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ABSTRACT 

 

 

Evangelia-Lydia Athanasiou 

 

Control Charts for Poisson Data 

    October 2009 

 

 This thesis is a review of Control Charts for Data following the 

Poisson distribution. Firstly,  the basic control chart theory and charts 

for all types of data  are being introduced. Then, Shewhart control charts 

for data following the Poisson distribution are being presented:  The 

modified u Control Chart as well as the c Chart for Nonconformities which is 

being compared to the Poisson Moving Average chart . The Zero Inflated 

Poisson Model which monitors processes with excessive 0 counts and the 

generalized zero inflated Poisson distribution, an extension of the ZIP model 

are introduced. Furthermore, several EWMA as well as CUSUM control 

charts (the Double EWMA, the PGWMA Chart, and finally FIR Poisson 

EWMA control charts) are examined. As far as CUSUM charts are 

concerned, the conditional and marginal performance of a Poisson 

CUSUM chart when the parameter is unknown  and the CUSUM control 

chart based on the Poisson distribution compounded by a Geometric 

distribution are examined. Finally,  Control Charts for Multivariate 

Poisson distributions  are presented.  
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ΠΕΡΙΛΗΦΗ 

 

Δπαγγειία-Λπδία Αζαλαζίνπ 

 

Διαγράμματα Ελέγχου για Δεδομένα Poisson 

Οθηώβξηνο 2009 

 

  Η παξνύζα εξγαζία απνηειεί κηα επηζθόπεζε Γηαγξάκκαηωλ Διέγρνπ 

πνπ αθνξνύλ δεδνκέλα ηα νπνία αθνινπζνύλ ηελ Poisson θαηαλνκή. Αξρηθά 

αλαθέξνληαη θαη αλαιύνληαη ηα βαζηθά δηαγξάκκαηα ειέγρνπ θαη ε ζεωξία 

απηώλ. Έπεηηα, εμεηάδεηαη ην ηξνπνπνηεκέλν δηάγξακκα u θαη παξνπζηάδεηαη 

κηα ζύγθξηζε ηνπ δηαγξάκκαηνο c κε ην δηάγξακκα ηνπ θηλεηνύ κέζνπ 

(moving average). Δπίζεο, γίλεηαη αλαθνξά ζε έλα απιό θαη έλα γεληθεπκέλν 

zero inflated Poisson δηάγξακκα. Αθόκε, παξνπζηάδνληαη δηάθνξα ΔWMA θαη 

CUSUM δηαγξάκκαηα ειέγρνπ: Γηπιό (Double) EWMA, PGWMA θαη FIR 

PEWMA θαζώο επίζεο εμεηάδνληαη ε νξηαθή θαη δεζκεπκέλε απόδνζε ηνπ 

Poisson CUSUM θαη έλα δηάγξακκα CUSUM γηα κηα ζύλζεηε Poisson 

θαηαλνκή. Σέινο, γίλεηαη αλαθνξά ζε  δηαγξάκκαηα ειέγρνπ γηα ηελ 

πνιπκεηαβιεηή Poisson θαηαλνκή. 
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CHAPTER 1. 

 

 

 

INTRODUCTION 

 

 Quality can be defined in many ways. Many people conceptualize 

quality as one or more quality characteristics a product should possess. 

However, as one of the most important consumer decision factors, 

quality can be more precisely defined. Quality has actually many 

dimensions. Garvin provides 8 components of quality:  

1. Performance: Does the product perform specific actions for the 

intended job?  

2. Reliability: How often does the product fail and requires 

service/repair?  

3. Durability: Does the product last for a satisfactorily long period?  

4. Serviceability: If the product requires service, how quickly  and 

economically can it be repaired.  

5. Aesthetics: Style, shape, color and the visual appeal of the 

product in general are often an important factor that is taken 

under consideration.  

6. Features: Does the product do things that its competitors do not?  

7. Perceived Quality: What is the past reputation of the product and 

the company that produces it?  

8. Conformance to Standards: Is the product made exactly as 

intended by the designers  

 

 Improving quality is one of the main targets in modern businesses 

and statistical methods play a central role in quality improvement 

efforts. The most important reason that makes it difficult for businesses 

to provide the consumer products that are always identical from unit to 

unit is the variability that exists in every product.  
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 In order to achieve stability and minimize the variability of a 

process a selection of tools called statistical process control (SPC) is 

used. The seven major tool of SPC are:  

1. Histogram  

2. Check Sheet  

3. Pareto Chart  

4. Cause and effect diagram 

5. Defect concentration diagram 

6. Scatter Diagram 

7. Control Chart  

 

 The most technically sophisticated tool is the control chart 

developed in the 1920s by Dr. Walter A. Shewhart of the Bell 

Telephone Laboratories.  

 In every process an amount of natural variability will always 

exist. If a process is operating with only chance causes of variation the 

process is said to be ‘in statistical control’. If other causes of 

variability that are not part of the chance exist the process that is 

operating in the presence of assignable causes is ‘out  of control’.  

 The objective of SPC and in specific control charts, is to detect 

the occurrence of assignable causes of process shifts as quickly as 

possible, so as for corrective actions to take place before many non -

conforming items are produced. Contro l charts can also be used to 

estimate parameters of a production process and to determine process 

capability. They can also provide useful information so as to improve 

the process.  

 This thesis presents Control Charts for Data following the 

Poisson distribution. The layout is as follows: The second Chapter 

presents the basic control chart theory and charts for all types of data. 

More specific all Shewhart control charts as well as the CUSUM and 

EWMA control charts are being presented.  

 Chapter 3 presents Shewhart control charts for data following the 

Poisson Distribution. More specific the C Chart for Nonconformities is 
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being compared to the Poisson Moving Average chart and the modified U 

Control Chart is also being presented. Finally, the Zero Inflated Pois son 

Model is introduced in order to monitor processes with excessive 0 counts. A 

model was developed as a zero defect process subject to random shocks. The 

random shock occurs with probability p and upon the occurrence of a random 

shock, non-conformities can be found. This number of nonconformities 

follows the Poisson distribution. A generalized zero inflated Poisson 

distribution, an extension of the ZIP model is also presented. The GZIP model 

is also a particular form of the Poisson distribution.  

 In the fourth Chapter several EWMA as well as CUSUM control 

charts are being examined. Not only the simple EWMA, but also the 

Double EWMA chart is being presented. Moreover, the PGWMA Chart, 

a generalized charting model of which the PEWMA chart and c -chart 

are special cases is included in this chapter as well as other PGWMA 

control charts.  The conditional and marginal performance of a Poisson 

CUSUM chart when the parameter is unknown is also examined in this 

Chapter. Finally the CUSUM control chart based on the Poi sson 

distribution compounded by a Geometric distribution is presented.  

 Chapter 5 presents a model -based control chart for a multivariate 

Poisson with measurable inputs. A multivariate Poisson chart in order 

to monitor the correlated multivariate Poisson c ount data is also 

presented. 
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CHAPTER 2. 

 

 

 

CONTROL CHARTS FOR VARIABLES  

 

2.1 Introduction 

 

Quality characteristics can be expressed in terms of a numerical 

measurement. A single measurement quality characteristic, such as a 

dimension, weight or volume i s called a variable. It is usually necessary 

to monitor both the mean value of the quality characteristics and its 

variability. Control of the process average or mean quality level is 

usually done with the control chart for means or the x -chart. Process 

variability can be monitored with either a control chart for the standard 

deviation, called the S chart or the chart of the range called an R chart.  

 

2.2 x and R charts  

 

 Suppose that a quality characteristic is normally distributed with 

mean κ and standard deviation ζ, where both κ and ζ known. If x 1 ,  

x2 ,…, xn   is a sample of size n, then the average of this sample is:  

 

n

xxx
x n


...21 ,   with x ~ N (κ, ζ/√n) 

 

 Any sample mean with probability 1 -a will fall between:  

κ+zα/2  ζ/√n      and        κ-zα/2  ζ/√n 

 It is customary to replace z α/2   with 3, so we have the so called 3 -

sigma control limits. This implies that the type I error probability is 

α=0.0027. 
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 If a sample falls outside of these limits, this is an indication that 

the mean of the process is no longer κ. 

 These results are approximately correct even if the distribution of 

the process is not normal, due to the central limit theorem.  

 Unfortunately κ and ζ aren’t usually known so we have to 

estimate them from samples which we know that are in control. These 

estimates should be based on 20-25 samples. Suppose the number of the 

samples is m and the number of observations n (usually small). Then 

the mean of each sample is being calculated ( ,1x ,2x … mx ). The best 

estimator of κ, the process average, is:  

 

m

xxx
x m


...21 ,  x  will be the center line of the x  chart.  

 

 Then we need an estimator of ζ, which we can estimate from the 

ranges of the m samples. The range of a sample is the difference 

between the largest and the smallest observations: R = x max - xmin  

We get m ranges. The average range is: 
m

RRR
R m


...21  

So the control limits for the x chart are:  

 UCL= x + A2  R  

 Center line= x  

 LCL= x - A2 R  

 

A2  is a constant that depends only on the size of the sample.  

 

 If we plot the values of the sample range R on a control chart we 

would have the below control limits for the R chart:  

 

 UCL=  D4  R  

 Center line= R  

 LCL=  D3  R  
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D3  and D4  are constants that depend only on the size of the sample.  

 

2.3 Development of equations for computing the control limits  

 

There is a relationship between the range and the standard deviation of 

sample from a normal distribution. The random variable W=R/s is 

called the relative range. The parameters of the distribution of W are a 

function of the sample size n. The mean of W is d 2 .  Therefore an 

unbiased estimator of ζ is 
2

ˆ
d

R
   

 We use this unbiased estimator to calculate the control limits of 

the x  chart.  

 Using the same relationship W=R/s an unbiased estimator of the 

standard deviation of R can be obtained. We  have R=Ws. The standard 

deviation of W, d3  is a function of n. The standard deviation of R is 

ζR=d3ζ. We estimate ζR  by 

2

3
ˆ

d

R
dR .  

 

2.4 Phase 1 and Phase 2 analysis  

 

 During the phase 1 analysis (retrospective study of past data) we 

use the so called trial  control limits ,  which allow us to check whether 

the process was in control when m initial samples were selected. To test 

this hypothesis we plot the values of x  and R from each sample on the 

control charts. If all the points are inside the control limits, then we 

could say that the process was in control in the past and the control 

limits that we have obtained can be used for controlling future 

production. 

 If one or more points fall outside these control limits it  would be 

useful to revise these limits. If we can find a cause for the outlier, we 
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can remove it and recalculate the control limits. We can remove the 

outlier even if there isn’t a specific cause for it ,  because the point(s) 

outside the trial control limits are likely to have been drawn from a 

probability distribution characteristic of an out -of-control state. Or we 

could retain the point(s) considering the control limits as appropriate. 

 If the point(s) represent an out of control condition the control 

limits would be too wide. However, if there are only one or two such 

points, these will not distort the control chart significantly. The initial 

set of control limits should be revised periodically.  

Once a set of reliable control limits is established, we use the c ontrol 

chart for monitoring future production. This is the so called phase 2 of 

control chart usage.  

 

2.5 Specification Limits and Control Limits  

 

 There is no relationship between the Control Limits and the so 

called Specification Limits. The Control Limi ts are also called Natural 

Tolerance Limits of the process and are as described above +3 ζ or -3ζ 

the mean of the process. The specification limits are determined 

externally (from engineers, the management, the customer) and they 

don’t have anything to do with the Control Limits of the process.  

 

2.6 Between- and within sample variability 

 

 The x chart measures the average quality level in the process; the 

R chart measures the variability within the samples. The x  chart 

monitors between sample variability and the R chart measures within 

sample variability.  

 At this point we could point out, that when we calculate an 

estimator of the standard deviation ζ to determine the control limits; we 

are interested in the standard deviation within each sample. So, it  would  

be false to use the quadratic estimation:  
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1

)( 2

1 1








 

mn

xx

S

m

i

n

j

ij

,  

because if sample means differ, then S will be to large. This S would 

combine both between and within data variability, whereas the control 

limits should be based only on within data variability.  

2.7 The problem of control chart design  

 

 A unique solution for all the problems of control charts design 

does not exist. To specify the s ize of the samples the frequency of 

sampling and the control limit width one should be aware of the cost of 

sampling, the costs of investigating and correcting the process, when it 

is out of control and the cost of an out -of-control product. An economic 

decision model should be designed to solve this problem.  

 For large process shifts (larger than 2ζ) small sample sizes of 

n=4, 5 or 6 are being recommended, for smaller process we could take 

bigger sample sizes.  

 As far as the R chart is being concerned, it  is not very sensitive 

to shifts in the process standard deviation for small sample sizes. 

Unfortunately if we take larger samples, this would result less efficient 

estimators of the standard deviation.  

 The operating characteristic curves of the x  and R charts can 

help us in choosing the right sample size. Another factor that influences 

the choice of the sample size and the sample frequency is the rate of 

production. 

 

2.8 Interpretation of control charts  

 

 A control chart can include an out of control condition even 

though all points are in control. Sometimes the points of the chart show 

a systematic behavior, a pattern, which we found usually during the 

phase 1 analysis. Their elimination is crucial in bringing process into 

control. Such patterns are a cyclic pattern, a mixture ( when points tend 
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to fall outside control limits and only few points are near the center 

line), a shift in process level or a trend.  

 

2.9 Nonnormality of control charts.  

 

 A fundamental assumption in the development of the above 

control charts is that the distribution of the quality characteristic is 

normal. Sometimes this assumption is not valid. If we know which 

distribution is appropriate for our data, it  is possible to derive the 

sample distributions and the exact probability limits for the control 

charts. This is usually very difficult. Sometimes the form of the 

distribution of the data is often unknown to us. For these reasons we 

use the normal theory results. The normality assumption can be 

employed unless the data are extremely nonnormal.  

 The distribution of R is not symmetric, even when sampling from 

the normal distribution. So, symmetric 3ζ limits are only an 

approximation, and the α risk is not 0.0027.  

 

2.10 The operating characteristic function and the  Average Run Length 

(ARL) 

 

 The ability of the x  and R charts to detect shifts in the process is 

described from the operating characteristic curves. To understand the 

significance of the OC curves, we should explain the meaning of the β 

risk. The β  risk is the probability of not detecting a shift in our process 

when we take a sample.  For example if the mean shifts from κ0  to 

another value μ1=μ0+2σ ,  the β  risk is:  

β=P(LCL  x UCL│μ=μ1=μ0+2σ) 

Since x ~N(κ,ζ²/n) and UCL=κ+3ζ/√n, LCL=κ-3ζ/√n the β risk is:  

 

β= 






 


n

UCL

/

)2( 0




- 







 


n

LCL

/

)2( 0




=Φ(3-2√n)-Φ(-3-2√n) 
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The probability that shift will be detected on the 1
s t

 sample is 1-β. 

 To construct the OC curve for the x  chart, we plot the β-risk on 

the vertical axis and the magnitude of the shift in standard deviation 

units on the horizontal axis for various sample sizes n.  

The probability that the shift will be detected on the 2
n d

 sample is: β(1-

β) and on the r th  sample is the probability of not detecting the shift on 

each of the r-1 samples times the probability that the shift will be 

detected on the r th  sample:β 1r (1-β). 

The expected number of samples taken before t he shift is detected is the 

Average Run Length: ARL1=




 
1

1 )1(
r

rr   =
1

1
 

In general we can say that:  

ARL=
)int(

1

controlofoutplotspooneP
 

ARL0=1/α for the in-control ARL 

ARL1=
1

1
 for the out of control ARL 

 

 ARL1  shows the number of samples needed to detect a shift in the 

process, in other words at which sample we find out that the process is 

out of control, when the process is out of control. ARL 0  on the other 

hand, shows the number of samples needed to find out that the  process 

is out of control, when the process is in control, in other words the 

number of sample needed to have a false alarm. The ARL can be 

expressed for any Shewhart control chart.  

 

2.11 x and S charts  

 

 Sometimes we need to estimate the standard deviat ion directly 

and not through the range R. This leads to control charts of for x  and S, 
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where S is the sample standard deviation. x  and S charts are preferable 

for larger sample sizes or for variable sample sizes.  

The sequence of steps is the same as in the x  and R charts, but at this 

case we should calculate the sample average and the sample standard 

deviation for each of the samples. We know that an unbiased estimator 

of the unknown variance ζ² of our distribution is 
1

)(
1

2

2









n

xx

S

n

i

i

.  

However, S is not an unbiased estimator of the standard deviation ζ. If 

the underlying distribution is normal, S actually estimates c 4ζ, where c4  

is a constant that depends only on the sample size n. The st andard 

deviation of S is ζ 2

41 c  .  

The center line for the S chart is c 4ζ and the control limits are:  

 

 UCL=B6σ 

 Center Line=c4σ 

 LCL=B5σ 

 

 Where B5=c4-3 2

41 c  and B6=c4+3 2

41 c  depend only on the 

size of the sample.  

 If no standard is given for ζ, then we must estimate it from past 

data: If we have taken m samples of size n then and S i  is the standard 

deviation of the i th  sample, the average of all the m standard deviations 

is 



m

i

iS
m

S
1

1
.  

S /c4  is an unbiased estimator of ζ. The parameters of the S chart 

should be: 

 UCL SB4  

 Center line= S  

 LCL SB3  
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Where B3=1- 2

4

4

1
3

c
c

 and B4=1+ 2

4

4

1
3

c
c

  depend only on the size of 

the sample.  

 

The control limits for the x  chart are:  

 

 UCL= SAx 3  

 Center Line= x  

 LCL= SAx 3 ,  

 

Where A3=3/(c4√n) depends only on the size of the sample.  

 

2.12 The x bar and S Control Charts for variable sample size  

 

 If the sample sizes are variable we can calculate weighted x  and 

S .  








m

i

i

m

i

ii

n

xn

x

1

1  ,   

2/1

1

1

2)1(

































m

i

i

m

i

ii

mn

Sn

S  

 

We will use the same equations to calculate the Control Limits as for a 

fixed sample size, but the constants A 3 ,  B3  and B4  depend on the sample 

size of the individual group.  

 

2.13 The Shewhart Control Charts for individual measurements  

 

 Sometimes the sample size is n=1. On those cases we use the 

moving ranges of the observations to estimate the process variability, 

that is:  
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MR i=│x i-x i -1│. We can also illustrate a control chart on the moving 

range: 

 

 UCL
2

3
d

MR
x   

 Center line= x  

 LCL=
2

3
d

MR
x   

 

 Moving ranges are correlated and this can result a pattern of 

cycles on the chart. The moving range chart cannot really provide useful  

information about a shift in process variability. Shifts in the mean also 

show up in the moving range chart.  

 

2.14 Control Charts for Attributes  

 

 The terminology conforming  or nonconforming  is being used to 

give two classifications to some products, either because many 

characteristics cannot be represented numerically or because we are 

interested only in the adequacy of a product. These quality 

characteristics are being called attributes .  The attributes control charts 

are the p chart  or control chart for fraction non-conforming ,  the control 

chart for non-conformities  or the c chart ,  which represents the number 

of defects per unit and the control chart for non-conformities per unit  

or the u chart ,  which represents the average number of nonconformities 

per unit.  

 

2.15 The control chart for fraction non-conforming 

 

 The fraction non-conforming is defined as the ratio of the number 

of non-conforming items in a population to the total number of items in 

that population. If an item does not conform to specific standards given 
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for its characteristic, we classify it as non -conforming. We express the 

faction nonconforming as decimal or as percent non-conforming.  

 The control chart for fraction nonconforming is based on the 

binomial distribution. Suppose that the probability, that unit will not 

conform to specifications is p and that successive units produced are 

independent. In that case, each unit is the realization is of a Bernoulli 

random variable with parameter p. If the sample of n units is being 

selected and D is number of defective -nonconforming units, then D has 

a binomial distribution with parameters n and p:  

 

xnx pp
x

n
xDP 








 )1()( ,  x=0,1,…,n 

 

The sample fraction nonconforming is defined as:  

n

D
p ˆ  

 

 The distribution of the random variable p̂  can be obtained from 

the binomial. The mean and the variance of p̂  are κ=p and
n

pp
p

)1(2

ˆ


  

respectively. 

T he 3 sigma control limits are for a known fraction nonconforming 

p or a standard value:  

 UCL=
n

pp
p

)1(
3


  

 Center line=p 

 LCL=
n

pp
p

)1(
3


  

 

 In this case we take the samples of n units and  compute the 

fraction nonconforming p̂ ,  which we plot on the control chart. If p̂  

remains within the limits, our process is in control. If a point plots 
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outside the control limits or we can observe a nonrandom patter n in the 

points of the chart, perhaps there is a shift to a new level.  

 If the fraction nonconforming isn’t known we have to estimate it.  

We take m samples of size n and count the number of nonconforming 

units D. If there are D i  nonconforming units in sample i, we compute:  

n

D
p i

i ˆ  i=1,…,m   the fraction nonconforming for each sample i  

m

p

mn

D

p

m

i

i

m

i

i 
  11

ˆ

 the average of these individuals fraction 

nonconforming 

 

p estimates the unknown fraction nonconforming p. These are the 3 

sigma control limits, which can be regarded as trial control limits:  

 

 UCL=
n

pp
p

)1(
3


  

 Center line= p  

 LCL=
n

pp
p

)1(
3


  

 

 Since the above limits are trial control limits we plot all the 

sample values p i  to see whether our procedure was in control when we 

collected the data. If some points are out of control, then we should 

look for the causes for that and if we find assignable causes, we should 

discard these points and recalculate the control limits.  

 If the control chart is based on a standard value trial control 

limits are unnecessary. However we must be very careful if the desired 

target value suits the true value p, because if that is not the case our 

process would seem to be out of control for that p, alth ough it is in 

control for the true value p.  
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2.16 The np Control Chart  

 

 It  is possible to base a control chart on the number 

nonconforming. This is the so called the np control chart.  The 

parameters of this chart are:  

 UCL= )1(3 pnpnp   

 Center line=np 

 LCL= )1(3 pnpnp   

 

 If a standard value for p is unavailable we estimate as we did for 

the p chart.  

 

2.17 Control Charts for Nonconformities  

 

 A nonconforming item contains at least one nonconformity. 

However a product can have one or more nonconformities and still  be 

conforming. Sometimes we are interested in the number of defects in a 

product and not in characterising it as conforming or nonconforming. 

We can develop control charts for either the total number of 

nonconformities in an item or the average number of nonconformities 

per item. It is assumed that the occurrence of nonconformities in 

samples of constant size is well modelled by the Poisson distribution, 

which means that the probability of occurrence of nonconformities 

should be a constant and that the number of opportunities for the 

occurrence of nonconformities has to be infinity. This is not always the 

case, but the Poisson model works reasonably well.  
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2.18 Constant sample size  

 

Usually one single product is being inspected of nonconformities, but 

more products can be inspected also. The nonconformities occur as 

mentioned above according to the Poisson distribution: 
!

)(
x

ce
xp

xc

    

x=0,1,2… 

The mean and the variance of the Poisson distribution is the parameter 

c. If a standard value of c is available then a control chart of 3 sigma 

limits is:  

 UCL= cc 3  

 Center line= c  

 LCL= cc 3  

 

 If no standard is given we have to estimate c from a preliminary 

sample. The estimator of c, c  is the number of nonconformities in a 

preliminary sample. The control chart has parameters defined as 

follows: 

 UCL= cc 3  

 Center line= c  

 LCL= cc 3  

 

 The above limits should be regarded as trial control limits.  

 Poisson Data with parameter ι=3 are generated and the 

corresponding in line c-control chart is presented:  
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Figure 2.1. In control c chart for simulated Poisson Data with ι=3. 

 

After a shift in the process and (ι=4) c chart detectζ the change of the 

process slightly after the change.  
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Figure 2.2. Out of control c chart for simulated Poisson Data with ι=4. The process 

shift is detected. 
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2.19 The u chart-several inspection units  

 

 It  is better to use several inspection units in the sample, 

increasing the area of opportunities for nonconformities. We should 

choose a sample size large enough to ensure a positive lower control 

limit and take economic factors into account as well. Th e size of the 

sample n does not have to be an integer. If x is the number of 

nonconformities per inspection units in sample of n units, the average 

number of nonconformities per inspection unit is:  

n

x
u  ,  where x is a Poisson random variab le 

 

We calculate the average number of defects per unit in a preliminary set 

of data for m samples: 
m

u

u

m

i

i
 1  

The control limits for the u  chart would be:  

 UCL=
n

u
u 3  

 Center line= u  

 LCL=
n

u
u 3  

 

 The above control limits are trial control limits and should be 

adopted if the points plot within the control limits.  

 

2.20 Variable sample size  

 

 Sometimes the number of units in a sample is not a constant, but 

a variable. If we use a control chart for nonconformities (c chart), the 

control limits and the center line will vary with the sample size and this 

would be often very difficult to interpret. It would be better to use a u 

control chart (nonconformities per unit). This woul d have one constant 
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center line but the control limits would vary with the sample size. We 

calculate the average number of defects to the total number of 

inspection units: 








n

i

i

n

i

i

n

u

u

1

1  

The control limits would be:  

UCL=
in

u
u 3  

Center line= u  

LCL=
in

u
u 3  

 

 When the sample size is variable we should always use the u 

chart. Some other possible approaches would be to use control limits 

based on an average sample size 



m

i

i

m

n
n

1

 or use a standardized control 

chart, plotting the standardized statistic:  

Z i=

i

i

n

u

uu 
 on a control chart with  

 LCL=-3 

 Center Line=0 

 UCL= 3  

 

2.21 Cumulative Sum and Exponentially Weighted Moving Average 

Control Chart  

 

 All the charts that had been represented above are called 

Shewhart Control Charts. The most important disadvantage of the 

Shewhart Control Chart is that it  uses only the information we obtain 

for the last plotted unit, it  ignores the information given about the 
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sequence of all the point. For that reason Shewhart control charts are 

insensitive to smaller shifts (<1.5ζ). 

To detect smaller shifts it  is preferable to use the cumulative sum or 

CUSUM control chart and the EWMA (Exponentially Weighted Moving 

Average) control chart.  

 

2.22 The CUSUM Control Chart  

 

 As we have mentioned the Shewhart Control Chart is very 

effective for shifts >1.5ζ. The cusum chart is a very good alternative if 

we want to detect small shifts to our process. The cusum control chart 

uses up all the information we get in the sequence of the points, 

because it plots the cumulative sums of the deviat ions of the sample 

values from a target value. For example, if jx is the average of the j th  

and κ0  is the target value for the process mean, we plot the quantity  





i

j

ji xC
1

0 )(   

against the sample I and get the  cusum control chart. C i  is called the 

cumulative sum up to and including the i th .  As it has been mentioned 

cusum control charts are more effective, when we are interested in 

detecting small shifts. In addition, they are very effective for sample 

size n=1. 

 If the process remains in control for the target value κ0 ,  the 

cusum is random walk with mean zero. If the mean shifts upward or 

downward the cusum will develop a positive or a negative drill 

respectively. So, if we can see a trend in the plotted points this should 

be evidence that the process mean has shifted  and we should search for 

an assignable cause.  

 Until now we do not have a control chart yet, because although 

the cusum detects a shift in the process mean we do not have control 

limits. There are two ways to represent cusums, the tabular (or 

algorithmic) cusum and the V-mask cusum. 
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2.23 The Tabular CUSUM  

 

 We can construct CUSUMs either for individual observations or 

for the averages of samples with n>1.  First we will construct a CUSUM 

for individual observations. Let x i  be the i th  observation of the process 

with a distribution with mean κ0  and standard deviation ζ when the 

process is in control. The mean κ0  is also called the target value of x. 

We compute the derivations that are above target with one statistic C   ,  

the so called one sided upper CUSUM, and the derivations that are 

below the target value with another statistic C  ,  the so called one sided 

lower CUSUM. The upper and lower CUSUM are computed as follows:  

 

 
])(,0max[

])(,0max[

10

10














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iii

iii

CxKC

CKxC




 

 Where the starting values are 

0C 

0C 0 

 K is usually called the reference value and it is often chosen 

halfway between κ0  and the out-of-control value κ1  that we are 

interested in detecting quickly. If κ1=κ0+δο or δ=│κ1-κ0│/ζ, then 

K=
22

01 


 
 .  

iC  and 

iC  accumulate deviations from the target 

value κ0  that are greater than K. Both quantities are being reset to zero 

when they become negative. If either 

iC  or 

iC exceed a decision 

interval H, the process is considered to be out of control.  

 We can plot 

iC  and 

iC  versus the sample number. We also plot 

the decision interval on the chart. A reasonable value for H is 5 ζ. 

Like in Shewhart control charts if a point plots out of control, we 

search or an assignable cause for that, take actions if necessary and 

reinitialize the CUSUM at zero. The CUSUM helps us to determine 

when exactly the shift had occurred. We just have t o count backward 

from the out-of-control signal to the time period when the CUSUM 

lifted above zero to find the first period following the process shift.  
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 The CUSUM we have described is the so called two-sided 

CUSUM because it is constructed by 

iC  and 

iC  two procedures. 

Sometimes we are interested in an increase or a decrease of a 

characteristic. In that case it we use the one -sided CUSUM. 

 The graph below represents an in-control process with ι=3 for 

simulated data.  
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Figure 2.3. In control CUSUM chart for simulated Poisson Data with ι=3. 
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Figure 2.4. Out of control CUSUM chart for simulated Poisson Data with ι=3 that 

changes to ι=4. The CUSUM detects the change. 

 

2.24 Exponentially Weighted Moving Average Control Chart  

 

 The exponentially weighted moving average or EWMA control 

chart is also suitable for detecting small shifts. It has also the 

advantage that it  is easier to set up in comparison to the cus um. Like 

the cusum it is used mostly for individual observations. The 

exponentially weighted moving average is defined us:  

 

1)1(  iii zxz  ,  

Where 0<ι 1 is a constant and the starting value for i=1 is the process 

target z0=κ0 .  

 Sometimes the average of the given data is the starting value of 

the EWMA that is z 0= x .  The EWMA z i  is a weighted average of all 

previous sample means:  

 z i=λx i+ (1-λ) [λx i -1+ (1-λ) z i -2]  

 = λx i+ (1-λ) λx i -1+ (1-λ)²  z i -2  
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 The weights ι (1-ι) j decrease geometrically with the age of the 

sample mean. The weights sum to unity, since 

i
ii

j

j )1(1
)1(1

)1(1
)1(

1

0





 


















 

 The EWMA can be viewed as weighted average of all past and 

current observations and it is very insensitive to the normality 

assumption. If the observations x i  are independent random variables 

with variance ζ², the variance of z i  is:  

 ])1(1[
2

222 i

zi





 










  

 The EWMA control chart would be constructed by plotting z i  

versus the sample number i. The control limits and the center line are as 

follows: 

 UCL= ])1(1[
2

3 2

0

i



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
  

 CL= 0  
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2.25 The EWMA for Poisson Data  

 

 The EWMA can be also used for Poisson data. The exponentially 

weighted moving average remains unchanged: 1)1(  iii zxz   with 

z0=κ0 ,  but the control chart parameters are as follows:  
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Au  and A l are the upper and lower control limit factors. We use often 

A l=Au=A. 

 The graph below represents an in -control process with ι=3 for 

simulated data  
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Figure 2.5. In control EWMA chart for simulated Poisson Data with ι=3. 
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Figure 2.6. Out of control EWMA chart for simulated Poisson Data with ι=3 that 

changes to ι=4. The EWMA detects the change. 

 The EWMA Control Chart also has the ability to forecast where 

the process mean will for the next time period. We could say that z i  is 

the forecast of the value of the process mean κ at the time i+1.  

 

2.26 The Moving Average Control Chart  

 

The moving average control chart of span w at time i is defined as  

M i
w

xxx wi 121 ... 
  

 That is, at time i the oldest observation is being dropped and the 

newest one added to the set. The variance of the moving average M i  is 

V(M i)=
2

1

w
 ,  




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wij
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1
)( ,  




i

wij w1

2
2 

  

The three sigma control limits are for the MA control chart are:  

 UCL=μ0+3
w


 

 CL=μ0  

 LCL=μ0-3 
w


 

 

2.27 Standardized x bar and R control charts  

 

 Standardized control charts are being recommended if the 

standard deviations are not the same for all parts. For the j th  part 

number we have jR the average range and T j  the nominal value of x on 

this part number. The standardized R chart would be plotting the 

quantity:
j

is

i
R

R
R  for all sample form this part number. The con trol 

limits would be:  

 

LCL=D3  
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UCL=D4  

 For the standardized x  chart we plot the quantity
j

jis

i

R

TM
x


 .  The 

control limits would be:  

LCL=-A2 

Center Line=0 

UCL=A2 

 

The center line is 0 because iM  is the average of the subgroups of the 

j th  part number.  
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CHAPTER 3. 

 

 

 

SHEWHART POISSON CONTROL CHARTS FOR 

ATTRIBUTES 

 
3.1 Introduction 

 

 In Chapter 3 mainly Shewhart Poisson Control Charts for Attributes are 

dealt. More specific the C Chart for Nonconformities is being compared to the 

Poisson Moving Average chart and according to Khoo it seems that the 

Moving Average outperforms the traditional C Chart in terms of in -control 

and out-of-control ARLs.  

 In addition, the modified U Control Chart of Rudisill, Litteraland 

Walter is being presented. This modified chart is very effective when other 

sources of variability apart from the Poisson exist.  

 Finally, the Zero Inflated Poisson Model is introduced in order to 

monitor processes with excessive 0 counts. A model was developed as a zero 

defect process subject to random shocks. The random shock occurs with 

probability p and upon the occurrence of a random shock, non-conformities 

can be found. This number of nonconformities follows the Poisson 

distribution. The upper control limit of the ZIP model is also constructed 

based on the Jeffreys prior interval that provides good coverage probability for 

λ. A generalized zero inflated Poisson distribution, an extension of the ZIP 

model is also presented. The GZIP model is also a particular form of the 

Poisson distribution. 

  

3.2 C Chart for Nonconformities Versus Poisson Moving Average  

 

 The C Chart is often used to monitor the number of nonconformities, 

although it can be considered slow in detecting small shifts . Khoo (2004) 

compares the C chart with the Poisson Moving Average Control Chart for the 



32 

 

number of non-conformities. Comparison between the ARL of both chart types 

occurs.  

 For cases where the probability of the occurrence of a non conformity 

is small and samples are taken from a large inspection unit the C chart is used. 

A C chart is used widely in the monitoring of defect of demerit data in many 

industries. The C Chart is described in chapter 1.  

Khoo describes the design of a Poisson Moving Average Control Chart in 

order to compare it to the C chart. The number of nonconformities in an 

inspection unit of product are c1, c2, ..., ci..., and the Moving Average if width 

w at time i  can be computed as 
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When i < w, there are not w observations to calculate a Poisson moving 

average of width w. For these cases the average of all observations up to 

period i defines the Poisson moving average at time i; i.e., 
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The mean of the Poisson Moving Average is: 
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The variance of the Poisson Moving Average is:  
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It can be easily shown that for periods i ≥ w the mean and variance of the 

moving average are c and c/i.  
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Therefore the 3ζ control limits for the Poisson moving average chart for 

periods i ≥ w are: 

 

w

c
cUCLM 3  

CLM=c 

w

c
cLCLM 3 , 

 

And for i < w the limits are 

 

i

c
cUCLM 3  

CLM=c 

i

c
cLCLM 3 , 

 

If the target value c  is unavailable the limits are obtained by replacing c with 

its estimate c , where 

 

m

c

c

m

i

i
 1 . 

Khoo uses two examples to compare the ARLs of the C chart and the Poisson 

Moving Average Control Chart. The latter outperformed the former by having 

lower out-of-control ARLs and higher in-control ARLs for the majority of the 

cases. 

 

3.3 Modified U Charts for monitoring Poisson Attribute Processes  

 

 As mentioned in Chapter 1 the U chart is used when several inspection 

units are taken in the sample, increasing the area of opportunities for 

nonconformities. An underlying assumption of the U chart is that there are no 
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other short term common causes of variability apart from the Poisson nature of 

variability exist. 

When additional sources of variation exist, the proposed control limits appear 

too tight and there are many out-of-control signals with no detectable cause. 

  In order to overcome this problem the rates can be treated as 

continuous variable data and use an individual chart where the control limits 

are based on the two-point moving range. This method though ignores the 

Poisson effect and the dependence on the subgroup size.  

In order to overcome the above mentioned problems, Rudisill, Litteral and 

Walter (2004) presented a method of partitioning the data into Poisson and 

non-Poisson sourced and using this partitioning to construct a modified U 

chart. They compared this to the conventional individuals chart method of 

dealing with the violation of the Poisson assumption. They presented a 

procedure that estimates the percentage of the variability due to Poisson and 

short-term random effects and determine control limits that reflect both 

sourced of common cause variability. 

 Many types of rate data have component of Poisson variation and an 

additional component of daily random non-Poisson variation. If non-Poisson 

variation is significant then it should be removed before the U chart can be 

effectively used. Usually a process engineer should identify and remove the 

special causes. 

 The method developed by Rudisill, Litteral and Walter for partitioning 

variability into Poisson and Non-Poisson components is presented in the 

following steps: 

 The typical rate of occurrence should be calculated 

u Total Occurrences/Total Production Units.  

 The average number if production units per subgroup (APU) should be 

calculated. APU=Total Production Units/Total Number of Subgroups 

 The expected variance due to Poisson nature should be 

determined:
APU

u
u 2  
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 Using the actual rates, ui (i=1,2,…,n, where n number of time periods) 

calculate the two point moving ranges MR I, i=2 to n. Then calculate 

the average moving range, MR . 

 The estimate of the combined Poisson and non-Poisson variance is 

2

2

128.1 














MR
total . The degrees of fredom, df, associated with this 

estimate are 0.9(n-1), where n is the number of time periods (Wheeler, 

1990). 

  Chi-square test is performed in order to determine if the contribution 

due to non-Poisson sources is statistically significant. The Chi-square 

test statistic is 222 /)( utotaldf    

a. If the calculated Chi-square value does not exceed the critical Chi-square 

value, conclude there is no significant non-Poisson variability. 

The estimate of 2

Poissonnon  is 0. 

In this case, the best chart for evaluating statistical control is the traditional U 

chart. 

b. If the calculated Chi-square value exceeds the critical Chi-square value, 

conclude there is statistically significant non-Poisson variability. The estimate 

of the non-Poisson variance is 222

utotalPoissonnon   . 

 Determine the relative percent contributions for the Poisson and non-

Poisson sources. 

 Interpret the results and focus attention on reducing the contribution for 

larger components. 

For assessing future control, calculate control limits by: 

)(3 2

N

u
uUCL Poissonnon    

)(3 2

N

u
uLCL Poissonnon   . 

Following the above described steps other sources of variance can be detected 

and quantified and finally this variation sources can be incorporated in the 

construction of a modified U chart. 
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3.4 Attribute Control Charts for Zero-Inflated Poisson Processes 

 

 Unfortunately the traditional C chart, which is based on the Poisson 

distribution, has frequent false alarms when there is an excessive count of 

zero counts exists in a process. Due to technological advancement and 

automation of manufacturing processes, a well designed process could have 

more count of zeros than expected under its underlying Poisson distribution. 

This is also very common in automatic high yield manufacturing and 

continuous production processes. The Poisson model often underestimates the 

observed dispersion and therefore the control limits are improperly narrow. 

Another drawback of these charts is that their 3-sigma control limits evaluated 

based on the asymptotic normality of the attribute counts, have a systematic 

negative bias in their coverage probability. Hence, the basic Poisson 

distribution is extended so as to model larger dispersion effects. A model was 

developed as zero defect process subject to random shocks. The random shock 

occurs with probability p is and upon the occurrence of random shock, non-

conformities can be found. This number of nonconformities follows the 

Poisson distribution. The distribution of the number of nonconformities is 

given by: 

 P(no nonconformities in a sample unit) =  pep)1(  

and 

 P(k nonconformities in a sample unit) = 
!k

e
p

k  

, 

 

Gupta and later Bohning and Li dealt with the so called zero inflated Poisson 

(ZIP). It is actually a generalization of the Poisson model and as it is 

complicated it should only be used when the Poisson distribution is not valid. 

Xie, He and Goh conducted a number of comparative tests between Poisson 

and zero inflated Poisson distribution. 

 The form of the Zero Inflated Poisson distribution is the following 

according to Johnson and Lambert: 
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F(y;p;μ)=






 

0),,(

0,1

0 yifypP

yifpep





 

With E(Y)=pλ and Var(Y)=pλ+pλ(λ-pλ).  

 

 The ZIP model is very easy to use and the mean and variance are of 

close form.  The maximum likelihood estimates can also be obtained:  

 If {Y1, Y2,…,Yn} with sample size n and ni the number of count i in the 

sample. The n0 is the number of zeros in the sample.  

 The log-likelihood function is: 

L(p,λ)=n0log{1-p+pexp(-λ)}+


1

0 )},(log{
y

y ypPn  . 

 

The MLE can be then obtained as: 

)exp(1

/1 0






nn
p , λ= py / and 




n

i

i nyy
1

/ . 

 

The Hypothesis H0: p=1 should be tested. If H0 cannot be rejected then the 

simpler Poisson distribution should be used in it is not necessary to user the 

ZIP model. 

Khoo presents a number of tests used to test the Poisson model against the ZIP 

model: The score test of Vandebroek, the likelihood ration test, the Chi -

Square Test, the Cochran test, the Rao-Chajravarti test and a test based on a 

confidence interval of p. 

When the count data can be modeled by a ZIP model, statistical process 

control procedures can be modified. The lower control limit for the ZIP model 

will not exist which is common for attribute chart. The upper control limit 

UCL-nu for the control chart based on the number of nonconformities can be 

obtained as the smallest integer solution of 

P(nu or more nonconformities in a sample) ≤ αL, 

where αL is the predetermined false alarm probability for the UCL nu. 

 In conclusion a ZIP model can be used as an alternative to the 

traditional Poisson model, especially when the data shows over-dispersion 

with the traditional Poisson. In that way the drawback of having many false 



38 

 

alarms and frequent stopping of the procedure will be overcome, since more 

appropriate upper control limit can be derived. 

 Sim and Lim suggested fitting zero inflated models to the zero inflated 

attribute count and then replace the 3-sigma control limits with limits 

constructed based on a confidence interval that provides good coverage 

probability for the parameter under study. 

 More specific, they constructed a novel one-sided cj-chart that can be 

used to monitor the zero-inflated Poisson count. This chart is based on the 

estimated value of Poisson parameter ι in the ZIP Model and an upper one 

sided Jeffreys prior interval for ι. 

 The proposed chart is also constructed using a simple two-of-two 

control rule to enhance its performance in detecting upward shifts of the 

process parameter under study. As it is impossible to tell which of the 

observed zeros are due to chance variation allowed for under the presumed 

distribution and which are the excess zeros, thus only the one-sided attribute 

charts are constructed to detect upward shifts of the process parameter using 

the positive attribute count. 

 Sim and Lim constructed the C j chart as the classical one-sided c-chart 

for the Zero Inflated Poisson distribution does lead to a smaller false alarm 

rate but on the other hand it does not yield the false alarm rate and the desired 

ARL until a false alarm. The reason for this is the poor coverage probability of  

the upper 3 –sigma control limit used in the C chart. 

 Xie constructed a one sided C chart based on the ZIP model to detect 

upward shifts so as to overcome the above mentioned problem. This chart was 

constructed with its UCL based on the assumption that increases in the values 

of the parameters p and λ would lead to large nonconformities count. 

However, the disadvantage of this chart is that increases in p would lead to 

increasing number of none-zero Poisson counts, but not necessarily to larger 

nonconformities counts. 

 Sim and Lim suggested the alternative  C j chart which is based on the 

estimated value of Poisson parameter ι in the ZIP Model and an upper one 

sided Jeffreys prior interval for ι. If X the number of nonconformities that 
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follow a Poisson (λ) distribution. If X=k  then the (1-a)100% Jeffreys prior 

interval is defined as: 

 )),1,5.0);([)(  kGkC J   

with ),0[)0( JC , where G(α;a,b) denotes the 100
th

 percentile of a Gamma 

distribution with shape parameter a and scale parameter b. Note that the value  

G(α;x+0.5,1) increases when the value of x increases, hence the length of the 

Jeffreys interval )(kC J

 decreases as x increases. Cai (2005) pointed out that 

the Jeffrys prior interval yields coverage probability that is closer to the 

desired probability than the confidence interval obtained under the normal 

approximation. 

 The Cj chart is displayed by plotting the inspection unit number against 

the observed nonconformities Poisson count k in each of the successive 

inspection units. The upper control limit of the proposed Cj -chart is defined 

as the largest Poisson count k such that the estimated value, λ0, of λ estimated 

from falls inside the (1-a) 100% interval )(kC J

 ΄that is: 

xUCL
jc max[)( 0  │ )]1,5.0;(0  xG   

 A current or future Poisson count that plots above the )( 0jcUCL  is then 

interpreted as evidence that the process is out-of-control with an upward shift 

of λ from λ0 to a larger value. 

 Chen, Zhou, Chang and Huang proposed another very flexible 

distribution the generalized ZIP (GZIP) for monitoring attribute data. It is 

actually an extension of the ZIP model. It is also a particular form of 

compound Poisson distributions. The GZIP distribution can be used to monitor 

various attribute data. 

 GZIP distribution is an extension of the above discussed ZIP 

distribution. In real-world applications the processes experience different kind 

of shocks, which have different influences on the process and therefore result 

in different numbers of nonconformities. If the number of nonconformi ties 

caused by each different shock follows a specific Poisson distribution with 

parameter λi and the occurring probability if each shock is μi then the 
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distribution of the number of nonconformities in the process with n kinds of 

shocks can be expressed as 

 
 


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n

i
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
 , 

Where I(.) is the indicator function, which equals 1 when the condition is true 

and equals 0 otherwise. When n=1, GZIP degenerates into the original ZIP 

model. Obviously 2n parameters should be determined when the number of 

shock types is n. Therefore a key problem for using the GZIP Poisson 

distribution would be to determine all parameters that represent the in -control 

data. Mathematically, it can be stated as: given a series of independent random 

samples {X j | j =1,2, . . . , N}, estimate the potential number of shock types n, 

and corresponding parameter λi μi ,which can best approximate the true 

distribution of the data. 

Chen, Zhou, Chang and Huang used the Expectation-Maximization (EM) 

algorithm to estimate the parameters of the model.  

GZIP distribution can be used to construct several control charts to -monitor 

various types of counting data with great flexibility: Similar to other types of 

Shewhart charts on attribute data, the statistic that GZIP chart monitors is the 

present sample of counting data. Given the specified x-error, and the estimated 

parameter θ from historical in-control data, we can calculate the upper control 

limit accordingly (the lower control limit can be set to zero) as P(x>UCL|θ) ≤ 

α. Therefore, when using this chart for monitoring, we will generate alarms 

whenever the sample value exceeds the upper control limit. The theoretical 

average run length (ARL) for in-control data is 1/α. 

CUSUM and Ranked probability control charts can also be designed for the 

Poisson distribution. 

The GZIP model has still some open issues: The noises, that real  data always 

contain, have very large impacts on the estimated model if the model is 
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sensitive to it. The sample size determination is another issue. It is interesting 

to determine how many samples  are enough to estimate the real distribution. 
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CHAPTER 4. 

 

 

 

POISSON EWMA AND CUSUM CONTROL CHARTS  

 

4.1 Introduction 

 

In this section several EWMA as well as CUSUM control charts are 

being examined. Apart from the Poisson EWMA control chart the 

Double EWMA chart is being presented, which requires a second 

Exponentially Weighted Moving Average, hence the D which stands for 

double. Moreover, the Generally Weighted Moving Average Control 

Chart developed by Sheu and Lin (2008) is presented. This chart had 

been developed to monitor Poisson observations and detect persistent, 

small process shifts. The PGWMA is actually a generalized charting 

model for which the PEWMA chart and c -chart are special cases. In 

addition other PGWMA control charts are being presented.  

As far as the Poisson CUSUM charts are concerned the c onditional and 

marginal performance of a Poisson CUSUM chart when the parameter is 

unknown is examined. Finally the CUSUM control chart based on the 

Poisson distribution compounded by a Geometric distribution by Chen 

Randolph and Liou is presented.  

 

4.2 Poisson EWMA Control Chart  

 

Borror, Champ and Rigdon (1998) studied the Poisson EWMA control 

chart mentioned in the previous chapter: The exponentially weighted 

moving average is: 1)1(  iii zxz   with z0=κ0 ,  and the control chart 

parameters are as follows:  

UCL ])1(1[
2

20

0

i

uA 



 


  
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 Center line=κ0  

 LCL ])1(1[
2

20
0

i

lA 



 


  

 

Au  and A l are the upper and lower control limit factors. We use often A l 

= Au  =A. 

The above limits are based on the exact variance: 

])1(1[
2

)( 20 i

izVar 






 ,  but they can also be based in the asymptotic 

variance   )()( zVarzVar t  




2

0 .  

Statistical performance of Control Charts is usually evaluated using 

average run lengths and standard deviations of run lengths. Borror, 

Champ and Rigdon used the Markov chain approach to obtain the ARL 1  

for the Poisson EWMA Control Chart (using the asymptotic variance) 

and the results showed that the ARL1  is usually smaller than that of the 

Shewhart c chart, which can also be used for  Poisson data or the three 

EWMA charts proposed by Gan (1990) (REWMA, CEWMA, EWMA).  

Moreover, the PEWMA Control Chart has usually a positive control 

limit, thus downward changes in the mean can also be detected.  

 

4.3 Poisson DEWMA Control Chart  

 

Zhang, Govindaraju, Lai and Bebbington (2003) introduced the Double 

Exponentially Weighted Moving Average Control Chart for monitoring 

Poisson Data. This requires a second Exponentially Weighted Moving 

Average, hence the D which stands for double.  

 If x1 ,  x2 ,  x3 ,  x4 ,…,x i…i.i.d. Poisson random variables with mean 

κ. If κ=κ0  where κ0  is known, then the process is in control, otherwise 

the process is out of control. To monitor the changes in the process 

mean the DEWMA control statistic y i  is defined via the system of 

equations: 1)1(  iii zxz  ,  i≥1, 
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00 z ,  

1)1(  iii yzy  ,  i≥1, 

00 y ,  

where 0<ι<1 is a smoothing constant. It is obvious that z i  is the usual 

EWMA control statistic and y i ,  the DEWMA control statistic, is an 

EWMA of z i .  

The variance of y i  is:  

 

32

4222222224
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The PDEWMA chart is constructed by plotting z i  against i  for i=1, 2,…, 

with the control limits set as  

 

 )(0 iyVarKUCL    Center line = κ0  

 )(0 iyVarKLCL   ,  

 

Where K>0 a control limit constant which, together with the smoothing 

constant ι determines the performance of the PDEWMA control chart. 

Time-varying Variance (and not asymptotic) control limits are being 

used. 

 In order to evaluate the PDEWMA control chart Zhang, 

Govindaraju, Lai and Bebbington compare its ARLs and SDRLs with 

those of the PEWMA control chart.  

They consider the smoothing constants ι=0.05, 0.1, 0.2, 0.25, 0.3, 0.4 

and 0.5 for the PDEWMA chart and the PEWMA and consider 

distributions with κ0=4, 8, 12 or 20. Then they list the pairs (ι, Κ) (ι, 

Α) that give an in control ARL of about 200 for the PDEWMA and the 

EWMA respectively. The values for the PEWMA are found using a 

Markov Chain Approach, whereas the values for the PDEWMA are 

obtained through simulation.  

The authors of the article followed the steps below for the simulation:  
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1. Random Poisson numbers were generated.  

2. The control statistics z i  and yi  were calculated.  

3. The control statistic is compared with an experimental UCL and 

LCL and the corresponding run lengths are r ecorded. 

4. After 10,000 simulation runs and 10,000 recorded run lengths the 

sample mean and square root of sample variance give the ARL 

and SDRL respectively.  

5. The search stops for A and L when the difference of the derived 

and target ARL is greater than 0 bu t less than 0.5.  

 

Then, for various different sample means Poisson random data were 

simulated and ARLs and SDRLs for PEWMA and PDEWMA were 

determined. The simulation to derive these is from step 1 to step 4 

(since A and L had already been determined and so  the control limits 

are preset).  

From the tables obtained from this simulation the conclusion is that the 

PDEWMA control chart is improves upon the PEWMA control chart, 

since 

 

1. All out of control ARLs of the PDEWMA are smaller than those 

of the PEWMA control chart with a more significant difference 

when the process mean change is small.  

2. The out-of-control SDRLs of the PDEWMA are smaller than 

those of the PEWMA chart.  

3. The in-control SDRLs of the PDEWMA are approximately equal 

to those of the PEWMA chart, except from the cases were ι=0.05 

and 0.1. 

 

It should be mentioned, that when the lower control limit of the 

PEWMA is positive (which is usually the case) the lower limit of the 

PDEWMA is also positive.  



47 

 

Finally, the authors recommend the use of ι in the range [0.1, 0.5] since 

for very small ι (e.g. 0.05) the in-control SDRLs of the PDEWMA are 

larger to those of the PEWMA chart.  

 

4.4 Poisson GWMA Control Chart  

 

The Generally Weighted Moving Average Control Chart developed by 

Sheu and Lin (2008) had been developed to monitor Poisson 

observations and detect persistent, small process shifts. The PGWMA is 

actually a generalized charting model for which the PEWMA chart and 

c-chart are special cases. As the PEWMA and the PDEWMA chart , its 

lower control limit is usually positive so that the downward shift of a 

process mean can also be detected.  

 Sheu and Chiu (2007) show based on simulation result s that the 

statistical performance of the best performing PGWMA chart is superior 

to the PEWMA chart and the c chart.  

The GWMA Control Chart is a generalized weighted moving average of 

sequential historical data, in which each datum is assigned a different 

weight that decreases from the present period to the remotely past 

period such that the GWMA can reflect the important information on 

recent process. 

The GWMA statistic at the j th time period can be written as  

 

01

1 1

101 )()Pr()Pr( YPxPPYiMxkMY iki

i

k

i

k

kkkii  
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 
 

Where Y0=κ0  the mean of the process,  

the observation x 1 ,  x2 ,  . .  are i.i .d.,  

and M the number of samples until the first occurrence of the event for 

which the control statistic goes beyond control limits.  

 

It  also holds that )Pr( kM  = )( 1 kk PP  .  
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The weighting factor iP
aiqiM  )Pr( ,  where 0 ≤ q ≤ 1, α>0, i=1, 2, 

(Note that q is a constant and α is determined by the practitioner).  

 

The control statistic Y i  is then determined as:  


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)1( )(  ,  where 0 ≤ q ≤ 1, α>0, i=1, 2, … 

 

The mean and variance of the control statistic Y i  are κ0  and Q iζ² 

respectively  

Where 


 
i

k
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i

aa

qqQ
1

2)1( )( ,  for every i=1,2,… 

 

The GWMA control chart can be constructed as  

 

  iQLUCL  0  

 Center line=κ0  

 
 iQLLCL  0 ,  

Where L the constant to match the desired ARL for a specific GWMA 

control chart. 

It  should be noted that for a=1 and ι=1-q the GWMA control chart 

transforms to the simple EWMA control chart. For the special case of 

q=0 we obtain the Shewhart control  chart.  

Sheu and Chiu determine appropriate parameters with simulation and 

develop the PGWMA control chart to measure performance with ARL.  

 

For the Poisson distribution the control limits  can be also written as:  

 

 00  iQLUCL 
 

 Center line=κ0  

 },0max{ 00  iQLLCL  ,  
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since Poisson numbers are non negative and the variance equals the 

mean of the distribution.  

In order to design the PGWMA control chart following steps are 

followed: 

1. Poisson random numbers are generated and Y i ,  the PGWMA 

control statistic, is calculated.  

2. The control limits are calculated given a appropriate value for L.  

3. After 40,000 iterations ARL and SDRL are calculated  

4. Using the idea of ‘inverse regression’ and repetition of the steps 

1-3 ARL0  is obtained for the in-control process 

5. Under the (q, a, L) combination for the desired ARL 0  the ARLs 

and SDRLs for given shifts can be calculated by performing steps 

1-3. 

 

The conclusion of Sheu and Chiu is that by adding an adjustment 

parameter to the PEWMA model three advantages are obtained : 

 

1. Especially for very small process mean shifts it  rapidly detects 

the out-of-control signal  

2. The Shewhart c-chart and the PEWMA are special cases of the 

PGWMA control chart  

3. As for the PEWMA and PDEWMA control chart its lower control 

limit is usually posit ive so that downward shifts can also be 

detected. 

 

In 2008 Chiu and Sheu introduce different PGWMA control charts: 

ACLPGW, a PGWMA chart with asymptotic control limits,  

VCLPGW, a PGWMA chart with time-varying control limits,  

FVCLPGW, a FIR (Fast Initial Response) PGWMA chart with time-

varying control limits  

FADJPGW, a FIR (Fast Initial Response) PGWMA chart with time -

varying control limits  

and  
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PDGWMA a Poisson Double GWMA control chart  

 

All these different variations of the GWMA control chart are presente d 

in the following table:  

 

  

Control Limits 

Time 

Varying Asymptotic 

Fast 

init ial 

Response 

Device 

No 
VCLPGW  ACLPGW  

PDGW MA   

Yes 

FVCLPG

W  Not Studied 

FADJPGW    

 

The VCLPGW Control Chart has already been described (Chiu and Sheu 

2007). 

The FVCLPGW Control Chart has a two-sided 50% head – start as 

follows: 

0100 5.0  QLY U   

0100 5.0  QLY U  ,  

Where 2

1 )1( qQ  and for i=1,2, it  is formulated as follows:  
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The FADJPGW uses an exponentially decreasing adjustment method to 

further narrow the limits. Its control limits are as those of the VCLPGW 

Control Chart but adjusted as follows:  

 

 00  iadj

adj

i QFUCL   

 Center line=κ0  

 00,0max{  iadj

adj

i QFLCL  ,  

Where Fad j  denotes the FIR adjustment factor:  
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,)1(1 )1(1  ia

adj fF  0<f≤1, a>0, i=1,2,… 

It should be noted that a should be set so that the FIR adjustment has a 

very little effect after observation 20.  

The novel control chart introduced in Chiu and Sheu’s paper is the 

PDGWMA Control Chart.  

This Poisson Double Generally Weighted Moving Average Control 

Chart doubly smooths the Poisson observation. The PDGWMA Control 

Chart is defined by:  
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Where Y0  and Z0  the target mean κ0  and pk  the weighting factor  

qa kk

k qqp   )1( .  

Z i  can also be written as:  
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Where 



k

j

jkjk ppw
1

1 .  

The mean and variance of the control statistic are E(Z t)=κ0  and 

Var(Z t)= 


i

j

jw
1

22 )(   for i=1,2,… 

The PDGWMA control chart can be designed as:  

 

)(0 i

D

i ZVarLUCL    

 Center line=κ0  

})(,0max{ 0 i

D

i ZVarLLCL   ,  

 

Using simulation parameter combinations (q,a,L) for all different charts 

with common ARL0  are obtained and for various shifts the ARLs and 

SDRLs are obtained for comparison.  
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Chiu and Sheu conclude the following after the comparison of these 

control charts.  

 

1. PWMA Control Charts with FIR feature are useful when 

detecting great shifts in the initial stage.  

2. ACLPGW, for which no FIR feature is provided, is the worst  

in detecting start -up quality problems.  

3. PDGWMA is the first choice, especially for downward shifts  

4. FADJPGW is the best in detecting grea t process shifts ≥1.5ζ 

because its control limits are further narrowed, in order to 

improve the FIR feature.  

5. FVCLPGW chart is better than FADJPGW in detecting small 

shifts <1s.  

6. VCLPGW is very good in detecting small upward shifts.  

 

4.5 Poisson CUSUM Control Chart-Conditional and Marginal 

Performance 

 

The CUSUM control chart is also appropriate to monitor Poisson data. 

Assume x1 ,  x2 ,…are i.i .d. Poisson random variables with mean κ. The 

process is in control when κ= κ0 ,  where κ0  the value of the in control 

process mean. The process is out of control when κ ≠ κ0 .  

If the mean κ0  is unknown, a Phase I study should be conducted to 

obtain from an in-control estimated sample mean 



n

i

ix
n 1

0

1
̂ to use 

instead of κ0 .  

In his paper Testik (2007) examines the con ditional and marginal 

performance of a Poisson CUSUM chart when the parameters (in case of 

a Poisson distribution the parameter) are unknown. For the Poisson 

distribution K is determined to distinguish between an acceptable mean 

value κa  and a detectable mean value κd  that the CUSUM is to detect 

quickly. The reference value for the Poisson CUSUM is given by:  
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)ln()ln( ad

adK







 .  

Generally κa  is chosen to be the current system performance ( κ0  or 

estimated 0̂ ). The κd  represents the out-of control mean for which the 

CUSUM is being set to determine quickly. It should be noted at this 

point, that unlike the normal distribution where K lies between in -

control and out-of control mean values for the Poisson case K is lying 

closer to κa .  

The Poisson CUSUM is determined by  

],0max[

],0max[

1

1

















iii

iii

CxKC

CKxC

 

Where the starting values are 

0C = 

0C =0 

The decision interval H for the CUSUM is determined in combination 

with K on the basis of ARLs. As for all charts H is selected to give 

large ARL0  and a small ARL1 .  

Testik mentions, that when the mean of the process is unknown κa  is set 

to be equal to the estimate 0̂ for determining the K and finally select H 

in combination with K (usually through a computer program or a table 

look-up procedure). For that reason for different ARL 0  and different 

estimated means 0̂ ,  there are different pairs of K and H. Thus, K and H 

can be viewed as random variables depending on the estimated mean of 

the process 0̂  and can be noted as K̂  and Ĥ  respectively. For this 

reason the performance of a Poisson CUSUM actually depends on the 

accuracy of estimating κ0 .  

For the purpose of his paper Testik investigates only the CUSUM for 

increases in the mean number of counts. K̂  is rounded to integer values 

and Ĥ  is selected to be a positive integer.  

The Markov chain approach i s being extended for computing the 

conditional and marginal performance of Poisson CUSUM when the 

estimated in-control mean 0̂  differs from the actual mean of the 

process κ0 .  The conditional performance measures ARL and SDRL 
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given 0̂ ,  K̂ ,  Ĥ and 

0C .  The actual parameters are assumed in that case 

different and are hypothetically known for evaluation. The marginal 

performance can be calculated by integrating the  conditional 

performance measures over the distribution of the estimated in -control 

mean. As for the marginal performance, evaluation does not require 

knowledge of the specific parameters and for that reason it is useful for 

drawing conclusions regarding the sample size requirements.  

Conclusively, Testik proves with several examples that a Poisson 

CUSUM Control Chart constructed using parameter estimates may 

perform poorer than the chart constructed with known parameters. 

Especially the effect on the in -control Run Length may be significant, if 

the mean estimate is not good enough. If the sample size is greater than 

or equal to 200 this would result in a Poisson CUSUM Control Chart  

with and in an out of control performance close to that of a Chart with a 

known process mean.   

 

4.6 CUSUM Control Chart for the Compound Poisson Distribution  

 

 Chen, Randolph and Liou presented a CUSUM control chart based 

on the Poisson distribution compounded by a Geometric distribution. 

The assumption made that the defects of a p rocess follow a Poisson 

distribution is not always valid, since the process is more complex in 

practice and the distributions of defects are more appropriately modeled 

by the compound Poisson distribution. An effective CUSUM control 

scheme can be obtained from the probability transition matrix for the 

Markov chain proposed by Brook and Evans (1972).  

 Chen, Randolph and Liou mention the example of automobile 

accidents on a given street. The number of accidents follows a Poisson 

distribution, however the number of injuries that can occur for each 

accident cannot be described by a Poisson. More precisely, the number 

of injuries in a given period is said to have a compound Poisson 

distribution. Similarly, the common assumption for the number of 
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defects per unit  follows the Poisson distribution. In some situations, 

however, the defects generating process is more complex and the 

distributions of defects are more appropriately modeled by the 

compound Poisson distribution.  

 Even a small shift can be costly if it  is not detected quickly. 

Since small shifts are not easily detected in small periods of time any 

improvement as far as the fast detection is concerned would be very 

beneficial. CUSUM control charts are considered to be very sensitive to 

small sustained shifts  in a process. With current and previous process 

information, the CUSUM control scheme is capable of detecting out -of-

control situations caused by small sustained changes or shifts in the 

process mean quicker. Also, it  may locate the time of change 

effectively. CUSUM techniques are widely used for quality control and 

process monitoring in companies, such as Du Pont and Motorola’s 

Semiconductor Process Sector (Lucas, 1985; White et al.,  1997).  

 For the CUSUM Control Chart the distribution is usually assumed 

to be Poisson. A defective item can have one or multiple defects. The 

number of defects per item does not follow the Poisson but another 

distribution, the compound Poisson distribution. The compound Poisson 

distribution of defects is reported in IC fabrica tion 

by Stapper (1985), Gardiner (1989), and Albin and Freidman (1989). 

Meanwhile, Randolph and Sahinoglu (1995) reported the application of 

the geometric Poisson distribution, a member of the compound Poisson 

family, for software quality control. In this paper, we take one step 

further to develop the CUSUM control scheme for the geometric 

Poisson production process to detect a small sustained shift in the 

mean. 

 Chen, Randolph and Liou obtain the ARLs from the probability 

transition Matrix for the Markov chain proposed by Brook and Evans 

(1992). Then they compare the ARLs between the geometric Poisson 

and the Poisson CUSUM control schemes.  
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 A compound distribution is formed by mixtures of discrete 

distribution. The result of this ‘mixing’ of distributions i s called 

compound distribution. The symbol for these distributions is:  

 21̀ FF



,  

Where F1  represents the original distribution, F2  the compounding and θ  

the varying parameter. In our case F1  is the Poisson distribution and the 

compound distribution is called the Poisson distribution compounded by 

F2  and denoted:  

 21̀ FPoisson



 

In many examples in which events occur according to the Poisson 

distribution, and, furthermore, for each of these Poisson events one or 

more other events, say E s ,  can occur. In this situation, the process of 

generating events E s  is said to follow the compound Poisson process. 

An example given by Sherbrooke (1966), describing the items 

demanded process in the inventory system of a store. The focus was on 

the items demanded by customers. Customer arrivals were assumed, in 

general, to follow the Poisson distribution, and each customer could 

demand a positive discrete amount. Thus, the number of demands in a 

time interval is said to have a compound Poisson distributi on. Also, 

Sherbrooke (1966) stated that the compounding distribution of the 

number of demands by one customer is geometric; and thus, the number 

of demands in a time interval is the geometric Poisson distribution.  

The authors use the term ‘defective’ item to represent the Poisson event 

and ‘defect’ to represent the compounding event. In a unit there are ι 

defective items. Each item contains at least one defect and another 

defective item would be occurring with probability ξ. For the Poisson 

Distribution the time between defective items is independent of the 

time at which earlier defective items where produced.  

If Y ( t )  the random variable of the number of defective items and X ( t )  the 

random variable of the number of defects that occur up to t ,  where t  > 

0 .  The density function of the geometric Poisson with parameter λ  and ρ  

can be written as:  
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,  x=1,2,… 

Where ι>0,0<ξ<1. 

 

Based on the above density function described above the expected 

number of defects for each fixed  unit t  can be calculated. For t=1  the 

expected value of X  is:  
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The second summation is the probability mass function of a negative 

binomial distribution with parameters x+1  and y+1  and therefore:  
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The variance of X can be derived as described below:  
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If Y  is distributed according to the Poisson distribution with parameter 

ι, then 

 E(Y²)=Var(Y)+[E(Y)²] =λ+λ² 

 

 So, 
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Since E(X²)=E[X(X+1)-E(X)] , then 

 

Var(X)=E(X²)-[(E(X)] ²=E[(X+1)X] -E(X)-[E(X)] ²  
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 It  is obvious that the variance of the geometric Poisson 

distribution is greater or equal to the mean. If the variance equals to the 

mean the geometric Poisson equals to the Poisson. Sherbrooke (1966) 

also shows that the compound Poisson distribution is ‘memoryless’; 

that is, the number of failures occurring in a fixed unit t  does not 

influence the probabilities of failures in any other unit. Feller (1950) 

proves that the compound Poisson is the most general class of discr ete 

distributions that are memoryless. The geometric Poisson distribution 

has been studied and applied by Randolph and Sahinoglu (1995) to 

problems of control of defects in software. Other applications of the 

compound Poisson can be found in Barbour, Chrys saphinou, and 

Vaggelatou (2001).  
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 Chen, Randolph and Liou describe then the necessary steps to 

implement a geometric Poisson CUSUM. The steps are almost the same 

as for a normal CUSUM: 

1. Firstly, the acceptable and the non acceptable process mean must 

be determined. 

2. The smallest acceptable in-control ARL (ARL0) are then selected.  

3. Select possible Ks  between the acceptable and the non acceptable 

mean. 

4. Based on K  and H  ARL0  should be calculated for pilot study. 

Several combinations for ARLs which are greater or equal to the 

smallest ARL0  should be selected.  

5. Compare the out-of-control ARL (denote ARL1) forthe (H,K) 

combination with other choices of (H,K) producing the same in -

control ARL. The CUSUM scheme which gives the most desired 

performance interms of out -of-control ARL is selected.  

 

The authors also propose a procedure that can help the practitioner 

determine if the underlying distribution is the geometric Poisson. More 

specific, the steps are the following:  

 

1. A number of n  sample should be selected and the number of 

defects in each sample must be denoted X1 ,  X2 ,…,Xn .  

2. The estimates of E(X) and  Var(X) for geometric Poisson 

random variables must be calculated. Given those unbiased 

estimators of the mean and Variance the equations:  





ˆ1

ˆ


X  and 

2

2

)ˆ1(

)ˆ1(ˆ








S  should be solved to obtain:  

XS 




2

2

2
̂  and 

XS

XS






2

2

̂ ,  which are estimates of the parameters ι and 

ξ. 

3. Observed and expected frequencies must be summarized in 

each of n  sample and c classes.  

4. The following Hypotheses : 
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H0 :  The form of the distribution of defects is geometric Poisson.  

H1 :  The form of the distribution of defects is not geometric Poisson.  

must be tested. The Hypotheses can be tested using the Chi -Squared 

Test.  
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CHAPTER 5. 

 

 

 

CONTROL CHARTS FOR MULTIVARIATE POISSON 

DISTRIBUTION  

 

5.1 Introduction 

 

 Current literature suggests many methods for monitoring 

multivariate means whose populations are assumed to be normally 

distributed. A model-based control chart for a multivariate Poisson with 

measurable inputs  had been proposed by Skinner et al. (2003). By 

assuming the independence between output variables, the deviance 

residuals resulting in generalized linear model were used in the 

monitoring scheme for each variable. Chiu and Kuo introduced the 

multivariate Poisson chart in order to monitor the correlated 

multivariate Poisson count data.  

 

5.2 The multivariate Poisson Chart  

 

The charts that had been examined by Lowery and Montgomery in order 

to monitor data that follow the Multivariate Poisson distribution are  the 

Hotelling multivariate control chart, multivariate cumulative sum 

(MCUSUM) and the multivariate exponentially weighted moving 

average control chart (MEWMA). Bersimis et al. discussed the 

application of principal components and partial least squares in  the 

construction of the multivariate control chart. However, in praxis, 

where multiple correlated counts data occur other type of charts are 

needed. The quality characteristics of multiple attributes process would 

follow either a multiple Binomial distribution or multivariate Poisson 
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distribution. When the focus is on the number of defects on each unit 

and the number of defects is classified into more than two categories, 

the data could be modeled using the multivariate Poisson distribution.  

 Patel developed a quality control method similar to the Hotelling 

type, however this was a very complex and therefore not widely used 

method. Another approach is the np control chart established by Lu et al 

in order to deal with the multivariate attribute process. They  also 

proposed an approach to identify which quality characteristic was the 

major contributor to an out -of control signal. However the normality of 

the process is an assumption that is not always valid. Jiang et al. (2002) 

proposed a symmetric c-chart and obtained the control limits to 

minimize the absolute deviation of ARL0 .  It  solved the problem that the 

Shewhart-type 3-sigma control limits with normal approximation may 

result in a large deviation of ARL0  ι the Poisson parameter is small. 

The methods for finding optimal control limits can also be applied to 

monitor multivariate Poisson counts with positive correlation. However, 

the discussion on out-of-control ARL is not shown. This approach has 

the following disadvantage: A control chart has to be constru cted for 

each quality characteristic.  

Chiu and Kuo present in their paper the Multivariate Poisson Chart 

(MP) Chart. This chart is developed by an exact probability method 

based on the sum of defects or non conformities for each quality 

characteristic. Their goal is to monitor the correlated multivariate 

Poisson count data.  

When more than one quality characteristic is of interest the MP control 

chart is needed.  

Let X j  the number of non conformities with respect to quality 

characteristic j ,  j=1,2,…,p.  Data X=(X1 ,  X2 ,…,Xp) follows a jointly p-

variate Poisson distribution. Each X j  follows a Poisson distribution 

marginally with mean (λ j), the covariance between two variables (X j ,Xk) 

is ζ0  j≠k  and D  is the sum of all  X j :  





p

j

jxD
1

,  j=1,2,…,p 



63 

 

If p=2  the probability function of D  is:  
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If p=3  the probability function of D  is:  
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The control limits then can be determined by taking the upper and lower 

α/2 percentage points of the exact distribution in the above equation. 

Thus, the upper control limit (UCL) and lower control limit (LCL) must 

be found to satisfy the following properties:  
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The multivariate Poisson with small mean values for each variable X j  

leads to a small or zero value of statistic D.  This would cause the 

probability P(D=0) larger than a/2  most of the time. If P(D=0)>α/2 ,  

LCL is set to 0. If false alarm rate is α UCL is:  
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For λ j  and θ0  their values can be estimated from the observed sample 

data. When UCL is determined, we can plot D  on the MP chart and 

monitor the process.  

Xie et al. (2002) pointed out that the normal distrib ution can be used to 

approximate Poisson distribution when the mean value is greater than 

five. Similar results can be found in our simulation study. When 





p

j

jD
1

  is greater than five, normal approximation is good. By normal 

approximation, t raditional Shewhart type control limits can be obtained.  

The Shewhart-type control limits and centerline (CL) are below:  
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The performance of the MP control chart is investigated with the  help 

of ARL1  and ARL0 .  The results of this comparison are that MP chart has 

ARL0  closer to the nominal ARL than the Shewhart type chart. 

Therefore, the MP chart is more sensitive to large correlation 

coefficients if the process is out -of-control.  

 

5.3 Generalized Linear Model based control charts for multiple count 

data 

 

A procedure for monitoring multiple discrete counts proposed by 

Skinner, Montgomery and Runger is based on the likelihood ratio 

statistic for Poisson counts when input variables are measur able. This is 

actually the deviance residual resulting from a GLM. This statistic is 

more effective than a C chart on the raw counts.  
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Unlike model based procedures proposed for monitoring multivariate 

means the procedure examined by Skinner, Montgomery and  Runger 

does not require that the variables of interest are normally distributed. 

However, it  retains the benefits of other model based procedures which 

are that:  

 .  the control statistics have relatively simple interpretations;  

 the control statistics are based on residuals from a model and are 

not usually correlated over time; and  

 the methods are easy to perform, requiring only a least squares 

model-fitting program. 

 

Ordinary least squares regression analysis is the basis for model based 

charts. The effectiveness of these monitoring schemes is limited when 

dealing with non normal data. Because non -normal data are common in 

many industrial applications, a GLM can be used to unify the fields of 

linear and nonlinear regression and to include the ability to mode l 

responses from many different distributions. A specific GLM for normal 

data is the same model that is obtained with OLS, yet GLM is not 

limited to use with normally distributed data.  

Generalized Linear Models are used to model a response variable that is  

a member of the exponential family, which includes the normal, 

binomial, exponential, Poisson, and gamma distributions. The model 

parameters link the response distribution to the regressor variables 

through the linear function x i’β ,  a linear predictor of μ i=E(y i). The link 

function is given by 

 

x i’β=s(μ i).  

 

The GLM predicted value is the mean given by the inverse of the link 

function of the linear predictor. For Poisson data, common link 

functions are the log link, the square root link, and the inverse lin k; 

conversely, common inverse link functions are exponential, square, and 

inverse. 
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Skinner, Montgomery and Runger propose a monitoring scheme based 

on the deviance residuals. Under H 0 ,  the deviance residuals for the 

GLM are independent and asymptotically normally distributed. They are 

ideal for plotting on p Shewhart charts for individuals. Their scheme 

uses an empirical GLM based on input variables to predict the output 

variables, or counts. The steps are:  

 

Step 1. Fit the GLM to each of the p  Poisson counts, choosing the link 

function to obtain the best fit .   

Step 2. Obtain predictions for future values.  

Step 3. Calculate deviance residuals calculated from above equation.  

Step 4. Monitor these deviance residuals on p Shewhart charts for 

individuals. A signal by any one of the p Shewhart charts indicates that 

the variable it monitors is out of control.  

 Skinner, Montgomery and Runger tested 3 different kinds of 

shifts: a univariate case, a bivariate case with equal means and a 

bivariate case with unequal means and all shifts could be detected by 

the deviance residual. The deviance residual from the GLM outperforms 

univariate and bivariate C charts.  
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CHAPTER 6. 

 

 

 

CONCLUSIONS 

 

 Modern Businesses main aim is to improve quality of the 

products and services they provide. However, almost always, variability 

exists, making each product different from the other. A control chart is 

a tool that contributes in the monitoring of the variability of a process, 

so as to detect the occurrence of assignable causes of process  shifts as 

quickly as possible. If a shift and its cause are detected, corrective 

actions can take place before many non-conforming items are produced.  

 In every process an amount of natural variability cannot be 

avoided. A process is said to be ‘in contro l’ if only chance causes of 

variation exist. However, if other causes of variability that are not part 

of the chance exist, the process that is operating in the presence of 

assignable causes is ‘out of control’.  

 In order for an item to be nonconforming it  has to contain at least 

one nonconformity. Of course, an item with only a few insignificant 

nonconformities can still  remain conforming. Often the number of 

nonconformities is as or even more important than its characterization 

as conforming or nonconforming.  

 The occurrence of nonconformities in samples of constant size is 

well modelled by the Poisson distribution. This implies that the number 

of opportunities for the occurrence of nonconformities has to be infinity 

and that the probability of occurrence  of nonconformities should be a 

constant (ι).  

 This thesis is a review of papers that present Control Charts for 

Poisson Data. Khoo compares the C Chart for Nonconformities to the 

Poisson Moving Average chart and it seems that the Moving Average 
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outperforms the traditional C Chart in terms of in-control and out-of-control 

ARLs.  

The modified U Control Chart of Rudisill, Litteraland Walter is very effective 

when other sources of variability apart from the Poisson exist.  

In automatic high yield manufacturing and continuous production processes a 

process has usually an extensive count of zeros, more than expected under its 

underlying Poisson distribution. Therefore, a model was developed as a zero 

defect process subject to random shocks. The random shock occurs  with 

probability p and upon the occurrence of a random shock, non-conformities 

can be found. This number of nonconformities follows the Poisson 

distribution. This distribution is called the Zero Inflated Poisson Distribution.  

An alternative of creating a control chart for the ZIP distribution is to 

construct the upper control limit of the ZIP model based on the Jeffreys prior 

interval. This would provide good coverage probability for λ.  

A generalized zero inflated Poisson distribution, an extension of the  ZIP 

model is also presented. The GZIP model is a particular form of the Poisson 

distribution. 

 In addition, several EWMA as well as CUSUM control charts are 

being examined. The Double EWMA chart requires a second 

Exponentially Weighted Moving Average.  

Sheu and Lin (2008) presented, the Generally Weighted Moving 

Average Control Chart. The purpose of developing this chart would be 

to monitor Poisson observations and detect persistent, small process 

shifts. PEWMA chart and c-chart are special cases of the PGWMA 

generalized charting model. In addition other PGWMA control charts 

are being presented, such as ACLPGW, a PGWMA chart with 

asymptotic control limits, VCLPGW, a PGWMA chart with time -

varying control limits, FVCLPGW, a FIR (Fast Initial Response) 

PGWMA chart with time-varying control limits, FADJPGW, another 

FIR (Fast Initial Response) PGWMA chart with time varying control 

limits and PDGWMA a Poisson Double GWMA control chart  

Moreover, the conditional and marginal performance of a Poisson 

CUSUM chart with an unknown parameter is examined.  
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Chen Randolph and Liou’s paper, presenting a CUSUM control chart 

based on the Poisson distribution compounded by a Geometric 

distribution is also introduced.  

 Finally, in the last chapter, a model -based control chart for  a 

multivariate Poisson with measurable inputs proposed by Skinner et al. 

(2003) is presented. The independence between output variables, 

indicates that the deviance residuals result in a generalized linear model 

that is used in the monitoring scheme for each variable. For correlated 

multivariate Poisson count data Chiu and Kuo introduced the 

multivariate Poisson chart.  
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