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ABSTRACT 

 

Nikolas Karatzas 

 

“Prospective Statistical Surveillance in Public Health”    

May 2012 

 

Current research is a study of public health surveillance and refers to the 

applications of statistical quality control for that purpose. Sonesson and 

Bock(2003) presented a review paper and we are based upon this study. We 

develop the methods presented in this paper. Simultaneously, we present 

simulations and the theoretical background behind these methods. Finally, as 

Sonesson and Bock presented bibliography until the year 2003, we are 

interested in presenting bibliography for the period 2003-2012. 

At this study we give an idea of how we may apply the main principles of 

Statistical Quality Control to the surveillance of public health. Methods such 

as the CUSUM scheme and measures such as the Average Run Length and the 

expected delay are used for the construction of surveillance systems in the 

public health field. The optimality of these systems is an important factor 

since the public health surveillance demands the best results from us. 

These systems’ purpose is to detect peaks in the mean number of “events” in 

which case we should have an alarm. As a consequence, the purpose of these 

systems is to detect possible epidemics and through a prospective view we 

should be warned in order to proceed in the appropriate preventive actions.  

We make a separation to our methods based on the assumption according to if 

the incidences are following a Poisson process or not. We also have three 

types of systems which are based on the temporal, spatial and spatial-temporal 

surveillance factors. For each case of these factors, we analyse different 

methods.  
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ΠΕΡΙΛΗΨΗ 

Νικόλαος Καρατζάς 

«Προοπτική Στατιστική Παρακολούθηση της ∆ηµόσιας Υγείας» 

Μάιος 2012 

 

Η παρούσα εργασία είναι µια µελέτη µε αντικείµενο την παρακολούθηση της 

δηµόσιας υγείας και αναφέρεται στις εφαρµογές του στατιστικού έλεγχου 

ποιότητας για αυτό το σκοπό. Οι Sonesson & Bock(2003) παρουσίασαν µια 

κριτική εργασία και βασιστήκαµε σε αυτή τη µελέτη. Αναπτύσσουµε τις 

µεθόδους που παρουσιάζονται σε αυτή την εργασία. Ταυτόχρονα 

παρουσιάζουµε προσοµοιώσεις και το θεωρητικό υπόβαθρο αυτών των 

µεθόδων. Τέλος, ενδιαφερόµαστε στην παρουσίαση βιβλιογραφίας για την 

περίοδο 2003-2012 από τη στιγµή που η µελέτη των Sonesson & Bock δίνει 

βιβλιογραφία µέχρι το έτος 2003. 

Σε αυτή τη µελέτη δίνουµε µια ιδέα για το πώς µπορούµε να εφαρµόσουµε τις 

βασικές αρχές του Στατιστικού Έλεγχου Ποιότητας στην παρακολούθηση της 

δηµόσιας υγείας. Μέθοδοι όπως το διάγραµµα CUSUM και µέτρα όπως το 

ARL και η αναµενόµενη καθυστέρηση µέχρι να έχουµε συναγερµό(ED) 

χρησιµοποιούνται για την κατασκευή συστηµάτων παρακολούθησης στο πεδίο 

της δηµόσιας υγείας. Η µέγιστη λειτουργία αυτών των συστηµάτων είναι ένας 

σηµαντικός παράγοντας αν λάβουµε υπόψη ότι η παρακολούθηση της 

δηµόσιας υγείας απαιτεί από εµάς, τα καλύτερα δυνατά αποτελέσµατα. 

Ο σκοπός αυτών των συστηµάτων είναι να ανιχνεύουν αλλαγές στο µέσο 

αριθµό κρουσµάτων, περίπτωση στην οποία θα έπρεπε να έχουµε συναγερµό. 

Κατά συνέπεια, ο σκοπός αυτών των συστηµάτων είναι να ανιχνεύουν πιθανές 

επιδηµίες και µε µια προοπτική οπτική θα έπρεπε να προειδοποιηθούµε ούτως 

ώστε να πάρουµε τα κατάλληλα µέτρα αποτροπής µιας ανάλογης κατάστασης. 

Κάνουµε ένα διαχωρισµό στις µεθόδους µας µε βάση το αν ακολουθούν ή όχι 

την Poisson διαδικασία. Επίσης, έχουµε 3 τύπους συστηµάτων για την 

παρακολούθηση της δηµόσιας υγείας βασιζόµενοι στους παράγοντες του 

χρόνου, του χώρου και του χωρο-χρόνου. Για κάθε έναν από αυτούς τους 

παράγοντες, αναλύουµε διαφορετικές µεθόδους. 
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Chapter 1 
Introduction 
 

Statistical process control has its foundations in the industrial field and has 

been used with different ways and methods for the extraction of useful 

conclusions and prevention of unpleasant situations (e.g. the production of 

dysfunctional products). For that purpose statistical quality control has been 

widely spread the last thirty years and that is the reason why it has been adopted 

and developed especially by the states whose economy is based in the industrial 

production.  

On the other hand, and beyond the financial motive, this field has been 

widely spread in the academic community. The charts of Shewhart have been 

just the beginning of the development of some new methods such as the 

Cumulative sum methods and the Exponential weighted moving average 

method. A huge amount of questions have been answered and even greater is the 

number of new ideas which have been generated.  

The idea of the statistical process control is used nowadays in different 

fields and for different reasons. The construction of systems which give us the 

opportunity to proceed in the surveillance of some factors is the main purpose of 

this development. For example, in the financial sector someone may be 

interested in the stock market and the surveillance of the price of some stocks. 

Actually, we would like to have a system, where the prices of the stocks might 

be monitored in order to take preventive measures (such as an investment) if 

their course is out-of-control.  

In this study, we are interested in the statistical process control applied in 

the field of public health. Public health is a very sensitive issue not only for the 

individuals but also for the communities. Monitoring the public health is a big 

challenge as there are numerous factors (e.g. delay of an alarm, delay of 

reporting, not accurate records etc.) that can provoke for example an outbreak of 

an epidemic. Furthermore, constructing a system for a health natured problem, 

means taking a huge risk as what is at stake (e.g. at the case of an epidemic) are 
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peoples’ lives. We have to be precise in our calculations, quick in our detections 

and confident for our conclusions.  

Sonesson and Bock(2003)[140] presented a definition for public health 

surveillance that we believe that it is representative: “Public health surveillance 

is the on-going systematic collection, analysis and interpretation of outcome-

specific data that are essential to the planning, implementation and evaluation 

of public health programs, closely integrated with the timely dissemination of 

these data to those who are responsible for prevention and control”. 

Imagine now all the available data that exist in the different organizations, 

hospital records, private doctors’ records etc. The amount of data which we can 

analyze is large. We can tackle with the problem of the data collected, in two 

different ways in order to exploit all the information we can. The first is the 

retrospective surveillance. In this case the data are fixed and we proceed in the 

analysis of all the available data at the same time. The second way is the 

prospective surveillance or on-line monitoring. In this case we are interested to 

analyze the data through time and at different time points. We proceed in a 

repeated analysis of data accumulating over time and we make some decisions 

at some time points about the state of our process. The timeliness of these 

decisions (for simplicity we use discrete time) is essential for our analysis since 

we want to detect an increase in the number (or the rate) of incidences (e.g. a 

disease or car accidents etc.) as quickly as possible in order to proceed in the 

appropriate actions. In this paper we discuss on the case of the prospective 

surveillance since it is a more complicated and more interesting situation from a 

statistical point of view.  

For the on-line public health surveillance we have to consider some factors 

that do not exist in the industrial process control. These are for example the 

time delay caused by the delay of the reporting an incident, the seasonal effect 

of a disease in the population, lack of accuracy, missing reporting data, the 

biased reporting, the false or the delay of the diagnosis etc. As we can easily 

understand, public health surveillance may include such factors which make our 

role more difficult but as we discuss in this study, there are several ways to 

overcome such disadvantages of our process. Epidemiological data need special 

treatment and their features are special. That is the reason why we have to deal 

with them in a special way. 
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In this study we focus, though, more in the statistical part of the 

prospective surveillance of public health. That is not the epidemiological 

problems mentioned above but the statistical solutions and methods which lead 

us to conclusions about the state of our process. Thus, the main purpose of this 

study is to examine different methodologies for the prospective case of public 

health surveillance and evaluate them through different measures. 

 

 

1.1 Issues of the Public Health Surveillance 
Such a measure might be the Average Run Length which is used mostly in 

the industrial process control. For the monitoring of public health surveillance 

we are dealing with other measures such as the temporal delay, the probability 

of detecting a true alarm, the detection of a change in the mean in a specified 

limited time delay etc. These measures are presented in chapter 3 of this study 

and can be used to measure the reliability of our results or for the comparison 

between methods. 

In order to construct a surveillance method we need to specify some 

factors. These are the alarm statistic and the alarm limits. Each time we are 

interested in developing a surveillance method, we have to choose these factors 

and deal with the proper properties of the system often expressed in terms of an 

optimality criterion. This is another issue which is given in chapter 4. 

In order to make our system an optimal one we may use these measures. 

For example measures such as the delay, which we mentioned above, can be 

used in order to construct an optimal criterion which will lead us to an optimal 

system. It is rational for someone to think that the shorter the delay the better is 

the method. A temporal delay between the alarm and the real out-of-control 

state is almost certain to happen but the minimization of such a delay will give 

us the opportunity to take the appropriate actions at the shortest time interval. 

The time delay between the system’s alarm and the real change of a process 

(e.g. an increase in the rate of a disease) can be of interest and its minimization 

is our main goal. That is the case for the most of the methods in public health 

since the time delay is of special interest. This measure is significant in this 
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case if we consider the fact that a long delay might mean an outbreak of an 

epidemic and maybe the loss of lives.   

 

 

1.2 Structure of the Study 
In the second chapter we mention some general concepts of the SPC 

applied in the public health surveillance and we give a full description of them 

as long as a symbolism necessary for the better understanding of this study. 

In the third chapter we give some measures of evaluation which we use in 

the public health in order to compare different monitoring systems and which 

gives us an overall view of the performance of our surveillance. 

In the fourth chapter we mention some issues as far as we are concerned 

about the optimality of a method. Three optimal criteria and a general 

description and criticism for their function are given. In this study the criterion 

of the minimum expected delay is of special interest. 

Our study consists of three main parts which are referred to different cases 

of our surveillance. The first two parts are referred to the cases of the Poisson or 

non Poison processes (processes with time dependencies) and in these parts we 

describe different methods according to their relation with the factor of time. 

We could say that in these first two parts we are dealing with the temporal 

surveillance and in the third part we present the case of spatial surveillance. 

With such a way we manage to give a complete view of the aspects of the on-

line surveillance in public health. Space and time are the two “dimensions” from 

which our methods are constructed. 

In the fifth chapter we give two methods for the case of using the time 

between events to study the Poisson process. These are the Sets method and the 

Cuscore method.  

In the sixth chapter we present the case of using the number of events to 

study the Poisson process. On the contrary from the previous chapter, in this 

case the time intervals are fixed and are not used to be corresponded with the 

incidences. The Poisson CUSUM method is described thoroughly and the case 

of the alarm statistic to be the maximum value of the conditional likelihood 

ratios is given descriptively due to the complicated calculations which did not 
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allow us to run a simulation. However, the study of Lie (1993)[84] is more than 

enough if the reader wants more information about this issue.  

The next method which is described in the seventh chapter, is developed 

through weekly reports from the CDC. That is the Historical Limits method. 

This is a method which is constructed in a way to tackle with the seasonality of 

some diseases using historical data to set the limit of the process. 

Until this point of the study, we had to do with suboptimal Poisson 

processes. In the last chapter of the first part (chapter 8) we present the case of 

likelihood ratio and the Shiryaev-Roberts ratio methods which are optimal 

Poisson processes. 

In public health surveillance it is common to assume a Poisson process for 

the cases of disease but when this assumption is not appropriate, complicated 

time dependent processes have been used. In the second part which consists of 

the 9th chapter, we present different issues and models which are dealing with 

processes with time dependencies. A general description and bibliography is 

given for each case if the reader is interested to examine these issues more 

thoroughly. This is a huge scientific section and the evolution of different 

models in order to develop reliable systems of monitoring, seems to be 

uncountable. On the other hand, the calculations make the construction of such 

models very difficult and complex. 

In the last part of our study which is given in chapter 10, we present the 

case of spatial surveillance. This field seems to gain the epidemiologist’s 

interest the last few years, since the interest is moved to the clustering of 

diseases or geographical patterns etc. Considering the amount of 

epidemiological books which are referred in the spatial feature of surveillance, 

we realize that this is going to be a highly developing sector in the future. 

Finally, some thoughts are given in the last chapter in order to make a 

general conclusion of our study and give some directions for further 

investigations in the future. 
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1.3 General Issues 
To make this study a reality we are influenced by the paper of Sonesson 

and Bock who gave us a review of the prospective surveillance in public health 

until the year 2003. Several cases and methods of public health are summarized 

in a few pages. This is a paper which is strongly recommended for the reader if 

they want to have a good knowledge about the issues raised in this field. We are 

based on this paper for our study and we present further literature on the issues 

mentioned in Sonesson and Bock(2003)[140] for the period 2003-2012.  

We tried to make as much calculations as possible in order to present 

reliable and visual conclusions to the reader through simulations. We tried to 

give an overall view of the public health issues and for this purpose we worked 

in the statistical packages of S-plus and Minitab. The code which is developed 

in these packages in order to have the results presented in the main part of our 

study is given to the Appendix. For the convenience of the reader we partitioned 

the Appendix in parts so that any confusion can be avoided. Furthermore, we 

describe in the code the steps we followed, so that its comprehension will be 

easy even for a reader who is not fully familiar with statistical packages such as 

S-plus.  
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Chapter 2 
General Concepts 
 

With the term “statistical surveillance” we mean the on-line monitoring of 

a stochastic process ,...}2,1,{ == tXX t with the aim of detecting an important 

change at an unknown time point τ, as quickly as possible. At each decision 

time point s, we want to make a decision about the state of our process. We 

denote the in-control process by D(s) and the out-of-control process by C(s). 

The two states we are interested, can be expressed as follows: 

 

 

 

In order to achieve this decision we have to use the accumulated 

observations },{ stXX ts ≤= .If our process is in out-of-control state C(s) then 

we say that )(sAX s ∈ where A(s) is our alarm set in which case our system 

triggers an alarm.  

For the statistical surveillance in public health we are interested in the 

time of an alarm. Our system triggers an alarm at a time point At  where this 

time point can be expressed as follows: 

 

)}()(min{ sgXpt sA >= , 

where )( sXp  is our alarm function and )(sg is a control limit. 

In most cases, the change is referred in a shift of the initial mean of the 

process. The random process that determines the state of the system is denoted 

by µ(t) for t=1,2,… In other words, we assume our process has an initial mean 

value 0µ  for t = 1,2,…,τ-1 and at time point t = τ we have a change in the 

process and the level of the mean value 0µ  is moved and remains to a new level 

1µ  for t = τ, τ + 1,....In this sense we can express the two states mentioned 

above, as follows: 

 

}{)(

}{)(

ssC

ssD

≤=

>=

τ
τ
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})({)(

1

0

µµ

µµ

==

==

ssC

ssD
 

The initial and the new level of µ are regarded as known values and the 

time τ where the change occurs is regarded as a random variable with the 

density: 

)( tPt == τπ  and ∑ ∞−= ππ 1t  

The intensity of a change is denoted by: 

 

)|( ttPvt ≥== ττ  

 

When we have to specify a distribution for τ, we use the geometric 

distribution. This specification of the distribution of τ, is suitable when the 

intensity of a shift is constant for each time point. 

For our simulations we make the assumption that our surveillance is 

stopped when we have an alarm. Only one alarm is possible in our cases. That is 

called active surveillance as it is defined in Frisén and de Maré(1991)[46]. In 

most of our cases in this study we are dealing with active surveillance problems. 

Additionally, we have to make the assumption that X(i)-µ(i)  are independent 

random variables. 

 

Table 2.1: Symbols for the general concepts of Public Health surveillance 

General Concepts Symbolism 

Stochastic Process ,...}2,1,{ == tXX t  

Time of Change τ 

Decision Time s 

In-Control Process D(s) 

Out-of-Control Process C(s) 

Alarm Set A(s) 

Time of an Alarm 
At  

Intensity of a Change tv  
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Chapter 3 

Measures of Evaluation 
 

In order to test our method’s performance it is common to use the 

measures of the significance level and the power. The problem for these 

measures is that we do not take into account some important factors such as the 

dependence on the length of the period of surveillance and the exact time point 

that the change occurs. In order to consider such factors in our surveillance 

method we have to generalize the two measures mentioned above. 

Before continuing to the presentation of these measures, it is vital, for us, 

to evaluate the statistical properties. For example there are procedures in which 

long series are used and others that we care for the performance not too long 

from the start. Generally, in order to evaluate a surveillance system we have to 

consider some important factors such as the availability of information. This 

could mean the time delay generated from the reporting process or the time 

delay generated from the process of identifying and confirming an outbreak of a 

disease. 

Another problem is the simplicity of a method. This factor is usually 

determined objectively, according to the application of our surveillance. There 

are applications that the simplicity of a method is vital and we can just use the 

Average Run Length (ARL) tool. However, there are applications that a great 

amount of information is needed. In these applications we have to use more 

complex methods and more than one measure for our system’s evaluation. An 

example here can be the supervision of the foetal heart rate during labour which 

was presented by Frisén(1992)[36]. If an abnormality has occurred it is 

important for us to detect the problem as soon as possible so that immediate 

actions will have to be taken such as a caesarean section. It is easily 

understandable that in this application we have to deal with the dependence of 

the time factor. Acting too late may have as a result the loss of a life.  

Several studies are referred in such measures. An example might be the 

study of Andersson(2003)[3]. These measures of evaluation are commonly used 

in order to compare different methods. A graphical evaluation of such measures 
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are given in the paper of Frisén and Gottlow(2003)[45] for a constructed 

statistical program. There are other studies though which in order to compare 

different methods, proceed in the development of some other criteria. For 

example in Sego et al.(2008)[126] and Sego (2006)[125] it was used the steady-

state average run length instead of the ARL. 

In this chapter we are examining different types of measures for the 

purpose of evaluating methods in surveillance of public health.  

 

3.1 Average Run Length (ARL) 
A common measure of evaluation is the average run length until we have 

an alarm. If our process is in-control and we have an alarm then this alarm is 

false. The distribution of the false alarms is expressed by the following 

equation: 

  

]|[ ∞== τAtEARLo  

 

Approaching this issue from a general perspective, we have a rule which 

we use to extract the limits of our method and from which we define the in-

control or out-of-control state of our process. That is:  

 

ARLARLo=  

 

The ARL measure is used for the design of the control charts in different 

applications. Its disadvantages, though, are of vital significance. The ARL gives 

us limited information and is calculated considering the assumption that the 

surveillance begins at the same time when the change occurs. This assumption 

simplifies the problems for us in theory but in practice, the change occurs at an 

unknown time τ since the surveillance started. 

On the other hand this measure is common to be used in comparing 

different methods. Comparisons of methods with the same ARL is common in 

statistical surveillance as we can find out easily which is the quickest method in 

realising the change. These comparisons of the performance of different 

methods with the same ARL may depend on different ways on the value of τ. For 
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the average run length we assume τ=1. The dependence of the average run 

length after the change at τ is demonstrated by another measure which we are 

presenting below (Probability of Successful Detection). 

 In the simulation presented below we have such a comparison between the 

Shewhart and the CUSUM method for the same average run length. 

 

 

Simulation  

In this simulation we are going to compare the methods of the CUSUM 

and the Shewhart test for the same ARL. Suppose we have a mean 0µ  for the 

time t = 1, 2,…, τ-1  and a mean 1µ  for the time t = τ,τ+1,….The time t = τ is 

when the change in the mean occurs. We generate from Normal distribution 140 

replicates with a mean of  00 =µ  and 140 observations with a mean of 

5,11 =µ .The standard deviation is σ =1 .So our change in the mean is 1,5σ.We 

divide the observations for each case in 20 samples of size n=7 and we assume 

that we take each of these samples in the time periods t=1,2,…,40. Practically 

that means that we have a time point of change at τ = 21. We remind the 

statistic of the tabular CUSUM scheme for the case of an increase to be: 

 

( )+−+ ++−= 10 )(,0max iii SkYS µ  

 

Where k is given by the following: 

 

 75.0
4

3

2
01 ==

−
=

µµ
k  for our case.  

 

The observations are given in the table below: 
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Table 3.1: Generated observations from N(0,1) and N(1.5,1) 

Time  00 =µ  5,11 =µ  

1 0,185573 1,75188 

2 -0,247210 1,19523 

3 0,355101 1,45971 

4 0,357489 1,51561 

5 0,333314 1,49897 

6 -0,010791 1,24824 

7 -0,580087 1,67122 

8 0,205866 1,17702 

9 0,081491 1,67445 

10 -0,040827 1,53925 

11 0,201591 1,46459 

12 -0,914889 0,98769 

13 -0,785749 1,07834 

14 -0,134363 1,61910 

15 0,326480 2,11732 

16 -0,145937 1,41975 

17 -0,343590 1,04650 

18 -0,475557 1,83593 

19 0,051910 1,04705 

20 0,234598 1,28201 

 

For a parameter limit h=5σ for the CUSUM method and the shift in the 

mean mentioned above, we have the following CUSUM chart: 
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Figure 3.1: The CUSUM scheme for the 40 observations generated from Normal 

distribution and for a limit h=5σ 

 

From the CUSUM’s chart we see that the average run length is about 27 

observations. Now for the same value of ARL we can figure out easily the limits 

which we are going to need for the Shewhart’s chart: 

 

p
ARL

1
= , 

where p is the probability one point plots out of control. Actually, we can 

symbolize this probability as follows: 

 

)( hXPp t >= (for the two-sided method)  

and 

)( hXPp t >= (for the one-sided method)  

 

With h we denote the limits of our chart. So, for our example we have: 
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So our limit’s h value is about 1.79. And so we have the following 

Shewhart chart for the observation of the mean: 
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Figure 3.2: The one sided Shewhart scheme for the 40 observations generated from 

Normal distribution and a limit extracted from the CUSUM h=1.79 

 

We conclude that the CUSUM’s method triggers an alarm at the time of 

alarm 27=At  (or at the 27th sample). On the other hand, based on the same ARL 

from the CUSUM’s method, the system of the Shewhart’s method triggers an 

alarm at the time 35=At .From these comparison we take that the CUSUM 

system is much better than the Shewhart method since it realizes the change in 

the mean much sooner with the same average run length. In the sections below 

we are presenting measures of evaluation based on the time delay. In terms of 

time delay the CUSUM’s delay is 6=−τAt .On the other hand the time delay 
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for the Shewhart scheme is larger: 14=−τAt .This big difference for our case is 

natural since the CUSUM method is designed in a way that considers the 

cumulative sums of our observations. Thus, immediate and large changes in the 

mean are detected much sooner than the Shewhart’s method. 

 

 

 

3.2 Probability of a False Alarm (PFA) 
In this measure we are dealing with the probability of a false alarm not 

later than a time t from the start. The probability of a false alarm actually can be 

interpreted as the type I error of a testing hypothesis. That is to reject the null 

hypothesis when we accept it. In our case an alarm is triggered when our 

process is not out-of-control. The interpretation with the previous measure of 

the Average Run Length for the null hypothesis ( 0ARL ) is the same. 

 

 

 

 

 

 

This measure is a function of t and is denoted by ta .For example for the 

Shewhart test we have: t
t ha )1)(2(1 −Φ−=  where Φ is the normal probability 

distribution function. From the example above we have 9630.0)( =Φ h . Thus, for 

our example, the probability of a false alarm is shown in the figure 3.3: 

Definition:  
The Probability of a False Alarm is the probability having an alarm when there is no 
real change in the process and it is given by the following expression: 
 

t)|t()( >== τAtPtPFA  



 

~ 16 ~ 

 

Time

P
ro

ba
bi

lit
y 

of
 F

al
se

 A
la

rm

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

 
Figure 3.3: The visual projection of the PFA for the Shewhart scheme of the 

example in section 3.1 

 

A summarizing measure of the false alarm distribution is the total 

probability of a false alarm: 

 

∑
∞

=

=<==<
1

)|()()(
t

AA tttPtPtP τττ  

 

An assumption is needed at this point for the distribution of τ.Usually we 

assume that τ ~ Geometric (p), where p is our parameter and reflects the 

probability we have an alarm. That is our “success”. This assumption is 

appropriate when the intensity of a shift is constant for each time point. As a 

result, the first factor in the sum of the total probability of a false alarm does 

not depend on the method but only on the true intensity v. The second factor 

depends only on the run length distribution when no change has occurred.  
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3.3 Probability of Successful Detection  
A measure to demonstrate the dependence of the ARL after the change, on 

the time τ, is the Probability of Successful Detection. For this measure we are 

interested in the delay between the time when the change occurred and the time 

of our system’s alarm ( τ−At ).  

An example would be the case of an infectious disease, where we have to 

detect its outbreak in a given time interval. If we do not detect the outbreak in 

time, we will not be able to prevent an epidemic. So only a limited time delay is 

permitted, since many lives may be at risk. If we take the appropriate preventive 

measures in a short time after a change, an outbreak will be avoided and that is 

the reason why this measure is so important. The delay is denoted by d. There 

are some applications that only a limited time delay can be tolerated, in which 

we can consider the Probability of Successful Detection. 

 

 

 

 

 

 

 

The Probability of Successful Detection is given for the Shewhart method 

and for a change in the mean from: 

 

dttdPSD ))µ-h((1))(,,( 1Φ−=µ . 

 

In the previous example we had for the Shewhart method a time delay of 

about d=14. Thus, the probability of successful detection is: 

 

9989.0)5.1)(,,14(

)]5.179.1([1)5.1)(,,14(

))µ-h((1))(,,(
14

1

====⇔

⇔−Φ−====⇔

⇔Φ−=

τµτ
τµτ

µ

tdPSD

tdPSD

ttdPSD d

 

 

Definition:  
The Probability of Successful Detection is the probability that the change is detected 
with a delay that is no longer than d, given that there was no alarm before the 
change. It is given by the following expression: 
 

)|(),( ttdtPtdPSD AA =≥≤−= ττ  
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The following graph gives us a visual image of the Probability of 

Successful Detection according to the time delay for our example’s Shewhart 

scheme: 
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Figure 3.4: The visual projection of the PSD for the Shewhart scheme of the 

example in section 3.1 

 

 

3.4 Predictive Value 
If we have an alarm in our surveillance we have to choose the appropriate 

preventive actions. Fulfilling that purpose in practice, means knowing how 

much trust to put in an alarm. Additionally, it gives us information about which 

action would be appropriate. It is simpler for us, if the same action can be used 

whenever an alarm occurs. Thus, a constant predictive value with respect to the 

time is a good property.  

For different methods, we have different false alarm distributions as a 

function of time. That fact leads to the principle that the proportion of false 

alarms compared with justified alarms at a specific time point will differ 

between the methods and so will the trust in an alarm. This criterion gives us a 



 

~ 19 ~ 

 

quantitative idea of how strong an alarm is, as an indication of a change. 

Moreover, it tells us how probable a change in the past is, when we have an 

alarm and as a result it can inform us what will happen if no actions will be 

taken in the future. In order to express that trust, we use the measure of the 

Predictive Value. 

 

 

 

 

 

 

 

3.5 Conditional Expected Delay 
A measure of evaluation with respect to a true change in the vast literature 

is summarized by the average out-of-control run length ]1|[1 == τAtEARL .In 

this measure we make the assumption that the change occurred exactly the same 

time when the surveillance started. As we mentioned previously in the field of 

public health this assumption is unrealistic and useless. In public health 

surveillance the ability to detect a change depends on the time that the change 

occurred. So, we should take into account the possibilities of later changes.  

That is a case which we are not going to use in this study but it is 

mentioned since it is referred in the vast literature of the evaluation of a 

method. Our measure is the conditional expected delay as a function of the time 

point t. 

 

 

 

 

 

 

 

 

Definition:  
The Predictive Value is the probability that the process is out of control when an 
alarm is triggered and it is given by the following expressions: 
 

)|)(()( tttCPtPV A ==  or )|()( tttPtPV A =≤= τ  

Definition:  
The Conditional Expected Delay is the average delay time for a motivated alarm 
when the change occurs at a time point t and it is given by the following expression: 
 

]|[)( tttEtCED AA =≥−= ττ  
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3.6 Expected Delay 
Since the case of τ=1, as we saw before, is not the only case we are 

interested in, we can calculate the expected delay for other values of τ. In fact 

we are based on the distribution of τ, which is often geometrical, to consider the 

expected delay.  

 

 

 

 

 

 

 

 

3.7 Sensitivity-Specificity 
As mentioned above in a surveillance system we have to evaluate also its 

timeliness and the quality of the data collected. Important delays in detection 

may appear because of delays in reporting or confirming a diagnosis and data 

may be missing, wrong, misinterpreted etc. For that reason we use measures 

such as sensitivity and specificity.  

In order to confirm our research a lot of times we do some further 

diagnostic tests in order to confirm if a disease is present or not. In this study 

we are not referring further in such measures but we present them for general 

knowledge reasons.  

An example of these measures could be the study of Rolfhamre and 

Ekdahl(2006)[119] who used the sensitivity and the positive predictive value to 

compare the Poisson CUSUM (which we examine later in this study) and two 

other methods applied in different regions. 

 We have the following 2x2 table with the number of people for every 

possible combination, which will help us determining these two measures: 

 

 

Definition:  
The Expected Delay is a weighted average of the time between the change and the 
time that an alarm is triggered for motivated alarms and it is given by the following 
expression: 

∑
∞

=

≥==
1

)()()(
t

A tCEDttPtPED ττ  
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Table 3.2: The 2x2 table for the number of incidents according to the positive or 

negative result of the diagnostic test and the presence or absence of a disease 

 Presence of Disease 

+D  

Absence of Disease 

−D  

Diagnostic Test  

Positive +T  

  a b 

Diagnostic Test 

Negative −T  

c d 

   

 

 

 

 

 

 

  

 

 

 

 

 

 

Where our symbolism in these definitions represents quantities of the 2x2 

table mentioned above: 

Table 3.3: Interpretation of the symbols in the definitions of Sensitivity and 

Specificity 

Symbolism in 

Definitions 

Interpretation in 

2x2 Table 

++ ∩DT  a 

−− ∩DT  d 

+D  a+c 

−D  b+d 

Definition:  
Sensitivity of a diagnostic process is the probability the diagnostic test to be positive 
given that someone has the disease. It is given by the following expression: 

)(#

)(#
)|(

+

++
++ ∩
==

D

DT
DTPysensitivit  

Definition:  
Specificity of a diagnostic process is the probability the diagnostic test to be negative 
given that someone does not have the disease. It is given by the following expression: 

)(#

)(#
)|(

−

−−
−− ∩
==

D

DT
DTPyspecificit  
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Chapter 4 
Optimality Criteria 

 

Optimality of different methods is a classical issue in surveillance. How 

they link to different measures of evaluation and how we make optimal a 

method through likelihood functions is the objective of the paper of 

Frisén(2009)[40]. A discussion on this study was presented by Knoth(2009)[69]. 

Further reading in optimality is given by Frisén(2010)[41] where the study of 

Shiryaev on the quickest detection problems is discussed. 

At this point, we will use the measures of the previous section to formulate 

and discuss some criteria of optimality for surveillance. 

 

 

4.1 Minimal Expected Delay 
A general utility function was proposed by Shiryaev (1963)[128].In that 

case we are dealing with the expected delay of an alarm. He treated the case of 

constant intensity of a change where the gain of an alarm and the loss of a 

probable false alarm are a linear function of the value of the delay, τ−At . This 

utility can be expressed as { })t,( AτuEU = , where: 

 





+−

<−
=

otherwiseta

tth
u

A
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,α)(

),(
)t,(

21
A

τ
ττ

τ  

 

The function )( τ−Ath is usually a constant k, since we have a constant cost 

of triggering a false alarm independently of how early the false alarm is given. 

In this case we have: 

 

21α)( aEDtbPU A ++<= τ  
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Achieving a maximal utility corresponds to a minimal expected delay from 

the change-point for a fixed probability of a false alarm. This criterion is also 

known as the Expected Delay criterion. The full likelihood ratio method which 

we are going to examine in chapter 8 satisfies this criterion. The ED criterion 

seems to be a suitable optimality criterion in a public health setting because of 

its generality of including changes occurring at different time points. 

 

4.2 Minimax optimality 
This criterion concerns the minimax of the expected delay after a change. 

Despite the fact that several possible change times are considered (thus this 

criterion is related to the ED criterion), we use the conditional expected delay 

as it is stated in chapter 3. Instead of using an expected value, which requires a 

distribution of the time of change, we use the worst value of CED(t) avoiding at 

the same time any requirement of information about the distribution of τ. There 

is a lot of theoretical research based on this criterion. 

Pollak(1985)[97] uses the worst value of τ to give an approximate solution 

to the criterion of minimal expected delay. He starts the procedure avoiding the 

properties which are dependent to the time of change τ.  

Moustakides (1985)[91] uses a still more pessimistic criterion, since it is 

based on the worst possible circumstances. The worst possible case is 

considered, by using not only the worst value of the change time, but also the 

worst possible outcome of 1−τX before the change occurs.  

Ritov(1990)[108] considers a loss function which is not identical to that of 

Shiryaev(1963)[128] but depends on the time of change τ and the time of the 

alarm At . In this case we consider the worst possible distribution for each 

decision time s, s)τ|1s( >+=τP .With this assumption the CUSUM method 

minimizes the loss function.  

Further studies for the minimax optimal criterion are given by 

Yashchin(1993)[171], Lai(1995)[76]&(1998)[77] and Lai & Shan(1999)[78]. 

 

  

 



 

~ 25 ~ 

 

4.3 Average Run Length 
In this case optimality may be defined as minimal 1ARL  for a fixed 0ARL . 

The assumption that these two expectations make, is that there are equal 

distributions for all observations under each of the two alternatives. ARL’s 

position in statistical quality control is a dominating one, since it is the most 

common used measure for an evaluation of a method. Therefore its usage as an 

optimality criterion in the industrial quality control and the other developing 

fields is widely known. However, its dominating position among other optimal 

criteria is doubted; especially when the field of interest is the public health.  

We present some of the consequences of the usage of such a measure as an 

optimal criterion. Frisén(2003a)[37] shows that there are values sc  such that a 

surveillance system with alarm at { }∑ =
>=

s

t sA ctXst
1

)(:min  gives the 

minimal 1ARL  for a fixed value of 0ARL .  

Thus, a linear combination with equal weights to all observations fulfills 

this criterion of optimality (minimal 1ARL  for a fixed value of 0ARL ) .On the 

other hand, methods with equal weights for old and recent observations are not 

appropriate(or at least rarely they are appropriate methods). So, this statement 

shows that this optimality criterion could be doubted. In the field of public 

health it is more probable not to have equal weights for our observations. Time 

is an important factor which can relate with other factors such as the spatial 

factor and so the case of the equal weights in practice is almost impossible.  

Additionally, in the applications for which this optimal criterion is 

appropriate, the knowledge of the alarm statistic for each time of decision s is 

not enough. We should also have to determine the alarm limit sc for this statistic 

for each s. 

Frisén proceeded in the construction of a two-point method which fulfills 

the criterion of minimal 1ARL  for a fixed 0ARL .The method has the alarm limits:  

1,...,2,1,,1 −=∞== kicLc i  and −∞=kc  

where 
L)(

-L)(0

Φ
Φ−

=
ARL

k  for the standard normal distribution function Φ.  

From the above we have that L is restricted to those values and as a result 

k is an integer. It was proved at the same paper that this two point method 
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fulfills the criterion of minimal 1ARL  by having 1ARL  arbitrarily close to the 

minimal value of one, for a fixed value of 0ARL . 

This method, though, has very bad properties. It depends only on the first 

observation regardless if an alarm is given at time 1 or at another time k.  

For that reason Frisén used the LCUSUM method with a time of an alarm 

at 






 +>= ∑ =

s

t
A

s
LtXst

1 2
)(:min

µ
 (it is described in the paper’s appendix) which 

minimizes the 1ARL  for a fixed false alarm probability.  

Pollak and Siegmund (1985)[99] pointed out that the maximal value of 

CED(t) is equal to CED(1) for many methods and with a minimax perspective 

this can be a motivation for the use of 1ARL  since 1)1( 1 −= ARLCED .However 

this argument is not relevant for all methods(CED(1) is not the maximal value 

for the EWMA method as presented by Frisén and Sonesson(2002)[47]).  

Thus we see that this optimal criterion has many disadvantages. Frisén 

pointed these flaws with the three statements mentioned above. Even if this 

criterion is used in a method there is a strong indication that it is not reliable. 

We see that methods useless in practice are ARL optimal and that this criterion 

cannot be used for all the methods.  

Hence, we should use this criterion of optimality only with care and we 

have to be cautious about the properties of each method we use. The Average 

Run Length can give us some information as descriptive measure of evaluation 

but as an optimal criterion has many flaws and disadvantages. 
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PART I  

Detection of Increased  
Rates of Incidence in a  
Poisson Process 
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Chapter 5 
Using the time  
between events to study the 
Poisson process 
 

When we are referred to a Poisson process an increased rate of incidence 

corresponds to an increased intensity of the Poisson process. Thus, the 

possibility of detecting an increased intensity depends on the method we use to 

monitor the process. The way we observe our process is important too. Different 

techniques of handling a Poisson procedure are mentioned below. 

Here, we observe the time intervals between two adverse health events of 

our procedure. With the term “adverse health events” we mean the presence of a 

disease. Thus, we can measure these time intervals with the following two ways: 

a) In the case of the continuous time, the intervals are distributed 

exponentially. 

b) In the case of a discrete time scale, we count the number of acceptable 

events between adverse events. 

Both these ways include no loss of information about the process. 

Increased intensity or an increased rate of a disease can be interpreted with two 

ways respectively: 

a) In the case of the continuous time, increased rate means shorter intervals 

between two adverse events. 

b) In the case of the discrete time, increased rate means smaller number of 

acceptable events. 

In the same way we have different designs of methods according to the 

case we are interested in: 

a) In the case of the continuous time between two adverse events, which is 

distributed exponentially as we mentioned above, we are interested in the 

design of methods like the exponential CUSUM and the 

EWMA(exponentially weighted moving average). 
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b) In the case of the discrete time there are methods such as the Sets 

method and the Cuscore method.  

In the field of the surveillance in public health, the first case of the 

continuous time is very rare which is why we are devoted, in this study, to the 

second case of the discrete time. 

 

 

5.1 The Sets Method 
The original sets method was proposed by Rina Chen(1978)[15] for the 

surveillance of congenital malformations. Since then, there have been a lot of 

improvements for this method. We give a general description of this method. 

The sets method focuses on the lengths of the intervals between events 

with the presence of a disease. These lengths are measured with the number of 

healthy cases between two events with the disease we are interested in. A first 

assumption we make is that these lengths are distributed geometrically. An 

alarm is triggered in our system when n consecutive intervals are shorter than 

some threshold value. That is our system’s function which we are going to 

present by simulations in this section. 

This method is really simple, easy to understand and can be applied in 

many different cases for a variety of diseases. However, this method presents 

some disadvantages as far as we are concerned about its optimality. The sets 

method is not constructed from likelihood ratios, which is an optimal method 

(we are going to describe this method later) and considers for the alarm decision 

only the data which are based on the last n consecutive intervals. So, we might 

have as a result a huge amount of loss of information. In this chapter we are 

going to describe the method through some applications and present the 

improvements that have been made by some researchers. 

We are studying the Rina Chen’s application of the congenital 

malformations. In this example we are interested in the intervals between two 

newborns with a congenital malformation. The length of these intervals is 

measured by the number of healthy newborns. The calculations are simple and 

this simplicity makes the method easy to be used. We are presenting the cases of 

small and large scale systems (one hospital and several hospitals respectively). 
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The normal births between two births with the specific malformation monitored, 

is defined as a set. Each time the epidemiologists diagnose a new case of disease 

(the disease in our example is the congenital malformation of newborns), they 

move on to an analysis of the last n intervals (sets).These intervals or sets 

constitute our sequence of interest.  

The size of a set (the malformed newborns are excluded) is a geometric 

variable. We have an alarm, if a sequence of sets appears in a way that each set 

is below a fixed size. In practice, this sequence is more frequent to happen for 

the case when the malformed newborns have an increased rate and less frequent 

to happen when the rate of malformed babies is normal. The hypothesis we test 

is expressed as follows: 

 

0H : The rate of malformed newborns is normal. 

1H : The rate of malformed newborns is increased. 

 

 

5.1.1 Probabilities and Expectations 
We are interested in estimating the number of infants expected to be born 

before an alarm is triggered. Thus, we study the number of normal births X until 

we have a success where in our example the “success” is a newborn with 

malformation. 

The random variable iX  is the size of the thi  set and it is assumed to 

follow a geometric distribution. We remember that if X~geom(p) then: 
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We use the following notation: 
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Table 5.1: The terms and their explanation we use for the Sets method 

Terms Explanation 

0p  The normal rate of the malformed 

newborns. Often an estimation for 0p  

is given by the rate of malformations 

over several past years. 

 

1p  

 

The increased rate of the malformed 

newborns. We also assume that: 

01 pp ∗= γ . 

 

1a  The number of the expected births in 

a sequence initiated after the increase 

which signals an alarm. 

 

1t  

 

The expected time duration in which 

the 1a  infants are born. 

 

iP  The probability that, under the 

hypothesis iH , a given sequence 

signals an alarm. 

 

r  The expected number of false alarms 

during a time interval. 

 

b  The expected number of births during 

a time interval. 

 

Thus, the hypothesis test we mentioned previously can be expressed as follows: 

 

0H : 0pp =  

1H : 1pp =  or 0pp ∗= γ  
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� The case under the null hypothesis0H  

We suppose we are in the case where the null hypothesis stands. Then, 

under 0H , we have the expected size of the set i: 

0
0

01
)( c

p

p
XE i =

−
=  (5.1) 

 

Then the probability a size of a set to be smaller than )( iXE is: 
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(Since we have for a very large 
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The moment generating function of iX  given 0ckX i ∗<  is: 

,...2,1,
1

1)0()|(

,

)1(1

)1(1

)1(1
)1(

)1(1

1
)(

00

0

0

0

0
1

0
00

0

00

00

=








−
−=′=<

−−

−−

−−
=−

−−
= ∑

−

=

i
e

k
cMkcXXE

thus

ep

ep

p

p
epp

p
tM

kii

t

tkckc

kc

kc

X

txX
kc

 

 

� The case of the alternative hypothesis1H  

With the same way we act in the case when we are under 1H : 
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Generally it is stated that:  
kkc

i epkcXP −−=−−=< 1)1(1)( 0
00  (5.3) 
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From (5.3) we have: 

 

γγ kckkc
i eppkcXP −−=−−=−−=< 1)1(1)1(1)( 10

110 (5.4) 

 

Similarly we calculate: 
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5.1.2 A System for Surveillance in a Single Hospital 
We are now interested in n consecutive sets in a single hospital. The rule 

of an alarm is based on the size of each set we study. That fact actually means 

that an alarm will be triggered by a sequence of sets, if each size of these sets is 

below a certain size. 

If, in our simulation, iX  for i =1,2,3,…,n is the size of each set, then in n 

consecutive sets, which is our sequence, we will have a maxX .With this term we 

define the largest size of the sets in our sequence. 

 

  

 

 

 

The probability is defined in our hypothesis test as follows: 

 

0H : nkekcXPP )1()( 0max0
−−=≤=     (5.7) 

 

1H : nkekcXPP )1()( 0max1
γ−−=≤=    (5.8) 

 

In the case of the null hypothesis we want the probability to be 

significantly low so that the probability of a false alarm will be low and in the 

alternative case we want the probability 1P  to be high so that an alarm is 

Then we shall have the probability that a sequence will trigger an alarm: 
 

)( 0max kcXP ≤   (5.6) 
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justified and will be triggered when the rate of the malformed newborns is 

increasing. 

Supposing that 99.0)1( =− − γke (so that 1P  will be large) we should have: 

 

γ
γ

61.4
01.0ln =⇔−= kk   (5.9) 

And so for the null hypothesis we should have the following equation for 

the size of a sequence of sets: 

 

)1ln(

ln 0
ke

P
n

−−
≈    (5.10) 

 

It is reasonable to assume that under the null hypothesis the number of 

expected newborns having the particular malformation is:  

 

0pb∗  (5.11) 

 

Also, we can assume the number of sequences (of size n) among b newborns to 

be: 

 

)1(0 −−∗ npb   (5.12) 

 

So, the average number of false alarms is given by: 

 

{ } 00 )1( Pnpbr ∗−−∗=   (5.13) 

 

Reasonably, the probability 0P  is given by the following equation: 

 

{ })1(0
0 −−∗
=

npb

r
P   (5.14) 

 

We also can define from (5.5) the number of the expected births in a 

sequence which signals an alarm after an increase: 
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Simulation 
For our example of congenital malformations of newborns, we are 

interested to make a surveillance system in a single hospital. Suppose now that 

we calculated the number of births in a particular hospital to be about 400 births 

per month. We also suppose that we have one false alarm in 20 years. Our 

surveillance system realizes as an important change to signal an alarm, an 

increased rate seven times the normal rate of congenital malformations in 

newborns.  From these data we have: 

 

658.0
7

61.4

960002012400

1

7

==

=∗∗=

=

=

k

b

r

γ

 

 

We have the following ten fixed “normal” rates 
10000

10
,...,

10000

2
,

10000

1
0 =p  

For these fixed “normal” rates we have the following table: 

 

Table 5.2: The table with the results from the simulation of the Sets method for different 

baseline rates 

4
0 10−×p  0P  0c  n 

1a  1t  

1 0.13157895 9999 3 4088 10.220697 

2 0.06172840 4999 4 2725  6.813117 

3 0.03875969 3332 4 1817  4.541623 

4 0.02906977 2499 5 1703  4.257346 

5 0.02272727 1999 5 1362  3.405536 

6 0.01865672 1666 5 1135  2.837663 
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7 0.01607717 1428 6 1167  2.918447 

8 0.01392758 1249 6 1021  2.553385 

9 0.01228501 1110 6 908 2.269449 

10 0.01098901 999 6 817 2.042299 

 

To calculate the results of the table above we worked in S-Plus. The code 

is given to Appendix A.1. For this example we could make several conclusions 

depending in the kind of results we are interested in: 

� For a normal rate of congenital malformations of 
10000

1
0 =p (one 

malformation per ten thousand births), we have that the expected size of 

a set, under the hypothesis that the rate is “normal”, is 9999 births. 

 

� For the same case, we have that an alarm should be signaled after 

3 consecutive sets, each smaller than 65799999658.0 =∗  births. 

 

� Also for the same case, the probability having a false alarm after 3 

consecutive sets is 0.132 or 13,2% and the probability that an increased 

rate seven times the normal rate would be detected after a sequence of 3 

sets, is 0.971)1()( 0max1 =−=≤= − nkekcXPP γ  or 97,1%. 

 

� The expected number of newborns included in the above sequence 

which will trigger an alarm after an increase, is 4088. 

 

� The expected time where we will have an alarm after the increase 

in the rate is 10,2 months. 

 

We also can make some general comments of vital importance for this method: 

 

� The probability having an alarm when the normal rate still stands 

is small for a large (fixed) ‘normal’ rate. Thus the rarer the disease, the 

more probable having a false alarm.  
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Figure 5.1: The PFA according to the baseline rate of a disease(newborn’s 

malformation) for a single hospital  

 

� Using the same logic, we need fewer infants and subsequently less 

time to realize the change in the rate of a frequent disease compared with 

a rare disease.  
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Figure 5.2: The number of newborns until the signal of an alarm according to the 

baseline rate of a disease (newborn’s malformation) for a single hospital 
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Figure 5.3: The time until the signal of an alarm according to the baseline rate of a 

disease (newborn’s malformation) for a single hospital 

 

� From the above we realize that the sets method proposed in this 

section is better for detecting changes in the rates of diseases with a large 

base-line rate. The probability of a false alarm is significantly large for 

small “normal” rates and simultaneously our system realizes far more 

sooner the change when we have large “normal” rates. Subsequently, our 

method is much better when the disease is frequently appeared in the 

population of interest.  

Especially, when we are interested for rare diseases and an alarm 

is triggered in our system, we should not take for granted that this is a 

true alarm. It is better to assume that this alarm is more than a warning. 

Then the epidemiologists should investigate the case in order to find 

proof leading to an alarm.  

For this reason, we should take a larger r(number of false 

alarms)into the single hospital system in order to have a shorter time 

delay between the change and triggering a warning. As a result, we 

should have a true alarm in a shorter time interval but on the other hand 

this fact leads to more frequent false alarms. For our example we should 
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have the following table for a number of false alarms 5=r  in 20 years. 

The code is given in Appendix A.2. 

 

Table 5.3: The table from the simulation of the Sets method for different baseline 

rate and 5 number of false alarms in 20 years(r=5) 

4
0 10−×p  0P  0c  n 

1a  1t  

1 0,657895 9999 1 1363 3,406899 

2 0,274725 4999 2 1362 3,406558 

3 0,179856 3332 2 908 2,270812 

4 0,137363 2499 3 1022 2,554408 

5 0,108696 1999 3 817 2,043322 

6 0,089928 1666 3 681 1,702598 

7 0,077882 1428 4 778 1,945631 

8 0,067751 1249 4 681 1,702257 

9 0,059952 1110 4 605 1,512966 

10 0,053763 999 4 545 1,361533 

 

� For a normal rate of congenital malformations of 
10000

1
0 =p (one 

CM per ten thousand births), we have that an alarm should be signaled 

after 1 set smaller than 6579 births instead of 3 consecutive sets when we 

have one false alarm in 20 years. 

 

� The expected number of newborns which will be born until our 

system realizes the increase and trigger an alarm is 1363 instead of 4088 

newborns in the case when we had one false alarm in 20 years. 
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Figure 5.4: Comparison of the number of newborns until the signal of an alarm 

according to the baseline rate of a disease (newborn’s malformation), for one and five 

false alarms in 20 years 

 

� Additionally the time duration until our system realizes the 

increase in the rate and triggers an alarm is much less, compared with the 

case of the one false alarm. Specifically, our system in the case of 5 false 

alarms in 20 years will have realized an increase in a rare disease in 3 to 

4 months compared with the previous case where an increase of a rare 

disease is detected in 10 to 11 months. 
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Figure 5.5: Comparison of the time until the signal of an alarm according to the 

baseline rate of a disease (newborn’s malformation), for one and five false alarms in 

20 years 

 

� As we mentioned above, this increase in the number of false alarm 

has a side effect. That is the large probability of having a false alarm. In 

our case this probability is 65,7%(number of false alarms in 20 years is 

5) while in the previous case is 13,2%(number of false alarms in 20 years 

is 1) for the smallest ‘normal’ rate .Additionally, we have that the 

probability an increased rate seven times the normal rate would be 

detected after a sequence of 1 set, is 0.99)1()( 0max1 =−=≤= − nkekcXPP γ  

or 99%. 
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Figure 5.6: Comparison of the PFA according to the baseline rate of a disease 

(newborn’s malformation), for one and five false alarms in 20 years 

 

 

5.1.2.1 A Second Approach to find the n 

In the approach mentioned above, we calculated the number of sets n using 

a cross-checking technique for (5.10) and (5.14) equations. Here, we are going 

to use the same cross-checking technique but for the (5.7) and (5.14) equations. 

In this section we act based on the probability of a false alarm. We simulate 

some tests for a case and we choose the appropriate n based on the similarity of 

the values. In our example we have a number of false alarms 1=r and we have 

658.0=k  for  7=γ .Lets take the example of the baseline rate of 

4
0 105 −∗=π .For the simulations, we used S-plus and the code is given in the 

Appendix A.3. 

Then we should have the following table: 
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Table 5.4: The decision of the appropriate n for a baseline rate of 5/10000 and one false 

alarm in 20 years 

n 

{ })1(0
0 −−∗
=

npb

r
P  

nkeP )1(0
−−=  

1 0,0208333 0,482114 

2 0,0212766 0,232434 

3 0,0217391 0,112060 

4 0,0222222 0,054025 

5 0,0227273 0,026046 

6 0,0232558 0,012557 

 

From the table above we see that the minimum difference between the two 

equations exists for n=5.So we should take n=5 for the case of 

4
0 105 −∗=π .Making comparisons for all the cases of the normal rate in our 

example we should have the following table: 

 

Table 5.5: Comparing the decision of n according to the process we chose to use for 

different baseline rates. 

4
0 10−×p  n from equations (5.10)  

and (5.14) 

n from equations (5.7)  

and (5.14) 

1 3 3 

2 4 4 

3 4 5 

4 5 5 

5 5 5 

6 5 6 

7 6 6 

8 6 6 

9 6 6 

10 6 6 
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We notice that there is a difference in two cases ( 4
0 103 −∗=π  and 

4
0 106 −∗=π ). In this approach the number of sets for these two cases is larger 

than the previous one and so the number of newborns included in a sequence 

which signals an alarm after an increase and the time expected our system to 

realize the change, will be larger. Specifically, the number of newborns will be 

2271 instead of 1817 births and 1362 instead of 1135 births respectively for 

each case.  

The advantage of this approach is that the probability of a false alarm for 

these two cases is smaller (2.6% instead of 5.4% from (5)).Also the probability 

that an increased rate seven times the baseline rate would be detected after a 

sequence of 5 sets is 0.95.This method is better for smaller increases to be 

detected with some reasonable probability but after a larger number of 

diagnoses. 

 

 

5.1.2.2 A Third Approach to find the n 

At this point we could use another approach to calculate the number of 

consecutive sets from which the increase will be detected. In the approach 

mentioned above, we calculated the number of sets n using a cross-checking 

technique for (5.10) and (5.14) equations and for (5.7) and (5.14) equations.  

Previously, we used a fixed value for γ. Here, we are searching for the 

appropriate γ-value which will lead us with more precise calculations to the 

appropriate n. In this section we are going to figure out the n, using a criterion 

which maximizes the probability of detecting a change in the baseline rate. 

We take the symbolism for time reasons of bpM ∗= 0 .With M we denote 

the expected number of cases between false alarms. Thus, the value of M is 

chosen prior to our system’s beginning. Using this symbolism the (5.14) 

equation is calculated as follows: 

 

1
)(0 +−
=

nM

r
nP  (5.16) 
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A way to express the exact value of M is by the following equation1: 

 

)()]1(1[

)(1

00

0

nPP

nP
M

∗−

−
=  (5.17) 

So for equation (5.7) we have: 

 

knk ePenP −− −=⇒−= 1)1()1()( 00  (5.18) 

 

The equation (5.17) for M now should be:  

 

nkk

nk

ee

e
M

)1(

)1(1
−−

−

−∗

−−
=  (5.19) 

 

As we said above the value of M is chosen prior to the system’s start. 

Thus, for a given n, we can find the k-value. We also have for γ from (5.8) that:  

 

{ }
k(n)

)(1ln
)(

/1
1

nnP
n

−−
=γ (5.20) 

 

From these equations we have that if n increases then k will increase (γ 

will decrease). But, if the number of sets is increasing then the probability to 

detect a change is decreasing. Hence, there is a maximum value for that 

probability 1P .  

The main idea for this method is that for a given γ, we can determine the 

value of n which maximizes that probability. This procedure is feasible as γ(n) 

is a monotone decreasing function of n. 

 

 

 

 

 

 

                                                 
1 This is shown in Kenett & Pollak(1983)[67] 

The rule to determine the n is based on the fact that the efficiency of a single 
analysis of n intervals does not increase much relative to an analysis involving 
n+1 intervals. The actual value of n used for the alarm detection is determined as 
the smallest value for which: 

11)γ(n-n)( ≤+γ  
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Note: A false assumption is common to be made at this point. That is the one 

false alarm expected in M cases. Then we should have for )(0 nP  the following 

equation from (5.16): 

 

1

1
)(0 +−
=

nM
nP

 

 

Solving the equation (5.16) for M and for one false alarm we have the 

approximation equation for M. This equation would be correct only if  we have 

in our research a finite number of gaps (cases).In real life this is not true. 

When we want to make tests with that system, in practice means continuous 

analyses for infinite cases. Thus, this approximation has a significant difference 

from the exact value. Taking the ratio of the approximation equation for M 

(from 5.16) and the equation (5.17) to prove that fact, we have that2: 

 

1
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−+= n
nP
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Eventually from these two equations we should have the following ratio: 

 

}1)1()1{(

)1(1
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Taking for example the case of n=5 and k=0.76 we should have  

 

75.1
547.0

957.0
==

apprM

M
 

 

Interpreting this result, we can say that using the specified values of n 

and k, the actual time interval between false alarms is 1.75 times the ones 

assumed with the approximation of apprM .That is a substantial difference 

                                                 
2 The exact equation is shown in Kenett & Pollak(1983)[67] 
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between the approximate and the exact function. For these reasons we use 

the exact equation. 

 

 

Simulation 
For the example we used in the previous section, we have that 

b=96000.Suppose we are interested for a disease with a normal rate of 

10000

5
0 =p .Then the prior value of M (the expected number of cases within 

which one false alarm is expected) would be =∗= bpM 0 48.We also suppose 

that the probability to detect the hypothetical change in the ratio is 0.95. For 

this case we should have from our code3 the following table: 

 

Table 5.6: Choosing the appropriate n using the gamma rule. 

n M kappa gamma 

1 48,1208 0,021 142,654 

2 47,7920 0,169 21,752 

3 48,0619 0,368 11,080 

4 48,0668 0,569 7,668 

5 48,0542 0,759 6,041 

6 48,0219 0,936 5,092 

7 47,9463 1,101 4,468 

8 48,0081 1,254 4,029 

 

For the table above we have the smallest n for which the rule for the 

gammas holds. That is n=5.Comparing with the previous simpler method we see 

that the number of sets needed to detect the change is five too. The problem in 

that case was that we included the number of false alarms. In this section we do 

not have to make any arbitrary assumptions and we are based on a reliable rule 

which leads us to more precise and absolute conclusions. 

All of these approaches are presented by Rina Chen’s studies. Especially 

for the case of searching the appropriate n, the last approach seems to be the 

                                                 
3 The code we used in S-plus is given in Appendix A.4 
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best since it does not take into account assumptions that may lead to unreliable 

conclusions. To be exact in our conclusions, this last method is better to detect 

small changes in the rate of a disease. That is the reason why it is preferred for 

the case of rare diseases. The first two approaches are based on the approximate 

equation for the expected number of diagnoses in a given period time. The last 

approach is better since it relies on the exact equation.  

 

 

5.1.3 A System for Surveillance in Several Hospitals 

In this section we are dealing with the increase in the rate of a disease in a 

larger area. For this reason we use all the available information from several 

hospitals. Our purpose is to detect increases which occur at the same time in an 

area of interest. The data we use in this system are the same with those recorded 

for the system of a single hospital.  

What differ from the previous section are the criteria according to which 

an alarm would be triggered. In this large scale system we are proceeding in an 

analysis of the data at the end of a constant interval of time. In this constant 

interval we record the number of the sets and their size. In this system we have 

an alarm if each of the m completed sets is smaller than a value 0ckm . Then we 

correlate the value of mk  with the probability of an alarm under the null 

hypothesis. This probability of false alarm given that at least one set is 

completed, is denoted by 0q .So, we have the following equations for mk and 0q : 

)|( 0max0 mMckXPq m =<= or mkmeq )1(0
−−=   (5.21) 

 

and 

)1ln( /1
0

m
m qk −−=    (5.22) 

 

The probability of false alarm is denoted by 0P as we saw in the previous 

case of the single hospital. We denote with y the years for which the analysis 

takes place with a frequency of d-times per year. Then we should have the 

following equation: 
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dy
P

∗
=

1
0   (5.23) 

 

We make the assumption that the average number of false alarms is one 

(here we have an average number since we have several hospitals). 

We mentioned above that m is the number of the completed sets. We 

symbolize with M the number of sets terminated within a certain period. Then 

the probability 0P  should be: 
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      (5.24) 

 

With the term )0( =MP we denote the probability that none of the sets is 

completed during the surveillance in our time-interval. If we do not have a 

single set completed, in other words means that we have not diagnosed a single 

case with the disease monitored. Therefore, under the null hypothesis 0H and for 

the N cases we checked for our disease of interest, we have: 

 

N
0 )1()0( π−==MP   (5.25) 

 

So from the (5.24) and (5.25) equations we have the following: 

 

})1(1{ N
000 π−−∗= qP   (5.26) 

 

and 

 

N
0

0
0 )1(1 π−−
=

P
q   (5.27) 
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Simulation 
In order to proceed in a simulation, suppose we have to apply a 

surveillance system in an area where a number of hospitals exists. We are 

interested in a type of cancer. For the purpose of our surveillance, we proceed in 

an analysis every 3 months of the 12.000 hospitalized individuals with an 

average of one false alarm in 40 years. For the data above we have:  

y = 40   

d = 4 

 

Thus from (5.23) we have: 

0.00625
1

0 =
∗

=
dy

P  

 

And so we should have the following table4: 

 

Table 5.7: The table for the simulation of the Sets method for different baseline rates for 

surveillance in several hospitals 

0p  0c  0q  Kappa 

for m=5 

Kappa* 0c  

0,0001 9999,00 0,0089436 0,493176 4931 

0,0002 4999,00 0,0068734 0,460999 2304 

0,0003 3332,33 0,0064255 0,453189 1510 

0,0004 2499,00 0,0063018 0,450968 1127 

0,0005 1999,00 0,0062655 0,450310 900 

0,0006 1665,67 0,0062547 0,450113 750 

0,0007 1427,57 0,0062514 0,450054 642 

0,0008 1249,00 0,0062504 0,450036 562 

0,0009 1110,11 0,0062501 0,450031 500 

0,0010 999,00 0,0062500 0,450029 450 

 

So, we have the following conclusions: 

                                                 
4 The code we used in S-plus is given in Appendix A.5 
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� In the following graph we have a visual image of how the 

probability of a false alarm, given that at least one set is completed, 

works according to the baseline rate (normal rate) of a disease. 
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Figure 5.7: The PFA according to the baseline rate of a disease (newborn’s 

malformation) for several hospitals 

 

� Additionally, interpreting the table above, we have that if five sets 

have terminated within a three month interval, then we should have an 

alarm if each of the sets do not exceed a limit. This limit is given in the 

last column (Kappa* 0c ).For a visual illustration of the limits of an alarm 

according to the baseline rate check the following graph: 
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Figure 5.8: The limits for which we have an alarm if each of the sets do not exceed 

them (case of several hospitals) 

 

� For example, for the case of the normal rate of 4 incidents-‘events’ 

per 10000 individuals, we should have the limit of 1127 cases. The 

proper interpretation would be that we have an alarm if each of the five 

sets does not exceed the value of 1127.  

 

Note: If we would want to find the probability a gamma-time (the normal rate) 

increase to be detected, then our interest should be the probability under the 

alternative hypothesis. That probability should be: 

 

∑
∞

=

− =−=
1

m
1 )()1(

m

k mMPeP γ  (5.28) 

 

Further discussion on these matters can be shown in the study of Gallus et 

al.(1986)[50] in which the optimality of the sets method was approached and for 

which R.Chen was based to analyze the last procedure of finding n. Additionally 

other studies for this subject can be the one of G.Gallus et al.(1991)[51] in 

which from the main idea of the sets method a Poisson approximation is made to 

a Negative Binomial process and the one of Chen et al.(1997)[21]. The study of 

H.Arnkelsdottir(1995)[5] is really good and interesting since it presents some 
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measures (such as the Probability of Successful Detection and the Predictive 

Value) in order to evaluate the sets method. 

 

 

5.2 The Cuscore Method 
As mentioned above, the sets method’s main disadvantage is the loss of 

information since that technique is based on the last n consecutive intervals. In 

order to solve this problem, a modification is required in a way that all 

observations until the last alarm are taken into account. 

This new method is called Cuscore method and it is based on a score. 

Values of 1 or -1 are given to each interval between adverse events depending 

on whether or not it is longer than a threshold value. The statistic, which is 

based the ‘alarm’ event, is formed from the cumulative score.  

With this technique, we avoid any loss of information which might be 

caused by the use of only n consecutive sets. Despite the fact that this method 

solves this problem (takes into account all the available sets), it has an 

important disadvantage. That is the type of reporting observations. When we 

intend to match the observations 1 and -1 with the real data, we have as a side 

effect a direct loss of information owing to the dichotomization of data which 

leads to a suboptimal method. 

To make our procedure an optimal one, we are going to construct a method 

based on the minimization of the out-of-control expected delay for a given rate 

of false alarms. The problem we are dealing with is the time when our system is 

able to detect the γ-increase in the baseline rate.  

Suppose we have iX  independent observations. With X we denote the 

number of ‘normal’ cases between two ‘events’. Actually, iX  is the size of the 

set i . The events distribution can be approximated by a Poisson process with a 

parameter λ. The assumptions we make are the small event probability and the 

independence between the events. Thus, the observations can be supposed to 

follow an exponential distribution with a parameter 1/λ. Under the baseline rate 

we have: 
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t
0

01)( λ−−= etF   (5.29) 

 

And under the alternative hypothesis of the increased rate we have: 

 

t
1

01)( γλ−−= etF   (5.30) 

 

With λ are denoted the events of interest. So with 0λ  we denote the 

average number of events of interest (i.e. the babies with congenital 

malformations) under the baseline rate. Our idea is to assign a score of 1 or -1 

in each set iX : 

 

Score( iX ) = 1 if  RX i <  

Score( iX ) = -1 otherwise 

 

With R we denote the threshold value which in practice symbolizes the 

lowest ‘normal’ size of our set. A lower size than R, of a set, is an indication of 

an increased rate. Should this increase be statistically significant, it will be 

indicated by a sequence of consecutive sets.  The value of R is predefined and in 

essence, is defined as k-multiple of the expected value: 

 

)(xEkR ∗=   (5.31) 

 

or under the baseline rate (null hypothesis) the (5.31) equation becomes: 

 

0ckR ∗=   (5.32) 

 

In the case of public health we are interested in the increase of the rate of a 

disease since a decrease is not our concern. Hence, we are dealing with the one-

sided problem. For the one-sided case, the cumulative score’s statistic is defined 

from the following: 
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   (5.33) 

 

Our alarm rule is that an alarm is triggered as long as nSi = .Where n is a 

fixed positive. The number of sequences from the beginning of our procedure 

until the alarm, is denoted by N (N = first i  until the alarm). In essence, we can 

regard N as a random variable which represents the number of ‘events’ required 

to trigger an alarm. From this meaning we can easily jump to the conclusion that 

the expectation of N is the Average Run Length of our method. 

Advising from the study of Munford(1980)[92] and proceeding with some 

algebra we conclude in the following expression of E(N) or ARL: 
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Under Poisson process, p which is the probability an observation is shorter 

than the decision threshold R, is given by the following for the baseline and the 

increased rate of the tested hypothesis respectively: 

 

k
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00

1:
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epH k

   (5.35) 

 

 

5.2.1 The Procedure 
In order to optimize our procedure we aim at the out of control expected 

delay of the scheme described above. The assumptions we make is that the 

increase factor γ is detected and that the expected delay 00 )( DNE = , is fixed. 

Then the procedure minimizes the out-of-control ARL or )(1 NE . Our method 

works following the steps described below: 
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1. We have an initial value of n=1 and for this value we calculate
0

0

1

D
p = . 

2. For n>1 we calculate the value of 0p  using the equation of G.Gallus et 

al.(1986)[50] which is defined as nPDDP /1
00 ]1[ −∗−+= .We take a starting 

value of 0p  the value of 0p  for n-1 and we act recursively for some 

iterations. 

3. We calculate the value of k from ).1ln( 0pk −−=  

4. We find the value of 1p  from (5.35). 

5. We take the value of the expected delay )(1 NE from equation (5.34). 

6. We choose the appropriate parameters k and n for the minimum )(1 NE . 

 

Note: It is concluded from simulations that the absolute minimum of )(1 NE  

with respect to n, is the first minimum on n. So the procedure is stopped as soon 

as a value of )(1 NE is found that is higher than the one obtained at a previous 

iteration. 

 

 

Simulation 
For the example in the sets method of the problem of congenital 

malformation in newborns, we had 400 births per month and one false alarm in 

20 years of study. We are going to have our results for the 10 different baseline 

rates which corresponds to 10 different values of the 0λ  of the Poisson process. 

We are interested in detecting an increase in the normal rate of 01 pp ∗= γ where 

γ = 7.  

For this simulation we developed a code in S-plus and the Minitab 

statistical packages. This code is given in Appendix B. 

From these data we have that we are studying 240 months and so the in-

control expected number of malformations 0D  is: 

 

 

 



 

~ 58 ~ 

 

 

 

Table 5.8: The expected number of malformations for different baseline rates 

4
0 10−×λ  0D  

1 10 

2 19 

3 29 

4 38 

5 48 

6 58 

7 67 

8 77 

9 86 

10 96 

 

The main idea is to choose the minimum out-of-control expected delay. In 

such a way we optimize our method. Thus, after our simulation and for the 

different values of the expected number of malformations we have the following 

table for the parameters of the optimal Cuscore method: 

 

Table 5.9: The parameters of the Cuscore method for different baseline rates 

4
0 10−×λ  0D  0p  kappa 

1p  1E  n 

1 10 0,104167 0,110001 0,536990 1,86223 1 

2 19 0,255630 0,295217 0,873374 2,45598 2 

3 29 0,204474 0,228751 0,798358 2,82151 2 

4 38 0,174905 0,192257 0,739668 3,17975 2 

5 48 0,307976 0,368135 0,923994 3,43215 3 

6 58 0,287570 0,339073 0,906847 3,54635 3 

7 67 0,271499 0,316766 0,891104 3,65764 3 

8 77 0,258387 0,298927 0,876621 3,76593 3 

9 86 0,247404 0,284227 0,863248 3,87134 3 

10 96 0,238017 0,271831 0,850852 3,97403 3 
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From this table we can derive the following graph from which we easily 

conclude that the delay, in detecting a statistically significant increase, is 

smaller for a rare (we are referred in the frequency of appearance) disease. 

Something expected. When a disease has a small rate of appearance in the 

examining population it is easy for the system to realize an increase, especially 

when this increase is large such as in this case (γ=7). 
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Figure 5.9: The expected delay until the alarm for the Cuscore method for different rates 

of newborns’ malformations 

 

 

5.3 Sets method vs Cuscore method 
The sets method is appeared in the recent literature to be compared with 

other methods (e.g. the CUSUM scheme based on counts which we examine in 

the next chapter). Examples of this, is the study of Sego et al.(2008)[126] where 

two of the sets method’s modifications are given (one of which is the Cuscore 

method). The evaluation of the performance of these methods was made with 

respect to the steady-state of the average run length instead of the ARL. The 

Cuscore test also is applied in the study of Chen and Froom(2003)[19] for the 

case of lymphoma and colon cancer death data. 
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In this section we compare the sets method and the Cuscore scheme based 

on the expected number of ‘events’ taken to detect the first true alarm after 

matching the rate of false alarms. In other words we are interested in the out-of-

control expected delay in such an optimal way as the two methods were 

developed by the G.Gallus et al.(1986)[50] and G.Radaelli(1992)[102]. For the 

example above of the congenital malformations we calculate the out-of–control 

expected delay for the same parameters. 

For the sets method, G.Gallus et al.(1986)[50] calculated the expected 

delay from the following equation: 

 

)1(

1
)(

pp

p
NE

n

n

−

−
=  (5.36) 

 

For the example above we have the following table5:  

 

 

Table 5.10: Comparing the Sets and the Cuscore method using the measure of the 

Expected Delay for the performance 

Expected Delay 

4
0 10−×λ  0p  kappa 

1p  n Cuscore 

Method 

Sets Method 

1 0,104167 0,110001 0,536990 1 1,86223 1,86223 

2 0,255630 0,295217 0,873374 2 2,45598 2,45598 

3 0,204474 0,228751 0,798358 2 2,82151 2,82151 

4 0,174905 0,192257 0,739668 2 3,17975 3,17975 

5 0,307976 0,368135 0,923994 3 3,43215 3,52117 

6 0,287570 0,339073 0,906847 3 3,54635 3,65962 

7 0,271499 0,316766 0,891104 3 3,65764 3,79478 

8 0,258387 0,298927 0,876621 3 3,76593 3,92649 

9 0,247404 0,284227 0,863248 3 3,87134 4,05485 

10 0,238017 0,271831 0,850852 3 3,97403 4,18005 

                                                 
5 The code we used in S-plus for the Expected Delay of the Sets method is given in Appendix C 
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Figure 5.10: Comparing the performance of the Sets and Cuscore method using the 

measure of the expected delay until an alarm. 

 

From the table and the graph above, we conclude that there is no 

difference between the Cuscore and the sets method for a small frequency of 

appearance of the malformation. There is no difference between the two 

methods for rare diseases. The difference is given for larger baseline rates of a 

disease.  

Another interpretation of the above is that for a normal rate of 4105 −× or 

higher the Cuscore method is more effective. The expected delay until our 

system triggers an alarm, in terms of the expected recorded events (congenital 

malformations in our example), is smaller for the Cuscore method than the Sets 

method. Especially for the case of the baseline rate 1 malformation per a 

thousand births, the difference is about 5% .  

As long as the normal rate is getting larger, we see that the gap between 

these two methods is bigger. Thus we should prefer the Cuscore method since it 

is much more effective, realizes the change in the ‘normal’ rate sooner than the 

sets method and it gives us reliable conclusions based on all the available data. 
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Chapter 6 
Using the number of events 
in fixed intervals to study 
the Poisson process 
 

In the previous section, in order to detect an increase in the baseline rate of 

a disease, we used the measure of the discrete time between two adverse events. 

In this section the time intervals are fixed and for these intervals we calculate 

the number of ‘events’.  

If the number of events is recorded for fixed time intervals, information on 

the process will be lost. As a result, the surveillance method will be suboptimal 

for detecting the change in the process as quickly as possible. Thus, there is 

only one reason to use fixed intervals. That is the practical restrictions of the 

reporting system.  

Procedures for monitoring rare health events are based on sequential 

statistical methods for detecting a shift in the underlying disease rate. For fixed 

time intervals, a commonly used method is the Poisson CUSUM method. The 

Poisson CUSUM compares the recorded number of events in each time period 

with the expected number and uses the cumulated sum of deviations to form an 

alarm statistic.  

A lot of comparisons of the Poisson CUSUM with other methods have 

been made. Such compared methods are the Sets method and the Cuscore of the 

previous chapter. As far as we are concerned about the recent literature of the 

period 2003-2012, the most commonly used is the CUSUM method for count 

data. The Poisson CUSUM performance is evaluated in Testik(2007)[153]. 

Especially, in the field of public health this method is widely spread and applied 

in different situations. For example, Limaye et al.(2008)[85] applied the counted 

CUSUM for the case of the hospital infections from children’s hospital. 

Additionally, several modifications of the Poisson CUSUM appear in the 

recent literature. Such an example is the Bernoulli CUSUM, in the Sego et al. 
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(2008)[126] and Sego (2006)[125] studies, which as we mentioned above is 

compared with the sets method and two of its modifications. It was found that 

the Bernoulli CUSUM is better, followed in order by the Cuscore and the sets 

method respectively. The same result for the most of the cases is derived by the 

study of Joner et al.(2008)[62], where the Bernoulli CUSUM is compared with a 

scan statistic for prospective surveillance. 

To apply in theory the CUSUM scheme with count data is relatively easy, 

since we make the assumption that the mean number of events is steady for a 

whole time period. In practice though, this is not true. The mean number of 

events is likely to vary over time if we consider the factor of the population 

growth. That is the reason why a modification using weights is needed. That 

was shown in Shu et al.(2010)[131] and Shu et al.(2011)[132]. The weights 

correspond to the time the events occurred. More weights are assigned for the 

recent observations and fewer weights are assigned to the older observations. A 

comparison was made with the conventional CUSUM. 

Another CUSUM method when the events to be monitored for an outbreak 

follow a Poisson distribution, is developed by Jonsson(2010)[64]. 

Further reading on comparisons of the Poisson CUSUM and other methods 

can be made through some interesting papers such as Barbujani and 

Calzolari(1984)[8], Pollak and Kenett(1983)[98], Gallus et al.(1986)[50], 

Chen(1987)[18] and Radaelli(1992)[102]. 

Most of these comparisons favor the Poisson CUSUM method but on the 

other hand there are proof for the opposite. For example in Chen(1987)[18] the 

sets method is evaluated with fixed intervals and it was found that it is a better 

method for a baseline rate equal or smaller than 5 cases per year. The evaluation 

was made with respect to the time delay measure until first alarm.  

The conclusion mentioned above stands even for large increases in the 

baseline rate. The CUSUM scheme has shorter time delay, for a baseline rate 

larger than this value (5 per year). Further study of the same paper showed that 

the CUSUM scheme is preferred if it is applied at time intervals longer than one 

month.  

A second scheme that has been developed is the method of the maximum 

value of the conditional likelihood ratios. This method is a complicated one and 

it demands a great amount of calculations and strong computing power. For 
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these reasons we are not going to present detailed information but only some 

general features in this study. 

 

 

6.1 The Poisson CUSUM Method 
The Poisson CUSUM scheme works through some parameters which are 

referred in the general features of the CUSUM method. Lucas(1985)[88] 

presented a general review of this method and gave us the appropriate tables to 

search for the parameters of our system according to the average run length 

measure.  

For the CUSUM method, we usually use continuous data for our analysis. 

A first difference for the Poisson version is that we are dealing with discrete 

data. On the other hand, the interpretation of the results and the general 

conclusions (i.e. the planning of our method) is the same with the case of the 

continuous data.  

To construct our method we use the Poisson distribution to model the 

number of counts observed per sampling interval. In order to use the Poisson 

CUSUM method in practical terms means that we have to make the assumption 

that we have the ability to record the number of counts in a fixed sampling 

interval. With the term ‘counts’ we mean the “events” of our sampling interval. 

In the public health field, as we mentioned above, we are interested in the case 

of the increase in the rate of a disease. 

In this method we are dealing with the average run length as a measure of 

performance. With this term (average run length) we mean the average number 

of sampling intervals before an out-of-control signal. For the Poisson CUSUM 

the time between out-of-control signals is proportional to the ARL. 

 

 

6.1.1 General Features of the CUSUM method 
Cumulative sum methods are known for their ability to detect sudden 

changes in the mean of a variable. Especially when this change is quantitative 

large, the CUSUM scheme is very effective. For this method the assumption is 
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made that the variable exhibits no serial autocorrelation. The most common case 

is when the observations are normally distributed but in this case we are 

studying the Poisson distribution. 

In the CUSUM method we are dealing with the parameters h and k. For our 

better understanding, though, we have to mention some information about h 

which represents our limit. 

The h value is chosen based on a fixed value of rate of false alarms. High 

values of the limit h give us a low probability of a false alarm and a lower 

probability of detecting a real change in the studying mean (in the following we 

are going to see tables which define the values of h and k based on fixed values 

of 0ARL for the Poisson version). It is common to use a value for k to be ½.If we 

assume that this is true then the 0ARL  is defined as follows: 

 

( )120 −−= ceARL c   (6.1) 

where 166.1+= hc .  
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Figure 6.1: The performance of the Average Run Length until a false alarm according to 

the limit h of the CUSUM scheme 
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 Figure 6.2: The performance of the PFA until an alarm according to the limit h of 

the CUSUM scheme 

 

This is given by Siegmund(1985)[133]. As it is referred in Lawson and 

Kleinman(2005)[82] Siegmund’s equation may be solved approximately for the 

threshold h as a function of the 0ARL , when k=1/2: 
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When 2/1≠k this equation is formed as follows: 
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6.1.2 Features of the Poisson CUSUM method 

In this scheme we cumulate the difference between an observed value iY  

and a reference value k. If this sum equals or exceeds the decision interval value 

h, an alarm is triggered. For the Poisson CUSUM, the statistic is given below: 

 

( )1,0max −+−= iii SkYS   (6.4) 

 

Another feature of the Poisson CUSUM method is the Fast Initial 

Response(FIR) which was presented by Lucas(1985)[88]. Using this feature 

means that if a change takes place soon after our system’s beginning, the 

CUSUM scheme is going to realize the change immediately. In practical terms it 

gives us a shorter average run length than the simple Poisson CUSUM method. 

For the case of the simple Poisson CUSUM the head start value for 0S  is set to 

be 0. On the other hand for the case of the Poisson CUSUM with the FIR 

feature, the head start value for 0S  is set to be equal to h/2. With such a head 

start our method will signal an alarm more quickly if our process is out of 

control soon after it started.  

Another issue for this method is the proper choice of the values of k and 

the decision interval h. The value of k is chosen by the acceptable count rate and 

the count rate that is to be detected quickly. Using these two criteria for the 

choice of k value, leads us to build tables to choose the parameter h. The 

appropriate choice of these parameters, the tables and the exact procedure is 

given below via a conducted simulation.   

 

 

6.1.2.1 The k-parameter 

The k-value is chosen to be between the acceptable process mean )( 0λ  and 

the mean level of counts that the CUSUM scheme is to detect quickly )( 1λ . The 

means 0λ  and 1λ are mean numbers of counts per sampling interval. The 

“acceptable” process mean’ )( 0λ is the mean number of counts when the process 
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is in control. The “unacceptable” process mean )( 1λ  is the mean number of 

counts when the process is out-of-control.  

At this point we should mention that the desired value for 0λ  is zero. 

However, we usually do not use such a value for0λ . Setting 0λ  with the value 

of zero, means that the CUSUM is designed with h=1 and k=0.That means that 

for any occurrence of a count will give us an alarm. Therefore in practice0λ , is 

chosen to be near to the current mean level. The reference value for the Poisson 

CUSUM could be selected to be close to: 

 

)ln()ln( 01

01

λλ
λλ
−

−
=k   (6.5) 

                                                                                                                                                                                                                                                                         

When 1≥k , the k value will usually be rounded to the nearest integer. 

 

 

6.1.2.2 The h-parameter 

After determining the k value, the decision interval value h is chosen using 

proper tables. A proper choice of the value of h should give a large ARL when 

the counts are at the acceptable level and a small ARL value after the change has 

occurred. 

These tables are given in the Appendix D.1 and D.2 (for the case with the 

FIR feature and the case without the FIR feature respectively) where we have 

the simulated table of the ARL’s, for the values of h, k and 0S  crossed with the 

mean of counts. In the case of the in-control state and the mean of normal 

counts, this represents the 0ARL  which we want to be a large number. In the 

case of the out-of-control state and the mean level of counts that the CUSUM 

scheme is to detect quickly, this represents the1ARL , which we would like to be 

a small number.  
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Simulation 
We suppose that in fixed time intervals we have a number of ‘events’ X 

that follows the Poisson distribution. Then we should have: 

)(~ λPoissonX i  for each of the i=1,2,…,n periods of interest. 

Suppose now that the acceptable number of events is 40 =λ  and we have a 

sudden change in the mean of the events for about 71 =λ .The code we used in 

S-plus is given in the Appendix D.3. We generate from Poisson 20 values for 

each case which represent the number of events in the fixed time periods: 

 

Table 6.1: The generated observations from Poisson distribution with a parameter 4 for 

the in-control state and 7 for the out-of-control state 

Time Periods 40 =λ  71 =λ  

1 2 6 

2 3 10 

3 2 8 

4 2 6 

5 2 6 

6 5 4 

7 5 10 

8 3 10 

9 4 7 

10 1 14 

11 1 2 

12 5 9 

13 2 12 

14 8 15 

15 4 9 

16 2 6 

17 3 4 

18 5 5 

19 7 6 

20 6 2 
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� With the FIR feature 

For these mean numbers of the two states of control, we have that the k-

value should be: 

 

35,5
39,195,1

3

)ln()ln( 01

01 =
−

=
−

−
=

λλ
λλ

k  

 

Hence, the value of kappa is 5. Moreover we are interested in a value of h 

equal or larger than seven. So we have the ARL’s for the 2 cases and we 

conclude that a proper value could be the one for h=10. 

The average run length until a false alarm is 397 and the average run 

length until our system realizes the change is about 3 or 4 periods. 

 

Table 6.2: The table with the Average Run Lengths for the in-control and out-of-control 

state of the Poisson CUSUM scheme (using the FIR feature) 

Mean as a multiple of k 

h k 2/0 hS =  4/5=0.8 7/5=1.4 

7 5 4 94.9 2.37 

10 5 5 397 3.35 

15 5 8 3630 4.36 

 

 

With the values of k=5 and h=10 we have the following graph including 

the FIR feature where we have an alarm with a delay of 3 time periods after the 

change: 
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Figure 6.3: The Poisson CUSUM scheme using the FIR feature and limit h=10. Alarm at 

the 23rd  observation 

 

� Without the FIR feature 

In this case where the FIR feature is not included and for the value of the 

parameter of kappa which we found above, we have the following table: 

 

Table 6.3: The table with the Average Run Lengths for the in-control and out-of-control 

state of the Poisson CUSUM scheme (without using the FIR feature) 

Mean as a multiple of k 

h k 00 =S  4/5=0.8 7/5=1.4 

7 5 0 108 4.09 

10 5 0 422 5.59 

15 5 0 3740 8.09 

 

Therefore we choose a value of h to be 10.For this value as before we have 

the following conclusions. 

The average run length until a false alarm is 422 and the average run 

length until our system realizes the change is about 5 or 6 periods which is a 

larger number of periods compared with the previous case of the FIR feature. 
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We see that the procedure with the FIR feature gives our Poisson CUSUM an 

advantage. That is the quicker realizing of the change in the mean and in terms 

of the time delay it is more effective. The Poisson CUSUM is given below: 
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Figure 6.4: The Poisson CUSUM scheme without using the FIR feature and limit h=10. 

Alarm at the 23rd  observation 

 

 

6.1.2.3 Poisson Approximation to a Normal Process 

If the in control value of λ is larger or equal than 2, we can transform the 

counts to a standard normally distributed random variable using the 

transformation of Rossi et al.(1999)[120]: 

 

λ

λλ

2

23 pp
x

+−
=   (6.6) 

 

Where p is the observed count, λ is the expected count and x is our normal 

random variable. For values smaller than λ<2  our results and conclusions cannot 

be reliable as Rogerson and Yamada(2004a)[117] showed.  

Another issue for this approach is that the delay is shorter with the Poisson 

CUSUM. After the transformation of the data, the delay of the detection of an 

outbreak becomes longer in the CUSUM scheme. Thus this transformation leads 
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to longer time delays of detection of a change. That was shown in Hawkins and 

Olwell(1998)[55]. 

 

6.2 The maximum value of the Conditional 

Likelihood ratios 
Another approach for the case of the fixed intervals is the maximum value 

of the conditional likelihood ratios as the alarm statistic (proposed in Lie et 

al.(1993)[84]). In this case we are based on a series of sequential tests and 

interested in the characteristics of the whole process. 

Lie et al.(1993)[84] presented a sequential binomial likelihood ratio test of 

the probability that an infant has Down’s syndrome. The procedure was called 

the γ-method and was based on a parametric model for maternal age specific 

proportions of Down’s syndrome cases, assuming that a certain fraction of the 

cases is attributable to causes unrelated to maternal age.  

However what is interesting in Lie’s paper is the comparison with the 

Poisson CUSUM method. According to that paper, the Poisson CUSUM has 

been shown to be 44% slower in detecting a moderate increase in Down’s 

syndrome risks that occurs additively over all maternal ages. In most cases the 

CUSUM method seems to be 20 to 30 per cent less sensitive to additive 

increases in terms of the average run length. 
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Chapter 7 
The Historical Limits 
Method 
 

The detection of patterns in the occurrence of diseases and other health 

events presents an important challenge to public health surveillance. For that 

purpose a window based method was firstly proposed by Stroup et al. 

(1989)[47] & (1993)[46].  

Aberrations in usual distributions of disease incidence may provide an 

early signal of an epidemic or may provide clues to important risk factors 

associated with the occurrence of a disease in a particular space and time. 

Detection of an out-of-control state of a disease is the subject of our study in 

this case and to achieve that goal we are based on an existing data set. 

The particular study is based on the weekly reports of up to 50 diseases 

made by the state health departments and which are submitted by the National 

Notifiable Diseases Surveillance System (NNDS) of the Centers for Disease 

Control (CDC).These reports are disseminated in the Morbidity and Mortality 

Weekly Report (MMWR) and are available to epidemiologists, clinicians and 

other public health professionals. 

There are some studies which are dealing with the prospective case of this 

method. A very interesting study is the one of Rigau-Perez’s. Rigau-Perez et 

al.(1999)[107] used as historical data, the reports from 5 years in which it was 

not reported a dengue outbreak in the geographic area of Puerto Rico. From 

each of these years it was chosen a three month window (15 weeks total) with 

the fewest dengue cases in Puerto Rico. By comparing all the possible three 

month windows it was decided the use of the window from April to June as this 

“window” had the less ‘events’ in the particular area of study. In this study the 

mean was the measure of comparison and so it was calculated from the total of 

60 weekly reports. The results of this retrospective application were used to 

develop a surveillance method with predictive capabilities. A comparison of 

these results was made with the data gathered after the period of interest 
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(current period) and tests were made in order to find out if there is a significant 

difference between the results of this comparison and the outcome of the real 

data. In the end these comparisons conclude in a single surveillance method 

(with high sensitivity and specificity) which functions as an indicator for 

evaluation of dengue prevention and controlling a probable outbreak. 

Another study for the prospective case should be the one of Wharton et 

al.(1993)[162] who used data from the NNDSS for a 4 month period. 

In Stroup et al. (1993)[146] three algorithms were used for estimating the 

standard error of a simulated ratio (from a known distribution).  Those are the 

bootstrap, the jackknife and the delta methods. For the evaluation of these 

methods for the best given variance, a model is used by which results can be 

compared with true or model-simulated values. Moreover, the three methods 

were applied to real data from the NNDS and measured performance by the 

epidemiologic confirmation of increased activity. 

Conclusions showed that the simple bootstrap which is based on random 

sampling from the fifteen past data, and the jackknife procedures are not the 

most appropriate. They produce exaggerated low estimates of the variance used 

for the ratio in our graph method (which in fact means that we have a little 

difference between the past and the current value). These confident estimations 

have as a result values for the ratio very close to 1 and this underestimation will 

lead to a very sensitive method with often out-of-control states. On the other 

hand, the delta method produced the best estimate of the true limits in our graph 

method. 

Based on a moving window Shore and Quade (1989)[130] proposed the 

short memory method and compared it with the Poisson CUSUM method. 

Another example of the use of the window based method is the detection of 

increased γ-radiation levels in Sweden. In this case two consecutive 24-hours 

periods are compared by the Swedish Radiation Protection Institute (Kjelle 

(1987)[68]). 

Further research has been conducted the last few years on the Historical 

Limits Method. In fact this method has been the object of comparison with other 

methods. An example is the paper of Choi et al.(2010)[24] where the historical 

limits method is compared with six other methods (one of them is the Serfling 

method which is described in the chapter 9.3 of this study).Measures of 
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evaluation for this comparison is the sensitivity, the specificity, the positive 

predictive value and the short time lag. These methods were applied in 

simulated and real data for an overall view. The poor performance of the HL 

method is mentioned compared to other methods. 

The seasonality of a disease is the main interest of the study of Pelecanos 

et al.(2010)[96]. The seasonal factor in many cases is related with a possible 

outbreak but constructing a system based on a seasonal outbreak will lead to 

inconclusive and false results in the future. Different algorithms for seasonal 

data are compared in this study. 

 

7.1 The Time Window 
These reports are referred to national data and our goal is to use as short a 

time period as possible for weekly publication in order to empower the 

usefulness of our surveillance method. However, there is an important problem. 

That is the variability in the weekly reports caused by factors irrelevant with our 

process such as the time delay of the reporting because of outbreaks. For 

avoiding the contingency of the instability of our results, we choose a 4-week 

time window. 

 

7.2 The method 
The purpose of our method is to facilitate the analysis of surveillance data 

and to offer in other sources of information. The method may not be useful for 

conditions with long-term historical trends and it is more effective if the base-

line rate of a disease is completely unknown.  

The reports, mentioned above, consist of an enormous amount of data 

which need a clear and effective statistical analysis. For this reason, a bar graph 

with the ‘ability’ to detect important changes in the baseline rate was developed. 

This graphic method was developed to describe the comparison between the 

current and the past data in a simple optical way. The second reason for 

developing such a graph is to highlight and draw the attention of the reader in 

the indication of changes in long-term trends or epidemics. 
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Reporting cases to an organization who observes the control of diseases 

(e.g. CDC) is a simple process but there are some problems. For example 

reporting cases may vary by factors unrelated to the disease process (e.g. 

reporting practices or time of month).  

In order to reduce such variability from these causes, we aggregate disease 

reports over a month period. The choice of the 4-weeks’ “current period” is not 

random. It is extracted from the fact that weekly fluctuation in disease reporting 

is noticed (it is usually due to irregular reporting rather than to disease 

incidence). 

Let now 0x be the number of cases of a given disease reported to an 

organization in the four week period ending with the current week. We also 

have the observations 151,...,xx which represent 15 previous totals and from 

which we take a baseline report. These observations represent the values of a 

three month window (the corresponding month and the surrounding months) in 

each of the five previous years.  

In such a way we create a baseline rate. Each time we compare the number 

of cases we are interested in with these 15 previous observations (or the 

baseline rate).  

In the following table we have a visual view of the time window of interest 

where 

0x : is the number of cases of the current period (February 2012). 

151,...,xx : is the historical observations of a three month window from which we 

take our confidence interval. 

Table 7.1: The table with the observations in the time-window of interest 

January February March 

2012  
0x   

2011 
1x  2x  3x  

2010 
4x  5x  6x  

2009 7x  8x  9x  

2008 10x  11x  12x  

2007 13x  14x  15x  
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Hence, the question: “is the number of cases of this month different from 

last month” is being transformed to the question: “is the number of cases this 

year different from last year”. With this transformation of our question we avoid 

the variance caused by seasonality. Seasonal diseases are observed to have an 

outbreak in a particular season. These seasonal increases of a rate of a disease 

should not be taken into account because an epidemic is not based on a 

temporary increase in the normal rate but on a long-term and at least a more 

permanent increase.  

An assumption made in our method is that 151,...,xx  and 0x are independent 

random variables with the same distribution function. For most diseases, the 

three month window produces data which satisfy this assumption. Thus, we 

calculate a two sided confidence interval for the expected number of cases for a 

four week period. We compare this confidence interval and the observed current 

value 0x  and we conclude whether the disease process is out of control for the 

current month or not.  

From the epidemiological and statistical view of this matter, we could say 

that we are interested in what sense the expected number of ‘events’ is 

approaching the observed (real) value of 0x and if this number of cases is 

exceeding the control limits. These questions are of significant importance since 

we do not know if a value from the previous years has exceeded the in-control 

state. To solve this problem we use the law of large numbers and so we expect 

that in large samples the estimation of a mean (or even a median) calculated 

from the sample, is very likely to approach the real value of the parameter for 

the entire population. The problem of the window based method is that taking a 

sample from the previous 15 months is not a large sample. To continue with our 

method we use a ratio of y: 

m

x
y 0= , 

 

where m is a measure of central tendency of the 15 baseline values. For this 

measure we evaluate the mean or the median of the 15 baseline values, 

depending in our desired level of sensitivity of the method with regard to 

aberrations in the baseline. 



 

~ 80 ~ 

 

Summarizing up, this is a parametric method which uses the 15 baseline 

values to compute a normal theory confidence interval, using the mean (or the 

median) of the baseline period in the denominator. 

 

 

7.3 Diseases for which our method is 

appropriate 
Our method is most appropriate for diseases that do not appear a 

significant level of trend in the past (historical data). Additionally these 

diseases should occur often enough so that a few cases will not be the reason of 

having a signal of alarm in our surveillance. If the data are not preanalyzed for 

trend and period effects and the variance of the current cases is assumed to be 

the same as the variance of the observations of historical data, our graph may be 

less powerful. 

 

 

7.4 The Graph 
In order to develop our graph, we have to think of the arithmetic ratio of 

current to historical incidence. In the axis of x we have the value of the ratio 

and on the axis of y we have the diseases of interest. We also have a vertical 

axis on the value of 1 of the ratio axis. This value actually means that there is 

no change in the events of the current period compared with the last 5 year’s 

data. 

In the case of spatial surveillance, which we are going to examine in the 

third part of our study, the y-axis does not represent the diseases but different 

geographic areas (e.g. countries, states, cities etc) since our graph presents the 

evolution of a particular rare disease in different countries or cities. In fact, we 

are interested in the detection of an outbreak in an area or in the spatial 

clustering of a particular disease.  More details for spatial surveillance of public 

health are shown in the 3rd part of this study.   

The point where the hatched area begins is based on the mean and two 

standard deviations of the 15 values of events occurred in the past. These are the 
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two factors from which we develop a statistical formation of a confidence 

interval.  

We give the upper and lower control limits for a ratio of a disease. 

Additionally, two figures are given for each case. These are the deviation bar 

charts of rare reported notifiable diseases (<1000 cases reported during the 

preceding year), from the Centers for Disease Control and Prevention’s 

Morbidity and Mortality Weekly Report for the United States of America: 

� For the case of the significant increase, we have an alarm if the 

number of ‘events’ of the current period is exceeding the limit based on 

the past ‘events’. This limit is defined as sm 2+ .Thus, our alarm rule 

should be stated as we have an alarm if: 
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An alarm in the case of an increase in the rate notifies us about a foreseen 

outbreak of a disease and that is the case where the most epidemiologists 

are of interest. 
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Figure 7.1: Selected notifiable disease reports, comparison of provisional 4-week 

totals December 26, 2009, with historical data. Ratio of current 4-week total to 

mean of 15 4-week totals (from previous, comparable and subsequent 4-week 

periods for the past 5 years). The point where the hatched area begins is based on 

the mean and two standard deviations of these 4-week totals. 

 

� For the case of the significant decrease, we have an alarm if the 

number of ‘events’ of the current period is lower than the limit based on 

the past ‘events’. This limit is defined as sm 2− . Thus, our alarm rule 

should be stated as we have an alarm if: 
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An alarm in the case of a decrease in the rate notifies us about the 

effectiveness of some measures taken in order to tackle with an outbreak 

of a disease in the past. Its role is mostly retrospective and gives us a 

clear view if we have faced an outbreak or not.  
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Figure 7.2: Selected notifiable disease reports, comparison of provisional 4-week 

totals January 28, 2012, with historical data. Ratio of current 4-week total to 

mean of 15 4-week totals (from previous, comparable and subsequent 4-week 

periods for the past 5 years). The point where the hatched area begins is based on 

the mean and two standard deviations of these 4-week totals. 

 

 

The parameters m and s are the mean and the standard deviation of the 

baseline data. Then our confidence interval or the upper and lower limits are 

best described by the following expression for the ratio y of our interest: 
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Note: This method does not adjust for non-normal and serially correlated data. 

So using this method means the acceptance of the assumptions of the normally 

distributed data and the uncorrelated number of cases between periods. 

 

 

7.5 Problems 
The main disadvantage of the window-based methods is that they are 

suboptimal procedures. For example the ability to detect a gradual change is low 

(Svereus (1995)[49]), if we proceed in the comparison of two consecutive 

moving windows of fixed lengths. Additionally, using time windows will have 

as a result a great loss of information as only the data referred in our period of 

interest will be taken into account. 

Surveillance data are reported sequentially in time. That is the reason why 

they may not satisfy the assumptions necessary for usual time series analyses. 

These problems appear especially for incidence data for which the numbers of 

reported cases are subject to seasonal effects and reporting delays. If at least 

one of our assumptions is not accepted, then the method used to set the limits of 

our graph may be affected. In fact, if there is limited knowledge for the 

empirical performance of the method in the absence of these two assumptions, 

this affection is greater. 
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On the investigations of these problems there are a lot of useful studies 

including Kafadar and Stroup(1992)[65], Efron and Tibshirani(1986)[32], Bose 

A.(1988)[9], Liu(1988)[86], Kunsch(1989)[75]. 

What we should have in mind, is that there is no single method which can 

be used to detect all epidemics or all types of aberrations. Incomplete or 

inaccurate reporting is expected to affect our method but even in this case these 

problems can be turned out to be useful considering the fact that we can use the 

available data to detect trends or patterns. All the data, followed by the proper 

evaluation, are useful and that is a rule that in the field of public health should 

be unbreakable. 
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Chapter 8 
Optimal 
Surveillance Methods 
 

In the previous chapters, we examined some suboptimal surveillance 

methods. In this chapter we are dealing with methods which can satisfy at least 

one optimality criterion. Such an optimal criterion as we saw in chapter 3 is the 

minimization of the expected delay for a fixed probability of a false alarm. We 

examine this criterion mostly for two reasons. It applies in several studies and 

in the field of public health is a priority. 

In this chapter we are dealing with likelihood methods which can fulfill 

properties of the system expressed by the optimal criterion mentioned above. 

Such methods are the Likelihood Ratio and the Shiryaev-Roberts method. 

 

 

8.1 Likelihood Ratio Method 
Frisén and de Maré (1991)[46] showed that the minimization of the 

expected delay for a fixed probability of a false alarm leads to the full 

Likelihood Ratio method. This method is fully described from the following. 

The partial likelihoods are denoted by L(s,t) and are defined as follows: 
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The full likelihood is a weighted sum of the partial likelihoods as we are 

going to see later. 

The Likelihood Ratio method has an alarm set consisting of those sX  for 

which the full Likelihood Ratio exceeds a limit. Then, the time of an alarm for 

the Likelihood Ratio method can be expressed as the first time that the posterior 

probability of a change exceeds a limit K: 
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The first time that the full Likelihood Ratio exceeds a time-varying alarm 

limit is an equivalent way of describing the time of an alarm for the likelihood 

ratio method: 
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where 
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=tsw  .The ),( tsw  are the weights which correspond to the 

partial likelihoods L(s,t) and K is the limit at the decision time s. Therefore, for 

the time of an alarm we have the following rule: 
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Thus, in order to solve this problem we have to make only one important 

assumption. That is the distribution of τ. We assume that τ is a random variable 

which follows a particular distribution. For this variable it is common to use a 

geometric distribution.  

A lot of studies have as a subject the Likelihood Ratio method for a change 

in several distributions. One example is the Poisson approach of the Likelihood 

Ratios as it is going to be described below. Another example is the case of a 

normal distribution. In this case, the LR method is optimized for the values of 

the change size µ and the change intensity v is used in the alarm statistic. For 

the case of normal distribution we have an alarm at: 
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8.2 Shiryaev-Roberts method 
In the method described above (Likelihood Ratio method) the conditional 

likelihood ratios are weighted according to the distribution of the change point.  

In this case we examine the “Shiryaev–Roberts” method where the partial 

likelihood ratios have equal weights. That is the main difference between these 

two methods. The SR method is the limit of the LR method: 
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when v tends to zero, since both the weights )(tws and the limit K tend to 

constants. Shiryaev and Roberts suggested that an alarm is triggered at the first 

time s for which: 
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where K is a constant. Thus, the time of an alarm, enhanced with the optimality 

criterion, for the Shiryaev-Roberts method can be expressed as follows: 
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In practical terms the Shiryaev-Roberts method can be used as an 

approximation of the Likelihood Ratio method. If we consider a low intensity of 

a shift, the parameter of the geometric distribution is close to 0 and as a result 

the weights (of the LR method) are becoming (almost) constants. So there is no 

need in using them in our alarm statistic and therefore we achieve this 

approximation. Many studies have examined this matter. For example Frisén 

and Wessman (1999)[48] demonstrated that the SR method is a good 

approximation for intensities v less than 0.20 in the case of a change in the 

mean of a normal distribution. In the same study another property is used. That 

is the constant Predictive Value.  



 

~ 88 ~ 

 

8.3 Linear approximations of the Likelihood 

Ratio method 
A lot of studies are dealing with the matter of linear approximations of 

Likelihood Ratio method. We study different kind of linear approximations of 

the LR method mainly for two reasons. Firstly, we need to construct a method 

which is easier to use and analyze, but has similar good properties as the LR 

method. Another reason is to get a tool for the analysis of approximate 

optimality of other methods. Different approximations might be of interest for 

different situations.  

An approximation, which is denoted by LinLR  is achieved by a Taylor 

approximation of the alarm function and gives an alarm for the first s for which: 

 

∑
=

>∗
s

t

LinLRLinLR LtxtsW
1

)(),(  

 

Other approaches could be the Exponentially Weighted Likelihood Ratio 

(EWLR) method and the Exponentially Weighted in Likelihood Ratio 

(EWLinLR). Further explanations are given in the study of Frisén (2003a)[37].In 

the appendix of this study are given all the necessary calculations which lead in 

the approximations mentioned above. Also some interesting simulations are 

given in Frisén and Sonesson (2002)[47]. 

 

 

8.4 The LR and SR methods for a Poisson 

process 
The Likelihood Ratio method and the Shiryaev–Roberts method may be 

applied for the case of a positive shift in a Poisson process too as it is shown in 

the study of Sonesson and Bock(2003)[140]. Particularly, the construction of 

these two methods can be applied both in the case when data are represented by 

the time between events and when data are represented by the number of events 

in fixed intervals (as they are described in the chapters 5&6).  
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8.4.1 Data are represented by the time between events 
Here we shall derive the Likelihood Ratio method and the Shiryaev–

Roberts method for the case of an increased rate of incidence when the cases are 

assumed to follow a Poisson process.  

If the cases are distributed by Poisson with a parameter v, the time 

intervals X follow an exponential distribution with a parameter 1/v. Now 

imagine that we have to deal with a shift in the intensity of our process from 0v  

to 1v , considering our two states }{)( ssD >= τ  and }{)( ssC ≤= τ  

respectively.Remember that for this case we make the assumption that the 

timescale for τ follows the number of events. So, for exponentially distributed 

time intervals denoted by X, we should have the following probability density 

functions: 
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Thus our likelihood functions should be for each case: 
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Thus the partial likelihood should be: 
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8.4.1.1 Time of an Alarm for the LR method 

The time of an alarm for the Likelihood Ratio method and a constant K is,: 
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8.4.1.2 Time of an Alarm for the SR method 

For the same case of an increased rate of incidence when the cases are 

assumed to follow a Poisson process, the time of an alarm for the Shiryaev-

Roberts method and a constant C is: 
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8.4.2 Data are represented by the number of events in 

fixed intervals 
For the second case we derive the Likelihood Ratio method and the 

Shiryaev–Roberts method when our observations consist of a number of events 

X, recorded in fixed intervals of length k. The number of events in fixed 

intervals of length k follows the Poisson distribution. So the density function is: 
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Thus our likelihood function for the case of the in-control state should be: 
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With the same way we derive the likelihood function for the case of the out-of-

control state: 
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Thus the partial likelihood should be: 
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8.4.2.1 Time of an Alarm for the LR method 

For that case, the time of an alarm for the Likelihood Ratio method and a 

constant K is: 
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8.4.2.2 Time of an Alarm for the SR method 

For the same case of the number of events in fixed intervals of length k, 

the time of an alarm for the Shiryaev-Roberts method and a constant C is: 
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8.5 Conclusions 
In both cases the Likelihood Ratio and the Shiryaev–Roberts method are 

preferable to the suggested methods for the cases of chapters 5 & 6. The LR and 

the SR methods fulfill optimality criteria when the methods of the previous 

chapters are suboptimal methods. The problems surely are handled better using 

the ratio of the likelihood functions, as the expected delay will be shorter for a 

fixed value of the probability of a false alarm.  

  

Table 8.1: The methods, their alarm functions, the number of their parameters and 

optimality 

Method Alarm 

function of 

L(s,t) 

Number of parameters 

in the Alarm functions 

Optimality 

 

Likelihood 

Ratio 
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Sometimes the Likelihood Ratio method (which means the use of the 

posterior distribution) is named “the Bayes method” while the Shiryaev-Roberts 

method is considered a frequentistic one. That is not fully true. In fact no 

especially Bayesian assumptions are necessary for the LR method. The 

identification of such a method as a Bayesian one depends on the situation 

whether the distribution of τ is considered as a “prior” probability, an observed 

frequency distribution or just reflects which situation optimality is desired.
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In recent literature there are several applications of the LR method in 

public health because of its optimal properties. In the study of 

Andersson(2003)[3] a comparison is given between the LR method and the non-

parametric approximation of the LR method for the case of detecting influenza 

epidemics. Another comparison is also available in Andersson(2004)[4] between 

the LR method and the maximum likelihood ratio method. 

For the case of Chang(2008)[13] the SR method applied in monitoring 

surgical performance is compared with two different CUSUM schemes. 

The optimality of methods is a very interesting subject for further 

research. Expressing methods through likelihood functions gives us a whole new 

field of study in order to link methods with optimality criteria. An interesting 

study in this area is the one of Frisén(2007)[39] & (2009)[40]. 
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Chapter 9 
Processes with Time 
Dependencies   

In the previous chapters we are dealing with methods which can be applied 

in a Poisson process. Actually that is our main assumption. There are, though, 

cases where the ‘events’ of a disease are not fitted in a Poisson process. If the 

assumption of a Poisson process for the cases of a disease is not appropriate, we 

have to approach our problem from a different view.  

Since public health surveillance data are used in regular time intervals, the 

time series of the number of diseases often exhibit time dependence such as 

autocorrelation and seasonality. For that reason there has been a great amount of 

papers which are dealing with the modeling of these time series and provide 

forecasts of future incidence values. The possible deviations from the modeled 

series can be thought of as an indication of a change in the pattern of disease. 

Moreover, no assumption of stationarity is needed in the general surveillance 

setting but, if it exists the situation is simplified. 

A first choice could be the Box-Jenkins (seasonal) autoregressive 

integrated moving average models (ARIMA) presented in Box & Jenkins 

(1970)[10]. Box-Jenkins models have been used in vast literature. Some studies 

are the following: 

Choi and Thacker(1981)[23], Helfenstein(1986)[57], Nobre et 

al.(2001)[95], Reis and Mandl(2003)[106], Schnell et al.(1989)[124], Zaidi et 

al.(1989)[172]. 

Additionally, there is statistical software from which we can calculate the 

Box–Jenkins modeling. Such an example for statistical software is the statistical 

software for Public Health Surveillance (SSS1) developed by the CDC (Stroup 

et al.(1994)[148]). This software gives the ability of analyzing surveillance 

data, including the Box–Jenkins method. 
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Predictions estimate the expected incidence values and these are compared 

with the most recently observed disease incidence value. Several steps are 

necessary to proceed in the time series analysis: 

 

� Stationarity: Speaking not strictly for a time series 

}{ tX with ,...1,0±=t , we can support that it is stationary if it has the same 

properties similar to those of the “time-shifted” series }{ htX + for each 

integer h. Now let be a time series }{ tX with ∞<)( 2
tXE . The mean 

function of }{ tX is : 

 

)()( tX XEt =µ  

 

The covariance function of }{ tX is: 

 

),(),( srX XXCovsr =γ  

 

for all integers r and s. According to these, we can give the definition of 

stationarity: 

}{ tX is a stationary stochastic process for all t, if the mean of the process 

is constant ( )(tXµ is independent of t ) and the covariance between }{ tX  

and }{ 1−tX  ( )1,( −ttXγ ) depends only on the time lag k. 

 

For the case of non constant mean, traditional transformations are 

required to generate a stationary series from the non stationary series. 

Time lag differencing is used when non stationary means are 

encountered. For the case of the existence of dependencies between the 

variances and the time, square root transformations are required. 

 

� Identification and estimation: Identification of an adequate 

stochastic process to describe the observed time series is needed. The 

tools used for identification are the autocorrelation function (ACF), the 
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partial autocorrelation function (PACF) and the inverse autocorrelation 

function (IACF). 

The ACF indicates the order (p) of the moving average part. The PACF 

and IACF indicate the order (q) of the autoregressive part. 

In the case when the orders of the process are determined, we proceed in 

the estimation of the parameters with the help of the maximization of a 

likelihood function. 

 

� Diagnostic checking: In this case we are interested in the 

residuals. Residuals have to fulfill three properties:  

a. The mean of the residuals should not be significantly 

different from zero. 

b. The distribution of residuals should be normal. 

c.  There should be no residual autocorrelation.  

 

An appropriate t-test for the significant difference from the zero value of 

the mean would be appropriate for the first property. The Kolmogorov–

Smirnov test for the normality of the residuals (see Daniel (1995)[28]) 

and the Box–Ljung statistic (Ljung and Box (1978)[87]) can be used 

respectively to verify the last two properties.  

When the analysis of the residuals is complete, the model can be used to 

forecast values and their corresponding confidence limits. The forecasts 

are assumed to be normal in order to calculate the 95% interval. That is 

the estimating value plus or minus the square root of the forecast 

variance.  

 

 

9.1 Process Control methods and Box–Jenkins 

models 
Williamson and Hudson(1999)[164] give a description of a combination of 

the Box–Jenkins models and statistical process control methods. In this paper a 

two-stage monitoring system is described. 
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An ARIMA model is developed as it is given above. Consequently, the 

residuals from the prediction are assumed to be approximately independent and 

identically distributed and they are tracked in a statistical process control. This 

system was performed on data from the NNDSS. In Vanbrackle and Williamson 

(1999)[158] this idea was further investigated and the ARL performance was 

investigated applying the Shewhart, the moving average method and the EWMA 

method to these residuals for four different types of shift. 

Watier et al. (1991)[160] proposed an autoregressive integrated moving 

average type of model-based warning system where the alert threshold value is a 

function of the upper side of the prediction interval. The idea was applied to 

data for Salmonella in France. 

Nobre and Stroup (1994)[94] used the forecast errors to calculate a 

probability index function to detect deviations from past observations applied to 

data for measles cases reported through the NNDSS. 

 

 

9.2 Integer-valued Autoregressive Models 
Another type of models is the integer-valued autoregressive models (INAR) 

for the analysis of time series. They have been studied theoretically by many 

authors (Al-Osh and Alzaid(1987)[2], Du and Li (1991)[31], Latour(1997)[79] 

& (1998)[80]) and an application can be found in Cardinal et al.(1999)[12]. This 

class of models is an interesting alternative to the real-valued time-series 

models which do not respect the nonnegative integer-valued characteristics of 

surveillance values. Real-valued models applied to nonnegative integer-valued 

observations may be an inappropriate strategy, especially for the analysis of rare 

events. An INAR process of order p is defined by: 
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An epidemiologic interpretation of this formula is to consider that }{ tX is 

the prevalence of the disease at time t. The prevalence at time t is the sum of 
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individuals remaining infected with a probability a in the time interval (t−1,t) 

and individuals contracting the disease in the same interval (represented by te ). 

The Steutel and van Harn’s convolution operator (Steutel and van Harn 

(1979)[143]), denoted “o ”, is defined by:  
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{ }Ν∈kYk ;  is a sequence of identically and independently distributed 

random variables which follow a Bernoulli distribution with parameter a. If we 

consider an integer-valued autoregressive process of order 1, the first formula 

can be rewritten as: 

 

tXt eYYYX
t
++++=

−1
...21  

 

INAR models are identified using the same tools as for ARIMA models 

(ACF, PACF). Autoregressive parameters are estimated using either the Yule–

Walker estimation technique or the conditional least-squares method. 

Cardinal et al. (1999)[12] concluded that an INAR model provides a 

smaller relative prediction error than ARIMA models for meningococcal 

disease. 

 

 

9.3 Serfling’s Method 
In this case Serfling (1963)[127] presented a system where a statistical 

analysis takes place for weekly pneumonia and influenza deaths in 108 US 

cities. This system is the foundation for several papers in epidemiological 

literature. The way it works is through a regression model which fits the non 

epidemic data and predicts a non epidemic level curve.  

Costagliola et al. (1991)[26] applied Serfling’s method to the French 

influenza-like syndrome data collected from a sentinel network from 1984 to 

1988. In this paper the cases for the periods above three cases per sentinel 

general practitioner (SGP) were deleted. The regression equation  
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is fitted in order to predict the expected non epidemic level for the following 

winter. In this equation ty  is the number of cases per SGP in week t and te are 

the residuals for which the assumption that they follow a centered normal 

distribution is made. The parameters are estimated by the least-squares method.  

The disadvantages of this method are the limitations we have to make in 

order to develop an effective monitoring system. The first limitation of this 

approach is that we have to define at what number of cases per SGP we can 

consider that past observed data should be deleted when fitting the model. The 

second limitation is that the model assumes a seasonal period and very specific 

terms in the regression equation. This means that the process under study must 

be relatively regular over time. Thirdly, this method can be applied not in all the 

types of time series as it exhibits different features in terms of seasonality, 

number of cases, etc.  

However, this approach represents a simple tool to analyze surveillance 

data for relatively well-known diseases as it was shown by Flahault et 

al.(1995)[34]. 

 

 

9.4 Log-linear Regression Model 
The following model is a very interesting tool for the detection of an 

epidemic as it adopts for the majority of data characteristics of a statistical 

solution. 

Farrington et al. (1996)[33] presented an algorithm which is constructed 

based in reports from Communicable Diseases Surveillance Centre (CDSC). 

This model is described as follows:  
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The main idea, for this model, is that for each week it  we have a baseline 

ix (number of events).The assumption we make is that the ix  follow a 

distribution with mean iµ  and variance ikµ , where k is the dispersion 

parameter. Estimates are obtained by a quasi-likelihood method.  

As far as we are concerned about the probable trends and seasonality of the 

time-series we solve these problems by fitting a linear time variable in our 

regression )log( iµ  and by using observations from comparable periods in the 

threshold calculation(as in the Historical Limits method of chapter 7), 

respectively. This calculation involves the problem of serial correlations 

between baseline counts which is tackled with the absorption of their 

estimations in the threshold expression. The influence of baseline counts in time 

periods coinciding with past outbreaks is reduced by constructing weights based 

on adequate residuals (Davison and Snell, (1991)[29]).If we associate low 

weights with large residuals then our problems are solved in a great degree. This 

method’s main disadvantage is that if we adjust it for over dispersion, then our 

method becomes very sensitive and as a result it detects small increases in rare 

diseases.  

Since 1996, this method has been applied to the detection of aberrations 

for a set of 200–350 different types of organisms reported from laboratories. 

Each week, an excess score is given for each organism and if this score is higher 

than one, an alarm is triggered.  

 

 

9.5 Other Parameter-driven Models 
Zeger(1988)[173] presented another Poisson log-linear regression model as 

an alternative to observation-driven models described in the previous sections. 

In observation-driven models, }{ tX  is a function of past observations 

,...2,1 −− tt XX . 

In this parameter-driven model an unobserved stochastic process generates 

the dependence between random variables of the process of interest. For the 

case of parameter-driven models, methods with linear models which are 
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presented by West and Harrison (1989)[161] and methods based on the Kalman 

filter (Kalman(1960)[66]) seem to be useful. An example for this last case is the 

study presented by Stroup & Thacker(1993)[144] who applied the Kalman filter 

to the surveillance of AIDS data.  

Another application of the Kalman filter is the study of Smith and West 

(1983)[137]. Kidney failures with various possible changes are studied in a 

Bayesian framework. Representing the problem as a state space model, the 

multiprocess Kalman filter was used to calculate on-line posterior probabilities 

for the various states. Further literature can be found in Smith et al.(1983)[138] 

and Gordon and Smith(1990)[53].   

In Whittaker and Fruhwirth-Schnatter(1994)[163] the same approach was 

used for detecting the onset of growth in bacteriological infections. An alarm 

was triggered if the posterior probability of a change exceeded a fixed constant. 

In Schlain et al.(1992)[122] the use of a Shewhart–CUSUM method is found, 

applied to recursive residuals from a continuous time first-order autoregressive 

model, where the parameters of the model were continuously updated by using a 

Kalman filter, can be found. Other examples of this approach can be found in 

Schlain et al.(1993)[123] and Stroup and Thacker(1993)[144]. 

Other parameter-driven models called hidden Markov models (HMMs), 

have been applied to the monitoring of surveillance data (Le Strat and 

Carrat(1999)[83], Rath et al.(2003)[104]) and the analysis of hospital infection 

data (Cooper & Lipsitch (2004)[25]). The basic idea is to associate with each 

tX , an unobserved random variable tS  that determines the conditional 

distribution of tX . Parameter estimations are obtained by the maximization of a 

likelihood function.  

Some other examples of time series modeling can be found in 

Healy(1983)[56], Ngo et al.(1996)[93], Simonsen et al.(1997)[135] and Quenel 

and Dab(1998)[101].  

An interesting study on this subject is the one of Cowling et al.(2006)[27] 

where time-series and CUSUM models are compared with the Serfling’s 

method. It was shown that time series and CUSUM models are more effective 

when applied on short-term data. The study was based in the surveillance of 

influenza data from honk Kong and the US. 
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A review of several statistical approaches as well as some methodologies 

and time-series models, which we mentioned in this chapter with the appropriate 

simulations, are given in the review study of Unkel et.al.(2012)[156]. 

Finally, we should recommend the book of Lawson & 

Kleinman(2005)[82].The study of Yann Le Strat(2005)[170] in this book gives 

an overall review of temporal surveillance including different types of time-

series models. 
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Chapter 10 
Spatial Surveillance 
 

In the previous section we studied some cases in time for the detection of 

an outbreak of a disease. Monitoring cases in time and analyzing temporal data, 

though, do not always give the statistical results epidemiologists need in order 

to decide the appropriate actions. There are many cases for which we construct 

methods for surveillance systems, from a prospective view, in order to detect a 

change in the data. This analysis often does not contain any information about 

the spatial factor. As a result, our system is ineffective since it ignores the 

spatial structure of the data. All surveillance methods discussed so far are 

examples of this. One of the main purposes of the surveillance systems that are 

in use is to detect changes in observed data. Ignoring the spatial structure of the 

data, we ignore a wide part of its foundations and so we are led to use less 

information. 

Because of this loss, we construct suboptimal surveillance methods. An 

example is a local change which is smoothed (and therefore not detected) 

because of aggregation of the data. The case of a spatially spreading shift 

process is another example. These are two cases where the spatial component 

contains the important subject-matter information. The significance of the 

spatial factor varies according to the disease and the type of our problem but the 

exclusion of such information will severely limit not only the ability for 

detection but also our understanding of the process. So, further statistical 

analysis in a second level is needed. That is the spatial analysis. 

Actually, most public health surveillance systems are developed with 

respect to the space and the time of the ‘events’. International or national 

organizations collect reports with the events recorded in each state, country or 

some specific locations. Such organizations for example might be the 

International Clearinghouse for Birth Defects Monitoring Systems or the 

Centers for Disease Control and Prevention which collects data from all over the 

USA. Another example is the European co-operation during the winter of 1993–

1994 (Fleming and Cohen (1996)[35]) where the influenza epidemic started in 
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Scotland and spread south to the rest of the European countries via England and 

France.  

In order to develop a spatial surveillance method there are two types of 

situation we desire to deal with. For the first situation we are dealing with 

various forms of level changes with possible spatial dependence between the 

locations of observation. The second case concerns not only level changes in the 

case when the data collected are spatially correlated but also the detection of 

changes in spatial patterns. An example of this is various forms of clustering of 

diseases. The case of child leukemia has been the topic in many retrospective 

studies.  

For the temporal part there are applications for a multivariate surveillance. 

For example a multivariate version is applied to the sets method, using data on 

malformations from multiple sources. In that case, fixed time periods were used 

contrary to the univariate version, which uses the time between events. Here, the 

number and size of terminated sets within the time period are used. An alarm is 

given if each of the terminated sets is smaller than a certain number. However, 

as previously discussed, it would be preferable to base the surveillance system 

on the initial interval data. In Stroup et al. (1988)[145] the possibility of using 

multiple time series for the detection of excess deaths from pneumonia and 

influenza was discussed. Here, one-step-ahead forecasts are used. 

Constructing surveillance methods for spatial processes is a complicated 

problem. For the spatial analysis we consider different assumptions for the 

observed process and different ways of observing and modeling this process. In 

the case of spatial surveillance a change in a parameter of the distribution of the 

observations might have a clear spatial interpretation, e.g. a stronger tendency 

for clustering. In Lawson (2001)[81] a discussion of how to generalize various 

kinds of spatiotemporal models to allow for prospective surveillance is given. 

Various problems when applying surveillance methods to spatial public health 

situations were pointed out. 

In the study of Kulldorff (2001)[72], the issue of the prospective 

monitoring of clusters is also presented by using a modification of the spatial 

scan statistic proposed in a previous study of his (Kulldorff (1997)[71]). The 

new statistic is a combination of the spatial and temporal features. The 
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spatiotemporal scan statistic is used prospectively for fixed time windows as it 

is combined with the cumulative sum methods. 

Dealing with spatial surveillance means the acceptance of the assumption 

that there is a spatial model for the observed data. Another approach based on 

this spatial model is proposed by Järpe (1999)[59]. This approach was used in 

the surveillance of clustering in a spatial log-linear model with a fixed lattice: 

the Ising model. In this case we proceed in the sufficient reduction of the spatial 

structure in order to tackle with the problem of the loss of information based on 

the spatial factor. The result of the proper reduction is a univariate statistic 

involving the sufficient spatial factors for each time point. A complete 

separation of the spatial and the temporal factors was possible.  

The same purpose of the reduction of the spatial structure is studied 

through the method of the likelihood ratio by Järpe (2000)[60]. The main 

subject is to deal with a shift in the process with respect to the spatial factor as 

time increased. A likelihood ratio statistic which involves a sufficient reduction 

in the spatial structure is proposed. In this case, though, a complete separation 

of the spatial and temporal components was not possible owing to the nature of 

the problem. Different ways of treating the multivariate structure in the spatial 

surveillance situation was discussed. As an application, the problem of an 

increased rate of radiation was investigated. An evaluation and comparison with 

the system that is currently in use in Sweden, which is based on a moving 

window, was made. The situation with a spreading shift process would 

correspond well to the surveillance of influenza, where the disease spread across 

Europe from Scotland (Fleming and Cohen (1996)[35]). 

Several issues are analyzed in the studies of Vallet and Lawson (2011) 

[157], Assunção and Correa(2009)[6] and Gallego(2010)[49] for the purpose of 

the prospective timely detection of incident disease clusters in space and time. 

In public health, this idea is widely spread the last few years since it 

considers not only the temporal feature of a case as we saw in the parts I & II. 

The space factor is proved to be very important in monitoring the public health. 

That is the reason why, several approaches have been developed as we described 

them above. 

Kulldorff(2005)[73] presented a very good study in Lawson and 

Kleinman’s(2005)[82] book where he describes the role of the scan statistics for 
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geographical diseases. He uses mostly Poisson or Bernoulli distributed data and 

shows how these scan statistics are implemented in some maps or methods such 

as the CUSUM scheme. Moreover he gives some ideas of proceeding in 

geographical clusters of the disease monitored. 

A spatiotemporal extension of the spatial scan statistic appears in 

Kulldorff et al.(2005)[74]. Different ways of constructing space–time scan 

statistics based on surveillance theory is presented in the study of Sonesson 

(2007)[139]. Sonesson showed how spatial-temporal scan statistics can be 

embedded in a CUSUM framework and applied these methods to the detection 

of an increased rate of Tularemia in Sweden. The same approach was used by 

Marshall et al.(2007)[89] in order to construct a CUSUM method for monitoring 

the local Knox statistic tests for space and time clustering each time there exists 

a new observation.  

A space-time scan statistic for the detection of an outbreak in public health 

is presented in Takahashi et al.(2008)[150]. An improved spatial system is 

presented in Johnson(2008)[63] for the case of the West Nile virus in U.S. 

through generalized linear mixed models. The local Knox statistic is used. 

Some prospective scan based methods are reviewed in Woodall et al. 

(2008)[168].  Issues that are related to the spatio-temporal scan based statistics’ 

evaluation are referred.   

Tsui et al.(2011)[154] developed a general framework for spatial and 

spatiotemporal surveillance based on likelihood ratio statistics. The CUSUM 

scheme and Shiryayev-Roberts statistics are special cases under such a general 

framework. 

An application of the Poisson CUSUM in rare events from different 

regions was developed by Rogerson and Yamada (2004a)[117]. The purpose of 

this paper is to construct a multiregional surveillance system with the help of a 

Poisson CUSUM which is applied in infrequently appeared counts from 

different locations. On the CUSUM scheme for the spatial case it was also 

presented by Rogerson and Yamada (2004b)[118], a comparison between 

univariate and multivariate CUSUM approaches. Several multivariate CUSUM 

schemes are given in the paper of Jiang et.al.(2011)[61]. The multivariate case 

gives us thoughts for further applications in the future for the spatial case.   
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Spatio-temporal surveillance is the objective of Rodeiro and 

Lawson(2006)[111]. Several methodologies are discussed on this paper in order 

to construct an effective surveillance system with spatial features included. 

These methodologies are based on hierarchical space-time models. 

A review for spatial, and spatial–temporal systems that can be used to 

facilitate the early detection of infectious disease outbreaks is given in Chen 

et.al.(2011)[14]. 

A review of the available software for spatio-temporal surveillance of 

diseases is given in Robertson and Nelson(2010)[110].  

A general review and interesting issues for spatial clustering and space-

time scan statistics are given for further study in the book of Tango(2010)[152].  

In the following sections we are going to examine the usage of the 

cumulative sum methods in spatial surveillance. We focus on data from different 

regions (neighboring or not) and we present how the CUSUM applies to public 

health problems. Data may be normally distributed but it is common to use the 

Poisson model too. We also present the variety of problems coming up as 

someone examines this type of monitoring in public health.  

 

 

10.1 Cumulative Sum Methods and Spatial 

Surveillance 
In this section we are going to see the CUSUM method applied in a region. 

If we want to take into account all the available information generated from the 

spatial factor, then we should divide our region of interest. In this section we 

divide the region in 9 locations/areas. A graphical image of our location is given 

below: 
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From the projection of our area illustrated above, we assume that we are 

interested in a squared region 3x3 which is divided in 9 smaller squared 

locations of equal size 1x1. In a few words we generate normally distributed 

data for each one of these areas with a mean of zero and standard deviation of 

one. We generate 20 values for each region and we make the assumption that 

these 20 values correspond to different periods (time). 

With different colors we want to present the different rate of change in the 

mean of the different areas. The changes are described in the following table: 

 

 

Table 10.1: The table with the changes in the mean for each region 

Regions Change in the Mean 

1,3,7,9 + 0.3 

2,4,6,8 + 0.5 

5 + 1 

 

For each region we also make the assumption that it maintains its CUSUM 

scheme. We take a value of k=1/2 and we want to figure out the limit h for a 

fixed value of 0ARL (say 1200 =ARL ).Then from the equation  (6.2) we have: 
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The generated values before and after the change in the mean for each one 

of the nine regions are presented in the tables of the Appendix E.1. We proceed 

in calculating the statistics of the CUSUM scheme for each of the nine locations 

and we have the CUSUM graphs respectively in Appendix E.2.  

We conclude that for the small change in the mean (+0.3) (areas 1, 3, 7, 9) 

we have the longest delay in realizing the alarm (region 1: 9 time periods, 

region 9: 10 time periods). Additionally, we have a false alarm for the 3rd area 

and no alarm at all for the 7th area. 

For the change in the mean of +0.5 we have a time delay of 5 periods for 

the areas 2, 6, 8 and for the 4th location we have a time delay of 8 periods. 

For the biggest change in the mean (+1.0) we have the smallest delay 

(region 5: 3 time periods).  

 

 

10.2 Problems  
These nine systems for each region give a unique CUSUM scheme and we 

can realize which area has an outbreak or not. However this thought most of the 

times do not give us reliable conclusions. That is for two main reasons; the 

unrealistic limit h and the small changes in the mean of a disease in some areas. 

 

 

10.2.1 The problem of limit h 
If we have a fixed average run length until the first alarm of about 120, we 

have to construct a more reliable and a more realistic limit. The value of ARL 

practically means that for each region we should have an average time of 120 

periods before our system trigger an alarm. Thus, the value of the limit h=3.01 

is too low and we have as a result frequent alarms that may be neither true nor 

reliable. 
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If we want to have a CUSUM scheme for each one of the nine regions we 

have to adjust our threshold which we are going to use in each case. Adjusting 

this threshold, leads us to use the number of areas in which the location of 

interest is divided. That is m=9. If we have a fixed 120=ARL and k=1/2 with 

the purpose of maintaining all the regional charts, then for all 9 areas we use the 

approximation given in Raubertas(1989)[105]: 
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This is based on the fact that the ARL follows an exponential distribution 

approximately. Thus for the new 0ARL  we have the following: 
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Then the new h is given as follows from the (6.2) equation: 
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In a few words, with this value of 0ARL  and therefore the new value of h 

we achieve that the average time until the first alarm (false alarm) over the m 

regions is equal to ARL. For these values we proceed in our simulation using the 

data which were generated before, for the 9 locations. We construct the 

CUSUMs for each of the nine locations with the new limits. The appropriate 

graphs are given in the Appendix E.3. 

From the simulation, we notice that now we have a more realistic but 

pessimistic limit and as a result it is difficult for the system to detect small 

changes of the mean. The areas 3, 7, 9(with the smallest increase in the mean) 

this time do not trigger an alarm. Additionally, at region 3 where before we had 
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a false alarm now we do not have an alarm at all. From the regions with the 

small increase in the mean only the 1st triggers an alarm (region 1: delay of 12 

time periods). 

For the group of areas with a normal increase of +0.5 in the mean, only the 

8th area does not trigger an alarm. The others trigger an alarm but there is a 

large delay especially for the 4th location (alarm at the 40th observation).  

The fifth’s area CUSUM with the largest increase in the mean gives an 

alarm with a delay of 8 time periods. 

Generally, four regions do not trigger an alarm and five trigger an alarm. 

Comparing these results with the CUSUMs of the limit h=3.01, we see that the 

alarms are fewer. In the case of the 3.01 limit, only one area did not trigger an 

alarm. Moreover, in that case we had a false alarm too. Using the approximation 

of the limit h=5.135, we improve our system from the view of not having a false 

alarm and from the perspective that the average time until the first alarm over 

the set of the 9 charts, is equal to ARL. From this point of view, this is a more 

realistic limit and we are confident for our decisions if we have an alarm. The 

absence of false alarms makes our system more reliable. On the other hand, this 

value of the limit h is absolutely conservative and leads both to the absence of 

alarms and to larger time-delays in realizing the change in the mean. 

 

 

10.2.2 The problem of small changes 
It is understandable that epidemiologists could miss an outbreak (i.e. of a 

disease) which takes place in a lot of regions. As we saw in the simulation 

above, small changes in each region are hardly detected and even if regional 

alarms are triggered this is usually done with a large time delay. Thus, small 

changes in the rate of a disease are a problem for each region’s system. That is 

why a more overall system has to be constructed. A small change in one region 

may not give us an alarm but if small changes take place in the neighbor 

regions, then it is easier for the total system to detect the change and trigger an 

alarm. There are two ways to solve this problem and proceed in the construction 

of a proper system:  
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� The first is to maintain the CUSUM charts for local 

Neighborhoods around each region.  

Raubertas (1989)[105] suggested the CUSUM method not only for each 

location but also for its surrounding neighborhood. That is the main idea 

of constructing the appropriate statistics for the appropriate locations. In 

other words, we use some weights based on the distance between the 

locations. These weights are increasing, if the distance is small and 

decreasing if the distance is large.  

Our purpose is to detect a change in the mean of one or more regions 

through local statistics. An immediate detection of a shift from the null 

hypothesis (where there is no spatial pattern and all regions have zero 

means) to the situation where one or more regions witness an outbreak of 

the event is of interest. Rogerson(2005)[114] at his study in the book of 

Lawson and Kleinman(2005)[82] gave us a detailed presentation of how 

this method works. 

At each location, we construct a local statistic, by using a Gaussian 

kernel, represented by a weighted sum of the regional values: 
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Where ijw are the weights and are expressed as follows: 
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where σ is the width of the Gaussian kernel (chosen to coincide with the 

likely size of any emergent spatial cluster), and ijd  is the distance from 

the centre of region i  to the centre of region j .  

An issue for this methodology is the case of the locations near edges 

where there are not as many neighboring locations as in other regions. As 

a result, the sum of the squared weights∑ j ijw2 , and the variance of the 
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local statistic (which is based on the sum of the squared weights), will be 

smaller for regions near edges than for other regions which have more 

neighbor regions.  

Giving solution to this problem, modified scaled weights are used in 

order to have equal variances for all the statistics of the different regions. 

Modified weights are expressed by the following equation: 
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  (10.4) 

 

Using the normally generated data from the previous simulation of the 9 

regions, the centre of our area of interest is the fifth location. In order to 

find the appropriate weights for this region we have to figure out the 

distances. We presented above the squared region of interest which is 

divided in 9 areas. We make the assumption that the total area is of 

dimension 3x3(e.g. in kilometers). For our convenience, we proceed in 

the example with the scale of kilometers (and without transform the 

distances in meters). We also assume that the 9 locations are squared 

areas with equal dimensions. Therefore each area is of dimension 1x1. 

The distances are calculated considering the centers of each area.  

 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 



 

~ 120 ~ 

 

Thus, we have the following table with the distances ijd  for the fifth 

location: 

 

Table 10.2: The distances of the 9 regions from the 5th region 

ijd  j 

 1 2 3 4 5 6 7 8 9 

i 5 2  1 2  1 0 1 2  1 2  

 

The weights for this area are calculated for 1=σ . For the corner areas 

1,3,7,9 and the areas 2,4,6,8 the weights are equal since the distances are 

the same. For the areas 2,4,6,8 the weights are given below from (10.3): 
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For the areas 1,3,7,9 and 5 the weights are calculated with the adjustment 

(from 10.4 equation) we mentioned above: 
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Then we calculate the sum of the squared weights: 
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So, using the adjustment for the corner areas we have: 
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And for the centre area (5th location) we have: 
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So, for these weights we calculate the statistic ity for the (centre) area 5 

(from (10.2) equation). The new values from which we calculate the 

CUSUM statistic are given below: 

 

Table 10.3: The transformed observations of the 5th area after we include the 

weights 

Time Period Values of area 5 with 

the Weights of Neighbor 

regions 

1 -0,47538 

2 -0,55773 

3 1,22710 

4 0,07724 

5 -1,48427 

6 -0,52506 

7 1,39312 

8 -1,87274 

9 0,80134 

10 0,98338 

11 0,33103 

12 0,74165 

13 0,74571 

14 0,46018 

15 0,88657 
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16 0,51832 

17 0,02801 

18 -0,45050 

19 -1,31354 

20 -1,62783 

21 2,75034 

22 0,72749 

23 2,54517 

24 1,45112 

25 2,57387 

26 1,26622 

27 3,08814 

28 2,42695 

29 2,05999 

30 2,46690 

31 2,01955 

32 1,91117 

33 -0,41139 

34 -0,17642 

35 1,55448 

36 1,24310 

37 0,89420 

38 2,09192 

39 0,70456 

40 1,15628 

 

 

 For the value of h to be 3.01 we have an alarm at the 23rd observation (3 

time periods delay). Nothing changed in the time of the alarm, compared 

with the system without the weights of the neighbor regions of the 5th 

area. 
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Figure 10.1: The CUSUM scheme for the weighted observations of the 5th  region 

for a limit h=3.01.Alarm at the 23rd  observation 

 

 

 

With the more appropriate value of h but a more conservative approach 

we have an alarm at the 24th observation. For this value of h though, we 

see great improvement using the weights. Without the weights, we had an 

alarm at the 28th observation and now we have an alarm at the 24th 

observation for area 5. The delay has decreased and with this way we 

manage to transform a conservative approach of the system (of the limit 

h=5.135)  to a monitoring system with a short time delay. 
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Figure 10.2: The CUSUM scheme for the weighted observations of the 5th  region 

for a limit h=5.135.Alarm at the 24th observation 

 

For spatial disease surveillance with data from several locations, 

Raubertas (1989)[105] suggested the Poisson CUSUM method for each 

of these locations. To account for the positive spatial correlation between 

nearby locations, the author suggested pooling within neighborhood 

observations, using closeness as weight. Making this modification the 

sensitivity of the Poisson CUSUM is improved. We have an alarm as 

soon as one of the CUSUM systems of a location signals an alarm. The 

measures of 0ARL  and 1ARL  are proposed for the system’s evaluation. 

For Poisson variables, one can monitor theity : 

 

∑=
j

jtijit xwy , 

 

where the jtx is the observed count in region j  at time t, and ijw  is a 

weight associated with the distance from region i  to region j . 
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These observed quantities are then compared with their corresponding 

expectations, ∑
j

jtijw ,0λ for region j  at time t, and used in a CUSUM for 

region i . 

For the issue of the thresholds, Monte Carlo simulation of the null 

hypothesis may be used as it is referred in Rogerson(2005)[114]. 

Observed counts are realizations from Poisson or Normal distributions 

with parameters set equal to the corresponding expectations. The 

thresholds should be determined using 0sARL  with a desired average run 

length of 0ARL , where ms< . The value of s is determined via simulation 

with the purpose of achieving the desired average run length. The greater 

the correlation between the local regional statistics, the lower s will be 

relative to m (Rogerson and Yamada (2004a)[117]). 

 

� The second solution is to develop a global spatial statistic within 

a CUSUM chart. In spatial surveillance we are facing problems 

involving both spatial and temporal components. To deal with these 

problems we can use different approaches. One example is the 

Rogerson’s approach. According to this approach we proceed in the 

surveillance in time of a purely spatial statistic which describes the 

spatial pattern for each time point. This is the case when using a 

univariate test statistic designed for a retrospective test and following it 

through time by using a surveillance method. This approach was used in 

Rogerson (1997)[112], where a modification of the retrospective test 

suggested in Tango (1995)[151] for both, general and focused clustering, 

was used prospectively within a CUSUM method. Rogerson used Tango’s 

statistic for a general test clustering: 

 

)()( prAprCG −′−=   (10.5) 

 

where r  and p are  mx1 vectors containing the observed and expected 

proportions of cases in the m regions of interest. A is a mxm matrix 

containing elements ija that measure the closeness of region i to region j . 
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The function of ija according to Tango is expressed with respect to the 

distance, ijd  between two regions: 
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with 1=iia . The scale parameter τ is related to the size of the cluster; 

larger values of τ are effective in detecting larger clusters. Tango uses 

τ=5 .The test statistic relies on successive computations of Tango’s 

statistic as new observations become available. 

Tango’s test, like the most of the tests for the detection of clusters, is 

used in a retrospective way. We are interested, though, in monitoring the 

diseases in some locations. That actually means we care for prospective 

surveillance. The main idea in this prospective case is to detect emerging 

clusters and minimizing the delay of their occurrence, simultaneously.  

It is not appropriate the fact of using Tango’s statistic after each new 

observation. That is because we test multiple hypotheses. For that reason, 

we calculate the expected value and variance of the Tango statistic after 

the next observation, conditional upon the current value of the statistic. 

The expected value and the variance are used to transform the Tango 

statistic that is observed after the next observation into a z-score. These 

z-scores are used in the CUSUM scheme. The CUSUM approach 

developed in this paper gives us the needed prospective view and at the 

same time solves the problem mentioned above. For the evaluation of the 

system, the measures of 0ARL , 1ARL  and the Median Run Length were 

used.  

Rogerson and Sun (2001)[116] show how a similar approach may be used 

to monitor changes in the nearest neighbor statistic. 

The same approach was used in Rogerson (2001)[113]. In this case the 

purpose of our method is to combine the Knox statistic suggested in 

Knox (1964)[70], for space and time interactions with cumulative sum 

methods. Rogerson developed a local version of the Knox statistic and 
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presents its usage in a retrospective way, in order to identify the 

particular observations that are associated with space-time interactions. 

Then the local Knox test is used to demonstrate how the Knox statistic 

can be mixed with the CUSUM methods for the purpose of the online 

monitoring of probable changes in space-time interactions as new data 

are collected. With such a way, a simple retrospective system is 

transformed in a system with a prospective view.  
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Chapter 11 
Conclusions and  
Future Research 
 

For the purpose of this study we were influenced by the study of Sonesson 

and Bock(2003)[140] who presented a review of public health surveillance 

techniques using the SPC. We developed the methods described in this paper 

and we made some simulations for the extraction of further conclusions on these 

issues. Additionally, in each case we presented further studies for the period 

2003-2012 which may guide the reader for further research in the future. 

Constructing a surveillance system for public health is a very complex 

process which requires taking into consideration several factors such as the 

seasonality, the frequency of appearance, the trend, the spatial and the temporal 

approach of a disease etc. It is essential to make the appropriate decisions for 

the appropriate type of disease and proceed in the development of a monitoring 

system according to several features of this disease.  

An outbreak of rare diseases is the object of study of several papers since 

this case is difficult to detect. That is because even the slightest increase in the 

rate of a disease might mean an outbreak. The smallest the baseline rate of a 

disease the hardest our system is to detect an outbreak. That is the case of 

several comparisons between different methods and which allow us to study 

their behavior. Using rare diseases (the most difficult type of diseases to detect 

an outbreak) gives us an extra motive since their strict assumptions and their 

small rate of occurrence make the detection of a change more difficult and 

therefore we have the most appropriate type of disease for a comparison 

between methods. 

In order to compare methods we may use the measures of evaluation we 

mentioned in the 3rd chapter of this study. In terms of the average run length, we 

want a small run length when an alarm has occurred and a large run length when 

our system triggers a false alarm. Therefore, the smallest the probability of false 

alarm and the highest probability of successful detection, the better will be a 
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method. The same idea is given for the measure of the predictive value where 

we want as high a value as possible. The trust in the alarm is a very sensitive 

issue in the public health surveillance and so we would like to have the largest 

possible value for the predictive value. In terms of the expected delay to detect 

a change, it is rational to think that we should have a small value if we want an 

effective monitoring system. Especially in public health, where the delay is an 

important factor which may determine our preventive actions, this measure is 

used regularly. 

In our study we gave an example of a comparison between the sets method 

and the Cuscore where we calculated the expected time delay. In this 

comparison, we came to the conclusion that the Cuscore is more effective for 

rates of a disease up to 5 ‘events’ per 10000 individuals. 

In the most cases in public health, though, we need as much information 

we may derive from the data as possible. Combining several evaluation methods 

in public health surveillance is of vital importance. When we are dealing with 

human lives we need to present as much data as possible. Thus, there is a strong 

need to compute as much measures of evaluation as possible for a method. In 

theory, such need does not exist, but the sensitivity of such a field demands 

from us, in practice, the construction of the perfect surveillance system. For 

example, in the study of Frisén and Wessman (1999)[48] it was used the 

property of the constant Predictive Value to be fulfilled for the SR method, for 

the case of a change in the mean of a normal distribution. It could be expected 

that this is the case also for a shift in a Poisson process but this remains to be 

verified. 

The predictive value as a measure actually presents us the balance between 

the false alarms and the time delay. The knowledge of this measure is very 

useful for us and provides us with important information for the system’s 

behavior. Especially in the field of epidemiology, this would be useful as the 

investigators should not ignore an alarm since an alarm could be interpreted and 

provide significant information whether it is too late or too early.  

Beyond the measures of evaluation of a method, we faced the issue of the 

optimality. Several approaches are constructed in a suboptimal way. Methods 

such as the sets method are suboptimal ones. On the other hand, the likelihood 

ratio method, which is an evolution of the Shiryaev-Roberts method, is an 
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optimal one in terms of the minimum expected delay of realizing an alarm for a 

fixed probability of a false alarm. We presented the Poisson case for the LR and 

SR methods and we conclude that they are preferable to use them in our Poisson 

issues because they give optimal results. Using such methods in order to 

construct some new statistics is a continuous challenge. 

Another issue, is the popular Cumulative schemes. Especially, when we 

are taking into account the small incidence rate, the usage of such schemes is 

something standard even for comparison reasons (such as in the study of 

Rolfhamre and Ekdahl(2006)[119]). The Poisson CUSUM, Lucas suggested, is 

used by more and more scientists in order to observe counts. However, several 

modifications can be made. Such a modification might be the Bernoulli CUSUM 

which is referred in several recent studies and offers a field of further 

investigation.  

A new modification of the CUSUM is mentioned in Shu et al.(2010)[131]. 

That is the weighted CUSUM according to the time the observations were 

recorded. These weights are stimulating; especially, when we make the thought 

of the continuous change in the population size. Instead of assuming a fixed 

change in the population size (which in theory is a good assumption but not in 

practice) it would be of interest to apply this idea in practice where the 

population size is random. The CUSUM scheme is of great interest among the 

scientists and we have the strong belief that this scheme and its modifications 

will be the concern of many studies in the future.  

An interesting study for the general field of SPC is the paper of Wu et 

al.(2009)[169].He proposed a control chart based on the cases we mentioned in 

chapters 5 & 6. In order to construct a new chart, the cases of the ‘time between 

events’ and the ‘number of events’ were combined. A new control chart was 

built which takes into consideration the rate of the number of events to the time 

they occurred. It could be interesting to apply such a case in the field of public 

health. This remains to be studied in the future. 

In order to develop an effective surveillance system we have to rely on the 

appropriate data. Epidemiologists are interested in forecasting and giving a 

reliable estimation about a possible or a probable outbreak. To construct such a 

good monitoring system is not easy, especially when we are referred to the case 

where the Poisson assumption is not appropriate. In that case we have to take 
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into account some important factors such as trend, seasonality and the 

correlation between random variables of the stochastic process. Decision 

mechanisms are similar but the methods vary among different types of disease. 

For example it is almost impossible to develop a surveillance method which is 

as much effective for the common diseases and rare diseases as well. If we 

construct a method based on a common disease, a detection of an outbreak in a 

rare disease is something relatively difficult. The same thing applies for the 

exact opposite case. A method based on irregularly appeared (rare) disease is a 

very sensitive method for a common disease and gives frequent false alarms. 

For more issues on this subject we strongly recommend the study of Yann Le 

Strat (2005)[170] which is included in the book of Lawson and 

Kleinman(2005)[82]. 

We also remind the measures of specificity and sensitivity which are 

commonly used in order to compare different time surveillance series. We can 

conclude that since each disease and each surveillance system has its own 

characteristics and features, detection of an outbreak is not relied so much on 

the statistical methods such as on the characteristics of the system. These might 

be the quality of the data collected, the stability of the reporting mechanism 

over time, the reporting delays etc. If the surveillance system is not effective, it 

is easy to produce false results. So, it is vital for us, first of all, to require a 

good knowledge of the surveillance system before analyzing the data. Another 

important factor beyond statistical analysis is the epidemiologist’s experience. 

The more their experience the more effectiveness of the system and the better 

the decisions in each time frame. 

In all the second part of this study we do not include the spatial factor of 

our data. For a fixed time frame when there is a significant difference between 

the expected and the observed number of cases, it is reasonable to have a look at 

the spatial distribution of the cases in order to check for the existence or 

absence of localized clusters. Examining the spatial surveillance in the third part 

of our study, we prove through simulations the significance of this factor as 

well as its usefulness to the epidemiologists’ decisions.  

We also saw through our simulations how to construct a method with a 

spatial interest and how the CUSUM scheme is applied in this section. We also 

mentioned how to improve our CUSUM schemes with a more appropriate limit 



 

~ 133 ~ 

 

h for an area using the distances of the neighbored regions as weights. Without 

the weights the centered area (region 5) gave us an alarm at the 28th observation 

and using the weights we had an improvement of about 4 time periods in 

realizing the alarm. In such a way we developed a system with a more 

appropriate but also a more conservative limit h and which gives us an alarm 

with a slight difference from the strict value of the limit ( h=3.01).  

Several issues can be covered by spatial surveillance such as the map 

design, the geographical clustering etc. We strongly believe that the tendency in 

epidemiology is the spatial-temporal surveillance since several studies and 

books in the last few years have been published. For further information on 

these issues the reader may search for the book of Lawson and 

Kleinman(2005)[82]. Additionally we can mention the book of Waller L.A and 

Gotway C.A. (2004)[159] where some interesting complex and advanced issues 

of statistical analysis of spatial data are given such as the function of the maps 

of analyzing patterns and clusters as well as several applications of models to 

spatial data. 

Additionally, the study of Tsui et al.(2011)[154] gives us an interesting 

example which may guide future studies. In this study a general framework is 

given for spatial and spatiotemporal surveillance based on likelihood ratio 

statistics. Furthermore, it is shown that the cumulative sum (CUSUM) and 

Shiryaev-Roberts statistics are special cases under such a general framework. 

There are several methods initially developed for temporal surveillance but in 

order to have a more objective view of the surveillance, we could develop these 

statistics in order to work for spatial and spatiotemporal surveillance. Especially 

for the case of the LR method (and its modifications) which provides us with 

optimal results, enhanced statistics with a spatial frame included, could be 

constructed. This is a field which demands further research.  

Another example on this case could be the study of Rogerson and 

Yamada(2004a)[117] who applied the Poisson CUSUM into a multiregional 

surveillance system. The spatial case of surveillance demands the conception of 

the multivariate idea. Thus, it could be interesting the construction of 

multivariate methods in order to develop more accurate and appropriate 

monitoring systems. Such examples are given in Rogerson and 

Yamada(2004b)[118] and Schiöler and Frisén(2012)[121].The multivariate case 
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of spatial surveillance is the main idea of several recent studies and further 

research in the future is necessary on this field. 

Finally, a general review in the surveillance of public health as well as a 

guidance for future research is given in the papers of the Tsui et al. (2008)[155], 

Frisén(2011)[42],  Woodall(2006)[167] and Unkel et al.(2012)[156]. Also, 

general concepts of monitoring the public health are mentioned in the study of 

Han(2010)[54]. These studies are highly recommended for future research. 
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Appendix A 
The code (we used in S-plus) for the simulation of the Sets method is given 
below: 

 
-A.1- 

 
####### Code for a Small Scale Area ####### 
 
#k function from (5.9)# 
> k<-function(g){    
+ 4.61/g} 
> k(7) 
[1] 0.6585714 
 
#normal rates# 
> d<-c(1:10) 
> p0<-d/10000 
> p0 
 [1] 1e-04 2e-04 3e-04 4e-04 5e-04 6e-04 7e-04 8e-04 
9e-04 1e-03 
 
#expected size of the set i from (5.1)# 
> c0<-(1-p0)/p0 
> c0 
 [1] 9999.000 4999.000 3332.333 2499.000 1999.000 
1665.667 1427.571 1249.000 1110.111  999.000 
 
#number of false alarms# 
> r<-1 
 
#total number of births# 
> b<-400*12*20 
> b 
[1] 96000 
 
#The size of a sequence of sets n from (5.10)# 
> n<-function(P){ 
+ log(P)/log(1-exp(-k(7))) 
+ } 
 
#Calculating the proper number of n from (5.10) and  
(5.14)# 
> P1<-function(n){ 
+ r/(b*p0[1]-n+1)} 
> P1(3) 
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[1] 0.1315789 
> n(P1(3)) 
[1] 2.782244####### Thus n=3 ########  
 
---------------------------- 
 
> P2<-function(n){ 
+ + r/(b*p0[2]-n+1)} 
> P2(3) 
[1] 0.05813953 
> n(P2(3)) 
[1] 3.902689 
> P2(4) 
[1] 0.0617284 
> n(P2(4)) 
[1] 3.82052 ######## Thus n=4 #####  
 
---------------------------- 
 
> P3<-function(n){ 
+  r/(b*p0[3]-n+1)} 
> P3(4) 
[1] 0.03875969 
> n(P3(4)) 
[1] 4.458912 ###### Thus n=4 ######  
 
----------------------- 
 
> P4<-function(n){ 
+  r/(b*p0[4]-n+1)} 
> P4(5) 
[1] 0.02906977 
> n(P4(5)) 
[1] 4.853558 ###### Thus n=5 ######  
 
------------------------------ 
 
> P5<-function(n){ 
+  r/(b*p0[5]-n+1)} 
> P5(5) 
[1] 0.02272727 
> n(P5(5)) 
[1] 5.191207 ###### Thus n=5 ######  
 
---------------------------------- 
 
> P6<-function(n){ 
+  r/(b*p0[6]-n+1)} 
> P6(5) 
[1] 0.01865672 
> n(P6(5)) 



 

~ 137 ~ 

 

[1] 5.461948 ##### Thus n=5 ######  
 
------------------------------ 
 
> P7<-function(n){ 
+  r/(b*p0[7]-n+1)} 
> P7(6) 
[1] 0.01607717 
> n(P7(6)) 
[1] 5.666082 ##### Thus n=6 #####  
 
-------------------------------- 
 
> P8<-function(n){ 
+  r/(b*p0[8]-n+1)} 
> P8(6) 
[1] 0.01392758 
> n(P8(6)) 
[1] 5.862978  ###### Thus n=6 #####  
 
 
------------------------------ 
 
> P9<-function(n){ 
+  r/(b*p0[9]-n+1)} 
> P9(6) 
[1] 0.01228501 
> n(P9(6)) 
[1] 6.035128  #### Thus n=6 #####  
 
-------------------- 
 
> P10<-function(n){ 
+  r/(b*p0[10]-n+1)} 
> P10(6) 
[1] 0.01098901 
> n(P10(6)) 
[1] 6.188064   ##### Thus n=6 #####  
 
---------------------------------- 
 
#####The table with the proper n and P ##### 
> a<-matrix(c(0),10,2) 
> a[1,1]<-3 
> a[1,2]<-P1(3) 
> a[2,1]<-4 
> a[2,2]<-P2(4) 
> a[3,1]<-4 
> a[3,2]<-P3(4) 
> a[4,1]<-5 
> a[4,2]<-P4(5) 
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> a[5,1]<-5 
> a[5,2]<-P5(5) 
> a[6,1]<-5 
> a[6,2]<-P6(5) 
> a[7,1]<-6 
> a[7,2]<-P7(6) 
> a[8,1]<-6 
> a[8,2]<-P8(6) 
> a[9,1]<-6 
> a[9,2]<-P9(6) 
> a[10,1]<-6 
> a[10,2]<-P10(6) 
> a 
      [,1]       [,2] 
 [1,]    3 0.13157895 
 [2,]    4 0.06172840 
 [3,]    4 0.03875969 
 [4,]    5 0.02906977 
 [5,]    5 0.02272727 
 [6,]    5 0.01865672 
 [7,]    6 0.01607717 
 [8,]    6 0.01392758 
 [9,]    6 0.01228501 
[10,]    6 0.01098901 
 
## The n ## 
> n<-c(a[,1]) 
> n 
 [1] 3 4 4 5 5 5 6 6 6 6 
 
## The P ## 
> P<-c(a[,2]) 
> P 
 [1] 0.13157895 0.06172840 0.03875969 0.02906977 
0.02272727 0.01865672 0.01607717 0.01392758 0.01228501 
0.01098901 
 
####Calculating the number of the expected births i n a   
sequence which signals an alarm after the increase from 
(5.15)#### 
> e<-c0*n/7 
> e 
 [1] 4285.2857 2856.5714 1904.1905 1785.0000 1427.8571 
1189.7619 1223.6327 1070.5714  951.5238  856.2857 
> q<-1-(4.62/(exp(4.62)-1)) 
> a1<-e*q 
> a1 
 [1] 4088.2788 2725.2466 1816.6494 1702.9384 1362.2144 
1135.0651 1167.3787 1021.3542  907.7795  816.9198 
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####Calculating the expected time duration in which  the 
a1 infants are born#### 
> t1<-a1/400 
> t1 
 [1] 10.220697  6.813117  4.541623  4.257346  3.405536  
2.837663  2.918447  2.553385  2.269449  2.042299 
 
### THE TABLE ### 
> data.frame(p0,P,c0,n,a1,t1) 
      p0          P       c0 n        a1        t1 
1  1e-04 0.13157895 9999.000 3 4088.2788 10.220697 
2  2e-04 0.06172840 4999.000 4 2725.2466  6.813117 
3  3e-04 0.03875969 3332.333 4 1816.6494  4.541623 
4  4e-04 0.02906977 2499.000 5 1702.9384  4.257346 
5  5e-04 0.02272727 1999.000 5 1362.2144  3.405536 
6  6e-04 0.01865672 1665.667 5 1135.0651  2.837663 
7  7e-04 0.01607717 1427.571 6 1167.3787  2.918447 
8  8e-04 0.01392758 1249.000 6 1021.3542  2.553385 
9  9e-04 0.01228501 1110.111 6  907.7795  2.269449 
10 1e-03 0.01098901  999.000 6  816.9198  2.042299 
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-A.2- 

######### SIMULATION FOR r=5 ########### 
 
## The new number of false Alarms ## 
> r<-5 
 
#Calculating the proper number of n from (5.10) and  
(5.14)# 
> P1<-function(n){ 
+ r/(b*p0[1]-n+1)} 
> n(P1(1)) 
[1] 0.8948694  # Thus n=1 #  
---------------------------- 
 
> P2<-function(n){ 
+ r/(b*p0[2]-n+1)} 
> n(P2(1)) 
[1] 1.845739 
> n(P2(2)) 
[1] 1.772362  # Thus n=2 # 
--------------------------- 
 
> P3<-function(n){ 
+ r/(b*p0[3]-n+1)} 
> n(P3(2)) 
[1] 2.353483 
> n(P3(3)) 
[1] 2.303228 
> n(P3(2)) 
[1] 2.353483  # Thus n=2 #  
----------------------------- 
 
> P4<-function(n){ 
+ r/(b*p0[4]-n+1)} 
> n(P4(2)) 
[1] 2.760411 
> n(P4(3)) 
[1] 2.723232  # Thus n=3 #  
------------------------------- 
 
> P5<-function(n){ 
+  r/(b*p0[5]-n+1)} 
> n(P5(5)) 
[1] 2.983357 
> n(P5(3)) 
[1] 3.044336  # Thus n=3 #  
------------------------------- 
 
> P6<-function(n){ 
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+ r/(b*p0[6]-n+1)} 
> n(P6(3)) 
[1] 3.304352  # Thus n=3 #  
------------------------------- 
 
> P7<-function(n){ 
+ r/(b*p0[7]-n+1)} 
> n(P7(3)) 
[1] 3.52285 
> n(P7(4)) 
[1] 3.501647   # Thus n=4 #  
-------------------------------- 
 
> P8<-function(n){ 
+ r/(b*p0[8]-n+1)} 
> n(P8(3)) 
[1] 3.71128 
> n(P8(4)) 
[1] 3.692817  # Thus n=4 #  
------------------------------- 
 
> P9<-function(n){ 
+ r/(b*p0[9]-n+1)} 
> n(P9(4)) 
[1] 3.860576  # Thus n=4 # 
------------------------------ 
 
> P10<-function(n){ 
+ r/(b*p0[10]-n+1)} 
> n(P10(4)) 
[1] 4.010036  # Thus n=4 #  
------------------------------ 
 
#####The table with the proper n and P ##### 
> a<-matrix(c(0),10,2) 
> a[1,1]<-1 
> a[1,2]<-P1(3) 
> a[2,1]<-2 
> a[2,2]<-P2(2) 
> a[3,1]<-2 
> a[3,2]<-P3(2) 
> a[4,1]<-3 
> a[4,2]<-P4(3) 
> a[5,1]<-3 
> a[5,2]<-P5(3) 
> a[6,1]<-3 
> a[6,2]<-P6(3) 
> a[7,1]<-4 
> a[7,2]<-P7(4) 
> a[8,1]<-4 
> a[8,2]<-P8(4) 
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> a[9,1]<-4 
> a[9,2]<-P9(4) 
> a[10,1]<-4 
> a[10,2]<-P10(4) 
> a 
      [,1]       [,2] 
 [1,]    1 0.65789474 
 [2,]    2 0.27472527 
 [3,]    2 0.17985612 
 [4,]    3 0.13736264 
 [5,]    3 0.10869565 
 [6,]    3 0.08992806 
 [7,]    4 0.07788162 
 [8,]    4 0.06775068 
 [9,]    4 0.05995204 
[10,]    4 0.05376344 
 
## The n ## 
> n_r5<-c(a[,1]) 
 
## The P ## 
> P_r5<-c(a[,2]) 
 
####Calculating the number of the expected births i n a   
sequence which signals an alarm after the increase from 
(5.15)#### 
> e_r5<-c0*n_r5/7 
> q<-1-(4.62/(exp(4.62)-1)) 
> a1_r5<-e_r5*q 
 
####Calculating the expected time duration in which  the 
a1 infants are born#### 
> t1_r5<-a1_r5/400 
 
### THE TABLE ### 
> data.frame(p0,P_r5,c0,n_r5,a1_r5,t1_r5) 
      p0       P_r5       c0 n_r5     a1_r5    t1_r5 
1  1e-04 0.65789474 9999.000    1 1362.7596 3.406899 
2  2e-04 0.27472527 4999.000    2 1362.6233 3.406558 
3  3e-04 0.17985612 3332.333    2  908.3247 2.270812 
4  4e-04 0.13736264 2499.000    3 1021.7630 2.554408 
5  5e-04 0.10869565 1999.000    3  817.3287 2.043322 
6  6e-04 0.08992806 1665.667    3  681.0391 1.702598 
7  7e-04 0.07788162 1427.571    4  778.2525 1.945631 
8  8e-04 0.06775068 1249.000    4  680.9028 1.702257 
9  9e-04 0.05995204 1110.111    4  605.1863 1.512966 
10 1e-03 0.05376344  999.000    4  544.6132 1.361533 
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-A.3- 

 
#### Second Way to find n #### 
 
## Comparison function from equation (5.7) ## 
> r<-1 
> Pcomp<-function(n){ 
+ (1-exp(-k))^n 
+ } 
 
#### Tables of comparison for each normal rate of 
disease #### 
> z<-matrix(c(0),6,3) 
> z[,1]<-1:6 
> for (i in 1:6){ 
+ z[i,2]<-P1(i) 
+ z[i,3]<-Pcomp(i) 
+ } 
> z 
     [,1]      [,2]       [,3] 
[1,]    1 0.1041667 0.48211393 
[2,]    2 0.1162791 0.23243384 
[3,]    3 0.1315789 0.11205959   
[4,]    4 0.1515152 0.05402549 
[5,]    5 0.1785714 0.02604644 
[6,]    6 0.2173913 0.01255735 
### Smallest difference for n=3 ### 
 
-------------------------------------------------------
-- 
> for (i in 1:6){ 
+ z[i,2]<-P2(i) 
+ } 
> z 
     [,1]       [,2]       [,3] 
[1,]    1 0.05208333 0.48211393 
[2,]    2 0.05494505 0.23243384 
[3,]    3 0.05813953 0.11205959 
[4,]    4 0.06172840 0.05402549 
[5,]    5 0.06578947 0.02604644 
[6,]    6 0.07042254 0.01255735 
### Smallest difference for n=4 ###  
 
-------------------------------------------------------
-- 
> for (i in 1:6){ 
+ z[i,2]<-P3(i) 
+ } 
> z 
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     [,1]       [,2]       [,3] 
[1,]    1 0.03472222 0.48211393 
[2,]    2 0.03597122 0.23243384 
[3,]    3 0.03731343 0.11205959 
[4,]    4 0.03875969 0.05402549 
[5,]    5 0.04032258 0.02604644 
[6,]    6 0.04201681 0.01255735 
### Smallest difference for n=5 ###  
 
-------------------------------------------------------
-- 
> for (i in 1:6){ 
+ z[i,2]<-P4(i) 
+ } 
> z 
     [,1]       [,2]       [,3] 
[1,]    1 0.02604167 0.48211393 
[2,]    2 0.02673797 0.23243384 
[3,]    3 0.02747253 0.11205959 
[4,]    4 0.02824859 0.05402549 
[5,]    5 0.02906977 0.02604644 
[6,]    6 0.02994012 0.01255735 
### Smallest difference for n=5 ###  
 
-------------------------------------------------------
-- 
> for (i in 1:6){ 
+ z[i,2]<-P5(i) 
+ } 
> z 
     [,1]       [,2]       [,3] 
[1,]    1 0.02083333 0.48211393 
[2,]    2 0.02127660 0.23243384 
[3,]    3 0.02173913 0.11205959 
[4,]    4 0.02222222 0.05402549 
[5,]    5 0.02272727 0.02604644 
[6,]    6 0.02325581 0.01255735 
### Smallest difference for n=5 ### 
 
-------------------------------------------------------
-- 
> for (i in 1:6){ 
+ z[i,2]<-P6(i) 
+ } 
> z 
     [,1]       [,2]       [,3] 
[1,]    1 0.01736111 0.48211393 
[2,]    2 0.01766784 0.23243384 
[3,]    3 0.01798561 0.11205959 
[4,]    4 0.01831502 0.05402549 
[5,]    5 0.01865672 0.02604644 
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[6,]    6 0.01901141 0.01255735 
### Smallest difference for n=6### 
 
-------------------------------------------------------
-- 
 
> for (i in 1:6){ 
+ z[i,2]<-P7(i) 
+ } 
> z 
     [,1]       [,2]       [,3] 
[1,]    1 0.01488095 0.48211393 
[2,]    2 0.01510574 0.23243384 
[3,]    3 0.01533742 0.11205959 
[4,]    4 0.01557632 0.05402549 
[5,]    5 0.01582278 0.02604644 
[6,]    6 0.01607717 0.01255735 
### Smallest difference for n=6 ### 
 
-------------------------------------------------------
-- 
> for (i in 1:6){ 
+ z[i,2]<-P8(i) 
+ z[i,3]<-Pcomp(i) 
+ } 
> z 
     [,1]       [,2]        [,3] 
[1,]    1 0.01302083 0.482113928 
[2,]    2 0.01319261 0.232433840 
[3,]    3 0.01336898 0.112059592 
[4,]    4 0.01355014 0.054025490 
[5,]    5 0.01373626 0.026046441 
[6,]    6 0.01392758 0.012557352 
### Smallest difference for n=6 ### 
 
-------------------------------------------------------
-- 
 
> for (i in 1:6){ 
+ z[i,2]<-P9(i) 
+ } 
> z 
     [,1]       [,2]        [,3] 
[1,]    1 0.01157407 0.482113928 
[2,]    2 0.01170960 0.232433840 
[3,]    3 0.01184834 0.112059592 
[4,]    4 0.01199041 0.054025490 
[5,]    5 0.01213592 0.026046441 
[6,]    6 0.01228501 0.012557352 
### Smallest difference for n=6 ### 
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-------------------------------------------------------
-- 
> for (i in 1:6){ 
+ z[i,2]<-P10(i) 
+ } 
> z 
     [,1]       [,2]        [,3] 
[1,]    1 0.01041667 0.482113928 
[2,]    2 0.01052632 0.232433840 
[3,]    3 0.01063830 0.112059592 
[4,]    4 0.01075269 0.054025490 
[5,]    5 0.01086957 0.026046441 
[6,]    6 0.01098901 0.012557352 
### Smallest difference for n=6 ### 
 
-------------------------------------------------------
-- 
## The new n ## 
> n<-c(3,4,5,5,5,6,6,6,6,6) 
 
## The new a1 ## 
> e<-c0*n/7 
> q<-1-(4.62/(exp(4.62)-1)) 
> a1<-e*q 
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-A.4- 
####### A third way to find n ####### 
 
### The function of M ### 
> M<-function(k,n){ 
+ (1-(1-exp(-k))^n)/(exp(-k)*(1-exp(-k))^n) 
+ } 
 
### The function of gamma ### 
> gamma<-function(k,n){ 
+ (-log(1-0.95^(1/n)))/k 
+ } 
 
 
### Find k for n=1,2,...,8 and M=48 ### 
> f<-seq(0.001,2,by=0.001) 
>kap<-c(0) 
>m<-c(0) 
>g<-c(0) 
> for (j in 1:8){ 
+ q<-M(f,j)-48 
+ for (i in 1:2000){ 
+ if (q[i]<0){ 
+ q[i]<-q[i]*(-1) 
+ } 
+ } 
+ for (i in 1:2000){ 
+ if (q[i]==min(q)){ 
+  kappa<-i*0.001 
+ } 
+ } 
+ kap[j]<-kappa  # The kappas #  
+ m[j]<-M(kap[j],j)  # The M's #  
+ g[j]<-gamma(kap[j],j) # The gammas respectively # 
+ } 
 
### The table with the M,k and gammas ### 
> data.frame(m,kap,g) 
 
### The table with the M,k and gammas ### 
> data.frame(m,kap,g) 
         m   kap          g 
1 48.12080 0.021 142.653918 
2 47.79204 0.169  21.752298 
3 48.06186 0.368  11.079740 
4 48.06683 0.569   7.667653 
5 48.05415 0.759   6.040525 
6 48.02193 0.936   5.092122 
7 47.94634 1.101   4.468453 
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8 48.00808 1.254   4.029379 
 
### The appropriate value of n ### 
> n<-matrix(10,8,1) 
> d<-c(0) 
> for (i in 1:8){ 
+ d[i]<-g[i]-g[i+1] 
+ if (d[i]<1){ 
+ n[i,1]<-i 
+ } 
+ } 
> n<-min(n) 
> n 
[1] 5 # Thus n=5 #  
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-A.5- 
##### The Sets Method Applied for a Large Scale 
Area##### 
 
## The baseline rate values ## 
> d<-c(1:10) 
> p0<-d/10000 
 
## The Expected Size of a set ## 
> c0<-(1-p0)/p0 
> c0 
 
## The function of kappa ## 
> k<-function(q,m){ 
+ -log(1-(q^(1/m))) 
+ } 
 
 
## The Probability of a False Alarm ## 
> y<-40 
> d<-4 
> P0<-1/(40*4) 
 
## The Probability of a False Alarm given that at l east 
one set is completed ## 
> N<-12000 
> q0<-P0/(1-(1-p0)^N) 
> q0 
  
## kappa for m=5 completed sets ## 
> kappa<-k(q0,5) 
> kappa    
 
## The Limits of the sets which define the in-contr ol 
and out-of-control state ## 
> kappa*c0 
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Appendix B 
The code (we used in S-plus and Minitab) for the simulation of the Cuscore 
method is given below: 
 
######## Optimal Cuscore ######## 
### Find E1 for n=1 ### 
## s-plus ## 
> c<-c(1:10) 
> lamda<-c/10000 
> D<-400*lamda*240 
> D 
 [1]  9.6 19.2 28.8 38.4 48.0 57.6 67.2 76.8 86.4 96.0 
 
## Minitab ## 
#c1= λο # c2= D(from s-plus)# 
MTB > let c3=1/c2 #p0_n=1 
MTB > let c4=-ln(1-c3) #kappa 
MTB > let c5=1-exp(-7*c4) #p1 
MTB > let c6=1/c5 #E1_n=1 
--------------------------------------------------- ----
-- 
### Find E1 for n=2 ### 
## Minitab ## 
MTB > let c8=(1+c2-(c2*c3))^(-1/2)######c8 
MTB > let c9=(1+c2-(c2*c8))^(-1/2)######c9 
MTB > let c10=(1+c2-(c2*c9))^(-1/2)######c10 
MTB > let c11=(1+c2-(c2*c10))^(-1/2)######p0_n=2 
MTB > let c12=-ln(1-c11)###kappa 
MTB > let c13=1-exp(-7*c12)####p1 
 
## S-plus ## 
> p1<-
c(0.964011,0.873374,0.798358,0.739668,0.692703,0.654115
,0.621687,0.593927,0.569801,0.548569) 
> E1<-function(p,n){ 
+ (n/((2*p)-1))-(((1-p)/(((2*p)-1)^2))*(1-((1-p)/p)^n)) 
+ } 
> E1(p1,2) 
 [1] 2.113391 2.455975 2.821505 3.179748 3.527659 
3.865961 4.195884 4.518583 
 [9] 4.835019 5.145979 
 
 
 
## Minitab ## 
in the column c14 we place the E1 from s-plus 
--------------------------------------------------- ----
-- 
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### Find E1 for n=3 ### 
## Minitab ## 
MTB > let c16=(1+c2-(c2*c11))^(-1/3)######c8 
MTB > let c17=(1+c2-(c2*c16))^(-1/3)######c9 
MTB > let c18=(1+c2-(c2*c17))^(-1/3)######c10 
MTB > let c19=(1+c2-(c2*c18))^(-1/3)######p0_n=2 
MTB > let c20=-ln(1-c19)###kappa 
MTB > let c21=1-exp(-7*c20)####p1 
 
## S-plus ## 
> p1<-
c(0.997797,0.982580,0.962546,0.942624,0.923994,0.906847
,0.891104,0.876621,0.863248,0.850852) 
> length(p1) 
[1] 10 
> E1(p1,3) 
 [1] 3.011054 3.089593 3.199158 3.315682 3.432146 
3.546348 3.657643 3.765934 
 [9] 3.871340 3.974031 
 
## Minitab ## 
in the column c22 we place the E1 from s-plus 
--------------------------------------------------- ----
-- 
 
### Find E1 for n=4 ### 
## Minitab ## 
MTB > let c24=(1+c2-(c2*c19))^(-1/4)######c8 
MTB > let c25=(1+c2-(c2*c24))^(-1/4)######c9 
MTB > let c26=(1+c2-(c2*c25))^(-1/4)######c10 
MTB > let c27=(1+c2-(c2*c26))^(-1/4)######p0_n=2 
MTB > let c28=-ln(1-c27)###kappa 
MTB > let c29=1-exp(-7*c28)####p1 
 
## S-plus ## 
> p1<-
c(0.999858,0.997447,0.992814,0.987247,0.981382,0.975504
,0.969742,0.964155,0.958764,0.953575) 
> E1(p1,4) 
 [1] 4.000994 4.017950 4.050929 4.091265 4.134619 
4.178979 4.223375 4.267310 
 [9] 4.310558 4.353000 
 
## Minitab ## 
in the column c30 we place the E1 from s-plus 
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Appendix C 
 
The code (we used in S-plus) in order to find the out-of-control expected delay 
of the sets method is given below: 
 
#### Comparison Sets vs Cuscore #### 
 
> D1<-function(p,n){ 
+ (1-(p^n))/((p^n)*(1-p)) 
+ } 
> p1<-
c(0.536990,0.873374,0.798358,0.739668,0.923994,0.906847
,0.891104,0.876621,0.863248,0.850852) 
> n1<-c(1,2,2,2,3,3,3,3,3,3) 
 
# The out-of-control Expected Delay for the Sets me thod 
# 
> a<-c(0) 
> for (i in 1:10){ 
+ a[i]<-D1(p1[i],n1[i]) 
+ } 
> a 
 [1] 1.862232 2.455975 2.821505 3.179748 3.521171 
3.659622 3.794781 3.926486 
 [9] 4.054852 4.180051   
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Appendix D 
The tables below are given in Lucas(1985) and are calculated by using the 
Markov chain approach discussed by Brook and Evans(1972). 
 

-D.1- 
 

Poisson CUSUM’s Average Run Lengths 
(Increasing Rate Case, With the FIR feature) 
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-D.2- 
 

Poisson CUSUM’s Average Run Lengths 
(Increasing Rate Case, Without the FIR feature) 
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-D.3- 
The code we used in S-plus for the simulation of the Poisson CUSUM scheme: 
###### POISSON CUSUM ###### 
 
## Generating values from Poisson ## 
> p1<-rpois(20,4) 
> p1 
 [1] 2 3 2 2 2 5 5 3 4 1 1 5 2 8 4 2 3 5 7 6 
> p2<-rpois(20,7) 
> p<-c(p1,p2) 
> p 
 [1]  2  3  2  2  2  5  5  3  4  1  1  5  2  8  4  2  3  
5  7  6  6 10  8  6  6  4 10 10  7 
[30] 14  2  9 12 15  9  6  4  5  6  2 
 
## The CUSUM Scheme with and without the FIR ## 
# With the FIR # 
> POIS_CUS1<-function(k,r,h){ 
+ s<-c(0) 
+ s[1]<-(h/2)+r[1]-k 
+  if (s[1]<0) {s[1]<-0} 
+ for (i in 2:40){ 
+ s[i]<-s[i-1]+r[i]-k 
+ if (s[i]<0) {s[i]<-0} 
+ } 
+ plot(period,s,col=3,ylab="Cumulative Sum",xlab="Time 
Period") 
+ lines(period,s,col=3) 
+ abline(h=(h),col=2) 
+ } 
> POIS_CUS1(5,p,10) 
> abline(v=(23),lty=3,col=3) 
 
# Without the FIR # 
> POIS_CUS<-function(k,r){ 
+ s<-c(0) 
+ for (i in 1:40){ 
+ s[i]<-s[i-1]+r[i]-k 
+ if (s[i]<0) {s[i]<-0} 
+ } 
+ plot(period,s,col=3,ylab="Cumulative Sum",xlab="Time 
Period") 
+ lines(period,s,col=3) 
+ abline(h=(10),col=2) 
+ } 
> POI_CUS(5,p) 
> abline(v=(23),lty=3,col=3) 
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Appendix E 
-E.1- 

� Table for N(0,1) for each one of the nine areas. 
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� Table after the change in the mean for each one of the nine 

areas. 
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-E.2- 
� Region 1: Alarm at 29th Observation 
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� Region 3: False Alarm at 13th Observation 
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� Region 5: Alarm at 23rd Observation 
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� Region 7: No Alarm 
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� Region 8: Alarm at 25th Observation 
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� Region 9: Alarm at 30th Observation 
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-E.3- 
The CUSUM schemes for each region for the new ARL=1075.99 and the new 
h=5.135 are given below: 
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� Region 3: No Alarm 
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� Region 4: Alarm at 40th Observation 
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� Region 5: Alarm at 28th Observation 
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� Region 7: No ALARM 
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� Region 9: No Alarm 
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