

ATHENS UNIVERSITY

OF ECONOMICS AND BUSINESS

DEPARTMENT OF INFORMATICS

MSc IN INFORMATION SYSTEMS

THESIS

“Creating a repository for data

crawled from multiple social
networks”

KONSTANTINOS CHRISTOFILOS

MM4140023

ATHENS, OCT. 2016

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 1

AKNOWLEDGMENTS

This thesis was concluded as a part of AUEB’s master in science program

under the supervision of professor Ioannis Kotidis.

I want to thank Prof. Kotidis for giving me the opportunity to make a study in

the, very fascinating, area of big data. Along with Prof. Kotidis, I would like to

thank Mr. Vasilios Spiropoulos (Phd candidate) who was always there to

assist me in any problem I faced.

I, also, want to thank all of my professors and colleagues, who made the last

two years of my life a rollercoaster of fun and knowledge. I, really, owe them a

lot.

Last, I want to thank the person who made all that possible, the person who

pushed me to start, continue and finish that MSc. I want to thank my wife Efi

and dedicate that thesis to her, because without her, that paper wouldn’t have

existed.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 2

Table of Contents

AKNOWLEDGMENTS ... 1

ABSTRACT ... 3

Introduction ... 4

Chapter 1: REST APIs .. 7
Representational State Transfer (REST) ... 7
Application Programming Interface (API) ... 7

Chapter 2: Graph databases ... 8
Resource Description Framework (RDF) ... 8
Property Graph .. 9

Chapter 3: Natural Language Processing (NLP) .. 10
Named Entity Recognition (NER)... 10

Chapter 4: Architecture .. 11
Programming Language ... 11
Environment .. 11
Named Entity Recognizer (NER) .. 11

Chapter 5: APIs (Inputs) / Databases (Outputs) ... 13
Inputs .. 13
Outputs... 13

Chapter 6: Implementation .. 14
User interface .. 14
Configuration ... 14

Inputs ... 15
Outputs.. 17
Parameters.. 19
Execute .. 19

Command line interface (CLI) .. 20
Generate endpoints from names list (api2db:import:names) ... 21
Clear generated endpoints (api2db:clear:endpoints) ... 21
Batch import data from endpoints (api2db:import:batch) ... 21
Import data from a single endpoint (api2db:import:endpoint) .. 22

Chapter 7: Results .. 23
Performance .. 24
Generated data .. 25

Queries response time .. 31

Chapter 8: References .. 32

Appendix A – Figures .. 33

Appendix B – Tables .. 34

Appendix C – Diagrams ... 35

Appendix C – Source code ... 36

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 3

ABSTRACT

People use countless web services in their everyday life. The same thing

happens to companies and organizations. Most cloud services give access to

the generated data via REST APIs, but although this seems very nice, it

becomes a headache when someone wants to get results from more than one

service.

The main problem is that API responses are not compatible among different

services and the solution to that is the transformation of these semi-structured

data to structured data.

The second problem, and probably the most hard to tackle, is to find relations

in these data and produce some worthy results.

The approach that was adopted on this thesis was to fetch data from two input

API sources (Twitter, Instagram), find relations between the data using natural

language processing in the responses and finally merge them into a

structured data environment. In that case, we manage to have a single query

interface on the raw data and in addition, some relations pre-populated.

The merged output will be stored in two different graph databases, one

property graph (Neo4J) and one semantic graph (RDF-Apache Jena). In that

way we had the ability to give a unified query environment by using one of

each databases.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 4

Introduction

The rise of social networks, and web services in general, over the last decade

have skyrocket the daily data production within the Internet. These vast

amounts of daily-generated data created a great area of interest for everyone

who is related in big data analytics.

All social networks and major web services give access to their data via REST

APIs as JSON or XML responses. This is something very useful, because

they expose their data to any kind of application needs them without having

knowledge of each service’s underlying technology.

All that sounds really great. Web services give access to their data, so anyone

can analyze them and make decisions based on that analysis. So, where is

the problem? The problem is that there isn’t a dominant social network or web

service, which means that most people or organizations use multiple

networks/services to interact with others. For example, o politician can use all

major social networks like Facebook, Twitter, Instagram along with Google

Analytics to track its website traffic. All information that can be retrieved from

these services doesn’t follow the same schema, making the data analysis a

real headache.

The first problem that we have to overcome is the difference in each API

response format. We can handle that issue by transforming each API

response from semi-structured to structured data, using a database to store

them. That approach will, also, give us the ability to query the final result using

the query language of the selected database.

The second, and probably the most hard to tackle, problem is the way we can

relate these apparently unrelated data. That problem lies on the very own

architecture of REST APIs, which is the abstraction of the underlying

technology. Each service has a different entity model and forms relationships

between their entities in its own way. Besides that, it’s not responsible to know

the schema of other services. That means, that the same user in Twitter

cannot be identified in Instagram or Facebook.

The solution that was applied for that problem was to make relation paths by

reference. We tried to find entities that each API response refers and connect

different API responses via these references.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 5

Figure 1 - Relation build between different APIs

In more detail, we mapped some responses from the APIs that we will put

under test and tried to find entities on each response using natural language

processing algorithm for entity recognition. The recognized entities are related

to each response, which in turn create relation paths between responses of

separate APIs. The final result is stored in a database.

Since, we wanted to create relations and paths between entities, we selected

for storage two graph databases. An RDF triplestore (Apache Jena) and a

property graph database (Neo4J).

We have the ability to store the generated data in each or both of them at the

same time, giving the ability to experiment in two very well known graph

models.

Another reason that two different graph models were selected was to give the

option for anyone who wanted to analyze the generated data to use the query

language that is more fluent in.

The algorithm that is used for entity recognition in API responses is the

Stanford NER [1], which is a Java implementation of a named entity

recognizer that parses plain text and identifies entities such as persons,

locations and organizations. The library can be extended for more entities but

we used the default English implementation since it is out of that thesis scope

the field of named entity recognition.

The last parameter that was taken in account in the software design was that

the application should be as easy as possible in use. That’s why the process

of data aggregation is separated in two steps.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 6

First we feed the application with a list of names in a plain text file and it

populates a list of API endpoints for each service that we want to fetch data,

based on that name list.

Figure 2 - Endpoint generation by name list

The second step is to run in specified time intervals, based on the expected

volume, a batch process that will fetch, relates and stores the final data.

Figure 3 - Flow of API data migration

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 7

Chapter 1: REST APIs

Representational State Transfer (REST)

REST stands for Representational State Transfer and is an abstraction of the

architectural elements within a distributed hypermedia system.

REST ignores the details of component implementation and protocol syntax in

order to focus on the roles of components, the constraints upon their

interaction with other components, and their interpretation of significant data

elements. [2] [3]

In short terms REST is an architecture that enables applications to

communicate without knowing the technology each one uses and even exist

in the same physical machine. Its purpose is to induce performance,

scalability, simplicity, modifiability, visibility, portability and reliability [2] [3]

Application Programming Interface (API)

API is an Application Programming Interface, which is a set of routine

definitions, protocols and tools for building software applications. In terms of

programming languages, an API is the set of functions and commands that

the language gives to developer to work with.

So, a REST API is, kind of, the communication language of servers running

the World Wide Web. It can be accessed using Uniform Resource Identifiers

(URIs) using the HTTP protocol and return resources in various formats

(HTML, XML, JSON etc.)

Figure 4 - REST API

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 8

Chapter 2: Graph databases

Graph database is a database type that uses graph structures with nodes,

edges and properties to represent and store data. A key concept of the

system is the graph, which directly relates data items in the store.

The underlying storage mechanism of different graph databases varies, from

relational engines storing graph data in a table to a key-value store or

document-based database. [4]

Graph databases are based on graph theory and employs nodes, edges and

properties.

Nodes represent entities such as people, businesses, accounts, or any other

item you might want to keep track of. They are roughly the equivalent of the

record, relation or row in a relational database, or the document in a

document database.

Edges, also known as graphs or relationships, are the lines that connect

nodes to other nodes and represent relationship between them.

Properties are pertinent information that relate to nodes. For instance, if

Wikipedia were one of the nodes, one might have it tied to properties such as

“website”, “reference material” etc. [5]

Figure 5 - Graph

Resource Description Framework (RDF)

RDF is a standard model for data interchange on the Web and was specified

by W3C. Since RDF was created to “describe” Web, it made a perfect sense

to be used as a graph data structure to store data. Web is a graph, created by

nodes, edges and relations. [6]

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 9

Figure 6 - RDF Scheme [7]

Property Graph

Property Graph databases are graph databases that contains connected

entities, which can cold, any number of attributes (key-value pairs). Nodes

can be tagged with labels representing their different roles in the defined

domain. In addition to contextualizing node and relationship properties, labels

may also serve to attach metadata to certain nodes. [8]

Figure 7 - Building blocks of the Property Graph [8]

Figure 8 - Property Graph Model [8]

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 10

Chapter 3: Natural Language Processing (NLP)

Natural language processing (NLP) is an area of research and application that

explores how computers can be used to understand and manipulate natural

language text or speech to do useful things.

NLP lie in a number of disciplines, information sciences, linguistics,

mathematics, electrical and electronic engineering, artificial intelligence and

robotics, psychology, etc. Applications of NLP include a number of fields of

studies, such as machine translation, natural language text processing and

summarization, user interfaces, multilingual and cross language information

retrieval, speech recognition, artificial intelligence and expert systems, and so

on. [9]

Named Entity Recognition (NER)

Named entity recognition (NER) is a subtask of information extraction that

seeks to locate and classify named entities in text into pre-defined categories

such as the names of persons, organizations, locations, expressions of time

etc. NER systems use linguistic grammar-based techniques as well as

statistical models, i.e. machine learning. [10] [11] [12] [13]

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 11

Chapter 4: Architecture

The implementation of the thesis was designed based on the elements

abstraction and scaling. The architecture that was adopted was service

oriented (Service Oriented Architecture – SOA) exposing services for each

database and the application components. That gives us the ability to scale

our application and use more machines that can work in parallel.

The software that was created has a backend part that handles all the

processing and a frontend user interface that is used to configure the backend

and run some limited actions.

Programming Language

The programming language that was used for the implementation was PHP 7.

The reason this language was selected is that it can provide all the needed

functionality and, also, there were a lot of ready to use libraries and bigger

community.

The application was built using the Silex PHP micro-framework [13].

Environment

In order to test the abstraction of all components, the best scenario would be

to have different physical machines for each part of the process. Because

these resources weren’t easy to be allocated in a development environment,

we emulated that procedure with the use of Docker containers [14] and we

created separated virtual machines for each needed component.

Named Entity Recognizer (NER)

The text process part of the software was made with the use of a named

entity recognizer (NER). We use a Stanford University implementation in

Java, which was created by “The Stanford Natural Language Processing

Group” [1]

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 12

The NER parses the content of each REST API response and finds entities

inside free text and connects these entities with the main object, which is the

response itself.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 13

Chapter 5: APIs (Inputs) / Databases (Outputs)

Inputs
Each API is defined as an input for the application. We created two different

type of inputs based on the authentication protocol each API is using.

Specifically we have OAuth1 [15] and OAuth2 [16] input types.

The inputs we are using for the experiments (Facebook, Instagram and

Twitter) are inherited from these base input types.

Outputs
On the other side, each database used to store data is defined as output. The

outputs are designed so they can send data to rest services, instead of using

direct connections to each database. This is very useful because it inserts a

level of abstraction in the data save process, giving the option to create more

outputs to send data in other types of storage.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 14

Chapter 6: Implementation

User interface

The application has a Web interface that serves two purposes. The first is to

configure the application and the other is to run custom calls, to test how to

integrate with the databases.

Figure 9 - Application user interface (Homepage)

Homepage

From the left sidebar, we can configure our inputs, outputs, generic

configuration for the application and execute the manual inputs we have

defined in the web interface.

Configuration

All configuration that can be processed through the Web interface, is saved in

a YAML [17] file like this:

inputs:

 twitter:

 name: Twitter

 oauth_type: '1'

 credentials:

 identifier: DVXHssj5CskPZaSlTPBpqpkzY

 secret:

CaEIf10GgyGQc1U7IsCVWtQA3t152PAHD1S99zMqzleUyIYvkw

 client_key: 265929407-

dkT7Hm8R7NAdDHFKcKbW7ZgBjTVWYA621pg2UW7H

 client_secret:

zJyXL7il0u8MxABBCc3qMaupXIwKsx72oUj0a1VhDemLc

 instagram:

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 15

 name: Instagram

 oauth_type: '2'

 credentials:

 access_token:

1798817488.fc65250.50fc018193734f38b8b92a19d9c6bfd4

 facebook:

 name: Facebook

 oauth_type: '2'

 credentials:

 access_token:

EAALsQTxxj0YBADBfE6pjZAItsRZAb6OQqR6cDP9NjYDpTT1ROCUaMZBtkCROwZAUXkOE

R2SXZC8WZAt6QZCDfOZC6fAZBKd5m58G8rYaaWFSVp1BM9DZABCZAbMMZCHaBfOcVoCXw

8HQMsL4jmuXmPykWyw0OvGkLe6EHfAZD

outputs:

 neo4j:

 name: Neo4j

 host: localhost

 port: 7474

 credentials:

 username: neo4j

 password: '123456'

 jena:

 name: 'Apache Jena'

 host: localhost

 port: 3030

 path: ds

parameters:

 ner_path: /Users/kostasx/Downloads/stanford-ner-2015-12-09

Inputs

Figure 10 - Application user interface (Inputs)

Each input has different configuration and it’s different based on the
authentication method they use.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 16

Figure 11 - Application user interface (OAuth1 Input)

Figure 12 - Application user interface (OAuth2 Input)

By clicking the “Edit endpoints map” the user can add and map API endpoints

to the list of manual endpoints that will be run when the “Execute” in the left

column is pressed.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 17

In order to enter a new endpoint you have to define the endpoint, the name of

the endpoint Owner, the name of the object that we will consider that endpoint

to be and a unique identifier from the response data.

All endpoints, along with their parameters are saved in a YAML[15] file.

Figure 13 - Application user interface (Add endpoint)

Outputs

Figure 14 - Application user interface (Outputs)

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 18

Each output has the same configuration with small alterations based on

database needs.

Figure 15 - Application user interface (Neo4j)

Figure 16 - Application user interface (Apache Jena)

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 19

Parameters

Figure 17 - Application user interface (Parameters)

This option has generic configuration for the application:

Figure 18 - Application user interface (Generic configuration)

Execute

By pressing the “EXECUTE” link the application will start fetching data from

the endpoints that are manually defined and will migrate the data to the

outputs that are configured.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 20

Figure 19 - Application user interface (Execute)

Command line interface (CLI)

Most of the application’s functionality is build in Command Line Interfaces (CLI),

which are accessed through a single file, the `app/console.php`. That file registers

all separate CLI applications and can run them from a single interface.

Figure 20 - Application CLI (Available commands)

With the available CLI commands we can transform a list of names into Input API

endpoints, we can clear that list and we can migrate the data that will come from

the inputs to the outputs after we relate them using the NER.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 21

Generate endpoints from names list (api2db:import:names)

Figure 21 - Application CLI (Generate endpoints from names)

We can add in a text file a list of names and parse it through the application. The

application will discover relevant accounts to the defined inputs and will

generate a list of endpoints along with their owners and object types.

This makes it very easy to generate a list of probable endpoints based on some

related names, giving the user the ability to, somewhat, query the inputs for

relevant accounts.

The endpoints that will be generated by that command are separate from the

endpoints that are defined in the web interface and are not mixed up.

Clear generated endpoints (api2db:clear:endpoints)

Figure 22 - Application CLI (Clear endpoints)

That command clears all the generated endpoints from the map file.

Batch import data from endpoints (api2db:import:batch)

That command is the actual core of the application. It fetches data from the,

previously, imported endpoints, passes the data through the NER and migrates

the data to the outputs.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 22

Figure 23 - Application CLI (Batch import from endpoints)

While running that command you can define the maximum number of

concurrent processes that will be run with the parameter `--max-procs[=MAX-

PROCS]`. That option was required because the application can run in different

type of machines with different abilities.

Also, there is the option `--disable-ner` that disables the NER parsing from the

input data. This can be used, when a user wants to test the inputs themselves and

remove NER from the process.

Import data from a single endpoint (api2db:import:endpoint)

Figure 24 - Application CLI (Single endpoint import)

That command is a actually a sub-process of the api2db:import:batch, but it can

be executed on its own.

It accepts the same options as the batch command, except the maximum

processes option, witch doesn’t apply here.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 23

Chapter 7: Results

The experiment was made using the names of 2016 world’s greatest leaders,

based on Fortune magazine’s list [18].

The list of the 56 names is the following:

Jeff Bezos, Angela Merkel, Aung San Suu Kyi, Pope Francis, Tim Cook, John Legend,

Christina Figueres, Paul Ryan, Ruth Bader Ginsburg, Sheikh Hasina, Nick Saban,

Huateng "Pony" Ma, Sergio Moro, Bono, Stephen Curry, Steve Kerr, Bryan

Stevenson, Nikki Haley, Lin-Manuel Miranda, Marvin Ellison, Reshma Saujani,

Larry Fink, Scott Kelly, Mikhail Kornienko, David Miliband, Anna Maria Chavez,

Carla Hayden, Maurizio Macri, Alicia Garza, Patrisse Cullors, Opal Tometi, Chai

Jing, Moncef Slaoui, John Oliver, Marc Edwards, Arthur Brooks, Rosie Batty, Kristen

Griest, Shaye Haver, Denis Mukwege, Christine Lagarde, Marc Benioff, Gina

Raimondo, Amina Mohammed, Domenico Lucano, Melinda Gates, Susan Desmond-

Hellman, Arvind Kejriwal, Jorge Ramos, Michael Froman, Mina Guli, Ramon

Mendez, Bright Simons, Justin Trudeau, Clare Rewcastle Brown, Tshering Tobgay.

The list of the previous names after it was parsed from the application produced

a list of more than 11.000 endpoints in Facebook, Instagram and Twitter with

the following distribution:

Names Facebook Page

Endpoints

Twitter

Endpoints

Instagram

Endpoints

Total

Endpoints

56 437 866 9903 11206

Table 1 - API endpoint distribution

The first thing to be noticed is that there are much more Instagram accounts

related to important people than on other social media. The reason for that is

that the Instagram endpoints we used are these that have comments related to

those people.

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 24

The parse of those endpoints in a single workstation1 took about 14 days (period

2016-06-04 / 2016-06-18), with the most time consumed in the entity

recognition process.

Performance

The application run a single pass over the generated endpoints witch took about

14 days in a single workstation and the generated nodes were 126,395.

Endpoints Machines Generated

nodes
Time Average

nodes/day/machine
11206 1 126395 14 days 9028

Table 2 - Application performance

The time to insert a dataset from an endpoint to a database is displayed

below in two stages. The first is the average time to insert data to each

database when databases where empty and the second when the databases

had more than 100,000 nodes

Diagram 1 - Data import time distribution (Empty database)

1 Workstation specs: AMD FX 2-Core CPU, 4GB RAM, 120GB SSD, Linux OS with 5
concurrent processes of the application running

0

0,2

0,4

0,6

0,8

1

1,2

Neo4j Apache Jena

Import (%)

NER (%)

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 25

Diagram 2 - Data import time distribution (100,000+ nodes)

By watching these diagrams, it’s more than clear that the most time of the

process is consumed in the entity recognizer. About the two different databases,

it seems that Neo4j takes much more time to insert the same data than the RDF

store.

The reason for that is that in order to avoid duplicate entries in Neo4j, we have

to check first if the nodes and the relations exist already and then insert the new

data. On the other side, Jena doesn’t require such a control, since the query to

insert data is the same for insert and/or update.

Generated data

Below we show the total of discovered entities from the NER algorithm, along

with their total relations with API responses. These diagrams give us a sample of

what the application can do in a matter of pure entity numbers.

Below each diagram there is the according queries for Neo4J and Apache Jena

84

86

88

90

92

94

96

98

100

102

Neo4j Apache Jena

Import (%)

NER (%)

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 26

Diagram 3 - Entities that was recognized from API data

Neo4J Queries
MATCH (n:ORGANIZATION) RETURN count(n) as total_organizations

MATCH (n:PERSON) RETURN count(n) as total_persons

MATCH (n:LOCATION) RETURN count(n) as total_locations

Apache Jena: Query
PREFIX relation_ns: <http://custom/ns/relations#>

SELECT (COUNT(DISTINCT ?entity) AS ?total_organizations)
WHERE {
 ?subject relation_ns:REFERS_TO_ORGANIZATION ?entity
}

PREFIX relation_ns: <http://custom/ns/relations#>

SELECT (COUNT(DISTINCT ?entity) AS ?total_persons)
WHERE {
 ?subject relation_ns:REFERS_TO_PERSON ?entity
}

PREFIX relation_ns: <http://custom/ns/relations#>

SELECT (COUNT(DISTINCT ?entity) AS ?total_locations)
WHERE {
 ?subject relation_ns:REFERS_TO_LOCATION ?entity
}

0

1000

2000

3000

4000

5000

6000

Organizations Persons Locations

Entities

Nodes

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 27

Diagram 4 - Relations to discovered entities

Neo4J Queries
MATCH (o)-[r]->(n:ORGANIZATION) RETURN count(r) as
total_relations_organization

MATCH (o)-[r]->(n:PERSON) RETURN count(r) as total_relations_person

MATCH (o)-[r]->(n:LOCATION) RETURN count(r) as total_relations_location

Apache Jena: Query
PREFIX relation_ns: <http://custom/ns/relations#>

SELECT (COUNT(?entity) AS ?total_relations_organization)
WHERE {
 ?subject relation_ns:REFERS_TO_ORGANIZATION ?entity
}

PREFIX relation_ns: <http://custom/ns/relations#>

SELECT (COUNT(?entity) AS ?total_relations_person)
WHERE {
 ?subject relation_ns:REFERS_TO_PERSON ?entity
}

PREFIX relation_ns: <http://custom/ns/relations#>

SELECT (COUNT(?entity) AS ?total_relations_location)
WHERE {
 ?subject relation_ns:REFERS_TO_LOCATION ?entity
}

0

200000

400000

600000

800000

1000000

1200000

Organizations Persons Locations

Relations to entities

Relations

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 28

Below we see the top 5 discovered entities by category:

Diagram 5 - Top 5 Persons discovered based on mentions

Neo4J Queries
MATCH (m)-[r]-(n:PERSON) RETURN count(n) as person_mentions, n ORDER BY
person_mentions DESC LIMIT 5

Apache Jena: Query
PREFIX relation_ns: <http://custom/ns/relations#>

SELECT ?entity (COUNT(?entity) as ?person_mentions)
WHERE {
 ?subject relation_ns:REFERS_TO_PERSON ?entity
}
GROUP BY ?entity
ORDER BY DESC(?person_mentions)
LIMIT 5

0 5000 10000 15000 20000 25000

Jesus

Lebron

Stephen

Steph

Curry

Persons mentions

Person Mentions

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 29

Diagram 6 - Top 5 Organizations discovered based on mentions

Neo4J Queries
MATCH (m)-[r]-(n:ORGANIZATION) RETURN count(n) as organization_mentions, n
ORDER BY organization_mentions DESC LIMIT 5

Apache Jena: Query
PREFIX relation_ns: <http://custom/ns/relations#>

SELECT ?entity (COUNT(?entity) as ? organization_mentions)
WHERE {
 ?subject relation_ns:REFERS_TO_ORGANIZATION ?entity
}
GROUP BY ?entity
ORDER BY DESC(?organization_mentions)
LIMIT 5

0 2000 4000 6000 8000

Padre

GSW

Santo

Cavs

NBA

Organization Mentions

Organization Mentions

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 30

Diagram 7 - Top 5 Locations discovered based on mentions

Neo4J Queries
MATCH (m)-[r]-(n:LOCATION) RETURN count(n) as location_mentions, n ORDER
BY location_mentions DESC LIMIT 5

Apache Jena: Query
PREFIX relation_ns: <http://custom/ns/relations#>

SELECT ?entity (COUNT(?entity) as ? location_mentions)
WHERE {
 ?subject relation_ns:REFERS_TO_LOCATION ?entity
}
GROUP BY ?entity
ORDER BY DESC(?location_mentions)
LIMIT 5

0 1000 2000 3000 4000

Jordan

America

Hermosa

Venezuela

Cleveland

Location Mentions

Location Mentions

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 31

Queries response time

Diagram 8 - Query response time in ms

By looking the previous diagrams it seems that query time doesn’t have too

much difference in queries with big amount of data. In “small” queries it seems

that Neo4j is a bit faster in reading, but still there is no huge time difference.

The big difference between the two engines in reading is the query

complexity, which is apparent if someone sees the previous queries for the

two databases.

So, in real case scenarios, Neo4j can be used for sampling data fast, due to

its high import time, but its ease of querying them. On the other hand, Apache

Jena is very fast both in read and write, but it needs more time to build

queries to display data.

0

500

1000

1500

2000

2500

3000

Persons Organizations Locations

Apache Jena

Neo4j

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 32

Chapter 8: References

[1] Stanford [10]University. Natural Langugage Processing Group. [Online].
http://nlp.stanford.edu/software/CRF-NER.shtml

[2] Roy Thomas [1]Fielding,., 2000.

[3] R. T. - Taylor, R. N. [2]Fielding, Principled design of the modern Web
architecture., 2000.

[4] Silberschatz [3]Avi, Database System Concepts, Sixth Edition., 2010.

[5] [4]Wikipedia. Graph database description. [Online].
https://en.wikipedia.org/wiki/Graph_database#Description

[6] W3 [5]Consortium. [Online]. https://www.w3.org/RDF/

[7] [6]Wikipedia. Wikipedia RDF image. [Online].
https://en.wikipedia.org/wiki/Resource_Description_Framework

[8] [7]Neo4j. Property graphs. [Online]. http://neo4j.com/developer/graph-
database/#property-graph

[9] Gobinda G. [8]Chowdhury, "Natural Language Processing," The Annual
Review of Information Science and Technology, 2005.

[10] Dennis Perzanowski [11]Elaine Marsh, "MUC-7 Evaluation of IE Technology:
Overview of Results," April 1998.

[11] F. Rinaldi, D. Mowatt [12]W.J. Black, Description of the NE System Used for
MUC-7.

[12] Dekang [13]Lin and Xiaoyun Wu, "Phrase clustering for discriminative
learning," in Annual Meeting of the ACL and IJCNLP, 2009.

[13] [17]SensioLabs. Silex. [Online]. http://silex.sensiolabs.org/

[14] [9]Docker. [Online]. https://www.docker.com/what-docker

[15] [14]IETF. [Online]. https://tools.ietf.org/html/rfc5849

[16] [15]IETF. [Online]. http://tools.ietf.org/html/rfc6749

[17] [16]YAML. [Online]. http://yaml.org/

[18] [18]Fortune. [Online]. http://fortune.com/worlds-greatest-leaders/

http://nlp.stanford.edu/software/CRF-NER.shtml
https://en.wikipedia.org/wiki/Graph_database#Description
https://www.w3.org/RDF/
https://en.wikipedia.org/wiki/Resource_Description_Framework
http://neo4j.com/developer/graph-database/#property-graph
http://neo4j.com/developer/graph-database/#property-graph
http://silex.sensiolabs.org/
https://www.docker.com/what-docker
https://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc6749
http://yaml.org/
http://fortune.com/worlds-greatest-leaders/

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 33

Appendix A – Figures

FIGURE 1 - RELATION BUILD BETWEEN DIFFERENT APIS ... 5
FIGURE 2 - ENDPOINT GENERATION BY NAME LIST .. 6
FIGURE 3 - FLOW OF API DATA MIGRATION .. 6
FIGURE 4 - REST API ... 7
FIGURE 5 - GRAPH .. 8
FIGURE 6 - RDF SCHEME [7] ... 9
FIGURE 7 - BUILDING BLOCKS OF THE PROPERTY GRAPH [8] .. 9
FIGURE 8 - PROPERTY GRAPH MODEL [8] ... 9
FIGURE 9 - APPLICATION USER INTERFACE (HOMEPAGE) ... 14
FIGURE 10 - APPLICATION USER INTERFACE (INPUTS) .. 15
FIGURE 11 - APPLICATION USER INTERFACE (OAUTH1 INPUT) ... 16
FIGURE 12 - APPLICATION USER INTERFACE (OAUTH2 INPUT) ... 16
FIGURE 13 - APPLICATION USER INTERFACE (ADD ENDPOINT) .. 17
FIGURE 14 - APPLICATION USER INTERFACE (OUTPUTS) .. 17
FIGURE 15 - APPLICATION USER INTERFACE (NEO4J) ... 18
FIGURE 16 - APPLICATION USER INTERFACE (APACHE JENA) ... 18
FIGURE 17 - APPLICATION USER INTERFACE (PARAMETERS) ... 19
FIGURE 18 - APPLICATION USER INTERFACE (GENERIC CONFIGURATION) ... 19
FIGURE 19 - APPLICATION USER INTERFACE (EXECUTE) ... 20
FIGURE 20 - APPLICATION CLI (AVAILABLE COMMANDS) .. 20
FIGURE 21 - APPLICATION CLI (GENERATE ENDPOINTS FROM NAMES) ... 21
FIGURE 22 - APPLICATION CLI (CLEAR ENDPOINTS) ... 21
FIGURE 23 - APPLICATION CLI (BATCH IMPORT FROM ENDPOINTS) .. 22
FIGURE 24 - APPLICATION CLI (SINGLE ENDPOINT IMPORT) ... 22

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 34

Appendix B – Tables

TABLE 1 - API ENDPOINT DISTRIBUTION .. 23
TABLE 2 - APPLICATION PERFORMANCE ... 24

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 35

Appendix C – Diagrams

DIAGRAM 1 - DATA IMPORT TIME DISTRIBUTION (EMPTY DATABASE) ... 24
DIAGRAM 2 - DATA IMPORT TIME DISTRIBUTION (100,000+ NODES) ... 25
DIAGRAM 3 - ENTITIES THAT WAS RECOGNIZED FROM API DATA .. 26
DIAGRAM 4 - RELATIONS TO DISCOVERED ENTITIES ... 27
DIAGRAM 5 - TOP 5 PERSONS DISCOVERED BASED ON MENTIONS .. 28
DIAGRAM 6 - TOP 5 ORGANIZATIONS DISCOVERED BASED ON MENTIONS .. 29
DIAGRAM 7 - TOP 5 LOCATIONS DISCOVERED BASED ON MENTIONS .. 30
DIAGRAM 8 - QUERY RESPONSE TIME IN MS ... 31

Unified query interface for rest APIs - Konstantinos Christofilos.
Athens University of Economics and Business – MSc IS 2016

 36

Appendix C – Source code

https://github.com/c0nstantx/api2db

https://github.com/c0nstantx/api2db

