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ABSTRACT 

 

Sotiris Dimitrakopoulos 

 

Hedge funds performance evaluation, 

A portfolio construction and Applications  
   

  June 2009 

 

We evaluate performance of hedge funds in order to construct top 

decile portfolios.  In our study, we have the monthly returns of ten hedge 

funds and the monthly returns of fourteen market indices.  We apply four 

different models for each hedge fund.  The data from the last year of each 

hedge fund is used in the out-of-sample analysis.  From each model, we 

receive the best two performing hedge funds.  Consequently, we construct 

four different portfolios.  The first kind of model is the single factor, the 

second is the three-factor of Fama and French (1993) and the third is the four-

factor model of Carhart (1997).  The fourth kind is a multifactor model.  We 

use a backward selection approach in order to identify a suitable set of market 

indices for each hedge fund. 

In the following, the models, which we have described above, are 

reused, applying Generalized Autoregressive Conditional Heteroskedasticity 

GARCH(1,1) models in order to capture the conditional heteroskedasticity or 

volatility clustering.  Specifically, GARCH(1,1) models describe the 

conditional variances and covariances of financial time series.  Therefore, we 

construct another four portfolios.  Using some measures of risk, we compare these 

eight portfolios and we conclude by choosing the best top decile portfolio. 

 

 

 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

ΠΕΡΙΛΗΨΗ 

 

Σωτήριος ∆ηµητρακόπουλος 

 

Αποτίµηση των κεφαλαίων αντιστάθµισης κινδύνων, 

Κατασκευή χαρτοφυλακίου και εφαρµογές  
 

Ιούνιος 2009 

 

 Η αποτίµηση της απόδοσης των κεφαλαίων αντιστάθµισης κινδύνου 

και η κατασκευή top deciles χαρτοφυλακίων είναι ο αντικειµενικός σκοπός 

αυτής της εργασίας.  Έχουµε στη διάθεσή µας, τις µηνιαίες επιστροφές δέκα 

κεφαλαίων αντιστάθµισης κινδύνου και τις µηνιαίες επιστροφές 

δεκατεσσάρων χρηµατιστηριακών δεικτών.  Εφαρµόζουµε τέσσερα 

διαφορετικά µοντέλα για κάθε ένα από τα δέκα κεφάλαια.  Από την εφαρµογή 

κάθε µοντέλου, για το σύνολο των δέκα κεφαλαίων, λαµβάνουµε τα δύο 

καλύτερα από πλευράς απόδοσης.  Συνεπώς, κατασκευάζουµε τέσσερα 

διαφορετικά χαρτοφυλάκια.  Το πρώτο µοντέλο που εφαρµόζουµε 

περιλαµβάνει ένα παράγοντα.  Το δεύτερο είναι το µοντέλο των Fama και 

French (1993).   Το τρίτο είναι του Carhart (1997).  Το τελευταίο µοντέλο 

περιλαµβάνει όλους τους χρηµατιστηριακούς δείκτες για κάθε κεφάλαιο 

αντιστάθµισης κινδύνου.  Με τη µέθοδο επιλογής κατάλληλων µεταβλητών 

backward καταλήγουµε σε µοντέλα ικανότερα από πλευράς ερµηνείας της 

διακύµανσης. 

 Εν συνεχεία, επαναχρησιµοποιούµε τα προαναφερθέντα µοντέλα, 

εφαρµόζοντας τα γενικευµένα αυτοπαλίνδροµα µοντέλα υπό συνθήκη 

ετεροσκεδαστικότητας GARCH(1,1), µε σκοπό να περιγράψουµε τις 

δεσµευµένες διακυµάνσεις και συνδιακυµάνσεις των χρηµατοοικονοµικών 

χρονολογικών σειρών.  Εποµένως, κατασκευάζουµε άλλα τέσσερα 

χαρτοφυλάκια.  Στο τελευταίο σκέλος της εργασίας εφαρµόζουµε διάφορα 

µέτρα υπολογισµού του κινδύνου και της λειτουργίας κάθε χαρτοφυλακίου µε 

σκοπό να καταλήξουµε στο καλύτερο µοντέλο από πλευράς απόδοσης. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Hedge funds historical review, definition and strategies 

 

Alfred Jones was the father of hedge funds.  He was American and he 

graduated from Harvard in 1923 and became a U.S diplomat in the beginning 

of the decade of 1930 in Berlin, Germany.  He studied sociology in Columbia 

University and joined the editorial staff at Fortune magazine. 

 In 1948 he raised $100.000 ($40.000 his own) and he tried to minimize 

the risk in holding long-term stock positions by short-selling other stocks.  

For the first time in history, we watched the classic long/short equity 

investing model.  He also employed leverage to enhance returns.  In 1952, he 

caused a change in the structure of his investment vehicle, converting it from 

a general partnership to a limited partnership.  Specifically, before Alfred 

Jones proceeded to this change, partners had unlimited liability, which means 

that their personal assets were liable to the partnership’s obligation.  

Nowadays, one or more of the partners is liable only to the extent of the 

amount of money that partner has invested.  Namely, the owners are generally 

not liable for the debts of the company.   He, also, introduced the incentive 

fee as compensation for the manager with the prospect that the manager will 

surpass a concrete limit of profits (watermark).  In this historical frame hedge 

funds were created and developed. 

Hedge funds are lightly regulated private investment funds that use 

unconventional investment strategies and tax shelters in an attempt to make 

extraordinary returns in any market.  We refer to “lightly regulated” because 

in 2004 the Securities and Exchange Commission (SEC) (which is a 

government commission created by the Congress to regulate securities 

markets and protect investors) adopted changes that require hedge fund 

managers and sponsors to register as investment advisors under the 

Investment Advisor’s Act of 1940.  Some of the requirements are concerned 

to keep up-to-date performance records, hiring a compliance officer and 



  

creating a code of ethics.  These actions are become to protect investors from 

the speculators.  In addition, we must refer that there are two types of hedge 

funds.  U.S (onshore) and offshore hedge funds.  U.S hedge funds are limited 

partnerships.  Offshore funds are limited liability corporations or partnerships 

established in tax neutral jurisdictions that allow investors an opportunity to 

invest outside their own country and minimize their tax liabilities.  Finally, 

offshore funds are more flexible than onshore funds because they offer more 

privacy, enjoy certain tax advantages and are not restricted as to the number 

of investors. 

 We have accomplished the definition of hedge funds.  Now, we must 

add that all hedge funds are not the same, because they use different 

strategies, in which investment returns, volatility and risk vary enormously.  

Hedge fund strategies tend to hedge against downturns in the markets being 

traded. 

 

1.2 Hedge fund strategies 

 

Hedge funds are flexible in their investment options (can use short 

selling, leverage, derivatives such as puts, calls, options, futures, etc).  Hedge 

funds benefit by heavily weighting hedge fund managers’ remuneration 

towards performance incentives, thus attracting the best brains in the 

investment business.  It is commonly known that hedge fund managers are 

generally highly professional, disciplined and diligent.  Investing in hedge 

funds tends to be favored by more sophisticated investors, including many 

Swiss and other private banks, which have lived through, and understand the 

consequences of major stock market corrections.  Many endowments and 

pension funds allocate assets to hedge funds.  Nowadays, hedge funds are 

estimated to be a trillion dollar industry with about 8350 active hedge funds.  

In the following, we present the main categories of hedge fund strategies. 

 

Convertible Arbitrage: Purchase a portfolio of convertible securities, 

generally convertible bonds, and hedge a portion of 

the equity risk by selling short the underlying 



  

common stock.  Most managers employ leverage, 

and the equity hedge ratio may range from 30% to 

100%. 

 

Distressed Securities: 

 

Invest in, and may sell short, the securities of 

companies whose security prices have been, or are 

expected to be, affected by a distressed situation 

such as a bankruptcy, distressed sale, or other 

corporate restructuring. Depending on the 

manager’s style, investments may be in bank debt, 

corporate debt, trade claims, common stock, 

preferred stock, and warrants. 

 

Emerging Markets: 

 

Invest in sovereign or corporate securities of 

developing or “emerging” countries.  Investments 

are primarily long. 

 

Equity Hedge: 

 

Consists of a core holding of long equities hedged 

at all times with short sales of stocks and/or stock 

index options.  Where short sales are used, hedged 

assets may comprise an equal dollar value of long 

and short stock positions.  Other variations use 

short sales unrelated to long holdings and/or puts 

on the S&P 500 index and put spreads.  

Conservative funds mitigate market risk by 

maintaining market exposure from zero to 100%.  

Aggressive funds may magnify market risk by 

exceeding 100% exposure and, in some instances, 

maintain a short exposure. 

Equity Market Neutral: 

 

Exploit pricing inefficiencies between related 

equity securities, neutralizing exposure to market 

risk by combining long and short positions.  One 

example is to build portfolios made up of long 



  

positions in the strongest companies in several 

industries and taking corresponding short positions 

in those showing signs of weakness. 

Equity Market Neutral: 

Statistical Arbitrage 

 

Utilize quantitative analysis of technical factors to 

exploit pricing inefficiencies between related 

equity securities, neutralizing exposure to market 

risk by combining long and short positions.  

Portfolios are typically structured to be market, 

industry, sector, and dollar neutral. 

Equity Non-Hedge: 

 

Commonly known as “stock-pickers,” funds that 

are predominantly long in equities; they do not 

always have a hedge in place, although they have 

the ability to hedge with short sales of stocks and/ 

or stock index options. 

Event-Driven: 

 

Also known as “corporate life cycle” investing, 

these funds invest in opportunities created by 

significant transactional events, such as spin-offs, 

mergers and acquisitions, bankruptcy 

reorganizations, recapitalizations, and share 

buybacks.  The portfolio of some Event-Driven 

managers may shift in majority weighting between 

Risk Arbitrage and Distressed Securities, while 

others may take a broader scope. 

Fixed Income: 

Arbitrage 

 

Employ a variety of strategies involving investment 

in fixed income instruments, hedged to eliminate or 

reduce exposure to changes in the yield curve. The 

generic types of fixed income hedging trades 

include: yield-curve arbitrage, corporate versus 

Treasury yield spreads, municipal bond versus 

Treasury yield spreads, and cash versus futures. 

Fixed Income: 

Convertible Bonds 

 

Primarily long only convertible bonds. 

 



  

Fixed Income: 

Diversified 

 

Invest in a variety of fixed income strategies, 

including municipal bonds, corporate bonds, and 

global fixed income securities. 

 

 

Fixed Income: 

High-Yield 

 

Invest in mortgage-backed securities, including 

government agency, government-sponsored 

enterprise, private-label fixed- or adjustable-rate 

mortgage pass-through securities, fixed- or 

adjustable-rate collateralized mortgage obligations 

(CMOs), real estate mortgage investment conduits 

(REMICs), and stripped mortgage-backed securities 

(SMBSs). Funds may look to capitalize on security-

specific mispricings. 

Macro: 

 

Take leveraged bets on anticipated price 

movements of stock markets, interest rates, foreign 

exchange, and physical commodities. 

Market Timing: 

 

Invest at the beginning of an uptrend in prices, and 

then switch out of these investments at the start of 

a downtrend in prices. 

 

Merger Arbitrage: 

 

Sometimes called Risk Arbitrage, involves 

investment in event-driven situations such as 

leveraged buy-outs, mergers, and hostile takeovers.  

These strategies generate returns by purchasing 

stock of the company being acquired, and in some 

instances, selling short the stock of the acquiring 

company. 

Regulation D: 

 

Invest in Regulation D securities, sometimes 

referred to as structured discount convertibles.  The 

securities are privately offered to the investment 

manager by companies in need of timely financing. 

Relative Value: Attempt to take advantage of relative pricing 



  

Arbitrage 

 

discrepancies between instruments including 

equities, debt, options, and futures.  Managers may 

use mathematical, fundamental, or technical 

analysis to determine misvaluations.  Securities 

may be mispriced relative to the underlying 

security, related securities, groups of securities, or 

the overall market.  Arbitrage strategies include 

dividend arbitrage, pairs trading, options arbitrage, 

and yield curve trading. 

Short Selling: 

 

Involves the sale of borrowed securities (not owned 

by the seller) in order take advantage of an 

anticipated price decline. 

Fund of Funds: 

 

Invest with multiple managers through a fund or a 

managed account.  A Fund of Funds manager has 

discretion in choosing which strategies to invest in, 

and may allocate funds to numerous managers 

within a single strategy or to numerous managers in 

multiple strategies. 

Managed Futures: 

(CTA) Index 

 

The Barclay CTA Index represents the returns on a 

diversified portfolio of commodity futures managed 

by commodity trading advisors (CTAs).  The return 

index is unweighted and rebalanced at the 

beginning of each year. In 2003 there were 359 

CTA programs included in the index.  To qualify 

for inclusion in the index an advisor must have four 

years of prior performance history, and new 

programs are not added to the index until after their 

second year. 

Managed Futures: 

(BTOP 50) Index 

 

The Barclay BTOP 50 Index represents the returns 

on the largest investable CTA programs, measured 

by assets under management.  

 

 

 



  

1.3 Benefits of hedge funds 

 

Many hedge fund strategies have the ability to generate positive returns 

in both rising and falling equity and bond markets.  Academic research shows 

that hedge funds have higher returns and lower overall risk than traditional 

investment funds. 

Inclusion of hedge funds in a balanced portfolio reduces overall 

portfolio risk and volatility and increases returns. 

Huge variety of hedge fund investment styles-many uncorrelated with 

each other-provides investors with a wide choice of hedge fund strategies to 

meet their investment objectives. 

Hedge funds provide an ideal long-term investment solution, 

eliminating the need to correctly time entry and exit from markets. 

Hedge funds are expected to deliver absolute returns- they attempt to 

make profits under all circumstances, even when the relative indices are 

down.  Absolute return is the return that an asset achieves over a certain 

period of time.  This measure looks at the appreciation or depreciation 

(expressed as a percentage) that an asset-usually a stock or a mutual fund-

achieves over a given period of time. 

The incentive-based performance fees tend to attract the most talented 

investment managers to the hedge fund industry. 

Hedge funds are often able to protect against declining markets by 

utilizing various hedging strategies.  The strategies used of course vary 

tremendously depending on the investment style and type of hedge fund.  But 

as a result of these hedging strategies, certain types of hedge funds are able to 

generate positive returns even in declining markets. 

The future performance of many hedge fund strategies tends to be 

highly predictable and not dependent on the direction of the equity markets. 

Diversification: investors can obtain a wider selection of risk and 

return profiles by combining hedge funds with traditional asset classes.  The 

following illustrates the diversification benefit by incorporating a hedge fund 

allocation in various proportions with traditional asset classes. 



  

Brooks and Kat (2002) examined the statistical properties of a number 

of freely available hedge fund index return series and they reached to the 

below conclusions. 

o Many hedge fund index return distributions are not normal and exhibit 

negative skewness and positive excess kurtosis. 

o The monthly returns of many hedge funds indices exhibit highly 

significant positive first-order autocorrelation. 

o Several of monthly hedge fund index returns exhibit a high positive 

correlation with the stock market. 

o There is correlation between different strategies. 

o There is considerable heterogeneity between indices that aim to reflect 

the same type of strategy.  As a result, investors’ perceptions of hedge 

fund performance and value added will heavily depend on the indices 

studied. 

o The available monthly return data underestimate true return volatility 

and thereby significantly overestimate the Sharpe ratio. 

o Hedge fund indices offering skewness and kurtosis properties, so the 

Sharpe ratio will overstate the true performance. 

o For the same reason there is unsuitability of mean-variance portfolio 

analysis, when hedge funds are involved. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

CHAPTER TWO 

 

BIASES 

 

2.1 Introduction 

 

 There are many hedge fund databases that supply the researchers and 

managers with financial data.  These databases hide some problems named 

biases, which have significant impacts on the performance measures.  When 

the particular problem became perceivable, hedge fund databases conclude 

also defunct funds, which stop reporting for some reason like bankruptcy, 

liquidation, mergers, name, changes and sometimes voluntary stoppage of 

information reporting).  In the following, we will study individually these 

biases.   

 

2.1.1 Survivorship bias 

 

Survivorship bias is the effect of considering only the performance of 

the funds that are alive and present in the database at the end of the sample 

period.  So, many researchers conclude and the defunct funds in their sample 

to eliminate this bias.  There are two definition of this bias. Firstly, it is the 

performance difference between surviving funds and dissolved funds.  

Secondly, it is the performance difference between living funds and all funds.  

Ackermann, McEnally and Ravenscraft (1999) tested for differences in 

the mean and median absolute returns and Sharpe ratios of disappearing and 

extant funds.  They weighted each fund’s return by the number of months of 

the disappearing fund’s return history.  They moved on this process because 

they wanted to avoid performance outliers.  Finally, they concluded that the 

survivorship bias is only 0.2%. 

Capocci and Hubner (2004) used the two definitions of survivorship 

bias which we have referred above: the performance difference between 

surviving funds and dissolved funds and the performance difference between 

living funds and all funds.  They reported this bias using both definitions for 



  

the whole period and for two subperiods 1984–1993 and 1994–2000.  They 

calculated a monthly survivorship bias of 0.36% (or 4.45% per annum) for the 

whole period.  A look at a subperiod biases indicated that survivorship bias is 

much higher after 1994. 

 Edwards and Caglayan (2001) included the return histories for 496 no 

surviving hedge funds from the MAR database and they estimated the alphas 

(excess returns) for those funds and all surviving funds.  They also estimated 

that if the returns of the nonsurviving hedge funds had not been included in 

the analysis, there would have been a survivorship bias of 1.85% in average 

annual hedge fund returns.  Finally, this bias ranged from a low of 0.36% for 

market-neutral funds to a high of 3.06% for long-only funds.  Specifically, 

they found a survivorship bias of 1.85% in average annual hedge fund returns.  

 Barry (2003) found a survivorship bias of 3.8% in average annual 

hedge fund returns. 

 Ibbotson and Chen (2006) calculated the after-fee monthly return data 

for each fund.  With the live, dead and backfill funds, which they have 

calculated, they constructed the following six subsamples of the returns data 

in order to create an unbiased return sample: 

o Live funds only with backfill data. 

o Live funds only without backfill data. 

o Live and dead funds with backfill data. 

o Live and dead funds without backfill data. 

o Dead funds only with backfill data. 

o Dead funds only without backfill data. 

For each subsample, they compiled three portfolios and calculated the 

monthly returns for each: 

o An equally-weighted portfolio. 

o A value-weighted (using previous month’s assets under management) 

portfolio. 

o An equally-weighted portfolio with only funds that have reported an 

asset under management (AUM) amount. 

In the following, they analyzed the survivorship bias in hedge fund 

return data by comparing returns on the above three portfolios across the six 

subsamples of funds.  Specifically, for survivorship bias, they compared the 



  

returns between portfolios with and without the dead funds.  In the database 

with backfilled return data, the equally weighted portfolio with live only 

funds returned 16.45% per year, compared to 13.62% with both live and dead 

funds.  Therefore, with backfilled data the survivorship bias is estimated to be 

2.74% (16.45%–13.62%) per year.  But including backfilled return data 

underestimated the potential survivorship bias in the data.  When they 

excluded the backfilled data, the live only funds returned 14.74% per year, 

compared to 9.06% for the equally weighted portfolio with dead and live 

funds.  This indicated a more accurate estimate of survivorship bias of 5.68% 

(14.73%–9.06%) per year, which was substantially higher than others have 

estimated.  

Malkiel and Saha (2005) calculated the survivorship bias.  They 

distinguished funds in live and defunct.  They calculated the difference in 

means and medians using the t-test.  They found that survivorship bias exists. 

 

2.1.2 Instant history bias or backfill bias 

 

Backfill bias is the consequence of adding a hedge fund whose earlier 

good returns are backfilled between the inception date of the fund and the 

date it enters the database, while bad track records are not backfilled.  The 

most known calculation method of this bias is the evaluation of the difference 

between the return of an adjusted observable portfolio, the returns 

corresponding to the incubation period are dropped, and the return of a non- 

adjusted observable portfolio.  If this difference between these portfolios is 

not significant then the backfill bias is not a serious problem for the 

performance measure. 

Ackermann, McEnally and Ravenscraft (1999) followed this method.  

Their non-adjusted observable portfolio was the elimination of the first two 

years of reported data.  They took raw returns and Sharpe ratio statistics and 

they found that the difference was not statistically significant.   

Capocci and Hubner  (2004) estimated instant history bias in two steps.  

On the one hand, they estimated the average monthly return using the 

portfolio that invests in all funds from their database each month (we called 

this portfolio the observable one).  On the other, they estimated the average 



  

monthly return from investing in all these funds after deleting the first 12, 24, 

36 and 60 months of returns (we called this portfolio the adjusted observable 

one).  For the 1/1984–6/2000 period, the observable monthly return averaged 

1.49%, while the adjusted observable one was 1.42% (when deleting the 12 

first months), 1.26% (24 months), 1.20% (36 months), and 1.15% (36 

months). 

Edwards and Caglayan (2001) in their study, excluded the first 12 

month of their data to proceed following, because they found that the average 

annual return for hedge funds during their first year of their existence is about 

1.17 percentage points higher than their average returns in subsequent years. 

Fung and Hsieh (2000) estimated backfill bias as 1.4% for average 

annual hedge fund returns. 

Ibbotson and Chen (2006) followed the process which we have 

described in the previous paragraph.  In order to calculate the backfill bias, 

they compared the returns between the subsamples with and without the 

backfilled return data.  Furthermore, they analyzed the backfill bias in hedge 

fund return data by comparing returns on the above three portfolios across the 

six subsamples of funds. 

In the database with backfilled return data, the equally weighted 

portfolio with live only funds returned 16.45% per year, compared to 13.62% 

without the backfilled data. Therefore, the survivorship bias is estimated to be 

2.83% (16.45%–13.62%) per year for the live funds. When they included the 

dead fund data, the equally weighted portfolio with backfilled data returned 

13.62% per year, compared to 8.98% for the equally weighted portfolio over 

without the backfilled data. This indicated that backfill bias is 5.01% per year 

over the live plus dead sample. Thus the backfill bias can be substantial, 

especially when using the complete sample of live plus dead funds.  

 They also found that the backfill bias was measured to be much smaller 

using the value-weighted portfolios than the equally weighted portfolios.  The 

average returns was calculated using both the equally weighted portfolio and 

the value-weighted portfolio, constructed with only funds that have reported 

their assets under management. For the equally weighted portfolio with AUM, 

the backfill bias is estimated to be 4.64% (13.62%–8.98%).  For the value-

weighted portfolio, the backfill bias is estimated to be only 0.27% (11.93%–



  

11.66%).  This seems to indicate that bigger funds are much less likely to 

have backfilled data in the database.  

Malkiel and Saha (2005) calculated the backfill bias.  They compared 

the yearly returns of the backfilled and contemporaneously reported returns 

and they applied Chi-squared test of the differences between the two groups.  

Applying tests between the means and between the medians, they found that 

the differences between backfilled and not backfilled returns were highly 

significant. 

Alexander and Dimitriu (2004) computed for each fund the difference 

between the monthly average of the excess return (over S&P 500) in the first 

year and the monthly average of the excess return in the first five years.  The 

mean of the difference was 0.33% equivalent to an annual difference of 

3.97%.  The distribution of differences was positively skewed, suggesting that 

existence of a small number of funds having much higher returns in the first 

year than in the rest of the reporting period.  In order to isolate the instant 

history bias they used dummy variables for the first year of reporting in all 

factor models. 

 

2.1.3 Selection bias 

 

This kind of bias will be created only if hedge funds with good 

performance choose to report their performance.  In this case, the reported 

data may overstate true hedge fund performance.  On the other hand, this bias 

is limited, when very successful hedge funds do not disclose their 

performance, because they have reached their goal in terms of assets under 

management.  It is important to refer that if we want to calculate this bias, 

then we need the data from the funds that they do not disclose their 

performance, something that is impossible.  Edwards, Caglayan (2001) and 

Fung and Hsieh (2000) believe that selection bias is probably negligible and it 

is not affect the performance measures.  Fung and Hsieh (2000) calculate this 

bias of 1.4% and Park, Brown and Goetzmann (1999) of 1.9%. 

 

 

 



  

2.1.4 Multi-period sampling bias 

 

 This kind of bias may exist if some hedge funds have very short return 

histories. 

 Edwards and Caglayan (2001) required that all hedge funds in the 

sample have a minimum of 24 months of returns, after excluding the first 12 

months of returns for all hedge funds for any potential instant history bias.  

After this effort, they estimated a 24-month-minimum history was imposed 

(after the first 12 months of returns were excluded), the average annual hedge 

fund return is 0.32% higher than when no minimum history requirement is 

imposed on the sample of funds.  It was notable that the difference in return is 

nearly the same (0.29%). 

 Alexander and Dimitriu (2004) estimated multi-period sampling bias 

and they found it negative but negligible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

CHAPTER THREE 

 

PORTFOLIO’S THEORY- RISK MEASURES 

 

3.1 Introduction 

 

 This chapter concludes the portfolio’s theory of Markowitz (1952), 

some measures that are used in order to test the operation of our portfolios 

and risk measures, classic and newer approaches, which offered us the 

suitable tools to determine the risk-return trade-off. 

  

3.2 Portfolio’s theory 

 

 The classical portfolio theory of Markowitz (1952) underlies the 

foundations of modern finance and many of today’s practitioner models.  

Assuming investors have quadratic preferences; its application requires 

knowledge of the first two moments of the returns distribution.  For this 

reason, the analysis of the portfolio’s theory is depended on the mean-

variance criterion.  This means that we discuss for the mean return of a 

financial asset and its variance.  As we say until now, the mean return is 

something positive for investor in contrast to the variance. 

 In our study, we have two financial assets A and B.  Ar  and Br  are the 

mean return of financial assets A and B, respectively.  In the same way, we 

denote Aσ  and Bσ  their standard deviations.  We also denote A,Bσ  the 

covariance of the returns of A and B.  So, we can take the correlation from 

the following type: A,B A,B A Bp σ σ σ= .  

 In the following, we have a portfolio P, which comprises these assets.  

We have Aw  the percentage of participation from the first asset and Bw  from 

the second one.  Finally, we can conclude that A Bw w 1+ = . 

 The mean return of the portfolio P is P A A B Br w r w r= + .  The second 

step is to define the variance of the portfolio P, which is given by, 



  

( )2 2 2 2 2
P A A B B A A B B A B A,Bσ var w r w r w σ w σ 2w w σ= + = + + , where A,B A B A,Bσ σ σ ρ= , 

consequently, we take the following expression:    

2 2 2 2 2
P A A B B A B A B A,Bσ w σ w σ 2w w σ σ p= + + , where A,B1 p 1- £ £ . 

 We can distinguish four conclusions that arise in regard to A,Bp 's  

value. 

1) If A,Bp 1= , then there is perfect positive correlation between mean 

returns of A and B.  In this case, there is no impact in the risk of the 

portfolio P.  P A A B Bσ w σ w σ= +  

2) If A,Bp 0= , then there is less risk of portfolio P.  This means that 

investors have profits. 2 2 2 2
P A A B Bσ w σ w σ= +  

3) If A,Bp 1= - , then there is perfect negative correlation between mean 

returns of A and B, which means that if we suitably choose the 

proportion of the weights Aw  and Bw , then we can construct a 

portfolio with zero risk. 2 2 2 2
P A A B Bσ w σ w σ= -  

 

3.3 Comparison of portfolios 

 

 As we saw, the construction of a portfolio was the first step.  The 

second is its performance.  We can evaluate it in comparison with other 

portfolios, which are constructed under the same constraints or by using a 

benchmark.  So we exhibit some techniques that can measure the operation of 

portfolios. 

 

� Cumulative return 

 

The return of T periods is given by ( )t t t 1 t T 1r T r r ... r- - += + + + . 

 

� Mean return 

 

The mean return of T periods is given by 
T

tt 1
r r T

=
= ε . 



  

� Annualized return 

 

The annualized return is gathered by the multiplication of mean return 

with 12 (months) or 252 (trading days).  Specifically, anr r 12= Χ . 

 

� Geometric mean of returns 

 

Firstly, we need the logarithm of geometric mean which is given by 

( )
T

log tt 1
r log 1 r T

=
= +ε .  Finally, the geometric mean of returns is given by 

the following expression: logr

geomr e 1= - . 

  

� Success rate 

 

This rate gives us the percentage for which the returns of a portfolio 

are bigger from the returns of a benchmark for T periods.  It is given by 

T

tt 1

1
SR I

T =
= ε , where 

t b,t

t

0 if r r
I

1 otherwise

µ £οο= ν
οοξ

 is the index of success, b,tr  is the 

return of the benchmark in t. 

 

� Information ratio 

 

The information ratio for T periods is given by the following 

expression:  ( )
T

dif ,t dif ,tt 1
IR r stdev r

=
= ε , where dif ,t t b,tr r r= -  is the difference 

between the returns of portfolio P and the returns of the benchmark. 

 

3.4 Risk measures 

 

Furthermore, we need risk measures to test the capability of a portfolio 

P.  We can use two alternative types of risk, the total risk, which we showed 

below how to calculate it, and the systematic or non-diversifiable risk, which 

is measured by the parameter beta (risk premium).  Afterwards, we will show 

some risk measures. 



  

3.4.1 Classic performance measurements 

 

� Sharpe ratio 

 

Sharpe ratio is an absolute risk-adjusted performance measure, which 

was developed by Sharpe (1996), with the following expression: 

( )( ) ( )p p f pS E R R σ R= - , where ( )pE R  is the expected return of the 

portfolio, fR  is the risk-free rate and ( )pσ R  is the standard deviation of the 

portfolio returns. 

 

� Traynor ratio 

 

Traynor ratio, was developed by Traynor (1965), is the same type of 

performance measure as Sharpe ratio, which is given by 

( )( )p p f pΤ E R R β= - , where ( )pE R  is the expected return of the portfolio, 

fR  is the risk-free rate and pβ  is the beta of the portfolio. 

 

� Jensen’s alpha 

 

Jensen’s alpha, which was developed by Jensen (1968), is a relative 

risk-adjusted performance measure, which is given by 

( )
t t t t tp f p p M f pR R a β R R ε- = + - + , where 

tpR  is the return of the portfolio, 

tfR  is the risk-free rate, pβ  is the beta of the portfolio and 
tMR  is the market 

return. 

 

3.4.2 Newer approaches to performance measurements 

 

� Lower partial moments 

 

Lower partial moments measure risk by negative deviations of the 

returns realized in relation to a minimal acceptable return τ.  The LPM of 



  

order n for asset i is calculated as by the below formula: 

( ) ( ) [ ]
T n

ni itt 1
LPM τ 1 Τ max τ r ,0

=
= -ε .  The choice of order n determines the 

extent to which the deviation from the minimal acceptable return is weighted.  

The LPM of order 0 can be interpreted as shortfall probability, LPM of order 

1 as expected shortfall and LPM of order 2 for d
iτ r=  as semi-variance.  Three 

specific measures related with LPM.  Omega is one of these and has the 

following formula: ( )( )d
i i 1iOmega r τ LPM τ 1= - + .  Sortino ratio has the 

following form: ( ) ( )d 2
i i 2iSortino ratio r τ LPM τ= -  and finally Kappa3: 

( ) ( )d 3
i i 3iKappa3 r τ LPM τ= - .  These measures compute the excess return as 

the difference between the average return and the minimal acceptable return. 

 There are the higher partial moments (HPM), which in contrast to LPM 

that measures only negative deviations of returns from a minimal acceptable 

return τ, measures positive deviations.  So, we have the upside potential ratio 

which combines the HPM order 1 with the LPM of order 2.  

( ) ( )2
i 1i 2iUpside potential ratio HPM τ LPM τ= . 

 

� Measures on the basis of drawdown 

 

 We also have measures on the basis of drawdown.  The drawdown of 

an asset i, is the loss incurred over a certain investment period.  i,t Tr -  denotes 

the return of an asset i, realized over the period from t to T.  i1MD  denotes the 

lowest return of an asset i and i2MD  the second lowest return and so on.  The 

smallest return i1MD  is negative and denotes the maximum possible loss that 

could have been realized in the considered period of time.  Three measures 

use drawdown.  Specifically, use the maximum drawdown, an average above 

the N largest drawdows and a type of variance above the N largest 

drawndowns as risk measures.  These measures are the following: 

( ) ( )d
i i f i1Calmar ratio r r MD= - - , ( ) ( ) ( )

Nd
i i f ijj 1

Sterling ratio r r 1 N MD
=

= - -ε , 

( )
Nd 22

i i f ijj 1
Burke ratio r r MD

=
= - ε . 



  

� Value at Risk  

 

There are measures on the basis of value at risk.  It describes the 

possible loss of an investment which is not exceeded with a given probability 

of 1-a in a certain period.  In case of normality of the returns, the standard 

value-at-risk has the following formula: ( )d
i i a iVaR r z σ= - + , where az  

denotes the a-quantile of the standard normal distribution.  The Value-at-Risk 

has parametric and non-parametric approaches.  Nonparametric VaR does not 

impose any parametric assumption on the distribution of a portfolio’s returns.  

It is based on the left tail of the actual empirical distribution. 

The Cornish-Fisher (1937) expansion is one of the parametric 

approaches to estimating VaR.  The traditional parametric method assumes 

that the returns are normally distributed.  This means that the VaR measure 

depends only on the mean and the standard deviation of returns.  Under this 

assumption, the 95% VaR based on normality is calculated by the following 

formula: ( ) ( )( ) ( )VaR _ Normal a 0.05 µ z a σ µ 1.645 σ= = - + ΄ = - - ΄ , where µ 

and σ are, respectively, the sample mean and standard deviation of returns,    

1 − α is the confidence level and ( )z a  is the critical value from the standard 

normal distribution corresponding to the confidence level.  But, usually, the 

returns do not based on normality.  To deal with non-normality in the return 

distribution, we use the Cornish-Fisher expansion.  Consequently, the 

parametric VaR is approximated by the Cornish-Fisher expansion (VaR_CF) 

in order to incorporate in the equation the skewness and kurtosis of the 

empirical distribution.  The following equation shows the first four terms of 

the Cornish-Fisher expansion for the α percentile of  ( )R µ σ- ,   

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 3 3 21 1 1
Ω a z a z a 1 S z a 3z a K 2z a 5z a S

6 24 36
= + - + - - -  and the 

other equation shows the parametric VaR, ( ) ( )( )VaR _ CF a µ Ω a σ= - + ΄ , 

where µ is the average return, σ is the standard deviation, S is the skewness, 

and K is the excess kurtosis of the monthly returns, 1 − α is the confidence 

level and z(α) is the critical value from the standard normal distribution.  

Note that if the portfolio return is normally distributed, skewness (S) and 



  

excess kurtosis (K) are set equal to zero, which makes ( )Ω a   equal z(α) and 

thus, VaR_ CF(α) equals VaR_ Normal(α). 

 

� Semi-deviation (SEM) 

 

Another risk measure is the semi-deviation (SEM).  In this case we 

consider the deviation from the mean only when it is negative.  It is given by 

the following formula: ( ) ( ){ }2
Semi deviation SEM E Min R µ ,0ι ω- = -λ ϋ , where µ 

is the average return. 

 

� Expected Shortfall (ES) 

 

 Another measure is the Expected Shortfall.  This measure calculates 

the information on how big could be the loss.  Specifically, it is the quantity 

which value at risk can not calculate.  ES can be expressed as follow: 

( ) ( )

( )
( )

( )

( )
( )t tVaR a,t VaR a,t

Rt Rt

ν ν
t t T t T t

R,t t

νf ν dν νf ν dν

ES a, τ E R | R VaR a, τ
aF VaR a, τ

- -

= - ¥ = - ¥
+ +

ι ω= - £ - = =λ ϋ ι ω-λ ϋ

ς ς

where t TR +  denotes the portfolio return during the period between t and t+τα, 

Rtf  denotes the conditional probability density function (PDF) of t TR + , R,tF  

denotes the conditional cumulative distribution function (CDF) of t TR +  

conditional on the information available at time t and 1
R,tF-  denotes the inverse 

function of R,tF  and 1-a is the confidence interval. 

 ES distinguished in parametric and non-parametric approaches.  Non-

parametric expected shortfall used the left tail of the actual empirical 

distribution using individual hedge funds.  For example, we suppose a fund A 

with n observations.  We estimate the 0.05 percentile of the return distribution 

using n return values and set it to the 95% VaR_NP.  In the following, we sort 

all the return values less or equal to the 95% VaR_NP  and take the average 

of them as the 95% ES_NP.  In the case of the parametric method, Expected 

shortfall is based on the Cornish-Fisher Expansion; we estimate the 95% 



  

Cornish-Fisher VaR_CF, we take the returns less than or equal to the 95% 

VaR_CF, we calculate the average of these and we use the average as the 95% 

ES_CF of the fund. 

 

� Tail Risk (TR) 

 

 Another measure is the tail risk (TR), which measures the deviation of 

losses larger than VaR from mean.  TR is defined as follows: 

( ) ( )( ) ( )
2

t t t T t t T t T tTR a, τ E R E R | R VaR a, τ+ + +

ι ω
= - £ -κ ϊ

λ ϋ
.  TR captures in more 

precisely way, the impact of an extremely low return observation because the 

deviations from mean are squared before being averaged.  TR_NP denotes tail 

risk based on non-parametric (VaR_NP) and (TR_CF) denotes tail risk based 

on (VaR_CF).  

 

3.5 Application on the risk measures 

 

 Liang and Park (2007) used alternative measures such as semi-

deviation, VaR, expected shortfall (ES) and tail risk (TR) and compared them 

with standard deviation, in terms of their explanatory power of the cross-

sectional variation in expected returns of hedge funds.  Initially, they sorted 

individual hedge funds by a risk measure at the end of each period and form 

decile portfolios.  Then, they compared the rate of return on the most risky 

portfolio with that from the least risky one during the following period.  They 

used the empirical distribution of this return differential to test the presence 

and significance of the relationship between risk and expected return.  

Afterwards, they tested the risk-return trade-off at the individual fund level, 

using time series data to estimate risk for each fund.  In the following, they 

used the estimate in a cross-sectional regression at each period. 

 They confirmed that skewness and kurtosis should not be ignored 

when we analyze the risk of hedge funds.  Specifically, they provided 

evidence that the cross-sectional variation in expected returns of hedge funds 

can be explained better when we take higher moments into consideration.  

They showed that expected shortfall (ES) is superior to VaR, as a risk 



  

measure of hedge funds.  They, also, concluded that the Cornish-Fisher 

expansion is better than the non-parametric method when we estimate 

downside risk measures. 

Eling and Schuhmacher (2007) compared the Sharpe ratio with some 

performance measures.  Specifically, they compared the Sharpe ratio with 

measures that are based on lower partial moments (LPM) such as Omega, 

Sortino ratio and Kappa3.  Measures, which are depended on the basis of 

drawdown as Calmar ratio, Sterling ratio and Burke ratio.  Measures, which 

depends on Value-at-Risk such as Excess-return-on-VaR ( )d
i f ir r VaR= - ,   

Conditional-Sharpe-ratio ( )d
i f ir r CVaR= -  and finally, Modified-Sharpe -

ratio ( )d
i f ir r MVaR= - .  Traynor ratio and Jensen’s alpha are the last two 

measures, which the researchers used in their comparisons. 

 They concluded that even though hedge fund returns are not normally 

distributed, the first two moments (mean and variance) describe the return 

distribution sufficiently well.  They presented as possible explanation that 

hedge fund returns are elliptically distributed.  The mean-variance analysis 

can be used for elliptical distributions, and not only for multivariate normal 

distributions.  Their study showed that the choice of performance measure 

does not have a crucial influence on the relative evaluation of hedge funds.  

Specifically, the Sharpe ratio can be used both when the hedge fund 

represents the entire risky investment and when it represents only a portion of 

the investor’s risky investment. 

 Gregoriou and Gueyie (2003) proposed a modified Sharpe ratio as an 

alternative measurement for hedge funds returns.  The difference is that the 

denominator is a modified Value-at-Risk instead of normal standard 

deviation.  The standard Value-at-Risk considers mean and standard deviation 

while the modified approach considers not only the first two moments but 

skewness and excess kurtosis.  They tested the modified measurement on 90 

live funds of hedge funds in the Zurich capital market from 1997 to 2001 and 

they concluded that large hedge funds are better in controlling risk-adjusted 

performance compared to small funds.  They suggested that this finding might 

be explained by the liquidity of large hedge funds. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER FOUR 

 

METHODOLOGIES 

 

4.1 Introduction 

 

 The Capital Asset Pricing Model (CAPM) is a single factor model, 

which implies that security prices are governed by their market risks and not 

their firm-specific risks.  Specifically, it  is a statistical regression model with 

the following expression: it i i mt itR a β R ε= + + , where itR  is the return on a 

given portfolio (or fund) i, ia  is the abnormal performance of the portfolio (or 

fund) i, iβ  is the sensitivity of the portfolio (or fund) i and mtR  is the market 

return at time t. 

 Another class of models with high degree of popularity are the 

multifactor models.  There are three types of multi factor models.  First, it is 

the implicit factor model, second, the explicit macro-factor model and finally 

the explicit micro-factor model.  The general type is 
K

it i ik kt it

k 1

R a β F ε
=

= + +ε , 

where itR  is the return on a given portfolio (or fund) i at time t, ia  is the 

abnormal performance of the portfolio (or fund) i, ikβ  the sensitivity of the 

portfolio (or fund) i for k factor and ktF  is the return on factor k at time t. 

 The implicit factors are obtained through Principal Component 

Analysis.  The aim is to explain the return series of observed variables 

through a smaller group of non-observed implicit variables.  Explicit macro-

factor model is an approach, which use macroeconomic variables as factors.  

The sensitivity of the factors is estimated via regressions.  In this type of 

model, we must carefully choose these factors because we can conclude to 

model misspecification.  Stepwise regression is a good technique for the 

discrimination of factors.  In the case of explicit micro-factor models, the 

selected factors depend on the specific features of the funds. 

 Another approach is the application of the conditional models.  Static 

asset pricing models imply that risk and performance are constant over time.  



  

On the other hand investment decisions are based on public information and 

dynamic trading strategies. 

In the following paragraphs, we will see all these models with many 

diversifications in regard to hedge fund indexes, market indexes and fund’s 

characteristics.   

 

4.2 Asset class factor models 

 

Liang (1999) used an asset class factor model to evaluate performance 

and analyze styles for hedge funds.  Its formula is given by the following: 

t k kt t

k

R a β F ε= + +ε .  Specifically, he used the following asset classes: S&P 

500 index, MSCI world equity index, MSCI emerging market index for equity 

markets, Salomon brothers world government bond index, Salomon brothers 

government and corporate bond index for bond markets, Federal Reserve 

Bank trade-weighted dollar index for currency, Gold price for commodities, 

One-month Eurodollar deposit for cash. 

Furthermore, he used 16 different hedge fund categories which they 

obtained by the HFR database and were the following: Composite, convertible 

arbitrage, distressed securities, emerging markets, fixed income, foreign 

exchange, growth, macro, market neutral, market timing, merger arbitrage, 

opportunistic, sector, short-selling, value and funds of funds.  He used 

stepwise regression to select variables according to the standard AIC 

criterion.  He concluded that hedge funds follow dynamic trading strategies 

rather than buy-and-hold strategies.  He also found that hedge funds have low 

systematic risk.  Finally, he concluded that hedge funds have higher Sharpe 

ratios, lower market risks and higher abnormal returns. 

Ackermann, Mc Enally, Ravenscraft (1999) used a single-factor model 

with two common equity indices (S&P 500 and MSCI EAFE total return 

indices), seven MAR hedge fund investment styles (event driven, funds of 

funds, global, global macro, market neutral, short sales, US opportunistic) and 

four sample periods (hedge funds that have at least two, four, six or eight 

consecutive years of performance).  It is significant to refer that they gave 

more emphasis to Sharpe ratios with known disadvantages.  They found that 



  

annualized Jensen alphas were significantly positive for hedge funds and 

ranged from 6% to 8% per year for different time periods, except for the 

period 1994-95.  They did not estimate annualized alphas for alternative 

investment styles of hedge funds. 

Furthermore, they calculated the differences between hedge funds and 

some market indices (S&P 500, MSCI EAFE, MSCI World, Wilshire 5000, 

Rushell 2000, Balanced- 60% S&P500 and 40% Lehman Aggregate Bond, 

Lehman Aggregate Bond, Lehman Government/Corporation Bond).  They 

calculated the mean and median Sharpe ratio for the hedge funds in each of 

four sample periods and for each time period.  They applied a test of 

difference between the index Sharpe ratio and the mean or median hedge fund 

sample value.  Finally, they concluded that hedge fund did not beat the market 

but appeared to earn enough of superior return to cover their costs. 

Capocci and Hubner (2004) applied four different asset pricing models 

to determine whether or not hedge funds as a whole and depending on the 

strategy followed have outperformed the market.  For all models, they have 

applied Newey-West (1987) test for standard errors to adjust for any 

autocorrelation in the returns.  They used event driven, global, global macro, 

market neutral, short-sellers, US opportunistic, long-only leveraged, market 

timing, equity non-hedge, foreign exchange, sectors and FOFs. 

 They started their application with the CAPM model, 

( )Pt Ft P P Mt Ft PtR R a β R R ε- = + - + , where, PtR  is the return of the fund P on 

month t, FtR  is the risk-free return on month t, MtR  is the return on the 

market portfolio on month t, Ptε  is the error term, Pa  and Pβ  are the intercept 

and the slope coefficient of the regression, respectively. 

 They concluded that this model gave betas that were rather low, which 

means that they needed a more detailed model.  More than 80% of the 

individual funds did not significantly outperform the market. 

 In the following, they applied the three-factor model of Fama and 

French (1993) and its international version of Fama and French (1998).  They 

took account the size and the book-to-market ratio of the firms. 

( )Pt Ft P P1 Mt Ft P2 t P3 t P4 t PtR R a β R R β SMB β HML β IHML ε- = + - + + + + , where, 



  

tSMB : The factor mimicking portfolio for size (small minus big), tHML  is 

the factor mimicking portfolio for book-to-market equity (high minus low), 

tIHML  is the international factor mimicking for book-to-market equity. 

 They also applied the four-factor model of Carhart (1997).  This model 

takes into account size, book-to-market ratio and a factor for the momentum 

effect which is defined as buying stocks that were past winners and selling 

past losers.  In above, we present the four-factor model of Carhart (1997). 

( )Pt Ft P P1 Mt Ft P2 t P3 t P4 t PtR R a β R R β SMB β HML β PR1YR ε- = + - + + + + , 

where, tPR1YR  is the factor-mimicking portfolio for the momentum effect. 

Finally, they applied an extended multi-factor model: 

( )

( ) ( ) ( )

( ) ( ) ( )

Pt Ft P P1 Mt Ft P2 t P3 t P4 t P5 t

P6 t Ft P7 t Ft P8 t Ft

P9 t Ft P10 t Ft P11 t Ft

R R a β R R β SMB β HML β IHML β PR1YR

                  β MSWXUS R β LAUSBI R β SWGBI R

                  β JPMEMBI R β LEHBAA R β GSCI R

               

- = + - + + + + +

+ - + - + + -

+ - + - + + -

Pt   ε+

where,  LEHBAA  is the default factor (Lehman BAA Corporate Bond Index) 

as introduced by Agarwal and Naik (2002), MtR  is the return on the Russell 

3000 index, MSWXUS  is the return of the MSCI World Index excluding US, 

LAUSBI  is the return on the Lehman Aggregate US Bond Index, GSCI  is the 

return of the Goldman Sachs Commodity Index, SWGBI  is the return on the 

Salomon World Government Bond Index, JPMEMBI  is the return of the JP 

Morgan Emerging Market Bond Index and LEHBAA  is the return of the 

Lehman BAA Corporate Bond Index. 

 Edwards and Caglayan (2001) applied a six-factor Jensen alpha for 

individual hedge funds employing eight different investment styles.  So, the 

applicative multi-factor model is the following: 

( ) ( ) ( ) ( ) ( )

( )

i f f

i

R R a β S& P500 R s SMB h HML w WML g TERM

                k DEF ε

- = + - + + + +

+ +
, 

where, iR  is the monthly return of hedge fund i, fR  is the 30-day Treasury 

bill rate, HML is the monthly return on a portfolio of high book-to-market 

stocks minus the monthly return on a portfolio of low book-to-market stocks, 

SMB is the monthly return on a portfolio of small stocks minus the monthly 

return on a portfolio of large stocks, WML is the monthly return on a stock 



  

portfolio of the past year’s winners minus the monthly return on stock 

portfolio of the past year’s losers, TERM is the monthly return on a stock 

portfolio of the past year’s winners minus the 1-month-lagged 30-day T-bill 

return, DEF is the monthly return on long-term corporate bonds minus the 

monthly return on a portfolio of long-term government bonds. 

They concluded that on average hedge funds earned significantly 

positive excess returns and that these returns differed markedly by investment 

style. 

Do, Faff and Wickramanayake (2005) started with the application of 

the Fama and French three-factor model.  They developed a multifactor model 

as an extension of the Fama and French model.  Their model is the  below: 

it i i1 mt i2 t i3 t i4 t i5 t i6 t

i7 t i8 t it

XR a β XR β SMB β HML β XCBI β XEMI β XGBI

          β XCI β XWI ε

= + + + + + +

+ + +
, 

where, XCBI is the return on on Lehman corporate bond index, XEMI is the 

excess return on Lehman emerging market index, XGBI is the excess return 

on JP Morgan global government bond index, XCI is the excess return on 

GSCI Commodity index, and XWI is the excess return on MSCI world index 

excluding Australia. 

When they used the traditional Fama and French model, they 

concluded that the average adjusted R-squared was rather low, 0.309.  They 

also found that 80% of the funds have positive market alpha with almost 40% 

of these being significant at the 5% level.  SMB and HML seem to have 

significant influence on the model.  When they used the extended model 

found that the average adjusted R-squared is 0.43.  Only 16% of the funds 

have significant SMB and HML at 5% level.  The rest of the macroeconomic 

factors had a significant contribution in the model for 10-15% of cases.  So, 

there are no dominant factors for Australian hedge fund managers. 

 They also tested the Australian hedge fund managers if they had 

significant market timing ability.  They used the model which was applied by 

Fung et.al (2002) and had the following expression:  

( )it i i1 mt i2 mt t itXR a β XR β XR D ε= + + + , where, D is a dummy variable which 

takes the value of -1 for a bear month and zero otherwise.  A bear (bull) 

month is deemed to be a month when the market index has a return lower 



  

(higher) than -1% (+1%).  For the market timing ability model, they 

concluded that the two timing betas were not significant, consequently 

Australian hedge fund managers tend to have superior relative performance by 

means of security selection but not from market timing. 

Ding and Shawky (2007) modeled returns for hedge funds by asset 

class.  Firstly, they applied a model with hedge fund returns and higher 

moments.  Specifically, they regressed the mean monthly returns iX , onto the 

cross-sectional mean, standard deviation, skewness and kurtosis: 

i 0 i 1 i 2 iX a β σ β S β k= + + + .  They found that for the live funds, in every 

category both the standard deviation and the skewness coefficients are 

positive and highly significant at the 1% level.  For the dead funds, all but the 

Fixed Income category also showed significant skewness.  The coefficients 

for kurtosis for both live and dead funds did not exhibit significant results.  In 

conclusion, investment strategies that produce positive skewness contribute 

significantly to hedge fund returns. 

Secondly, they used a two-factor (two-index) model with the following 

form: ( ) ( )T Bill S&P500 T Bill VBMFX T Bill
t t 1 t t 2 t t tR R a β R R β R R ε- - -- = + - + - + , where 

tR  is the value-weighted return of hedge funds invested in an asset class in 

month t. 

They used S&P 500 index to proxy for the stock market, the Vanguard 

Total Bond Market Index Fund to proxy for the overall bond market 

performance and 13-week T-Bill rate to proxy for risk free rate.  They 

concluded that equity funds as global funds loaded significantly on the 

S&P500 index, the fixed income and Futures categories loaded significantly 

on the Vanguard Bond Index Fund and the only hedge fund category that 

loads significantly on both equity and fixed income indices is FOF. 

Third, they used Sharpe ratio, Information ratio and Jensen’s alpha for 

each hedge fund category and of each of the three market indexes, which we 

will refer below.  They found that the result shown for live funds, all hedge 

fund categories seem to achieve above average performance when compared 

to the three market indices. 



  

In the second part of the study, they focused on estimating the 

performance of equity hedge funds using four alternative models.  They began 

with the single index model.  Specifically, they used the Wilshire 5000 index 

to proxy for the market portfolio with the following formulation: 

( )T Bill Will5000 T Bill
t t 1 t t tR R a β R R ε- -- = + - + .  They found that the estimated 

alpha for all three categories was positive and statistically significant at the 

1% level for both live and dead funds.  The beta coefficient was also highly 

significant for all three categories. 

In the following, they applied a model with this specific formulation, 

( ) ( ) ( )

( )

T Bill S&P500 T Bill S&P500 T Bill S&P500 T Bill
t t 1 t t 2 t 1 t 1 3 t 2 t 2

S&P500 S&P500
4 t t t

R R a β R R β R R β R R

                    β VOL VOL ε

- - - -
- - - -- = + - + - + -

+ - +

where they incorporated the contemporaneous S&P 500 index returns and the 

one-month and two-month lagged index returns.  They followed this method 

because they wanted to know if all publicly available information reflects to a 

contemporaneous market index.  If it happens, then it is possible to have 

persistence.  Finally, they concluded that live hedge funds still generate 

significantly positive alphas. 

They also applied the Fama and French factor (SMB and HML) against 

the Wilshire 5000 index.  They concluded that live hedge funds still generate 

significantly positive alphas. 

Finally, they applied Harvey-Siddique model adjusting for skewness.  

This model assumes that the stochastic discount factor is quadratic in the 

market return, which implies an asset pricing model where the expected 

excess return is determined by its conditional covariance with the market 

return and the square of market return which represents conditional 

coskewness.  This model is similar to Traynor-Mazuy model to test for market 

timing ability, which has market timing ability if the coefficient on the square 

term is significant positive.  The specified model which they applied was the 

following: 2
i,t i i M,t i M,t i,tR a β R c R ε= + + + , where iβ  is the systematic risk of 

asset i, ic  represents the coskewness of asset i relative to the market.  From 

the application of this model gathered that all of the intercept terms were 

statistically significant at the 1% level for both live and dead funds.  The 



  

skewness term was statistically significant for the equity hedge strategies but 

not for FOF category. 

Brown, Goetzmann, Ibbotson (1999) applied a single factor model 

using as a benchmark the S&P 500 index.  Specifically, they calculated the 

arithmetic and geometric mean returns for equally-weighted and value-

weighted portfolios of offshore hedge funds.  The data are collected from 

1989 to 1995.  It is significant to refer that posterior studies proved that there 

were many problems with biases before 1993.    

In the following they maintained that the S&P 500 was not the 

appropriate benchmark for fund performance because of the nature of hedge 

fund market neutral positions.  So, they used as value-weighted return 

benchmarks the 10 different strategies of hedge funds.  They found positive 

excess returns for all categories of hedge funds except for short-sellers. 

 Naik, Ramadorai and Sromqvist (2007) investigated whether capacity 

constraints at the level of hedge fund strategies have been responsible for the 

declining of the level of alpha (significant absolute returns) over the period 

1995-2004.  Before starting with these models, they calculated the Assets 

Under Management (AUM) and the returns.  Firstly, they calculated the dollar 

flows itF  for fund i during month t as follows: ( )it it it 1 itF A A 1 r-= - + .  

Here itA , it 1A -  and itr  are the AUM for fund i at the end of month t and t-1, 

and the returns accrued from month t-1 to t respectively.  In the following, 

they computed strategy level flows by aggregating individual fund flows up to 

the level of strategies and scale the dollar flows by strategy aggregated end of 

previous month AUM: ( ) ( )s sN N

st it it 1i 1 i 1
f F A -= =

= ε ε .  The first step was 

completed.  In the following, they computed value weighted excess return 

indices for each strategy.  Value-weighted excess returns were constructed as 

( )sNVW
st it it fti 1
r ω r r

=
= -ε , where ( )sN

it it 1 it 1i 1
ω A A- -=

= ε  are AUM weights 

reconstructed each month, itr  is the net of fee return on fund i, a member of 

strategy s in month t and ftr  is the return on the three-month US Treasury bill 

in month t. 



  

To calculate the systematic component of strategy index returns, they 

regressed them on factors that have been shown to have explanatory power for 

hedge fund returns.  These factors are drawn from the work of Fung and 

Hsieh (2004).  They applied the following regression: st s t s str a X= + b + e , 

where, str  is the value-weighted return index for strategy s at time t, sb  is the 

estimated factor loading for strategy s and tX  is the independent variables 

which are referred below.  The dependent variable in each regression is the 

AUM weighted (net-of-fee) excess return of hedge funds within a strategy.  

The independent variables are:  

o The excess return on the S&P 500 index (SNPMRF). 

o A small minus big factor (SCMLC) constructed as the difference of the 

Wilshire small and large capitalisation stock indices. 

o Three portfolios of lookback straddle options on currencies (PTFSFX), 

commodities (PTFSCOM) and bonds (PTFSBD), which are constructed 

to replicate the maximum possible return to a trend-following strategy 

on the underlying asset, all in excess returns.  

o The yield spread of the US ten-year treasury bond over the three-month 

T-bill, adjusted for the duration of the ten-year bond (BD10RET). 

o The change in the credit spread of the Moody’s BAA bond over the 

ten-year treasury bond, also appropriately adjusted for duration 

(BAAMTSY). 

t t 1 t 2 t 3 t 4 t

5 t 6 t 7 t t

X  a β SNPMRF  β  SCMLC  β BD10RET   β BAAMTSY  

        β PTFSBD   β PTFSFX  β  PTFSCOM +ε  

= + Χ + Χ + Χ + Χ

+ Χ + Χ + Χ
  

They estimated this regression separately for three sub-periods, thus 

allowing for breakpoints in the relationship between strategy returns and the 

seven factors.  The breakpoints corresponded to the collapse of Long- Term 

Capital Management in September 1998 and the peak of the technology 

bubble in March 2000.  Finally, the validity of these pre-specified breakpoints 

was checked using the Chow (1960) test for structural breaks, where the null 

hypothesis says that there are three distinct periods in the data over which the 

systematic risk exposures change greatly.  They concluded that alpha have 

decreased at the level of hedge fund strategies in the most recent period from 

2000 to 2004. 



  

Afterwards, they applied a single regression for each strategy.  Their 

goal was to explain time-variation in alpha.  This time-variation was captured 

by running a rolling factor regression each month using a 12-month 

estimation window.  So, they applied the following regression: 

sw sw w sw swr a X β ε= + + , where the w subscript represents the window over 

which the rolling regression is run, swr  is the vector of the 12 return 

observations for strategy s for window w and wX  the matrix of factors over 

the same window.  The regressions result in a series of estimated factor 

loadings swβ  corresponding to each value w. 

After running the regression, with each set of estimated factor 

loadings, they constructed an out-of-sample quantitative measure of hedge 

fund ability, stalpha _ u .  After the calculation of this quantity, they regressed 

stalpha _ u  on lagged strategy specific capital flows and three conditioning 

variables.  They controlled for size and using the total AUM contained within 

the strategy (logarithmic), additionally conditioning on the squared size to 

control for potential non-linearity in the relationship.  Finally, they controlled 

for the number of funds within a strategy in the prior year, as a proxy for 

competition between funds in the strategy.  They estimated separate 

regressions for each one of these periods.  They also used flows from month t-

13 to t-24 to explain stalpha _ u  for period t.  The regression is the following: 

( ) 2
st s st 13 st 24 st 12 st 12 st 12 stalpha _ u k φ f ... f uAUM λAUM xNumber ξ- - - - -= + + + + + + +

They interpreted a negative value of φ as evidence of capacity constraints in 

the strategy. 

 Firstly, they applied the Fung and Hsieh seven factor model alpha 

conditional on flows.  The coefficient on lagged flows was negative and 

statistically significant.  This was true for four out of the eight strategies.  

They concluded that there was presence of capacity constraints in these 

strategies.  Secondly, they applied the four-factor model alpha conditional on 

flows (SNPMRF, SCMLC, BD10RET, BAAMTSY).  Taken together, their 

results suggest that capacity constraints existed at the level of hedge fund 

strategies, and were likely to be a concern for investors going forward. 



  

 Alexander and Dimitriu (2004) applied four factor models.  The 

general factor model representation was: 
K

it i ik kt itk 1
r a β F e

=
= + +ε , where, itr  

is the net of fees excess return on fund i during month t, ia  is the risk 

adjusted performance of fund i over the estimation sample, ktF  is the excess  

return on the thk  risk factor over the month t and ikβ  is the loading of the 

fund i on the thk  risk factor.  In order to select the significant factors for each 

fund a backward selection approach was applied. 

 Firstly, they applied a two-index model that considers the two main 

asset classes, US equities and bonds.  This was the simplest possible 

representation of risk factors and was the base case model for their analysis.  

The indices used to proxy the equity and bond markets were the Wilshire 

5000, the Lehman Government/Credit intermediate and the lagged equity 

index excess returns in the factor model to account for potentially stale 

prices, the lagged Wilshire 5000.  The two-index model explained only 27% 

of the total variance of fund excess returns. 

 Secondly, they applied a broad fundamental model including as 

factors: international equity and bond indices representing US and worldwide 

markets, investment style factors, commodities and foreign exchange risk 

factors and other factors representing specific types of non-linear strategies 

such as market timing, volatility trading and equilibrium trading.  They tried 

to capture the performance of the main traditional asset classes and other 

factors to model specific types of strategies, such as market timing, volatility 

trading and equilibrium bases trading models.  Specifically, the factors were 

the following: equity indices (Wilshire 5000, S&P 500 growth and value, SP 

mid-cap and small-cap to capture differences in equity investment styles, 

MSCI world index excluding US to account for the investment opportunities 

as a separate asset class), bond indices (Lehman Government Credit Bond, 

Lehman High Yield and Lehman Mortgage Backed Securities), the FED trade 

weighted foreign exchange rate index as a proxy for foreign exchange risk, 

the GS Commodity index to capture commodity related investment risk 

factors.  They also included in the regressions the squared excess returns of 

the main indices.  They included two factors capturing specific trading 



  

strategies: the change in the equity implied volatility index to account for 

volatility trades and the prices’ dispersion as a leading indicator of price 

equilibrium trading strategies. 

 Thirdly, they applied a multi-factor model, using the HFR hedge fund 

indices as factors.  Their model explained an overall average of 46% of the 

variance in fund excess returns.  At an individual fund level, 17% of funds 

have negative and significant alpha, while only 11% of funds have positive 

and significant alpha. 

 Fourthly, a statistical factor model using as factors portfolios 

replicating the first four principal components of the system of all funds’ 

returns.  As we referred the intuition behind statistical factor analysis is that 

if a group of funds use similar strategies in the same markets, their returns 

should be correlated. 

Schneeweis, Kazemi and Karavas (2004) studied the impact of leverage 

on return measurement (hedge fund risk and return).  They began to study this 

impact because they have observed that while leverage should theoretically 

not affect the level of risk-adjusted return within a strategy, it is possible that 

funds attempting higher levels of leverage might trade differently than lower 

leverage funds.  So, it is possible to have an impact to risk-adjusted 

performance from leverage. 

In this paper, the effect of leverage on hedge fund risk and return was 

analyzed.  In brief, results were presented on the level of leverage used in 

various hedge fund strategies.  Results were also provided to show the degree 

to which leverage, above or below the median fund leverage, determined 

superior or inferior risk-adjusted performance within a particular hedge fund 

strategy. 

 They used six hedge fund categories: convertible arbitrage, equity 

hedge, event-driven, distressed securities, merger arbitrage and equity market 

neutral.  They used TASS database which provides two fields for leverage: 

“average leverage” and “maximum leverage”.  The latter was used only when 

there was no information about the average leverage. 

Leverage could be best understood as the creation of exposure greater 

in magnitude than the initial dollar amounts posted to an investment.  It may 



  

was achieved through borrowing, deployment of proceeds from short sales or 

through the use of derivatives. 

Leverage may be presented in various forms: 

� Gross Leverage=(Longs +Shorts)/Net Asset Value 

� Net Leverage=(Longs-Shorts)/Net Asset Value 

� Gross Longs=(Longs)/Net Asset Value 

In the following the funds were separated into two sets: those funds 

that have both leverage information and 39 months of performance 

information from January 2000 to March 2003 and those that did not have 

both. 

 They created two equal-weighted indexes for each sample.  In the 

following they used two statistical tests for comparing the two sample 

indexes.  Firstly, the Welch t-test, the equivalence of means across two 

samples.  Secondly, the K-S test, the equivalence of the entire returns 

distribution.  The null hypothesis indicates the existence of equivalence. 

 Finally, they concluded that although different hedge fund strategies 

might use different amount of leverage, within a particular hedge fund 

strategy, there was little evidence of a significant difference between risk-

adjusted performance of above-median and below-median leveraged funds. 

Malkiel and Saha (2005) calculated some descriptive statistics for 

hedge fund strategies and for some market indices.  They found that hedge 

funds characterized by undesirably high kurtosis and that many hedge fund 

categories have considerable negative skewness.  They used a Jarque-Bera 

(JB) test for the normality of hedge fund returns and they found that the 

hypothesis of normality was rejected for all the hedge fund categories except 

managed futures and global macro. 

 They applied a probit regression analysis where the dependent variable 

was binary.  It took a value of 1 if a fund was defunct and a value of 0 if it  

was still alive.  Their regression had the following formula: 

Probability of fund demise a Q1 Q2 Q3 Q4 st. dev. for final 12 months

                                             peer comparison  estimated assets  e

= + + + + +

+ + +
, 

where Ql is the return for the first quarter before the end of fund performance, 

Q2 is the return for the second quarter before the end of fund performance, 

Q3 is the return for the third quarter before the end of fund performance, Q4 



  

is the return for the fourth quarter before the end of fund performance, 

standard deviation for final 12 months is the standard deviation for the year 

prior to the end of fund performance, peer comparison is the number of times 

in the final three months the fund's monthly return fell below the monthly 

median of all funds in the same primary category and the estimated assets are 

assets of the fund (in billions of dollars) estimated at the end of performance 

(if estimated assets were missing for the final month, the first available 

amount of estimated assets in the final four months was used). 

 They, finally, concluded that the coefficient of returns relative to peers 

was statistically significant.  The coefficient of “standard deviation for final 

12 months” was highly significant which means that higher volatility of return 

apparently increases the probability of a fund’s demise.  The coefficient of 

size was negative and highly significant, so they concluded to the result that a 

larger fund had a lower probability of exiting. 

 Ibbotson and Chen (2006) created hedge funds returns free from biases 

(chapter two).  Furthermore, they used the equally-weighted index using the 

live and dead funds without backfilled data.  They also constructed indexes 

for each of 10 hedge fund subcategories (convertible arbitrage, emerging 

market, equity market neutral, event driven, fixed income arbitrage, global 

macro, long/short equity, managed futures, dedicated short and funds of 

hedge funds).  They maintained the constraint that all style weights sum to 

one. They allowed individual style weights to be negative or above one to 

account for shorting and leverage. They also included lagged betas as well as 

contemporaneous betas to control for the stale pricing impact on hedge fund 

returns. 
 

The benchmarks used in the return-based analysis are the S&P 500 

total returns (including both concurrent and with one-month lag), U.S. 

Intermediate-term Government Bond returns (including one-month lag), and 

cash (U.S. Treasury Bills).  

 Finally, they found that the alpha of the equally weighted sample was 

3.04%.  All ten subcategories of types of funds had positive alphas, and the 

index and five of the subcategories were statistically significant.  In general, 

when combined with stock, bond, and cash portfolios, hedge funds add 

positive alpha and excellent diversification. 



  

French and Ko (2006) investigated the determinants of hedge fund 

portfolio performance when hedge funds exhibit security selection skill and 

market-timing skill.  They employed the Treynor and Mazuy (1966) quadratic 

model to account for nonlinearities.  So, they applied the following model: 

2
p p p m mr a β r γr ε= + + + , where pr  is the portfolio return, pa  is the intercept of 

the regression, pβ  is the regression coefficient, mr  is the market return and γ  

is a market-timing ability coefficient (positive if manager has market timing 

skill).  They used F-statitistic on the regression to find the fitted model and t-

statistic on the quadratic term to test if this coefficient was statistically 

significant.  To account for illiquidity they incorporated the Scholes and 

Williams (1977) nonsynchronous data model 

2 2 2 2
p p p m p m 1 p m 2 p m 3 m m 1 m 2 m 3r a β r β r β r β r γr γr γr γr ε- - - - - -= + + + + + + + + + .  

Specifically, they included both contemporaneous and three lagged months as 

independent variables.  They concluded that before and after adjusting for 

illiquidity, they found strong evidence of security selection skill and limited 

evidence of market-timing skill. 

 

4.3 Fund factors 

 

When we are referred to return factors, we mean market or macro-

factors, which are the market indices, and fund of micro-factors.  Hedge funds 

are affected by these factors.  Fund factors are the specific characteristics of 

individual funds. 

 

4.3.1 Size of the fund 

 

As we refer above, many authors studied the relationship between size 

of the fund and performance.  Firstly, the size of a fund is the total amount at 

the start of the calculation period.  Many studies have shown that the 

relationship between size of the fund and performance helps investors to 

optimize future profits and for hedge fund manager to decide when it is 

appropriate to close the fund to new investments. 



  

Gregoriou and Rouah (2002) tested the relation between fund’s size 

and fund’s return using Pearson’s correlation coefficient and Spearman’s rank 

correlation, the Sharpe ratio and the Traynor ratio, they found that funds’ size 

was not affect hedge funds’ performance.   

Koh, Koh and Teo (2003) study this relationship for Asian hedge 

funds. Their results corroborate the previous results, with a non-significant 

relationship. 

De Souza and Gokcan (2003) exhibited through a regression on the 

TASS database that assets under management have a positive relationship 

with performance. According to them, this could imply that poor performing 

funds have difficulty attracting new contributions, or that large size allows 

lower average costs to be obtained. 

Amenc, Curtis and Martellini (2003) computed, for each fund, the 

average assets over the time interval which they used.  In the following, they 

divided the funds into two equal-size groups: those in the larger half in asset 

size and those in the smaller half.  For each group, they computed the average 

alpha obtained with each of the following methods: the standard CAPM, an 

adjusted CAPM for the presence of stale prices and an implicit factor model 

extracted from a Principal Component Analysis.  When they obtained alphas, 

they performed a two-sample t-test to determine the significance of the 

differences.  They concluded that the mean alpha for large funds exceeds the 

mean alpha for small funds.  This fact, combined with the observation that 

most of the results were statistically significant, suggests that large funds did 

indeed outperform small funds on average. 

Agarwal, Daniel and Naik (2003) and Goetzmann, Ingersoll and Ross 

(2003) found positive and concave relationship between returns and assets.  In 

this occasion, they did not analyze the relationship for different hedge fund 

categories such as Getmansky (2004) did.  Categories that hold illiquid assets, 

have limited market opportunities and high market impact of trades, are more 

likely to exhibit the concave relationship.  

 

 

 

 



  

4.3.2 Age of the fund 

 

Fund age is defined as the length of time in operation prior to the 

beginning of any study. 

Howell (2001) investigated the relationship between the age of hedge 

funds and their performance from 1994 to 2000.  The first step was to adjust 

the returns by applying the probabilities of failure to report to the surviving 

funds.  This gives ex-post returns, which correspond to the true costs and 

benefits of investing in funds with different maturities.  The second step was 

to adjust the returns by applying the probability of future survival to the 

survivors' returns by age deciles.  This gives ex-ante returns, which are the 

expected returns from investing in hedge funds with different maturities.  Ex-

ante returns infer that young funds' returns are superior to those of seasoned 

funds: the youngest deciles exhibits a return of 21.5%, while the whole 

sample median exhibits a return of 13.9% (a spread of 760 basis points in 

favour of young funds).  Moreover, the spread between the deciles of 

youngest funds and the deciles of oldest funds is 970 points, and the spread 

between the second youngest fund deciles and the whole sample median is 

290 points.  The conclusion of this study was that hedge fund performance 

deteriorates over time, even when the risk of failure was taken into account.  

Consequently, the youngest funds seem particularly attractive. 

Amenc, Curtis and Martellini (2003) divided the funds into two groups 

of approximately equal size: newer funds (age of one or two years) and older 

funds.  For each group, they computed the average alpha obtained with each 

of the methods discussed earlier and performed a two-sample t-test to 

determine the significance of the differences.  They concluded that for all 

methods, the mean alpha for newer funds exceeds the mean alpha for older 

funds.  It is important to refer that the differences vary in significance across 

the methods.  The most significant results are obtained with the CAPM and 

Explicit Factor models. 

Koh, Koh and Teo (2003) found that fund age is not an explanatory 

factor for Asian hedge fund returns in a cross-sectional Fama and MacBeth 

(1973) framework.   



  

De Souza and Gokcan (2003), applied multifactor models and they 

concluded that older funds outperform younger funds on average. 

 

4.3.3 Manager tenure 

 

Boyson (2003) analysed the relationship between hedge fund manager 

tenure and fund returns.  As far as the manager tenure was concerned, 

regressions showed that each additional year of experience was associated 

with a statistically significant decrease in the annual returns of approximately 

-0.8%.  To explain the relationship between experience and performance in 

the light of risk-taking behaviour, he successively examined the relationship 

between manager tenure and risk taking behaviour and the relationship 

between risk-taking behaviour and returns.  Focusing on the relationship 

between manager tenure and risk-taking behaviour, three risk measures are 

used: the standard deviation of a portfolio’s return, a tracking error and a 

beta.  It appeared that an increase in manager tenure, fund size or tenure/size 

interaction engenders less risky behaviour.  Concerning the relationship 

between the risk-taking behaviour and the returns, each of the three risk 

measures was positively related to the annual returns.  In other words, when 

manager tenure increases, risk-taking decreases, and when risktaking 

decreases, returns decrease.  These results highlighted the impact on hedge 

fund returns of increasing career concerns over time, with risk-taking 

behaviour characterised by increasing risk aversion.  Career concerns in the 

hedge fund industry are unique in that they change over time. This is due to 

the sources of the manager’s compensation, i.e. the assets under management 

and the returns.  Young managers generally have a lower level of assets under 

management than older managers.  Consequently, they take more risk to 

obtain good returns, while the large size of the fund provides older managers 

with their compensation. As a result, the risk level diminishes as the hedge 

fund manager's age rises.  Moreover, statistics show that failed hedge fund 

managers rarely start a new hedge fund, and if they move into the mutual fund 

industry, for example, this is associated with a pay cut.  The amount of the 

pay cut is more significant for older hedge fund managers, and it is thus an 

incentive for them to mitigate their risk-taking behaviour.  A final explanation 



  

for the lower level of risk taken by an older hedge fund manager is the large 

amount of personal assets invested in the fund. 

 

4.3.4 Performance fees 

 

In this occasion, we investigate the impact of incentive fees paid to the 

fund manager on fund performance. 

Kazemi, Martin and Schneeweis (2002) studied the impact of 

performance fees for value, growth and small styles.  From their data, fees 

had a poor effect on performance. 

Koh, Koh and Teo (2003) found that funds with higher performance 

fees have smaller post fee returns than funds with lower performance fees. 

De Souza and Gokcan (2003) found that incentive fees and 

performance were positively correlated.  Higher incentive fees generating 

higher performance can be explained by the fact that incentive fees are 

increased when a manager improves his performance or by the fact that the 

best managers in terms of performance demand higher incentive fees. 

Amenc, Curtis and Martellini (2003) for each fund, they obtained the 

incentive fees, expressed as a percentage of profit.  They then divided the 

funds into two groups: those with incentive fees >=20% (most were exactly 

20%) and those with incentive fees < 20%.  For each group, they computed 

the average alpha obtained with each of the methods, which we have refered 

above.  In the following they performed a two-sample t-test to determine the 

significance of the differences.  They concluded that the mean alpha for high 

incentive funds exceeds the mean alpha for low incentive funds.  They had 

also investigated the impact of a fund’s administrative fees on performance by 

dividing the funds into two groups: those with administrative fees >= 2% and 

those with fees< 2%.   They concluded that there was no significant 

difference between funds with higher or lower administrative fees. 

 

4.3.5 Combination of fund factors 

 

Liang (1999) used a cross-sectional regression of average monthly 

returns on fund characteristics.  Specifically, he used the following model: 



  

( ) ( ) ( )( ) ( ) ( )i 0i 1i 2i 3i 4i 5iR a a IFEE a MFEE a LN ASSETS a LOCKUP a AGE= + + + + +

where IFEE is the incentive fee in percentage, MFEE is the management fee 

in percentage, LN(ASSETS) is the natural logarithm of fund assets, LOCKUP 

is the lockup period in number of days, AGE is total number of months since 

inception, iR  is the monthly return for fund i. 

He concluded that high incentive fee was indeed able to align the 

manager’s incentive with fund performance.  He also found that successful 

funds attract more money and the longer the lockup period the better the fund 

performance and finally management fee did not affect the fund performance.  

In conclusion, they found that if fund’s age is big then it is possible to reduce 

the average monthly return. 

Koh, Koh and Teo (2003) found that Asian hedge funds returns had a 

positive and significant relationship with the redemption period and the size 

of the holding company.  

Kazemi, Martin and Schneeweis (2002) found that the redemption 

period seems to affect the returns, since for a similar strategy; funds with a 

quarterly lockup had higher returns than funds with a monthly lockup. 

De Souza and Gokcan (2003) exhibited that the investment by a 

manager of his own capital had a positive impact on performance, like the 

lockup and redemption periods.  

Ackerman, Mc Enally and Ravenscraft (1999) attempted to isolate 

hedge fund characteristics that might explain the performance and volatility 

of hedge funds.  They regressed risk-adjusted performance and volatility on 

four characteristics and six dummy variables for hedge fund categories.  

Firstly, they adjusted for total risk by using the Sharpe ratio.  In the second 

regression they applied the natural log of the standard deviation of the hedge 

fund total monthly over the 2-,4-,6- and 8-year time periods.  The first hedge 

fund characteristic was incentive fee, which was statistically significant in all 

four time periods for the Sharpe ratio regressions.  In the volatility regression 

it was not statistically significant.  The second hedge fund characteristic was 

management fee.  In the first type of regressions they found that the 

coefficient was negative and statistically significant only in one of the four 

regressions and in the second type of regressions, they found that it was 



  

statistically positive.  The other hedge fund characteristics were not 

statistically significant, so these did not play important role in performance 

evaluation.  Others fund characteristics:  age, U.S vs offshore where have a 

value of one for U.S domiciled funds and zero for offshore funds and fund 

categories, like event driven, funds of funds, global, neutral market, short 

sales and U.S opportunistic which they have value of one if a funds is in the 

specified category and zero otherwise. 

Edwards and Caglayan (2001) applied a six factor model, which 

involved fund factors like age and size of the fund.  They examined whether 

hedge funds that employ attractive incentive fees to compensate fund 

managers perform better than funds that pay less attractive incentive fees.  So, 

they applied the following model: 

( ) ( ) ( )

( ) ( )

1 2 3 4

5 6

1
R a b Moderate Incentive Fee b High Incentive Fee b Size b

Size

      b Age b Management Fee e

ζ φχη= + + + + χη χηθ ψ

+ + +

High Incentive fee: incentive fees of 20% or higher. 

Moderate Incentive fee: incentive fees between 2% and 20%. 

They also used the reciprocal of size to capture nonlinearity in the 

size-performance relationship. 

They found that incentive fee is positively related to excess returns for 

all hedge funds taken together and all investment styles.  They also found that 

a positive coefficient on the size variable with a negative coefficient on the 

size reciprocal variable indicates that hedge fund performance increased at a 

declining rate as fund size increases.  Age appears to be a significant 

explanatory factor only for global, global macro and market neutral funds.  

Management fee was not statistically significant. 

 Do, Faff and Wickramanayake (2005) estimated a cross-sectional 

regression model, where the dependent variable is the Australian hedge funds 

returns proxied in two alternative ways: conventional Sharpe ratio and 

modified Sharpe ratio.  They used as independent variables, age (months), 

holding period (the number of days that investor have to give notice to a fund 

before a redemption can take place), incentive fee (%), management fee (%), 

size (natural log) and float (a dummy variable for benchmark factor 

measurement, that takes a value of 1 when a fund has a floating benchmark 



  

and zero if a floating benchmark is not specified or it has no floating 

benchmark). 

 They, also, estimated a cross-sectional regression model, where the 

dependent variable is the Australian hedge funds risk proxied in two 

alternative ways: standard deviation of returns and factor loading beta.  They 

used the same independent variables with the first model.  Finally, they 

observed that Australian hedge fund returns are positively related to incentive 

fees and negatively related to management fees.  Fund age is found to have a 

positive relationship with the level of risk measurements (standard deviation 

and factor loading beta) and incentive fee have a positive relationship only for 

standard deviation analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER FIVE 

 

PERFORMANCE PERSISTENCE 

 

5.1 Introduction 

 

Performance persistence is an interesting and essential measure.  It is 

commonly known that investors invest to different hedge funds on the basis of 

their track record.  It becomes coherent that hedge fund investors are 

interested for the stability of hedge funds’ performance.  There are two test 

methods for the calculation of the performance persistence.  The first method 

refers to measuring the persistence of relative returns, where the funds can be 

ranked in comparison to the median return in a given period or to be ranked 

into deciles based on the previous sub-period return and the second measures 

the persistence of individual returns directly, without a comparison to a 

median. 

 

5.2 Persistence of relative returns 

 

 This method has two expressions.  It is distinguished in a two-period 

framework and in a multi-period framework. 

 

5.2.1 Two period framework 

 

 This method has two main directions.  Non-parametric and parametric 

methods.   

 

5.2.1.1 Non-parametric methods 

 

 We are based on the construction of a two-way winner and loser 

contingency table.  Winners are funds whose returns is higher than the median 

returns of all the funds following the same strategy over this period and losers 

are funds whose alpha is weaker than the median return of all the funds 



  

following the same strategy.  Consequently, persistence refers to funds which 

are winners over two consecutive periods, denoted WW and funds which are 

losers over two consecutive periods, denoted LL.  In the absence of 

persistence, winners during the first period and losers during the second 

period will be denoted WL and LW if the opposite is the case.  Non-

parametric methods have several important tools which are used for the 

calculation of the performance persistence. 

 

� Cross Product Ratio test 

 

 The numerator of CPR corresponds to the funds which persist and the 

denominator corresponds to the funds which do not persist: 

( ) ( )CPR WW *LL WL*LW= . 

 Under the null hypothesis of no persistence, the ratio is equal to 1.  

The statistical significance of CPR is tested via the calculation of the Z-

statistic, corresponding to the ratio of the natural logarithm of the CPR to the 

standard error of the natural logarithm of CPR, expressed as follows: 

( ) ( )ln CPR
Z statistic ln CPR a- = , where ( )ln CPR

a  is the standard error of the 

natural logarithm of CPR equal to: ( )
2

ln CPR

1 1 1 1
a

WW LL WL LW
= + + + . 

 

� Chi-square test 

 

The chi-square test is carried out by comparing the distribution of the 

observed frequencies for the four categories WW, LL, WL and LW with the 

expected frequencies of the distribution.  The chi-square measurement allows 

the level of independence of the results to be evaluated between two periods.  

It is then possible to construct, for each sub-period, different rankings 

according to the number of years.  The chi-square is equal to: 

( )
22

i i ix O E E= -ε , where iO   is the observed number of funds in each case 

of the contingency table, and iE  is the expected number of funds in each case. 



  

 Park and Staum (1998) collected data from TASS database for the 

period 1986-1997, they used appraisal ratio in a two-period test.  They found 

performance persistence at an annual horizon but the strength of the 

persistence seems to vary substantially from year to year. 

Edwards and Caglayan (2001) applied non parametric method and they 

found that the existence of both winner and loser persistence at the 5% 

significance level or better for all hedge funds and for funds of funds, global-

macro funds and market-neutral funds. 

Capocci and Hubner (2004) followed the methodology of Carhart 

(1997) using his combined model.  All funds were ranked based on their 

previous year return.  Every January, they put all funds into 10 equally 

weighted portfolios, ordered from highest to lowest past returns.  Portfolios 1 

(high) and 10 (low) were then further subdivided on the same measure.  The 

portfolios were held till the following January and then rebalanced again.  

This yielded a time series of monthly returns on each decile portfolio from 

1/1994 to 6/2000.   Funds that disappeared during the course of the year were 

included in the equally weighted average until their death, then portfolio 

weights were readjusted appropriately.  They concluded that best performing 

funds followed momentum strategies whereas worst performing ones might 

follow momentum contrarian strategies, best performing funds did not invest 

significantly in emerging market bonds, average return funds preferred high 

book-to-market stocks, whereas best and worst performing ones might prefer 

low book-to-market ones, no persistence in performance existed for best and 

worst performing funds, but there was weak evidence of persistence for 

middle deciles, where some funds significantly beat the market with 

persistence.  Evidence was more pronounced for the 1985–1993 period, but it 

was likely to be driven by the absence of dissolved funds in this period. 

Kat and Menexe (2002) worked with monthly net-of-fee hedge fund 

return data taken from TASS database.  They classified funds in the following 

hedge fund strategies: long/short equity, event driven, global macro, emerging 

markets, relative value and fund of funds.  They also used the S&P 500 index 

as a proxy for stocks and the Salomon Brothers 7- year Government Bond 

index as a proxy for bonds. 



  

 They used two-winners contingency table and they found that the CPRs 

for the mean, with the exception of emerging markets and relative value, were 

close to 1, with none of them statistically significant.  So, there was no 

evidence of persistence in mean returns.  They found much more persistence 

in the standard deviations.  In this case, the CPRs were extremely highly and 

statistically significant.  Apart from long/short equity and funds of funds, the 

CPRs for skewness were all close to 1.  We had the same for kurtosis.  

Furthermore, apart from long/short equity, they found little or no persistence 

in the correlation with bonds, but there was significant persistence in the 

correlation with stocks. 

 

� Spearman rank correlation test 

  

It is a distribution free method.  Assume a set of funds (1, 2, 3,..., n), 

which have been ranked by two different periods (x and y).  Let  ( )x i   and 

( )y i   be the rank (rank one is the highest and rank n is the lowest) of fund i in 

the two different periods respectively and define ( ) ( )id x i y i= -  as the 

distance between these rankings. 

( ) ( )( )n 2 3
s ii 1
r 1 6 d n n

=
= - Χ -ε .  

The result will always be between 1 (a perfect positive correlation, i.e. 

a perfect positive persistence of the performance) and minus 1 (a perfect 

negative correlation, i.e. a perfect negative persistence of the performance). A 

coefficient close to 0 indicates an absence of performance persistence over 

two periods. 

 Park and Staum (1998) used this method and they found performance 

persistence at an annual horizon with the same variability in the strength of 

persistence. 

Brorsen and Harri (2002) used the Spearman rank correlation and they 

found significant levels of persistence are found for all styles considered as a 

group, market neutral, event driven, short sales and funds of funds, contrary 

to sector and long only styles. Nevertheless the authors explained these 



  

opposite conclusions by the possibly low power of the Spearman test in the 

context of the performance persistence tests. 

 

5.2.1.2 Parametric methods 

 

The return of the current period (explained variable) is regressed onto 

the return of the previous period (explanatory variable). In other words, 

returns are regressed against lagged returns.  A positive coefficient applied to 

the explanatory variable indicates that a hedge fund that performs well over 

the previous period will also obtain a positive result at the time of the current 

period, which would testify to performance persistence.  Specifically, if the 

estimated slope coefficient is significantly greater than zero, then this is 

evidence of persistence. 

Edwards and Caglayan (2001) applied regressions with 1-year and 2-

year selection and performance-period alphas during the 1990–1998 periods 

to determine if past performance is a predictor of future performance.  

Specifically, for 1-year selection and 1-year performance periods, eight 

separate cross-section regressions were estimated during the 1990–1998 

period and for 2-year selection and 2-year performance periods, six separate 

cross-section regressions were estimated.  Persistence was considered to exist 

if the estimated slope coefficients in these equations were significantly 

greater than zero.  The results of this test were similar to those obtained from 

the two way winner-and-loser contingency analysis.  These results support the 

conclusion that there was persistence in hedge fund performance among both 

winners and losers.  The estimated regressions had the following formula: 

Performance-period-six-factor-analysis=a+bSelection-six-factor-alphas+e. 

Boyson and Cooper (2004) used a multi factor model to control for 

common risk factors in hedge fund performance.  This model has the 

following formula:
K D

pt pT pkT kt pdT dt tk 1 d 1
r a b F b H ε

= =
= + + +ε ε , where ptr  is 

portfolio p’s return in month t in excess of the risk-free rate (t=1 to T 

months), ktF  are each of the passive index returns (US Trade Weighted Dollar 

index, Lehman Brothers 30-year Treasury bond, US Aggregate Bond and the 

Value Weighted CRSP index and (HML, SMB and MOM) in month t and the 



  

dtH  are each of the hedge fund index returns (convertible arbitrage, dedicated 

short bias, emerging markets, equity market neutral, event driven, fixed 

income arbitrage, global macro, long/short equity, managed futures) in month 

t. 

 With this regression, they studied the quarterly persistence analysis 

when funds are selected based on prior performance.  Hedge funds were 

sorted at the beginning of each quarterly period from the second quarter in 

1994 to the final quarter in 2000 into decile portfolios based on their previous 

quarter's return (lagged returns) less the risk-free rate.  The portfolios were 

equally weighted quarterly so the weights were readjusted whenever a fund 

disappears.  Funds with the highest past quarterly returns in excess of the 

risk-free rate comprised decile 10 and funds with the lowest past quarterly 

returns comprised decile 1.  The dependent variable is the portfolio's excess 

monthly return.  They found that for the lagged decile portfolios, average 

monthly returns were fairly monotonic, increasing from -0.66% for decile 

1(worst) to 0.49% for decile 10 (best).  Examining the alphas from the 

regressions, the intercept on the best minus worst (10-1) portfolio was 

positive but not statistically significant.  So, there was no evidence of 

quarterly persistence. 

 In the following, they studied the quarterly persistence analysis when 

funds were selected based on prior performance and manager tenure (the 

length of time that the manager has been overseeing the fund).  Hedge funds 

were sorted at the beginning of each quarter from the second quarter in 1994 

to the final quarter in 2000 into thirds portfolios based on their previous 

quarterly return (lagged returns) less the risk-free rate.  The portfolios were 

equally weighted quarterly so the weights were readjusted whenever a fund 

disappears.  These portfolios were then cross-sorted based on the quarter-end 

value of manager tenure into three additional portfolios: young, middle, and 

old.  There were nine portfolios (portfolio 1=worst, portfolio 9=best), ranging 

from poor and old to good and young.  A tenth portfolio was created which is 

long the good and young managers and short the poor and old managers.  The 

dependent variable is the portfolio's monthly return in excess of the risk-free 

rate.  The independent variables were the passive and hedge fund indices.  



  

They concluded that the intercept from the 9-1 portfolio was positive and 

significant at the 5% level.  The annualized excess return from investing in 

this portfolio was about 9% per year, which was significant as well.  It 

appeared that poor performance among old, past bad managers is driving in 

the evidence of quarterly performance persistence. 

Brown, Goetzmann and Ibbotson (1999) found no persistence in raw 

and risk-adjusted returns at an annual horizon.  It should be noted that the 

database only contains offshore funds and it is probably that there was 

significant problem with biases because the data are from 1989. 

Agarwal and Naik (2000) used parametric tests (cross-sectional 

regression) and non-parametric tests (CPR and Chi-square test) in a two-

period framework and Kolmogorov-Smirnov goodness-of-fit test in a multi-

period framework.  They collected data from HFR (1982-98).  Firstly, they 

used quarterly and half-yearly returns combined with alpha and the appraisal 

ratio as a performance measure.  All these methods showed significant 

performance persistence in pre-fee and post-fee retruns.  We received the 

same results al long as it concerns in the non-directional and directional 

strategies.  In the multi-period framework they found that persistence is 

presented in losers and no in winners at half-yearly returns. 

Brorsen and Harri (2002) conducted regression-based tests which 

indicated significant persistence for all styles (except short sales) for one-

month, two-month and three-month horizons.  For longer horizons the 

significance decreases, and the lagged values become negative after 11 

months.  

Baquero, ter Horst and Verbeek (2002) found in raw returns and at a 

quarterly horizon, positive persistence in hedge fund returns, particularly for 

the best four deciles.  In order to check whether the presence of a cross-

sectional variation in expected returns due to style or risk characteristics 

explains the observed persistence patterns in raw returns, persistence in 

relative returns is examined.  On a risk-adjusted basis, at a quarterly horizon, 

strong persistence of the relative returns is found. 

They showed that in raw returns, at the annual horizon, the top three 

deciles showed persistence.  On a risk-adjusted basis, at an annual horizon, a 



  

strong persistence of the relative returns to style benchmarks for the top three 

deciles.  

Chen and Passow (2003) examined, through cross-sectional regressions 

(for this purpose, the track record from January 1990 to September 2002 is 

split into two sub-periods of equal length), the performance persistence of 

hedged equity funds.  More accurately, the persistence of selected funds was 

compared to the persistence of the other funds.  The selected funds were those 

which maintain a moderate exposure to the factors of a multi-factor model.  

These funds exhibited better performance persistence.  On the other hand, 

they showed that outperformers did not show significant performance 

persistence. 

 

5.3 Multi-period framework, K-S Goodness-of-fit test 

 

The Kolmogorov-Smirnov test (K-S test) tries to determine whether 

two data sets differ significantly.  A multi-period test has the advantage of 

proposing a more marked robustness of the results. 

The Kolmogorov-Smirnov test is a goodness-of-fit test to a continuous 

law, which takes all of the quantiles into account.  The model is a sample 

(X1,...,Xn) of an unknown law P.  The Kolmogorov-Smirnov test is defined 

by Ho: the data follows a specified distribution, and H1: the data does not 

follow a specified distribution. 

To apply the Kolmogorov-Smirnov test, the cumulative frequency 

(normalized by the sample size) of the observations is calculated as a function 

of class. Then the cumulative frequency for a true distribution (most 

commonly, the normal distribution) is computed.  The greatest discrepancy 

between the observed and expected cumulative frequencies, which is called 

the “D-statistic”, has to be found.  Finally it is compared to the critical D-

statistic for that sample size. 

In the context of the performance persistence of hedge funds, this test 

is used in order to check whether the distributions of winning funds and 

losing funds are statistically different from the theoretical distribution.  

Observed frequencies of wins and losses are recorded.  This frequency 

distribution is compared with that generated from a normal distribution and 



  

the maximum difference in cumulative densities between the observed and the 

normal distribution is used to construct the Kolmogorov-Smirnov statistic. 

An attractive feature of this test is that the distribution of the K-S test 

statistic itself does not depend on the underlying cumulative distribution 

function being tested. Another advantage is that it is an exact test (the chi-

square goodness-of-fit test depends on an adequate sample size for the 

approximations to be valid).  The K-S test is generally more efficient than the 

chi-square test for goodness-of-fit for small samples and can be used for very 

small samples where the chi-square test does not apply. 

Despite these advantages, the K-S test has the following important 

limitation: it can only be applied to continuous distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER SIX 

 

AUTOREGRESSIVE 

CONDITIONAL HETEROSKEDASTICITY MODELS 

 

6.1 Introduction 

 

 Until a decade ago, the focus of most macro econometric and financial 

time series modeling centered on the conditional first moments.  The 

increased importance played by risk and uncertainty considerations in modern 

economic theory, however, have necessitated the development of new 

econometric time series techniques that allow for the modeling of time 

varying variances and covariances. 

 Parallel to the success of standard linear time series models, arising 

from the use of the conditional versus the unconditional mean, the key insight 

offered by the ARCH model lies in the distinction between the conditional 

and the unconditional second order moments. 

 Linear models as time series models can not explain some important 

empirical regularities of asset returns.  One of these regulatories is 

leptokurtosis, which is the tendency of financial asset returns to have 

distributions that exhibit fat tails and excess peakedness at the mean.  

Furthermore, in financial markets large changes tend to be followed by large 

changes and small changes tend to be followed by small changes.  This 

phenomenon is called volatility clustering or conditional heteroskedasticity, 

which is immediately apparent when asset returns are plotted through time.  

Another feature of asset returns is called leverage effect and refers to the 

tendency for changes in stock prices to be negatively correlated with changes 

in stock volatility.  Non-trading periods is another feature which represents 

the information that accumulates when financial markets are closed and is 

reflected in prices after the markets reopen.  It is significant to add that Fama, 

French and Roll (1992) concluded that information accumulates more slowly 

when the markets are closed than when they are open. 



  

 To deal with volatility, we use the class of univariate autoregressive 

conditional heteroskedasticity (ARCH) models, which are capable of 

modeling time varying volatility and capturing many of the stylized facts of 

the volatility behavior, which are usually observed in financial time series.  

By postulating the time-varying volatility to be a function of the current 

information set, these models are able to model the periods of relative 

tranquility followed by bursts of extreme values often present in stock market 

series. 

 Two of the most useful ARCH parameterizations are the generalized 

ARCH (GARCH) model introduced by Bollershev (1986) and the exponential 

GARCH (EGARCH) model suggested by Nelson (1991). 

 

6.2 ARCH model 

 

Engle (1982) presented the ARCH model in 1982 and created a field of 

many financial applications in the future.  This model provides a systematic 

framework for volatility modeling.  The basic idea of the ARCH models is 

that the errors tε  are not autocorrelated, but dependent and the dependence of 

tε  can be described by a simple quadratic function on its lagged values.   

 Specifically, an ARCH(m) model assumes that t t tε σ z= , 

2 2 2
t 0 1 t 1 m t mσ a a ε ... a ε- -= + + + , where { }tz  is a sequence of independent and 

identically distributed random variables with mean zero and variance 1, 

0a 0>  and ia 0³  for i 0> .  The coefficients ia  must satisfy some regularity 

conditions to ensure that the unconditional variance of ta  is finite.  tz  is 

often assumed to follow the standard normal or a standardized student-t 

distribution. 

From the structure of the model, it is obvious that large past squared 

residuals { }
m

2
t 1

i 1
ε -

=
 imply a large conditional variance of 2

tσ  for the errors tε .    

This means that, under the ARCH framework, large shocks tend to be 

followed by large shocks.  

We mention that the ARCH model assumes that positive and negative 

shocks have the same effects on volatility, because it depends on the square 



  

of residuals the previous shocks.  In practice, it is well known that the price 

of a financial asset responds differently to positive and negative shocks.  

Additionally, the ARCH model does not provide any new insight for 

understanding the source of variations of a financial time series.  It only 

provide a mechanical way to describe the behavior of the conditional 

variance.  Finally, ARCH models are likely to overpredict the volatility 

because they respond slowly to large isolated shocks to the return series. 

 

6.3 GARCH model 

 

The ARCH model often requires many parameters to adequately 

describe the volatility process of an asset return.  Bollershev (1986) proposes 

a useful extension, known as the generalized ARCH (GARCH) model.  For a 

log return series tr , we assume that the mean equation of the process can be 

adequately described by an ARMA model.  Let t t tε r µ= -  (conditional mean 

equation) be the mean-corrected log return.  Then tε  follows a GARCH(m,s) 

model if t t tε σ z= , 
m s

2 2 2
t 0 i t i j t j

i 1 j 1

σ a a ε b σ- -

= =

= + +ε ε  (conditional variance 

equation), where 2
tσ  is the conditional variance of the { }tε  process at time t; 

again { }tz  is a sequence of iid random variables with mean 0 and variance 1, 

0a 0> , ia 0³  and jb 0³ .  These restrictions ensure a positive variance.  

Stationary conditions impose that ( )
max(m,s)

i ii 1
a b 1

=
+ <ε .  It is understood that 

ia 0=  for i m>  and jb 0=  for j s> .  The latter constraint on i ia b+  implies 

that the unconditional variance of tε  is finite, whereas its conditional 

variance 2
tσ  evolves over time.  As before, tz  is often assumed to follow a 

standard normal or a standardized student-t distribution.  This equation 

m s
2 2 2
t 0 i t i j t j

i 1 j 1

σ a a ε b σ- -

= =

= + +ε ε  reduces to a pure ARCH(m) model if s=0. 

 The strengths and weaknesses of GARCH models can easily be seen by 

focusing on the simplest GARCH(1,1) model with 2 2 2
t 0 1 t 1 1 t 1σ a a ε b σ- -= + + , 



  

1 10 a ,  b 1£ £ , ( )1 1a b 1+ < .  Usually, a GARCH(1,1) model with only three 

parameters in the conditional variance equation is adequate to obtain a good 

model fit for financial time series. 

 

6.4 EGARCH model 

 

 EGARCH was proposed by Nelson (1991) and it has the following 

formulation: ( ) ( )
p q

2 2t-i t-i t-i
t 0 i j t-j

t-i t-i t-ii=1 j=1

ε ε ε
log σ  = α + α θ γ  + β log σ

σ σ σ

ζ φι ωχη κ ϊχη + - E χη κ ϊχη χηθ ψκ ϊλ ϋ
ε ε . 

 With the application of this model, we achieved to model ( )2
tlog σ  in 

order to ensure that 2
tσ  will be positive, even if the parameters are negative.  

The application of this model gives us the advantage to avoid setting 

artificially non-negativity constraints on the model parameters.  In regard to 

asymmetries if the relationship between volatility and returns is negative, γ  

(negative shocks=bad news), will be negative. 

 

6.5 PGARCH model 

 

 Ding, Granger and Engle (1993) proposed a special case of GARCH 

models, the power GARGH or PGARCH model.  It has the following 

expression: ( )
p q

dd d
t 0 i t i i t i j t j

i 1 j 1

σ a a ε γ ε β σ- - -

= =

= + + +ε ε , where d is a positive 

number and iγ  is the coefficient of leverage effect.  It is important to mention 

that if we place d=2, then we take the basic GARCH model.  Usually, 

researchers place d=1 because in this occasion the GARCH model is robust to 

outliers. 

 

6.6 GARCH-M model 

 

 The GARCH-M model was created by Engle, Lilien and Robins (1987) 

in order to cover the financial expectations of investors, who take additional 

risk to gain higher expected returns.  The return of an asset may depend on its 



  

volatility.  To model such a phenomenon, one may consider the GARCH-M 

model, where ‘M’ stands for GARCH in mean.  A simple GARCH(1,1)-M 

model can be written as 2
t t tr µ cσ ε= + + , t t tε σ z=  and 2 2 2

t 0 1 t 1 1 t 1σ a a ε b σ- -= + + , 

where µ  and c are constant.  The parameter c is called the risk premium 

parameter.  A positive and statistically significant c indicates that the return is 

positively related to its past volatility (conditional variance) and it leads to a 

rise in the mean return.   

 

6.7 GJR or TGARCH (Thershold GARCH) 

 

 The GJR model, which was proposed by Glosten, Jaganathan and 

Runkle (1993), is a simple extension of GARCH with an additional term 

added to account for possible asymmetries.  Specifically, the positive and 

negative innovations are let to have different impact on the conditional 

variance.  The conditional variance is given in the general form by 

p q p
2 2 2 2
t 0 i t i j t j i t i t i

i 1 j 1 i 1

σ a a ε b σ γ S ε- - - -

= = =

= + + +ε ε ε , where 
t i

t i

1,  if ε 0
S

0,  otherwise

-
-

µ <οο= ν
οοξ

.  For a 

leverage effect, we could see γ >0.  The condition for non-negativity will be 

0a 0³ , 1a 0³ , b 0³  and 1a γ 0+ ³ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER SEVEN 

 

APPLICATION 

 

7.1 Introduction 

 

 We have the monthly returns of ten hedge funds and the monthly 

returns of 14 pricing factors.  Our aim is to conclude in eight top deciles 

portfolios.  Specifically, we apply, for each hedge fund, a single factor, the 

Fama and French three-factor and the Carhart four factor model.  We also 

apply a multifactor model at which the market indices are, suitably, selected 

from the backward selection approach.  We select the best two performing 

hedge funds, from each model and for all ten hedge funds.  The data from the 

last year of each hedge fund is used in the out-of-sample analysis.  

 In the following, we observe the existence of autocorrelation and 

volatility clustering, or conditional heteroskedasticity, applying Ljung-Box 

tests in the standardized residuals and the same test in the squared 

standardized residuals, which can not be explained by linear or time series 

models.  To deal with volatility, we use the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models on the foresaid models.  

These models capture time varying volatility and many of the stylized facts 

that are observed in financial time series.  It is known that the efficiency in 

parameter estimation and the accuracy in interval forecast can be improved by 

modeling the volatility of a time series.  

 

7.2 Detection of autocorrelation 

 

 We plot the monthly returns of the ten hedge funds (Figure 7.1).  We 

can conclude that both large changes and small changes are clustered 

together, which is typical of many high frequency macroeconomic and 

financial time series.  
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Figure 7.1:  Plot for all monthly hedge funds returns. 
 
 

To confirm this conjecture, we construct the autocorrelation plots of 

the monthly returns of the ten hedge funds and their monthly squared returns 

(Figure 7.2).  Obviously, there is autocorrelation in the return series of hedge 

fund 1 up to lag 3, of hedge fund 3 and 4 up to lag 9 and hedge fund 8 up to 

lag 2, while the squared returns exhibit significant autocorrelation for hedge 

fund 1 and 8 at least up to lag 3, for hedge fund 4 at least up to lag 11, for 

hedge fund 7 at least up to lag 6 and for hedge fund 9 at least up to lag 2.  

Since the squared returns measures the second order moment of the original 

time series, these results indicate that the variance of the ten hedge funds 

conditional on their past history may change over time, or equivalently, the 

time series of the hedge funds may exhibit time varying conditional 

heteroskedasticity or volatility clustering. 
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 Figure 7.2:  The autocorrelation plots of the monthly returns and squared monthly returns 
of the ten hedge funds. 

 

7.3 Descriptive statistics 

 

 In each statistical research, the first step is constituted by the synopsis 

of the descriptive statistics of our data.  We need this process to get a first 

sight on the behaviour and on the distribution of our data. 

 

 MEAN MEDIAN ST.DEV KURTOSIS SKEWNESS 1ST Q. 3RD  Q. MIN MAX 

HF1 0.0138 0.0061 0.0469 7.273 2.312 -0.0113 0.021 -0.0555 0.2116 

HF2 0.0102 0.0076 0.0941 0.5756 0.4598 -0.0455 0.0579 -0.1876 0.3116 

HF3 0.0149 0.022 0.0715 1.8143 -0.7197 -0.013 0.058 -0.212 0.2119 

HF4 0.016 0.0084 0.0762 0.3831 0.2416 -0.0357 0.064 -0.1654 0.2387 

HF5 0.0137 0.0066 0.0624 3.2089 3.3345 -0.0108 0.031 -0.1572 0.4546 

HF6 0.0188 0.013 0.045 0.1081 0.4119 -0.0039 0.0384 -0.0701 0.1391 

HF7 0.007 0.0125 0.0483 0.3955 -0.0087 -0.0285 0.0379 -0.1142 0.1514 

HF8 0.0156 0.0091 0.074 5.2291 1.7384 -0.0195 0.0392 -0.103 0.2969 

HF9 0.0102 0.0022 0.037 8.9858 2.5204 -0.0054 0.0161 -0.0635 0.1723 

HF10 0.0056 0.0114 0.0454 4.7745 -1.4472 -0.0109 0.0273 -0.1967 0.0945 

Table 7.1:  Summary statistics of the ten hedge funds.   

We present the mean, median, standard deviation, kurtosis, skewness, first quantile, third 
quantile, minimum and maximum values of the series returns for the ten hedge funds. 

 



  

 When we observe the mean returns, we conclude that the series of the 

ten hedge funds are all positive.  Hedge fund 6 has the highest mean (0.0188) 

and hedge fund 10 has the smallest one (0.0056).  In regard to median, we 

observe that hedge fund 3 has the highest value of median (0.022) and hedge 

fund 9 has the smallest one (0.0022).  The standard deviation gives a measure 

of risk.  Hedge fund 2 presents the highest risk (0.0941) and hedge fund 9 

presents the smallest risk (0.037).  In regard to kurtosis, hedge fund 9 shows 

the highest value (8.9858) and hedge fund 6 (0.1081) shows the smallest one.  

Generally, a relatively big value of kurtosis is combined with phenomenon, 

which we try to capture using ARCH and GARCH models.  Hedge fund 5 

presents in an absolute value, the highest skewness (3.3345) and hedge fund 7 

presents the smallest one (0.0087).  When we examine the range of the series’ 

values, we observe that there is a significant variability on these. 

 In the following, we present graphically the behaviour of the data via a 

boxplot in order to obtain a total picture of them. 
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Figure 7.3:  The boxplots for the monthly returns of all hedge funds. 

 

7.4 Single factor model 

 

We apply a single factor model with the following expression: 

it it it RUS,t itR α β R ε= + Χ +  (7.1), where itR  is the return on the hedge fund i at 

time t, itα  is the abnormal performance of the hedge fund i at time t, itβ  is the 

slope coefficient or the sensitivity of hedge fund i at time t, RUS,tR  is the 

return on factor Russell 3000 equity index at time t and itε  is the error term of 

the hedge fund i at time t.  Specifically, we apply this model ten times for 

each hedge fund.  In table 7.2, we receive the coefficients of alpha, beta, their 

respective p-values and the values of the adjusted 2R , in each case. 

 

 

 

 

 

 

 



  

SINGLE FACTOR MODEL 

 ALPHA BETA ADJ. R. SQ 

HF1 0,0161* 
(0,0112) 

0,3969* 
(0,0014) 

0,1802 

HF2 0,0075 
(0,3202) 

1,3751* 
(0,00002) 

0,4855 

HF3 0,015* 
(0,049) 

0,6075* 
(0,00003) 

0,1971 

HF4 0,015* 
(0,0345) 

0,253 
(0,1258) 

0,0117 

HF5 0,0136* 
(0,0264) 

0,0212 
(0,8683) 

0,0091 

HF6 0,0213* 
(0,0006) 

0,4085* 
(0,0005) 

0,2109 

HF7 0,0067 
(0,1997) 

0,1744 
(0,0869) 

0,0236 

HF8 0,0156 
(0,056) 

0,4712* 
(0,0032) 

0,0992 

HF9 0,0109* 
(0,0315) 

0,1365 
(0,1672) 

0,0172 

HF10 0,0056 
(0,2452) 

0,3384* 
(0,0005) 

0,1414 

Table 7.2:   Coefficients of the single factor model.   

The results of a single factor model of 10 hedge funds.  In the brackets, there are the corresponding p-
values of alphas, betas and the adjusted R-squared.  With (*), we denote the quantities which are 

statistically significant at the 5% significance level. 

 
Jensen (1968) was the first to systematically test the performance of 

mutual funds and in particular examine whether any “beats the market”.  The 

quantity of interest is the significance of ia  which is the intercept in the 

regression of the fund’s excess returns on the excess returns of one or more 

passive benchmarks and is named Jensen’s alpha, since this parameter defines 

whether the fund outperforms or underperforms the market index.  This 

parameter also presents the manager’s skill.  In particular, alpha is a common 

measure to compare a manager’s performance to a benchmark that represents 

the market in which the hedge fund participates.  A positive and significant ia  

for a given fund would suggest that the fund is able to earn significant 

abnormal returns in excess of the market required return for a fund of this 

given riskiness. Thus, hedge fund 6 that has the biggest value of alpha 

(0.0213), will produce a return that is 2.13% higher than the benchmark.   

We apply t-tests in order to test the significance of the Jensen’s alpha 

and beta coefficients.  The null hypothesis of t-test asserts that the coefficient 

of the regression is equal to zero.  Specifically, the null hypothesis refers that 

Jensen’s alpha is equal to zero.  We applied ten regressions, one of each 

hedge fund and we obtain the respective alphas and their p-values.  Looking 



  

at table 7.2, we conclude that the alpha coefficients are statistically 

significant only in the cases of hedge fund 1, 3, 4, 5, 6 and 9 at the 5% 

significance level.  Examining the performance of hedge funds, we can 

conclude that hedge fund 6 and 1 have values of alpha 0.0213 (p-value: 

0.0006) and 0.161 (p-value: 0.0112) respectively, that means better 

performance in contrary to the rest hedge funds.  In the following, we apply t-

tests in order to test the significance of the beta coefficients.  The null 

hypothesis asserts that the beta coefficient is equal to zero.  From table 7.2, 

we conclude that the beta coefficients are statistically significant only in the 

cases of hedge fund 1, 2, 3, 6, 8 and 10 at the 5% significance level.  We 

observe that the beta coefficients are relatively small which means that all 

hedge funds have low systematic risks.   

We will discuss the third column of table 7.2, which presents the 

values of the adjusted 2R .  Firstly, we will introduce a brief paragraph for the 

adjusted 2R .  Some quantities known as goodness of fit statistics, which are 

available to test how well the sample regression function fits the data, play a 

crucial role to the statistical inference.  The values of 2R  must lie between 0 

and 1.  If this value is high, the model fits the data well, while if this value is 

low (close to zero), the model does not provide a good fit to the data. 

In table 7.2, we adduce the values of adjusted 2R  in contrary to the 

values of 2R , which are eliminated.  2R  is defined in terms of variation about 

the mean of y.  It is not sensible to compare the value of 2R  across models 

with different dependent/independent variables.  Furthermore, 2R  never falls 

if more regressors are added to the regression. 

These reasons lead us to use only the values of the adjusted 2R  in 

order to overcome these problems.  Specifically, the adjusted 2R  takes into 

account the loss of degrees of freedom associated with adding extra variables.  

It has the following type: ( )2 2T 1
adj.R 1 1 R

T k 1

ι ω-
κ ϊ= - -
κ ϊ- -λ ϋ

, where T is the sample 

size and k is the number of the regressors.  When k increases, then the 

adjusted 2R  will actually fall.  In conclusion, adjusted 2R  can be used as a 



  

decision-making tool for determining whether a given variable should be 

included in a regression model or not.   

The range for the values of adjusted 2R  is (0.0091,0.4855), which 

means that the excess returns of the market index is able to explain a 

relatively small proportion of the variability of the excess returns on the 

hedge funds.  So, the above models appear to be rather poor for explaining the 

variability of the hedge funds returns. 

 
ITEM MEAN VALUE MEDIAN VALUE MINIMUM 

VALUE 

MAXIMUM 

VALUE 

â  0.01273 0.0143 0.0056 0.0212 

b̂  
0.41827 0.3677 0.0213 1.3751 

Table 7.3:  Summary statistics for the estimated regression results from the regression of 7.1. 

 
In table 7.3, we present the mean, median, minimum and maximum 

values of the Jensen’s alpha for the ten models.  We observe that the average 

(defined as either the mean or median) hedge fund is able to ‘beat the 

market’, recording a positive alpha in both cases.  The best hedge fund of all 

yields an alpha of 0.0212 (hedge fund 6). 

Furthermore, we present the mean, median, minimum and maximum 

values for all beta coefficients and we summarize that the average fund has a 

beta estimate of around 0.42, indicating that, the single factor model, most 

funds were less risky than the market index.  Hedge fund 2, which has the 

maximum value of 1.3751, is riskier than the market index.  In this case we 

refer to Russell 3000 as market index. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

RESIDUAL DIAGNOSTICS 

 JARQUE-BERA TEST LJUNG-BOX TEST 

(AUTOCORRELATION)  

LJUNG-BOX TEST 

(HETEROSKEDASTICITY) 

HF1 78,6857* 
(0,0000) 

9,9318 
(0,8702) 

7,4241 
(0,9642) 

HF2 81,2163* 
(0,0000) 

20,5574 
(0,3618) 

18,854 
(0,4662) 

HF3 15,7279* 
(0,0004) 

20,3031 
(0,316) 

23,9854 
(0,1555) 

HF4 4,862 
(0,0879) 

35,5606* 
(0,0173) 

68,2092* 
(0,0000) 

HF5 24,1875* 
(0,0000) 

12,6726 
(0,891) 

5,9494 
(0,999) 

HF6 1,6283 
(0,443) 

14,0629 
(0,594) 

20,2973 
(0,2071) 

HF7 0,4632 
(0,7933) 

16,3978 
(0,6306) 

29,7291 
(0,0553) 

HF8 13,2679* 
(0,0000) 

24,411 
(0,142) 

38,3574* 
(0,0035) 

HF9 20,7132* 
(0,0000) 

13,06 
(0,7322) 

17,3625 
(0,4301) 

HF10 17,9621* 
(0,0001) 

20,6626 
(0,2968) 

17,3884 
(0,4966) 

Table 7.4:  Residual diagnostics of the single factor model.  

The Jarque-Bera and Ljung-Box statistics for the standardized residuals and squared standardized 
residuals as well as their p-values, which are in the brackets.   With (*), we denote the quantities which 

are statistically significant at the 5% significance level. 

  

 In the following of this study (table 7.4), we apply two different tests 

for three different hypotheses.  The first test is applied to check for normality 

of the residuals (Jarque-Bera test), and the second, to test for the existence of 

autocorrelation in the standardized residuals and for the presence of 

heteroskedasticity in the squared standardized residuals (Ljung-Box).  The 

results from these tests are presented in the above table. 

One of the most commonly applied tests for normality is the Jarque-

Bera test.  It tests whether the coefficient of skewness and the coefficient of 

excess kurtosis are jointly zero.  The Jarque-Bera statistic is defined as 

follows: 
( )

22
21

b 3b
W T

6 24

ι ω-κ ϊ= +κ ϊ
κ ϊλ ϋ

, where T is the sample size.  If we denote the 

error by u and its variance by 2σ , it can be proved that the coefficients of 

skewness and kurtosis can be expressed respectively as, ( ) ( )
3 2

3 2
1b E u σ=  

and ( ) ( )
2

4 2
2b E u σ= .  The kurtosis of the normal distribution is 3 so its 

excess kurtosis ( )2b 3-  is zero.  1b  and 2b  can be estimated using the 



  

residuals from the OLS regression, û .  The null hypothesis suggests 

normality and this would be rejected if the residuals of the model were either 

significantly skewed or leptokurtic/platykurtic, or both.  The single factor 

model, we concluded that the normality, in the residual series, is rejected at 

the significance level of 5% in regard to hedge fund 1, 2, 3, 5, 8, 9 and 10, 

implying that the inferences we make about the coefficient estimates could be 

wrong. 

In the following, we will apply Ljung-Box test at the standardized 

residuals in order to detect the existence of autocorrelation.  Box and Pierce 

(1970) created the Q-statistic to check if the correlation coefficients are 

simultaneously equal to zero.  But the results from the application of this test 

that lead to the wrong decision too frequently for small samples. This problem 

drove Ljung and Box (1978) to create a modified Q-statistic, which is known 

as the Ljung-Box statistic, as: ( )
m 2

2k
m

k 1

τ̂
Q T T 2 χ

T k
=

= +
-ε � , where m is the 

maximum k lag length and kτ̂  are the kth autocorrelation. 

 The null hypothesis of the Ljung-Box test, when we want to test for the 

existence of autocorrelation in standardized residuals, refers to no 

autocorrelation.  The Ljung-Box Q-statistic for the standardized residuals 

series, suggests that there is no significant autocorrelation, except for one 

case.  Specifically, we reject the null hypothesis (p-value: 0.0173) in the case 

of hedge fund 4. 

The null hypothesis of the Ljung-Box test, when we want to test for the 

existence of heteroskedasticity between the standardized residuals, ie 

autocorrelation between the squared standardized residuals, refers to no 

heteroskedasticity.  Looking at table 7.4, we conclude that there is no 

conditional heteroskedasticity in the squared standardized residuals apart 

from two cases.  Specifically, we reject the null hypothesis (p-value: 0.00003, 

p-value: 0.0035), at the 5% of significance level, in the case of hedge funds 4 

and 8, respectively.  We assume that there is evidence of heteroskedasticity. 

 

 

 



  

7.5 Fama and French three factor model 

 

 We apply the Fama and French three factor model, which has been well 

known for its explanatory power of mutual funds returns, with the following 

expression: it i 1,i RUS,t 2,i SMB,t 3,i HML,t itR α β R β R β R ε= + Χ + Χ + Χ +  (7.2), where itR  

is the return on the hedge fund i at time t, iα  is the abnormal performance of 

the hedge fund i at time t, 1,iβ , 2,iβ  and 3,iβ  are the beta coefficients of hedge 

fund i at time t, RUS,tR  is the return on factor Russell 3000 equity index at 

time t, SMB,tR  is the factor mimicking portfolio for size at time t, HML,tR  is the 

factor mimicking portfolio for book-to-market equity at time t and itε  is the 

error term of the hedge fund i at time t.  We apply this model ten times for the 

returns of each hedge fund.  In table 7.5, we receive the coefficients of alpha, 

beta, their respective p-values and the values of the adjusted 2R , in each case. 

 
THREE FACTOR MODEL 

 ALPHA BETA1 BETA2 BETA3 ADJ. R. SQ 

HF1 0,021* 
(0,0019) 

0,4109* 
(0,0008) 

-0,1807 
(0,2219) 

-0,2677* 
(0,0169) 

0,247 

HF2 0,0035 
(0,4836) 

1,1988* 
(0,00002) 

0,8635* 
(0,00004) 

-0,4725* 
(0,00002) 

0,7778 

HF3 0,0118 
(0,1231) 

0,5853* 
(0,0001) 

0,4022* 
(0,0354) 

0,1827 
(0,2404) 

0,2272 

HF4 0,0145* 
(0,032) 

0,1377 
(0,3829) 

0,3955* 
(0,0407) 

-0,3969* 
(0,0131) 

0,1274 

HF5 0,0137* 
(0,0099) 

-0,1418 
(0,2108) 

0,452* 
(0,0018) 

-0,468* 
(0,0001) 

0,2592 

HF6 0,017* 
(0,0063) 

0,3475* 
(0,0022) 

0,3262* 
(0,0208) 

0,0106 
(0,9167) 

0,2864 

HF7 0,0077 
(0,1188) 

0,2533* 
(0,0101) 

-0,3284* 
(0,0087) 

0,1671 
(0,095) 

0,1577 

HF8 0,0147* 
(0,0159) 

0,2551* 
(0,0309) 

0,54* 
(0,0005) 

-0,6456* 
(0,00003) 

0,5218 

HF9 0,01* 
(0,022) 

0,0724 
(0,3723) 

0,1626 
(0,1033) 

-0,2945* 
(0,0002) 

0,352 

HF10 0,0032 
(0,4778) 

0,3272* 
(0,0004) 

0,3894* 
(0,001) 

0,2328* 
(0,0099) 

0,2629 

Table 7.5: Coefficients of the three factor model.   

  In the brackets, there are the corresponding p-values of alphas, betas and the adjusted R-squared.  
With (*), we denote the quantities which are statistically significant at the 5% significance level. 

 

We apply t-tests in order to test the significance of the alpha 

coefficients, which have arisen from the application of the above ten 

regressions with the general form (7.2).  The null hypothesis refers that alpha 



  

coefficient is equal to zero.  Studying the results from table 7.5, we conclude 

that the alpha coefficients are statistically significant only in the cases of 

hedge fund 1, 4, 5, 6, 8 and 9 at the 5% significance level.  This means that 

these hedge funds are able to earn significant abnormal returns.  The most 

profitable hedge funds are 1 and 6 with values of alpha 0.021 (p-value: 

0.0019) and 0.017 (p-value: 0.0063), respectively.  As a result, we are able to 

comprehend hedge fund 1 and 6 in our portfolio.  We conclude that hedge 

fund 1 will produce a return that is 2.1% higher than the benchmarks and 

hedge fund 2 will produce a return that is 1.7% higher than the benchmarks. 

 We, also, apply t-tests in order to test the significance of the beta 

coefficients.  The null hypothesis maintains that the beta coefficient is equal 

to zero.  From table 7.5, we conclude that the beta coefficients for the Russell 

3000 equity index are statistically significant only in the cases of hedge fund 

1, 2, 3, 6, 7, 8 and 10 at the significance level of 5%.  In regard to beta 

coefficients on the factor mimicking portfolio for size, we conclude that the 

null hypothesis is rejected at the cases of hedge fund 2, 3, 4, 5, 6, 7, 8 and 10 

at the 5% significance level.  The beta coefficients of the factor mimicking 

portfolio for book-to-market equity are statistically significant in the cases of 

hedge fund 1, 2, 4, 5, 8, 9 and 10.  Specifically, hedge fund 1, 2, 3, 6, 7, 8 and 

10 load significantly positive on the factor Russell 3000 equity index (RUS) 

at the 5% significance level.  Hedge fund 2, 3, 4, 5, 6, 8 and 10 load 

significantly positive on the factor mimicking portfolio for size (SMB) and 

hedge fund 7 loads significantly negative on the same factor at the 5% 

significance level.  Hedge fund 10 loads significantly positive on the factor 

mimicking portfolio for book-to-market equity (HML) and hedge fund 1, 2, 4, 

5, 8 and 9 load significantly negative on the same factor at the 5% 

significance level. 

 We will discuss the sixth column of the table which presents the values 

of the adjusted 2R .  The range for the values of adjusted 2R  is (0.1274, 

0.7778), which means that the excess returns of the three factors are able to 

explain a relative small proportion of the variability of the excess returns on 

the hedge funds.  The average adjusted 2R  improves considerably to 0.322 

compared to 0.136 from the single factor model.  



  

ITEM MEAN MEDIAN MINIMUM MAXIMUM 

α̂  0,01171 0,01275 0,0032 0,021 

1β̂  
0,34464 0,29115 -0,1418 1,1988 

2β̂  
0,30223 0,39245 -0,3284 0,8635 

3β̂  
-0,1952 -0,2811 -0,6456 0,2328 

Table 7.6: Summary statistics for the estimated regression results from the regression of 7.2. 

 
 In table 7.6, we present the mean, median, minimum and maximum 

values of the alphas’ coefficients for the ten models.  We observe that the 

average (defined as either the mean or median) hedge fund means that there is 

a positive manager’s skill, recording positive alpha in both cases.  The best 

hedge fund of all yields an alpha of 0.021. 

 Furthermore, we present the mean, median, minimum and maximum 

values of all beta coefficients for the three market indices.  The mean for all 

beta coefficients are relatively small, conclusion that indicates that most 

hedge funds are less risky than the market indices.   

 
RESIDUAL DIAGNOSTICS 

 JARQUE-BERA TEST LJUNG-BOX TEST 

(AUTOCORRELATION) 

LJUNG-BOX TEST 

(HETEROSKEDASTICITY) 

HF1 27,8054* 
(0,00002) 

11,5791 
(0,7724) 

11,4388 
(0,7816) 

HF2 0,2648 
(0,876) 

19,8307 
(0,4048) 

19,5474 
(0,4223) 

HF3 14,2872* 
(0,0008) 

11,9969 
(0,8474) 

21,2779 
(0,2656) 

HF4 15,1549* 
(0,0005) 

22,5927 
(0,3092) 

49,3197* 
(0,0003) 

HF5 253,6525* 
(0,00001) 

18,1216 
(0,5794) 

26,9624 
(0,1363) 

HF6 0,6104 
(0,737) 

13,0542 
(0,6688) 

18,5419 
(0,2931) 

HF7 0,6194 
(0,7337) 

13,2282 
(0,8267) 

14,4069 
(0,7595) 

HF8 5,0407 
(0,0804) 

21,5593 
(0,2521) 

18,3098 
(0,4354) 

HF9 21,5061* 
(0,00002) 

18,5597 
(0,3544) 

25,6975 
(0,0802) 

HF10 18,1858* 
(0,0001) 

8,4816 
(0,9706) 

18,0816 
(0,4503) 

Table 7.7: Residual diagnostics of the three factor model.   

The Jarque-Bera and the Ljung-Box statistics for the standardized residuals and squared standardized 
residuals as well as their p-values, which are in the brackets.   With (*), we denote the quantities which 

are statistically significant at the 5% significance level. 

 
 In the following, we proceed to test the significance of the null 

hypothesis, which refers that there is normality in the residuals series.  



  

Purposely, we apply the Jarque-Bera test and we conclude that the null 

hypothesis of normality is rejected in the cases of hedge fund 1, 3, 4, 5, 9 and 

10 at the 5% significance level, implying that the inferences we make about 

the coefficient estimates could be wrong. 

 Afterwards, we apply the Ljung-Box test in order to test the existence 

of autocorrelation in the standardized residuals series.  The null hypothesis 

asserts that there is no autocorrelation.  The Ljung-Box Q-statistic for the 

standardized residuals series after fitting the three factor model of Fama and 

French, suggests that there is no autocorrelation problem.  

 We accomplish with the application of the Ljung-Box test on the 

squared standardized residuals series in order to test if there is evidence of 

heteroskedasticity in the standardized residuals.  Thus, the null hypothesis 

refers to no heteroskedasticity in the standardized residuals.  Looking at table 

7.7, we reject the null hypothesis for hedge fund 4, which has value of Ljung- 

Box statistic 49.32 (p-value: 0.0003). 

 

7.6 Carhart four factor model 

 

 We will apply the four factor model of Carhart (1997), which is an 

extension of the Fama and French (1993) three factor model.  It takes into 

account size and book-to-market ratio, but also an additional factor for the 

momentum effect.  The applied four factor model is the following: 

it i 1,i RUS,t 2,i SMB,t 3,i HML,t 4,i MOM,t itR α β R β R β R β R ε= + Χ + Χ + Χ + Χ +  (7.3), where 

itR  is the return on the hedge fund i at time t, iα  is the abnormal performance 

of the hedge fund i at time t, 1,iβ , 2,iβ , 3,iβ  and 4,iβ  are the beta coefficients of 

hedge fund i at time t, RUS,tR  is the return on factor Russell 3000 equity index 

at time t, SMB,tR  is the factor mimicking portfolio for size at time t, HML,tR  is 

the factor mimicking portfolio for book-to-market equity at time t, MOM,tR  is 

the momentum factor at time t and itε  is the error term of the hedge fund i at 

time t.  We apply this model ten times for the returns of each hedge fund.  In 

table 7.8, we receive the coefficients of alpha, beta, their respective p-values 

and the values of the adjusted 2R , in each case. 



  

FOUR FACTOR MODEL 

 ALPHA BETA1 BETA2 BETA3 BETA4 ADJ. R. SQ 

HF1 0,0206* 
(0,0042) 

0,4225* 
(0,0048) 

-0,1681 
(0,3351) 

-0,2495 
(0,1464) 

0,0137 
(0,8881) 

0,2302 

HF2 0,0092 
(0,0514) 

0,9317* 
(0,00002) 

0,6048* 
(0,0003) 

-0,8615* 
(0,0003) 

-0,3423* 
(0,0006) 

0,8221 

HF3 0,0052 
(0,4984) 

0,8229* 
(0,00004) 

0,6615* 
(0,002) 

0,577* 
(0,008) 

0,3189* 
(0,0109) 

0,2876 

HF4 0,0084 
(0,2143) 

0,4167* 
(0,019) 

0,695* 
(0,0011) 

0,0442 
(0,8302) 

0,3936* 
(0,002) 

0,192 

HF5 0,0106 
(0,0502) 

-0,0026 
(0,984) 

0,5946* 
(0,0002) 

-0,245 
(0,1254) 

0,199* 
(0,042) 

0,2814 

HF6 0,0219* 
(0,0007) 

0,1714 
(0,1759) 

0,1351 
(0,3764) 

-0,2647 
(0,0803) 

-0,2073* 
(0,0187) 

0,3572 

HF7 0,0055 
(0,2717) 

0,3615* 
(0,0018) 

-0,2169 
(0,113) 

0,3382* 
(0,015) 

0,15 
(0,075) 

0,1808 

HF8 0,013* 
(0,0353) 

0,3451* 
(0,0137) 

0,6308* 
(0,0003) 

-0,5047* 
(0,0026) 

0,1226 
(0,2202) 

0,5252 

HF9 0,0112* 
(0,0152) 

0,0204 
(0,8385) 

0,1091 
(0,3483) 

-0,3725* 
(0,002) 

-0,0612 
(0,379) 

0,3493 

HF10 0,0011 
(0,8018) 

0,4407* 
(0,0001) 

0,5039* 
(0,0001) 

0,4104* 
(0,0011) 

0,1547* 
(0,0401) 

0,2958 

Table 7.8: Coefficients of the four factor model. 

The results of a single factor model of 10 hedge funds.  In the brackets, there are the corresponding p-
values of alphas, betas and the adjusted R-squared.  With (*), we denote the quantities which are 

statistically significant at the 5% significance level. 

 
 We apply t-tests in order to test the significance of the alpha 

coefficients, which have arisen from the application of the above ten 

regressions with the general form (7.3).  The null hypothesis refers that alpha 

coefficient is equal to zero.  Looking at table 7.8, we conclude that the 

coefficients of alpha are all positive, which means that it provides some 

evidence that this sample of hedge fund managers do have superior relative 

performance by means of asset selections. We also summarize that the alpha 

coefficients are statistically significant only in the cases of hedge fund 1, 6, 8 

and 9, at the 5% significance level.  Hedge fund 6 seems to perform the best 

with alpha’s value 0.0219 (p-value: 0.0007), followed by hedge fund 1 with 

value of alpha 0.0206 (p-value: 0.0042).  Accordingly, we are able to 

comprehend hedge fund 1 and 6 in our portfolio.  As we observe until now, 

the four factor model of Carhart gives hedge fund 1 and 6 as the most 

profitable hedge funds.  It is remarkable to refer that the single factor model 

as the three factor model of Fama and French conclude to the same results 

with the four factor model of Carhart, in regard to the best performing hedge 

funds. 



  

 We also apply t-tests in order to test the significance of the beta 

coefficients.  The null hypothesis maintains that the beta coefficient is equal 

to zero.  Hedge fund 1, 2, 3, 4, 7, 8 and 10 load significantly positive on the 

factor Russell 3000 equity index at the 5% significance level.  Hedge fund 2, 

3, 4, 5, 8 and 10 load significantly positive on the factor mimicking portfolio 

for size (SMB) at the 5% significance level.  Hedge fund 3, 7 and 10 load 

significantly positive on the factor mimicking portfolio for book-to-market 

equity (HML) and hedge fund 2, 8 and 9 load significantly negative on the 

same factor at the 5% significance level.  Hedge fund 3, 4, 5 and 10 load 

significantly positive on the momentum factor (MOM) and hedge fund 2 and 

6 load significantly negative on the same factor at the 5% significance level.   

 The range for the values of the adjusted 2R  is (0.1808, 0.8221), which 

means that the four factors are able to explain a relatively small proportion of 

the variability of the excess returns on the hedge funds, except the returns of 

hedge fund 2.  The average adjusted 2R , barely, improves to 0.352 compared 

to 0.322 from the three factor of Fama and French. 

 
ITEM MEAN MEDIAN MINIMUM MAXIMUM 

â  0,01067 0,0099 0,0011 0,0219 

1b̂  
0,39303 0,3891 -0,0026 0,695 

2b̂  
0,35498 0,54925 -0,2169 0,577 

3b̂  
-0,11281 -0,24725 -0,8615 0,577 

4b̂  
0,07417 0,1363 -0,3423 0,3936 

Table 7.9: Summary statistics for the estimated regression results from the regression of 7.2. 

 
 In table 7.9, we present the mean, median, minimum and maximum 

values of the alphas coefficients for the ten models.  We observe that the 

average (defined as either the mean or median) hedge fund means that there is 

a positive manager’s skill, recording positive alpha in both cases.  The best 

hedge fund of all yields an alpha of 0.577. 

 Furthermore, we present the mean, median, minimum and maximum 

values of all beta coefficients for the ten models.  The average beta 

coefficients are relatively small, conclusion that indicates that most hedge 

funds are less risky than the market indices. 



  

RESIDUAL DIAGNOSTICS 

 JARQUE-BERA TEST  LJUNG-BOX TEST 

(AUTOCORRELATION) 

LJUNG-BOX TEST 

(HETEROSKEDASTICITY) 

HF1 28,1526* 
(0,0000) 

11,8296 
(0,7556) 

11,5482 
(0,7745) 

HF2 1,0486 
(0,592) 

11,4014 
(0,9096) 

17,5278 
(0,5542) 

HF3 5,142 
(0,0765) 

13,9099 
(0,7349) 

26,1684 
(0,096) 

HF4 29,4401* 
(0,0000) 

38,085* 
(0,0086) 

22,9107 
(0,2932) 

HF5 281,7345* 
(0,0000) 

17,3163 
(0,6323) 

23,2958 
(0,2745) 

HF6 0,2652 
(0,8758) 

12,9151 
(0,679) 

12,4231 
(0,7144) 

HF7 0,6914 
(0,7077) 

14,3679 
(0,7618) 

15,8792 
(0,6653) 

HF8 6,0215* 
(0,0493) 

24,1882 
(0,149) 

19,6744 
(0,3514) 

HF9 18,2773* 
(0,0001) 

20,9632 
(0,2279) 

24,7692 
(0,1) 

HF10 10,7832* 
(0,0046) 

9,0521 
(0,9585) 

18,625 
(0,4152) 

Table 7.10: Residual diagnostics of the four factor model. 

The Jarque-Bera and Ljung-Box statistics for the standardized residuals and squared standardized 
residuals as well as their p-values, which are in the brackets.  With (*), we denote the quantities, which 

are statistically significant at the 5% significance level. 

 
In the following, we proceed to test the significance of the null 

hypothesis of the Jarque-Bera test, which refers that there is normality at the 

residuals series.  Specifically, we apply this test and we conclude that the null 

hypothesis of normality is rejected in the cases of hedge fund 1, 4, 5, 8, 9 and 

10 at the 5% significance level, implying that the inferences we make about 

the coefficient estimates could be wrong. 

 Afterwards, we apply the Ljung-Box test in order to test the existence 

of autocorrelation in the standardized residuals series.  The null hypothesis 

asserts that there is no autocorrelation.  The Ljung-Box Q-statistic for the 

standardized residuals series after fitting the four factor model of Carhart, 

suggests that the null hypothesis is rejected only in the case of hedge fund 4 

(38.085, p-value: 0,0086). 

 We accomplish with the application of the Ljung-Box test on the 

squared standardized residuals series in order to test the evidence of 

heteroskedasticity in the standardized residuals.  The null hypothesis refers to 

no heteroskedasticity in the squared standardized residuals.  Looking at table 

7.10, we conclude that there is no heteroskedasticity in the squared 

standardized residuals series. 



  

7.7 Multi-factor model 

 

Many market indices can be used to evaluate hedge funds.  In our case 

we have 14 pricing factors that can be used in our models.  Our aim is to 

detect the suitable set of market indices, which we lead us to safe conclusions 

relative to the evaluation of performance of hedge funds.  This problem is 

usually referred to as model uncertainty.  Until now, we have applied a single 

factor model, the three factor model of Fama and French and the four factor 

model of Carhart.  It is necessary to use a backward procedure to identify 

significant hedge fund pricing factors in order to apply suitable models. 

Our model has the following general expression: 

K

it i k kt itk 1
R α β F ε

=
= + +ε  (7.4), where itR  is the return of a hedge fund 

investment at time t, iα  is the abnormal performance of the hedge fund i at 

time t which is an aggregate measure of performance, kβ  is the loading of risk 

factor k associated with the hedge fund, ktF  is the excess return of factor k at 

time t and itε  is the error term of hedge fund i at time t. 

In the regression, we use as independent variables the 14 market 

indices.  We apply this regression ten times for each hedge fund, using the 

backward procedure to obtain the suitable factors in each case.  In the 

following, we construct a table where its first column contains the brief 

names of the 14 market indices, which we comprehend in the regressions; so, 

the information variables are: the Russell 3000 equity index excess return 

(RUS), the Russell 3000 equity index excess return lagged once [RUS(-1)], 

the Morgan Stanley Capital International world excluding USA index excess 

return (MXUS), the Morgan Stanley Capital International emerging markets 

index excess return (MEM), Fama and French’s (1993) ‘size’ (SMB) and 

‘book-to-market’ (HML) as well as Carhart’s (1997) ‘momentum’ factors 

(MOM), the Salomon Brothers world government and corporate bond index 

excess return (SBGC), the Salomon Brothers world government bond index 

excess return (SBWG), the Lehman high yield index excess return (LHY), the 

difference between the yield on the BAA-rated corporate bonds and the 10-

year Treasury bonds (DEFSPR), the Goldman Sachs commodity index excess 



  

returns (GSCI), the Federal Reserve Bank competitiveness weighted dollar-

index excess return (FRBI) and the change in S&P 500 implied volatility 

index (VIX). 

 Below, we show the regressions which arisen after the backward 

selection approach for each hedge fund. 

Hedge fund 1: 

it it 1,i RUS1,t 2,i MEM,t 3,i SMB,t 4,i HML,t 5,i DEFSPR,t itR α β R β R β R β R β R ε= + Χ + Χ + Χ + Χ + Χ +  

Hedge fund 2: 

it it 1,i RUS,t 2,i SMB,t 3,i HML,t 4,i MOM,t itR α β R β R β R β R ε= + Χ + Χ + Χ + Χ +  

Hedge fund 3: 

it it 1,i MEM,t 2,i HML,t 3,i MOM,t itR α β R +β R β R ε= + Χ Χ + Χ +  

Hedge fund 4: 

it it 1,i MXUS,t 2,i SMB,t 3,i MOM,t itR α β R β R β R ε= + Χ + Χ + Χ +  

Hedge fund 5: 

it it 1,i MXUS,t 2,i SMB,t 3,i MOM,t 4,i SBWG,t 5,i DEFSPR,t

6,i VIX,t it

R α β R β R β R +β R β R

         +β R ε

= + Χ + Χ + Χ + Χ + Χ

Χ +
 

Hedge fund 6: 

it it 1,i HML,t 2,i MOM,t itR α β R β R ε= + Χ + Χ +  

Hedge fund 7: 

it it 1,i RUS1,t 2,i MEM,t 3,i SMB,t 4,i SBGC,t 5,i DEFSPR,t

it

R α β R β R β R β R β R

         ε

= + Χ + Χ + Χ + Χ + Χ

+
 

Hedge fund 8: 

it it 1,i RUS,t 2,i RUS1,t 3,i SMB,t 4,i HML,t itR α β R β R β R β R ε= + Χ + Χ + Χ + Χ +  

Hedge fund 9: 

it it 1,i RUS,t 2,i MXUS,t 3,i HML,t 4,i MOM,t 5,i FRBI,t itR α β R β R β R β R β R ε= + Χ + Χ + Χ + Χ + Χ +  

Hedge fund 10: 

it it 1,i SMB,t 2,i HML,t 3,i VIX,t itR α β R β R β R ε= + Χ + Χ + Χ + . 

 

 In table 7.11, we receive the coefficients of alpha, beta, their 

respective p-values and the values of the adjusted 2R , in each case. 

 



  

MULTIFACTOR MODEL 

 HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9 HF10 

Alpha 0.0248* 
(0.0002) 

0.0092 
(0.0514) 

0.0169* 
(0.0118) 

0.0111 
(0.0842) 

0.0104* 
(0.0409) 

0.0243* 
(0.0000) 

0.0067 
(0.1275) 

0.0160* 
(0.0058) 

0.0163* 
(0.0001) 

0.0030 
(0.4994) 

RUS - 0.9317 
(0.0000) 

- - - - - 0.2446 
(0.0284) 

-0.4433 
(0.0079) 

- 

RUS1 0.2991 
(0.0281) 

- - - - - 0.3975 
(0.0000) 

0.3552 
(0.0023) 

- - 

MXUS - - - 0.4197 
(0.0061) 

0.3546 
(0.0188) 

- - - 0.5406 
(0.0013) 

- 

MEM 0.4786 
(0.0000) 

- 0.6807 
(0.0000) 

- - - 0.2675 
(0.0000) 

- - - 

SMB -0.3965 
(0.0206) 

0.6048 
(0.0000) 

- 0.6097 
(0.0006) 

0.7799 
(0.0000) 

- -0.4886  
(0.0000) 

0.4188 
(0.0052) 

- 0.3671 
(0.0014) 

HML -0.4044 
(0.0008) 

-0.8615 
(0.0000) 

0.3248 
(0.0397) 

- - -0.4105 
(0.0002) 

- -0.7471 
(0.0000) 

-0.4196 
(0.0000) 

0.2122 
(0.0149) 

MOM - -0.3423 
(0.0000) 

0.2344 
(0.0169) 

0.3419 
(0.0002) 

0.2906 
(0.0000) 

-0.3003 
(0.0000) 

- - -0.1191 
(0.0305) 

- 

SBGC - - - - - - 0.8349 
(0.0203) 

- - - 

SBWG - - - - -0.8295 
(0.0045) 

- - - - - 

LHY  - - - - - - - - - 

DEFSPR 10.3632 
(0.0341) 

- - - 8.6873 
(0.0452) 

- 10.3953 
(0.0038) 

- - - 

FRBI - - - - - - - - 0.9158 
(0.0267) 

- 

GSCI - - - - - - - - - - 

VIX - - - - 0.3232 
(0.0412) 

- - - - -0.4008 
(0.0001) 

ADJ. R. 

SQ 

0.3523 0.8221 0.4178 0.2068 0.3240 0.3521 0.3635 0.5747 0.4679 0.2993 

Table 7.11:  Coefficients of the multi-factor model. 

The results of the applied multifactor models that have arisen by the backward procedure, of the hedge 
funds.  In the brackets, there are the corresponding p-values of alphas, betas and the adjusted R-

squared.  With (*), we denote the quantities that are statistically significant at the 5% significance level 
(in regard to the alpha coefficients).  All beta coefficients, which we present in the table, are 

statistically significant at the 5% significance level. 

 
 We apply t-tests in order to test the significance of the alpha 

coefficients, which have arisen from the application of the above ten 

regressions with the original form (7.4).  The null hypothesis asserts that the 

alpha coefficient is equal to zero.  Looking at table 7.11, we summarize that 

the alpha coefficients are statistically significant only in the cases of hedge 

fund 1, 3, 5, 6, 8 and 9 at the 5% significance level.  Examining the 

performance of hedge funds, we can conclude that hedge fund 1 and 6 have 

values of alpha 0.0248 (p-value: 0.0002) and 0.0243 (p-value: 0.0000), 

respectively, that means better performance in contrary to the rest hedge 

funds.  Accordingly, we are able to comprehend hedge fund 1 and 6 in our 

portfolio. 



  

We also apply t-tests in order to test the significance of the beta 

coefficients.  The null hypothesis asserts that the beta coefficient is equal to 

zero.  Looking at table 7.11, we observe that hedge fund 2 and 8 load 

significantly positive on the factor Russell 3000 equity index and hedge fund 

9 loads significantly negative on this factor at the 5% significance level.  

Hedge fund 1, 7 and 8 load significantly positive on the factor Russell 3000 

equity index excess return lagged once [RUS(-1)] at the 5% significance 

level.  Hedge fund 4, 5 and 9 load significantly on the factor Morgan Stanley 

Capital International world excluding USA index excess return (MXUS) at 

the 5% significance level.  Hedge fund 1, 3 and 7 load significantly positive 

on the factor Morgan Stanley Capital International emerging markets index 

excess return (MEM) at the 5% significance level.  Hedge fund 2, 4, 5, 8 and 

10 load significantly positive on the factor mimicking portfolio for size and 

hedge fund 1 and 7 load significantly negative on the same factor at the 5% 

significance level.  Hedge fund 3 and 10 load significantly positive on the 

factor mimicking portfolio for book-to-market equity and hedge fund 1, 2, 6, 

8 and 9 load significantly negative on the same factor at the 5% significance 

level.  Hedge fund 3, 4, 5 and 6 load significantly positive on the momentum 

factor and hedge fund 2 and 9 load significantly negative on the same factor 

at the 5% significance level.  Hedge fund 7 loads significantly positive on the 

Salomon Brothers world government and corporate bond index excess return 

(SBGC) at the 5% significance level.  Hedge fund 5 loads significantly 

negative on the Salomon Brothers world government bond index excess return 

(SBWG).  Hedge fund 1, 5 and 7 load significantly positive on the difference 

between the yield on the BAA-rated corporate bonds and the 10-year Treasury 

bonds (DEFSPR) at the 5% significance level.  Hedge fund 9 loads 

significantly positive on the Goldman Sachs commodity index excess returns 

(GSCI) at the 5% significance level.  Hedge fund 5 loads significantly 

positive on the the change in S&P 500 implied volatility index (VIX) and 

hedge fund 10 loads significantly negative on the same factor at the 5% 

significance level. 

 The range for the values of the adjusted 2R  is (0.2068, 0.8221), which 

means that the factors are able to explain a relative small proportion of the 



  

variability of the excess returns on the hedge funds, except the returns of 

hedge fund 2.  The average adjusted 2R , barely, improves to 0.4154 

compared to 0.352 from the four factor model of Carhart. 

 

In the following (table 7.12), we proceed to test null hypothesis of the 

Jarque-Bera test, which refers that there is normality in the residuals series.  

Specifically, we apply this test and we conclude that the null hypothesis of 

normality is rejected in the cases of hedge fund 1, 4, 5 and 10 at the 5% 

significance level, implying that the inferences we make about the coefficient 

estimates could be wrong. 

 Afterwards, we apply the Ljung-Box test in order to test the existence 

of autocorrelation in the standardized residuals series.  The null hypothesis 

asserts that there is no autocorrelation.  The Ljung-Box Q-statistic for the 

standardized residuals series after fitting the multi-factor model, which has 

arisen by the backward process, suggests that there is no autocorrelation, 

apart from hedge fund 4 (36.5353) (p-value: 0.0133). 

Table 7.12:  Residual diagnostics of the multi-factor model. 

The Jarque-Bera test and Ljung-Box statistics for the standardized and squared standardized residuals 
as well as their p-values, which are in the brackets.  With (*), we denote the quantities which are 

statistically significant at the 5% significance level. 

RESIDUAL DIAGNOSTICS 

 JARQUE-BERA TEST LJUNG-BOX TEST 

(AUTOCORRELATION) 

LJUNG-BOX TEST 

(HETEROSKEDASTICITY) 

HF1 7.4030* 
(0.0247) 

14.6712 
(0.5488) 

9.0270 
(0.9123) 

HF2 1.0519 
(0.5910) 

11.3923 
(0.9099) 

17.5372 
(0.5535) 

HF3 3.9050 
(0.1419) 

14.9752 
(0.6637) 

19.7242 
(0.3486) 

HF4 17.0066* 
(0.0002) 

36.5353* 
(0.0133) 

27.5909 
(0.1194) 

HF5 28.761* 
(0.0000) 

15.5531 
(0.7439) 

21.5200 
(0.3671) 

HF6 0.4698 
(0.7906) 

12.2807 
(0.7244) 

11.9765 
(0.7456) 

HF7 0.6433 
(0.7250) 

17.2907 
(0.5702) 

17.3823 
(0.5640) 

HF8 1.8703 
(0.3925) 

16.2774 
(0.5732) 

13.9667 
(0.7313) 

HF9 37.444 
(0.1538) 

18.9594 
(0.3309) 

12.0725 
(0.7957) 

HF10 9.99* 
(0.0068) 

8.3524 
(0.9729) 

34.4612* 
(0.0110) 



  

 We accomplish with the application of the Ljung-Box test on the 

squared standardized residuals series in order to detect heteroskedasticity in 

the standardized residuals.  So, the null hypothesis refers to no 

heteroskedasticity in the standardized residuals.  Looking at table 7.12, we 

reject the null hypothesis for hedge fund 10, which has value of 34.4612 (p-

value: 0.011). 

 

7.8 Single factor GARCH model 

 

 As we have previously referred, the autocorrelation in the squared 

returns, or conditional heteroskedasticity can be modeled using a generalized 

autoregressive GARCH model for the squared residuals.  For this reason, we 

proceed to the application of a single factor GARCH(1,1) model, with 

conditional mean equation such as: it i,t i,t RUS,t itR α β R ε= + Χ +  (7.5), where itR  

is the return on hedge fund i at time t, i,tα  is the abnormal performance of the 

hedge fund i at time t, i,tβ  is the slope coefficient or the sensitivity of hedge 

fund i at time t, RUS,tR  is the return on the Russell 3000 equity index at time t 

and itε  is the error term of the hedge fund i at time t.  The conditional 

variance equation is 2 2 2
t 0 1 t 1 1 t 1σ a a ε b σ- -= + +  (7.6), where 0a  (A in the table) 

denotes the constant in the conditional variance equation, 1a  denotes the 

estimated ARCH(1) parameter and 1b  denotes the estimated GARCH(1) 

parameter.  Specifically, we apply this model ten times, once for each hedge 

fund.  In table 7.13, we obtain the coefficients of alpha, beta, 0a , 1a  and 1b , 

as well as their p-values, in each case. 

 
 
 
 
 
 
 
 
 
 
 



  

SINGLE FACTOR GARCH(1,1) MODEL 

 ALPHA BETA A ARCH(1) GARCH(1) 

HF1 0,0056* 
(0,0001) 

0,1633* 
(0,0000) 

-0,0000007 
(0,4924) 

2,7648* 
(0,0005) 

0,0551 
(0,1655) 

HF2 0,0003 
(0,4805) 

1,3322* 
(0,0000) 

0,0008 
(0,0652) 

0,3429 
(0,0653) 

0,5048* 
(0,0173) 

HF3 0,0188* 
(0,0078) 

0,5425* 
(0,0006) 

0,0051* 
(0,0000) 

0,1769 
(0,0976) 

-0,5596* 
(0,0247) 

HF4 0,0087 
(0,0891) 

0,5961* 
(0,0000) 

0,0011 
(0,1006) 

0,2961* 
(0,0151) 

0,5126* 
(0,015) 

HF5 0,0046 
(0,057) 

0,0095 
(0,4478) 

0,0003* 
(0,0092) 

0,9476* 
(0,001) 

0,2895* 
(0,0016) 

HF6 0,019* 
(0,0011) 

0,3899* 
(0,0001) 

-0,0001 
(0,22) 

-0,0078 
(0,4732) 

1,0292* 
(0,0000) 

HF7 0,0084* 
(0,0393) 

0,2155* 
(0,003) 

0,0002 
(0,2289) 

0,3259 
(0,0793) 

0,6231* 
(0,0012) 

HF8 0,0056 
(0,1623) 

0,3373* 
(0,0003) 

0,0009* 
(0,0083) 

0,7846* 
(0,0007) 

0,1847 
(0,09) 

HF9 -0,0004 
(0,4127) 

0,1044* 
(0,0031) 

0.00005* 
(0,0425) 

1,1146* 
(0,0004) 

0,2492* 
(0,0065) 

HF10 0,0058 
(0,1405) 

0,2814* 
(0,0045) 

0,0002 
(0,0508) 

0,4222* 
(0,0045) 

0,5391* 
(0,0000) 

Table 7.13:  Coefficients of the single factor GARCH(1,1) model. 

  In the brackets, there are the corresponding p-values of alphas, betas, 0a , 1a  and 1b .  With (*), we 

denote the quantities which are statistically significant at the 5% significance level. 

 

The quantity of interest is the significance of alphas ( i,tα ) which are 

the intercepts in the regressions of the fund’s excess returns on the excess 

returns of Russell 3000 equity index.  We apply t-tests in order to ensure the 

significance of the alpha coefficients.  Specifically, the null hypothesis refers 

that the alpha coefficient is equal to zero.  Looking at table 7.13, we conclude 

that hedge fund 1, 3, 6 and 7 are statistically significant at the 5% 

significance level.  Hedge fund 6 seems to perform the best, because it has 

alpha equal to 0.019 (p-value: 0.0011), followed by hedge fund 3, which has 

value of alpha equal to 0.0188 (p-value: 0.0078).  Consequently, we can get 

these hedge funds to our portfolio. 

 In the following, we observe of the beta coefficients, which are all 

positive apart from hedge fund 5 and all hedge funds load significantly on the 

Russell 3000 equity index.  We end to this assumption because we apply t-

tests, at which the null hypothesis refers that the beta coefficient is equal to 

zero (this hypothesis is rejected for all hedge funds at the 5% significance 

level).  In the same way, we conclude that the 0a ’s, the 1a ’s and the 1b ’s, are 

statistically significant in the cases of hedge fund 3, 5, 8 and 9, are 

statistically significant in the cases of hedge fund 1, 4, 5, 8, 9 and 10 and are 



  

not statistically significant in the cases of hedge fund 1 and 8 at the 5% 

significance level, respectively.  We have a covariance stationary model, if 

the sum of the estimated GARCH(1) parameter and the estimated ARCH(1) 

parameter is close to one ( )i ia b 1+ < . 

 

RESIDUAL DIAGNOSTICS 

 JARQUE-BERA 

TEST 

LJUNG-BOX TEST 

(AUTOCORRELATION) 

LJUNG-BOX TEST  

(HETEROSKEDASTICITY) 

LAGRANGE-

MULTIPLIER TEST 

HF1 2,457 
(0,2927) 

13,1194 
(0,3604) 

8,0368 
(0,7822) 

10,47 
(0,575) 

HF2 9,2292* 
(0,0099) 

8,8665 
(0,7143) 

10,741 
(0,5512) 

11,96 
(0,5512) 

HF3 7,2988* 
(0,026) 

15,3637 
(0,2221) 

9,7842 
(0,6349) 

9,784 
(0.6349) 

HF4 1,9885 
(0,37) 

17,4129 
(0,1347) 

18,1607 
(0,1109) 

15,02 
(0,2406) 

HF5 11,3645* 
(0,0034) 

11,0961 
(0,5207) 

5,6596 
(0,9323) 

6,944 
(0,858) 

HF6 1,4863 
(0,4756) 

10,0311 
(0,6132) 

12,3511 
(0,4179) 

13,64 
(0,3242) 

HF7 0,8766 
(0,6451) 

3,5662 
(0,9901) 

4,7047 
(0,9671) 

4,489 
(0,9671) 

HF8 39,5719* 
(0,0000) 

11,2666 
(0,5062) 

4,9655 
(0,9591) 

4,181 
(0.9799) 

HF9 3,2014 
(0,2018) 

12,4663 
(0,409) 

6,9525 
(0,8607) 

9,601 
(0,5609) 

HF10 11,963* 
(0,0025) 

21,1142* 
(0,0487) 

12,537 
(0,4036) 

16,25 
(0,1799) 

Table 7.14:  Residual diagnostics of the single factor GARCH(1,1) model. 

The Jarque-Bera and the Ljung-Box tests for the standardized residuals and the Ljung-Box and the LM 
tests for the squared standardized residuals as well as their p-values, which are in the brackets.  With 

(*), we denote the quantities which are statistically significant at the 5% significance level. 

 

 The null of hypothesis of the Jarque-Bera test suggests that there is 

normality in the standardized residuals.  From the single factor GARCH 

model, we concluded that the normality, in the residual series, is rejected at 

the 5% significance level in regard to hedge fund 2, 3, 5, 8 and 10.   

 If the model is successful modeling the autocorrelation structure in the 

conditional mean and conditional variance, then there should be no 

autocorrelation left in the standardized residuals and squared standardized 

residuals.  For this reason, we proceed to the application of the Ljung-Box 

test.  The null hypothesis of the Ljung-Box test when we want to test for the 

existence of autocorrelation in the standardized residuals refers to no 

autocorrelation.  The null hypothesis slightly rejected in hedge fund 10, which 

has value of alpha 21.12 and p-value 0.0487. 



  

 Additionally, we apply the Ljung-Box test seeking for the existence of 

heteroskedasticity to the standardized residuals, i.e autocorrelation between 

the squared standardized residuals.  The null hypothesis refers to no 

heteroskedasticity.  Looking at table 7.14, we conclude that there is no 

heteroskedasticity to the standardized residuals at the 5% significance level. 

 Furthermore, we test if there are any ARCH effects left, after the 

application of the GARCH(1,1) model, applying the Lagrange Multiplier 

(LM) test on the standardized residuals.  The null hypothesis asserts that there 

are no ARCH effects on the standardized residuals.  Consequently, we 

observe that there are no ARCH effects left after the application of the single 

factor GARCH(1,1) model. 

 

7.9 Three factor GARCH model 

 

We apply a three factor GARCH(1,1) model, with conditional mean 

equation such as: it it 1,t RUS,t 2,t SMB,t 3,t HML,t itR α β R β R β R ε= + Χ + Χ + Χ +  (7.7), 

where itR  is the return on hedge fund i at time t, itα  is the abnormal 

performance of the hedge fund i at time t, 1,tβ , 2,tβ  and 3,tβ  are the slope 

coefficients or the factor loadings of hedge fund i at time t, RUS,tR  is the 

return on the Russell 3000 equity index at time t,  SMB,tR  is the return on 

factor mimicking portfolio for size at time t, HML,tR  is the return on factor 

mimicking portfolio for book-to-market equity index at time t and itε  is the 

error term of the hedge fund i at time t.  The conditional variance equation is 

2 2 2
t 0 1 t 1 1 t 1σ a a ε b σ- -= + +  (7.8), where 0a  denotes the constant in the conditional 

variance equation, 1a  denotes the estimated ARCH(1) parameter and 1b  

denotes the estimated GARCH(1) parameter.  Specifically, we apply this 

model ten times, once for each hedge fund.  In table 7.15, we obtain the 

coefficients of alpha, beta, 0a , 1a  and 1b , as well as their p-values, in each 

case. 

 
 
 



  

THREE FACTOR GARCH(1,1) MODEL 

 ALPHA BETA1 BETA2 BETA3 A ARCH(1) GARCH(1) 

HF1 0,0065* 
(0,0002) 

0,1949* 
(0,0000) 

-0,08 
(0,0506) 

-0,0085 
(0,3931) 

-0,0003 
(0,448) 

2,5117* 
(0,0004) 

0,072 
(0,1882) 

HF2 0,004 
(0,242) 

1,198* 
(0,0000) 

0,8677* 
(0,0000) 

-0,4699* 
(0,0000) 

0,0019 
(0,367) 

-0,0327 
(0,3988) 

0,0117 
(0,4985) 

HF3 0,0163* 
(0,0222) 

0,5358* 
(0,0004) 

0,3013 
(0,0815) 

0,1334 
(0,1988) 

0,0009* 
(0,0223) 

0,3547 
(0,0688) 

0,4471* 
(0,0115) 

HF4 0,0087 
(0,0551) 

0,5878* 
(0,0000) 

0,8167* 
(0,0000) 

-0,2686* 
(0,0225) 

0,0008 
(0,0634) 

0,3588* 
(0,0029) 

0,4766* 
(0,0091) 

HF5 0,0053* 
(0,0395) 

0,0149 
(0,4133) 

0,251* 
(0,0021) 

-0,0943 
(0,1086) 

0,0002* 
(0,0129) 

0,9945* 
(0,0003) 

0,2958* 
(0,0003) 

HF6 0,0128* 
(0,0114) 

0,318* 
(0,002) 

0,3495* 
(0,0145) 

0,0205 
(0,4233) 

-0,0001 
(0,3106) 

-0,0637 
(0,1308) 

1,0788* 
(0,0000) 

HF7 0,0094* 
(0,0221) 

0,2372* 
(0,0021) 

-0,2843* 
(0,0133) 

0,1234 
(0,0846) 

0,0004 
(0,2584) 

0,2539 
(0,1737) 

0,5315 
(0,1407) 

HF8 0,007 
(0,1582) 

0,2085* 
(0,0345) 

0,4995* 
(0,0000) 

-0,4278* 
(0,0000) 

0,0012* 
(0,024) 

0,3453* 
(0,0472) 

0,2002 
(0,2067) 

HF9 0,0042 
(0,0607) 

0,0792 
(0,0502) 

0,1229* 
(0,0211) 

-0,2421* 
(0,0000) 

-0,0006 
(0,1221) 

-0,0238 
(0,0572) 

1,0155* 
(0,0000) 

HF10 0,0029 
(0,2739) 

0,3163* 
(0,0002) 

0,3941* 
(0,0006) 

0,2406* 
(0,007) 

0,0013 
(0,3252) 

-0,052 
(0,3259) 

0,1676 
(0,4655) 

Table 7.15:  Coefficients of the three factor GARCH(1,1) model. 

The results of a single factor model for the 10 hedge funds.  In the brackets, there are the corresponding 

p-values of alphas, betas, 0a , 1a  and 1b .  With (*), we denote the quantities which are statistically 

significant at the 5% significance level. 

  

The quantity of interest is the significance of alphas ( i,tα ), which are 

the intercepts in the regressions of the fund’s excess returns on the excess 

returns of Russell 3000 equity index (RUS), on the excess returns of the 

factor mimicking portfolio for size (SMB) and on the excess returns of the 

factor mimicking portfolio for boot-to-market equity (HML).  We apply t-

tests, at which the null hypothesis asserts that the alpha coefficient is equal to 

zero.  Checking from the table the alpha’s p-values, we conclude that hedge 

fund 1, 3, 5, 6 and 7 have statistically significant alpha at the 5% significance 

level.  Hedge fund 3 seems to perform the best, because it has alpha equal to 

0.0163 (p-value: 0.0222), followed by hedge fund 6, which has value of alpha 

equal to 0.0128 (p-value: 0.0144).  Consequently, we can comprehend these 

hedge funds to our portfolio. 

 We also apply t-tests in order to test the significance of the beta 

coefficients.  The null hypothesis maintains that the beta coefficient is equal 

to zero.  From the table, we can conclude that hedge fund 1, 2, 3, 4, 6, 7, 8 

and 10 load significantly positive on the Russell 3000 equity index at the 5% 

significance level.  Hedge fund 2, 4, 5, 6, 8, 9 and 10 load significantly 



  

positive on the factor mimicking portfolio for size (SMB) and hedge fund 7 

loads significantly negative on the same factor at the 5% significance level.  

Hedge fund 10 loads significantly positive on the factor mimicking portfolio 

for book-to-market equity (HML) and hedge fund 2, 4, 8 and 9 load 

significantly negative on the same factor at the 5% significance level.   

We continue applying t-test and we conclude that the 0a ’s, which 

represent the constant in the conditional variance equation, are statistically 

significant in regard to hedge fund 3, 5 and 8, at the 5% significance level.  

Continuously, the 1a ’s, which represent the estimated ARCH(1) parameters, 

are statistically significant in the cases of hedge fund 1, 4, 5 and 8 at the 5% 

significance level.  Finally, the 1b ’s, which represent the estimated 

GARCH(1) parameters, are statistically significant in the cases of hedge fund 

3, 4, 5, 6 and 9.  We have a covariance stationary model, if the sum of the 

estimated GARCH(1) parameter and the estimated ARCH(1) parameter is 

close to one ( )i ia b 1+ < . 

 
RESIDUAL DIAGNOSTICS 

 JARQUE-

BERA TEST 

LJUNG-BOX TEST  

(AUTOCORRELATION) 

LJUNG-BOX 

(HETEROSKEDASTICITY) 

LAGRANGE-

MULTIPLIER TEST 

HF1 2,6054 
(0,2718) 

14,8084 
(0,2521) 

7,6308 
(0,8133) 

12,2629 
(0.4244) 

HF2 0,3464 
(0,841) 

15,8882 
(0,1964) 

5,8851 
(0,9218) 

5,564 
(0,9364) 

HF3 7,8272* 
(0,02) 

12,5818 
(0,4002) 

10,5525 
(0,5676) 

13,1577 
(0,3577) 

HF4 2,1988 
(0,3331) 

14,9679 
(0,2432) 

12,732 
(0,3888) 

13,5959 
(0,3273) 

HF5 13,4476* 
(0,0012) 

12,8124 
(0,3828) 

3,7648 
(0,9873) 

4,235 
(0,9788) 

HF6 2,2299 
(0,3279) 

6,7283 
(0,875) 

13,6405 
(0,3243) 

13,0144 
(0,368) 

HF7 1,3434 
(0,5108) 

6,5059 
(0,8885) 

1,1461 
(0.9876) 

2,3318 
(0,9987) 

HF8 3,6447 
(0,1616) 

17,7993 
(0,1219) 

8,8473 
(0,7159) 

8,2303 
(0,7669) 

HF9 2,2938 
(0,3176) 

11,2679 
(0,5061) 

12,7358 
(0,3885) 

18,2493 
(0,1083) 

HF10 16,2784* 
(0,0003) 

3,9171 
(0,9849) 

14,4548 
(0,2726) 

21,7956* 
(0,039) 

Table 7.16:  Residual diagnostics of the three factor GARCH(1,1) model. 

The Jarque-Bera and the Ljung-Box tests for the standardized residuals and the Ljung-Box and the LM 
tests for the squared standardized residuals as well as their p-values, which are in the brackets.  With 

(*), we denote the quantities which are statistically significant at the 5% significance level. 

 



  

In the following (table 7.16), we proceed to test the significance of the 

null hypothesis of the Jarque-Bera test, which refers that there is normality in 

the residuals series.  Specifically, we apply this test and we conclude that the 

null hypothesis of normality is rejected in the cases of hedge fund 3, 5 and 10 

at the 5% significance level. 

 We apply the Ljung-Box test to the standardized residuals in order to 

detect the autocorrelation between them and the same test to the squared 

standardized residuals in order to detect heteroskedasticity in the standardized 

residuals.  In the first case, the null hypothesis refers to no autocorrelation 

and the second case, it refers to no heteroskedasticity.  Finally, examining the 

results from table 7.16, we can conclude that there is no autocorrelation, 

neither heteroskedasticity.  We hypothesize that every model is adequately 

fitted. 

 Furthermore, we test if there are any ARCH effects left after the 

application of the GARCH(1,1) model.  So, we apply the LM test in the 

standardized residuals.  The null hypothesis maintains that there are no ARCH 

effects on the standardized residuals.  We observe that there are no ARCH 

effects after the application of the three factor GARCH(1,1) model, apart 

from hedge fund 10, which has value of LM statistic 21.7956 with p-value 

equal to 0.039. 

 

7.10 Four factor GARCH model 

 

We apply four factor GARCH (1,1) models, with conditional mean 

equation with the concretely type of formulation, such as: 

it it 1,t RUS,t 2,t SMB,t 3,t HML,t 4,t MOM,t itR α β R β R β R β R ε= + Χ + Χ + Χ + Χ +  (7.8), where 

itR  is the return on hedge fund i at time t, itα  is the abnormal performance of 

the hedge fund i at time t, 1,tβ , 2,tβ , 3,tβ  and 4,tβ  are the slope coefficients or 

the factor loadings of hedge fund i at time t, RUS,tR  is the return on the 

Russell 3000 equity index at time t, SMB,tR  is the return on the factor 

mimicking portfolio for size at time t, HML,tR  is the return on factor 

mimicking portfolio for book-to-market equity at time t and MOM,tR  is the 



  

return on the momentum factor at time t and itε  is the error term of the hedge 

fund i at time t.  The conditional variance equation is 2 2 2
t 0 1 t 1 1 t 1σ a a ε b σ- -= + +  

(7.9), where 0a  (A in the table) denotes the constant in the conditional 

variance equation, 1a  denotes the estimated ARCH(1) parameter and 1b  

denotes the estimated GARCH(1) parameter.  Specifically, we apply this 

model ten times, once for each hedge fund.  In table 7.17, we obtain the 

coefficients of alpha, beta, 0a , 1a  and 1b , as well as their p-values, in each 

case. 

 

FOUR FACTOR GARCH(1,1) MODEL 

 ALPHA BETA1 BETA2 BETA3 BETA4 A ARCH(1) GARCH(1) 

HF1 0,0084* 
(0,0029) 

0,1144* 
(0,0021) 

-0,0943* 
(0,0087) 

-0,0865* 
(0,0462) 

-0,0497* 
(0,0005) 

0,00003 
(0,4795) 

2,5388* 
(0,0005) 

0,0833 
(0,113) 

HF2 0,011* 
(0,0079) 

0,909* 
(0,0000) 

0,6168* 
(0,0000) 

-0,8802* 
(0,0000) 

-0,3593* 
(0,0000) 

0,0017 
(0,1811) 

-0,1083 
(0,1915) 

-0,0168 
(0,4947) 

HF3 0,0124 
(0,0693) 

0,7237* 
(0,0001) 

0,472* 
(0,0377) 

0,436* 
(0,0369) 

0,2534* 
(0,0203) 

0,0008* 
(0,0364) 

0,3116 
(0,074) 

0,4738* 
(0,0049) 

HF4 0,006 
(0,1499) 

0,6468* 
(0,0000) 

0,8879* 
(0,0000) 

-0,1156 
(0,2356) 

0,181* 
(0,0376) 

0,0007 
(0,0677) 

0,3684* 
(0,0029) 

0,4896* 
(0,0048) 

HF5 0,0034 
(0,133) 

0,0733 
(0,1756) 

0,3423* 
(0,0001) 

0,0368 
(0,3434) 

0,1317* 
(0,007) 

0,0002* 
(0,0189) 

1,1595* 
(0,0002) 

0,2662* 
(0,0005) 

HF6 0,0184* 
(0,001) 

0,1701 
(0,0567) 

0,137 
(0,1872) 

-0,2021 
(0,0794) 

-0,1996* 
(0,0079) 

-0,00007 
(0,337) 

-0,0352 
(0,3093) 

1,0307* 
(0,0000) 

HF7 0,0072 
(0,0578) 

0,3201* 
(0,0012) 

-0,2173* 
(0,0497) 

0,2434* 
(0,03) 

0,1176 
(0,1407) 

0,0005 
(0,2493) 

0,2116 
(0,1869) 

0,5358 
(0,1473) 

HF8 0,0036 
(0,2987) 

0,3372* 
(0,0105) 

0,5767* 
(0,0000) 

-0,2349 
(0,0511) 

0,1289 
(0,0713) 

0,0011* 
(0,013) 

0,3695* 
(0,0358) 

0,1928 
(0,1971) 

HF9 0,0051 
(0,0681) 

0,0467 
(0,2304) 

0,1125 
(0,1199) 

-0,3107* 
(0,0005) 

-0,0488 
(0,1629) 

-0,00003 
(0,2088) 

-0,0302 
(0,0901) 

1,0269* 
(0,000) 

HF10 0,0005 
(0,4606) 

0,4569* 
(0,0000) 

0,5194* 
(0,0001) 

0,4299* 
(0,001) 

0,1716* 
(0,0119) 

0,0013 
(0,2989) 

-0,0703 
(0,29) 

0,1234 
(0,4728) 

Table 7.17:  Coefficients of the four factor GARCH(1,1) model. 

The results of the single factor models of the ten hedge funds.  In the brackets, there are the 

corresponding p-values of alphas, betas, 0a , 1a  and 1b .  With (*), we denote the quantities which are 

statistically significant at the 5% significance level. 

 

 The quantity of interest is the significance of alphas ( i,tα ), which are 

the intercepts in the regressions of the fund’s excess returns on the excess 

returns of Russell 3000 equity index (RUS), on the excess returns of the 

factor mimicking portfolio for size (SMB), on the excess returns of the factor 

mimicking portfolio for equity book-to-market (HML) and on the excess 

returns of the momentum factor (MOM).  We apply t-test, which null 

hypothesis asserts that the alpha coefficient is equal to zero.  Looking at the 



  

table, the alpha’s p-values, we conclude that hedge fund 1, 2 and 6 are 

statistically significant at the 5% significance level.  Hedge fund 6 seems to 

perform the best, because it has alpha equal to 0.0184 (p-value: 0.001), 

followed by hedge fund 2, which has value of alpha equal to 0.011 (p-value: 

0.0079).  Consequently, we comprehend these hedge funds to our portfolio. 

 We, also, apply t-tests in order to test the significance of the beta 

coefficients.  The null hypothesis refers that the beta coefficient is equal to 

zero.  Looking at the table, we observe that hedge fund 1, 2, 3, 4, 7, 8 and 10 

load significantly positive on the Russell 3000 equity index at the 5% 

significance level.  Hedge fund 2, 3, 4, 5, 8 and 10 load significantly positive 

on the factor mimicking portfolio for size and hedge fund 1 and 7 load 

significantly negative on the same factor at the 5% significance level.  Hedge 

fund 3, 7 and 10 load significantly positive on the factor mimicking portfolio 

for book-to-market equity and hedge fund 1, 2 and 9 load significantly 

negative on the same factor at the 5% significance level.  Hedge fund 3, 4, 5 

and 10 load significantly positive on the momentum factor and hedge fund 1, 

2 and 6 load significantly negative on the same factor at the 5% significance 

level.   

We apply t-test in order to test the statistically significance of the 0a ’s, 

1a ’s and 1b ’s coefficients.  We conclude that 0a ’s, which represent the 

constant in the conditional variance equation, are statistically significant in 

regard to hedge fund 3, 5 and 8 at the 5% significance level.  Continuously, 

1a ’s, which represent the estimated ARCH(1) parameters, are statistically 

significant in the cases of hedge fund 1, 4, 5 and 8 at the 5% significance 

level.  Finally, 1b ’s, which represent the estimated GARCH(1) parameters, 

are statistically significant in the cases of hedge fund 3, 4, 5, 6 and 9.  We 

have a covariance stationary model, if the sum of the estimated GARCH(1) 

parameter and the estimated ARCH(1) parameter is close to one ( )i ia b 1+ < . 

 

 

 

 



  

RESIDUAL DIAGNOSTICS 

 JARQUE-

BERA TEST 

LJUNG-BOX TEST 

(AUTOCORRELATION) 

LJUNG-BOX TEST 

(HETEROSKEDASTICITY) 

LAGRANCE- 

MULTIPLIER TEST 

HF1 1.775 
(0.4116) 

6.032 
(0.9145) 

6.889 
(0.8649) 

15.66 
(0.2073) 

HF2 0.9984 
(0.607) 

7.827 
(0.7985) 

3.531 
(0.9905) 

3.554 
(0.9902) 

HF3 3.83 
(0.1474) 

14.92 
(0.2459) 

12.07 
(0.4397) 

15.17 
(0.2321) 

HF4 3.138 
(0.2082) 

15.61 
(0.2099) 

13.71 
(0.3195) 

14.53 
(0.2679) 

HF5 8.467* 
(0.0145) 

12.02 
(0.4441) 

5.999 
(0.9161) 

6.301 
(0.9002) 

HF6 2.079 
(0.3537) 

7.261 
(0.8399) 

14.84 
(0.2505) 

10.88 
(0.5395) 

HF7 0.8775 
(0.6448) 

9.163 
(0.6889) 

1.57 
(0.9998) 

2.069 
(0.9993) 

HF8 3.942 
(0.1393) 

20.45 
(0.05899) 

7.441 
(0.8272) 

7.248 
(0.8408) 

HF9 2.39 
(0.3028) 

13.7 
(0.3203) 

14.17 
(0.2902) 

18.08 
(0.1134) 

HF10 6.937* 
(0.03116) 

5.368 
(0.9446) 

14.65 
(0.261) 

18.67 
(0.09693) 

Table 7.18:  Residual diagnostics of the four factor GARCH(1,1) model. 

The Jarque-Bera and the Ljung-Box tests for the standardized residuals and the Ljung-Box and the LM 
tests for the squared standardized residuals as well as their p-values, which are in the brackets.  With 

(*), we denote the quantities which are statistically significant at the 5% significance level. 

 

In the following (table 7.18), we proceed to test the significance of the 

null hypothesis, which refers that there is normality in the residuals series.  

Specifically, we apply the Jarque-Bera test and we conclude that the null 

hypothesis of normality is rejected in the cases of hedge fund 5 and 10 at the 

5% significance level. 

 We apply the Ljung-Box test to the standardized residuals in order to 

detect the autocorrelation between them and the same test to the squared 

standardized residuals in order to detect heteroskedasticity in the standardized 

residuals.  In the first case, the null hypothesis refers to no autocorrelation 

and the second case, it refers to no heteroskedasticity.  Finally, examining the 

results from the table, we can conclude that there is no autocorrelation neither 

heteroskedasticity.  We hypothesize that the model is adequately fitted. 

 Furthermore, we test if there are any ARCH effects left after the 

application of the GARCH(1,1) model.  So, we apply the LM test in the 

standardized residuals.  The null hypothesis maintains that there are no ARCH 

effects on the standardized residuals.  We observe that there are no ARCH 

effects after the application of the four factor GARCH(1,1) model. 



  

7.11 Multifactor GARCH model 

 

 We have 14 market indices that can be used in our models.  In order to 

select the suitable set of market indices, we use the backward selection 

approach.  We proceed to this action because we want to take safe 

conclusions relative to the evaluation of the hedge funds’ performance. 

Our model has the following conditional mean equation: 

K

it i k kt itk 1
R α β F ε

=
= + +ε  (7.10), where itR  is the return of a hedge fund 

investment at time t, iα  is the abnormal performance of the hedge fund i at 

time t which is an aggregate measure of performance, kβ  is the loading of risk 

factor k associated with the hedge fund i, ktF  is the excess return of factor k at 

time t and itε  is the error term of hedge fund i at time t.  The conditional 

variance equation has the following expression: 2 2 2
t 0 1 t 1 1 t 1σ α α ε b σ- -= + +  (7.11) 

GARCH(1,1), where 0α  (A in table 7.19) denotes the constant in the 

conditional variance equation, 1α  denotes the estimated ARCH(1) parameter 

and 1b  denotes the estimated GARCH(1) parameter.  Specifically, we apply 

this model ten times, once for each hedge fund.  We use the same 14 market 

indices. 

 Below, we present the regressions that have arisen after the backward 

selection approach for each hedge fund. 

Hedge fund 1: 

it it 1,i RUS,t 2,i RUS1,t 3,i SMB,t 4,i HML,t 5,i SBWG,t

6,i LHY,t 7,i DEFSPR,t 8,i GSCI,t it

R α β R β R β R β R β R

         +β R +β R +β R ε

= + Χ + Χ + Χ + Χ + Χ

Χ Χ Χ +
 

Hedge fund 2: 

it it 1,i RUS,t 2,i SMB,t 3,i HML,t 4,i MOM,t 5,i SBWG,t itR α β R β R β R β R β R ε= + Χ + Χ + Χ + Χ + Χ +  

Hedge fund 3: 

it it 1,i RUS,t 2,i RUS1,t 3,i MXUS,t 4,i MEM,t 5,i SMB,t

6,i HML,t 7,i MOM,t 8,i LHY,t 9,i FRBI,t it

R α β R β R β R β R β R

         +β R β R β R β R ε

= + Χ + Χ + Χ + Χ + Χ

Χ + Χ + Χ + Χ +
 

Hedge fund 4: 

it it 1,i RUS,t 2,i RUS1,t 3,i SMB,t 4,i HML,t itR α β R β R β R β R ε= + Χ + Χ + Χ + Χ +  



  

Hedge fund 5: 

it it 1,i RUS,t 2,i SMB,t 3,i MOM,t 4,i VIX,t itR α β R β R β R β R ε= + Χ + Χ + Χ + Χ +  

Hedge fund 6: 

it it 1,i MXUS,t 2,i SMB,t 3,i MOM,t itR α β R β R β R ε= + Χ + Χ + Χ +  

Hedge fund 7: 

it it 1,i RUS1,t 2,i MEM,t 3,i SMB,t 4,i SBGC,t 5,i DEFSPR,t itR α β R β R β R β R β R +ε= + Χ + Χ + Χ + Χ + Χ  

Hedge fund 8: 

it it 1,i RUS,t 2,i RUS1,t 3,i SMB,t 4,i MOM,t 5,i VIX,t itR α β R β R β R β R β R ε= + Χ + Χ + Χ + Χ + Χ +  

Hedge fund 9: 

it it 1,i RUS,t 2,i MXUS,t 3,i HML,t 4,i MOM,t 5,i FRBI,t itR α β R β R β R β R β R ε= + Χ + Χ + Χ + Χ + Χ +  

Hedge fund 10: 

it it 1,i MEM,t 2,i SMB,t 3,i HML,t 4,i DEFSPR,t 5,i FRBI,t itR α β R β R β R β R β R ε= + Χ + Χ + Χ + Χ + Χ +  

In table 7.19, we obtain the coefficients of alpha, beta, 0α , 1α  and 1b , 

as well as their p-values, in each case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

MULTIFACTOR GARCH(1,1) MODEL 

 HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 HF9 HF10 

ALPHA 0.0129* 
(0.0001) 

0.0117* 
(0.0047) 

0.0034 
(0.228) 

0.0066 
(0.0984) 

0.0002 
(0.4838) 

0.0182* 
(0.0001) 

0.0074* 
(0.0167) 

0.0043 
(0.1773) 

0.013* 
(0.0009) 

0.0042 
(0.1079) 

RUS 0.1796 
(0.0001) 

0.8874 
(0.0000) 

0.8279 
(0.0001) 

0.5772 
(0.0074) 

0.2749 
(0.0293) 

  0.8016 
(0.0000) 

-0.3099 
(0.02) 

 

RUS1 0.1851 
(0.0076) 

 -0.2222 
(0.0021) 

0.3037 
(0.0179) 

  0.3661 
(0.0083) 

0.3029 
(0.0003) 

  

MXUS   -0.7925 
(0.0001) 

  0.1719 
(0.0402) 

  0.3879 
(0.0075) 

 

MEM   0.6143 
(0.0011) 

   0.1959 
(0.0003) 

  0.2688 
(0.0001) 

SMB 0.3202 
(0.001) 

0.5878 
(0.0021) 

0.7 
(0.0001) 

0.6322 
(0.0005) 

0.2999 
(0.0071) 

 -0.389 
(0.0003) 

0.467 
(0.0013) 

 0.1882 
(0.0199) 

HML -0.1846 
(0.0002) 

-0.9222 
(0.0000) 

0.7485 
(0.00002) 

-0.3934 
(0.0031) 

 -0.2394 
(0.0209) 

  -0.3976 
(0.0000) 

0.195 
(0.0027) 

MOM  -0.3706 
(0.0000) 

0.3794 
(0.0002) 

 0.2869 
(0.0000) 

-0.2505 
(0.0005) 

 0.2513 
(0.002) 

-0.0991 
(0.0077) 

 

SBGC       0.7122 
(0.0156) 

   

SBWG -0.5596 
(0.0000) 

-0.3291 
(0.0466) 

        

LHY -0.1009 
(0.0108) 

 -0.4324 
(0.0029) 

       

DEFSPR 7.66 
(0.0000) 

     9.6893 
(0.0011) 

  7.2811 
(0.0067) 

FRBI   -0.7279 
(0.0456) 

     0.7195 
(0.0291) 

0.7041 
(0.0043) 

GSCI 0.0867 
(0.0001) 

         

VIX     0.319 
(0.0123) 

  0.5251 
(0.0003) 

  

A 0.0014 
(0.4731) 

0.0016 
(0.2571) 

0.0005* 
(0.0063) 

0.0011* 
(0.0386) 

0.0004* 
(0.0017) 

-0.0001 
(0.2085) 

0.0005 
(0.0514) 

0.0004 
(0.1006) 

0.0007 
(0.4831) 

0.00004 
(0.3173) 

ARCH(1) 2.365* 
(0.0015) 

-0.1111 
(0.1808) 

-0.2492* 
(0.0000) 

0.4271* 
(0.0029) 

0.9177* 
(0.0095) 

-0.0002 
(0.4991) 

0.5791 
(0.0647) 

0.8034* 
(0.0033) 

-0.06214 
(0.1246) 

0.5252* 
(0.0134) 

GARCH(1) 0.0088 
(0.4431) 

0.0223 
(0.4947) 

1.0123* 
(0.0000) 

0.3474 
(0.0508) 

0.2741* 
(0.0244) 

1.01* 
(0.0000) 

0.0803 
(0.3943) 

0.2149 
(0.0889) 

1.039* 
(0.0000) 

0.5549* 
(0.0004) 

Table 7.19:  Coefficients of the multi-factor GARCH(1,1) model. 

The results of the applied multifactor GARCH(1,1) models, which have arisen by the backward 
procedure, of the ten hedge funds.  In the brackets, there are the corresponding p-values of the alphas, 

betas, 0a ’s, 1a ’s and 1b ’s.  With (*), we denote the quantities that are statistically significant at the 5% 

significance level (in regard to the alpha coefficients, ARCH(1), GARCH(1,1) coefficients).  All beta 
coefficients, which we accomplish in the table, are statistically significant at the 5% significance level. 

 
 We apply t-tests in order to test the significance of the alpha 

coefficients, which have arisen from the application of the regression with the 

general form (7.10).  The null hypothesis refers that the alpha coefficient is 

equal to zero.  Looking at table 7.19, we summarize that the alpha 

coefficients are statistically significant only in the cases of hedge fund 1, 2, 6, 

7 and 9 at the 5% significance level.  Hedge fund 6 seems to perform the best, 

because it has alpha equal to 0.0182 (p-value: 0.0001), followed by hedge 



  

fund 9, which has value of alpha equal to 0.013 (p-value: 0.0009).  

Consequently, we comprehend these hedge funds to our portfolio. 

 We also apply t-tests in order to test the significance of the beta 

coefficients.  The null hypothesis refers that the beta coefficient is equal to 

zero.  Checking the results from the table, we conclude that hedge fund 1, 2, 

3, 4, 5 and 8 load significantly positive on the factor Russell 3000 equity 

index (RUS) and hedge fund 9 loads significantly negative on the same factor 

at the 5% significance level.  Hedge fund 1, 4, 7 and 8 load significantly 

positive on the Russell 3000 equity index excess return lagged once (RUS1) 

and hedge fund 3 loads significantly negative on the same factor at the 5% 

significance level.  Hedge fund 6 and 9 load significantly positive on the 

Morgan Stanley Capital International world excluding USA index (MXUS) 

and hedge fund 3 loads significantly negative on the same factor at the 5% 

significance level.  Hedge fund 3, 7 and 9 load significantly positive on the 

Morgan Stanley Capital International emerging markets (MEM) at the 5% 

significance level.  Hedge fund 1, 2, 3, 4, 5, 8 and 10 load significantly 

positive on the factor mimicking portfolio for size (SMB) and hedge fund 7 

loads significantly negative on the same factor at the 5% significance level.  

Hedge fund 3 and 10 load significantly positive on the factor mimicking 

portfolio for book-to-market equity (HML) and hedge fund 1, 2, 4, 6 and 9 

load significantly negative on the same factor at the 5% significance level.  

Hedge fund 3, 5 and 8 load significantly positive on the momentum factor 

(MOM) and hedge fund 2, 6 and 9 load significantly negative on the same 

factor at the 5% significance level.  Hedge fund 7 loads significantly positive 

on the Salomon Brothers and corporate bond (SBGC) at the 5% significance 

level.  Hedge fund 1 and 2 load significantly negative on the Salomon 

Brothers world government bond index (SBWG) at the 5% significance level.  

Hedge fund 1 and 3 load significantly negative on the Lehman high yield 

index (LHY) at the 5% significance level.  Hedge fund 1, 7 and 10 load 

significantly positive on the difference between the yield on the BAA-rated 

corporate bonds and the 10-year Treasury bonds (DEFSPR) at the 5% 

significance level.  Hedge fund 9 and 10 load significantly positive on the 

Federal Reserve Bank competitiveness weighted dollar index (FRBI) and 

hedge fund 3 loads significantly negative on the same factor at the 5% 



  

significance level.  Hedge fund 1 loads significantly positive on the Goldman 

Sachs commodity index (GSCI) at the 5% significance level.  Hedge fund 5 

and 8 load significantly positive on the change in S&P 500 implied volatility 

index (VIX) at the 5% significance level. 

  Using t-tests, we conclude that the 0α ’s, which represent the constant 

in the conditional variance equation, are statistically significant in the cases 

of hedge fund 3, 4 and 5 at the 5% significance level.  In the following, the 

1α ’s, which represent the estimated ARCH(1) parameter, are statistically 

significant in the cases of hedge fund 1, 3, 4, 5, 8 and 10 at the 5% 

significance level.  In regard to the 1b ’s, which represent the estimated 

GARCH(1) parameter, they are statistically significant in the cases of hedge 

fund 3, 5, 6, 9 and 10 at the 5% significance level.  We have a covariance 

stationary model, if the sum of the estimated GARCH(1) parameter and the 

estimated ARCH(1) parameter is close to one ( )i ia b 1+ < . 

 

RESIDUAL DIAGNOSTICS 

 JARQUE-

BERA TEST 

LJUNG-BOX TEST  

(AUTOCORRELATION) 

LJUNG-BOX 

(HETEROSKEDASTICITY) 

LAGRANGE-

MULTIPLIER TEST 

HF1 1.483 
(0.4764) 

10.68 
(0.5562) 

8.946 
(0.7075) 

10.39 
(0.5817) 

HF2 1.198 
(0.5494) 

7.095 
(0.8513) 

4.252 
(0.9784) 

3.824 
(0.9864) 

HF3 0.6904 
(0.7081) 

15.65 
(0.208) 

10.36 
(0.5848) 

7.809 
(0.7999) 

HF4 1.491 
(0.4745) 

11.24 
(0.5084) 

11.5 
(0.4867) 

11.18 
(0.5137) 

HF5 40.3* 
(0.0000) 

9.097 
(0.6946) 

8.61 
(0.7358) 

7.879 
(0.7945) 

HF6 1.608 
(0.4475) 

7.778 
(0.8022) 

12.1 
(0.4379) 

10.38 
(0.5823) 

HF7 1.172 
(0.5566) 

4.353 
(0.9762) 

12.98 
(0.3704) 

8.217 
(0.768) 

HF8 1.166 
(0.5583) 

8.857 
(0.7151) 

7.384 
(0.8312) 

8.122 
(0.7756) 

HF9 0.7231  
(0.6966) 

13.28 
(0.3487) 

7.912 
(0.792) 

9.873 
(0.6271) 

HF10 4.116 
(0.1277) 

11.5 
(0.4868) 

7.921 
(0.7913) 

10.96 
(0.5322) 

Table 7.20: Residual diagnostics of the multi-factor GARCH(1,1) model. 

The Jarque-Bera and the Ljung-Box tests for the standardized residuals and the Ljung-Box and the LM 
tests for the squared standardized residuals as well as their p-values, which are in the brackets.  With 

(*), we denote the quantities which are statistically significant at the 5% significance level. 

 
 In the following (table 7.20), we proceed to test the significance of the 

null hypothesis of the Jarque-Bera test, which refers that there is normality in 



  

the residuals series.  Specifically, we apply this test and we conclude that the 

null hypothesis of normality is rejected only in one case of hedge fund 5 at 

the 5% significance level. 

 We apply the Ljung-Box test to the standardized residuals in order to 

detect the autocorrelation between them and the same test to the squared 

standardized residuals in order to detect heteroskedasticity in the standardized 

residuals.  In the first case, the null hypothesis refers to no autocorrelation 

and the second case, it refers to no heteroskedasticity.  Finally, examining the 

results from the table, we can conclude that there is no autocorrelation, 

neither heteroskedasticity in the standardized residuals.  We hypothesize that 

the model is adequately fitted. 

 Furthermore, we test if there are any ARCH effects left, applying the 

LM test in the standardized residuals.  The null hypothesis maintains that 

there are no ARCH effects in the standardized residuals after the application 

of GARCH(1,1) model.  Finally, we conclude that there are no ARCH effects 

left. 

 

7.12 Portfolio evaluation 

 

 In this chapter, we calculate some measures in order to evaluate our 

portfolios.  In particular, we applied single factor, three factor, four factor 

and multifactor models (the last have arisen by following a backward 

selection approach).  These models gave us that hedge fund 1 and 6 have the 

highest values of alphas and seem to perform better than the other hedge 

funds.  So, we constructed four equally-weighted portfolios, each of one 

comprehend hedge fund 1 and 6.   

In contrary to these results, when we applied the single and three factor 

models including the GARCH(1,1) model, we received that hedge fund 3 and 

6 perform better than the others.  As a result, we constructed two portfolios, 

which comprised hedge fund 3 and 6.  When we applied the four factor 

models including the GARCH(1,1) model, we received that hedge fund 2 and 

6 perform better than the others.   Consequently, we constructed one 

portfolio, which comprised hedge fund 2 and 6.  Finally, we applied 

multifactor GARCH models, following the backward selection approach in 



  

order to select the most suitable set of market indices, in each case.  These 

models suggested that hedge fund 6 and 9 perform better than the other hedge 

funds.  Thus, we constructed one portfolio, which comprehended hedge fund 

6 and 9. 

The data from the last year of each hedge fund is used in the out-of-

sample analysis.  With these realized returns we calculate the mean return, the 

standard deviation, the annualized return, the cumulative return and the 

Sharpe ratio.  We used as index benchmark, the Russell 3000 equity index, in 

order to calculate the success rate, the information ratio and the semi-

deviation.   

 
 PORTFOLIO 1, 2, 3, 4 PORTFOLIO 5, 6 PORTFOLIO 7 PORTFOLIO 8 

 HF1 & HF6 HF3 & HF6 HF2 & HF6 HF6 & HF9 

MEAN RETURN 0.005 0.0088 0.0131 0.0081 

STANDARD  
DEVIATION 

0.0265 0.0314 0.0505 0.0231 

ANNUALIZED  
RETURN 

0.0596 0.1051 0.1578 0.0975 

CUMULATIVE  
RETURN 

0.1192 0.2102 0.3155 0.195 

SUCCESS RATE 0.4167 0.4583 0.625 0.5 

SHARPE RATIO 0.1874 0.2785 0.2603 0.3517 

INFORMATION RATIO -1.7892 1.9488 4.3701 1.6945 

SEMI-DEVIATION 0.0771 0.0929 0.153 0.0655 

Table 7.21:  Comparison of portfolios. 

The results of the mean return, standard deviation, annualized return, cumulative return, success rate, 
Sharpe ratio, information ratio and semi-deviation for the portfolios.  The second line of this table 

concludes the best performing hedge funds in each case.   

 
 We use the standard deviation of the returns because it is one of the 

best-known measures for risk. 

 The annualized return is evaluated by the multiplication of mean return 

with 12 (months) or 252 (trading days).  Specifically, an itr r 12= Χ , where itr  is 

the monthly return of hedge fund i at time t. 

 The cumulative return is the return of T periods which is given by 

( )t i,t i,t 1 i,t T 1r T r r ... r- - += + + + , where itr  is the monthly return of hedge fund i 

at time t. 

Success rate gives us the percentage for which the returns of a 

portfolio are bigger from the returns of a benchmark for T periods.  For this 

reason, it is good news for the investor to have high value of success rate.  It 



  

has the following formulation: 
T

t

t 1

1
SR I

T =

= ε , where 
t b,t

t

0 if r r
I

1 otherwise

µ £οο= ν
οοξ

 is the 

index of success, itr  is the monthly return of hedge fund i at time t and b,tr  is 

the return of the benchmark at time t. 

 A frequently used risk-adjusted performance measure for mutual funds 

and for hedge funds is the Sharpe ratio developed by Sharpe (1996).  The 

wide use of the Sharpe ratio (SR) may be attributed to its simplicity and ease 

of use.  It measures the amount of excess return per unit of volatility.  It is 

calculated by the formula: ( )p f pSR R R / σ= - , where pR  denotes the return of 

the hedge fund, fR  measures the risk free rate and pσ  the volatility of the 

hedge funds return.  Graphically, in a mean-variance space, the Sharpe ratio is 

the slope of the line joining the risk-free asset to the hedge fund being 

examined.  The Sharpe ratio is a benchmark free performance measure.  The 

higher the Sharpe ratio, the better the hedge funds performance. 

The information ratio (IR) for T periods is given by the following 

expression:  ( )
T

dif ,t dif ,t

t 1

IR r stdev r
=

= ε , where dif ,t i,t b,tr r r= -  is the difference 

between the returns of portfolio P and the returns of the benchmark at time t.  

The higher information ratio, the better the hedge funds performance. 

The estimation procedure for semi-deviation is similar to that for the 

standard deviation except we consider the deviation from the mean only when 

it is negative.  Analytically, it can be formulated as follows: 

k 2
i iti 1

Semi deviation L
=

- = ε , where it itL r=  if itr 0<  and itL 0=  if itr 0³ .  itr  

is the monthly return for the ith fund return in month t.  The cutoff point of 

zero is obvious because returns below zero represent losses.  The semi-

deviation is more useful than the standard deviation when the underlying 

distribution of returns is skewed and just as useful when the underlying 

distribution is symmetric.  

 Looking at table 7.21, we conclude that the four factor GARCH(1,1) 

model, which include the factor mimicking portfolio for size and for book-to-

market equity as well as the momentum factor, has the highest value of mean 

return (0.0131), annualized return (0.1578), cumulative return (0.3155), 



  

success rate (0.625), information ratio (4.3701) and the second highest value 

of Sharpe ratio (0.2603).  Furthermore, this model gives riskier results than 

the other models, because it has the highest value of standard deviation 

(0.0505) and semi-deviation (0.153). 

 On the other hand, the multifactor GARCH(1,1) models, which have 

arisen by using the backward selection approach, gives the highest value of 

Sharpe ratio (0.3517) and the smallest value of standard deviation (0.0231) 

and semi-deviation (0.0655) than the other models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER EIGHT 

 

CONCLUSION 

 

The spectacular growth of hedge funds in recent years has prompted a 

significant increase in the number of studies that measure their performance 

and examine the sources of returns for various hedge fund strategies.  As we 

have described in chapter four, there are many methodologies that researchers 

can follow in order to evaluate the performance of hedge funds and the 

persistence of this performance.  

 In our study, we evaluated performance of hedge funds in order to 

construct top decile portfolios.  Totally, we used the monthly returns of ten 

hedge funds and the monthly returns of fourteen market indices.  We applied 

four different factor models for each hedge fund and we constructed four 

different portfolios.  We also applied the Generalized Autoregressive 

Conditional Heteroskedasticity GARCH(1,1) models in order to identify a 

suitable set of market indices for each hedge fund.  Therefore, we constructed 

another four portfolios.  Using some measures of risk, we concluded that 

GARCH(1,1) models tended to give better results than the rest of factor 

models. 
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