is mentioned in Saual.(2010)[131].
That is the weighted CUSUM according to the times tbbservations were
recorded. These weights are stimulating; especiallyen we make the thought
of the continuous change in the population sizestdad of assuming a fixed
change in the population size (which in theory igad assumption but not in
practice) it would be of interest to apply this @aen practice where the
population size is random. The CUSUM scheme is @fag interest among the
scientists and we have the strong belief that #tlseme and its modifications
will be the concern of many studies in the future.

An interesting study for the general field of SPE€the paper of Wu et
al.(2009)[169].He proposed a control chart basedhmncases we mentioned in
chapters 5 & 6. In order to construct a new chidmg, cases of the ‘time between
events’ and the ‘number of events’ were combinednéw control chart was
built which takes into consideration the rate oé tiumber of events to the time
they occurred. It could be interesting to applylsaccase in the field of public
health. This remains to be studied in the future.

In order to develop an effective surveillance systwe have to rely on the
appropriate data. Epidemiologists are interestedfarecasting and giving a
reliable estimation about a possible or a probahltbreak. To construct such a
good monitoring system is not easy, especially wivenare referred to the case

where the Poisson assumption is not appropriateh#t case we have to“take
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into account some important factors such as tremdasonality and the
correlation between random variables of the stotbaprocess. Decision
mechanisms are similar but the methods vary amaffgrdnt types of disease.
For example it is almost impossible to develop aveulance method which is
as much effective for the common diseases and diseases as well. If we
construct a method based on a common disease,eattet of an outbreak in a
rare disease is something relatively difficult. Teame thing applies for the
exact opposite case. A method based on irregulaplyeared (rare) disease is a
very sensitive method for a common disease andsgivequent false alarms.
For more issues on this subject we strongly recomuniéhe study of Yann Le
Strat  (2005)[170] which is included in the book ofawson and
Kleinman(2005)[82].

We also remind the measures of specificity and isiemty which are
commonly used in order to compare different timevsilance series. We can
conclude that since each disease and each sumvedlasystem has its own
characteristics and features, detection of an @abris not relied so much on
the statistical methods such as on the charactesisf the system. These might
be the quality of the data collected, the stability the reporting mechanism
over time, the reporting delays etc. If the surhaite system is not effective, it
is easy to produce false results. So, it is vi@al @s, first of all, to require a
good knowledge of the surveillance system beforalyming the data. Another
important factor beyond statistical analysis is #pmdemiologist’s experience.
The more their experience the more effectivenesshefsystem and the better
the decisions in each time frame.

In all the second part of this study we do not udd the spatial factor of
our data. For a fixed time frame when there isgnsgicant difference between
the expected and the observed number of casesrétaisonable to have a look at
the spatial distribution of the cases in order teeak for the existence or
absence of localized clusters. Examining the spatiaveillance in the third part
of our study, we prove through simulations the digance of this factor as
well as its usefulness to the epidemiologists’ dams.

We also saw through our simulations how to condtmanethod with a
spatial interest and how the CUSUM scheme is apgpiinethis section. We also

mentioned how to improve our CUSUM schemes with @enappropriate limit
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h for an area using the distances of the neighboegdons as weights. Without
the weights the centered area (region 5) gave usl@m at the 28 observation
and using the weights we had an improvement of abbuime periods in
realizing the alarm. In such a way we developed yatesn with a more
appropriate but also a more conservative limiand which gives us an alarm
with a slight difference from the strict value difet limit (h=3.01).

Several issues can be covered by spatial survedlasuch as the map
design, the geographical clustering etc. We strpiglieve that the tendency in
epidemiology is the spatial-temporal surveillanc@cs several studies and
books in the last few years have been published. feaher information on
these issues the reader may search for the book Lavson and
Kleinman(2005)[82]. Additionally we can mention tleok of Waller L.A and
Gotway C.A. (2004)[159] where some interesting ctempand advanced issues
of statistical analysis of spatial data are giveclsas the function of the maps
of analyzing patterns and clusters as well as sdvapplications of models to
spatial data.

Additionally, the study of Tsui et al.(2011)[154]vg@s us an interesting
example which may guide future studies. In thisdgt@a general framework is
given for spatial and spatiotemporal surveillancasdd on likelihood ratio
statistics. Furthermore, it is shown that the cuaive sum (CUSUM) and
Shiryaev-Roberts statistics are special cases usdeh a general framework.
There are several methods initially developed famporal surveillance but in
order to have a more objective view of the sunagite, we could develop these
statistics in order to work for spatial and spagmporal surveillance. Especially
for the case of the LR method (and its modificaspmvhich provides us with
optimal results, enhanced statistics with a spatraine included, could be
constructed. This is a field which demands furtheesearch.

Another example on this case could be the studyRaoigerson and
Yamada(2004a)[117] who applied the Poisson CUSUND ia multiregional
surveillance system. The spatial case of surveitdademands the conception of
the multivariate idea. Thus, it could be interegtinhe construction of
multivariate methods in order to develop more aateir and appropriate
monitoring systems. Such examples are given in Rmge and
Yamada(2004b)[118] and Schidler and Frisén(2012)[Ithe multivariate case
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of spatial surveillance is the main idea of sevematent studies and further
research in the future is necessary on this field.

Finally, a general review in the surveillance ofbpa health as well as a
guidance for future research is given in the papdrhe Tsui et al. (2008)[155],
Frisén(2011)[42], Woodall(2006)[167] and Unkel at.(2012)[156]. Also,
general concepts of monitoring the public health arentioned in the study of

Han(2010)[54]. These studies are highly recommerfdeduture research.
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Appendix A

The code (we used in S-plus) for the simulationtlod Sets method is given
below:

-A.1-

Hit##### Code for a Small Scale Area #######

#k function from (5.9)#
> k<-function(g){
+ 4.61/ g}

> k(7)

[1] 0.6585714

#normal rates#
> d<-c(1:10)
> p0<-d/ 10000
> p0
[1] 1le-04 2e-04 3e-04 4e-04 5e-04 6e-04 7e-04 8e-04
9e-04 1le-03

#expected size of the seti from (5.1)#
> c0<-(1-p0)/p0
> cO0
[ 1] 9999. 000 4999. 000 3332.333 2499.000 1999.000
1665. 667 1427.571 1249.000 1110.111 999.000

#number of false alarms#
> r<-1

#total number of births#
> b<-400*12*20

> b

[ 1] 96000

#The size of a sequence of sets n from (5.10)#
> n<-function(P){

+ log(P)/1og(l-exp(-k(7)))

+ }

#Calculating the proper number of n from (5.10) and
(5.14)#

> Pl<-function(n){

+ r/ (b*p0O[1]-n+1)}

> P1(3)
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[1] 0.1315789
> n(P1(3))
[ 1] 2. 782244####### Thus n=3 ####H##H#

> P2<-function(n){

+ + r/(b*p0[ 2] -n+1)}

> P2(3)

[ 1] 0.05813953

> n(P2(3))

[1] 3.902689

> P2(4)

[1] 0.0617284

> n(P2(4))

[ 1] 3.82052 ######## Thus n=4 #####

> P3<-function(n){

+ r/(b*p0[3]-n+1)}

> P3(4)

[1] 0.03875969

> n(P3(4))

[ 1] 4. 458912 ###### Thus n=4 ######

> P4<-function(n){

+ r/(b*p0[4]-n+1)}

> P4(5)

[ 1] 0.02906977

> n(P4(5))

[ 1] 4.853558 ###### Thus n=5 #####H#

> P5<-function(n){

+ r/(b*p0O[5]-n+1)}

> P5(5)

[ 1] 0.02272727

> n(P5(5))

[ 1] 5.191207 ###### Thus n=5 ######

> P6<-function(n){
+ r/(b*p0[6]-n+1)}
> P6(5)

[1] 0.01865672

> n(P6(5))
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[ 1] 5.461948 ##### Thus n=5 ######

> P7<-function(n){

+ r/(b*p0O[7]-n+1)}

> P7(6)

[1] 0.01607717

> n(P7(6))

[1] 5.666082 ##### Thus n=6 #####

> P8<-function(n){

+ r/(b*p0[8]-n+1)}

> P8(6)

[1] 0.01392758

> n(P8(6))

[ 1] 5.862978 ###### Thus n=6 #####

> P9<-function(n){

+ r/(b*p0[9]-n+1)}

> P9(6)

[1] 0.01228501

> n(P9(6))

[ 1] 6.035128 #### Thus n=6 #####

> P10<-function(n){

+ r/(b*p0[10]-n+1)}

> P10(6)

[1] 0.01098901

> n(P10(6))

[1] 6.188064 ###H## Thus n=6 #####

#H####The table with the proper n and P #####
a<-matrix(c(0), 10, 2)

al[1,1]<-3

al[ 1, 2] <- P1(3)

al[2,1] <-4

al 2, 2] <-P2(4)

a[3,1] <-4

a[ 3, 2] <- P3(4)

al[4,1]<-5

al 4, 2] <- P4(5)

VVVVVVYVYVYV
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a[5,1]<-5

a[ 5, 2] <- P5(5)
a[6,1] <-5

a[ 6, 2] <- P6(5)
a[7,1]<-6

a[ 7, 2] <- P7(6)
al[ 8,1]<-6

a[ 8, 2] <- P8( 6)
al[9,1]<-6

al[ 9, 2] <-P9(6)
a[ 10, 1] <-6

a[ 10, 2] <- P10( 6)
a

VVVVVVVVVVYVYVYV

[. 1 [, 2]
. 13157895
. 06172840
. 03875969
. 02906977
. 02272727
. 01865672
. 01607717
. 01392758
. 01228501
. 01098901

Hl_|l_|l_|l_|l_|l_|l_|l_|l_|
QOWO~NOUITA, WNPE
oo ool h, bhow—
oNoNoloNoloNoloNoNo]

—

## The n ##

> n<-c(a[,1])

> n

[1] 34455566 66

## The P ##
> P<-c(a[, 2])
> P

[ 1] 0.13157895 0.06172840 0.03875969 0.02906977
0. 02272727 0.01865672 0.01607717 0.01392758 0.01228501
0.01098901

####Calculating the number of the expected births i na
sequence which signals an alarm after the increase from
(5.15)####

> e<-c0*n/7

> e

[1] 4285.2857 2856.5714 1904.1905 1785.0000 1427.8571
1189. 7619 1223.6327 1070.5714 951.5238 856. 2857
> (g<-1-(4.62/ (exp(4.62)-1))
> al<-e*q
> al

[1] 4088.2788 2725.2466 1816.6494 1702.9384 1362.2144
1135. 0651 1167.3787 1021.3542 907.7795 816.9198
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####Calculating the expected time duration in which the
al infants are born####
> t1<-al/ 400
> t1

[1] 10.220697 6.813117 4.541623 4.257346 3.405536
2.837663 2.918447 2.553385 2.269449 2.042299

### THE TABLE ###
> data.frame(p0, P,c0O,n,al,tl)

pO P cO n al tl
1 1le-04 0.13157895 9999. 000 3 4088.2788 10.220697
2 2e-04 0.06172840 4999. 000 4 2725.2466 6.813117
3 3e-04 0.03875969 3332.333 4 1816.6494 4.541623
4 4e-04 0.02906977 2499.000 5 1702.9384 4.257346
5 5e-04 0.02272727 1999. 000 5 1362.2144 3.405536
6 6e-04 0.01865672 1665.667 5 1135.0651 2.837663
7 7e-04 0.01607717 1427.571 6 1167.3787 2.918447
8 8e-04 0.01392758 1249.000 6 1021.3542 2.553385
9 9e-04 0.01228501 1110.111 6 907.7795 2.269449
10 1e-03 0.01098901 999.000 6 816.9198 2.042299
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-A.2-

#a#H#H#HE SIMULATION FOR r=5 #####H#H#HIH

## The new number of false Alarms ##
> r<-5

#Calculating the proper number of n from (5.10) and
(5.14)#

> Pl<-function(n){

+ r/ (b*p0O[1]-n+1)}

> n(P1(1))

[ 1] 0.8948694 # Thusn=1#

> P2<-function(n){

+ r/ (b*p0[ 2] -n+1)}

> n(P2(1))

[1] 1.845739

> n(P2(2))

[1] 1.772362 # Thusn=2#

> P3<-function(n){

+ r/ (b*p0O[3]-n+1)}

> n(P3(2))

[ 1] 2.353483

> n(P3(3))

[1] 2.303228

> n(P3(2))

[1] 2.353483 # Thusn=2#

> P4<-function(n){

+ r/(b*p0[4]-n+1)}

> n(P4(2))

[1] 2.760411

> n(P4(3))

[1] 2.723232 # Thusn=3#

> P5<-function(n){

+ r/(b*p0O[5]-n+1)}

> n(P5(5))

[1] 2.983357

> n(P5(3))

[1] 3.044336 # Thusn=3#

> P6<-function(n){

~ 140 ~



+ r/(b*pO[6]-n+l)}
> n(P6(3))
[1] 3.304352 # Thusn=3#

> P7<-function(n){

+ r/ (b*p0O[7]-n+1)}

> n(P7(3))

[ 1] 3.52285

> n(P7(4))

[1] 3.501647  # Thusn=4 #

> P8<-function(n){

+ r/ (b*p0[8]-n+1)}

> n(P8(3))

[1] 3.71128

> n(P8(4))

[1] 3.692817 # Thus n=4 #

> P9<-function(n){

+ r/ (b*p0[9]-n+1)}

> n(P9(4))

[1] 3.860576 # Thusn=4#

> P10<-function(n){

+ r/ (b*p0O[ 10] - n+1) }

> n(P10(4))

[1] 4.010036 # Thus n=4 #

#####The table with the proper n and P #####
> a<-matrix(c(0), 10, 2)
al[1,1]<-1

a[ 1, 2] <-P1(3)
al[2,1]<-2

al 2, 2] <-P2(2)
a[3,1]<-2

a[ 3, 2] <-P3(2)
a[4,1]<-3

al 4, 2] <-P4( 3)
a[5,1]<-3

a[ 5, 2] <- P5( 3)
a[6,1]<-3

a[ 6, 2] <- P6( 3)

a[7,1] <-4

a[ 7, 2] <-P7(4)

a[8,1] <-4

a[ 8, 2] <- P8(4)

VVVVVVVVVVVVYVYVVYV

~ 141 ~



al[9, 1] <-4

al[ 9, 2] <- P9( 4)
a[ 10, 1] <-4

a[ 10, 2] <- P10( 4)
a

V V.V VYV

[. 1 [, 2]
. 65789474
. 27472527
. 17985612
. 13736264
. 10869565
. 08992806
.07788162
06775068
. 05995204

. 05376344

Hl_|l_|l_|l_|l_|l_|l_|l_|l_|
QOWO~NOUITA, WN P
ArBRARDRADPDWWWNDNPEPRT
cNeolololNoloNoloNoeNo]

—

## The n ##
> n_rb<-c(al, 1])

## The P ##
> P rb<-c(al, 2])

####Calculating the number of the expected births i na
sequence which signals an alarm after the increase from
(5.15)####

> e _rb5<-c0*n_r5/7

> (g<-1-(4.62/ (exp(4.62)-1))

> al rb<-e_rb5*q

####Calculating the expected time duration in which the
al infants are born####
> t1 r5<-al_r5/400

### THE TABLE ###
> data.frame(p0O,P_r5,¢c0,n r5 al r5tl1l rbH)
p0 Pr5 cO n_rb5 al rb5 tl r5

1 1e-04 0.65789474 9999. 000 1 1362. 7596 3.406899
2 2e-04 0.27472527 4999. 000 2 1362.6233 3.406558
3 3e-04 0.17985612 3332. 333 2 908.3247 2.270812
4 4e-04 0.13736264 2499. 000 3 1021. 7630 2.554408
5 5e-04 0.10869565 1999. 000 3 817.3287 2.043322
6 6e-04 0.08992806 1665. 667 3 681.0391 1.702598
7 T7e-04 0.07788162 1427.571 4 778.2525 1.945631
8 8e-04 0.06775068 1249. 000 4 680.9028 1.702257
9 9e-04 0.05995204 1110.111 4 605.1863 1.512966
10 1e-03 0.05376344 999. 000 4 544.6132 1.361533
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#### Second Way to find n ####

## Comparison function from equation (5.7) ##
> r<-1

Pconp<-function(n){

(1-exp(-k))~™n

}

#### Tables of comparison for each normal rate of
disease ####

>
+
+

> z<-matrix(c(0), 6, 3)
> z[,1]<-1:6
> for (i in 1:6){
+ z[i,2] <-P1(i)
+ z[i,3]<-Pconp(i)
+ }
> 7z

[, 1] [, 2] [, 3]
[1,] 1 0.1041667 0.48211393
[ 2,] 2 0.1162791 0.23243384
[ 3,] 3 0.1315789 0.11205959
[4,] 4 0.1515152 0.05402549
[5,] 5 0.1785714 0.02604644
[ 6, ] 6 0.2173913 0.01255735
### Smallest difference for n=3 ###
> for (i in 1:6){
+ z[i,2] <-P2(i)
+ }
> 7z

[, 1] [, 2] [, 3]
[1,] 1 0.05208333 0.48211393
[ 2,] 2 0.05494505 0.23243384
[ 3,] 3 0.05813953 0.11205959
[4,] 4 0.06172840 0.05402549
[5,] 5 0.06578947 0.02604644
[ 6, ] 6 0.07042254 0.01255735
### Smallest difference for n=4 ###
> for (i in 1:6){
+ z[i,2] <-P3(i)
+ }
> z
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[, 1] [, 2] [, 3]
[1,] 1 0.03472222 0.48211393
[ 2,] 2 0.03597122 0.23243384
[ 3,] 3 0.03731343 0.11205959
[4,] 4 0.03875969 0.05402549
[5,] 5 0.04032258 0.02604644
[6,] 6 0.04201681 0.01255735
### Smallest difference for n=5 ###
> for (i in 1:6){
+ z[i,2] <-P4(i)
+ }
> z
[, 1] [, 2] [, 3]
[1,] 1 0.02604167 0.48211393
[2,] 2 0.02673797 0.23243384
[ 3,] 3 0.02747253 0.11205959
[4,] 4 0.02824859 0.05402549
[5,] 5 0.02906977 0.02604644
[ 6, ] 6 0.02994012 0.01255735
### Smallest difference for n=5 ###
> for (i in 1:6){
+ z[i,2] <-P5(i)
+ }
> z
[, 1] [, 2] [, 3]
[1,] 1 0.02083333 0.48211393
[ 2,] 2 0.02127660 0.23243384
[ 3,] 3 0.02173913 0.11205959
[4,] 4 0.02222222 0.05402549
[5,] 5 0.02272727 0.02604644
[ 6, ] 6 0.02325581 0.01255735
### Smallest difference for n=5 ###
> for (i in 1:6){
+ z[i,2]<-P6(i)
+ }
> 7z
[, 1] [, 2] [, 3]
1 0.01736111 0.48211393
2 0.01766784 0.23243384
3 0.01798561 0.11205959
4 0.01831502 0.05402549
5 0.01865672 0.02604644
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[6,] 6 0.01901141 0.01255735
### Smallest difference for n=6###

> for (i in 1:6){
+ z[i,2] <-P7(i)
+ }
> z

[, 1] [, 2] [, 3]
[1,] 1 0.01488095 0.48211393
[2,] 2 0.01510574 0.23243384
[ 3,] 3 0.01533742 0.11205959
[4,] 4 0.01557632 0. 05402549
[5,] 5 0.01582278 0.02604644
[ 6, ] 6 0.01607717 0.01255735
### Smallest difference for n=6 ###

; for (i in 1:6){
+ z[i,2] <-P8(i)

+ z[i,3] <-Pconp(i)
+

>

}
y4
[, 1] [, 2] [, 3]
[1,] 1 0.01302083 0.482113928
[2,] 2 0.01319261 0.232433840
[ 3,] 3 0.01336898 0.112059592
[4,] 4 0.01355014 0.054025490
[5,] 5 0.01373626 0.026046441
[6,] 6 0.01392758 0.012557352
### Smallest difference for n=6 ###

> for (i in 1:6){
+ z[i,2] <-P9(i)
+ }
> z

[, 1] [.2] [, 3]
[1,] 1 0.01157407 0.482113928
[ 2, ] 2 0.01170960 0.232433840
[ 3,] 3 0.01184834 0.112059592
[4,] 4 0.01199041 0.054025490
[ 5, ] 5 0.01213592 0.026046441
[ 6, ] 6 0.01228501 0.012557352
### Smallest difference for n=6 ###
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> for (i in 1:6){
+ z[i,2]<-P10(i)
+
>

}
z
[, 1] [, 2] [, 3]
[1,] 1 0.01041667 0.482113928
[2,] 2 0.01052632 0.232433840
[ 3,] 3 0.01063830 0.112059592
[4,] 4 0.01075269 0.054025490
[5,] 5 0.01086957 0.026046441
[6,] 6 0.01098901 0.012557352
### Smallest difference for n=6 ###

## The new n ##
> n<-¢(3,4,5,5,5,6,6,6, 6, 6)

## The new al ##

> e<-¢c0*n/7

> (g<-1-(4.62/ (exp(4.62)-1))
> al<-e*qg

~ 146 ~



-A.4-

#i###H## A third way to find n #######

### The function of M ###

> Mc-function(k, n){

+ §1-(1-exp(-k))“n)/(exp(-k)*(l-exp(-k))“n)
+

### The function of gamma ###
> gamma<-function(k, n){
+ (-10g(1-0.957"(1/n)))/Kk
+ }

### Find k for n=1,2,...,8 and M=48 ###
> f<-seq(0.001, 2, by=0. 001)

>kap<-c(0)

>m<-c(0)

>g<-c¢(0)

> for (j in 1:8){

+ g<-Mf,j)-48

+ for (i in 1:2000){

+if (q[i]<0){
+qli]<-q[i]*(-1)

+ }

+ }

+ for (i in 1:2000){

+if (q[i]==mn(q)){

+ kappa<-i*0.001

+ }

+ }

+ kap[j] <-kappa # The kappas #
+ mMj]<-Mkap[]j],]) #TheM's#
+ g[j]<-gamma(kap[j],]) # The gammas respectively #
+ }

### The table with the M,k and gammas ###
> data.frame(m kap, g)

### The table with the M,k and gammas ###
> data.frame(m kap, g)
m  kap g

1 48.12080 0.021 142.653918
2 47.79204 0.169 21.752298
3 48.06186 0.368 11.079740
4 48.06683 0.569 7.667653
5 48.05415 0. 759 6. 040525
6 48.02193 0.936 5.092122
7 47.94634 1.101 4.468453
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8 48.00808 1.254 4. 029379

### The appropriate value of n ###
> n<-matrix(10, 8, 1)
> d<-c(0)
> for (i in 1:8){
+ dli]<-g[i]-g[i+1]
+ 0 f (d[i]<1){
+ n[i, 1] <-i
+}

+}

> n<-m n(n)

> n

[1] 5 #Thusn=5#
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##### The Sets Method Applied for a Large Scale
Area#t####

## The baseline rate values ##
> d<-c(1:10)
> p0<-d/ 10000

## The Expected Size of a set ##
> c0<-(1-p0)/p0
> cO0

## The function of kappa ##
> k<-function(qg, m{

+ -log(1-(g*(1/m))
+}

## The Probability of a False Alarm ##
> y<-40

> d<-4

> PO<-1/(40*4)

## The Probability of a False Alarm given that at |
one set is completed ##

> N<-12000
> q0<-PO/ (1-(1-p0)~N)
> q0

## kappa for m=5 completed sets ##
> kappa<-k(q0, 5)
> kappa

## The Limits of the sets which define the in-contr

and out-of-control state ##
> kappa*cO
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Appendix B

The code (we used in S-plus and Minitab) for thendation of the Cuscore
method is given below:

#H#H#H#H Optimal Cuscore ####H##H##
### Find E1 for n=1 ###
## s-plus ##
> c<-c(1l:10)
> | amda<-c/ 10000
> D<-400*I anda* 240
> D
[1] 9.6 19.2 28.8 38.4 48.0 57.6 67.2 76.8 86.4 96.0

## Minitab ##

#cl=2Ao # c2= D(from s-plus)#

MTB et c¢c3=1/c2 #p0_n=1

MIB > let c4=-1n(1l-c3) #kappa
MIB > | et cb=1-exp(-7*c4) #pl
MIB > |l et c6=1/c5 #E1_n=1

\%

### Find E1 for n=2 ###
## Minitab ##
MIB > | et c8=(1+c2-(c2*c3))"(-1/2)######C8

MIB > |l et c9=(1+c2-(c2*c8))"(-1/2)######C9

MIB > let cl10=(1+c2-(c2*c9))"(-1/2)######c10

MIB > | et cll=(1+c2-(c2*cl0))"(-1/2)######p0_n=2
MIB > let cl12=-1n(1-cll) ###kappa

MIB > |l et cl3=1-exp(-7*cl2)####pl

## S-plus ##

> pl<-

c(0.964011, 0.873374, 0. 798358, 0. 739668, 0. 692703, 0. 654115
,0.621687,0.593927, 0.569801, 0. 548569)
> El<-function(p,n){
+ ;n/((2*|0)-1))-(((1-p)/(((2*|0)-1)“2))*(1-((1-p)/p)An))
+
> E1(pl, 2)

[1] 2.113391 2.455975 2.821505 3.179748 3.527659
3.865961 4.195884 4.518583

[9] 4.835019 5.145979

## Minitab ##
in the column c14 we place the E1 from s-plus
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### Find E1 for n=3 ###
## Minitab ##
MIB > let cl6=(1+c2-(c2*cll))"(-1/3)######C8

MIB > let cl7=(1+c2-(c2*cl6))"(-1/3) ######C9

MIB > | et c18=(1+c2-(c2*cl7))"(-1/3)######c10
MIB > | et c19=(1+c2-(c2*cl8))"(-1/3) ######p0_n=2
MIB > |l et c20=-1n(1-cl9)###kappa

MIB > |l et c21=1-exp(-7*c20) ####pl

## S-plus ##

> pl<-

c(0.997797,0.982580, 0. 962546, 0. 942624, 0. 923994, 0. 906847
,0.891104, 0.876621, 0. 863248, 0. 850852)
> | ength(pl)

[1] 10
> E1(p1l, 3)

[1] 3.011054 3.089593 3.199158 3.315682 3.432146
3.546348 3.657643 3.765934

[9] 3.871340 3.974031

## Minitab ##
in the column c22 we place the E1 from s-plus

### Find EL1 for n=4 ###
## Minitab ##
MIB > |l et c24=(1+c2-(c2*cl9))"(-1/4)######c8

MIB > |l et c25=(1+c2-(c2*c24))"(-1/4)######c9

MIB > |l et c26=(1+c2-(c2*c25))"(-1/4)######cl0
MIB > | et c27=(1+c2-(c2*c26))"(-1/4) ######p0_n=2
MIB > |l et c28=-1n(1-c27)###kappa

MIB > | et c29=1-exp(-7*c28) ####pl

## S-plus ##

> pl<-

c(0.999858,0.997447,0.992814, 0. 987247, 0. 981382, 0. 975504
, 0.969742, 0. 964155, 0. 958764, 0. 953575)
> E1(pl, 4)

[1] 4.000994 4.017950 4.050929 4.091265 4.134619
4.178979 4.223375 4.267310

[9] 4.310558 4.353000

## Minitab ##
in the column c¢30 we place the E1 from s-plus
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Appendix C

The code (we used in S-plus) in order to find the-of-control expected delay
of the sets method is given below:

#### Comparison Sets vs Cuscore ####

> Dl<-function(p,n){

+ (1-(p*n))/((prn)*(1-p))

+ }

> p1<-

c(0.536990,0.873374, 0. 798358, 0. 739668, 0. 923994, 0. 906847
,0.891104,0.876621, 0. 863248, 0. 850852)

> nl<-c(1,2,2,2,3,3,3,3,3,3)

# The out-of-control Expected Delay for the Sets me thod
a<-c(0)

for (i in 1:10){
ali]<-D1(pl[i],n1[i])

V + + V V H#

a

[1] 1.862232 2.455975 2.821505 3.179748 3.521171
3.659622 3.794781 3.926486

[9] 4.054852 4.180051
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Appendix D

The tables below are given in Lucas(1985) and aakuwated by using the
Markov chain approach discussed by Brook and EVES&L).

-D.1-

Poisson CUSUM'’s Average Run Lengths
(Increasing Rate Case, With the FIR feature)

Mean as a Multiple of k

ok S 2 3 4 5 & 8 te 12 14 17 20 25 30 50
10 25 5 484 133, 635 382 260 192 121 865 665 537 417 341 265 220 148
20 25 10 10805 1410, 443 200. 110, 685 340 169 142 106 759 580 435 349 214
30 25 20 . 17505, 3.220. 975 382 190 653 312 184 125 826 617 442 352 214
5O 25 30 " . 27205, 5&70. 1630,  263. 809 378 228 139 688 B12 532 3.00
70 25 40 o+ - . + 72805 11.805.  B13. 155 593 333 196 140 113 726 382
100 25 50 . . . . . 3670, 333 101. 536 310 220 177 113 589
10 50 5 283 752 355 212 144 108 667 447 370 302 240 201 180 142 1M
20 50 10 6874, 872 266, 117, 627 385 186 111 758 566 407 320 242 199 134
30 50 20 + 11305 2000 582 227. 107 353 165 964 B55 437 332 244 201 134
50 50 3.0 * * " 16,305, 3.280. 910, 140. 418 193 1.7 716 520 427 288 1.73
7.0 50 40 . . . - 42205 6570.  430. 794 300 168 100 718 584 384 218
100 50 50 s . . . . 190, 169, 507 270 157 112 762 584 316
150 50 80 =« . . . : + 18208, 350, 727 372 215 152 103 784 416
200 50 100 = . . . . . - 638 103, 522 300 212 143 108 567
20 10 10 5620 670, 193, 804 413 243 111 636 426 315 229 184 146 127 1.04
30 10 20 . 8970 1480 404 149 669 204 906 519 352 240 188 164 127 1.04
5O 10 30 - . « 11300, 2140 562, 789 222 100 602 374 276 200 163 114
70 1.0 40 - . - «  27500. 4050, 240. 415 153 861 516 374 264 209 130
100 10 50 - . . . + 72200, 1080. B7.5 256 137 802 574 398 309 176
150 10 80 . - . . « 10100 179, 366 187 109 774 531 409 228
200 10 100  « . . . . . 89900. 324. 518 262 162 107 731 559 303
20 20 10 17.200. 1200, 259 893 400 212 840 448 292 216 161 135 115 107 1.00
30 20 20 - 13600, 1780. 418 136 555 147 607 341 234 166 136 115 107 1.00
50 20 30 - + 11000, 1830, 432, §12 132 578 350 225 173 134 117 1.01
70 20 40 . . . - 23300. 3060.  150. 234  B42 476 282 218 161 133 103
100 20 50 . . . +  54100.  657. 475 136 729 435 317 225 179 113
150 20 80 . . . . . «  B100. 947 190 981 578 417 293 231 134
200 20 100 . . . ' .+ 54200, 169 266 136 7.92 567 393 306 1.76
20 30 1.0 63000 2470. 400, 115, 452 218 764 383 243 180 138 119 106 102 1.00
30 30 20 « 24200, 2490,  S01. 146 547 128 493 275 191 140 120 1.06 102 1.00
50 30 30 = . = 12100 1850. 403 418 989 431 263 175 139 115 106 1.00
70 30 40 - . . - 23400. 2820, 120, 171 605 345 217 166 128 112 1.00
100 30 50 . . . +  49600. 514 338 947 512 310 229 166 1.36 1.02
150 30 80 s . . . + 4740, 660 131 680 406 296 212 169 1.07
200 30 100 . . . . + 42000 117. 182 930 548 397 279 221 127
20 50 10 . 12000 1060 211, 648 262 729 327 200 149 118 107 1.02 1.00 1.00
20 50 20 . 96500 5670.  822. 193 615 116 405 218 154 120 108 102 1.00 1.00
50 50 30 = . + 16200 2140. 408 344 730 308 193 136 115 104 101 1.00
70 50 40 . . . - 26400. 2810, 949 119 408 237 156 1.26 107 1.02 1.00
100 50 50 o« , . . .+ 49200, 397, 224 611 335 208 158 121 107 1.00
150 50 8.0 * * ® - = ] 3,630 425 827 436 266 198 145 1195 100
200 50 100 - . . . . - 32100. 738 113 586 352 259 187 149 1.07
20 70 10 . 61,300, 2950 403, 967 329 741 301 179 135 111 103 100 100 1.00
30 70 20 - + 14300, 1450, 271 739 114 361 190 137 111 103 100 100 1.00
50 70 30 . +  23.800. 2650. 450 M7 607 252 162 120 1.07 101 1.00 1.00
70 70 40 . . . + 30,600 2.890. 848 950 321 191 132 112 102 1.00 1.00
100 7.0 5.0 * * ® * = 52,600, 349, 17.3 464 257 164 129 107 101 1.00
150 70 80 . . . . « 3170, 322 617 329 204 154 117 104 1.00
200 70 100 . . . . - 27.800. 550 834 437 267 199 144 116 1.00
20 100 10 . + 14000, 1080. 180, 474 789 280 161 123 106 101 100 100 1.00
30 100 20 B * 61,600, 3.610. 473 102, 1.8 326 168 124 105 101 100 100 1.00
50 100 30 . - 4B500. 3960. 554, 303 510 208 138 109 102 100 1.00 100
70 100 40 . . + 90100 3440, 784 763 254 156 115 1.04 100 1.00 1.00
100 100 50 . . . + 59200, 316, 133 350 1.89 133 111 101 100 1.00
150 100 80 - . . , . » 2850, 242 456 247 158 123 104 100 1.00
200 100 100 . . . . « 25100, 406 608 323 201 152 113 102 1.00

*Value greater than 10%.
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Poisson CUSUM'’s Average Run Lengths
(Increasing Rate Case, Without the FIR feature)

Mean as a Muitiple of k

h k5 1 2 3 4 5 6 K] 1.0 12 14 1.7 20 285 30 5.0
10 25 0 518. 145, 7.5 44.3 3.0 234 154 113 894 738 588 491 389 326 211
20 25 .0 10.800. 1,440, 460. 212 120. 76.7 400 254 181 139 103 B14 603 482 285
30 250 « 17.800. 3,380 1.070. 454, 234 910 485 311 224 156 119 BBl 679 384
50 25 0 . . " 27.800. 5950. 1,790 33z, 120, 635 415 2689 189 164 108 578
70 25 0 . . . . 74,005, 12,205 958, 223, 999 613 384 279 228 148 T80
100 25 0O . . * . . . 3950, 438, 168, 912 555 398 324 208 108
10 50 0 297 821 40.1 247 17.2 129 B46 622 491 407 327 275 245 180 1.34
20 50 0 6800, 8BS 276. 124, 68.8 43.4 222 1398 984 754 557 443 335 273 172
30 50 0O . 11,600, 2110, 61 264, 133, 438 261 166 119 B29 636 463 368 218
50 50 0 . . . 16,705, 3440, 1,000, 178, 627 330 215 140 104 729 568 314
70 50 0 . . . . 42,805. 6,840, 509. 115 51.2 314 197 144 996 768 414
100 50 0 » . . + . " 2,080, 122 B0.2 464 283 204 140 107 564
150 50 0 * . B . . . 18905, 214, 130, 714 425 304 206 157 814
200 50 0 - . . . * . 18.206. 350. 180, 964 582 404 273 207 106
20 10 0 658680 684 20M. 863 458 279 136 B21 570 432 317 252 183 160 113
30 10 0 . 9.180.  1,560. 446, 174 Bi8 295 148 924 656 454 349 256 206 1.29
50 10 0 . " 96,800. 11,500, 2,250 620. 102. 342 176 114 739 549 389 306 1.76
70 10 0 . . . . 27.800.  4.220. 286. 615 268 164 102 749 523 406 2.28
100 10 0 B " . . - 72.700. 160, 117, 413 238 145 105 723 556 303
150 10 0 . . . . " B 10,500, 251, 662 363 217 155 106 806 428
200 10 0 . " . . . . 50,900, 434, 911 488 288 205 139 106 553
20 20 0 17,200, 1,200 264, 93.3 43.0 236 9.96 560 374 279 205 186 133 117 1.0
30 20 0 . 13,700, 1,830, 444, 1582, 65.6 19.9 927 557 380 270 210 159 1.33 103
50 20 0 . » ’ 11,100, 1,900. 468, 643 198 987 634 412 309 223 1.79 113
70 20 © . . . " 23600, 3160, 176. 343 145 B8B2 555 409 291 230 134
100 20 0 . . B " . 54,400, 705. 636 218 126 769 559 391 305 176
150 20 0 . - . - " . 6,320 132 343 188 113 809 557 430 239
200 20 0 . . . " . . 54,800.  226. 46,7 251 148 106 7.24 555 3.02
20 30 0 63100 2480 404, 118, 1.7 237 BB5 466 302 223 165 137 115 106 1.00
30 30 0 = 24300, 2520 520. 158. 62.3 16.7 728 425 296 206 1.62 1.28 112 1.00
50 30 .0 B . . 12,200, 1.910. 430. 515 147 716 457 299 226 166 135 1.02
70 30 0 . . . . 23.700. 2,900. 139, 249 103 623 384 293 211 169 1.07
100 30 0 M . . . . 49,800, 548, 451 152 B73 537 393 279 221 127
150 30 0 . . . " . . 4,890, 922 235 129 775 560 389 304 178
200 30 0 . . . . . . 42,400, 186, 3.8 171 101 726 501 387 218
20 50 0 . 12,000  1,070. 214, 66.7 2786 19 385 238 175 132 114 104 101 1.00
30 50 0 « 96,500, 5690 B36. 0. 67.0 143 557 312 215 153 125 107 102 1.00
50 &0 0 * * - 16,300.  2,180. 428. 411 104 487 308 204 157 121 107 100
70 50 0 . B - " 26,500. 2,870 108. 17.0 678 408 261 197 144 119 1.00
100 50 0 . . " . . 49,400 422 298 973 553 348 258 187 149 104
150 50 0 . . . . . . 3.740. 592 147 809 490 358 254 204 113
200 50 0 " . . . . " 32,300, 985 197 106 633 458 32 252 147
20 70 0 +  B1,300. 2950, 406, 98.4 342 BA6 347 207 152 119 107 101 1.00 1.00
30 70 0 . " 14,300, 1.480. 78 78.4 136 479 259 178 130 112 102 100 1.00
50 70 0 . . . 24,000, 2,680, 485, 37.0 847 383 243 163 129 107 101 1.00
70 70 0 . . . . 30,800.  3,040. 955 134 5.20 314 202 154 117 104 100
100 70 0 . . . . . 52,600. 369, 23.0 732 421 285 1989 144 116 1.00
150 70 0 » . . ' . N 3.250. 446 109 600 367 271 187 157 101
200 T0 0 . " - . . . 28,100, 734 144 779 489 342 244 1898 107
20 100 0 . . 14,000, 1,080. 181. 48.5 B53 3196 181 134 109 102 1.00 100 1.00
30100 0 B + 61,600, 3,610. 479. 105, 135 416 216 150 115 104 1.00 100 1.00
5.0 100 0 . . . 48,500. 3,980, 5686, 34.5 690 301 191 132 111 1.1 100 1.00
7.0 100 0 . . . 793.000. 40,200, 3470 868 106 397 240 157 123 104 100 1.00
10.0 100 0 . . . * . 59,400, 332, 176 545 315 201 1.5 113 102 1.00
150 10.0 0 . . . . " . 2,820 334 795 441 273 206 148 116 1.00
200 100 © . . . " . . 25,200. 541 104 565 344 255 188 148 1.00

*Value greater than 10°,
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The code we used in S-plus for the simulation & BHoisson CUSUM scheme:
#i#### POISSON CUSUM ######

## Generating values from Poisson ##
> pl<-rpois(20,4)
> pl
[1] 2 3222553411528 42357€6
> p2<-rpois(20,7)
> p<-c(pl, p2)

> p

[1] 2 3 2 2 2 5 5 3 4 1 1 5 2 8 4 2 3
5 7 6 610 8 6 6 4 10 10 7

[30] 14 2 91215 9 6 4 5 6 2

## The CUSUM Scheme with and without the FIR ##
# With the FIR #
> PO S _CUS1<-function(k,r,h){

s<-c(0)

s[1]<-(h/2)+r[1]-k

if (s[1]<0) {s[1]<-0}

for (i in 2:40){

s[i]<-s[i-1]+r[i]-k

if (s[i]<0) {s[i]<-0}

}

pl ot (period, s, col =3, yl ab="Cunul ati ve Sunl', x| ab="Ti me
eriod")

| i nes(period,s, col =3)
abline(h=(h), col =2)

}

PO S _CUS1(5, p, 10)
abline(v=(23),1ty=3, col =3)

VV+++T++++++++

# Without the FIR #

> PO S_CUS<-function(k,r){

+ s<-c¢(0)

+ for (i in 1:40){

+ s[i]<-s[i-1]+r[i]-k

+ if (s[i]<0) {s[i]<-0}

+ }

+ plot(period,s,col=3,ylab="Cunul ati ve Sunt', xl ab="Ti me
Peri od")

+ lines(period,s,col =3)

+ abline(h=(10), col =2)

+}

> POl _CUS(5, p)

> abline(v=(23),1ty=3, col =3)
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Table for N(0,1) for each one of the nine areas.
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Table after the change in the mean for each onéhef nine

areas.
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Region 1: Alarm at 26 Observation
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% Region 5: Alarm at 28 Observation
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* Region 7: No Alarm
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The CUSUM schemes for each region for the new ARLAL99 and the new
h=5.135 are given below:
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* Region 7: No ALARM
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* Region 9: No Alarm
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