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 ABSTRACT  

 Charalampos  Stavropoulos 

 Adaptive Clinical Trial designs for survival outcomes testing the proportionality of 

hazards assumption 

          September 2018 

 At this thesis we will examine a widely used assumption in the context of clinical trials, 

the assumption of proportional hazards. This assumption is about the relationship between the 

hazard functions of the groups that participate in the trial. More specifically, it is assumed that 

the ratio of hazard functions is constant through time. Based on that assumption, the researchers 

can use the Log Rank test and estimate the sample size that is needed. However, this is a very 

strict assumption and in this thesis we investigate its impact on the trial when it does not hold, in 

terms of power and sample size estimation.  As an alternative, we investigate the Restricted 

Mean Survival Time (RMST), which is the mean survival time up to a certain point. We will use 

the difference between RMSTs for testing the difference between survival groups and we will 

compare this method to the Log Rank test under cases of proportional and non-proportional 

hazards. The comparison will be in terms of sample size estimation and power. Finally, we will 

provide a new clinical trial design that will start with the Log Rank test and at a certain point will 

test the proportionality assumption. If the assumption is rejected, the trial will adapt to testing the 

difference between RMSTs. The adaptive design’s performance will be compared to that of a 

simple design which does not test the proportionality assumption and uses the Log Rank test. 

The comparison will be in terms of sample size estimation and power. 

  



 

 

  



 

ΠΕΡΙΛΗΦΗ 

 Υαπάλαμπορ ηαςπόποςλορ 

 Πποζαπμοζηικοί ζσεδιαζμοί κλινικών δοκιμών για αποηελέζμαηα επιβίωζηρ πος 

ελέγσοςν ηην ςπόθεζη αναλογικόηηηαρ ηων κινδύνων  

          επηέμβπιορ  2018 

 ε αςηή ηη διπλωμαηική επγαζία θα εξεηάζοςμε μια ςπόθεζη πος σπηζιμοποιείηαι πολύ 

ζςσνά ζηο πλαίζιο ηων κλινικών δοκιμών. Η ςπόθεζη αθοπά ηη ζσέζη μεηαξύ ηων 

ζςναπηήζεων κινδύνος ηων ομάδων πος ζςμμεηέσοςν ζηη κλινική δοκιμή.  Η ςπόθεζη είναι όηι 

ο λόγορ ηων ζςναπηήζεων κινδύνος είναι ζηαθεπόρ ζηο σπόνο. Με ηην ςπόθεζη αςηή οι 

επεςνηηέρ μποπούν να σπηζιμοποιήζοςν ηον έλεγσο Log Rank και να εκηιμήζοςν ηο 

απαιηούμενο μέγεθορ δείγμαηορ. Αςηή η ςπόθεζη όμωρ είναι πολύ αςζηηπή και ζε αςηή ηην 

επγαζία θα επεςνήζοςμε ηην επίδπαζη πος έσει ζηην εκηίμηζη ηος μεγέθοςρ δείγμαηορ και ηην 

ιζσύ, όηαν σπηζιμοποιείηαι λανθαζμένα. αν εναλλακηική, θα επεςνήζοςμε ηον πεπιοπιζμένο 

μέζο σπόνο επιβίωζηρ (RMST), πος είναι ο μέζορ σπόνορ επιβίωζηρ μέσπι ένα ζημείο. Θα 

σπηζιμοποιήζοςμε ηη διαθοπά μεηαξύ ηων RMST, για να ελέγξοςμε ηη διαθοπά ζηιρ ομάδερ 

επιβίωζηρ και θα ζςγκπίνοςμε αςηή ηη μέθοδο με ηον έλεγσο Log Rank ζε πεπιπηώζειρ 

αναλογικόηηηαρ και μη-αναλογικόηηηαρ ηων ζςναπηήζεων κινδύνος. Η ζύγκπιζη θα αθοπά ηην 

εκηίμηζη μεγέθοςρ δείγμαηορ και ηην ιζσύ. ηο ηέλορ θα παποςζιάζοςμε ένα ζσεδιαζμό 

κλινικήρ δοκιμήρ πος θα ξεκινάει με ηον έλεγσο Log Rank και ζε ένα ζςγκεκπιμένο ζημείο θα 

ελέγσει ηην ςπόθεζη αναλογικόηηηαρ. Αν η ςπόθεζη αποππιθθεί, ο ζσεδιαζμόρ θα 

πποζαπμοζηεί ζηο να ελεγσθεί η διαθοπά ηων RMST. Η απόδοζη ηος πποζαπμοζηικού ζσεδίος 

θα ζςγκπιθεί με αςηή ενόρ απλού ζσεδιαζμού πος σπηζιμοποιεί ηον έλεγσο Log Rank και δεν 

ελέγσει ηην αναλογικόηηηα. Η ζύγκπιζη θα γίνει ζηην εκηίμηζη μεγέθοςρ δείγμαηορ και ηην 

ιζσύ. 
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CHAPTER 1: Introduction 

 

 Clinical trials have greatly contributed to the process of developing new 

treatments and clinical research in general, since their establishment.  New interventions 

that are developed can be tested and prove their superiority against existing ones for the 

same diseases. The possible adverse effects and other relative matters (e.g. what should 

be the dose of a new drug in order to be efficient but not toxic?) are also examined.  

Before the clinical trials become a part of clinical research, the new interventions were 

tested in questionable way and their efficiency was estimated without strict and well 

established statistical methods. Nowadays, there are fundamental principles for 

conducting a clinical trial and very strict regulations. The reason is that the outcome of 

the trial will either approve or not approve the use of a new treatment. So it is very 

important that the new treatments that get the approval have well established  their 

efficiency. Furthermore, since the clinical trials are testing new treatments to people, 

they must be conducted in a way that meets very strict ethical standards.  The target of 

the trial must be clear from the beginning and the trial must not continue without a 

sufficient scientific reason. A general rule is that the possible adverse effects of the new 

intervention must not exceed the possible benefits that the participants can get.  

 Since the clinical trials are comparing different treatments based  on data they 

need statistical methods. Biostatisticians have developed many methods for estimating 

the probability of death at specific time intervals, the life expectancy and other aspects 

that interest the clinicians. There also many statistical methods for comparing different 

treatments and show their superiority (or non-inferiority). However, statistical testing 

provides results with the probability of two errors (type I and type II error) and the 

probability of each error must be pre-specified at the beginning of the trial. The number 

of the participants (sample size), the duration of the trial and the statistical method for 

comparing the treatments and many other factors must also be pre-specified. 

Biostatisticians make statistical assumptions about the nature of the treatment’s effect 

on participants in order to specify those factors.  When designing a clinical trial, 

researchers should pre-specify all those factors in an efficient way that protects the 
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participants, examines sufficiently the new treatment’s effect and also keep the 

duration, the sample size and the cost in reasonable levels. For that purpose the 

researchers can use flexible and adaptive designs.  

 The purpose of this thesis is to investigate a widely used assumption  in the 

context of clinical trials. The assumption is that of the proportionality between the 

hazard functions of the treatments that are compared.  The hazard function is the 

probability of someone to die in a very small time interval (it is explained in more 

details at Section 1.4). So the assumption is basically that the ratio of those values 

between patients that get different treatments is constant. This assumption is very 

convenient because it enables the use of a widely used model presented from Cox 

(1972), the Cox model. This model provides easy interpretation for the comparison 

between treatments and a very useful statistical context for analyzing them. Also it 

enables the use of the Log Rank test which is widely used in clinical trials and it tests 

the hazard ratio. However, the assumption is very strict, and in practice it holds rarely. 

This thesis investigates the impact that the use of the assumption  has on the designing 

of the trial when it does not hold. 

 Another measure that can be used in the survival analysis is the Restricted Mean 

Survival Time (RMST). It is the mean survival time of a patient until a certain time 

point. If we get the difference of the RMSTs from two different groups that get 

different treatments, computed at the same time point, we can construct a test that 

compares the two groups. This test does not need an assumption about the relationship 

of the hazard functions and because of that, in this thesis we will compare its 

performance against the Log Rank test in various cases of non-proportional hazards. 

Also the two tests will be compared under the proportionality case as well, in order to 

have a complete investigation on what problems can the RMST test solve and when we 

can replace the Log Rank test with that.  

 The final purpose of the thesis is to use both tests and construct an adaptive 

design that takes the advantage of both of them. Since the use of the Log Rank test is 

sometimes not the best choice, the adaptation will replace it with the RMST test. The 

adaptive design must be very strict on under what conditions, the replacement happens 



 

3 

 

and what else must change in order not to stray from the initial target of the clinical 

trial. Also the adaptation will be based on the results from the comparison between the 

two tests, in order to get the more suitable one for each case. After the construction of 

the adaptive design, we will investigate its performance and compare it to the 

performance of a typical design that just uses the Log Rank test for all cases.  

Specifically, we are interested in comparing the two designs in terms of power and 

sample size needed and to investigate if we can get benefits from the use of the 

adaptation. The comparisons will be conducted through simulations of different cases  of 

non-proportional hazards. Now we will give a brief presentation of the context of each 

chapter. 

 In the first chapter (Survival Analysis), basic concepts of the survival analysis 

will be presented such as: the survival distribution, the hazard  function and the Cox 

Model. These concepts are crucial for understanding the clinical trials and the 

proportionality assumption. 

 After the survival analysis basics, the thesis presents the basics of the clinical 

trials. It presents the definition and various types of clinical trials and the concepts of 

power and sample size calculation. In the second chapter (Clinical Trials), the impact of 

the wrong use of the proportionality assumption on the sample size calculation is 

investigated through a simulation study.  

 The third chapter (Restricted Mean Survival Time) presents the definition of the 

RMST and also the test of the RMST difference. Then, it compares the sample size that 

the RMST difference test needs with the one that the Log Rank test needs, for identical  

cases. The comparisons are done with a simulation study.  

 The fourth chapter (A New Adaptive Design) presents analytically the adaptation 

that aims to fix the problems caused by the violation of the proportionality assumption. 

There is also a simulation study that examines different cases of violation and how the 

adaptive design performs under them. Its performance is compared to the design that 

only uses the proportionality assumption and to the Log Rank test, in terms of sample 

size and power. 
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CHAPTER 2: Survival Analysis 

 

 2.1 Introduction 

 

 Survival analysis is the analysis of time-to-event data. It is the process where we 

observe the time until an event that we are interested in happens to the subjects of the 

research. Event can be the death of a patient, or a cancer metastasis, even the 

breakdown of a machine. Thus, time-to-event data need two time points that can be 

calculated in many ways (days, months, years etc.). A starting point, where the 

observation of the object starts and an ending point, where an event happens to the 

observed object. Their difference is the survival time of interest.  

 A very common problem that occurs in survival analysis trials is that we do not 

always observe the full time to the event of interest. For example, in a clinica l trial we 

might want to observe the death (the event of interest) of a patient that receives an 

experimental drug. However this patient might move out of town and cannot visit the 

research center anymore, or even die by an irrelevant to his /her illness cause. This 

observation is not complete, because we did not observe his death. Also in many cases 

there is a time limitation to the trial. When the time limitation is reached, there may be 

objects that have not experienced the event of interest yet. All those observations are 

called censored observations. 

 In the context of survival analysis, in most of the times we will have censored 

observations. But a censored observation is not exactly a missing observation, because 

we know that at least, the event that we are interested in, had not occurred until we sto p 

observing the subject. So if we just remove the observation, like we would do in other 

statistical context, we will ignore a part of the information from the data. In clinical 

trials there is always the problem of the sample size, so we cannot afford to lose 

information. Especially in cases of small period trials an important amount of 
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observation can be censored. The models that are used in survival analysis for 

describing the different aspects are taking into account both the censored and the 

uncensored observation. We will describe those models and its purpose later.  

 The main purpose of survival analysis is to construct a “survival profile” of the 

populations that are studied, meaning to quantify different aspects of their life 

expectancy and then compare it to other populations. Next we will describe the hazard 

function and the survival distribution that helps us achieve this purpose.  

 

 

 2.2 Censored data 

 

 

 As discussed in the introduction, there are many different cases for a censored 

observation. Three common types are: 

 

1) Right censored data: When we observe a subject until a time point, but then we 

lose it and we do not observe the event of interest. It is called right censor, 

because at the time axis we cannot see the right tail.  

2) Left censored data: It is when we enroll a subject to a trial, but it has already 

experienced the event that we are interested in.  

3) Interval censored data: When we observe an event, but we do not know the exact 

time. This can happen if we observe the subject at different time points and we 

detect that the event has happened. We are not sure about the exact time, but we 

know that it happened between the last observation and the one before.  

 It is clear now, that the data are complex. As a result we need a notation that 

shows the length of the observation, as well as the status of the subject. By status we 

mean and indicator, that shows if an event has happened or not. Let    be the failure 

time of the     subject of the data set and    the end of its observation. Then the 

observation will be: 
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 here                 and  

   {
          

            
 

 Obviously, if      the observation is uncensored and hence we have the full 

information about the event time, and if      is censored. 

 Now we will give an example to show how important is to take into account the 

censored observations. We will simulate a trial where we have 90 patients and we are 

interested to see their survival times. Their survival function  (we will describe it later 

in details) is Weibull (0.7, 0.9) and their censoring distribution is Weibull (2, 2.9).The 

survival function gives the probability at each time point that the patient will not 

experience the event until that point. The censoring distribution gives the probability at 

each time point that the patient will not become censored until that time point.  

Obviously if the censoring status changes before the death of the patient, the 

observation is considered to be censored. This combination leads to     censored 

observations on average.  

 The trials target is to estimate the survival function (we will describe it later) and 

to understand how “possible” is for a patient from this population to die at any time 

point. We will use two different methods. Firstly, we will only use the uncensored 

observations for the analysis. Then we will use both the censored and the uncensored 

observations. For the estimation we will use the Kaplan – Meier estimator, a very 

widely used estimator that will be presented in details later in this chapter  and it 

estimated the survival function. Figure 1 will show the difference of the two methods.  
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Figure 1: Kaplan-Meier estimators for a dataset without its censored observation and with them.  

 

 Figure one shows the Kaplan Meier estimations of the same data set, without 

removing the censored observations (blue curve) and with having removed them (red 

curve). At each time point the curve estimates the probability of a patient that he is 

alive until that time point. So it is clear that the dataset without the censored 

observations underestimates this probability, since the red curve is lower than the blue 

one. That happens because as we mentioned before, censored observations inform us 

that the patient had not experienced the event until he left the trial. So if we ignore that 

information and just exclude him from the estimation, we do underestimation. 

Furthermore, note that the blue curve was estimated from 90 people, while the red one 

was estimated with 76 people. So including censored observations also has an impact on 

the sample size. 
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  2.3 Survival Function  

 

 Let t be the real survival time of a subject. Then t is an observation from a 

random variable T, with probability density function (p.d.f.)      and cumulative 

distribution function (cdf) given by: 

            ∫       
 

 
.                                              (2.1) 

 The Survival function is: 

                       (2.2) 

It denotes the probability of observing a survival time greater than a given time t.  We 

need to estimate this function from the data taking into account also the censored 

observations. A very common method proposed by                  (1958) is the 

Kaplan-Meier estimator. Next we will describe how to calculate this estimator.  

 Let   be the sample size. And let   be the observed events at the end of the trial . 

Obviously    . Then let              be the times of the observed events and      

             (assuming no ties). Then we split the time of the trial, into time 

intervals like this: [         )                             where      is the end of the 

trial. For each interval we need an estimation of the probability of a subject to not 

experience event, during that interval. We denote:    is the number at risk at      

      Also    is the number of the subjects that have experienced the event  until      

    . Then the Kaplan – Meier estimator is: 

 ̂    ∏ (  
  

  
)          (2.3) 

             (2010) explained that due to the fact that the Kaplan-Meier estimator 

uses the observed events with in a non-parametric way, we cannot use it to extrapolate 

beyond the latest event time. It is also clear from the computation of the estimator that 

if we use it beyond the last event, we would be biased.  
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 Another method for modeling and estimating the survival function is to use a 

parametric model for its form. We use known distributions (Exponential, Weibull, 

Gamma, Normal etc.) to model the survival distribution (equation 1.1) and then 

estimating the parameters with the method of the maximum likelihood. Now we will 

describe this method. Suppose that we have           observations from a certain 

distribution with p.d.f.        where   is an unknown parameter or vector of parameters. 

Then the general form of the likelihood function is: 

                ∏         
         (2.4) 

 And then we maximize the likelihood function with respect to   . The value that 

maximizes the function is the maximum likelihood estimator of the parameter. 

However, in the context of survival analysis there are censored observations. So we 

have to modify the general form of the likelihood function, in order to also take into 

account those observations. We will use the method described in Section 2.6 (page 21) 

of       (2016). For the censored observations we will use the survival function 

instead of the p.d.f., because from this observation we only know that the patient 

survived until a certain point. So the new form is:  

                ∏           
                   (2.5) 

 Note that if an observation is uncensored then      so        and its 

contribution to the likelihood function is         . Ιf an observation is censored then 

     and its contribution to the likelihood function is         . By maximizing the 

likelihood function with respect to   we have an estimation for  . Then, with this 

estimation and the equations (2.1) and (2.2), we have an estimation of the survival 

function. 

 There is also an estimation based on the Cox model that we are going to discuss 

later on this chapter.  

 We will also present two descriptive statistics based on the survival function, the 

mean and the median survival time. The mean survival time is the expected survival 

time of a patient and it is given by the following formula:  
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  ∫      
 

 
         (2.6) 

From the equation (2.2) we have: 

     

  
     

     
⇔   

         

  
       

     
      

  
        (2.7) 

Also, from       (2016) Section 2.4 (page 15) we have that:  

                      (2.8) 

So if we combine the equations (2.6), (2.7) and (2.8) and we do the integration of (2.6) 

we have the following formula for the mean survival time:  

  ∫     
 

 
          (2.9) 

 The median survival time, is the time   such that         . However the 

survival function might not be continuous at ½. Then the median is the smallest   such 

that          . A non parametric estimation of the median survival time is the time 

that the Kaplan Meier curve crosses the 50% line. If the curve does no t reach that point, 

then the estimator cannot be computed. 
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 2.4 Hazard Function 

 

 The hazard function is the probability that, given that a subject has not 

experienced an event until time t, it will experience the event in the next very small 

time interval, divided by the length of that time interval. Because most of the times the 

event is death or failure, it is also called instantaneous failure rate. So the hazard 

function is: 

           
              

 
      (2.10) 

Therefore      
    

    
       (2.11)  

 And from the previous equation we have an expression for the p.d.f:  

                    (2.12) 

 And for continuous distributions we have:  

     

  
  

     

  

 

    
  

        

  

      
⇒             ( ∫       

 

 
)   (2.13) 

 We define the function: 

     ∫       
 

 
       (2.14)  

as the cumulative hazard function and it is the area under the hazard function up to time 

t. From the equations (2.12) and (2.13) we can derive the formula: 

        (     )       (2.15) 

 So the hazard function and the survival function are two ways to express a 

survival distribution that are connected with the formula (2.10). As we will see later, 

those two functions can be used for comparing different populations (e.g. populations 

that get different treatments for the same disease). 
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 Now we will show the form of the hazard and survival function from 2 widely 

used distribution, the Exponential and the Weibull. The Exponential distribution is a 

special case of the Weibull distribution because it is a Weibull distribution with shape 

parameter 1. The formulas are taken from Section 2.4. (pages: 15-16) from       

(2016).   

 The Exponential distribution with parameter   has hazard function: 

             (2.16) 

 In Figure 2 we visualize the hazard function of the Exponential distribution with 

parameter     against time. 

 

Figure 2: Hazard function of Exponential(1) distribution 

 

 Note that the hazard function of the exponential is constant. That makes the 

procedure simpler but it is also an assumption that rarely holds.  

 The cumulative hazard function from equation (2.14) is: 
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     ∫          
 

 
      (2.17) 

 And from  the equation (2.15) we get the survival function: 

                    (2.18) 

 We now visualize the Exponential distribution with     against time. 

 

Figure 3: Survival function of Exponential (1) 

  

 From equation (2.12) we get a formula for the p.d.f.:  

                         (2.19) 

 The Weibull distribution with shape parameter   and scale parameter   has 

hazard function: 

                   (2.20) 

 Note that for     the hazard function is monotone increasing and for     

monotone decreasing. So the Weibull distribution gives us flexibility in modeling the 
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hazard function. Because with the same distribution we can model both increasing and 

decreasing hazard functions, while the Exponential distribution (   ) only models 

constant hazard functions. 

Now we will visualize (Figure 4) two different hazard functions in order to show the 

flexibility that the parameter   gives. The first will be the hazard function of Weibull  

(0.9, 1) and the second will be the hazard function of Weibull (1.1, 1). The first one has 

    and the second one    . 

 

Figure 4: Hazard functions of Weibull (0.9,1) and Weibull (1.1,1) 

 

 The flexibility that the shape parameter gives us allows us to model a wide 

variety of situations with the Weibull distribution.  We can have both increasing and 

decreasing hazards and this makes the model quite interesting for applications. For 

shape parameter equal to 1 we derive constant hazard as the distribution coincides with 

the exponential. 

 The cumulative hazard function from the equation (2.14) is: 
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     ∫        
 

 
           (2.21) 

 From the equation (2.15) we get the survival function: 

                       (2.22) 

 Now we will visualize the survival functions of the Weibull (0.9,1) and 

Weibull(1.1,1) (Figure 5).  

 

Figure 5: Survival functions of Weibull (0.9,1) and Weibull (1.1,1) 

 

 Note that at the beginning the red curve is under the blue which means that the population 

that has this survival function is dying “quicker” than the other population. However, after a 

while we have the exactly opposite situation. That happens because their hazard functions are 

crossing as we saw at Figure 5. 

 And from the equation (2.16) we get the formula of the p.d.f.:  

                                 (2.23) 
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 2.5 Proportional Hazards 

 

 We will now describe a very common assumption that is used for comparing 

different populations in the survival analysis. The idea is to assume, that the hazard 

function of each population, is proportional to the hazard functions of the other 

populations. So for the simple case of 2 populations, the assumption indi cates that the 

rate of the instantaneous failure rates of the 2 populations is constant. This is a very 

strong assumption and later we will see how to test it. However it is very commonly 

used because of its simplicity. We will now express it more formal, for the general case 

of I populations. Let       be the hazard function of the     population. Then we assume 

that there is a common “baseline” hazard function      , that all other functions are 

multiplications of it. We say that:  

                   (2.24) 

 Where    can be a constant or a function. In most cases, we use             in order 

to use covariates to explain the hazard function.  In         ,    is the value that the 

covariate takes for the     observation and   is the covariate’s coefficient.  It is clear 

that this assumption is a semi-parametric form, because we do not make parametric 

assumptions for the baseline hazard, so we do not assume its form. From the equation 

(2.24) we will derive some results as described from               (2008) at Section 

3.2 (page 71). For the cumulative hazard we have: 

        ∫      
 

 
                (2.25)  

And we will denote       the baseline cumulative hazard function. From the equations 

(2.24) and (2.15) we have this formula for the survival function:  

                      

            
    

     
        (2.26) 
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And we will denote       as baseline survival function. 

  Now we need to estimate   in  . Because we have not assumed a parametric 

form for the baseline hazard we cannot use the classical likelihood theory. We will use 

the partial likelihood theory as presented by     (1972). 

We will present the partial likelihood for the simple case where we only have two 

populations (e.g. two different drugs for the same disease) and the covariate is just the 

categorical that has      for   in population 1 and      for   in population 2.  We 

will only use the failure times, and we will denote the     failure time as   and the time 

that happened   . So the hazard function of the     subject at that time is   (  )  

  (  )         . Just before the first failure time   , we denote the set of the subjects at 

risk as   . So at    a subject fails. The probability of that subject be the subject I is:  

   
      

∑           

 
        

∑             

     (2.27) 

 So we define like this all the probabilities for       where   is the total 

number of events. The partial likelihood is: 

                    (2.28) 

We can see that the partial likelihood does not use the censored observations. Also, 

from the definition of   , we can see that the baseline hazard does not affect them 

because it is also at the numerator and the denominator. Therefore, we get the 

estimation of   by maximizes the partial likelihood with respect to  .  

 After the estimation of   we also need a test for it, and confidence intervals. The 

most commonly used test is the Wald test, and we can also construct a test statistic in 

order to give confidence intervals for the estimated covariates. We will give the 

description that is given by       (2016) (page 60). The form of the test statistic will 

be: 

 ̂

      ̂ 
       (2.29) 
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 Where  ̂ is the value that maximizes      from the equation (2.28) and       ̂  is 

the standard error of the estimation. To compute the standard error we have to use the 

“observed information” which minus the second derivative of            . We will 

denote it: 

      
      (    ) 

         (2.30) 

 And we have that: 

     ̂  ̃
 

    
 and     ( ̂)  ̃

 

√    
      (2.31) 

 Now we construct a normalized test statistic    
 ̂

      ̂ 
 for testing the hypothesis 

                  and we reject the null hypothesis if          . The     

confidence interval is [                                            ]. We can also do the 

test with the   
  because it follows a Chi-square distribution with 1 degree of freedom. 

So we reject the null hypothesis if   
      

 . 

 From the proportional hazards model, we can also estimate the survival function, 

if we can estimate the baseline survival function.        (2016) at Section 5.5 (page 64) 

proposes an estimator for the baseline hazard function:  

  ̂     
  

∑        ̂        

      (2.32)  

Where    is the number of events up until    and     is the set of all the patients that are 

at risk at the time point   . From this estimation we can have an estimation for the 

cumulative hazard function at time t by adding the estimated        for     . Then with 

the last estimation we can estimate the baseline survival function. And by combining 

this estimation with the estimation of    in the equation (2.28), we have an estimation 

of the survival function given by the proportional hazards model.  
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 2.6 Log-Rank test 

 

 Until now we have described different aspects of expressing the survival profile 

of different populations. We would also like to have a method to compare different 

populations (e.g. different treatments for the same disease). More specifically, for 2 

populations we would like to test the hypothesis                against          

      where       is the survival distribution of the     population. However, in survival 

analysis there is a huge amount of alternatives to this hypothesis because the survival 

functions can have a wide variety of functional form. Therefore, we will restrict those 

alternatives to the ones that can be expressed as:  

              
        (2.29) 

Or into the equivalent hazard form: 

                      (2.30) 

So it is equivalent to the proportional hazard assumption. Now the hypothesis testing 

can be expressed as: 

                       (2.31) 

So if the alternative hypothesis is true, then the population in group 2 will have 

uniformly longer survival times than those in group 1. We can do this hypothesis testing 

with the Log-Rank test. As we mentioned before, the proportionality assumption is very 

strict. So if we use the Log-Rank test we should firstly test if this assumption holds. A 

test for that purpose will be presented later in this chapter.  We will now describe it in a 

formal way. 

 Suppose that we have 2 populations and let    be the     failure time from both 

populations. Then at         we denote: 
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At every failure time we can construct a table like this:  

 

Failure 

Non Failure 

Total 

Population 1 

    

        

    

Population 2 

    

        

    

Total 

   

      

   

 

We want to check the independence of the failure numbers in the two groups. If they are 

independent then there is no difference in the survival functions of the two populations. 

If they are indeed independent, and for given    ,  ,       , we have that     follows the 

hypergeometric distribution. Thus: 

        ,  ,         = 
(
   
   

)(
   
   

)

(
  
  

)
.    (2.32) 

Therefore, it is very easy to compute the mean and variance of    . Note that     takes 

values in        where    is the number at risk in population 1 at the beginning of the 

trial. We have: 

       
     

  
      (2.33) 

             
               

  
       

      (2.34) 

Now we denote the mean     with     from the word expected and its variance    . Then 

we sum over all the tables the difference between the expected and the observed values:  

   ∑                (2.35)  
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 With variance given by: 

        ∑            (2.36) 

So now we know that asymptotically 
  

√  
        and 

  
 

  
   

 . And with the last statistic 

we do the hypothesis testing. 

                        (1982) proposed a generalization of the log Rank test. 

The generalization is based on the use of weights in the equations (2.35) and (2.36). 

The idea is that in the summation of    we might want to add more weight to the 

patients that experience the event early in the trial and less to those that ex perienced the 

event later. The weight function that they proposed is:  

    ̂    
 .      (2.37) 

 And the new form of the statistic is:  

   ∑                 (2.38) 

 With variance given by: 

        ∑  
           (2.39) 

 Where  ̂     is the Kaplan – Meier estimate of the survival function. The weight 

function is a function of the estimation of the survival function. Suppose we have a 

patient that died at the beginning of the trial. Then just before his death, his survival 

function (the probability that his life will exceed this point) had a high value. In 

contrast, the survival function of a patient that died later, at the moment of his death 

was lower. So the weight function achieves to make the early deaths more  “important” 

(depends on the value of   how much) in the process of detecting a difference in the 

survival curves. This family of weighted Log Rank tests is called Fleming-Harrington 

     tests. Note that for     we have the Log Rank test.  

 Σhe value   determines how important will be the time of death. For example , 

with values close to 0, the earlier deaths are a lot more important and with values close 
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to 1 the weight function is more conservative. The reason behind this is that we might 

be more interested, for clinical reasons on the early events. For example, if we are 

studying a population of elderly people, we might be more interested in the early stages 

of the trial. That is because at later stages of the trial and due to their age, the patients 

are more likely to die, independently from the illness that we are studying.  

 Now we will conduct a simulation study, in order to compare the power that we 

have from the Log Rank test and the Fleming-Harrington      test for two different 

values of  , one small and one big. We choose a small and a big value in order to 

investigate the two opposite cases of the test and by that we will understand it better.  

The two values will be 0.2 and 0.8. For the simulation, at each repetition, we will 

simulate two survival populations with proportional hazards, and we will choose a 

censoring distribution for achieving 22% censoring of the total sample. The censoring 

distribution is chosen by simulating the two survival populations with a censoring 

distribution and we measure the percentage of censored observation. Finally we keep 

the censoring distribution that has mean percentage close to 22%.  We will test the 

hypothesis                against any alternative at significance level        and 

we will get the Monte Carlo estimation of the power for each test . That will happen by 

simulating both populations with the censoring distribution and then test the hypothesis. 

The percentage of the repetitions that the null hypothesis is rejected will be the 

estimated power. The repetitions will be 1000. The details are presented on the next 

table. The sample size will be 90 patients at each population.  

 

Table 1: Details of the simulation. 

Population Distribution 

Population 1 Exponential (1.1) 

Population 2 Exponential (1.8) 

Censoring Weibull (2,3.3) 
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 Now we will visualize the hazard and the survival functions against time, in the 

following Figures. 6 and 7 respectively  

 

Figure 6: Hazard function of Exponential(1) and Exponential(1,8)  

 

 Note that the two hazard functions are constant, because the exponential function 

has constant hazard function, as we mentioned before.  
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Figure 7: Survival functions of Exponential(1) and Exponential(1.8) 

  

 The results are presented in the next table.  

 

Table 2: Results of the simulation. 

TEST POWER 

Log Rank 89.7% 

             90.1% 

             85.4% 

 

 From the results we can see that the Log Rank test is almost identical with the 

Fleming-Harrington test for        , while it is better than it for        . It is known 

that under proportional hazards the Log Rank test is the optimal choice. In chapter 4 we 

will compare the two tests under cases of non-proportional hazards as well.  
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 2.7 Test for the proportionality assumption 

 

 The proportionality assumption is a very convenient tool for modeling and testing 

differences between survival curves of different populations. In the previous sections of this 

chapter we discussed the basics of the Cox model and the Log-Rank test. However, despite the 

simplicity that it provides, it is a very strict assumption that rarely holds. So we will present in 

this section a test for this assumption. 

 First of all we will denote the Schoenfeld residuals that were proposed by 

           (1982) for the Cox model. Let            be the observed survival times 

and            their censoring indicators. Let            be vectors of fixed 

covariates,        ̂ the unknown coefficients and their usual estimations and    be the 

risk set at time     . We will denote the     observed time as      and           the 

corresponding covariate vector and risk set. The Schoenfeld residuals are: 

         
∑      ( ̂   )         

∑    ( ̂   )         
     (2.40) 

                      (1994) transformed the Schoenfeld residuals and proposed a 

test based on them for the proportionality assumption. They proposed the scaled 

Schoenfeld residuals which are: 

     
  

     

 ̅
       (2.41) 

Where  ̅  
   ̂ 

 
       (2.42) 

Where   is the total number of uncensored events and    ̂  is minus the second 

derivative of the log likelihood of the Cox model. 

 For the test statistic let         ̅ be the time scale and the average time scale 

respectively (either linear or logarithmic) and    the information matrix elements for 

covariate K. Then the statistic for covariate K is:  
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 ∑     ̅      

  
 

    ∑     ̅  
        (2.43) 

And the statistic in the covariate specific form follows    
  distribution. Extreme values 

of this test is an indication against the proportionality assumption.  

 To present this test we will give an example with simulated data. The simulation 

will be from the same set up as in table 1 where the hazard functions are proportional. 

In the next Figure we will show the Kaplan Meier estimators from the 2 simulated 

populations. 

 

Figure 8: Kaplan Meier estimators for simulated data from table 1 

 

 The statistic T takes the value 0.177 and the p-value is 0.674. So we do not reject the 

proportionality assumption which is correct.  

 For different tests one can see the work of Grant et al (2014). In this paper , also 

the power of the tests have been examined through simulations showing that the 

performance of the test above is not very good especially for some particular scenarios. 
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We can see this also at the simulation study in section 5.4 (Table 16). This implies also 

the need for further improvement in the methodology presented in this thesis.  
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CHAPTER 3: Clinical Trials 

 

 

 3.1 Introduction  

  

 Clinical trials are studies, where human subjects are assigned and test the risks 

and the benefits of new medical therapies. National Institutes of Health of USA gives 

the following definition for clinical trials: “A research study in which one or more human 

subjects are prospectively assigned to one or more interventions (which may include placebo or 

other control) to evaluate the effects of those interventions on health-related biomedical or 

behavioral outcomes”. Since there are human participants, there are very strict regulations 

for conducting a clinical trial. It is obligatory, that a protocol is made at the beginning 

of the trial that describes the targets and the whole procedure, and the researchers must 

strictly follow it. Because of those regulations, designing a clinical trial is a very 

complicated task because there are many parameters that the researches have to take 

into account. We will now describe in more detail those regulations. 

 First of all, the researchers have to define the clinical outcome that the want to 

study. For example, it might be the survival times of the participants that take a certain 

drug. The new medical methods are compared to others that already exist. Therefore the 

researches should also define a summary measure that will compare the methods (e.g. 

difference of median survival times, hazard ratio, difference in Restricted Mean 

Survival Times or other biological measures) and also a targeted value of that summary 

measure that they want to detect (e.g. hazard ratio = 1.25). Since the outcome will be 

derived with statistical testing, the researchers should specify the significance level and 

the power of the test. Meaning that when they compare new interventions to standard 

ones, they should specify the probability they will falsely claim superiority and the 

probability that they will not detect a possible existing superiority. Also, they must 

specify when the trial is going to end, and combining this with the previous, to estimate 
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the number of participants or number of events that the trial needs to meet up the design 

specifications. 

 There are also the regulations about the participants. Since there are risks in the 

testing of new medical therapies in clinical trials, they must not exceed the possible 

benefits from the new medical therapy. The experimental design must not expose 

subjects to unnecessary dangers and the procedure should not be prolonged beyond a 

certain point where the goals have been achieved. However, the number of patients and 

the duration of the trial, must be large enough in order to test sufficiently the effect of 

the therapy and give reliable and unbiased results. The gathered medical data, should be 

used in a way that the privacy of the participants is secured. Also, the participants that 

take part in a clinical trial must be fully informed about the targets of the trial  and also 

the possible benefits and risks. They are also allowed to stop their participation in the 

trial at any point. 

 Conducting a clinical trial is the most efficient way to test if a new treatment is 

more effective than the existing one, and also to test adverse effects that might have. 

For a drug to become available to the public, it has to be tested with a clinical trial and 

to have sufficient evidence that it is more effective than the current treatments. Then, 

based on that evidence, it will get approval from a public organization responsible for 

drugs (e.g. FDA). 

 

 3.2   Types of clinical trials 

 

 When a new treatment is designed at the lab, then it has to be tested on humans. 

There are many aspects than need to be specified, such as the dose of the new drug or 

the way that the patients will receive it. Of course, as we discussed before, the new 

method needs to be more efficient than the current one and to not have adverse effects. 

Now we will present the phases that test a new treatment as described by 

                (2008) in Section 3 (pages 75-90). 
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1) Preclinical: The researchers identify a risk factor related to a certain disease. 

Then they try to make an intervention that modifies the risk factor. In those 

studies testing often includes animals. If they have sufficient evidence that a new 

intervention for a specific disease is promising, then they continue with clinical 

trials. 

2) Phase 1:         (1996) gave the following definition: “Broadly, a trial 

involving the first applications of a new treatment to human beings and 

conducted to generate preliminary information on safety”. Generally, a t this 

phase, we want to test if the treatment is safe to be given at humans and also in 

what dose and way. We test the toxicity of each dose by examining the adverse 

effects that has on patients. Also we examine what is the best way to apply the 

new intervention (e.g. pills or injection). The sample sizes are often between 20 

and 50.  

3) Phase 2: At this phase, the treatment is tested for its  effectiveness and possible 

adverse events. Generally, phase 2 trials aim to detect the possibility that the 

new intervention can be superior to the standard one. They also examine the 

adverse effects like in the previous phase. The main objective of those  trials is to 

examine if a new trial, larger in sample size and duration should start. So 

typically phase two trials have short duration and sample size below 60 patients.  

4) Phase 3: At this phase, the treatment is compared to the current treatments  again 

in a more detailed way. The trial is larger in sample size and duration and the 

outcomes are more accurate. The new treatment needs to be more effective in 

order to be approved. 

5) Phase 4: Those trials are conducted after the approval of a new intervention 

(after phase 3) and intend to gather additional information about its efficacy or 

safety.   

 Now we will discuss the different designs that exist in clinical trials. When we 

want to compare a new treatment with the existing one (we will call it control group), 

we have to get data from populations that get those treatments. So we have to select 

patients for both treatments, with respect to time and budget limits. The different 

designs are: 
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1) Historical: We give the new treatment to patients and we gather the data. 

However, the data that we need from the control group are gathered from 

previous trials, that the control treatment was used.  However this type of trial is 

often biased. That happens because, most of the times the two trials are not 

identical, meaning that they might have different definition, diagnostic criteria or 

duration. So the outcomes that are compared are not produced from identical 

procedures. 

2) Concurrent: In this design we give the new treatment to patients and then gather 

the data. At the same time, we gather data from patients that do not get the 

treatment. However, the two groups are not in the same clinic or site. That 

eliminates the sources of bias that the historical trials cause, because the 

clinicians can design the trial from the start. It also helps with the sample size, 

because each clinic needs to gather people only for one group and not for all of 

them. However there is the problem of selection bias. Each clinic specializes in 

different areas and level of treatment. For example tertiary referral centers have 

different expertise than primary care facilities, so they choose patients 

accordingly. That makes the groups to contain different mixtures of patients.  

3) Randomized: In this design, we enlist patients to the trial, and then with a 

randomized process we assign them to each treatment group.  The randomization 

process deals with the bias of selection. Each group has the same mixture of 

patients and can be compared to each other without any source of bias.   Because 

of that, randomized clinical trials are the safest option for a design.  

  

 A clinical trial design should be very strict to its target and its procedure, as we 

discussed previously. However, this can escalate the cost and the complexity of the trial  

to a point that it may even be cancelled by the pharmaceutical company that conducts it . 

Furthermore, a clinical design must stop or be modified if it has certain outcomes 

before the planned ending. For example, if the examined treatment turns out to be 

harmful and the adverse events that causes outweight the possible benefits . Or at some 

point, the superiority or the inferiority of the treatment that we are studing is 
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established. At cases like the previous, the trial must be terminated. For solving all of 

these problems, we need to add flexibility to the designs.  

                   (2010) described the concept of adaptive designs to add 

flexibility, efficiency and speed to clinical trials.  To achieve them we need to be able to 

modify the trial for keeping its cost and complexity at acceptable level and the 

participants safe. In particular, we need to be able to modify the trial procedure, or the 

statistical procedure or both during the conduct of the clinical trial. However, those 

modifications should not undermine the scientific validation of the trial. The 

modifications have to be pre-planned and be based on the analysis of the interim data 

from the study. That means that the modifications must be planned before the data 

examination, which means that they must be contained in the initial design.  Now we 

will present some adaptive clinical designs that                   (2010) give. 

1) Adaptive randomization design: With this design, we firstly make a 

randomization procedure as always, but we are allowed to alter by using 

unequal probability of assignment in the different groups. We may adapt 

the randomization with criteria based on the treatment or other covariates 

and the response of the treatment.  

2) Group sequential design: In this design, the patients are enrolled in 

groups and we conduct interim analysis in each group sequentially, and 

we decide if the trial must be terminated or modified to prevent safety or 

efficacy issues. In trials with this design, the researchers should be careful 

with the initial significance level that they have set. Due to the multiple 

testing of the interim analysis, the significance level may be not the one 

that was set at the beginning.  

3) Sample size re-estimation design: In this design, we re-estimate the 

sample size based on the interim analysis. The criteria can be related to 

the treatment effect or the conditional power. However, researchers should 

be careful not to start the trial with a very small sample size. An interim 

analysis based on a small sample, may produce statistically insignifi cant 

outcomes and do the re-estimation of the sample size inaccurate.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gupta%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20927243
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gupta%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20927243
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4) Drop-the-loser design: In this design we want to exclude from the trial 

the patients that got the inferior treatment, and continue with the rest of 

them. So we usually split the trial into two parts, and in the first we give 

different treatments at the groups. Then we observe which treatment has 

no effect, based on pre-specified criteria and we exclude the patients of 

this group. Then we continue with the rest. The Drop-the-loser design is 

very helpful to detect the minimum effective and the maximum tolerable 

dose of a new treatment. 

5) Biomarker adaptive design: In this design, we decide whether we will 

modify the procedure or not based on interim analysis of various 

biomarkers that are related to the disease that we are interested in. 

However, analyzing biomarkers as a criterion for modification of the trial 

is different than building a predictive model that relates the biomarkers 

with the clinical outcomes.  

6) Adaptive treatment-switching design: In this design we are allowed to 

change the treatment group of a patient if there are safety or efficacy 

issues. However, this adaptation makes the estimation of the survival rate 

very difficult and makes adaptation of the sample size necessary.  

7) Hypothesis adaptive design: This design allows us to change the initial 

hypothesis (e.g. to make a superiority hypothesis a non-inferiority) 

8) Adaptive seamless phase II/III design: In this design we conduct the 

phase III right after the phase II. We use the data collected in phase II 

additionally to the data produced by phase III, and we save time and 

making the procedure easier. However, there is the problem of multi 

testing and its impact on the predefined significance level. Also, in many 

cases the two phases have different end points which also makes those 

designs questionable. 

9) Multiple adaptive designs: This is any combination of the previous 

adaptive designs. However, in the multiple adaptive design statistical 

inference can be very complex. 
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 3.3 Sample size calculations 

  

 A very important aspect of designing a clinical trial, is the number of patients 

that are needed, in order to achieve a certain significance level and power, given a 

targeted summary measure. Although, when we have time to event data, we first need to 

calculate the number of events that we need for reasons that we will explain later. In 

most cases the summary measure is the hazard ratio. However, this implies a very 

strong assumption about the hazard functions of the populations of the trial. The 

assumption is that the hazard functions of the populations are proportional, thus the 

hazard ratio is constant over time. There is an underlying hazard that is common, and 

we do not know its functional form. This assumption allows us to use the Log-Rank test 

and that provides formulas for the calculation of the number of events as presented by 

                 . We will give the proof from that       (2016) gives in Section 

11.4 (pages 165-166). Suppose that we will perform an one-sided test. The targeted 

hazard ratio is    (assumed to be constant) and we want to have significance level   

and power  . We also denote the   percentile of the standard normal distribution as   . 

Also, let    be the proportion of the sample allocated to treatment A and    to treatment 

B. We also have the notation of section 2.6 for number of failures and number at risk at 

each population at each time (                       and let    be the     failure time from 

both populations. 

 For the computations we will use the Log Rank statistic    as defined in equation 

2.35. Its variance for the     failure time is: 

             
               

  
       

      (3.1) 

 Now we will assume that the number of deaths at each t ime is relatively small in 

comparison with the number at risk, and that    ̃
   

  
 is constant over time, we have 

approximately that     from equation 3.1 is: 

    ̃
        

  
  ̃              (3.2) 
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 So the approximation of the variance of the Log Rank statistic    is: 

   ̃     ∑   
 
  ̃            (3.3) 

 And since we know that 
  

√  
       , with trivial computations we find from 

      (2016) in Section 11.4 (page 166)  that the expected number of deaths   in order 

to detect the targeted hazard ratio    on a significance level   and power   is: 

  
          

          
       (3.4) 

 However, the clinical trials cannot last until all the patients experience the event. 

Therefore, if we want to calculate the total number of patients that we need in order to 

achieve this number of events, we need to make more assumptions. We need to assum e 

a parametric form of the survival curves in both groups. We usually assume that both 

the survival distributions follow exponential distributions or Weibull distributions with 

the same shape parameter. Now we will show the procedure for group A as described in 

section 11.2 (page 161) of       (2016). The number of patients that we need is     . 

We split the total period of the clinical trial into two parts. The first part is the accrual 

period   and the second part is the follow up period  . An individual can be assigned 

for the trial at any point in the time interval      , and we assume that this time follows 

the uniform distribution. The probability of an individual that enters the trial at time t 

assuming that the survival distribution of its group follows an          is: 

                       (3.5) 

 Since t follows Uniform (0,c) we can have the average probability by the 

following integral: 

∫
 

 
    

 

 
                         ∫

 

 
 

 

 
                  (3.6) 

We use the variable transformation         and from the assumption for the 

survival distribution we have that                 . Therefore the probability of 

death at group A is: 
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∫           

   

 
     (3.7)  

 And that is equal to: 

     
 

  
[            (       )]    (3.8) 

 If we assume for the survival distribution a              (note that we also 

assume that the other survival distribution is also Weibull with the same k because we 

assume proportional hazards) then we have the following formula that can be computed 

numerically: 

     
 

 
∫    (         

 

 
 )    

   

 
     (3.9) 

 

 But in clinical trials we also have censored observations. Some participants will 

not stay in the trial until the end. Let C be the censoring rate and we assume that it is 

known. Then the patients that we need for the group A are:  

   
   

   
      (3.10) 

 

 3.4 Sample size calculations with R package powerSurvEpi 

 

 The package              contains the function ssizeCT that calculates the 

sample size needed based on a pilot data set.  By pilot data set we mean a data set taken 

from a previous clinical trial that was very similar to ours.  A function like that can be 

very useful, because sometimes there are data available from very similar clinical trials. 

From those data sets, the function calculates the probability of dying in each group and 

computes the sample size needed for given significance level, power and targeted 

hazard ratio. It also estimates the censoring rate. The only assumption that is made is 

the proportionality of hazards. Therefore, we avoid assuming a specific parametric form 

for the two curves in order to compute the probability of death. Later, we will use this 
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function in order to study the miscalculations on sample sizes when the proportionality 

assumption does not hold.  

 Now we will describe the way that the function estimates the probability of death 

in each group. The function uses a method that was proposed by          (1982) and 

follows the description in Section 14.12 (page 807) of        (2006). The inputs of the 

function are: 

1) The pilot survival data set 

2) The targeted hazard ratio 

3) The significance level 

4) The power 

5) The ratio of the participants in the experimental group over the participants of 

the control group 

 Then we denote as       the number of the participants in the experimental and 

in the control group and   the total expected events. We also denote the ratio of the 

participants 
  

  
  . The function estimates the probabilities       which are the 

probability of someone dying in the experimental and in the control group. The targeted 

hazard ratio is denoted as   . The test that the calculations are based on is two-sided. 

The outputs are given by the following formulas:  

   
  

      
      (3.11) 

   
 

      
       (3.12) 

And the expected number of total events   
 

 
 
     

    
      

 

 
      

    

 (3.13) 
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 3.5 The impact of the proportionality assumption on the sample size calculation 

 

 The previous methods for calculating the sample size are based on the 

assumption of the proportional hazards. That is the reason for specifying a targeted 

hazard ratio. If the proportionality assumption does not hold, the hazard ratio is a 

function of time. In this section we will do simulation studies, in order to estimate the 

miscalculations that might occur, when the assumption is wrong. We will simulate 

survival data sets, from clinical trials that compare two drugs (Experimental -Control) 

with equal allocations to each group. The hazard functions from the two groups will not 

be proportional. The end of the trial will be 1.3 times the median of the experimental 

drug. Then we will estimate the sample size that we need, in order to achieve 80% 

power on a 10% significance level. For this calculation, for different sample sizes we 

will generate 1000 Monte Carlo clinical trials and we will estimate the power, until we 

end up with a sample size that gives us 80%. The estimation of power is given by 

simulating the two groups in each repetition with a censoring given by the censor 

distribution and then do the test. The percentage of the repetitions that the test correctly 

rejected the equal hazards assumption will be the estimated power.  The test will be the 

Log Rank and will be performed by the function survdiff in the package         . Then 

we will compare it with the estimated sample size that we would have, with a method 

that assumes proportional hazards. 

  In order to minimize the assumptions that we make we will use the ssizeCT 

function from package powerSurvEpi, and the probability of death and the censoring 

rate will be estimated from a pilot data set.  In a real clinical trial where a pilot data set 

does not exist the clinicians must assume the survival distribut ions for the sample size. 

However we are interested only in the impact of the wrong assumption of proportional 

hazards. So for the investigation we would like to eliminate all the sources that cause 

wrong estimation of the sample size (e.g. assuming wrong parametric forms). For this 

reason, the pilot data set for both groups will be simulated from the same survival 

functions for each group, the same censoring distribution and the same duration. By 

doing that, we construct a scenario where we have a perfect pilot data set and the only 
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problem that causes wrong estimation is the assumption of proportional hazards.  So the 

estimated probabilities of death and censoring will be accurate, while in real clinical 

trials it is not possible to have such a compatible pilot data set. For the targeted hazard 

ratio that we need as input, we will use the real hazard ratio at two different times. The 

times will be the medians of the two survival functions and we will have two estimated 

sample sizes. Also the proportionality assumption will be violated in three different 

ways: 

1) Early diverging hazards 

2) Late diverging hazards 

3) Crossing hazards 

 For the first case (early diverging hazards),  the simulation design will be: 

Table 3: Details of the simulation study design 

Drug Distribution 
Censoring 

percentage 
Median 

Control Weibull (0.9,0.9) 14% 0.59 

Experimental Weibull (1.2,1.5) 23% 1.10 

Censoring Weibull (2,2.9) - - 

  

Now we will visualize the hazard functions against time, and we will add the two 

median times in the next Figure.  We can see that the hazards have greater distance at 

the beginning and then they converge. However, at the time of the crossing, most of the 

participants have already experienced the event. So the crossing that occurs in t his case 

is of no importance.  
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Figure 9: Hazard functions (the curves) and medians (the vertical lines) of Weibull (0.9,0.9) and Weibull (1.2,1.5) 

 

 The expected Kaplan Meier estimators are expected to be like the theoretical 

survival curves in (Figure 10). We also add the two medians by drawing a horizontal 

line that crosses the y axis at 0.5  
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Figure 10: Survival functions (the curves) and medians (the points that the horizontal line crosses each curve) of Weibull 

(0.9,0.9) and Weibull (1.2,1.5) 

 

 As we described before, we will find the sample size that achieves power 80% 

through simulations. The one that achieves this power is 114. The estimated results 

from the ssizeCT function for the two different hazard ratios are: 

Table 4: Results from the powerSurvEpi package 

Time Hazard Ratio 

Estimated 

Sample Size 

from ssizeCT 

Control 

Median (0.59) 
0.63 182 

Experimental 

Median (1.10) 
0.76 482 

 

 It is clear that the violation of the proportionality assumption lead to huge 

overestimations of the sample size that we need. The actual size that we need is 114 and 
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the estimations were 182 and 482. In clinical trials, where the participants might be 

hard to find, those miscalculations can be very harmful. 

 For the second case (late diverging hazards),  the simulation design will be: 

Table 5: Details of the simulation study design 

Drug Distribution 
Censoring 

percentage 
Median 

Control Weibull (1.3,1.2) 15% 0.9 

Experimental Weibull (1.2,1.8) 27% 1.32 

Censoring Weibull (2,3.1) - - 

 

 The hazard functions are visualized against time in the next Figure, with the two 

medians. At the beginning the hazards are close, but later we have divergence.  

 

Figure 11: Hazard functions (the curves) and medians (the vertical lines) of Weibull (1.3,1.2) and Weibull (1.2,1.8) 

 

 We also visualize the theoretical survival distributions, with the two medians in 

the next Figure.  
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Figure 12: Survival functions (the curves) and medians (the points that the horizontal line crosses each curve) of Weibull 

(1.3,1.2) and Weibull (1.2,1.8) 

 

 The estimated sample size from the procedure with the simulations that we 

described before is 170. The results with the ssizeCT function are: 

Table 6: Results from the powerSurvEpi package 

Time Hazard Ratio 

Estimated 

Sample Size 

ssizeCT 

Control 

Median (0.9) 
0.58 138 

Experimental 

Median (1.32) 
0.56 124 

 

 In this case the estimated sample sizes are lower than what we actually need. 

Even if the difference is small when the hazard ratio is 0.58, the test might be 
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underpowered because it uses lower sample than what is needed according to the 

simulation study. 

 For the last case (crossing hazards), the simulation design will be: 

Table 7: Details of the simulation study design 

Drug Distribution 
Censoring 

percentage 
Median 

Control Weibull (0.7,0.9) 16% 0.6 

Experimental Weibull (1.4,1.6) 22% 1.1 

Censoring Weibull (2,3.1) - - 

 

 For this case, the hazards are crossing in a very important time point. As we can 

see in the next Figure where the hazards and the two medians are visualized, the 

crossing point is between the experimental and the control median. Thus, at the 

beginning of the trial, the control treatment is more efficient. Then the experimental 

group has a better hazard function. However, as we can see from the theoretical median 

survival times, the experimental drug is generally more efficient.  
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Figure 13: Hazard functions (the curves) and medians (the vertical lines) of Weibull (0.7,0.9) and Weibull (1.4,1.6) 

 

 The crossing at the theoretical survival curves, as we see at the next graph, 

occurs in a time point of no importance. Most of the participants have already 

experienced the event by then.    
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Figure 14: Survival functions (the curves) and medians (the points that the horizontal line crosses each curve) of Weibull 

(0.7,0.9) and Weibull (1.4,1.6) 

 

 The estimated sample size from the simulations is 86. The results from the 

package ssizeCT function are: 

Table 8: Results from the powerSurvEpi package 

Time Hazard Ratio 

Estimated 

Sample Size 

ssizeCT 

Control 

Median (0.6) 
0.61 164 

Exper. Median 

(1.1)  
1.11 2986 

  

 Both estimations are greater than the actual sample that we need  (86). The 

second one is estimated for a hazard ratio very close to the point of crossing and as a 

result close to 1. So the sample size is enormously overestimated. Also there is a time 
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point, where the true hazard ratio is 1 and there the null hypothesis is true. It is clear 

that when the hazards are crossing, the design of the trial can have serious 

misspecifications.  

 It is clear that there are many cases where the sample size that we need can be 

estimated wrongly. It can be overestimated or underestimated and we want to avoid 

both cases. If we overestimate the sample size that we need, we will enlist more 

patients and they might be very hard to find or they might increase greatly the cost of 

the trial. If we underestimate the sample size, then the test will be underpowered. 

Generally, the miscalculations can be far greater than the ones that we have shown with 

the simulation studies. In those studies, the only wrong assumption was the assumption 

about proportionality. If for example, in a clinical trial design, the ssizeCT function is 

used to estimate the sample size needed, the pilot data set from a previous clinica l trial 

can be very incompatible. The clinicians might think that the previous survival 

populations match with the current ones, but in fact they do not. So this will be another 

source of miscalculations. If the clinicians assume exponential distributions in order to 

estimate the probability of death, then those assumptions can again be very wrong. Thus 

the final estimation will be also very misleading. All the previous results make clear 

that the proportionality assumption is very crucial and thus it should be tested in 

clinical trials. And if it is rejected, the estimated sample size should be questioned as 

well.  
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CHAPTER 4: Restricted Mean Survival Time 

 

 

4.1 Introduction  

 

 One common problem that occurs in the context of the survival is that we rarely 

observe the complete survival times of the participants. As we have already discussed in 

the survival analysis chapter, in a clinical trial it is almost impossible to observe t he 

death of all the participants, because of the time limitations and the fact that the 

participants can leave the trial at any time. Thus, estimating the mean survival time is 

impossible and usually the median survival times are used or another percentile  

statistic. The restricted mean survival time (RMST), is the mean survival time, until a 

certain time point. So the interpretation is that a patient’s mean survival time, until a 

certain time point, will be equal the RMST at that time point. This summary m easure is 

very convenient because we can compare two survival curves at any time point we 

want. Furthermore, there is no need for assumptions about the curves or their 

relationship in order to be computed. As we will see later, this is a great advantage, 

because the most popular summary statistic, the HR, needs the assumption of 

proportional hazards. In this chapter, we will also show a test that tests the significance 

of the RMST difference of two survival curves. We will also simulate the power of this 

test, and compare it with the Log Rank test. Also, we will discuss the time point of 

RMST estimation and how it must be chosen.  
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4.2 Definition of the RMST 

  

 Since the mean survival time is the area under the survival curve (a result that is 

derived from equation (2.9)), The Restricted Mean Survival Time at time point    is the 

area under the survival curve, up to   . So the mathematical expression is:  

        ∫     
   

 
        (4.1) 

Where      is the survival distribution. Obviously, for       we have that           

where   is the mean survival time and its formula is given by the equation 2.6. Now we 

give an example of RMST to make it clearer. For the example we take the 

Exponential(1) distribution, which has mean survival time 1. We will compute the 

RMST for the    values 1, 2 and 10. In Figure 15 we visualize the survival distribution 

against time and we also visualize the    values as vertical lines. For the general case of 

exponential (λ) those values can be computed by the following formula:  

       ∫     
  

 

  
      
⇔    

       ∫           
  

 
 

 

 
                (4.2)  

 



 

51 

 

 

Figure 15: Survival function of Exponential (1) and   values 1,2 and 10. 

 

 The mean survival is the surface under the survival curve, while the        is the 

surface under the survival curve and until   . In the table 9 we give the values of the 

RMST. 

Table 9: RMST values 

           

1 0.632 

2 0.864 

10 0.999 

 

Note that as we get further on the axis of time, the closer the RMST gets to the mean 

survival value, which is a consequence of the asymptotic property that we mentioned 

before. Also note that the earlier the time of estimation, the lower the value of the 

RMST. 
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 Now we will visualize in Figure 16 the RMST values of two Weibull 

distributions. The first will have shape parameter below 1 and the second above 1.  

 

Figure 16: RMST values of Weibull (1.3,1.2) and Weibull (0.7,1.8) 

  

  A natural estimator of the RMST is given, if we estimate       with the Kaplan-

Meier estimator. The estimator is:  

        ̂ ∫     ̂   

 
         (4.3)  

Where     ̂  is the Kaplan Meier estimator. 

 A direct method of computing (4.3) is by integrating the Kaplan Meier 

estimations of the survival curve, up to   , with the following formula from           

(2015): 

  ∑  (  )̂(       )            
              (4.4) 

Where k is the number of events and    the time of the     event and      ̂ the Kaplan 

Meier estimator at that time. 
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 We will now present a different method, using the Jackknife method and pseudo-

values, as proposed by                    (2010). First of all we will describe the 

Jackknife method. Suppose we have a sample with size n and θ is the parameter of 

interest. We then estimate θ from the whole sample and we get  ̂. Then we remove the 

    observation and estimate θ from the remaining observations and we have    ̂. Then 

the pseudo-value   ̂ is given by the formula: 

  ̂    ̂          ̂       (4.5) 

And the pseudo-value estimator is given by the formula:  

       
̂  

 

 
∑   ̂

 
          (4.6) 

And the variance of the pseudo-value estimator is given by the formula:  

            ̂  
∑    ̂        

̂    
   

      
      (4.7) 

For the specific case of the RMST estimation at time point    the pseudo-values are: 

      ̂  ∫     ̂  

 
        ∫    ̂

  

 
          (4.8) 

                    (2011) proposed a flexible parametric model for modeling 

the cumulative hazard function that is easy to extend for non-proportional hazard cases. 

With this estimation we can use the equation 2.15 that transforms the cumulative hazard 

function to the survival function and then compute the integral of the equation 4.2. The 

model has the form: 

                                       (4.9) 

Where       is a baseline cumulative function and    is a covariate vector. For the 

modeling of the log cumulative hazard function                  we use a restricted 

cubic spline in log time: 

                                                     (4.10) 
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Where the K+1 basis functions except the first (       depends on an interior knot that 

connects a pair of cubic polynomial segments of log time. The spline basis functions 

        are constructed in such a way that their segments are connected at the knots, 

and also their first and second derivatives are also connected at the knots. In addition, 

the spline must be linear in log time in the tails beyond the extremes of the observed 

event times.  

 Note that this model provides us a fully parametric estimation of the cumulative 

hazard function and as a result a fully parametric estimation of the survival function 

from equation 2.15. As a result the integration is easily done. Also the parametric 

model gives us the opportunity to extrapolate and compute the RMST with    values 

bigger than the event times that we have observed. The previous estimations  that we 

discussed were using the Kaplan-Meier estimation of the survival function and that is 

why we cannot estimate the curve beyond the latest event time.  

 

 

 4.3  Test for the significance of the RMST difference and sample size calculation 

  

 First of all we will define the RMST difference between two survival curves. It is 

the difference between the two RMSTs that have been estimated at the same time 

point   . So for two survival curves       we have: 

 ̂  ∫   ̂   
   

 
  -∫   ̂   

   

 
        (4.11) 

 For a randomized clinical trial the two RMSTs are independent. So the variance 

of their difference is the summation of the two variances: 

   ( ̂)     (     
̂ )             ̂     (4.12) 

         (2014) in her MCs thesis showed that if we use the Kaplan-Meier 

estimator for the estimation of the RMST then we have that:   
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√ (    ̂      )
 
              (4.13) 

 Where   is the sample size and    is given by the following expression: 

   ∫ [∫       
 

 
]
      

           

  

 
      (4.14) 

 Where      is the cumulative hazard function,        is the hazard function 

right before the time point t and        is the hazard function without censoring. Since 

the estimations of the two RMSTs are independent we have for   ̂: 

√ ( ̂   )
 
                (4.15) 

Where      
    

  and   
 ,   

  are the variances of the two RMSTs that are computed 

with the formula (4.14). If we want to test the hypothesis        we use the formula 

(4.15). 

 Based on the previous test we can calculate the sample size that we need , for a 

targeted power   and a significance level   . The formula that                    

(2013) gave is: 

     
         ̂ 

         (4.16) 

 Where          
 

 
. We can see that the formula does not need any parametric 

assumptions about the two survival curves or the censoring rate. However it does need 

an estimation of the variance. So if we use the RMST difference test in a clinical trial, 

we need some survival data in order to have an estimation of the variance before we 

calculate the final sample size. That problem can be solved with an adaptation of the 

clinical trial, as we will see later.  
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 4.4 Choice of the time point      

 

 The RMST as a summary statistic and the RMST difference test have many 

advantages. However, the main difficulty is the choice of the time that it will be 

estimated. Generally, there is not a standard rule for this choice and that can lead to 

questionable or biased decisions. Now in Figure 18 we will visualize the RMST 

difference as a function of    from two Weibull distributions that have crossing survival 

curves. In Figure 17 we visualize the curves and also the time that the RMST difference 

changes sign. 

 

 

Figure 17: Survival curves of Weibull (0.7,1.8) and Weibull (1.6,1.8). The black line is the time that RMST difference 

changes sign. 
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Figure 18: RMST difference as a function of    

  

 In Figure 18 we can see that the RMST difference in this particular example 

changes sign. So for       we would have a positive RMST difference and for 

       negative RMST difference. That example shows the importance of    choice. 

The rule of this choice, or the specific   should be prespecified at the clinical design. As 

              (2014) proposed,    should be linked to the clinical relevance and its aims. 

For example, if we are interested in the early effect of the experimental drug we can 

choose an early time point for   . Also, historical evidence from similar clinical trials 

must be taken into account, in order to find the optimal   . 

 There is also a different approach for the choice of    found in the literature. It 

proposes that the choice of    should minimize the sample size needed, for a given 

power and significance level.                    (2013) presented the ART 

procedure and proposed an extension of it. The extension does not assume proportional 

hazards and calculate the sample size based on the RMST difference. In the ART 

procedure, we set an accrual period of    units of time and a follow up period of    

units of time. Then we have   +   = K as a study time. We then fit a parametric model, 
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with the patients recruited at    and estimate the variances of the two RMSTs. Then we 

simulate survival times, for each group based on the previous estimations and calculate 

the sample size needed for given power and significance level. This procedure is 

repeated for different    values in the range of (  ,   +  ) and we choose the one that 

minimizes the sample size. One major disadvantage of this method, is that it needs a 

parametric model before we get any outcome from the clinical trial. We need to model 

both the accrual rate and the survival curves and then estimate their parameters. So if 

the choice of models is not correct, the variance estimate will be false and all the other 

calculations as well. 

 Another procedure also proposed by                    (2013) is the data 

maturity analysis. This procedure does not assume any parametric model at the 

beginning of the trial, so there is not the problem of goodness of fit. There is a formula 

that calculates the “percentage of maturity of the data” and this is  

     
      

         ̂ 
      (4.17) 

Where          
 

 
 and     the targeted power and     the significance level. Δ is 

the RMST difference that we want to detect. So this formula is a function of  ̂ which is 

function of the sample size and   . When pmat    , then the targeted power has been 

achieved and the RMST difference is ready to be estimated. Therefore, by varying    

over plausible values, or the sample size, we can stop the clinical trial by that criterion. 

Or else, we can calculate pmat periodically, until it is equal to 1 and then stop the trial.  

 Another method for choosing   , is to set it equal with the minimum of the 

maximum observed event, of the two groups. So for one out of two groups we will 

estimate the RMST using all the available information. On the other group, we will lose 

information, but it would be the minimum loss that we can achieve without 

extrapolating the estimation of the other group. This strategy is a safe option to use as 

much information as possible, without the risks of extrapolation and seems like a 

sensible, data driven choice. 
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 4.5 Comparison between RMST difference test and Log Rank test  

 

 In this section, we will compare the RMST difference tests and the Log Rank 

test, in terms of sample size needed and power. The ma in issue with the “popular” Log 

Rank test is its performance under non proportional hazards. In section 3.5, we study 

the difference of the estimated sample size needed, when the estimation was done under 

the assumption of proportional hazards (with the              package) and when it 

was done by simulation. The estimation through simulations was done in the following 

way. For different sample sizes, we estimated the power for given significance. By this 

procedure, we could estimate the sample size needed to achieve power 80% on 10% 

significance level and with a study time equal to 1.3 times the median of the 

experimental drug. That simulation study, took part under different types of violation of 

the proportionality assumption. So we already have the results, from 3 types of 

violation that connects a certain sample size with power equal 80%, on a significance 

level 10%. From the same hypothetical clinical trials (same survival and censoring 

distributions) and with the sample size that achieves 80% power on 10% significance 

level with the Log Rank test, we will estimate the power of the RMST difference test. 

Of course we will also add a case where the proportionality assumption does hold, 

because it is crucial to compare the two tests in situation where the Log Rank test is 

used correctly. Additional to the Log Rank test, in the cases of non-proportional 

hazards we will also examine the power that we have from the Fleming-Harrington G(π) 

tests (The family was presented at section 2.6). The   will be 0.2 and 0.8 in order to 

investigate a wide range of values.  The cases that we will examine will be:  

1) Proportional hazards 

2) Early diverging hazards 

3) Late diverging hazards 

4) Crossing hazards 

 Since the RMST difference test has no parametric assumptions, or assumptions 

about the relationship of the hazards, we are not afraid that a violation can happen. 

However, as we discussed before, it is very important to choose a suitable   .  We are 
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interested to estimate the power of the RMST difference test for diffe rent   . Thus, for 

each case, we will choose an “early” and a “late”    for estimating the power. The early 

   will be the 0.8 times the experimental median and the late will be 1.3 times the 

experimental median, which is also the total study time.  By estimating those 2 powers, 

we will compare not only the tests, but also the performance of the RMST difference 

test for different designs. For the estimations of the RMSTs and their variances we will 

use the R function rmsth from the package        . 

 For the first case (proportional hazards), the simulation design will be: 

Table 10: Design of the simulation 

Drug Distribution 
Censoring 

percentage 
Median 

Control Exponential (1) 14% 0.69 

Experimental Exponential (1.5) 24% 1.03 

Censoring Weibull (2,3) - - 

 

 We will visualize the hazard functions against time and we will add the two 

medians (Figure 19). The two hazard functions are proportional.  
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Figure 19: Hazard functions (the curves) and medians (the vertical lines) of Exponential (1) and Exponential (1.5) 

 

 We also need to visualize the two theoretical survival curves in Figure 20 in 

order to understand how two survival distributions with proportional hazards look like. 

The 2 medians have been also added by drawing a vertical line crossing the y-axis at 

0.5. 
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Figure 20: Survival functions (the curves) and medians (the points that the horizontal line crosses each curve) of 

Exponential (1) and Exponential (1.5) 

  

 The simulated sample size needed for power 80% and significance level 10%, 

when we use the Log Rank test, is 238 (equal allocation to groups). The simulated 

powers are: 

Table 11: Results of the simulation study 

TEST SIMULATED POWER 

Log Rank 80% 

RMST dif. Early           

(0.8*Exp. Median) 
75.8% 

RMST dif. Late           

(End of trial) 
84.4% 

 

 We can see that the choice of early    leads to loss of power compared to the Log 

Rank test. However, when we choose the end of the trial as   , we gain power. So in 

this example, the RMST difference test can increase the power, if we choose a late    . 
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 For the second case (early diverging hazards), the simulation design will be the 

one described in table 3 in section 3.5. In Figures 9 and 10 we can see the visualization 

of the hazard functions and the survival functions respectively. If we use the Log Rank 

test, on a significance level 10%, the estimated sample size that we need to achieve 

power 80% is 114. The results are:  

Table 12: Results of the simulation study 

TEST SIMULATED POWER 

Log Rank 80% 

RMST dif. Early          93.4% 

RMST dif. Late          91.5% 

G( )       82.5% 

G( )       85.9% 

 

 It is clear that with the same sample size, the RMST difference test is more powerful than 

the Log Rank test. Because of the early divergence of the hazards, even at early time points the 

proportionality assumption is heavily violated. Thus, at any time point the RMST difference test 

is more appropriate. Now for the G(π) tests it seems that they do increase the power. That 

happens because in early diverging hazards, there is great difference at the beginning in the two 

populations in terms of event numbers. So the G(π) family that gives more weight in the early 

events take advantage of this and detect the difference of the two curves more easily. That is why 

the power is greater for        than for       because in the first case the weight to the early 

observations is greater. However the increase that we get from the G(π) family is not so great as 

that from the RMST difference test. 

 For the third case (late diverging hazards),  the simulation design will be the 

same as in table 5 in section 3.5. At Figures 6 and 7 we can see the hazard functions 

and the theoretical survival distributions. The estimated sample size that achieves 80% 

power on 10% significance level, when we use the Log Rank test is 170. The fixed    

values will be 1 and 2. The results are:  



 

64 

 

 

Table 13: Results of the simulation study 

TEST SIMULATED POWER 

Log Rank 80% 

RMST dif. Early          68.1% 

RMST dif. Late          83.4% 

G( )       78.7% 

G( )       80.3% 

 

 In this case we can see that the power of the Log Rank is better than that of the 

RMST difference test for the early    . However the RMST difference is slightly better 

for late   . That is happening because of the late divergence between the hazards. At 

early time points the hazard functions are almost equal. However, as the time points 

increase, the difference between the hazard functions is more detectable. That is why 

the RMST difference test performs best at the furthest time point, which  is the end of 

the trial (late    . The G( ) achieves almost equal power for both   values. Those 

results are due to the fact that the violation of the proportionality is not so heavy 

because the two shape parameters of the simulated populations are very close. However, 

the RMST difference test with late    seems again to be beneficial. 

 For the fourth case (crossing hazards), the simulation design will be the same as 

in table 7 in section 3.5. In Figures 13 and 14 we can see the hazard functions and the 

theoretical survival curves respectively. The sample s ize needed that was estimated 

previously is 86. The results are: 

Table 14: Results of the estimations study 

TEST SIMULATED POWER 

Log Rank 80% 

RMST dif. Early          98.9% 

RMST dif. Late        97.2% 

G( )       84.3% 

G( )       92.1% 
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 It is clear that the RMST difference test is more powerful than the Log Rank test, 

at every   . Its power is almost 1, which means that we could get a sufficient power 

with a smaller sample size. So the RMST difference test with the two fixed     values, 

capture this superiority quite easily. G( ) family also increases the family, especially in 

when      , but it is not so efficient as the RMST difference test. In that example we 

had the most important violation of the proportionality assumption which is when the 

hazards are crossing. In this case we can see that all the alternatives to the Log Rank 

test that were tested are better than it.   

 Through the simulation study, we examined different cases of violations of the 

proportionality assumption and also a case where the assumption holds. The RMST 

difference test, with     set to be the end of the trial was always more powerful than the 

Log Rank test, even in the case of proportional hazards. However, the early    values 

were sometimes less powerful (proportional hazards and late diverging hazards) . Thus, 

the safest choice seems to be to set as     the end of the trial. Also the early     values 

do not use the whole available information. That is why there must exist a clinical 

related purpose for an early     value to be chosen (e.g. a disease that mostly affects 

older people and we are interested in an early superiority of the experimental dru g, 

while we are not so interested in the later events).                 (2018) compared 

the RMST difference test and the Log Rank test under many proportional and non -

proportional cases and found that when choosing a late    , in most of the cases the 

RMST difference test is more or equally powerful to the Log Rank. The G( ) family 

was more or equally powerful with the Log Rank test in all of the cases of non -

proportional hazards. However the RMST difference test with late     was always more 

powerful than both   values that were used.  

 Since the proportionality assumption is very restrictive and almost never holds, 

the RMST difference test with     set to be the end of the trial is a reliable alternative to 

the Log Rank test. The G( ) family, even if it seems to increase (or at least not 

decrease) the power in cases of non-proportionality, has an interpretation problem. 
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While the Log Rank tests the hazard ratio, when we add the weight function of the G( ) 

family it is not quite clear what we really test. Because we give more weight to some 

observations and the statistic that we produce is not so clearly related to the hazard 

ratio. Instead, the RMST difference test has a very natural interpretation. For all the 

above reasons, the RMST difference test with     set to be the end of the trial will be the 

test that we will use for the adaptive design, as an alternative to the Log Rank test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

67 

 

 

CHAPTER 5: Adaptive Design 

 

 5.1  Aim of the adaptive design 

 

 The problem that we want to solve with the adaptive design is the problem of the 

proportionality assumption that is often violated. The main problem of this assumption 

is that it is very strict and as a result it is often violated. However, it is used very  

widely because of the simplification that provides. The Log Rank test can be used and 

the hazard ratio can be reported as summary statistic. However, as we saw at the second 

chapter (Clinical Trials), the violation of the proportionality can lead to serio us 

underestimation and overestimation of the sample size needed. Therefore we might have 

power problem or we might enlist more patients than the number we need. Also, there is 

problems with the final summary statistic that we use. Since we report the hazard ratio, 

if the proportionality assumption does not hold, the hazard ratio is a function of time, 

and thus it is meaningless to report a single value for it.  

 The adaptation that we propose tries to solve this problem. Since we cannot 

know if the proportionality assumption holds at the beginning of the trial, we have to 

test it at some point, when we will have already gathered some survival data. In the 

third chapter (Restricted Mean Survival Time) we saw that the RMST difference test 

performs better or equally with the Log Rank test, when the proportionality assumption 

is violated. So the main idea is that we want to begin the design with the standard set 

up, because it provides us with many formulas for power and sample size calculation. 

At a predefined point we will test the proportionality assumption and if we do not reject 

it we will continue with the standard set up. If the assumption is rejected, then we will 

re-design the trial based on the RMST difference test. Since we have that it performs  

equally or better than the Log Rank test, we will estimate again the sample size that we 

need based on that. The adaptation will fix the power and sample size problems that 
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might occur and at the end of trial we will report the RMST difference instead of the 

hazard ratio. 

 5.2 Example of adaptive design  

 

 In this section we will give an example of a clinical trial presented by 

               (2008).  The reason that we chose this design is because it illustrates 

an idea that we are also going to use. It is the possible re-estimation of the sample size 

based on interim analysis with gathered data.  

 The trial is a phase III with two groups (test-control) and it tests cures for Non-

Hodgkin's Lymphoma. The primary endpoint is the progression-free survival time 

(PFS). There are also secondary endpoints which are the overall response rate (ORR) 

and the complete response rate (CRR).  

 We assume a uniform accrual period of 9 months and a follow up period of 23 

months.  The sample size is 375 subjects per group. However, we split it into three 

stages. In the first stage, each group has 125 subjects and we conduct interim analysis 

with them based on ORR. If the difference (test-control) is        then we continue 

enlisting patients. Else, the accrual is stopped prematurely, and one final analysis for 

efficacy based on the PFS is conducted. Also we examine possible efficacy based on the 

secondary endpoints.  

 If the enlisting continues, then we conduct a second interim analysis based on 

PFS. From this analysis we will claim either efficacy, or futility or we will go to the 

next step and we might do sample size re-estimation. In the last stage, we will do the 

final analysis on PFS and if we find significant results, we will continue testing the 

secondary endpoints for possible efficacy.  

 It is clear that based on the result of the interim analysis on ORR, the final 

sample size can vary from 250 to 750 patients. Now we will visualize the process in 

Figure 21.                         
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Figure 21: Non-Hodgkin's lymphoma trial designed by                (2008) 

 

                                         

 

 

 

 

 

 

 

 

 

 

 5.3 Description of the adaptive design 

 

 The adaptive design is initially based on the Log Rank test. Therefore, as in a 

typical design with the proportionality assumption, we have to determine the targeted 

hazard ratio that we want to detect and also the power and the significance level. Then, 

we will assume parametric forms for the two survival curves and a censoring rate, based 

on historical data and based on that we will calculate the sample size needed as 

described in Section 3.3. However, if the adaptation is needed, the test that we are 

going to use is the RMST difference test. So we also need to determine the targeted 

RMST difference that we want to detect with the same power and significance level. We 

would like to be able to relate the hazard ratio with a RMST difference at each     value. 
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Unfortunately, that cannot happen because pairs of distributions with the same hazard 

ratio produce different RMST differences and the targeted RMST difference will not be 

related to the targeted hazard ratio. To illustrate this we give the RMST difference 

produced by 3 pairs of distributions that have hazard ratio ½ in Figure 22. The cases 

are: 1) Exp(0.5)-Exp(1) (red curve), 2) Exp(1)-Exp(2) (blue curve), 3) Exp(2)-Exp(4) 

(purple curve). 

 

Figure 22: RMST differences as function of     produced by pairs of survival distributions with HR=1/2  

 

 Since we might use the RMST difference test we must also define    , or a 

decision rule for it. At the third chapter (Restricted Mean Survival Time) we discused 

the issues about the choice of     and whether or not it must be fixed or chosen with a 

decision rule. At the adaptive design it can also be related to the time point of the 

testing for the proportionality as we will see later.  

 The main idea of the adaptive design is that we have to test the proportionality 

assumption. The test that we are going to use was proposed by 

                       (1994) and was presented in section 2.7. So we have to find a 

time point to check it. As we have described in the second chapter (Clinical Trials), the 
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patients of the trial are not enlisted all together, but during a predefined accrual period. 

After the accrual period is over, then there is a maximum follow up period. We propose 

that after a predefined portion of the initial sample size has been achieved the 

assumption must be tested. If the assumption is not rejected the process should continue 

with the initial design. So in the design we should split the initial sample size in what 

we will call the “first sample” which will be used for the test and the remaining “second 

sample”. 

 If the assumption is rejected then the design must adapt to the RMST difference 

test. The new sample size should be estimated again with the formula 4.16. If the new 

sample size needed is estimated lower than the “first sample” then we already have the 

targeted power and we do not need to enroll more patients. Therefore we can test the 

RMST difference immediately. If the new sample size needed is estimated bigger than 

the “first sample” but lower than the initial sample size then we will enlist the 

remaining patients and continue with the test. However there is also the possibility that 

the new sample size will be bigger than the initial sample size and there is also possible 

that the difference will be huge. So at the beginning we have to set a maximum sampl e 

size and if the sample size ends up bigger than that we will just use the maximum size. 

Unfortunately at this case we will have power lower than the targeted. Note that the 

new sample size estimation is a function of      . 

 At the end of the trial we must report a summary statistic with a confidence 

interval and also the p-value of the test that we did. If the trial does not adapt to the 

RMST difference test, we will report a value for the hazard ratio and a confidence 

interval and the p-value of the Log Rank test. Else we will report the RMST dif ference 

with a confidence interval and the p-value of the RMST difference test.  

 Now we will summarize the design: 

 Step 0: 

1) Assume parametric forms of the two survival curves that lead to proportional 

hazards  

2) Assume a censoring rate for both arms, or one for each arm. 



 

72 

 

3) Determine the targeted HR, the targeted power and the significance level  

4) Estimate the initial sample size needed for the Log Rank test  

5) Split the initial sample size into “first-second sample” 

6) Determine the accrual and the follow up period 

7) Determine the targeted RMST difference 

8) Determine     or a decision rule for it 

9) Determine the maximum sample 

 Step 1: 

1) Test the proportionality assumption on the “first sample” with the 

proportionality test described in section 2.7. 

2) If it is not rejected then enlist the “second sample”  

3) Continue to the follow up period  

4) Report the HR with a confidence interval and the p-value of the Log Rank 

test 

5) If it is rejected go to step 2  

 Step 2: 

1) Estimate the new sample size with the formula 4.16. 

2) If it is lower than the “first sample” then test immediately the RMST 

difference 

3) If it is between the “first sample” and the initial sample then enlist the 

remaining patients, continue with the follow up period and test at the end the 

RMST difference 

4) If it is above the maximum sample size, enlist patients until the maximum 

sample size and continue with the follow up period and the RMST difference 

test 

5) Report the RMST difference and a confidence interval and the p-value of the 

RMST difference test 
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We will also add a flow chart (Figure 23) to make it clearer. The first step is whole at 

the first box because all the procedures in it must be done before the trial begins. After 

that, we split the next steps is an algorithmic way: 

Figure 23: The adaptive design as a flow chart 
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 5.4 Simulation study 

 

 Now we will test the performance of the adaptive design and compare it to that of the 

typical design (log rank test and assumption of proportional hazards) in different cases of 

proportional, non-proportional and crossing hazards. What we are interested for is the power and 

the mean sample size that the adaptive design produces. For estimating the power we will 

simulate 1000 survival data sets, from clinical trials that compare two drugs with equal 

allocations to each group and count the percentage that the difference between the two 

drugs was correctly detected. The general set up is that we have 2 simulated survival groups 

that get two different drugs and are compared to each other, with a censoring distribution that 

censors about 20% of the observations. Firstly, we want to find the sample size that we would 

need to achieve 80% power at 10% significance level with the typical design for the same cases. 

For this estimation, for different sample sizes we will generate 1000 cl inical trials with 

the typical design and we will estimate the power, until we end up with a sample size 

that gives us 80%. We will call this sample size          as it is the sample size that the 

log rank test needs to achieve 80% power at 10% significance level. That enables the 

skipping of assuming parametric forms for the two curves and the censoring distribution 

and the setting of a targeted hazard ratio to be detected. Now we set the     

           ,                and               . As we saw in section 4.5, the best 

alternative to the Log Rank of the ones that we studied is the RMST difference test with 

a late    , so our choice for this will be the end of the trial.  The time points of the design 

will be a function of the largest median of the two survival populations. More 

specifically, the time of testing for the proportionality assumption will be     

               and the end of the trial (which will also be    ) will 

be                   . The test for the proportionality will be set at 10% significance 

level. The targeted RMST difference that will be used for the sample size re -estimation 

will be the real difference between the two RMSTs. At the end of the simulation, we 
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will take the mean sample size that the adaptive design used and we will denote 

it          . The mean sample size is the mean sample produced from the simulated 

trials. Note that with the adaptive design, we do not know from the beginning the final 

sample size that will be used. 

  We are interested in the relationship between          and          . Also we 

will estimate the power of the adaptive design and compare it to the power of the 

typical design. Now in the next table we give the cases that  we are going to test.  

Table 15: Design of each simulation study 

CASE Control/Experimental Censoring distributions 

Time of 

proportionality 

testing 

End of the 

trial-   

Prop. 

Hazards 

1 Weibull(1,1.1)/Weibull(1,1.8) Weibull(2,3.3) 0.998 1.621 

2 Weibull(0.9,0.9)/Weibull(0.9,1.8) Weibull(2,3.2) 0.958 1.557 

3 Weibull(1.1,1.1)/Weibull(1.1,1.8) Weibull(2,3.2) 1.031 1.676 

Non-Prop. 

Hazards 

4 Weibull(1.3,1.2)/Weibull(1.2,1.8) Weibull(2,3.1) 1.061 1.724 

5 Weibull(0.9,0.9)/Weibull(1.2,1.5) Weibull(2,2.9) 0.884 1.436 

6 Weibull(1,1.1)/Weibull(1.2,1.8) Weibull(2,3.2) 1.061 1.724 

Crossing 

Hazards 

7 Weibull(0.7,0.9)/Weibull(1.4,1.6) Weibull(2,3.1) 0.985 1.6 

8 Weibull(0.8,1.3)/Weibull(1.2,1.8) Weibull(2,3.6) 1.061 1.724 

9 Weibull(0.9,1.1)/Weibull(1.3,1.5) Weibull(2,3) 0.905 1.47 

 

 Now in Figures 24, 25 and 26 we give the hazard functions of the pairs that will be tested. 

With red curve is the hazard of the control group and with blue the experimental. 
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Figure 24: Hazard functions of the proportional cases 

  

 

Figure 25: Hazard functions of the non-proportional cases 

 Note that in case 5 the hazards are crossing. However the crossing is of no importance, 

because it takes place at a moment when most of the patients have already died. 
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Figure 26: Hazard functions of the crossing hazards cases 

 

 Now in Figure 27 we give the survival functions of each pair that we are going to test. 

Again, the red curve is for the control group and the blue curve for the experimental. 
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Figure 27: Survival curves of each pair of the simulation study 
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 The results of the study are shown in table 16: 

Table 16: Results of the simulation study 

Case Control/Experimental 
% OF RMST 

TEST USE 
                   POWER 

                  

        
  

Prop. 

Hazards 

1 Weibull(1,1.1)/Weibull(1,1.8) 10.1% 160 151.76 80.5% - 5.15% 

2 Weibull(0.9,0.9)/Weibull(0.9,1.8) 11.1% 100 85.7 81.5% - 14.13% 

3 Weibull(1.1,1.1)/Weibull(1.1,1.8) 10.2% 130 122.837 81.2% - 5.51% 

Non-

Prop. 

Hazards 

4 Weibull(1.3,1.2)/Weibull(1.2,1.8) 17.5% 170 158.831 81.3% - 6.57% 

5 Weibull(0.9,0.9)/Weibull(1.2,1.5) 16.3% 114 104.025 82% - 8.75% 

6 Weibull(1,1.1)/Weibull(1.2,1.8) 13.3% 116 108.286 80.3% - 6.65% 

Crossing 

Hazards 

7 Weibull(0.7,0.9)/Weibull(1.4,1.6) 39.4% 86 69.058 82.3% - 19.7% 

8 Weibull(0.8,1.3)/Weibull(1.2,1.8) 39.9% 230 184.115 84% - 19.95% 

9 Weibull(0.9,1.1)/Weibull(1.3,1.5) 35,1% 228 187.986 83,3% - 17,55% 

 

 From the simulations it is obvious that the adaptive design reduces on average the sample 

size that we would use with the typical design. Even in cases with proportional hazards, where 

the adaptation take place only at 10% (type I error on the testing for the proportionality), the 

sample size has a reduction. In cases of non-proportional hazards that are not crossing (at least 

during the trial’s period), the adaptation takes place in under 20% of the repetitions. That 

happens because the test for the proportionality is not so powerful in cases where the 

proportionality is not heavily violated. However, there is a reduction to the sample size as well. 

In the cases of crossing hazards where the proportionality assumption is heavily violated, the 

sample size reduction is greater and it reaches almost 20%. All those reductions to the sample 

size do not reduce the power of the design. In fact, in the cases of crossing hazards we even have 

a small increase in power. In this simulation study, we were beginning by knowing the exact 

sample size for achieving 80% with the log rank test. But in real life trials, this size is estimated 

based on assumed parametric forms for the survival curves and the censoring distribution and of 

course the assumption of the proportionality of hazards. All these assumptions can lead to under 

or over powered designs, which means to estimate a sample size that is smaller or bigger than it 

actually needs for the targeted power. The adaptive design however seems to calibrate this 

sample size in order to achieve the targeted power. In the simulations we had reduction of the 

size without losing power. So in cases of underestimation, we are confident that the design will 

increase the sample in order to achieve the power and in cases of overestimation the design will 

reduce the sample size. Another advantage of the adaptive design is that when the 
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adaptation is needed then it also changes the summary statistics that we are reporting at 

the end of the trial. If the proportionality assumption does not hold then not only the 

use of the Log Rank test is wrong but reporting a single hazard ratio is also wrong since 

it is not constant. The adaptive design prevents that from happening, because if it 

detects non-proportionality, then it switches the final summary statistic to RMST 

difference, which is irrelevant to the hazard ratio.  
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Chapter 6: Discussion and Further Research 

    

 In the present thesis  we developed an adaptive design which tests the 

proportionality assumption at the first stage and then deciding on this selects an 

appropriate test statistic to examine the difference between the two arms. We have 

shown through simulations that the adaptive approach can reduce the expected sample 

size while keeping the power of the procedure and thus it can improve with respect to 

standard approaches which are based on a single test statistic. We have also employed 

the currently fashionable RMST to examine the difference between the two survival 

curves. 

 A series of points apply for the developed design as well as points for further 

investigation and improvement. The adaptation that we proposed is based on the 

formula 3.16 for estimating the sample size that we need. This formula uses the 

variance of the estimated RMST difference at the point of the estimation. And the point 

of the estimation in the adaptive design is when the “first sample” has been enlisted. It 

is clear that the better estimation of the variance we have, the better will be the 

estimation of the sample size. With the current design we estimate the variance based 

on a small sample and with an extrapolation because we estimate the variance of the 

RMST difference at a future    value. So an idea for further investigation is to construct 

a design that achieves better estimation for the variance. For that purpose we could use 

the data maturity analysis that is mentioned at Section 4.4 and to apply the formula 

4.17. 

 The data maturity analysis shows when the sample size is adequate for the 

testing. So it gives us the opportunity to estimate the maturity at different stages of the 

accrual period and to stop enlisting patients if the maturity has been reached. This 

process provides us better estimations of the variance and as a result more accurate 

estimation for the sample size that we need. The adaptive design that we proposed can 

be modified to include the data maturity analysis. The first step of the design will be 

almost the same. The initial sample size will  be divided into “first sample” and “second 

sample”. However the “second sample” will be also divided into smaller equal parts. 
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When the “first sample” has been enlisted then again we will test the proportionality 

assumption and if it is not rejected we will continue as described in the adaptive design. 

However, if the assumption is rejected we will not apply the formula 4.16 that estimates 

the sample size needed based on the RMST difference test. We will apply the data 

maturity analysis and the formula 4.17. If the data are estimated mature, then we can 

stop enlisting patients and go immediately to the follow up period. If the data are 

estimated to not be mature, then we will enlist one of the smaller parts of the “second 

sample” and then we will estimate again the data maturity analysis. We will continue 

this procedure even when the “second sample” has been enlisted and we will not stop 

until we reach the maximum sample size. If the maturity has not been reached until 

then, we will stop enlisting more patients and we will go to the follow up period.  

 The problem with this design that needs to be investigated is the problem of 

multi-testing. Since we estimate the data maturity several times, we increase the 

probability to estimate the data mature when they are not. More formally, we increase 

the probability of Type I error. So the further investigation should be in an adaptive 

design that uses the data maturity analysis, in order to have better estimation of the 

sample size, but also secures that we are not increasing the Type I error.  

As already mentioned the current procedure is based on the RMST. Since RMST 

is less examined and used in clinical practice one can use  as an adaptation any other test 

that avoids the proportionality assumption like the log-rank test. Such a test can be the 

Fleming-Harrington test statistic (with selected weight). We have not exploited this in 

the current thesis but it would be useful to see the performance for such an adaptation.  

 Finally as Grant et al (2014) have shown the test for proportionality assumption 

is a crucial choice. The one employed in this thesis by Grambsch and Therneau does not 

have adequate power in certain scenarios and perhaps the test is not able to discriminate 

between proportionality and non-proportionality. This can have an effect on our derived 

results. It would be useful to examine other tests of proportionality in order to improve 

the gain from the adaptive procedure discussed here. 
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