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Financial forecasting is an extraordinary issue. Hedge funds  are companies that 

bind investors’ money for a while, and are trying to raise their capital. In order for investors 

to benefit from this technique, it is good to know the performance of hedge funds. 

The issue that we are assigned to, is the monthly prediction for 10 hedge fund 

returns, which are  time series, and our forecasts last for 24 months. In our data there are 

15 risk factors, from which we are called upon to decide which ones are important for our 

forecasting. The models we develop are from Machine Learning and some of them have 

been involved in finance. What we are concerned with is to compare these models, with 

traditional economic series prediction models, such as ARMA models and multiple 

regression models. 

  



VI 
 

 

  



VII 
 

 

                                         ΠΕΡΙΛΗΨΗ 

Άννα-Μαρία Κλαδά 

 

ΕΛΛΗΝΙΚΟΣ ΤΙΤΛΟΣ 

 

                           Σεπτέμβριος 2018 

 

Η πρόγνωση στα χρηματοοικονομικά στοιχεία είναι ένα εξαιρετικό ζήτημα. Τα 

hedge funds ή αλλιώς αντισταθμιστικά κεφάλαια είναι εταιρείες οι οποίες δεσμεύουν για 

ένα διάστημα λεφτά επενδυτών, και με αυτό τον τρόπο, οι εταιρείες προσπαθούν να 

αυξήσουν το κεφάλαιό τους. Προκειμένου οι επενδυτές να επωφεληθούν με αυτή την 

τεχνική, είναι καλό να γνωρίζουν την απόδοση των hedge funds.  

Το θέμα το οποίο μας έχει ανατεθεί είναι η μηνιαία πρόβλεψη για 10 hedge fund 

αποδόσεις, οι οποίες αποτελούν μια χρονολογική σειρά, και οι προβλέψεις μας εκτείνονται 

για 24 μήνες. Στα δεδομένα μας υπάρχουν 15 παράγοντες κινδύνου, από τους οποίους 

καλούμαστε να αποφασίσουμε ποιοι είναι σημαντικοί για την πρόβλεψή μας. Τα μοντέλα 

που θα αναπτύξουμε είναι από την περιοχή του Μachine Learning και κάποια από αυτά 

έχουν απασχολήσει επιστήμονες στο χώρο των οικονομικών. Αυτό που μας ενδιαφέρει, 

είναι να συγκρίνουμε αυτά τα μοντέλα, με τα παραδοσιακά μοντέλα πρόβλεψης 

οικονομικών σειρών, όπως τα ARMA μοντέλα και τα μοντέλα πολλαπλής παλινδρόμησης. 
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                                            INTRODUCTION 

          The purpose of a financial forecast is to evaluate the current and future economic 

conditions to derive policy and programmatic decisions. A financial forecast is a 

management tool that helps us, identify the expected returns and trends of economic assets. 

An effective forecast allows us to make well directed decisions . For example, an investor 

should predict equity market sentiments before investing in stocks. The prediction of equity 

market and stock movements is not an easy part. Though, the financial analysts are 

developing, since the last decades,  methods that could predict market movements. 

        The structure of this dissertation includes the Introduction, where we present the main 

subject, the goals that we expect to achieve and a little explanation about the methodology 

we have followed. The chapters that are analysing the main subject are five. In Chapter 1, 

there is a presentation about the efforts of researchers around the world, to develop efficient 

techniques for forecasting. In Chapter 2, we use exploratory analysis for our data. We have 

hedge fund data, and they have some special characteristics and properties we should take 

into account. In Chapter 3, there is a theoretical elaborative analysis about the methods 

used. We introduce also  the Machine Learning. The formal definition, the types of 

algorithms and the importance of the Machine Learning field. In Chapter 4, we move to an 

application of the methods we referred at the previous chapter, using the data, to predict 

the hedge fund returns. Finally, we reach at Chapter 5, where we summarize the results 

occurring from this application. 

         The target of this thesis is, to investigate the predictability of the hedge fund indices 

by using different methods. We want also to find out also  which factors  influence our 

variables of interest. We have collected sources concerning this subject from the literature, 

and we have tried to implement some of these methods at the practical part of the thesis. 

       At the end, there are all the References we have used to develop this work, collected 

from the bibliography about this topic, such as scientific papers, books and websites. Also,  

at the final pages there is the Appendix, for more details about the data and the methods. 
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                                           Chapter 1 

             Review in Financial Forecasting 

 

1.1 Efforts for financial forecasting    

Financial forecasting is a task that has been very active over the last decades and is 

defined as the prediction about future values of the data. It is important to predict economic 

trends to make decisions concerning a business or an investment. Prediction of stocks  is a 

very difficult task according to academics. Hellstrom et. al (1998), mention that stocks 

behave like random-walk process, analysed in the book of  Lawler and Limic  (2010) . The 

serial correlation in stock prices is statistically insignificant, and the noise level and 

volatility in prices change as the procedure moves on. So, there are periods of great 

turbulence and periods with low observed volatility. Traditional methods for forecasting  

started to exist in the end of 20’s, when Yule (1926) invented the Autoregressive process 

to predict sunspots. Another model which was used was the Moving Average Model. 

Autoregressive and Moving Average Models led to their popular combination, the ARMA 

model, which was dominant for prediction for more than 50 years. 

At the book of Guerard (2007) , we see that past values of a variable are used for 

forecasts for the future. They refer to some models for forecasting like time series 

modelling, regression and exponential smoothing. Specifically, a regression analysis is a 

statistical technique that helps us make forecasts for quantitative variables. An example 

referred comes from Guerard and Schwarz (2007), with the variable of interest being the 

personal consumption expenditures in the United States, named Y (dependent variable). 

The variable that we investigate if it has impact on Y, is the personal disposable income, 

named X (independent variable). The regression analysis tries to find the best fit for the 

data points available. Regression line  is the best way to approximate this relationship. In 

this study, it is assumed that the regression line assumes that this relationship from the past, 

will continue to exist for the future values. Though, regression analysis can be expanded 

to more than one independent variable, and the model used in this case is the Multiple 

Regression model. 
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 Vrontos et. al (2008), used hedge fund pricing models. They developed a Bayesian 

model averaging model to study the uncertainty in hedge fund pricing. The model selected 

with the Bayesian methodology was compared to standard model selection approaches in 

the literature, i.e. stepwise regression procedure, model selection approaches based on 

Akaike’s criterion (1973) and  Schwarz criterion (1978). In this study, the 

heteroscedasticity is modelled at the same time with the Bayesian Model Averaging 

method, and this resulted to a better predictive performance of the pricing model. 

 Vrontos et. al (2011), proposed a flexible threshold regression model that allows 

nonlinear risk exposures of hedge funds to various risk factors. The results from this study, 

revealed asymmetric risk exposures to different risk factors. Each hedge fund index 

included in the analysis, was affected by different risk factors. This result was reasonable 

since the fund managers follow different investment strategies. The methodology using 

thresholds in multiple regression model, showed improved performance than standard 

linear regression model or multiple linear regression models without thresholds. 

Continuing at the paper of Bali et. al (2011), it is investigating hedge funds’ 

exposures to various financial risk factors. The exposures are analysed through univariate, 

bivariate and multivariate estimates of factor betas. This effort was the first for the 

sensitivity analysis of expected hedge fund returns to factor loadings (betas). The 

significance of factor loadings was checked with two tests. The first was the parametric 

test of Fama-MacBeth cross-sectional, and the second was the panel regressions of one-

month ahead hedge fund returns on previous months factor betas. All the test agree that, 

there is a positive and significant relation between hedge fund expected returns and default 

premium betas. Also, there is a negative and significant relation between  inflation betas 

and expected hedge fund returns. 

 

1.2  Review on machine learning techniques for forecasting 

          Arindam Chaudhuri (2012)  used Multiple Regression, Multi Layer Perception, 

Radial Basis Function and Adaptive Neuro Fuzzy Inference System Models, for predicting 

Financial Stress percent. The result from this study was, that the performance of the 

traditional Multiple Regression model was lower than the performance of other models in 

this study. So, the Multi-Layer Perception and the Radial Basis Function exhibit the higher 
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performance in terms of robustness and fault tolerance than the other methods. But, the 

results in this research come from a limited population and it is clear that the results should 

be acceptable for a preliminary stage of design. 

 Bontempi et.al (2013) , states that the increasing amount of historical data and the 

need of accurate forecasting models, led to the rise of Machine Learning models. The 

machine learning techniques for time series forecasting focused  initially in one-step 

forecasts. The local learning techniques was discussed if they could deal with temporal 

data, and finally what is happening if we move from one-step forecasting to multi-step 

forecasting. 

Based on the previous paper, Tyralis and Papacharalampous, (2017) attempted to 

improve the one-step forecasts’ performance in time series forecasting. They proposed the 

Random Forest algorithm and proved that this is a competent algorithm. They emphasized 

that the use of few predictor variables achieves higher predictive accuracy. However, this 

methodology was based on short time series and the researchers set the foundations for 

more experiments. 

Another study of Chan-Lau (2017) , stress that machine learning techniques can 

deal with the high-dimensionality problem. It is stated that LASSO regression is a 

technique that can perform well in forecasting when we have large number of covariates 

and small number of observations. The result was, that the LASSO regression builds more 

stable forecasting models, and can handle the high-dimensional problems, including these 

in financial area. 

One recent study from Fischer et.al (2018) , eight different machine learning 

algorithms  are presented for forecasting linear and non-linear time series. The results in 

the absence of noise give the Multi-Layer Perceptron as the best forecasting model and as 

the worst, the Single Decision Trees and the Naïve Bayes models. It is also proved that the 

inclusion of lagged variables improves the predictive performance. In the end of the 

analysis, it is showed that if we add migitation measures ( Moving Averages), the most 

robust results come from the Logistic Regression algorithm, because it is not so sensitive 

to noise presence  as  the other Machine Learning models. 
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1.3 Objective 

The aim of this thesis is, to explore the predictive performance of hedge fund 

returns, using selected risk factors. For this purpose, we use algorithms from the machine 

learning bibliography. These algorithms are, Least Absolute Shrinkage and Selection 

Operator (LASSO), Regression Trees and Random Forests. The performance of the above 

is compared with standard approaches for forecasting such as, Multiple Regression and 

time series model ARMA(1,1).  
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                             Chapter 2 

                                  Data 

 

2.1 Hedge fund returns 

Our data are  financial data, and especially hedge fund indices from Hedge Fund 

Research 1 , computed on a monthly basis. Hedge funds are investment companies that 

bind investors money for a certain period of time (usually one year) to raise their capital. 

After the end of one year, the investor chooses whether to withdraw his capital from the 

hedge fund or it has to grow. There are few employees usually, and among them are 

economists and distinguished university professors who attract investor confidence. 

Employees are paid out of the profits made by the hedge fund by 10-15% of profits. For 

example, if the fund has a profit of 100 million euros, then the employees will share 10 

million euros between them. 

The performance of hedge funds over the last 20 years has been investigated in a 

study of Atilgan et al. (2013) , which presents as two dimensions of the performance of 

hedge funds, the returns and the risk. The results from this study showed that, the 

knowledge of only one of these dimensions does not make sense if we do not have 

knowledge about the other. Also, the distribution of hedge funds did not follow the normal 

distribution, showing left skewness and leptokurtic distributions. They tended also to be 

high-volatile and in periods of crisis, the majority of them produced highly negative 

returns. This last finding led to doubts for benefits in investing to hedge funds.  

 

2.2 Time series and financial data characteristics. 

The variables we are going to use as dependent variables, are 10 hedge fund indices 

which belong to the period from April 1990 until December 2005. Along with these 

variables we have some risk factors , which will be used as explanatory variables. We have 

time series data. Time series data is a sequence of data which take some values in specific 

time periods. In our case, the period is a month. For example if we have a variable X, the 

sequence is Xt, where t=1,2,…,T describes the time parameter. 

                                                           
1 https://www.hedgefundresearch.com/  
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The returns of financial assets are usually calculated as: 

                      

 

                          �� = ��(��) − ��(�� − 1) = �� �
��

����
�   

                                          

                                   , or �� =
�������

����
    .  (2.2.1) 

 

�� is the price of the financial asset at time t. In the dataset we analyze the returns 

Rt, computed based on the logarithmic formula of  (2.2.1)  

 

 

 

There  are some properties, especially in the financial assets, which make them 

interesting in their analysis, for example leptokyrtosis,  leverage effect, fat tails. We should 

pay attention on how we could capture these properties with a model. We present the 

response variables and the risk factors at the next tables and figures. 
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Table 1 : A subset of the response variables used for the predictive model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

         Table 2: A subset of the explanatory variables used for the predictive model. 
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Before building any model we should start by showing some descriptive statistics 

and recognizing some properties in the data. 

                                                                                                                                                                                                                                                     

                                                                                       Rt             Rt2 

 

Assets Mean St.dev Kurtosis LB-
Q(20) 

LB-
Q(20) 

EH 0.0102 0.024 1.45 21.26 50.74 
M 0.0092 0.023 0.55 35.66 37.27 
RVA 0.0059 0.010 10.86 29.47 10.70 
ED 0.0082 0.018 4.84 35.32 10.08 
CA 0.0047 0.010 2.28 92.89 14.45 
DS 0.0084 0.017 5.39 73.04 26.00 
EMN 0.0039 0.010 0.51 42.80 40.54 
MA 0.0049 0.010 10.18 17.63 2.43 
EM 0.0100 0.042 3.85 56.99 30.86 
FIA 0.0031 0.012 10.30 71.47 44.43 

 

Table 3 : Summary statistics of hedge fund returns.  

 

 

Below, we present some graphical descriptive measures for EH,M. The graphs for 

the other response variables are presented at the Appendix. 
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Figure 1: Normal quantile  plots of the returns of hedge funds EH,M. 

 

 

 

 

 

 

 

 Figure 2: Histograms of hedge fund returns EH,M with a normal distribution curve 

overlaid. 
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Figure 3: Time series  plots of the returns of hedge funds EH,M. 

 

 

 

 

 

 

Figure 4: Autocorrelation plots of hedge fund returns EH,M. 
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Figure 5: Autocorrelation plots of squared hedge fund returns of EH,M. 

 

                                                                                                                             

2.3 Discussion about the data 

In Table 3, we present the summary statistics for the returns of hedge funds. We 

also have calculated the Ljung-Box statistic (LB) based on 20 lags, for the return series and 

the squared return series. The Ljung-Box statistic of autocorrelation is defined as: 

H0: The data are uncorrelated 

H1: The data are correlated 

The test statistic has a general form: 

� = �(� + 2)  �
���

�

���

�

���
                    (2.3.1) 

where  n is the sample size, ��� is the sample autocorrelation at lag k, and h is the 

number of lags being tested. If H0 is valid, the equation (2.3.1)  follows a  �(�)
�  distribution. 

In our analysis, Q-statistic must follow a �(��)
�  distribution. 

distribution. For significance level 5%, the critical region for rejection of the null 

hypothesis is: 
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The corresponding critical value from the table of X-square distribution, is 31.41. 

 The results from the Table 3 show, that we have excess kurtosis, varying from 3.85 

for EM to 10.86 for RVA, at six out of ten return series. This fact indicates fat tails in most 

of the hedge fund return distributions. We observe that the distributions of RVA, ED, CA, 

DS, MA, EM, FIA  present fat tails and deviate from normality. The LB statistic tests the 

null hypothesis of no autocorrelation of the return series, versus the alternative hypothesis, 

that there is autocorrelation. The null hypothesis of no autocorrelation is tested at 

significance level 5%. We see from the Table 3, that the null hypothesis is rejected for the 

return series M, ED, CA, DS, EMN, EM, FIA. The LB statistic for the squared returns in 

the same way gives us that, the null hypothesis of no autocorrelation in the squared return 

series   at significance level 5%, is rejected for the series EH, M, EMN, FIA. So, from this 

last result we conclude that there is evidence for heteroscedastic effects in four out of ten 

return series. The indication of heteroscedasticity can be shown from the time series plots 

in figures 3 and 28 (Appendix), where we observe that in some periods volatility is large 

and  in other periods is lower. This characteristic is named volatility clustering, and in some 

way it causes the fat tails and the kurtosis in the  distribution of the data. 

To capture these characteristics, we could use models borrowed from time series 

theory. We can construct models that explain the return series (yt), by adding past values 

(yt-1,yt-2,…..) and past stochastic terms (εt−1,εt-2,…). This could explain the autocorrelation 

between the latest and newest observations. This model is called Autoregressive Moving 

Average. There will be an analytical explanation of this model in Chapter 3. 

 The conditional heteroscedasticity requires a model for the variance. In our 

analysis we will  use  GARCH-type models for the variance. There will be also an 

analytical reference for these models in Chapter 3. 
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                                         Chapter 3 

                           Methods of forecasting 

 

3.1  Machine Learning algorithms 

Machine learning is a section of computer science that gives to the computers the 

ability to execute jobs efficiently by the use of algorithms. The more formal definition 

proposed by Tom Mitchell (1997) for the algorithms analyzed in Machine Learning is the 

following: : "A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P if its performance at tasks in T, as measured 

by P, improves with experience E". 

Machine learning is constructed on the field of Mathematics and Computer Science. 

So, our algorithms will be based on certain mathematical language from the field of: 

1)Probability : study of likelihood of events 

2)Statistics : study of the methods to collect, analyze, describe and present data. 

3)Artificial intelligence: Study and construction of systems that imitate things that 

a human can do. It was first used by  McCarthy (1956). Some examples of Artificial 

Intelligence include speech recognition, language translation, self-driving cars. 

Machine learning algorithms can learn from and  make, data-driven predictions or 

decisions through building a model from sample  inputs.  Some of the applications , 

 (Thagard ,1990) include email filtering, detection of network intruders, pattern 

recognition, speech recognition, medical diagnosis, natural language processing, physics, 

problem solving, game playing, robots. From the side of data analytics machine learning 

is a method used to derive models and algorithms useful for prediction, known as predictive 

analytics. These models allow data scientists to make decisions and uncover relations and 

trends in the data through the time.  

 

3.1.1 Historical information for Machine Learning 

The initial step for the foundation of Machine Learning has begun in 1955, from 

the British mathematician Alan Turing raising the question whether a machine can think. 

This idea led to the birth of the first computer. Some years later, Arthur Samuel introduced 
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the  term "Machine Learning" while working at IBM . Over these 65 years many people 

around the world have contributed to this growth, especially people studying at universities 

and software developers. 

Some  interesting recent achievements include the following: 

 In 2011 Google’s deep neural network learned to discover and categorize objects. 

 

 In 2014 Facebook developed the Deep Face algorithm which could recognize and 

verify people in photos the way humans do. 

 

 In August 2017 a new Artificial Intelligence system based on Neural Networks was 

trained to write the first five chapters of the next book of the popular fantasy series 

Game of Thrones. 

 

 

 

 

3.2 How do machine learning algorithms work  

Our goal in machine learning is to learn a target function, usually described as (f) 

that maps input variables (X) to an output (Y) 

                           Y= f(X) (3.2.1)  

We try to approach the best form of f, which means the best mapping of X’s to Y. 

The main use of the learning task, is to make predictions for the future(Y) given new 

examples of inputs (X).If we had the exact form of f, we could use it directly to make our 

predictions. But, we do not. So, we estimate the form of the function from our data and we 

have an error (e). 

   Y=f(X) + e   

This error is independent of the inputs (X). 

 So, the procedure of learning the mapping Y=f(X) to make predictions of Y 

when we have new X is called predictive modeling . Our aim is to improve the estimate of 

the function f, so as to have better predictions made by our model. 
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We will discriminate algorithms by type of learning and similarity of their function 

.We will also analyze the parametric and non-parametric machine learning algorithms. 

 

 

3.2.1 Supervised, Unsupervised and Semi-supervised algorithms 

  

1)Supervised Algorithms 

Supervised learning is the procedure,  when you have input variables (X) and an 

output variable (Y) and you use an algorithm to learn the mapping function from the input 

to the output. 

The aim is to approximate the mapping function (3.2.1) so well that when you have 

new input data (X) that you can predict the output variables (Y) for that data. We split the 

data into training and testing set. It is called supervised learning because the process of an 

algorithm learning from the training set can be thought of as a teacher supervising the 

learning process. The training set has output variable (Y) which needs to be predicted or 

classified.  Since we found the form of the function,  the next step is to apply it to the testing 

set for prediction or classification. Three important supervised algorithms are: 

 Regression algorithms 

 Decision/Regression trees 

 Supporting Vector Machines 

 

 2)Unsupervised Algorithms 

     In the case of unsupervised learning, we have only input variables (X) and not 

corresponding output variable (Y). Ιn contrast with supervised algorithms, there is not a 

teacher supervising the learning process. Algorithms must discover on their own the 

relations in the data. There are two main categories of unsupervised algorithms: 

 Clustering algorithms 

 Dimension reduction techniques (e.g. PCA,QDA) 

3)Semi-Supervised Algorithms 

    Semi-supervised algorithms are used when we have a lot of inputs(X) and only 

a few of these have corresponding output (Y). We can use unsupervised techniques to guess 



 

18 
 

predictions for the data with no corresponding output (Y). After completing this step, we 

could continue by setting these data as training data to a supervised algorithm. In the end, 

when we have found the form of the mapping function we can use it to predict on new 

unseen data. We have two basic categories: 

 Generative Algorithms 

 Self-training Algorithms 

 

 3.2.2 Types of functions 

Our next step is to categorize the algorithms by similarity of their function. We will 

refer to popular machine learning algorithms, grouped by similarity. So, we have: 

 Regression Algorithms 

i) Ordinary Least Squares Regression 

ii) Linear Regression 

iii) Logistic Regression 

 

 Instance based algorithms 

i) k-nearest neighbors (Knn) 

ii) Learning Vector Quantization (LVQ) 

 

 Regularization algorithms  

i) Ridge Regression 

ii) Least Absolute Shrinkage and Selection Operator 

iii) Elastic Net 

 

 Decision tree algorithms 

i) Classification tree 

ii) Regression tree 

 

 

 Bayesian algorithms 

i) Naïve Bayes 
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ii) Gaussian Naïve Bayes 

 

 

 Clustering Algorithms 

i) K-Means 

ii) Expectation Maximization algorithm 

 

 Dimensionality reduction algorithms 

i) Principal Component Analysis 

ii) Quadratic Component Analysis 

 

 Artificial neural network analysis 

i) Back-propagation 

ii) Perceptron 

 

 

Complex machine learning problems can be reduced to these 4 basic types: 

 

 Classification 

 Regression 

 Clustering  

 Rule extraction 

 

For every problem we can find and test an algorithm addressed to that problem, 

which belongs to one of the above basic forms. 
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3.2.3  Parametric and Nonparametric algorithms 

Another discrimination between algorithms include the parametric and non-

parametric algorithms. 

Parametric machine learning algorithms have a known form of function and a set 

of parameters of fixed size. A parametric algorithm needs the following steps to be built: 

1)A specific form for the function 

2)Use the data to learn the coefficients for this function 

Typical examples of parametric algorithms are the following: 

 Logistic Regression 

 Perceptron 

 Linear Discriminant Analysis 

 

 

 

Nonparametric algorithms do not make  assumptions about the form of the mapping 

function. They have the advantage to learn from a variety of forms occurring from the data. 

These methods try to fit the existing data by constructing the mapping function, but they 

try also to generalize to new data. The most familiar nonparametric algorithms are: 

1)K nearest neighbor algorithms(k-nn algorithm) 

2)Regression and Classification trees 

3)Neural Networks 

 

 

 

3.3 Methods used in this analysis 

    Continuing, we will refer to methods that we will be using for our purpose, which 

is the prediction of hedge fund indices for the next 24 months. Machine Learning include 

a number of techniques and then, the most proper technique is used for model selection 

and forecasting. In our analysis we use forecasting models, which fall under the category 

of supervised learning. So, in this case we search for the ‘‘teaching rule’’ that explains the 
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relationship between hedge fund indices and some given factors. The algorithms that will 

be used in our study, are the following: 

 

 Linear Regression analysis with subset selection 

 Lasso Regression 

 Regression trees 

 Random Forests 

 

 

Regression analysis 

Regression analysis in machine learning refers to a process where we need to find 

the relationship among variables. More specific, we have a dependent variable and other 

independent variables, and we try to analyze their relationship. So, we say that one 

independent variable has impact on a dependent variable if we have the following scheme: 

We vary the one independent variable and see that the dependent variable changes, while 

the other independent variables stay fixed. 

 

 

 

Simple linear regression 

It is the simplest form as its name declares, and we have to predict a quantitative 

response Y with only a single predictor X. We make the hypothesis of a linear relationship 

between X and Y, (see for example, Hastie and Tibshirani). 

  Y≈  βο + β1Χ    (3.3.1) 

We describe the equation (3.3.1) by saying that we regress Y on X .In the (3.3.1) 

the βο and β1 are two unknown constants that represent the intercept and the slope of the 

model. If we increase one unit the X, we will have bj as the effect on Y. These two constants 

are the coefficients of the model, and we use the data to estimate them. We do not derive 

the  Y exactly, so the (3.3.1) takes the following form: 

 

 Y= βο + β1Χ  + ε (3.3.2),   
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where ε is a random mean-zero error term,normally distributed. 

 

The estimates ���,���  from (3.3.2) are obtained using the least squares method. Once 

we have found ���, ��� we can make predictions with the following equation  

  �� = ���+ ����    , 

where �� denotes a point estimate given the value of the X=x. 

The �̂� = �� − ��� are called the residuals of the model, and actually they represent 

the deviation of the real-observed value �� , with the estimated from the regression model 

���. 

 

Multiple Linear Regression 

We analyzed above the case of simple regression. But, in practice we do not have 

one single predictor for the response. We extend the simple linear model, so that it can 

include many predictors in the equation. So, the equation of multiple regression is: 

  Υ=�� + ���� + ���� +….+����+ε,  (3.3.3), 

for j=1,…,p   �� is the jth predictor and the corresponding coefficient βj denotes the 

association between the predictor and the Y, so if we set constant all the other variables, βj 

expresses the effect on Y if we increase one unit the value of Xj . 

For the estimation of the coefficients we use the same method (ordinary least 

squares approach) with the simple linear regression, to obtain them. Our main purpose in 

the multiple regression process is, to find if there are some statistical significant variables 

in the equation and also, which are these variables, by applying  variable selection methods. 

     Once we have found the coefficient estimates, we continue to make predictions 

with our model. The accuracy of our predictions depends on how well does the model fits 

the data. We will introduce the tools of estimation of accuracy to the next paragraph. 

 

Accuracy of the  model 

Once we have fitted our model, the next step is to quantify how  good the  model  

fits the data .The quality of the fit is measured using two related quantities: The residual 

standard error (RSE) and the R-squared statistic. The RSE is an estimate of the standard 

deviation of the ε terms from the (3.3.3) equation. More practical, it is the average amount 
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of how the response variable will deviate from the estimated regression line. The formula 

that gives the RSE is: 

RSE=�
�

���
��� = �

�

���
∑ (��− ���)��

���  ,  

,where RSS=� (��− ���)��

���
  

So, RSE measures the lack of fit of the model. 

In fact, the R-squared statistic is mostly used for assessing the fit and measures the 

proportion of variance explained by the model. It can take values from 0 to 1 and the closer 

it is to 1 the better the fit becomes. The formula which gives us the R-squared is: 

�� =
�������

���
  ,   where ��� = ∑ (�� − ��)� , is the total sum of squares. 

 

Variable Selection Methods 

In linear regression the fit of the model can be improved by adding covariates in 

the model. By adding these covariates we minimize the bias in the expense of higher 

variance. Nevertheless, this technique leads to poor predictability of the model and bad 

interpretability of the results. So, it is  preferable to choose with some criteria which 

variables should be included. We have two categories of variables selection methods: 

 Subset selection  

 Shrinkage  

 

Subset selection 

We aim to find the optimal number of covariates in a linear regression model. In 

this category we have the stepwise selection methods. In forward  stepwise selection it 

starts with a least squares model with no covariates, adding one variable at a time based on 

its contribution to the model fit. The process ends when we cannot add another covariate. 

In backward stepwise selection it starts with a least squares model including all covariates, 

with each following model with one less variable until only the important variables are 

included in the model. The variable that is going to be removed is the one that contributes 

the least to the explanatory power of the model. At the end of the backward deletion  

process, there is be a set of p models, each corresponding to the best performing model in 
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the family of models including one covariate, two covariates, and so on. There is another 

one stepwise method called step-by-step stepwise selection. In the beginning, we start from 

a given model and in each step we decide which variable to include. After adding the best 

variable we check if we must remove another variable. We select the move that will  be 

executed according to a criterion. At all stepwise methods the model selection. or variable 

insertion or exlusion criteria are the values that minimize the Akaike Information Criterion 

(AIC) or the Bayesian Information Criterion (BIC).For this purpose, it can also be used the 

adjusted R-squared.  

 

Shrinkage Methods 

Shrinkage  methods reduce or shrink the values of the coefficients towards zero. 

The main advantage of these techniques compared to the classical methods of least squares 

for estimation of the coefficients, is that exhibits less variance. The two widely used  

shrinkage methods are the Ridge Regression and the Least Absolute Shrinkage Method 

(LASSO).  

 

 

Least Absolute Shrinkage and Selection Operator Method (LASSO) 

In high dimensions, where there are some variables in the dataset which are 

correlated , the traditional ordinal least squares tend to have high variance, although they 

have little bias. Ridge regression, Hoerl et al. (1970), was a technique proposed to reduce 

the problem of multicollinearity. The innovation was, that by adding some degree of bias 

to the regression estimates, the ridge regression reduces the standard errors. So, in this case 

the quantity we want to minimize is:   

 

                  � (��− ����)��

���
   s.t.  � ��̇��

���
≤ � ,  

where β are the coefficients and z are the standardized covariates 

Although ridge regression is not used in practice, it led to the popular LASSO, 

which is also called ��penalization.     
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   Tibshirani (1996) introduced LASSO, which performs coefficient shrinkage and 

variable screening at the same time. In the same way as ridge regression, we want to 

minimize the quantity: 

     �� − �� �
�

�� − �� �  �.�.  ∑ |��|�
��� ≤ �                                     

                  ⇔   �� − �� �
�

�� − �� �+ � ∑ |��|�
��� ,   

 λ shrinks each coefficient by a factor λ. 

 The s is called the tuning parameter, controlling the amount of shrinkage applied 

to the coefficient estimates. If s is big enough, then the resulting solution will be the same 

with the solution obtained from multiple regression using the ordinary least squares. On 

the other hand, if s  is small enough some coefficients will be  equal to 0.  

Our aim is to estimate the s. Cross-validation is an efficient technique for estimating 

the tuning parameter. The data split into train data used for estimation and test data used 

for testing the predictive performance of the model. The most popular process is the k-fold 

cross-validation, where we split the data into k-folds. The k-1 are used for training and the 

last one for testing. Since we  have fitted the model to the training data, we report the Mean 

Squared Error for the k-th fold. In the end, we select the s that minimizes the Mean Squared 

Error. Another way is, to run LASSO for a variety of λ values and select the value λ using 

the Mallows Cp, by Mallows(1973) , an index used for assessing the fit of a regression 

model. The type of Cp is: 

                                    �� =
���

�������
− (� − 2�)    

                                                                                           

 

Using the plot of Cp vs s we select the s that minimizes the index Cp. The R package 

that will be used is the ‘lars’, by Efron, Hastie and Tibshirani (2004) .        

        

Lasso Regression seems to outperform the Ordinal Least Squares in forecasting 

economic indices,    according to Chan-Lau (2017).  In fact, each economic index 

(dependent variable) may depend on a large set of  economic factors (independent 
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variables). By the lasso screening of variables, the results occurring are quite enough 

interpretable, which is very important for financial forecasting problems.                                                                                  

 

 

Regression trees 

Regression trees belong to the tree-based methods for regression. There are also 

the classification  trees but , we will not be consumed on this category, because it involves 

qualitative variables for the predicted responses, and economic indices are continuous. 

   The  tree-based methods divide the predictor space into a number of simple 

regions. Our aim is to make a prediction given an observation, and we use the mean or 

mode of the training observations in the region in which this belongs. All the splitting rules 

used for the segmentation of predictor space are visually represented in a tree, usually 

referred as a decision tree. 

     The regression tree is built as a binary tree. It begins with a first node, which is 

the root node and each node has two child nodes. The split at each node is determined from 

an explanatory variable, given from a set of explanatory variables of the dataset, which 

reduces the most of the deviance. While moving down  at each node, we have to make a 

decision whether to go to the left or to the right sub-branch. If the condition we test is 

satisfied, then we move to the left sub-branch. Otherwise, we  go to the right sub-branch. 

Since we have chosen the leaf node, we calculate the prediction with the formula: 

                            � � =
�

��
 ∑ ���∈�      ,   

 

 where we denote �� the total observations in the leaf node. 

       The whole sample space is partitioned into regions R1,R2,..,Rc, so the predicted 

response will be: 

                              �(�) = ∑ � ��(� ∈ �� )�
���    , 

where � = �
1,� ∈ ��
0,� ∉ ��

     .    
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We calculate the sum of squared errors for a tree:  

                      � � (��− � �)�
�∈�

�∈������(�)
 ,    (3.3.4) 

This method of prediction may give good predictions, but it overfits the data leading 

to poor results on the test set. This problem occurs because the tree may be too complex. 

The idea to address this situation is, to build a tree so long, as the decrease in the equation 

of sum of squared errors (3.3.4) exceeds some big enough threshold. This leads to a smaller 

tree, a pruned tree and the process explained above is called tree pruning. The package 

that will be used is the rpart() in R, and the control parameters we specify are the threshold 

complexity parameter cp, which decides how much reduction in the deviance will occur if 

a split is attempted, and the minsplit. Minsplit is just the minimum number of observations 

at a node for computing the split. 

      Tree-based methods have some  advantages. The most important is, that trees 

are easy to present to the people. The binary style of decision trees is more closely to human 

decision-making than the multiple regression. They can also be presented graphically and 

interpreted by a person who is not an expert in machine learning algorithms. But, 

unfortunately their predictive accuracy is not so competitive with the standard regression 

approach . However, if we combine many decision trees, we can improve the predictive 

performance of the simple tree approach. In the next paragraph we will show how it can be 

accomplished with the random forest approach. 

 

Random Forests 

Random forests is a method of building many decision trees on bootstrapped 

training samples proposed by Breiman (2001). But, when we are building a tree, each time 

a split is required, we have to choose from a subset m of predictors. The basic difference 

from the regression tree approach is, that the best variable for the split is decided from a 

set of m predictors randomly chosen at the node, while for the regression trees we have to 

decide from the total explanatory variables set. 

By using this improved technique we create many different trees, and in this manner 

we avoid the correlation between predictors, if we have a large number of them in the 

dataset. By using the Strong Law of Large Numbers, we have that the algorithm will always 
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converge and the model does not overfit. After the construction of N trees, the predicted 

response will be: 

                      ����
� (�) =

�

�
∑ ��

��� ��;̇�� �,  (3.3.5) 

 where Θn is the nth  random forest tree, and finally with (3.3.5) we calculate the 

averaged prediction from all N trees. 

The algorithm will be carried out with the package randomForest() in R and the 

control parameters that we should pay attention are: 

1)ntree: The number of trees that build the random forest. The default parameter is 

500 and it is often the most preferable choice, so as to minimize the test error.  

2)mtry: It is the number of predictors which will be used, to make a decision from 

at each split. The default choice is m=p/3, but it is often used the half value of the default 

or the double value of the default. 

A wise choice for the 1),2) values occurs after making some trials by changing 

every time the default values, until we reach the best model. 

 

Random forests technique is a very good method for prediction. It does not overfit, 

and the element of randomness at the step of variable selection, decorrelates the trees and 

gives more reliable predictions. 

 

 

3.4 Models from econometric theory  

 

3.4.1 ARCH/GARCH models  

 The ARCH/GARCH models (Autoregressive conditional heteroscedasticity / 

Generalized autoregressive conditional heteroscedasticity), are used for modelling the 

volatility of  financial time series. As we  have seen in Section 2.3, the volatility of some 

financial assets is non-constant over time. The ARCH models by Engle (1982), can be 

defined in a  dynamic linear regression problem. In  standard linear regression problems 

the error ε is assumed to be normally distributed with mean μ and constant variance σ2 . 

This measures the size of error, and if it is constant we call this homoscedasticity. However, 

in the financial series the assumption of constant volatility is not valid. Assuming that we 
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have a time series of observations of the returns (yt) of an asset, Haavelmo (1944) consider 

it as a stochastic process of  random variables. So, we have a sequence of variables 

characterized by a joint probability distribution at each moment. The process is called  

weakly stationary if the mean and the variance of the process are constant and do not 

depend on time. We say then that, the terms μt and σ2
 t are the unconditional mean and 

variance of the process. In finance we use past information for making predictions. So, we 

need the conditional distribution  ���(�|���) of the variable yt2 at time t2 conditional on the 

information It1 known at time t1. Based on this information we compute the conditional 

mean and the conditional variance. We can have weakly stationary process with time-

varying  conditional mean and volatility models. 

Engle’s ARCH model allows us to define the best weights to use for forecasting the 

variance. To use the ARCH model we must have a weakly stationary process. The ARCH 

specification model for the variance is: 

           ℎ� = � + � ������
��

���
         

 

, where ��  are estimated by the given data, and the model of the response �� with 

Xt, the vector with the predictors,  is : 

 

                   �� = ��������� + ⋯ + ������    +  ��  ,  

 The form of the errors is:   

           �� = � ℎ���       , and   ��    are independent standard normal variables. 

 

 

     A more general form of this model is the GARCH, introduced by Bollerslev (1986) . 

The main idea is, that the predicted variance in the next time period is a weighted-average 

of the long-run average variance, the variance predicted for this period, and also the new 

information in this period, that is captured by the most recent squared residuals. So, the 

notation of GARCH model for the variance with order p and q, presented as GARCH(p,q) 

is: 
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               ℎ� = � + � ������
��

���
+ � ��ℎ���

�

���
    (3.4.1) 

 

 

As we can see from the (3.4.1) we say that the GARCH(0,q) is same with the 

ARCH(q) model. The orders p and q of a GARCH model can be identified from the 

autocorrelation and partial autocorrelation plot of squared residuals. 

The main purpose of the construction of ARCH/GARCH models presented above 

is to understand the risk of a time series. The confidence intervals we construct for a 

forecast are more realistic if we take under consideration  the time-varying volatility. These 

models capture the volatility clustering phenomenon and the fat tail characteristic of 

financial data. In addition, the kurtosis calculated with the moments of an ARCH or 

GARCH model, is always larger than 3, which means that it is larger than the kurtosis of a 

normal random variable. These characteristics make these models appropriate to use in our 

empirical applications. We will explain precisely how we will use them in the next chapter. 

 

 

3.4.2 Autoregressive model 

Autoregressive models with order p (AR(p)), are the simplest univariate time series 

models. These models attempt to predict the response variable using past values of this 

variable. The general form of an AR(p) is: 

                 �� = � + ∑ � �����
�
��� + ��,    

 

where � �  are parameters of the model and ��~N(0,σ2 ). 

For the analysis we use Box-Jenkins methodology (1970).  The steps for modeling 

and forecasting are: 

1)Identification step: We define the order p from the autocorrelation of the series. 

2)Estimation step: We estimate the models parameters using Maximum Likelihood 

and Least Squares method. 

3)Diagnostic step: We check if our model fits well the data, and test for the 

assumptions of the residuals, i.e homoscedasticity , normality and independency of errors. 
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4)Make forecasts: After resulting to an appropriate model, we make forecasts from 

the model. 

 

3.4.3 Autoregressive Moving Average Models 

Autoregressive models with order (p,q) attempt to predict the response variable 

using past values of this variable and past stochastic terms. It is called also ARMA(p,q). 

The form of an ARMA(1,1) model is: 

                      �� = � + ������ + ������ + ��.    ��~N(0,σ2 ).   

 

The estimation of ARMA(p,q) models can be done using Least Squares method and 

Maximum Likelihood method. 

 

The orders p and q can be identified through PACF and ACF of the residuals. The 

estimation of the parameters of the model with Maximum Likelihood is the following: 

1)We estimate the joint probability distribution, which is actually the probability of 

having observed this particular sample 

2) The maximum likelihood estimator of � is the value that makes the sample most 

likely to have been observed. 

 

The next steps 3 and 4 are the same with the steps 3 and 4 of  model described in 

3.5 . 
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 Chapter 4 

          Estimation and forecasting 

 

 

4.1 One-step forecasting 

In this section, we will use the Methods described in Chapter 3 for our forecasts. 

The algorithms that carried out the analysis are programmed in R software. We make 

forecasts only for the next month with the estimated models. We will present the one-step 

forecasts for the EH and M hedge funds for 24 months. (At the appendix we have forecasts 

for the other hedge funds). 

 

 

 

 

        

 

 

 

                                                                                   

                                                

 

 

           

  Table 4: Response variables                                              

 

 

 

 

                                                                                 Table 5: External regressors 

Regressors 

RUS-Rf 

RUS(-1)-Rf(-1) 

MXUS-Rf 

MEM-Rf 

SMB 

HML 

MOM 

SBGC-Rf 

SBWG-Rf 

LHY-Rf 

DEFSPR 

FRBI-Rf 

GSCI-Rf 

VIX 

Rf 

Hedge fund returns (Rt) 

EH 

M 

 RVA 

ED 

CA 

DS 

EMN 

MA 

EM 

 FIA 
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In the beginning, we will start with EH and M. The total observations in the dataset 

are 189, so we have values for 189 months. First, we will estimate the forecasting model. 

For this purpose, the data splits into training  and testing data. The model will be estimated 

with the training data, and the testing data will be used for assessing the predictive 

performance of the model. At each step  of the estimation, we use all the historical 

information until the time t. So, each time it will be used the latest information related to 

the response variable for the forecasting model. We will compare the performance of the 

models, using the ARMA(1,1) model . We have checked  for stationarity of the time series 

(Appendix, Figure 9&10), so we can fit an ARMA(1,1) model in our data. 

 

 

 

 

 

 

                                                                                                             

 

 

Figure 6: Diagram of the method of model estimation. 
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So, the mathematical form of the model can be written as: 

���� = ����,�,��,�,… ,��,�� + εt+1   , where εt+1  ~ N(0,σ2) (4.1.1) 

 

The process  in Figure 8, shows that the training set of observations is updated at 

every one-step ahead forecast. The TO denotes the test observation of each step. We use 

the algorithms explained in Chapter 3, for estimating the mapping function �  from the 

(4.1.1). It is obvious that � will be updated also at each forecasting step, because we have 

new training data. So, in the end we will have 24 different �. Since we have fitted the 

model, the next step is the forecast. So, in the end of the whole  process there will be 24 

forecasts. We will compare the results from each method used, by using the Mean Squared 

Error:  

                                  ��� =
� (�(���������)��(�������))���

�

��
    

 

 

4.2 Results  

We present the results from the models. There is a column named Parameter, which 

specifies the value of the tuning parameter for the Machine Learning algorithms. In 

LASSO, the default parameter is the ‘s’ which minimizes the Mallows Cp. The default 

parameters for Regression Tree are minsplit=20 and cp=0.012. For the Random Forest 

algorithm, we tried three different values for ‘mtry’. The default, the half of the default, 

and the double of the default. In this case the default value is 5. The results were improved 

by choosing the double value from the default, so the mtry=10. Variable selection in 

Multiple Regression is executed with stepwise step-by-step selection. The best technique 

is the method which minimizes the MSE, and is marked with red frame. 

 

 

 

 

                                                           
2 Explained in Chapter3 
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Model Parameter MSE 

Multiple Regression — 0.0002757487 

LASSO Default 0.00004141184 

Regression Tree Default 0.0002095322 

Random Forest mtry=double(default) 0.0000379776 

ARMA(1,1) — 0.0007402437 

 

 

Table 6: Predictive performance for monthly returns of EH. 

 

 

Model Parameter MSE 

Multiple Regression — 0.002308732 

LASSO Default 0.01081406 

Regression Tree Default 0.001286918 

Random Forest mtry=double(default) 

ntree=default 

0.0001350695 

ARMA(1,1) — 0.0005589166 

 

Table 7: Predictive performance for monthly returns of M. 

 

The performance evaluation for EH and M are summarized in Table 6 and 7 respectively. 

We observe that the Random Forest algorithm shows greater performance than the other 4 
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algorithms used for prediction in both response variables.  The algorithm which performs  

worst for forecasting EH is, the Multiple Regression algorithm. On the other hand, the 

algorithm which performs worst for forecasting M is, the LASSO. 

 

Predicted values 

 

  0.021151982  0.011592746  0.005899105 -0.018767628      

 0.007088150 

   0.011989556 -0.019269913 -0.001905539  0.026558752   

0.015146763 

  0.023109330  0.012833557 -0.003415332  0.016846034  – 

0.005628797 

 -0.021298694 0.027037633 0.019804843 0.030653644  0.010592472 

 0.009699006   -0.014704024    0.021251099    0.011968074 

 

Table 8: Predicted values of EH using Random Forest. 

 

 

 

 

Predicted values 

 

 0.0159163375  0.0126752003  0.0125137524 -0.0196749983 -0.0001103572 

  0.0087547497  0.0046103859  0.0203501497  0.0231378567  0.0261015291 

 0.0185165250  0.0207421680 -0.0001677490  0.0267101978 -0.0085580738 

 0.0011117294  0.0182948213  0.0183827800  0.0252751048  0.0157676740 

  0.0147982310 -0.0097307280  0.0093476849  0.0237738625 

 

Table 9: Predicted values of M using Random Forest. 
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It is assumed that the error term follows a normal distribution. Thus, the errors 

should be normally distributed, with not significant autocorrelations between them and 

homoscedastic. So, in this step we will present the diagnostic plots for the residuals,  and  

Tables 10 and 11 below,  show  the findings from the plots. 

 

 

Model/Assumptions Normality Non-
autocorrelation 

Homoscedasticity 

Multiple Regression        X 

LASSO        X 

Regression Tree    X      X 

Random Forest    X      X 

ARMA(1,1)          X     

 

 

  

Table 10: Checking  the assumptions from the models for forecasting EH. 
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Model/Assumptions Normality         Non-

autocorrelation 

Homoscedasticity 

Multiple Regression       X       X       X 

LASSO       X       X       X 

Regression Tree         X       X 

Random Forest       X       X       X 

ARMA(1,1)       X     

 

 

 

Table 11: Checking  the assumptions from the models for forecasting M. 

 

 

From the Table 10, it is shown that the hypothesis of normality is not satisfied only 

in two algorithms, Random Forest and Regression Tree. The hypothesis of uncorrelated 

errors is satisfied in all methods for EH, but the great problem is the heteroscedasticity. 

The heteroscedasticity problem is detected through the acf of squared residuals plot, and 

the Ljung-Box test of independence for squared residuals. 

From the Table 11, in the same way we see that the normality assumption is violated 

at almost all models, except Regression Tree model. There is a severe problem of 

autocorrelation in  errors and squared errors at all models. 

It is obvious that the problem of serial autocorrelation does not exist for 

ARMA(1,1) model , because the residuals from an ARMA(p,q) procedure resemble to a 

white noise process. 

In Section 2.3 we explained the volatility clustering phenomenon, which causes 

periods of short and large volatility. The models we presented above do not capture this 

effect, so there is incomplete information about the behaviour of the series . In the next 

Section, we will propose a technique to reduce this phenomenon, so as to improve the fit 

of our models. 
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4.3 GARCH-correction for volatility clustering phenomenon 

In one-step forecasting the returns of the hedge funds before, we used information 

about the explanatory variables (factors), from the dataset given until time t . Although 

their performance is sufficient, the volatility  of the series is not captured. Machine 

Learning algorithms assume constant volatility, which has been proven above that is not 

valid for this data. The Cochran-Orcutt (1949) procedure , is a method from econometrics 

for estimating a linear regression model with time series data, with autocorrelated errors. 

Our thought is, to combine the volatility clustering models referred in Sestion 2.3 with the 

models we have used for prediction. 

So, the forecast will be based on these two equations: 

                        ����� = �(���,���,… ,���)  , (4.3.1) 

      

                       ℎ��� = �� + �� ����
�  + β ����

�     , (4.3.2) 

 

where ℎ��� is the model for the  variance of    ����  . 

 

In the empirical analysis, we use different models for the mean equation , and 

GARCH(1,1) model to capture the time-varying volatility  of financial returns. 

 

Below, we present the predicted values and the MSE for each model. We compare 

the predictive performance between the models and we plot the Observed and Predicted 

values from the best model to visualize the results. 

In the end, we check the assumptions for the residuals and  we expect that all the 

assumptions should be satisfied after the GARCH-correction for the reduction of volatility 

clustering. 
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4.4 Results for different based Regression Garch-type models 

 

Model Parameter  MSE 

Multiple Regression — 0.0003780911 

LASSO Default 0.00004554623 

Regression Tree Default 0.0009160139 

 

Random Forest mtry=double(default) 

ntree=default 

0.0003466563 

 

ARMA(1,1) — 0.0007402437 

 

Table 12: Predictive performance for monthly returns of EH , using the GARCH-

correction. 

 

 

Model Parameter MSE 

Multiple Regression — 0.002002053 

 

LASSO Default 0.002082637 

 

Regression Tree Default 0.001975184 

Random Forest mtry=double(default) 

ntree=default 

0.0008205279 

ARMA(1,1) — 0.001741812 

 

 

Table 13: Predictive performance for monthly returns of M , using the GARCH-

correction. 
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From the Table 12 and 13 we see the comparison between the predictive 

performance of the methods after using the GARCH-correction technique. We observe that 

the best model for forecasting EH is the LASSO. The worst performance is observed at 

Regression Tree algorithm. The algorithm which shows greatest performance for 

forecasting M, is Random Forest. The models which perform the least well for forecasting 

M , are the Multiple Regression and the LASSO. 

 

 

Below, we use the best model, which is LASSO for EH and Random Forest for M 

. In the x-axis we have the Year parameter, which extends from 27/2/2004  to  30/12/2005. 

The observed values are the actual values from the dataset from 27/2/2004  to  30/12/2005. 

The observed are shown using blue curve, and the predicted using the red curve, presented 

in the y-axis both of them. With this graphical representation, it is expected that we have a 

configuration, that the predicted values approach enough the real values in terms of 

magnitude as well as direction. 

 

 

  

 

 

 

 

 

 

                                                                                                                         

          27/2/2004                                                                                                                       30/12/2005                     

                                                                    Year 

 

Figure 7: Predicted and Observed monthly returns of EH presented with red and blue 

curves respectively using the best model (LASSO). 
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27/2/2004                                                                                                                  30/12/2005                     

                                                          Year                                                                 

 

 

 

Figure 8: Predicted and Observed monthly returns of M presented with red and blue 

curves respectively using the best model (Random Forest). 
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We continue by checking the hypothesis of the residuals in the models.  

 

 

 

Model/Assumptions Normality Non-

Autocorrelation 

Homoscedasticity 

Multiple Regression       

LASSO       

Regression Tree       

Random Forest       

ARMA(1,1)       

 

 

Table 14: Checking  the assumptions from the models for forecasting EH 

 

 

Model/Assumptions Normality Non-

Autocorrelation 

Homoscedasticity 

Multiple Regression               X   

LASSO    X   

Regression Tree    X   

Random Forest X     

ARMA(1,1) X     

 

Table 15: Checking  the assumptions from the models for forecasting M. 
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So, the results of the assumptions are summarized in Table 14 and 15, where we 

discover some interesting facts. The technique we have followed has performed enough 

good at the models for forecasting EH, while there is still space for improvement at the  

models for forecasting M. The model which we have chosen for prediction  for M, is 

Random Forest. Though, the hypothesis of normality of residuals is violated. The 

heteroscedasticity effect is absent in all models, and especially in EH, all the assumptions 

for the residuals are satisfied. On the other hand, some hypotheses are not satisfied at 

models for M.  
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Chapter 5 

 Conclusions and Further Research 

 

Ιn this Chapter we will summarize the results from this thesis. The subject of this 

thesis targeted to investigate if the use of Machine Learning algorithms could outperform 

the traditional algorithms for financial forecasting. Continuing , we discussed about the 

data and their properties. Our response variables, the hedge fund indices have some 

properties common with other economic features( for example  bonds, stocks, exchange 

currency pairs etc. ).  

Most of the distributions of the response variables do not follow the normal 

distribution. Specifically, from the distributions in Figure 27 the  

RVA,FIA,EM,ED,CA,DS exhibit high kyrtosis, which means that there is a  severe fat tail 

phenomenon in  their distribution. Also, after the observation of ACF plots we observe that 

the autocorrelation plots based on 20 lags do not show  significant autocorrelation. So, the 

explanation of this is, that the value of the next observation does not depend from the value 

of the previous observation. Though, there is a big problem of heteroscedasticity in all 

response variables, which can be detected through ACF plots of squared response 

variables. This phenomenon is crucial for planning our models, because the time-varying 

variance  models must be considered. 

Continuing in  forecasting models at  Chapter 4, the results have shown that EH 

monthly returns can be forecasted best with Random Forest model if we do not take account 

the time-varying variance, with accuracy MSE 0.0000379776. LASSO performs also good 

enough with MSE 0.00004141184. The Regression tree and Multiple Regression model 

with stepwise selection gives almost same results, slightly worse than the other methods. 

ARMA(1,1) model gives the biggest MSE 0.0007402437, that means that it is the least 

good model for forecasting EH. 

 

The results of the residual diagnostics tests for each model had showed 

heteroskedasticity problem, so we tried to minimize this problem by using GARCH-type 
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models. In the end, the models for forecasting EH after the correction procedure did not 

show problem in residuals diagnostics. 

The best model for forecasting EH is the LASSO  model with MSE 0.00004554623 

, but the Random Forest is very competitive also, giving an MSE  0.0003466563. In Figure 

24 (Appendix), we present the LASSO coefficients. As we have explained, LASSO is a 

technique of shrinkage and screening of variables. The variables that are not important in 

our model have coefficients equal to zero. The R-squared of the model is 79,1 %, which 

means that a large enough piece of variance is explained from the model.  The predicted 

values are presented in Table 8 and the plot of actual vs predicted values is found in Figure 

7 . The plot of Figure 7 indicates that, the forecasts from the model we have chosen, follow 

the direction  and the actual value of the indices.  

The results on M monthly returns show that, Random Forest model performs better 

in forecasting the returns. The MSE from this model is 0.0008205279. ARMA(1,1) model 

is the second better model, but it cannot approximate good enough the direction of the 

indices as Random Forest can. Τhe importance of variables can be discovered using the 

Mean Decrease Impurity (Figure 25). As we have explained in Chapter 3, Random Forest 

consists of many regression trees. Every node in the regression trees is a condition on a 

single feature, designed to split the dataset into two so that similar response values end up 

in the same set. The measure which defines  the optimal condition of choice, is called 

impurity. In the case of regression trees, the measure we will use is the variance. So, the 

variable selection is implemented by calculating the impurity decrease from each variable. 

From the above explanation, we conclude that the important variables for forecasting M 

are, MEM-Rf, SBGC-Rf, MXUS-Rf, RUS-Rf, LHY-Rf, SBWG-Rf. The predicted 

values are presented in Table 9 and the plot of actual vs predicted values is found in Figure 

8. We observe that the predicted values approximate perfectly the direction, and 

sufficiently the magnitude of the actual values. 

In addition, we have tried to fit these models to the other response variables. The 

results of the predictive performance are shown in Tables 14-21 (Appendix). So, we have 

that RVA,ED,FIA are best forecasted with ARMA(1,1) model. M, EMN,EM give better 

results with Random Forest model. Finally, the EH,CA,DS,MA are forecasted precisely 

with LASSO model. 
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Completing our analysis, the main result from this study is, that the LASSO and 

Random Forest models outperform the Multiple Linear Regression model. By screening 

the not important variables using LASSO method, statistical models are more stable 3 . 

LASSO type estimators may have bias, but the great advantage of this method is that can 

handle problems of high dimensionality, many of which arise from financial contexts. It 

offers also interpretable results, so as to be presented to people. 

On the other hand, the Random Forest algorithm can be used for forecasting, 

improving the predictive performance related to Regression Tree algorithm. But, it takes 

more time to execute than the LASSO, and it is sensitive if we change the tuning 

parameters. Though, it is easy to interpret because the tree approaches can be easily 

understood by the people. 

Finally, the main findings from this thesis are: 

1) Different hedge fund indices are affected significantly from different risk factors. 

2) Even if there are some algorithms which perform better than others, there is not 

a universally best algorithm for all hedge fund indices. 

For further research, some other amendments could be tried. For example, we could 

include lagged response variables in each forecasting model. In addition, we could try to 

run other more complex machine learning algorithms such as, Artificial Neural Networks, 

Supporting Vector Machines. According to the research in this area, these algorithms show 

well predictive performance, but their results are not easy to interpret. 

 

 

 

 

 

 

 

 

 

 

                                                           
3 Jorge A. Chan-Lau(2017), Lasso Regressions and Forecasting Models in Applied Stress Testing. 
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APPENDIX 

Stationarity test 

 

 

 

Figure 9: Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for stationarity of time 

series EH. 

 

 

 

Figure 10: Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for stationarity of time 

series M. 

 

 

 

 

 

 

Figure 11: Residual diagnostics for multiple Regression model for EH. 
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Figure 12: Residual diagnostics for  LASSO model for EH. 

 

 

 

 

Figure 13: Residual diagnostics for Regression tree model for EH. 

 

 

 

 

      

 

 

Figure 14: Residual diagnostics for Random Forest model for EH. 
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Figure 15: Residual diagnostics for ARMA(1,1) model for EH. 

 

 

 

          > Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 13.454, df = 20, p-value = 0.8571 

 

Box.test(res^2,lag=20) 

 

        Box-Pierce test 

 

data:  res^2 

X-squared = 28.234, df = 20, p-value = 0.104 

 

Figure 16: Box-Ljung test of independence for the residuals and squared residuals 

from Multiple Regression model for EH. 
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> Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 12.431, df = 20, p-value = 0.9004 

 

Box.test(res^2,lag=20) 

 

        Box-Pierce test 

 

data:  res^2 

X-squared = 29.226, df = 20, p-value = 0.0834 

 

 

Figure 17: Box-Ljung test of independence for the residuals and squared residuals 

from LASSO model for EH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 
 

 

> Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 16.04, df = 20, p-value = 0.7142 

 

Box.test(res^2,lag=20) 

 

        Box-Pierce test 

 

data:  res^2 

X-squared = 19.695, df = 20, p-value = 0.4772 

 

Figure 18: Box-Ljung test of independence for the residuals and squared residuals 

from Regression Tree model for EH. 
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> Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 12.856, df = 20, p-value = 0.8835 

Box.test(res^2,lag=20) 

 

        Box-Pierce test 

 

data:  res^2 

X-squared = 30.992, df = 20, p-value = 0.0553 

 

Figure 19: Box-Ljung test of independence for the residuals and squared residuals 

from Random Forest model for EH. 
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> Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 42.782, df = 20, p-value = 0.002184 

 

> Box.test(res^2,lag=20) 

 

        Box-Pierce test 

 

data:  res^2 

X-squared = 30.194, df = 20, p-value = 0.06677 

 

Figure 20: Box-Ljung test of independence for the residuals and squared residuals 

from Multiple Regression model for M. 
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> Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 38.145, df = 20, p-value = 0.0085 

 

Box.test(res^2,lag=20) 

 

        Box-Pierce test 

 

data:  res^2 

X-squared = 30.229, df = 20, p-value = 0.06623 

 

Figure 21: Box-Ljung test of independence for the residuals and squared residuals 

from LASSO model for M. 

 

 

 

Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 35.029, df = 20, p-value = 0.01995 

 

> Box.test(res^2,lag=20) 

 

        Box-Pierce test 
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data:  res^2 

X-squared = 25.472, df = 20, p-value = 0.184 

 

Figure 22: Box-Ljung test of independence for the residuals and squared residuals 

from Regression Tree model for M. 

 

> Box.test(res,lag=20) 

 

        Box-Pierce test 

 

data:  res 

X-squared = 32.92, df = 20, p-value = 0.03443 

 

Box.test(res^2,lag=20) 

 

        Box-Pierce test 

 

data:  res^2 

X-squared = 33.276, df = 20, p-value = 0.05146 

 

Figure 23: Box-Ljung test of independence for the residuals and squared residuals 

from Random Forest model for M. 

 

 

 

Figure 24: Coefficients from LASSO model for forecasting EH after GARCH-

correction. 
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Figure 25: Variable importance of factors in Random Forest model for M after GARCH-

correction. 
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Figure 26: Normal quantile plots of the returns of 

RVA,ED,CA,DS,EMN,MA,EM,FIA. 
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Figure 27:  Histograms of hedge fund returns RVA,ED,CA,DS,EMN,MA,EM,FIA  

with a normal distribution curve overlaid. 
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Figure 28: Time series plots of hedge fund returns RVA,ED,CA,DS,EMN,MA,EM,FIA . 
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Figure 29: Autocorrelation plots of hedge fund returns 

RVA,ED,CA,DS,EMN,MA,EM,FIA. 
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Figure 30: Autocorrelation plots of squared hedge fund returns 

RVA,ED,CA,DS,EMN,MA,EM,FIA. 
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Model Parameter  MSE 

Multiple Regression — 0.00048878 

 

LASSO               Default 0.00041579 

 

Regression Tree Default 0.0002150527 

Random Forest ntree=double(default) 0.0002130655 

 

ARMA(1,1) — 0.0001168077 

 

 

Table 16: Predictive performance for monthly returns of RVA. 

 

Model Parameter MSE 

Multiple Regression — 0.0002568932 

 

LASSO Default                                    

0.00004813217 

Regression Tree Default 0.0003187425 

 

Random Forest 

 

 

 

ntree=default 

mtry=double(default) 

 

0.0002854698 

 

 

 

ARMA(1,1) 

 

— 0.00002826163 

 

Table 17: Predictive performance for monthly returns of ED. 
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Model Parameter MSE 

Multiple Regression —       

0.001687723   

LASSO Default 0.0001387342 

 

Regression Tree Default        

0.001131879 

Random Forest 

 

 

 

ntree=default 

mtry=double(default) 

 

 

0.001239145 

ARMA(1,1) — 0.0002998144 

 

Table 18: Predictive performance for monthly returns of CA. 

 

Model Parameter MSE 

Multiple Regression — 0.00002607       

LASSO Default 0.000007653 

Regression Tree Default 0.000030393 

Random Forest 

 

 

ntree=default 

mtry=double(default) 

 

 

0.001349126 

ARMA(1,1) — 0.000029164 

 

Table 19: Predictive performance for monthly returns of DS. 
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Model Parameter MSE 

Multiple Regression —      

0.00001353652     

LASSO Default      

0.002300635 

Regression Tree Default      

0.00002436165 

Random Forest 

 

 

ntree=default 

mtry=double(default) 

 

 

     

0.000008797805 

ARMA(1,1) —       

0.00003846817 

    

Table 20: Predictive performance for monthly returns of EMN. 
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Model Parameter MSE 

Multiple Regression —        

0.000102590 

LASSO Default        

0.00003150365 

Regression Tree Default        

0.0003974161 

Random Forest 

 

 

ntree=default 

mtry=double(default) 

 

 

       

0.0002654665 

ARMA(1,1) —                              

0.00008950412 

 

Table 21: Predictive performance for monthly returns of MA. 

 

Model Parameter MSE 

Multiple Regression — 0.0008091724 

LASSO Default 0.0001357999  

Regression Tree Default 0.0005079354      

Random Forest 

 

 

ntree=default 

mtry=double(default) 

 

 

0.00004603417 

 

ARMA(1,1) —        

0.000163776 

 

 

 

Table 22: Predictive performance for monthly returns of EM. 
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Model Parameter MSE 

Multiple Regression — 0.00006072966 

LASSO Default      

0.00001793125 

Regression Tree Default                          

0.0001393455 

Random Forest 

 

 

ntree=default 

mtry=double(default) 

 

 

      

0.0001332506 

ARMA(1,1) —      

0.000004272356 

 

 

Table 23: Predictive performance for monthly returns of FIA. 
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