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1.Introduction 

 
Credit Risk is defined as the risk of loss of principal or loss of a financial return resulting from a 

borrower’s failure to repay a loan or to meet an agreed obligation. Credit risk arises and can be 

expected when a borrower does not meet their obligation in relation to future cash flows. Therefore, 

there is uncertainty over the borrower’s financial performance in the future. As a result, in recent 

years, financiers seek tools and means to enable them to calculate the borrower’s credit worthiness. 

A suitable credit limit can then be defined, risk-based pricing can be set, and subsequently adequate 

loan loss provisions can be kept safeguarding against the possible losses, in case the customers’ 

obligations are not met. 

 

Prediction of loan default has an obvious practical utility. The identification of default 

risk appears to be of paramount interest to banks. A lending major of a bank must 

evaluate tens or even hundreds of thousands of loan applications each year.  These 

obviously cannot all be subjected to the scrutiny of a loan committee in the way that, 

say, a real estate loan might. Thus, statistical methods and automated procedures are 

essential.  Banks typically use “credit scoring models”. In principle, the credit score 

could incorporate any amount of relevant business information.  In practice, credit 

scoring for loan applications appears to be focused narrowly on default risk. Basically, 

through credit scoring, lenders use scores to determine who qualifies for a loan, at 

what interest rate, and what credit limits. Lenders also use credit scores to determine 

which customers are likely to bring in the most revenue. The use of credit or identity 

scoring prior to authorizing access or granting credit is an implementation of a trusted 

system. Particularly, classification methods will provide results used in prediction or 

estimation. 

 

The approaches for predicting qualitative responses is a process that is known as 

classification. Predicting a qualitative response for an observation can be referred to 

as classifying that observation, since it involves assigning the observation to a category, 

or class. On the other hand, often the methods used for classification first predict the 

probability of each of the categories of a qualitative variable, as the basis for making 

the classification. In this sense they also behave like regression methods. 
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There are not only Credit Scoring Methods, but also Judgmental. Judgmental 

forecasting methods incorporate intuitive judgement, opinions and subjective 

probability estimates. Judgmental forecasting is used in cases where there is lack of 

historical data or during completely new and unique market conditions. Generally 

speaking, it seems that the only organizations which do not use credit scoring 

approaches are the smaller and/or more personal companies, and those concerned 

with corporate finance, where statistical methods have been slower to be adopted. 

However, although the financial community may have confidence in objective 

statistical credit scoring methods, there seems still to be some suspicion of them in 

the customer base. This stems in part from anxiety about the impersonal nature of 

the process and in part from concerns over the accuracy of the data relating to the 

individual applicant. (Hand & Henley, 1997), (GIETZEN, 2017) 

However, we do not discuss about judgmental methods, but exclusively for credit 

scoring methods. 

 

A German credit dataset of a bank with 20 independent variables is used in this thesis. 

Creditability is the dependent variable (Y->Cdblt) and the dataset contains 1000 loan 

applicants. Different statistical-classification methods are performed and  predict 

weather a loan applicant is creditworthy or not. In other words, “good” or bad”.  

Logistic Regression, Linear Discriminant Analysis, Quadratic Discriminant Analysis, 

K-Nearest Neighbors, Tree Based Methods: Classification trees (Decision Trees) and 

Random Forest are some statistical methods which are examined in this thesis. 
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2.Credit Scoring 
 

Credit scoring is a statistical method used to predict the probability that a loan 

applicant or existing borrower will default or become delinquent. In other words, 

credit scoring is a method of evaluating the credit risk of loan applications. The 

method, introduced in the 1950s, is now widely used for consumer lending, especially 

credit cards, and is becoming more commonly used in mortgage lending. Credit 

scoring is already allowing large banks to expand into small-business lending, a market 

in which they have tended to be less active. Scoring is also an important step in making 

the securitization of small-business loans more feasible. The likely result would be 

increased availability of funding to small businesses, and at better terms, to the extent 

that securitization allows better diversification of risk. 

 

Using historical data and statistical techniques, credit scoring tries to isolate the effects 

of various applicant characteristics on delinquencies and defaults. The method 

produces a “score” that a bank can use to rank its loan applicants or borrowers in 

terms of risk. To build a scoring model, developers analyze historical data on the 

performance of previously made loans to determine which borrower characteristics 

are useful in predicting whether the loan performed well. A well-designed model 

should give a higher percentage of high scores to borrowers whose loans will perform 

well and a higher percentage of low scores to borrowers whose loans won’t perform 

well. But no model is perfect, and some bad accounts will receive higher scores than 

some good accounts. Information on borrowers is obtained from their loan 

applications and from credit bureaus. Data such as the applicant’s monthly income, 

outstanding debt, financial assets, how long the applicant has been in the same job, 

whether the applicant has defaulted or was ever delinquent on a previous loan, 

whether the applicant owns or rents a home, and the type of bank account the 

applicant has are all potential factors related to loan performance. Regression analysis 

relates loan performance to these variables which are used to pick out which 

combination of factors best predicts delinquency or default, and how much weight 

should be given to each of the factors. Given the correlations between the factors, it 

is quite possible some of the factors the model developer begins with won’t make it 

into the final model, since they have little value added given the other variables in the 
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model. Even a good scoring system won’t predict with certainty any individual loan’s 

performance, but it should give a fairly accurate prediction of the likelihood that a 

loan applicant with certain characteristics will default. 

 

To build a good scoring model, developers need historical data, which reflect loan 

performance in periods of both good and bad economic conditions. (Thomas, A 

survey of credit and behavioural scoring: forecasting financial, 2000) (Fernandes., 

2016), (A. Abdou & Pointon, 2011) 

 

2.1 The Meaning of Data Basis  

 

Scoring lenders with small portfolios may never be able to use scoring. The data base 

must be computerized, and it ideally would include both approved and rejected 

applicants, although most lenders will have kept records only on approved applicants. 

The data base, as we mentioned above, should include a full range of characteristics 

of the borrower, the lender, and the loan, as well as data on the timing and length of 

each spell of arrears in each loan. These characteristics are all simple and inexpensive 

to collect, and most microfinance lenders already collect them when the loan officer 

visits a potential borrower. They could rate potential borrowers as very below average, 

below average, average, above average, or very above average on such qualities as 

reputation in the community, entrepreneurship, experience with debt, and informal 

support networks. The rigorous analysis of a data base of past loans may have vast 

power to improve management decisions. (Schreiner, 2000) 

 

2.2 History of Credit Scoring 

 

The history of credit scoring dates from the 1950s. Credit scoring is a way classifying 

borrowers into two groups- those who will default and those who will not- using the 

characteristics of the borrower and the loan. The first approach to solving this 

problem of identifying the groups in a population was introduced in statistics by 

Fisher. He sought to differentiate between two varieties of iris using measurements of 

the physical size of the plants and to differentiate the origins of skulls using their 

physical measurements. David Durand in 1941 was the first to recognize that one 
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could use the same techniques to discriminate between good and bad loans. His was 

a research project for the U.S National Bureau of Economics Research and was not 

used for any predictive purpose. 

During the 1930s some of the mail order companies had introduced numerical 

scoring systems to try and overcome the inconsistencies in credit decisions across 

credit analysis. With the start of World War II, all the finance houses and mail order 

firms began to experience difficulties with their credit management. The credit 

analysts were being drafted into military service, and there was a severe shortage of 

people who had this expertise. So, the firms got the analysts to write down the rules 

of the thumb they used to decide to whom to give loan. Some of these were the 

numerical scoring system already introduced, others were essentially setting of 

conditions that needed to be satisfied. These rules were then used by nonexperts to 

help make credit decisions- the first examples of experts’ systems. 

It did not take long after the war ended for some people to connect the automation 

of credit decisions and the classification techniques being developed in statistics and 

to see the benefit of statistically derived models in lending decisions. The first 

consultancy was formed in San Francisco by Bill Fair and Earl Isaac in the early 1950s, 

and their clients at the time ware mainly finance houses, retailers, and mail order 

firms. 

The arrival of credit cards in the late 1960s made the banks and credit card issuers 

realize the usefulness of credit scoring. The number of people applying for credit 

cards each day made it impossible both in economic and manpower terms to anything 

but automate the lending decision. The growth in computing power made it possible 

to undertake this automation. When these organizations used credit scoring, they 

found that it also was a much better predictor than any judgmental scheme, and 

default rates would drop by 50% or more. The only opposition came from those like 

Capon, who argued that “the brute force empiricism of credit scoring offends against 

the traditions of our society”. He felt that there should be more dependence on credit 

history and that it should be possible to explain why certain characteristics are needing 

in a scoring system and others are not. The event that ensured the complete 

acceptance of credit scoring was the passing of the Equal Credit Opportunity Acts in 

the U.S. in 1975 and 1976. These outlawed discriminating in the granting of credit 

unless the discrimination “was empirically derived and statistically valid”. It is not 
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often that lawmakers provide long-term employment for anyone but lawyers, but this 

ensured that credit scoring analysis was to be a growth profession for the next 30 years 

this is still the case, and this growth has spread from the U.S. across the world. This 

is partly because consumer credit has grown very quickly in countries with large 

populations, like China and India, and because of new types of consumer credit such 

as peer-to- peer lending. 

In the 1980s, the success of credit scoring in credit scoring in credit cards meant that 

banks started using scoring for their other products, such as mortgages and personal 

loans. Also, in the 1990s the growth in direct marketing has led to the use of 

scorecards to improve the response rates to advertising campaigns. In fact, this was 

one of the earliest uses in the 1950s when Sears used scoring to decide to whom to 

send is catalogues. Advances in computing allowed other techniques such as neural 

networks, support vector machines and random in the credit scoring context. 

Lenders’ objectives have changed from trying to minimize the chance a customer will 

default on one product to looking at how the lender can maximize the profit from 

that customer. Moreover, the original idea of estimating the risk of defaulting has been 

augmented by scorecards which estimate response, usage, retention, churn or early 

repayment, debt management and fraud scoring.  

However, the greatest impact on credit scoring since 2000 is the advent of the Basel 

Accords. Since a credit score can be transformed into a probability of the borrower 

defaulting, credit scoring has become the mainstay of the models financial institutions 

have developed to meet these banking regulations. The financial institutions have 

developed to meet these banking regulations. The Basel Accords, Basel I (1988), 

Basel II (2005), and Basel III (2010), determine how much capital banks must set 

aside to meet the credit risk of their borrowers defaulting. (Greenspan, 2017), 

(Thomas, A survey of credit and behavioural scoring: forecasting financial risk of 

lending to consumers, 2000) 

 

2.3 Benefits of Credit Scoring 

 
Credit reporting and credit scores can fuel economic growth, increase consumer 

access to essential resources and enable more efficient allocation of risk, costs and 

financial reserves. The reason for this is simple: where access to information is 
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asymmetrical or unavailable, access to lending and credit resources becomes more 

difficult, expensive and inefficient. In contrast, the availability of credit information 

and the free flow of objective data are the cornerstones of a modern, successful market 

economy. Credit reporting and scoring enable consumers and private companies to 

freely transact with each other because the more objective information the business 

has, the more accurately it can meet consumer needs and preferences. 

Credit histories are available for more than 200 million consumers, helping them 

achieve their financial and personal goals. Businesses use automated quantification of 

consumer credit histories-in the form of credit scores-to make more efficient, 

objective decisions about whether to extend credit and on what terms for such services 

as credit cards, consumer loans, mortgages and even insurance policies. 

 

A credit score is the result of advanced analytical models that take a ‘snapshot’ of the 

consumer’s credit report and translate it into a three-digit number representing the 

amount of risk a consumer brings to a transaction, such as financial, insurance or even 

employment. Because of credit scoring, lenders can make faster, more objective 

decisions. Lenders retain complete control over their lending decisions and set their 

own score levels. 

 

A wide range of industries take advantage of credit scores to improve fairness, 

effectiveness and efficiency. Financial companies use credit scores to predict the risk 

of delinquencies and losses, which enables them to better allocate costs. Insurance 

companies use specialized credit scores to make fairer underwriting decisions. Credit 

scores even provide benefits at the macroeconomic level by helping small enterprises 

attain the funds they need and by facilitating the securitization and sale of financial 

products in the secondary markets, substantially increasing the influx of capital into a 

country. 

 

Credit scoring offers multiple benefits at every level of the economy. It has enabled 

lenders to extend into historically underserved market segments. In addition, 

decisions are now faster and more objective with most applicants receiving answers 

within minutes, rather than days. Finally, by using credit scores to predict risk more 

effectively, lenders have been able to reduce the cost of such vital services as 
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mortgages, personal loans and credit cards. Despite this expansion into traditionally 

underserved markets, moral hazard rates are lower with credit scores because lenders 

can more proactively monitor risk and maintain it at more appropriate levels. 

 

Credit scoring plays a vital role in economic growth by helping expand access to credit 

markets, lowering the price of credit and reducing delinquencies and defaults. In the 

United States, credit scoring helps drive the American economy and makes credit 

affordable. For consumers, scoring is the key to homeownership and consumer credit. 

It increases competition among lenders, which drives down prices.  

 

Decisions can be made faster and cheaper and more consumers can be approved. It 

helps spread risk more so vital resources, such as insurance and mortgages, are priced 

more fairly. For businesses, especially small and medium-sized enterprises, credit 

scoring increases access to financial resources, reduces costs and helps manage risk. 

For the national economy, credit scoring helps smooth consumption during cyclical 

periods of unemployment and reduces the swings of the business cycle. By enabling 

loans and credit products to be bundled according to risk and sold as securitized 

derivatives, credit scoring connects consumers to secondary capital markets and 

increases the amount of capital that is available to be extended or invested in 

economic growth. (A. Abdou & Pointon, 2011) (Kern, 2017) 

 

2.4 Limitations of Credit Scoring 

 
Accuracy is a very important consideration in using credit scoring. Even if the lender 

can lower its costs of evaluating loan applications by using scoring, if the models are 

not accurate, these cost savings would be eaten away by poorly performing loans. The 

accuracy of a credit scoring system will depend on the care with which it is developed. 

The data on which the system is based need to be a rich sample of both well-

performing and poorly performing loans. The data should be up to date, and the 

models should be reestimated frequently to ensure that changes in the relationships 

between potential factors and loan performance are captured. If the bank using 

scoring increases its applicant pool by mass marketing, it must ensure that the new 

pool of applicants behaves similarly to the pool on which the model was built; 
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otherwise, the model may not accurately predict the behavior of these new applicants. 

The use of credit scoring itself may change a bank’s applicant pool in unpredictable 

ways, since it changes the cost of lending to certain types of borrowers. Again, this 

change in applicant pool may hurt the accuracy of a model that was built using 

information from the past pool of applicants. Account should be taken not only of 

the characteristics of borrowers who were granted credit but also of those who were 

denied. Otherwise, a “selection bias” in the loan approval process could lead to bias 

in the estimated weights in the scoring model. A model’s accuracy should be tested. 

A good model needs to make accurate predictions in good economic times and bad, 

so the data on which the model is based should cover both expansions and recessions. 

(A. Abdou & Pointon, 2011), (Yap, Ong, & Husain, Using data mining to improve 

assessment of credit worthiness via credit scoring models, 2011), (A. Abdou & 

Pointon, 2011). 

 

2.5 Literature Review 
 

Mehmood, T., Liland, K. H., Snipen, L., & Sæbø, S. (2012) performed a review of 

methods for variable selection within one of the many modeling approaches for high-

throughput data, Partial Least Squares Regression. The aim of their work was to 

collect and present the methods in such a way that the reader easily can get an 

understanding of the characteristics of the methods and to get a basis for selecting an 

appropriate method for own use. 

 

The purpose Chong, I.-G., & Jun, C.-H. (2004) was to explore the nature of the 

variable importance in the projection method and to compare with other methods 

through computer simulation experiments. They designed 108 experiments where 

observations are generated from true models considering four factors–the proportion 

of the number of relevant predictors, the magnitude of correlations between 

predictors, the structure of regression coefficients, and the magnitude of signal to 

noise. Confusion matrix has adopted to evaluate the performance of PLS, the Lasso, 

and stepwise method. They have also discussed the proper cutoff value of the variable 

importance in the projection method to increase its performance. 
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Isabelle Guyon and Andr´e Elisseeff (2003) addressed a common methodological 

flaw in the comparison of variable selection methods. Regarding the selection process 

they computed cross-validation performance estimates of the different variable 

subsets. Used with computationally intensive search algorithms, these estimates may 

overfit and yield biased predictions. Therefore, they cannot be used reliably to 

compare two selection methods, as is shown by the empirical results of this paper. 

They claimed that independent test sets should be used for determining the final 

performance. 

 

Credit scoring has been regarded as a main tool of different companies or banks 

during the last few decades and has been widely investigated in different areas, such 

as finance and accounting. Different scoring techniques are being used in areas of 

classification and prediction, where statistical techniques have conventionally been 

used. A. Abdou, H., & Pointon, J.(2011) paper aims to research how important credit 

scoring have been and which are the key determinants in the construction of a scoring 

model through a widespread review of different statistical techniques and 

performance evaluation criteria. They have concluded that there is no overall best 

statistical technique used in building scoring models and the best technique for all 

circumstances does not yet exist. Also, the applications of the scoring methodologies 

have been widely extended to include different areas. For example, banks use these 

tools to predict their clients' behavior. 

 

D. J. Hand and W. E. Henley (1997) mentioned that credit scoring is the term used 

to describe formal statistical methods used for classifying applicants for the credit into 

“good” and “bad” risk classes. Such methods have become important with a great 

increase in the consumption credit. 

 

Hastie, T., Tibshirani, R., & Friedman, J. (May 2001) tried to bring together many of 

the important new ideas in learning and explain them in a statistical framework. They 

emphasized the methods and their conceptual underpinnings rather than their 

theoretical properties. 
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Financial institutions, due to the necessity for controlling and effectively managing 

credit risk, have improved the techniques designed for this purpose, resulting in the 

development of various quantitative models. Francisco Louzada, Anderson Ara and 

Guilherme B. Fernandes (2013) presented a systematic literature review relating 

theory and application of binary classification techniques for credit scoring financial 

analysis. The significance of the basic statistical techniques for credit scoring is 

illustrated from the included results. 

 

Schreiner, M. (2000) claimed  that scoring does have a place in microfinance. 

Although scoring is less powerful in poor countries than in rich countries, and 

although scoring will not replace the personal knowledge of character of loan officers 

or of loan groups, scoring can improve estimates of risk. Thus, scoring complements 

current microfinance technologies. Furthermore, the derivation of the scoring 

formula reveals how the characteristics of borrowers, loans, and lenders affect risk, 

and this knowledge is useful whether a lender uses predictions from scoring to inform 

daily decisions. It is claimed that in the next decade, many of the biggest microfinance 

lenders will likely make credit-scoring models one of their most important decision 

tools. 

 

Lyn C. Thomas (2000) has mentioned the need to incorporate economic conditions 

into the scoring systems and the way the systems could change from estimating the 

probability of a consumer defaulting to estimating the profit a consumer will bring to 

the lending organization — two of the major developments being attempted in the 

area. It points out how successful has been this under-researched area of forecasting 

financial risk. 

 

Murtaugh, P. A. (2009) evaluated the predictive ability of statistical models obtained 

by applying seven methods of variable selection to 12 ecological and environmental 

data sets. Cross validation, involving repeated splits of each data set into training and 

validation subsets, was used to obtain honest estimates of predictive ability that could 

be fairly compared among methods. There was surprisingly little difference in 

predictive ability among five methods based on multiple linear regression. Stepwise 

methods performed similarly to exhaustive algorithms for subset selection, and the 
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choice of criterion for comparing models (Akaike’s information criterion, Schwarz’s 

Bayesian information criterion or F statistics) had little effect on predictive ability. For 

most of the data sets, two methods based on regression trees yielded models with 

substantially lower predictive ability. Murtaugh, P. A. argued that there is no best 

method of variable selection and that any of the regression approaches discussed in 

this paper can yield useful predictive models. 

 

Credit scoring model have been developed by banks and researchers to improve the 

process of assigning credit risk to either a ‘‘good risk’’ group that is likely to repay 

financial obligation or a ‘‘bad risk’’ group who has high possibility of defaulting on it. 

Data mining techniques are useful in this process. Using historical data on payments, 

demographic characteristics etc, credit scoring models can help providing a score for 

each bank applicant. Bee Wah Yap, Seng Huat Ong, Nor Huselina Mohamed 

Husain (2011) paper have illustrated how credit scoring models can predict the 

worthiness of customers. This study has applied the credit scoring techniques using 

data of payment history of members from a recreational club. The club has been 

facing a problem of rising number in defaulters in their monthly club subscription 

payments. The idea is that the management could have a model which can deploy to 

identify potential defaulters. The classification performance of  logistic regression 

model and decision tree model were compared. The error rates for credit scorecard 

model, logistic regression and decision tree were 27.9%, 28.8% and 28.1%, 

respectively. Although no model outperforms the other, scores are relatively much 

easier to deploy in practical applications. 

 

Statistical learning (James G., Witten D., Hastie T. and Tibshirani R.-2013) refers to 

a set of tools for modeling and understanding complex datasets. The field 

encompasses many methods such as the lasso and sparse regression, classification and 

regression trees, and boosting and support vector machines. With the explosion of 

“Big Data” problems, statistical learning has become a very hot field in many scientific 

areas as well as marketing, finance, and other business disciplines. 
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3.Explanation of Dataset and Regression Diagnostics 

 

3.1 Explanation of Dataset 
 

Our dataset has been imported in R and initially, some numeric and dummy variables 

has been converted to factor ones, which is more comfortable to see the number of 

characterized variables (see Appendix). 

After converting the variables, using R the number of each category is calculated. We 

record the proportions of each category as well as the categories (see Appendix). 

 

We perform with the help of R programming the distribution of the continuous 

variables:  

Duration of Credit (DuCrd), Credit Amount (CrdAm) and Age.: 

 

 Min 1st Qu Median Mean 3rd Qu Max 

DuCrd 4 12 18 20,9 24 72 

CrdAm 250 1366 2320 3271 3972 18424 

Age 19 27 33 35,54 42 75 

 

At the above table we can see the minimum, 1
st

 Qu., median, mean, 3
rd

 Qu. and 

maximum. The Duration of Credit is 4≤DuCrd ≤72 per month. The Credit Amount 

fluctuates between 250 and 18424 DM, while its mean is 3271. The Age of loan 

applicants is between 19 and 75 as well as the mean age is 33. 

The histograms and the boxplots of the continuous variables can be seen in order to 

have a quick view in Frequency of those (see Appendix). 

 

3.2 Regression Diagnostics 

 

Assume that we are fitting a multiple linear regression on the ger_cre data with  

Y= Crdblt and X1,X2……..Xn= AcBa, DuCrd,…… FrgnWrkr. 

 
Crdblt= (-5.147e-02)+(9.879e-02)*AcBa-(4.396e-03)*DuCrd+ (6.566e-02)*PaStPrCrd+ (4.691e-

03)*Purp-(1.534e-05)*CrdAm+(3.424e-02)*ValSavSto+(2.482e-02)*LenCurEmp-(4.707e-

02)*InPerCe+(4.386e-02)*SexMarSt+(5.878e-02)*Guara- (2.859e-03)*DurCurAddr-(3.250e-

02)*MoValAvAs+(1.067e-03)*Age+(3.614e-02)*ConcurCrd+ (4.988e-02)*TypAp-(4.226e-

02)*NoCrdBa+ 4.991e-03*Occup-(2.930e-02)*NoDpnd+ (5.102e-02)*Tlph+(1.145e-

01)*FrgnWrkr 
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1. leverage plots  

Outliers are one of those statistical issues that everyone knows about, but most people 

aren’t sure how to deal with.  Most parametric statistics, like means, standard 

deviations, and correlations, and every statistic based on these, are highly sensitive to 

outliers.  And since the assumptions of common statistical procedures, like linear 

regression, are also based on these statistics, outliers can really mess up our analysis. 

Despite all this, as much as you’d like to, it is not acceptable to drop an observation 

just because it is an outlier. They can be legitimate observations and are sometimes 

the most interesting ones. It’s important to investigate the nature of the outlier before 

deciding. (https://www.investopedia.com/terms/a/adjusted-mean.asp, n.d.) 

 

From the leverage plots (see Appendix), we could basically say that only when 

X=Occup, X=CrdAm and X=DuCrd, the outlier could be the 755 observation. Also, 

when X=DuCrd, it could be the 720 observation. We could check if there was a 

significant change of these slops when we would omit the observation 755. However, 

in this case it is not necessary to drop these observations because as we can see they 

are not outlier for both axis X and Y, but only for axis Y. 

Naturally, in diagnostic procedures, several transformations of the ordinary residuals 

have been suggested to overcome partially some of their shortcomings.  

 

2. Influence Plot 

 
 

The function in R creates a "bubble" plot of studentized residuals by hat values, with the areas of the circles representing 

the observations proportional to Cook's distances. Vertical reference lines are drawn at twice and three times the average 

hat value, horizontal reference lines at -2, 0, and 2 on the studentized-residual scale. 
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An influence plot shows the outlyingness, leverage, and influence of each case. 

The plot shows the residual on the vertical axis, leverage on the horizontal axis, and 

the point size is the square root of Cook's D statistic, a measure of the influence of 

the point. 

 

Outliers are cases that do not correspond to the model fitted to the bulk of the data. 

You can identify outliers as those cases with a large residual (usually greater than 

approximately +/- 2), though not all cases with a large residual are outliers and not all 

outliers are bad. Some of the most interesting cases may be outliers. 

Leverage is the potential for a case to have an influence on the model. You can identify 

points with high leverage as those furthest to the right. A point with high leverage may 

not have much influence on the model if it fits the overall model without that case. 

 

Influence combines the leverage and residual of a case to measure how the parameter 

estimates would change if that case were excluded. Points with a large residual and 

high leverage have the most influence. They can have an adverse effect on the model 

if they are changed or excluded, making the model less robust. Sometimes a small 

group of influential points can have an unduly large impact on the fit of the model. 

 

Regarding the above-mentioned Influence Plot, we can say that Standardized 

Residuals, which are above 2 and below -2, are outliers. Points with Hat-Values above 

0.025 and standardized residuals between -2 and 2 are high leverage points.  Data 

points with Hat-Values above 0.025 and standardized residuals above 2 and below -2 

are influential points which significantly alter the overall trend. When we observe this 

plot, we deduce that we do not see outliers because although some Hat-Values are 

above 0.025 the correspondent standardized residuals are between -2 and 2. The 

same thing happens when the standardized residuals are above 2 and below -2. 

 

3. Normality of Residuals 

In this way, as part of regression diagnostics we can perform the Q-Q Normal Plot. 

We use a Q-Q plot to check for data Normality. In most cases, we don’t want to 

compare two samples with each other, but compare a sample with a theoretical sample 

that comes from a certain distribution (for example, the normal distribution). Namely, 
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theoretical quantiles are the expected residuals/error which are distributed. To make 

a Q-Q plot this way, R has the special function. As the name implies, this function 

plots your sample against a normal distribution. We simply give the sample we want 

to plot as a first argument and add any graphical parameters you like. R then creates 

a sample with values coming from the standard normal distribution, or a normal 

distribution with a mean of zero and a standard deviation of one. With this second 

sample, R creates the Q-Q plot as explained before.  

 
The closer all points lie to the line, the closer the distribution of your sample comes 

to the normal distribution.  

Here, we could say that the distribution is not normal. The points does not 

approximate the straight line. The points are deviations which are a bit larger right in 

the edge. 

 

4.Distribution of Standardized Residuals 

 

 
Here, in this graph it becomes clearer the distribution which is skewed to the left. So, 

we can say easier that the Standardized Residuals are not normally distributed. 
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5. Residuals vs Fitted/ Residuals vs Leverage 

 

 
 

The red line in the first two plots has a strong curvy shape and it does not meet the 

Linearity Assumption.  The red line of the residual vs leverage plot is close to linearity. 

However, the shape seems to be somehow conic, thus we would say that the model is 

heteroscedastic. So, the assumptions are not met for fitting a Linear Regression 

Model. 

 

As part of regression diagnostics is also the evaluation of Collinearity. We use the 

function vif() via R .We intend to remove these variables which are more than 5. 

Threshold is from 5 to 10.  We take these values via R:  

  DuCrd  CrdAm  Age        AcBa       Purp PaStPrCrd ValSavSto  LenCurEmp  

1.955228 2.262017 1.308394 1.138452 1.072315 1.379162 1.09926 1.195133 
        

InPerCe SexMarSt Guara DurCurAddr MoValAvAs ConcurCrd    TypAp 

     

NoCrdBa 

1.310214 1.068769 1.074132 1.18242 1.391757 1.081218 1.313476 1.318022 

        
Occup NoDpnd Tlph FrgnWrkr     

1.33609 1.081393 1.276181 1.086762     

 

We see that these values are less than 5. So, we can safely conclude them. 

(Ching-Ti Liu, Jacqueline Milton, & Avery McIntosh, 2016), (Quick-R, n.d.), 

(University of Virginia Library, n.d.), (Hastie, Tibshirani, & Friedman, May, 2001), 

(Wooldridge, 2006). 
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3.3 Testing heteroscedasticity using Statistical test 
 

The most accurate way to test for heteroscedasticity is through statistical  tests. One 

of those is Breusch-Pagan test.  

It tests whether the variance of the errors from a regression is dependent on the 

values of the independent variables. In that case, heteroskedasticity is presented.  

(see Appendix the results of the linear model). 

lmtest package and the bptest function are used on our fitted model. 

Let’s do the Breusch-Pagan test: 

 

Studentized Breusch-Pagan test 

data: fit 

BP =107.56 

df = 20 

p-value = 5.468e-14 

 

While it doesn’t give us the critical value to compare the test statistic, all you need to 

look at is the p-value to determine whether or not we should reject the null. If the p-

value is less than the level of significance, then we reject the null hypothesis. Since 

5.468e-14<0.05, we can reject the null hypothesis. Hence, the model is 

heteroskedastic. 

 

To get the correct standard errors we can use the vconHC() function from the 

{sandwich} package. Trough R, it may be particularly helpful to look just the 

coefficient matrix from the summary object. Then SEs are generated from the 

variance-covariance matrix for the coefficients. The variance estimates for the 

coefficients are on the diagonal. To convert these to SEs, we simply take the squared 

root. Now that we know where the regular SEs are coming from, let's get the 

heteroskedasticity-consistent SEs for this model from sandwich. The SEs come from 

the vcovHC function and the resulting object is the variance-covariance matrix for the 

coefficients. This is, again, a variance-covariance matrix for the coefficients. So, to get 

SES, we take the square root of the diagonal. (see Appendix all related results).  

 

 

 

 

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://cran.r-project.org/web/packages/lmtest/index.html
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The summary output now reflects the correct SEs: 

 

Coefficients:    

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -5.147e-02 

1.538e-01 

 -0.346 0.729203 

DuCrd -4.396e-03 

1.661e-03 

 -2.962 0.003126 ** 

CrdAm -1.534e-05 8.077e-06 -2.251 0.024634 * 

Age  1.067e-03 1.345e-03  0.827 0.408229 

AcBa  9.879e-02 1.108e-02 9.100 < 2e-16  *** 

Purp  4.691e-03 5.121e-03 0.972 0.331492 

PaStPrCrd  6.566e-02 1.467e-02 4.733 2.54e-06 *** 

ValSavSto  3.424e-02 8.313e-03 4.032 5.95e-05 *** 

LenCurEmp                      2.482e-02 1.221e-02 2.144 0.032297 * 

InPerCe -4.707e-02 1.376e-02 -3.595 0.000341 *** 

SexMarSt  4.386e-02 1.973e-02 2.348 0.019091 * 

Guara  5.878e-02 2.909e-02 2.117 0.034487 * 

DurCurAddr                    -2.859e-03 1.290e-02 -0.227 0.820664 

MoValAvAs                    -3.250e-02 1.431e-02 -2.261 0.024003 * 

ConcurCrd  3.614e-02 2.066e-02 1.916 0.055607 . 

TypAp  4.988e-02 2.917e-02 1.803 0.071679 . 

NoCrdBa -4.226e-02 2.707e-02 -1.662 0.096907 . 

Occup  4.991e-03 2.377e-02 0.221 0.825502 

NoDpnd -2.930e-02 3.737e-02 -0.797 0.425529 

Tlph  5.102e-02 2.876e-02 1.733 0.083470 . 

FrgnWrkr  1.145e-01 5.699e-02 1.621 0.105444 

Residual standard error: 0.4045 on 979 degrees of freedom 

Multiple R-squared: 0.2374 

Adjusted R-squared:  0.2218 

F-statistic: 15.24 on 20 and 979 DF 

p-value:  < 2.2e-16 
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4. Subset Selection methods 
 

4.1 Variable Selection 

 

In machine learning and statistics, feature selection, also known as variable 

selection, attribute selection or variable subset selection, is the process of selecting a 

subset of relevant features (variables, predictors) for use in model construction.  

Feature selection techniques are used for four reasons: 

 Simplification of models to make them easier to interpret by 

researchers/users 

 Shorter training times 

 To avoid the curse of dimensionality 

 Enhanced generalization by reducing overfitting (formally, reduction 

of variance) (Wikipedia, n.d.) 

 

Using the appropriate code in R we have some measurers to select the best variable 

that we want to fit our data set. We are going to use ‘rsq’, ‘rss’, ‘adjr2’, ‘cp’ and ‘bic’. 

(James, Witten, Hastie, & Tibshirani, 2013) 

 

RSquared                                                      RSS 

 

 
 

 
When we include more than 

8 variables, we reach almost 

the highest RSquared we can 

get for 23%. So, we will 

probably use 16 Variables for 

this measure.  

It is intended to minimize RSS. We 

want the lowest variable to include in 

model, hence we would say 16 or 4 

because there is a steep slope. 

 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Bias-variance_tradeoff
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Adjr2                                   Cp 

 
 

 

 

 

Bic 

 
(Hastie, Tibshirani, & Friedman, May, 2001), (Wooldridge, 2006) 

 

4.2 Forward Stepwise Selection  

 
Stepwise selection is a method that allows moves in either direction, dropping or 

adding variables at the various steps. Stepwise regression can be achieved either by 

trying out one independent variable at a time and including it in the regression model 

if it is statistically significant, or by including all potential independent variables in the 

model and eliminating those that are not statistically significant, or by a combination 

of both methods. Tests for significance are conducted via F-tests, t-tests, adjusted R 

squared, and a few other less common methods. The goal is to find a set of 

independent variables which significantly influence the dependent variable. 

Conducting these tests automatically can potentially save time for the individual. 

The highest Adjr
2

 has 16 

variables. 

The lowest Cp has 15 

variables. So, for this 

measure when we include 15 

variables, have the best 

model. 

For this measure, when we 

include 5 variables we have 

the best model.  

We have the lowest Bic 

when include 5 variables. 

https://www.investopedia.com/terms/s/statistically_significant.asp
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Forward stepwise selection is also a possibility, though not as common. In the forward 

approach, variables once entered may be dropped if they are no longer significant as 

other variables are added. 

 

Forward selection is a very attractive approach, because it's both tractable and it gives 

a good sequence of models. 

 Start with a null model. The null model has no predictors, just one intercept (The 

mean over Y). 

 Fit p simple linear regression models, each with one of the variables in and the 

intercept. So basically, you just search through all the single-variable models the best 

one (the one that results in the lowest residual sum of squares). You pick and fix this 

one in the model. 

 Now search through the remaining p minus 1 variables and find out which variable 

should be added to the current model to best improve the residual sum of squares. 

 Continue until some stopping rule is satisfied, for example when all remaining 

variables have a p-value above some threshold. (James, Witten, Hastie, & Tibshirani, 

2013) 

 

4.2.1 Forward Stepwise Selection Approach 

 
We run the appropriate R code with our dataset and through the algorithm we take 

the “best” variables for our model. Because of using the Cp measure and it gave us 

that our model should include 15 variables, we keep the 15 strongest variables come 

from Forward Stepwise Selection. Naturally we could use another measure such as 

‘rsq’, ‘rss’, ‘adjr2’ and ‘bic’.  

Here, we 
1

split the dataset into train and test set (60% training and 40% test). 

 

Hence, this method gives the following Variables:  

AcBa, DuCrd, PaStPrCrd, CrdAm, ValSavSto, InPerCe, SexMarSt, Guara, 

LenCurEmp, ConcurCrd, Tlph, MoValAvAs, TypAp, NoCrdBa, FrgnWrkr. 

                                                             
1 In all sections and methods of the thesis, we split the dataset in the same way (60% training and 40% test) 

 

https://gerardnico.com/data_mining/no_model
https://gerardnico.com/data_mining/rss
https://gerardnico.com/data_mining/rss
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The following plot can give a picture of the selected variables: 

 

Plot shows the selected variables for the best model through the Forward Stepwise Method 

 

 

To calculate the train and test means squared error we can use the linear regression 

model putting the 15 selected variables. We could also use another model for 

example a non-linear. Running R, we see that the Test MSE= 0.2221826 and Train 

MSE= 0.1510432. 

 

4.3 Backward Stepwise Selection 
 

Backward stepwise selection involves starting off in a backward approach and then 

potentially adding back variables if they later appear to be significant. The process is 

one of alternation between choosing the least significant variable to drop and then re-

considering all dropped variables (except the most recently dropped) for re-

introduction into the model. This means that two separate significance levels must be 

chosen for deletion from the model and for adding to the model. The second 

significance must be more stringent than the first. 

 

Namely, forward stepwise selection, it begins with the full least squares model 

containing all p predictors, and then iteratively removes the least useful predictor, 

one-at-a-time. To be able to perform backward selection, we need to be in a situation 

where we have more observations than variables because we can do least squares 

regression when n is greater than p. If p is greater than n, we cannot fit a least squares 

model. It's not even defined. 
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 Start with all variables in the model. 

 Remove the variable with the largest p-value that is, the variable that is the least 

statistically significant. 

 The new (p - 1)-variable model is t, and the variable with the largest p-value is 

removed. 

 Continue until a stopping rule is reached. For instance, we may stop when all 

remaining variables have a significant p-value defined by some significance 

threshold. (James, Witten, Hastie, & Tibshirani, 2013) 

 

4.3.1 Backward Stepwise Approach 

 
Here, we also run the R code and use the same measure Cp. For this reason, we 

continue to have 15 variables for the best model. We also split the dataset into train 

and test set keeping the same test proportion as Forward Stepwise Selection. 

The backward stepwise method gives the following variables: 

 

AcBa, DuCrd, PaStPrCrd, ValSavSto, InPerCe, SexMarSt, LenCurEmp, 

MoValAvAs, Guara, ConcurCrd, TypAp, CrdAm, Tlph, NoCrdBa, LenCurEm 

 

Plot shows the selected variables for the best model through the Backward Stepwise Method 

 

We also try the linear model with the above-mentioned variables, hence the Test 

MSE= 0.2221996 and Train MSE= 0.1643574. 
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4.4 Cross Validation and Best Subset Selection Method 

 
Cross-validation is a technique to evaluate predictive models by partitioning the 

original sample into a training set to train the model, and a test set to evaluate it.  

In k-fold cross-validation, the original sample is randomly partitioned into k equal size 

subsamples.  

 

In this part, the sample is randomly partitioned into 10 equal size subsamples (k=10). 

Of the10 subsamples, a single subsample is retained as the validation data for testing 

the model, and the remaining 10-1 subsamples are used as training data. The cross-

validation process is then repeated 10 times (the folds), with each of the 10 

subsamples used exactly once as the validation data. The 10 results from the folds can 

then be averaged (or otherwise combined) to produce a single estimation. The 

advantage of this method is that all observations are used for both training and 

validation, and each observation is used for validation exactly once. 

Generally, cross-validation procedure is repeated n times, yielding n random 

partitions of the original sample.  

The n results are again averaged (or otherwise combined) to produce a single 

estimation. (James, Witten, Hastie, & Tibshirani, 2013), (Hastie, Tibshirani, & 

Friedman, May, 2001) 

 

4.4.1 Best Subset Selection Approach 

 

Having used cross validation (k=10), the Best Subset Selection method gives the 

following interesting plot: 
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As we see that the minimum mean.cv.error is 4. From 4 up to 8 the graph illustrates 

an augmentation and then a decrease to 15, which is basically the minimum. 

We will try both options. First, we will run a linear model with the 3 first strongest 

variables and then run one more time a linear model with 15 Variables. The dataset 

is spitted in the same way as Backward and Forward methods. 

 

In the first option we use the 3 strongest Variables, AcBa, DuCrd, PaStPrCrd and 

run a liner regression. In this case, we have Test MSE= 0.2246371 and  

Train MSE= 0.1734628. (We do it only to see the results because of the existence of 

this decrease in point 4. Actually, we do not use only three variables) 

 

In the second option we use the 15 strongest Variables, AcBa, DuCrd, PaStPrCrd, 

CrdAm, ValSavSto, LenCurEmp, InPerCe, SexMarSt, Guara, MoValAvAs, 

ConcurCrd, TypAp, NoCrdBa, Tlph, FrgnWrkr. In this case, we have 

 Test MSE= 0.2286232 and Train MSE= 0.1611355. 

 

4.5 Ridge Regression 

 
The least squares fitting procedure estimates β0, β1, . . . , βp using the values that 

minimize 

 
Ridge regression is very similar to least squares, except that the coefficients ridge 

are estimated by minimizing a slightly different quantity. In particular, the ridge 

regression coefficient estimates 
^

0 R are the values that minimize 

 
Where λ≥0 is a tuning parameter, to be determined separately. As with least squares, 

ridge regression seeks coefficient estimates that fit the data well, by making the RSS 

small. However, the second term, λΣjβj

2

, called a shrinkage penalty, is small when 

β1,....βp are close to zero, and so it has the effect of shrinking the estimates of βj towards 
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zero.  The tuning parameter λ serves to control the relative impact of these two terms 

on the regression coefficient estimates. When λ=0, the penalty term has no effect, and 

ridge regression will produce the least squares estimates. However, as λ→∞, the 

impact of the shrinkage penalty grows, and the ridge regression coefficient estimates 

will approach zero. Unlike least squared estimates, which generates only one set of 

coefficient estimates, ridge regression will produce a different set of coefficient 

estimates, 
^
λ

R

, for each value of λ. Selecting a good value of λ is critical. 

 

The shrinkage penalty is applied to β1, . . . , βp, but not to the intercept β0. We want 

to shrink the estimated association of each variable with the response; however, we 

do not want to shrink the intercept, which is simply a measure of the mean value of 

the response when xi1 = xi2 = . . . = xip = 0. If we assume that the variables—that is, the 

columns of the data matrix X—have been centered to have mean zero before ridge 

regression is performed, then the estimated intercept will take the form  


^

0= ӯ∑ 𝑦𝑖/𝑛𝑛
𝑖=1 . (James, Witten, Hastie, & Tibshirani, 2013) 

 

4.5.1 Ridge Regression Approach 
 

Ridge Regression will give us the best λ via R. So, the best λ=0.114304 and we will use 

it to get the prediction on the test set. Namely, it is predicted Y using the test set. We 

see that the MSE=0.1488859 

 

Ridge Coefficients: 
Intercept)                        AcBa             DuCrd         PaStPrCrd                 Purp             CrdAm  

 6.144675e-02     8.207573e-02   -3.993675e-03   5.326140e-02    2.765153e-03   -1.196121e-05 

     ValSavSto      LenCurEmp            InPerCe           SexMarSt              Guara      DurCurAddr  

 2.957114e-02    2.171938e-02    -3.430186e-02    3.600842e-02    4.166183e-02   -3.512266e-03   

    MoValAvAs                 Age        ConcurCrd               TypAp           NoCrdBa              Occup  

-2.854295e-02    1.192410e-03     3.333577e-02    3.414358e-02    -2.291479e-02   1.658908e-03  

       NoDpnd                   Tlph          FrgnWrkr  

-2.038924e-02     3.928789e-02    1.002559e-01  
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4.6 Lasso Method 

 
Lasso was introduced to improve the prediction accuracy and interpretability of 

regression models by altering the model fitting process to select only a subset of the 

provided covariates for use in the final model rather than using all of them. It was 

developed independently in geophysics, based on prior work that  used the ℓ penalty 

for both fitting and penalization of the coefficients, and by the statistician, Robert 

Tibshirani based on Breiman’s nonnegative garrote.  

Prior to lasso, the most widely used method for choosing which covariates to include 

was stepwise selection, which only improves prediction accuracy in certain cases, such 

as when only a few covariates have a strong relationship with the outcome. However, 

in other cases, it can make prediction error worse. Also, at the time, ridge regression 

was the most popular technique for improving prediction accuracy. Ridge 

regression improves prediction error by shrinking large regression coefficients in 

order to reduce overfitting, but it does not perform covariate selection and therefore 

does not help to make the model more interpretable. 

Lasso can achieve both of these goals by forcing the sum of the absolute value of the 

regression coefficients to be less than a fixed value, which forces certain coefficients 

to be set to zero, effectively choosing a simpler model that does not include those 

coefficients. This idea is similar to ridge regression, in which the sum of the squares 

of the coefficients is forced to be less than a fixed value, though in the case of ridge 

regression, this only shrinks the size of the coefficients, it does not set any of them to 

zero. 

 

General Form 

 

Lasso regularization can be extended to a wide variety of objective functions such as 

those for generalized linear models, generalized estimating equations, proportional 

hazards models, and 
2

M-estimators in general, in the obvious way.  

 

                                                             
2 Note: In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample 

average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition 

of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. The statistical procedure 

of evaluating an M-estimator on a data set is called M-estimation. 

 

https://en.wikipedia.org/wiki/Robert_Tibshirani
https://en.wikipedia.org/wiki/Robert_Tibshirani
https://en.wikipedia.org/wiki/Stepwise_regression
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Shrinkage_(statistics)
https://en.wikipedia.org/wiki/Regression_coefficients
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Generalized_estimating_equation
https://en.wikipedia.org/wiki/Proportional_hazards_model
https://en.wikipedia.org/wiki/Proportional_hazards_model
https://en.wikipedia.org/wiki/M-estimator
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Class_(mathematics)
https://en.wikipedia.org/wiki/Extremum_estimator
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Robust_statistics
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Given the objective function: 

 

 

the lasso regularized version of the estimator will be the solution to 

 

 

where only β penalized while α is free to take any allowed value. (James, Witten, 

Hastie, & Tibshirani, 2013), (Hastie, Tibshirani, & Friedman, May, 2001), 

(Wikipedia, n.d.) 

 

 

4.6.1 Lasso Approach 
 

We apply the same procedure on the Lasso. The best λ=0.003572817 and we use it 

to predict Y on the test set. The MSE=0.1562664.  

Lasso Coefficients: 
(Intercept)                        AcBa            DuCrd         PaStPrCrd                   Purp             CrdAm  

 1.208788e-01    9.618908e-02   -4.428161e-03    5.443169e-02    0.000000e+00   -8.877161e-06  

       ValSavSto      LenCurEmp           InPerCe          SexMarSt               Guara       DurCurAddr  

 2.849844e-02    1.776306e-02   -2.944218e-02    3.001855e-02    3.622153e-02     0.000000e+00  

    MoValAvAs                 Age        ConcurCrd              TypAp           NoCrdBa                Occup  

-2.441292e-02    5.272074e-04    2.477608e-02    2.179406e-02    -1.259050e-02    0.000000e+00  

         NoDpnd                 Tlph         FrgnWrkr  

 0.000000e+00    2.495584e-02    7.036923e-02 

 

We compare the Ridge MSE to Lasso MSE and it seems that Ridge Regression is 

doing better job because 0.1488859<0.1562664. 

 

One thing to point out is that on the Ridge regression some of insignificant coefficients 

can be very small. However, in the Lasso regression some coefficients are zero. As 

some coefficients shrink to zero, we can eliminate those variables. So, these are the 

following variables which are going to use to predict the Y variable: 

(Intercept)                       AcBa             DuCrd        PaStPrCrd             CrdAm         ValSavSto  

 1.208788e-01    9.618908e-02   -4.428161e-03   5.443169e-02   -8.877161e-06   2.849844e-02  

   LenCurEmp            InPerCe         SexMarSt               Guara     MoValAvAs                   Age  

 1.776306e-02   -2.944218e-02    3.001855e-02   3.622153e-02   -2.441292e-02   5.272074e-04  

     ConcurCrd              TypAp         NoCrdBa                 Tlph         FrgnWrkr  

 2.477608e-02    2.179406e-02   -1.259050e-02   2.495584e-02    7.036923e-02 

(Hastie, Tibshirani, & Friedman, May, 2001) 
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4.7 Principal Component Regression 

 

In statistics, principal component regression is a regression analysis technique that is 

based on principal component analysis. Typically, it considers regressing 

the outcome on a set of covariates  based on a standard linear regression model. 

In PCR, instead of regressing the dependent variable on the explanatory variables 

directly, the principal components of the explanatory variables are used as regressors. 

One typically uses only a subset of all the principal components for regression, thus 

making PCR some kind of a regularized procedure. Often the principal components 

with higher variances are selected as regressors. However, for the purpose 

of predicting the outcome, the principal components with low variances may also be 

important, in some cases even more important.  

One major use of PCR lies in overcoming the multicollinearity problem which arises 

when two or more of the explanatory variables are close to being collinear. PCR can 

aptly deal with such situations by excluding some of the low-variance principal 

components in the regression step. In addition, by usually regressing on only a subset 

of all the principal components, PCR can result in dimension reduction through 

substantially lowering the effective number of parameters characterizing the 

underlying model. This can be particularly useful in settings with high-dimensional 

covariates. Also, through appropriate selection of the principal components to be 

used for regression, PCR can lead to efficient prediction of the outcome based on the 

assumed model. (James, Witten, Hastie, & Tibshirani, 2013) 

 

4.7.1 Principal Component Approach 

We use cross-validation: 

 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Prediction
https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Collinear
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/High-dimensional_statistics
https://en.wikipedia.org/wiki/High-dimensional_statistics
https://en.wikipedia.org/wiki/Prediction
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From the above plot it is seen that the 15
th

 component has the lowest MSE. It can 

also be seen from the table above, where the 15
th

 component is 0.4218 and is the 

lowest. 

Now we use cross-validation on the train set and have the following plot:  

 

 

In the table as in the plot above, it seems that the 13
th

 component has the lowest MSE. 

Hence, using 13 components, R gives that MSE= 0.1566044. 

 

All in all, we resulted in 0.1566044, because we took the lowest MSE into account. 

Of course, we should change the number of the 
3

components depending on the 

dimension and we could choose less than 13 or more. For example, if we are 

interested in almost 85% of X explained, then probably we will use 14 components.  

 

 

                                                             
3 Note: Each component is NOT a Variable, is some variance of 20 Variables. 
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See the following table: 

 

   Then, R gives MSE=0.157955 

 

4.8 Partial Least Squares  
 

Partial Least Squares Regression is an extension of the multiple linear regression 

model (see, e.g., Multiple Regression or General Stepwise Regression). In its simplest 

form, a linear model specifies the (linear) relationship between a dependent 

(response) variable Y, and a set of predictor variables, the X's, so that  

Y = β0 + β1X1 + β2X2 + ... + βpXp. 

In this equation β0 is the regression coefficient for the intercept and the bi values are 

the regression coefficients (for variables 1 through p) computed from the data. 

For example, you could estimate (predict) a person's weight as a function of the 

person's height and gender. You could use linear regression to estimate the respective 

regression coefficients from a sample of data, measuring height, weight, and observing 

the subjects' gender. For many data analysis problems, estimates of the linear 

relationships between variables are adequate to describe the observed data, and to 

make reasonable predictions for new observations. 

The multiple linear regression model has been extended in several ways to address 

more sophisticated data analysis problems. The multiple linear regression model 

serves as the basis for a number of multivariate methods such as discriminant 

analysis (i.e., the prediction of group membership from the levels of continuous 

predictor variables), principal components regression (i.e., the prediction of 

responses on the dependent variables from factors underlying the levels of the 

predictor variables), and canonical correlation (i.e., the prediction of factors 

underlying responses on the dependent variables from factors underlying the levels 

of the predictor variables). These multivariate methods all have two important 

properties in common. These methods impose restrictions such that factors 

http://www.statsoft.com/textbook/multiple-regression/
http://www.statsoft.com/textbook/general-regression-models/
http://www.statsoft.com/textbook/statistics-glossary/i.aspx?button=i#Independent%20vs.%20Dependent%20Variables
http://www.statsoft.com/textbook/statistics-glossary/i.aspx?button=i#Independent%20vs.%20Dependent%20Variables
http://www.statsoft.com/textbook/discriminant-function-analysis/
http://www.statsoft.com/textbook/discriminant-function-analysis/
http://www.statsoft.com/textbook/canonical-analysis/
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underlying the Y and X variables are extracted from the Y'Y and X'X matrices, 

respectively, and never from cross-product matrices involving both 

the Y and X variables, and the number of prediction functions can never exceed the 

minimum of the number of Y variables and X variables. 

Partial Least Squares Regression extends multiple linear regression without imposing 

the restrictions employed by discriminant analysis, principal components 

regression, and canonical correlation. In partial least squares regression, prediction 

functions are represented by factors extracted from the Y'XX'Y matrix. The number 

of such prediction functions that can be extracted typically will exceed the maximum 

of the number of Y and X variables. 

In short, partial least squares regression is probably the least restrictive of the various 

multivariate extensions of the multiple linear regression model. This flexibility allows 

it to be used in situations where the use of traditional multivariate methods is severely 

limited, such as when there are fewer observations than predictor variables. 

Furthermore, partial least squares regression can be used as an exploratory analysis 

tool to select suitable predictor variables and to identify outliers before classical linear 

regression. (James, Witten, Hastie, & Tibshirani, 2013). 

 

4.8.1 Partial Least Squares Approach 

 

Here we also use cross-validation on the train set and have the following plot: 

 

The 2
th

 component has the lowest MSE. It can also be seen from the table below as 

well as from the above plot that the 2th component is 0.426 and is the lowest.  

Hence, using 13 components, R gives that MSE= 0.1561894 
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However, we could also change the numbers of components components depending 

on the dimension and we could choose less than 2 or more. We will use 15 

components because we can look at the percentage of variance explained. The first 

15 components explain almost 80% (79.61%) of X variable and as a result R gives  

MSE= 0.1550208.  

 

See the following table: 

 

 (Chong & Jun, 2004), (Mehmood, Liland, Snipen, & Sæbø, 2012), (Guyon & 

Elisseeff, 2003), (Murtaugh, 2009) 

 

 

4.9 Conclusion 

 
Linear model: 

 

As we saw, the dataset consists of 21 variables which characterize 1000 loan applicants. 

30% of those is not credit worthy  (“bad”) and 70% is credit worthy (“good”) applicants. 

We started assuming that the model is linear and examined if it meets linearity 

assumptions. Through regression diagnostics graphs, it is illustrated that the model is 

heteroscedastic and non-normal. Using the Breusch-Pagan test, we also showed that 

the model is heteroscedastic. Next, the SEs have been corrected since 

heteroscedasticity affects only them.  

Non-normality of the model is illustrated in the Q-Q plot as well as in the distribution 

of standardized residuals graph, which is skewed to the left. 
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Subset selection methods: 

 

Since all above mentioned subset selection methods have been explained, we have to 

decide which variables should be included in the model. Actually, there is not a 

specific answer. Each editor evaluates all results and decides according his estimation 

which variables will keep. Our goal is to get out the variables which we think as 

unnecessary. Initially, the first thought is to prefer the Subset Selection method which 

decreases the test MSE and as a result train MSE. However, in this case, the possibility 

of overfitting rises. Overfitting the model generally takes the form of making an overly 

complex model to explain idiosyncrasies in the data under study. In reality, the data 

often studied has some degree of error or random noise within it. Thus, we attempt 

to make the model conforms too closely to slightly inaccurate data which can infect 

the model with substantial errors and reduce its predictive power.  

 

So, we do not select  
4

Ridge Regression and Lasso because MSEs are low enough and 

we are skeptical about that. Additionally, Ridge Regression takes all variables into 

account and as a results MSE is very low. Regarding LASSO we could say that it is a 

method which rejects the insignificant variables and it keeps 16 variables. Although 

the MSE of this method is low enough, if we will try the 16 Variables using linear 

regression, it gives test MSE=0.235116 and train MSE=0.1691912 which are higher 

enough than BEST. PCR and PLS have almost the same train MSE, but a bit higher 

than Forward, Backward and Best. Forward has the same test MSE as Backward and 

they are slightly lower than BEST. In this way, we can choose any of the last tree 

methods because  they give the lowest test MSEs and the same variables as the most 

appropriate ones. 

 

Consequently, we select the 15 following Variables for our model: 

AcBa, DuCrd, PaStPrCrd, CrdAm, ValSavSto, LenCurEmp, InPerCe, SexMarSt, 

Guara, MoValAvAs, ConcurCrd, TypAp, NoCrdBa, Tlph, FrgnWrkr. 

 

 
                                                             

4 Note: Although we chose those variables which Forward, Backward and Best selection give, it would be also possible to 

used only Ridge and Lasso, that is 16 Variables, instead of examining the rest Subset Selection Methods mentioned above. 
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5. Discriminative Models 
 

Discriminative Model also called conditional models, are a class of models used in 

machine learning for modelling the dependence of unobserved variables y on 

observed variables x. Within a probabilistic framework, this is done by modeling 

the conditional probability distribution P(y│x), which can be used for predicting y 

from x. Discriminative models, as opposed to generative models, do not allow one to 

generate samples from the joint distribution of observed and target variables. 

However, for tasks such as classification and regression that do not require the joint 

distribution, discriminative models can yield superior performance. On the other 

hand, generative models are typically more flexible than discriminative models in 

expressing dependencies in complex learning tasks. In addition, most discriminative 

models are inherently supervised and cannot easily support unsupervised learning. 

Application-specific details ultimately dictate the suitability of selecting a 

discriminative versus generative model. Such model is the logistic regression. 

 

5.1 The logistic Regression (Linear Classifier) 

 
In statistics, the logistic model (or logit model) is a statistical model that is usually 

taken to apply to a binary dependent variable. In regression analysis, logistic 

regression or logit regression is estimating the parameters of a logistic model. More 

formally, a logistic model is one where the log-odds of the probability of an event is 

a linear combination of independent or predictor variables. The two possible 

dependent variable values are often labelled as "0" and "1", which represent outcomes 

such as pass/fail, win/lose, alive/dead or healthy/sick. The binary logistic regression 

model can be generalized to more than two levels of the dependent 

variable: categorical outputs with more than two values are modelled by multinomial 

logistic regression, and if the multiple categories are ordered, by ordinal logistic 

regression, for example the proportional odds ordinal logistic model.  

 

 

 

https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Joint_distribution
https://en.wikipedia.org/wiki/Classification_(machine_learning)
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Linear_function_(calculus)
https://en.wikipedia.org/wiki/Categorical_variable
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Level_of_measurement#Ordinal_type
https://en.wikipedia.org/wiki/Ordinal_logistic_regression
https://en.wikipedia.org/wiki/Ordinal_logistic_regression
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5.2 Why Logistic Regression 

 
Equation of straight line: Y=β0+β1X1+β2X2+…      Range of Y is from  

–(infinity) to infinity. 

Let’s try to reduce the Logistic Equation from this equation. 

Y=β0+β1X1+β2X2+…      In Logistic Regression Y cannot be between 0 and. 

 

Now to get the range of Y between 0 and infinity, let’s transform Y  

 Now we have the range between 0 and infinity. 

 

Let us transform it further, to get the range between –(infinity) and infinity  

Log(Y/1-Y)-> log(Y/1-Y)= β0+β1X1+β2X2+… 

 

Logistic or Logit Regression Model is a regression model where the dependent 

variable (Crdblt) is categorical, namely variables can be only fixed values such as A, B 

or C or Yes or No. 

 

The following graph shows a Logit graphic: 

 
(James, Witten, Hastie, & Tibshirani, 2013), (Hastie, Tibshirani, & Friedman, May, 

2001) 

 

5.3 How the Logistic Regression works with our Dataset 
 

Let’s take our sample dataset in R, which is called ger_cre in which we have kept the 

15 Variables. Our aim is to predict if a loan applicant will default or become 

delinquent. So, we have the response Creditability (Crdblt) which can be ‘worthy’=1 

or ‘not worthy’=0.  
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The formula to predict a logit transformation of the probability of presence of the 

characteristic of Creditability is: logit(p)=β0+β1X1+β2X2+…, where p is the probability 

of presence of the characteristic of Creditability. 

Rather than choosing parameters that minimize the sum of squared errors (like in 

ordinary regression), estimation in logistic regression chooses parameters that 

maximize the likelihood of observing the sample values. 

 

Estimating the regression coefficients: 

The coefficients β0 and β1 in are unknown, and must be estimated 

based on the available training data. In this case maximum likelihood is preferred, 

since it has better statistical properties. The basic intuition behind using maximum 

likelihood to fit a logistic regression model is as follows: we seek estimates for β0 and 

β1 such that the predicted probability p(xi) to be each applicant ‘good’ or ‘bad’, 

corresponds as closely as possible to the individual’s observed creditability status. In 

other words, we try to find β0 and β1 such that plugging these estimates into the model 

for P(X), yields a number close to 1 for all applicants who are ‘good’ and close to 0 

for those who are not. This intuition can be formalized using a mathematical equation 

called a likelihood function. 

Logistic regression and other models can be easily fit using a statistical software 

package such as R and so we do not need to concern ourselves with the details of 

the maximum likelihood fitting procedure. (James, Witten, Hastie, & Tibshirani, 

2013), (Hastie, Tibshirani, & Friedman, May, 2001) 

 

Before creating a model, we divide our dataset into training and testing. 

Running summary(model) via R, we take the value of our coefficients: 

 

 

Deviance Residuals: 

Min        1Q       Median     3Q        Max 

-2.6516   -0.7794   0.4512   0.7459   2.0994 
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Null deviance:       1221.73  on 999  degrees of freedom 

Residual deviance:        959.32  on 984  degrees of freedom 

AIC:       991.32 

 

From the above table, firstly, we can see the significant codes. These significant codes 

specify how much significant our independent variables are. Consequently, it seems 

how much significant our dataset is. Basically, our dataset is significant as most 

Variables have significance level over 90%. (*** 99.9%, ** 99%, * 95%, . 90%), except 

from NoCrdBa which is insignificant. So, we do not need optimize our model that is 

to remove NoCrdBa variable. 

Null Deviance shows how well the response Variable is predicted by a model that 

includes only the intercept. Residual Deviance shows how well the response variable 

is predicted with inclusion of independent variables. 

 

To do a prediction as to whether the loan applicant will be “good or “bad”, we must 

convert these predicted probabilities into class labels, “1” or “0”.  

 

  
correct prediction: (141+627)/1000=0.768 

error rate: 0.232 

 

Coefficients:    
  Estimate Std. Error z value Pr(>|z|)  

(Intercept) -3.919e+00 9.543e-01 4.106 4.02e-05 *** 

AcBa  5.858e-01 6.946e-02 8.434 < 2e-16 *** 

DuCrd  -2.423e-02 8.592e-03 -2.820 0.004799 ** 

PaStPrCrd   3.772e-01 8.630e-02 4.371 1.23e-05 *** 

CrdAm -9.144e-05 3.967e-05 -2.305 0.021156 * 

ValSavSto  2.362e-01 5.780e-02 4.086 4.39e-05 *** 

LenCurEmp  1.615e-01 6.767e-02 2.386 0.017021 * 

NoCrdBa -2.253e-01 1.575e-01 -1.431 0.152503 

InPerCe -2.848e-01 8.145e-02 -3.496 0.000471 *** 

SexMarSt  2.384e-01 1.141e-01 2.090 0.036615 * 

Guara  3.459e-01 1.778e-01 1.945 0.051748.   

MoValAvAs -1.879e-01 8.824e-02 -2.130 0.033201 * 

ConcurCrd  2.323e-01 1.100e-01 2.113 0.034605 * 

TypAp    3.358e-01 1.587e-01 2.116 0.034309 * 

Tlph  3.391e-01  1.765e-01 1.921 0.054709 . 

FrgnWrkr  1.137e+00 6.110e-01 1.861 0.062759 . 
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As we can see our model correctly predicted that 627 loan applicants will be “good” 

and “bad” 141, for a total of 141+627=768 correct predictions.   

Hence, logistic regression predicted 76.8% correctly which is relatively high 

percentage. However, we should examine out dataset by splitting it, because we 

trained and tested the model on the same set of 1000 observations. 

To better assess the accuracy of the logistic regression model in this setting, we can fit 

the model using part of the data, and then examine how well it predicts the held-out 

data. This will yield a more realistic error rate, in the sense that in practice we will be 

interested in our model’s performance not on the data that we used to fit the model, 

but rather on these that will happen in the future and are unknown. 

 

Trying the train data set 

 
 
correct prediction: (79+395)/611=0.776 

error rate: 0.224 

 

Now trying the test data set 

 
The results are rather good: the test error rate is 23.3%.   

 

Hence, Logistic Model is 76.7% accurate. 

(Louzada, Ara, & Fernandes, 2013), (A. Abdou & Pointon, 2011), (James, Witten, 

Hastie, & Tibshirani, 2013) 

 
We can also examine the same method taking different thresholds into 

account: 

 

1.Threshold 0.3: 

  

Train data: Test data:                        

                           
correct prediction: 0.753  correct prediction: 0.762 

error rate: 0.247 error rate: 0.238 
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2.Threshold 0.7: 
 

Train data: Test data:                             

                            
correct prediction: 0.703 correct prediction: 0.709 
error rate: 0.297 error rate: 0.291 
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6. Generative Model 

 

Generative modeling is the use of artificial intelligence, statistics and probability in 

applications to produce a representation or abstraction of observed phenomena or 

target variables that can be calculated from observations. Generative modeling is used 

in unsupervised machine learning as a means to describe phenomena in data, 

enabling computers to understand the real world. This artificial intelligence 

understanding can be used to predict all manner of probabilities on a subject from 

modeled data. An example of such model is the discriminant analysis model. 

 

6.1 Linear Discriminant Analysis 
 

Linear discriminant analysis (LDA), normal discriminant analysis or discriminant 

function analysis is a generalization of Fisher's linear discriminant, a method used  

in statistics, pattern recognition and machine learning to find a linear 

combination of features that characterizes or separates two or more classes of objects 

or events. The resulting combination may be used as a linear classifier, or, more 

commonly, for dimensionality reduction before later classification. 

 

LDA is closely related to analysis of variance (ANOVA) and regression analysis, 

which also attempt to express one dependent variable as a linear combination of other 

features or measurements. However, ANOVA uses categorical independent 

variables and a continuous dependent variable, whereas discriminant analysis has 

continuous independent variables and a categorical dependent variable. Logistic 

regression and probit regression are more similar to LDA than ANOVA is, as they 

also explain a categorical variable by the values of continuous independent variables. 

These other methods are preferable in applications where it is not reasonable to 

assume that the independent variables are normally distributed, which is a 

fundamental assumption of the LDA method. 

LDA is also closely related to principal component analysis (PCA) and factor 

analysis in that they both look for linear combinations of variables which best explain 

the data. LDA explicitly attempts to model the difference between the classes of data. 

PCA on the other hand does not take into account any difference in class, and factor 

https://whatis.techtarget.com/definition/variable
https://whatis.techtarget.com/definition/unsupervised-learning
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Features_(pattern_recognition)
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Categorical_variable
https://en.wikipedia.org/wiki/Independent_variables
https://en.wikipedia.org/wiki/Independent_variables
https://en.wikipedia.org/wiki/Continuous_variable
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variables
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Factor_analysis
https://en.wikipedia.org/wiki/Factor_analysis


46 
 

analysis builds the feature combinations based on differences rather than similarities. 

Discriminant analysis is also different from factor analysis in that it is not an 

interdependence technique: a distinction between independent variables and 

dependent variables (also called criterion variables) must be made. 

LDA works when the measurements made on independent variables for each 

observation are continuous quantities. When dealing with categorical independent 

variables, the equivalent technique is discriminant correspondence analysis.  

Discriminant analysis is used when groups are known a priori (unlike in cluster 

analysis). Each case must have a score on one or more quantitative predictor 

measures, and a score on a group measure. In simple terms, discriminant function 

analysis is classification - the act of distributing things into groups, classes or categories 

of the same type. 

 

Summarizing the LDA approach in 5 steps 

Listed below are the 5 general steps for performing a linear discriminant analysis: 

1. Compute the d-dimensional mean vectors for the different classes from the dataset. 

2. Compute the scatter matrices (in-between-class and within-class scatter matrix). 

3. Compute the eigenvectors (e1, e2,…,ed) and corresponding eigenvalues  

(λ1, λ2,...,λd) for the scatter matrices. 

4. Sort the eigenvectors by decreasing eigenvalues and choose kk eigenvectors with the 

largest eigenvalues to form a d×k dimensional matrix W (where every column 

represents an eigenvector). 

Use this d×k eigenvector matrix to transform the samples onto the new subspace. 

This can be summarized by the matrix multiplication:  Y=X×W (where X is a n×k-

dimensional matrix representing the n samples, and y are the transformed n×k-

dimensional samples in the new subspace). (James, Witten, Hastie, & Tibshirani, 

2013), (Louzada, Ara, & Fernandes, 2013), (A. Abdou & Pointon, 2011), (Hastie, 

Tibshirani, & Friedman, May, 2001) 

 

 

 

 

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
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6.1.2 How the Linear Discriminant Analysis works with our Dataset 
 

Firstly, we use the linear discriminant function and through R we take the following  

train results: 

 
Prior probabilities of groups: 

0 0.2906977 

1 0.7093023 

 

 

Group means: 
     

 
AcBa    DuCrd  PaStPrCrd   CrdAm    ValSavSto 

0 1.925714 24.5657 2.217143 4006.314 1.697143 

1 2.93911 19.1663 2.702576 2938.721 2.229508 

 
LenCurEmp  InPerCe    SexMarSt   Guara MoValAvAs 

0 3.194286 3.01714 2.525714 1.091429 2.588571 

1 3.440281 2.87822 2.737705 1.133489 2.285714 

 ConcurCrd    TypAp     NoCrdBa   Tlph    FrgnWrkr 

0 2.571429 1.92 1.36 1.371429 1.005714 

1 2.711944 1.95082 1.416862 1.405152 1.053864 

 

 
Coefficients of linear discriminants: 
     LD1 

AcBa 0.564937303 

DuCrd -0.012710697 

PaStPrCrd 0.268137465 

CrdAm -0.000133522 

ValSavSto 0.174240854 

LenCurEmp 0.085968087 

InPerCe -0.217122673 

SexMarSt 0.320839621 

Guara 0.423803912 

MoValAvAs -0.128512999 

ConcurCrd 0.16447292 

TypAp 0.286250291 

NoCrdBa -0.143801835 

Tlph 0.271674527 

FrgnWrkr 0.790907047 

 

 

Here, we see the proportion of each category (“0”: 29% and “1”: 71%).  

The Group means shows the mean of each variable in each group. 

First discriminant function (LD1) is a linear combination of the 15 predictor variables: 

0.5649373028*AcBa+ (-0.0127106973*DuCrd) +…0.7909070470*FrgnWrkr. 
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Next let’s evaluate the prediction accuracy of our model. Firstly, we’ll run the model 

against the training set used to verify the model fits the data properly by using the 

command predict. The table output below is a confusion matrix with the actual values  

at the row labels and the predicted values at the column labels. We use threshold 0.5. 

 

   
(89+384)/602= 0.7657807: correct prediction 

 

The total number of correctly predicted observations is the sum of the diagonal. So, 

this model fit the training data correctly for almost every observation. Verifying the 

training set doesn’t prove accuracy, but a poor fit to the training data could be a sign 

that the model isn’t a good one. 

 

Now let’s run our test set against this model to determine its accuracy. 

 

           

(63+245)/398= 0.7738693: correct prediction 

(62+28)/398= 0.22613: error rate 

 

Let’s examine the accuracy of our test set. 

In practice, a binary classifier such as this one can make two types of category, or it 

can incorrectly assign an applicant who is “bad” to “good” category. It is often of 

interest to determine which of these two types of errors are being made.  

A confusion matrix, shown for the Creditability data, is a convenient way to display 

this information. The matrix table reveals that LDA predicted that a total of 307 

people would be “good”. Of these people, 245 actually are “good” and 63 are not. 

Hence, 63 out of 125 (or 50.4%) of the individuals who are “bad” are incorrectly 

labelled. However, of the 273 individuals who are “good”, 28 (or 10.25%) are missed 

by LDA. The overall error rate is 23%. So, although the overall error rate is not so 

high, the error rate among individuals who are “bad” is 50.4%. 

From the perspective of a bank that is trying to identify high-risk individuals, an error 

rate of 63/125 =50.4% among individuals who are “bad” loan applicant may be 

unacceptable. 
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However, if we are concerned about incorrectly predicting the creditability status for 

individuals who are “good”, then we can consider lowering this threshold. For 

instance, we might label any applicant with a 
5

posterior (*) probability of being “good” 

above 30% to the default class:  

 
*  FALSE=1, TRUE=0 

 

Here, LDA predicts that 165 individuals will be “bad”. Of the 273 individuals who 

are “good”, LDA correctly predicts all but 71, or 26%. This is not an improvement 

toward the error rate of 10.25% that resulted from using the threshold of 50%.  

 

             when P(good=1│X=x) >=0.47 

So, after trying via R we conclude that the P(good=1│X=x) >= 0.47 or 47%, because 

we have the lower total error rate. 

Hence, the LDA prediction is 77.889% accurate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
5 Note: Posterior probability is the revised probability of an event occurring after taking into consideration new 

information. Posterior probability is calculated by updating the prior probability by using Bayes' theorem. In statistical 

terms, the posterior probability is the probability of event A occurring given that event B has occurred.) 

 

https://www.investopedia.com/terms/p/prior_probability.asp
https://www.investopedia.com/terms/b/bayes-theorem.asp
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7. Quadratic Discriminant Analysis 
 
Quadratic discriminant analysis (QDA) is closely related to linear discriminant 

analysis (LDA), where it is assumed that the measurements from each class 

are normally distributed. Unlike LDA however, in QDA there is no assumption that 

the covariance of each of the classes is identical. When the normality assumption is 

true, the best possible test for the hypothesis that a given measurement is from a given 

class is the likelihood ratio test. (James, Witten, Hastie, & Tibshirani, 2013), (Yap, 

Ong, & Husain, Using data mining to improve assessment of credit worthiness via 

credit scoring models, 2011), (VOJTEK & KOČENDA*, 2005) 

 

7.1 How Quadratic Discriminant Analysis works with our Dataset 

 
Group means:      

              AcBa    DuCrd   PaStPrCrd    CrdAm      ValSavSto 

0 1.903333 24.86 2.166667 3938.127 1.673333 

1 2.865714 19.20714 2.707143 2985.443 2.29 

  LenCurEmp  InPerCe    SexMarSt      Guara  MoValAvAs 

0 3.17 3.096667 2.586667 1.126667 2.586667 

1 3.475714 2.92 2.722857 1.152857 2.26 

    ConcurCrd    TypAp    NoCrdBa        Tlph      FrgnWrkr 

0 2.556667 1.913333 1.366667 1.376667 1.013333 

1 2.725714 1.934286 1.424286 1.415714 1.047143 

 

The output contains the group means. But it does not contain the coefficients 

of the linear discriminants, because the QDA classifier involves a quadratic, rather 

than a linear, function of the predictors.  

 

Taking all observations into account, the table with the correct prediction is shown: 

 
Here, the correct prediction is 0.774.  

 

Confusion matrix for the train data: 

 
correct prediction is 0.758. 

 

 

https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Likelihood-ratio_test
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Yet, if we want to compare QDL with LDA we should show the table with test data 

which have the lowest error rate: 

  
 

So, the QDA prediction is 79% accurate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

error rate=0.21 

correct prediction=0.79 
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8. Classification Methods 
 

Classification is a data mining task of predicting the value of a categorical variable by 

building a model based on one or more numerical and/or categorical variables 

(predictors or attributes). Data mining is a critical step in knowledge discovery 

involving theories, methodologies and tools for revealing patterns in data. It 

developed in fields other than statistics, e.g., machine learning and signal processing, 

are also introduced. Predicting a qualitative response for an observation can be 

referred to as classifying that observation, since it involves assigning the observation 

to a category, or class. Often the methods used for classification first predict the 

probability of each of the categories of a qualitative variable, as the basis for making 

the classification. In this sense they also behave like regression methods. 

 

We will examine the following classification methods: k-nearest neighbors, tree-

based methods: decision trees, random forest. 

 

8.1 K-Nearest Neighbors 

 
The KNN algorithm is a robust and versatile classifier that is often used as a 

benchmark for more complex classifiers such as Artificial Neural Networks (ANN) 

and Support Vector Machines (SVM). Despite its simplicity, KNN can outperform 

more powerful classifiers and is used in a variety of applications such as economic 

forecasting, data compression and genetics. 

 

As we mentioned k-nearest neighbors is a simple algorithm that stores all available 

cases and classifies new cases by a majority vote of its k neighbors. This algorithm 

segregates unlabeled data points into well-defined groups. Choosing the number of 

nearest neighbors i.e. determining the value of k plays a significant role in determining 

the efficacy of the model. Thus, selection of k will determine how well the data can 

be utilized to generalize the results of the k-NN algorithm. A large k value has benefits 

which include reducing the variance due to the noisy data; the side effect being 

developing a bias due to which the learner tends to ignore the smaller patterns which 

may have useful insights. 
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KNN has been around for a long time and has been very well studied. As such, 

different disciplines have different names for it, for example: 

 Instance-Based Learning: The raw training instances are used to make predictions. 

As such KNN is often referred to as instance-based learning or a case-based learning 

(where each training instance is a case from the problem domain). 

 Lazy Learning: No learning of the model is required, and all of the work happens at 

the time a prediction is requested. As such, KNN is often referred to as a lazy 

learning algorithm. 

 Non-Parametric: KNN makes no assumptions about the functional form of the 

problem being solved. As such KNN is referred to as a non-parametric machine 

learning algorithm. 

K-NN Pros and Cons 

Pros: The algorithm is highly unbiased in nature and makes no prior assumption of 

the underlying data. Being simple and effective in nature, it is easy to implement and 

has gained good popularity. 

Cons: k-NN algorithm has drawn a lot of flake for being extremely simple! If we take 

a deeper look, this doesn’t create a model since there’s no abstraction process 

involved. Yes, the training process is fast as the data is stored verbatim (hence lazy 

learner) but the prediction time is pretty high with useful insights missing at times. 

Therefore, building this algorithm requires time to be invested in data preparation 

(especially treating the missing data and categorical features) to obtain a robust model. 

(James, Witten, Hastie, & Tibshirani, 2013) 

 

8.1.1 How the K-NN works with our Dataset 

 
The first thing we need to do is the loading of our dataset in CSV format. Via R we 

construct the train and test data set. Then, we predict on a test set of 400 observations 

and the rest (600) is used as train set. 

Let's use an odd number near the square root of the observations size (1000) of our 

data set. The result is 31.  

 

https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Lazy_learning
https://en.wikipedia.org/wiki/Lazy_learning
https://en.wikipedia.org/wiki/Nonparametric_statistics
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It is examined the KNN for the test data set with the following tables: 

We will first try for k=31 and see how it works in our model. 

 282/400=0.705 

  Using k = 31, 70.5% of the observations is correctly predicted. 

Let’s use k values as 1, 5 and 20 to see how the perform in terms of correct proportion 

of classification a success rate. 

For k=1:  211 

For k=5:  224 

For k=20:  257 

 

We can also perform the table for k=1: 

 211/400= 0.5275 

The results using k = 1 are not very good, since only 52.75% of the observations 

are correctly predicted.  

k=1 overfits and this can only be seen in test error rate which is 47.25%. 

 

Below, we repeat the analysis using k=5: 

 224/400=0.56 

We see that the results have improved slightly. Now 56% of the observations 

are correctly predicted. 

 

Finally, we perform the table using k=20: 

 257/400=0.6425 

Here, the results have improved more, and the prediction is 64.25%. 

 

However, if we try until k=55 the prediction is 75.75%: 

 
And if we continue with k=57 we see that the prediction is not improved but 

decreased to 74.25%.  

Hence, we could say that the most appropriate prediction is 75.75% whose k=55. 

(See Appendix the train data) 

 

(VOJTEK & KOČENDA*, 2005), (Louzada, Ara, & Fernandes, 2013), (James, 

Witten, Hastie, & Tibshirani, 2013), (Hastie, Tibshirani, & Friedman, May, 2001) 
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8.2 Tree-Based Methods 
 

Tree based learning algorithms are considered to be one of the best and mostly used 

supervised learning methods. Tree based methods empower predictive models with 

high accuracy, stability and ease of interpretation. Unlike linear models, they map 

non-linear relationships quite well. They are adaptable at solving any kind of problem 

at hand (classification or regression). 

 

8.2.1 Decision Trees 

 
Decision trees are powerful non-linear classifiers, which utilize a tree structure to 

model the relationships among the features and the potential outcomes. A decision 

tree classifier uses a structure of branching decisions, which channel examples into a 

final predicted class value.  

Decision trees is being popularly used in all kinds of data science problems. Hence, 

for every analyst, it’s important to learn these algorithms and use them for modeling. 

This is a type of algorithm which is mostly used in classification problems. It works 

for both categorical and continuous input and output variables. (Louzada, Ara, & 

Fernandes, 2013), (A. Abdou & Pointon, 2011) 

 

 

 

 

This machine-learning approach is used to classify data into classes and to represent 

the results in a flowchart, such as a tree structure. This model classifies data in a 

dataset by flowing through a query structure from the root until it reaches the leaf, 

which represents one class. The root represents the attribute that plays a main role in 
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classification, and the leaf represents the class. The decision tree model follows the 

steps outlined below in classifying data: 

 

1. It puts all training examples to a root. 

2. It divides training examples based on selected attributes. 

3. It selects attributes by using some statistical measures. 

4. Recursive partitioning continues until no training example remains, or until no 

attribute remains, or the remaining training examples belong to the same class. 

 

Types of decision tree is based on the type of target variable we have. It can be of 

two types: 

 Classification Trees: where the target variable is categorical, and the tree is used 

to identify the class within which a target variable would likely fall into. For 

example, the target variable has two value YES or NO. 

 Regression Trees: where the target variable is continuous, and tree is used to 

predict its value. 

 

Advantages of classification trees: 

1. Easy to Understand: Decision tree output is very easy to understand even for 

people from non-analytical background. It does not require any statistical 

knowledge to read and interpret them. Its graphical representation is very 

intuitive, and users can easily relate their hypothesis. 

2. Useful in Data exploration: Decision tree is one of the fastest ways to identify most 

significant variables and relation between two or more variables. With the help of 

decision trees, we can create new variables that have better power to predict. It 

can also be used in data exploration stage. For example, we are working on a 

problem where we have information available in hundreds of variables, there 

decision tree will help to identify most significant variable. 

3. Less data cleaning required: It requires less data cleaning compared to some other 

modeling techniques. It is not influenced by outliers and missing values to a fair 

degree. 

4. Data type is not a constraint: It can handle both numerical and categorical 

variables. 
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5. Non-Parametric Method: Decision tree is considered to be a non-parametric 

method. This means that decision trees have no assumptions about the space 

distribution and the classifier structure. 

 

Disadvantages: 

 

The modification of a single variable may change the whole tree if this variable is 

located near the top of the tree. This results in a lack of robustness. You can overcome 

it by resampling, in which one can construct the trees on many successive samples and 

can aggregate by a vote or a mean. But this will lead to losing the simplicity and 

readability of the model, which are the advantages of decision trees. For example, an 

individual item has all categories of a group A except the value of a variable that splits 

the tree. In this case, a variable is misclassified in another group as the tree has tested 

this variable. (James, Witten, Hastie, & Tibshirani, 2013) 

 

8.2.2 Classification trees 
 

A classification tree is very similar to a regression tree, except that it is classification 

used to predict a qualitative response rather than a quantitative one. For a regression 

tree, the predicted response for an observation is given by the mean response of the 

training observations that belong to the same terminal node. In contrast, for a 

classification tree, we predict that each observation belongs to the most commonly 

occurring class of training observations in the region to which it belongs. In 

interpreting the results of a classification tree, we are often interested not only in the 

class prediction corresponding to a terminal node region, but also in the class 

proportions among the training observations that fall into that region. 

 

Classification Trees vs Regression Trees 

 

Both the trees work almost similar to each other, let’s look at the primary differences 

& similarity between classification and regression trees: 

1. Regression trees are used when dependent variable is continuous. Classification 

trees are used when dependent variable is categorical. 
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2. In case of regression tree, the value obtained by terminal nodes in the training data 

is the mean response of observation falling in that region. Thus, if an unseen data 

observation falls in that region, we’ll make its prediction with mean value. 

3. In case of classification tree, the value (class) obtained by terminal node in the 

training data is the mode of observations falling in that region. Thus, if an unseen 

data observation falls in that region, we’ll make its prediction with mode value. 

4. Both the trees divide the predictor space (independent variables) into distinct and 

non-overlapping regions. For the sake of simplicity, you can think of these regions 

as high dimensional boxes or boxes. 

5. Both the trees follow a top-down greedy approach known as recursive binary 

splitting. We call it as ‘top-down’ because it begins from the top of tree when all 

the observations are available in a single region and successively splits the predictor 

space into two new branches down the tree. It is known as ‘greedy’ because, the 

algorithm cares (looks for best variable available) about only the current split, and 

not about future splits which will lead to a better tree. 

6. This splitting process is continued until a user defined stopping criterion is 

reached. 

7. In both the cases, the splitting process results in fully grown trees until the stopping 

criteria is reached. But the fully-grown tree is likely to overfit data, leading to poor 

accuracy on unseen data. This bring ‘pruning’. Pruning is one of the techniques 

used tackle overfitting. 

 

8.2.3 How the Decision trees work with our Dataset 

 
Decision trees 

First, we introduce the dataset which contains 16 variables and 100 observations. Data 

are spllited to train and test. We use library(rpart) for running the tree model (see 

Appendix). 
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Tree plot: 

 

 

Generally, the tree has the root at the top and leaves at the bottom. The most 

important variable to the prediction model is AcBa which is at the top of the tree. 

Basically, it is the most significant variable in helping to classify the observation. We 

start from the root. If AcBa<3 or if “yes” then we go to MoValAvAs. In this knot, the 

probability of the loan applicant to be “bad” is 0.47 and “good” is 0.53 and we follow 

the same procedure until the last tree leaf. Ιf “no”, then the loan applicant is more 

likely to be “good”  with probability 0.89 and 0.11 “bad”. 

 

Now, we will use the tree model to calculate misclassification error as well as the 

correct prediction for train data. So, what we are doing here is that we are creating the 

following table: 
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In this table the line indicates the reality or the actual classification. The column 

indicates the prediction from the tree model. So, the number in the diagonal 

(90, 346) show the correct classification and those in the other diagonal (94,64) show 

the misclassification. 

So, correct prediction = 0.734 or 73.4% and misclassification error = 0.265 or 26.5%. 

 

Then, we will use the tree model to calculate misclassification error as well as the 

correct prediction for test data. So, what we are doing here is that we are creating the 

following table: 

 
Here, the correct prediction=0.7167 or 71.67% and  

misclassification error =0.2832 or 28.32%. 

 

So, this prediction is 71.61% accurate. 

 

8.3 Random Forest 

 
Random forests or random decision forests are an ensemble learning method for 

classification, regression and other tasks, that operate by constructing a multitude of 

decision trees at training time and outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the individual trees. Random 

decision forests correct for decision trees’ habit of over fitting to their training set. 

Random Forest is a supervised learning algorithm. As we can see from its name, it 

creates a forest and makes it somehow random. The “forest” it builds, is an ensemble 

of Decision Trees, most of the time trained with the “bagging” method. The general 

idea of the bagging method is that a combination of learning models increases the 

overall result. In other words, random forest builds multiple decision trees and merges 

them together to get a more accurate and stable prediction. (James, Witten, Hastie, & 

Tibshirani, 2013) 
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Random Forest: 

 Develop by aggregating trees. 

 Can be used for classification or regression. 

 Avoid overfitting. 

 Can deal with large numbers of features. 

 Helps with feature selection based on importance 

 User friendly: only two parameters. 

1) Trees- ntree 

2) Variables randomly sampled as candidates at each split 

 

8.3.1 How Random Forest works with our Dataset 
 

First, we split the dataset to train and test and then will find the appropriate mtry 

through R to run the random forest model and find the less error rate. Actually, it is 

intended to find the less OOB of error rate. 

For Random Forest we calculate OOB (out of bag error). That we do is for each 

bootstrap iteration and related tree, we calculate prediction error using data not in 

bootstrap sample. When we are doing classification the OOB is the Accuracy. 

 

Since we find that it should be used mtry=3 or 3 number of variables available for 

splitting at each tree node, we will firstly run the model using the train data. 

            Random Forest  

Number of trees: 500 

No. of variables tried at each 

split: 3 

OBB estimate of error rate: 22% 

 

 Confusion matrix: 

 0 1  Class. Error 

0 90 96 0.516129 

1 38 383 0.902613 

 

As we see the OOB estimate error rate is 22.08%. We have used 500 trees in the 

model with mtry equals 3. Classification errors for “0” or “bad” is 51.6% and for “1” 

or “good” is 9.02%, much better. 
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Let’s look at the training error: 
Confusion Matrix and 

Statistics 

 Reference 

Prediction 0 1 

0 185 0 

1 1 421 

 
Accuracy: 0.9984 

95% CI:   (0.9909, 1) 

No Information Rate: 0.6936 

P-Value [Acc > NIR]:         <2e-16 

Kappa: 0.9961 

Mcnemar's Test P-Value: 1 

Sencitivity: 0.9946 

Specificity: 1 

Pos Pred Value: 1 

Neg Pred Value: 0.9976 

Prevalence: 0.3064 

Detection Rate: 0.3048 

Detection Prevalence 0.3048 

Balanced Accuracy 0.9973 

Positive' Class: 0 

 

For the train data Accuracy level is 99.84%.  

However, the real test is going to be best on test data. So, let’s get the test data 

confusion matrix: 
Confusion Matrix and 

Statistics 

 Reference 

Prediction 0 1 

0 47 25 

1 67 254 

 
Accuracy: 0.7659 

95% CI: 

(0.7209, 

0.8069) 

No Information Rate: 0.7099 

P-Value [Acc > NIR]: 0.007522 

Kappa: 0.3621 

Mcnemar's Test P-Value: 1.92E-05 

Sencitivity: 0.4123 

Specificity: 0.9104 

Pos Pred Value: 0.6528 

Neg Pred Value: 0.7913 

Prevalence: 0.2901 

Detection Rate: 0.1196 

Detection Prevalence 0.1832 

Balanced Accuracy 0.6613 

Positive' Class: 0 

 

Hence, it gives Accuracy level 76.56% and as a result the prediction is 76.5% 

accurate. 
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Numbers of Nodes: 

 

 
The histogram shows the distribution of number of nodes in each of those 500 

trees. The biggest Var is close to 115. There exist 115 trees which have 130-135 

nodes. The smallest Var is at the left side and there are almost 5 trees with 110-115 

nodes. 

 

Which variables play an important role in the model: 

 

 
The left graph indicates how worse the model performs without each variable. The 

first variable AcBa is on the top and CrdAm, DuCrd and PaStPrCrd have important 

contribution. The contribution of ValSavSto is the least and it equals 5. 
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The right graph measures how pure the nodes are at the end of the tree without each 

variable. (Nasa & Suman, 2012), (Yap, Ong, & Husain, Using data mining to improve 

assessment of credit worthiness via credit scoring models, 2011), (James, Witten, 

Hastie, & Tibshirani, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

9. Comparison of Credit Scoring Methods 
 

To compare the classification model, we put in the following table the basic indicators; 

that is, sensitivity and specificity. The sensitivity rate is the true positive rate (the 

percentage of defaulters predicted correctly as defaulters), while specificity is the true 

negative rate (percentage of the non-defaulters predicted correctly as non-defaulters). 

These values of indicators are based on the training and the validation subsets 

respectively. To compare predictive models, we need to look at the Type I error (a 

good credit customer being misclassified as bad credit customer) and Type II error 

(a bad credit customer being misclassified as a good credit customer) of the models. 

We also include Type I error and Type II error at the table below. 

 

Table (Sensitivity, Specificity, Type I error and Type II error) 

Model Sample Sensitivity Specificity 

Type I 

error 

Type II 

error 

Logistic Regression Training  0.658 0.804 0.196 0.342 

 Validation 0.67 0.796 0.204 0.33 

Linear Discriminant Analysis Training  0.63 0.8 0.2 0.37 

 Validation 0.68 0.81 0.19 0.32 

Quadratic Discriminant 

Analysis Training  0.63 0.72 0.28 0.37 

 Validation 0.6 0.85 0.15 0.4 

K-Nearest Neighbor Training  0.57 0.56 0.44 0.43 

 Validation 0.02 0.98 0.03 0.98 

Decision tree Training  0.58 0.79 0.21 0.42 

 Validation 0.5 0.79 0.21 0.5 

Random Forest Training                  - 0.998 0.002 0 

 Validation 0.65 0.79 0.21 0.34 

 

Generally, Type II errors are higher than Type I errors, except from the Random 

Forest. It is found that the LDA model has the highest sensitivity and the lowest Type 

II error (a defaulter misclassified as non-defaulter).  

To examine the results, we look at the validation subset of the models. It is obvious 

that the K-nearest neighbor is the worst model as it has the highest Type II error and 

the lowest sensitivity. Although Random forest has low Type II error 0.34 and 

Sensitivity 0.65, we see that there is a great difference between test and train data. 

Moreover, we could say that the decision tree is not an appropriate model, because 

the Type II error equals Sensitivity which equals 0.5. Hence, Logistic Regression, 

LDA and QLDA are the “best” models. 
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10. Conclusion 
 

Statistical techniques consist credit decision-makers’ tools which are used by the 

banks and some companies to assess if the customers or loan applicants are capable 

to repay their obligations. In other words, if the customers are creditworthy or not 

(“good” or “bad”). The institutions collect data  related to the customers 

characteristics such as level of income, assets that the customer possesses job stability, 

profession, amount lent in relation to monthly income, case history of loans and 

payments, marital status and children as well as age. Furthermore, these performance 

evaluation criteria can also help them to choose the best model based on their aims 

and objectives. Classification methods, especially for loan applications, have become 

the most important forecasting techniques or tools which by using algorithms can 

provide results with significant accuracy. Nowadays, it is important to have a database 

with different types of characteristics in order to make predictions using statistical 

techniques. Of course, the possibility of finding data interests not only the managers 

in banking or finance, but also researchers in academic field. In reality, we cannot say 

for sure that there is a “best” model. It should be emphasized that there is no ideal 

credit scoring modelling procedure. It depends on the  data structure, data quality 

and the objective of the classification.  

 

Here, we used a German credit dataset and with the help of R programming we tried 

to examine six different statistical methods in order to make the best prediction. In 

our case, LDA and QLDA illustrates the most appropriate results.  

We conclude to the choice of Discriminant Analysis as the appropriate technique, 

since it has the best results. We found that 22% of the applicants are predicted false 

and 78% of them correct, which is relatively high. That is to say, if we were credit 

officers, we would conclude that the model at hand, predicts approximately 8 out of 

10 the true status of each loan candidate, or else, if had a "good" candidate model 

would identify him 4 out of 5 times. 
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APPENDIX 
Page 16: 

 

 

Names of Variables 
Creditability Crdblt 

Account Balance AcBa 

Duration of Credit (month) DuCrd 

Payment Status of Previous Credit PaStPrCrd 

Purpose Purp 

Credit Amount CrdAm 

Value Savings/Stocks ValSavSto 

Length of current employment LenCurEmp 

Instalment per cent InPerCe 

Sex & Marital Status SexMarSt 

Guarantors Guara 

Duration in Current address DurCurAddr 

Most valuable available asset MoValAvAs 

Age (years) Age 

Concurrent Credits ConcurCrd 

Type of apartment TypAp 

No of Credits at this Bank NoCrdBa 

Occupation Occup 

No of dependents NoDpnd 

Telephone Tlph 

Foreign Worker FrgnWrkr 

 

 

 

Dataset: https://onlinecourses.science.psu.edu/stat857/node/222 
 

 

 

Page 16: 
 

 

 

Creditability    
Not credit 

worthy 0 300 30% 

Credit worthy 1 700 70% 

 

 
 

https://onlinecourses.science.psu.edu/stat857/node/222
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Account Balance 
   

No running account 1 274 27.4% 

No balance or debit 2 269 26.9% 

0 <= ... < 200 DM 3 63 6.3% 

... >= 200 DM or checking account for at least 

1 year 4 394 39.4% 

 

Payment Status of Previous Credit    

Hesitant payment of previous credits 0 40 4% 

Problematic running account / credits running at 

other banks 1 49 4.9% 

No previous credits / paid back all previous credits 2 530 53% 

No problems with current credits at this bank 3 88 8.8% 

Paid back previous credits at this bank 4 293 29.3% 

 

Purpose    
Other 0 234 23.4% 

New car 1 103 10.3% 

Used car 2 181 18.1% 

Items of furniture 3 280 28.% 

Radio / television 4 12 1.2% 

Household appliances 5 22 2.2% 

repair 6 50 5% 

education 7 0 0% 

vacation 8 9 0.9% 

retraining 9 97 9.70% 

business 10 12 1.20% 

 

Value Saving/Stocks    

No available/no savings 1 603 60.3% 

< 100,- DM 2 103 10.3% 

100,-<=...<500,DM 3 63 6.3% 

500,<=...<1000,DM 4 48 4.8% 

>= 1000,- DM 5 183 18.3% 

 

Length of Current Employment    

unemployed 1 62 6.2% 

<= 1 year 2 172 17.2% 

1<=...<4years 3 339 33.9% 

4<=...<7years 4 174 17.4% 

>= 7 years 5 253 25.3% 

 

Instalment per cent 

of available income    

>= 35 1 136 13.6% 

25<=…<35 2 231 23.1% 

20<=...<25 3 157 15.7% 

< 20 4 476 47.6% 
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Sex & Marital Status    

male:divorced/living apart 1 50 5% 

male: single 2 310 31% 

male:married/widowed 3 548 54.8% 

female 4 92 9.2% 

 

Guarantors    

none 1 907 90.7% 

Co-Applicant 2 41 4.1% 

Guarantor 3 52 5.2% 

 

Duration in Current Address    

< 1 year 1 130 13% 

1 <= ... < 4 years 2 308 30.8% 

4 <= ... < 7 years 3 149 14.9% 

>= 7 years 4 413 41.3% 

 

Most Valuable Available Asset    

not available / no assets 1 282 28.2% 

Car / Other 2 232 23.2% 

Savings contract with a building society / 

Life insurance 3 332 33.2% 

Ownership of house or land 4 154 15.4% 

 

 

Concurrent Credits    

at other banks 1 139 13.9% 

at department store or mail 

order house 2 47 4.7% 

no further running credits 3 814 81.4% 

 

Type of Apartment    

free apartment 1 179 17.9% 

rented flat 2 714 71.4% 

owner-occupied flat 3 107 10.7% 

 

No of Credits at this Bank    

one 1 633 63.3% 

two or three 2 333 33.3% 

four or five 3 28 2.8% 

six or more 4 6 0.6% 
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Occupation    
unemployed / unskilled with no permanent 

residence 1 22 2.2% 

unskilled with permanent residence 2 200 20% 

skilled worker / skilled employee / minor civil 

servant 3 630 63% 

executive / self-employed / higher civil servant 4 148 14.8% 

 

No of Dependents    

3 and more 1 845 84.5% 

0 to 2 2 155 15.5% 

 

Telephone    

No 1 596 59.6% 

Yes 2 404 40.4% 

 

Foreign Worker    

No 1 936 93.6% 

Yes 2 37 3.7% 
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Leverage Plots 
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Residuals: 

    Min       1Q          Median       3Q      Max  

-1.0534  -0.3479      0.1186    0.2997  0.7878 

 

Coefficients:    

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -5.147e-02 1.486e-01 -0.346 0.729203 

DuCrd -4.396e-03 1.484e-03 -2.962 0.003126 ** 

CrdAm -1.534e-05 6.818e-06 -2.251 0.024634 * 

Age  1.067e-03 1.289e-03  0.827 0.408229 

AcBa  9.879e-02 1.086e-02 9.100 < 2e-16  *** 

Purp  4.691e-03 4.828e-03 0.972 0.331492 

PaStPrCrd  6.566e-02 1.387e-02 4.733 2.54e-06 *** 

ValSavSto  3.424e-02 8.491e-03 4.032 5.95e-05 *** 

LenCurEmp                      2.482e-02 1.158e-02 2.144 0.032297 * 

InPerCe -4.707e-02 1.309e-02 -3.595 0.000341 *** 

SexMarSt  4.386e-02 1.868e-02 2.348 0.019091 * 

Guara  5.878e-02 2.776e-02 2.117 0.034487 * 

DurCurAddr                    -2.859e-03 1.261e-02 -0.227 0.820664 

MoValAvAs                    -3.250e-02 1.437e-02 -2.261 0.024003 * 

ConcurCrd  3.614e-02 1.886e-02 1.916 0.055607 . 

TypAp  4.988e-02 2.766e-02 1.803 0.071679 . 

NoCrdBa -4.226e-02 2.543e-02 -1.662 0.096907 . 

Occup  4.991e-03 2.263e-02 0.221 0.825502 

NoDpnd -2.930e-02 3.675e-02 -0.797 0.425529 

Tlph  5.102e-02 2.945e-02 1.733 0.083470 . 

FrgnWrkr  1.145e-01 7.064e-02 1.621 0.105444 

 

Residual standard error: 0.4045 on 979 degrees of freedom 

Multiple R-squared: 0.2374 

Adjusted R-squared:  0.2218 

F-statistic: 15.24 on 20 and 979 DF 

p-value:  < 2.2e-16 
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1.The variance estimates for the coefficients 

(Intercept)                DuCrd         CrdAm                  Age                     AcBa           Purp                PaStPrCrd  

2.209470e-02    2.201742e-06    4.648671e-11    1.662344e-06    1.178642e-04    2.331275e-05    1.925044e-04  

   ValSavSto        LenCurEmp         InPerCe          SexMarSt           Guara        DurCurAddr       MoValAvAs  

7.210277e-05    1.340419e-04    1.714281e-04    3.490579e-04    7.707512e-04    1.589403e-04    2.066286e-04  

   ConcurCrd        TypAp              NoCrdBa               Occup         NoDpnd               Tlph               FrgnWrkr  

3.556093e-04    7.651458e-04    6.467920e-04    5.121195e-04    1.350638e-03    8.670188e-04    4.989420e-03 
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2.Take the squared root/ SEs estimate from the standard formula 

(Intercept)                DuCrd        CrdAm                 Age                       AcBa                Purp             PaStPrCrd  

1.486429e-01     1.483827e-03    6.818116e-06     1.289319e-03     1.085653e-02    4.828328e-03     1.387460e-02  

   ValSavSto        LenCurEmp      InPerCe           SexMarSt             Guara           DurCurAddr    MoValAvAs  

8.491335e-03     1.157765e-02   1.309305e-02      1.868309e-02      2.776241e-02    1.260715e-02    1.437458e-02  

   ConcurCrd        TypAp            NoCrdBa             Occup              NoDpnd               Tlph                 FrgnWrkr  

1.885761e-02     2.766127e-02   2.543211e-02     2.263006e-02     3.675103e-02      2.944518e-02     7.063583e-02 

 
3.To get SEs, we take the square root of the diagonal of a variance-covariance matrix for the coefficients, like we did  

above (heteroskedasticity-consistent formula). 

(Intercept)             DuCrd             CrdAm             Age                   AcBa                 Purp               PaStPrCrd  

1.537522e-01    1.660503e-03    8.076843e-06    1.345379e-03    1.107567e-02    5.120733e-03    1.467496e-02  

   ValSavSto    LenCurEmp      InPerCe             SexMarSt           Guara            DurCurAddr    MoValAvAs  

8.313477e-03    1.220727e-02     1.375592e-02    1.973157e-02    2.909345e-02   1.290001e-02     1.431056e-02  

   ConcurCrd        TypAp          NoCrdBa             Occup              NoDpnd                Tlph            FrgnWrkr  

2.066148e-02    2.917151e-02     2.706832e-02    2.377242e-02    3.736566e-02    2.876303e-02    5.698500e-02 
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The correct prediction of the train data, when k=55, is 56.33% 
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Confusion Matrix 

  0 1 

    0 α β 

1 γ δ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sencitivty= α/(α+β) 

Specificity=δ/(γ+δ) 

Type I error=γ/(γ+δ) 

Type II error=β/(α+β) 
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