Extending Maintainability Analysis Beyond
Code Smells

DISSERTATION FOR THE AWARD OF THE DOCTORAL
DIPLOMA
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

2019

Tushar Sharma
Department of Management Science and Technology
Athens University of Economics and Business

Department of Management Science and Technology
Athens University of Economics and Business
Email:. UVTIBS!BVFC HS

Copyright 2019 Tushar Sharma
Tis work is licensed under a Creative Commons Atribution-ShareAlike 4.0 International License.

Supervised by Professor % JPNJEJT 4QJOFMMJT

Dedicated to my father
who could not see this thesis completed

$SPOUFOUT

*OUSPEVDUJPO

11
12
13
14
15

Context 1
Problem Statement 2
Proposed Solution and Contributions 4
Researchmethod 6
Tesisoutline e 6

3FMBUFE 8PSL

2.1 Introduction 8
22 Method 9
221 Research objectivesand questions. 10
2.2.2 Literature search protocol 10
2221 Literaturesearch—Phasel, 11
2222 Literaturesearch—Phase2 12
2223 Literaturesearch—Phase3 12
23 Resultsand DisCUSSION 13
2.3.1 LR-RQ1: What is the defnition of asofwaresmell?. 14
23.1.1 LR-RQ1.1: What are the defning characteristics of a sof-
waresmell? 14
23.1.2 LR-RQL1.2: What are the types of smells? 14
2.3.1.3 LR-RQ1.3: How are the smells classifed? 19
2314 LR-RQ1.4: Are smells and antipaterns considered syn-
ONYMS? . o o e e 20
2.3.2 LR-RQ2: How do smells get introduced in sofware systems? 21
2.3.3 LR-RQ3: How do smells afect the sofware development processes,
artifacts,orpeople? 23
234 LR-RQ4: How do smells get detected? 24
2.3.4.1 Machine learning techniques on source code 28
2.35 LR-RQ5: What are the open research questions? 31
24 Conclusions 39
.FUIPEPMPHZ
3.1 Research Objectives 41

Vi

3.1.1 Maintainability Analysis for Production Source Code
3.1.2 Detecting Smells using Deep Learning
3.1.3 Maintainability Analysis for ConfgurationCode
3.1.4 Maintainability Analysis for Database Code
3.2 TTeoretical Background
321 CodeSmells
3211 ArchitectureSmells
3212 DesignSmells
3213 ImplementationSmells

3.2.2 Exploring Deep Learning-based Solution for Smell Detection :
3.22.1 Challenges in Applying Deep Learning on Source Code . .
3222 SelectionofSmells
323 ConfgurationSmells
3231 Implementation Confguration Smells
3.23.2 Design ConfgurationSmells
324 DatabaseSmells.

*NQMFNFOUBUJPO
4.1 Analyzing Production Code for Qantitative Maintainability Assessment . .
411 Mining C# Repositories
4.1.2 Analyzing C# Repositories Using Designite
4121 Architecture
4.1.2.2 Detection Mechanism for Supported Architecture Smells .
4123 Detection Mechanism for Supported Design Smells

64
64
66

4124 Detection Mechanism for Supported Implementation Smells 68

4125 EBEvaluation

4.2 Detecting Smells using Deep Learning.
421 DataGenerationand Curation.
4211 Downloading Repositories

4212 Smell Detection

4213 SplitingCode Fragments

4214 Generating Training and EvaluationData

4215 Tokenizing LearningData

4216 DataPreparation

422 Architecture of Deep LearningModels
4221 cnnModel

4222 rnnModel

423 Hardware Specifcation

4.3 Analyzing Confguration Code for Qantitative Maintainability Assessment
431 Selecting and Downloading Puppet repositories

432 Design Confguration Smells — Detection Strategies

4.4 Analyzing Database Code for Maintainability Assessment.

69

vii

441

442
443

Mining Repositories 81
4411 Selecting Industrial Repositories 81
4412 Selecting Open-source Repositories 81
4413 Extracting sql Statements 82
4414 Analyzing and Detecting Smells 82
DbDeo and Detection Strategies for Database Smells 82
Accuracy of DbDeo 84
4431 Accuracy of the sql Statements Extraction 84
4432 Accuracy of Smell Detection 85

SFTVMUT BOE %JTDVTTJPO

5.1

5.2

Results of Maintainability Analysis on ProductionCode 86
511 P-RQ1. What is the distribution of implementation, design, and ar-
chitecture smellsin C#code? 86
512 P-RQ2. Do the detected smell instances belonging to diferent gran-
ularities correlate? 89
513 P-RQ3. Is the principle of coexistence applicable to smells in C#
ProOjJectS? 90
514 P-RQ4. Does smell density depend on the size of the C# repository? 92
515 P-RQ5. Are architecture smells collocated with design smells? 93
516 P-RQ6. Can the refactoring of design smells lead to fewer architec-
turesmells? 97
517 Discussion and Implications L 101
5171 DISCUSSION 101
5172 Secondary UsesofthisWork 102
Results of Detecting Smells using Deep Learning 103
521 D-RQL. Is it possible to use deep learning methods to detect code
smells? If yes, which deep learning method performs superior? . . . 103
5211 D-RQ1.H1. Itis feasible to detect smells using deep learn-
ingmethods. 105
5212 D-RQ1.H2. cnn-2d performs beter than cnn-1d in the
context of detectingsmells. 107
5213 D-RQLH3.rnn NPEFM QFSGPSbhh PG F $ U UBOO
UIFTNFMM EFUFDUJPQ DPOUFEYU. . 107
522 D-RQ2. Istransfer-learning feasible in the context of detecting smells?

523

If yes, which deep learning model exhibits superior performance in

detecting smells when applied in transfer-learning seting? 108
5221 D-RQ2.HL1. It is feasible to apply transfer-learning in the
context of code smells detection. 110
5222 D-RQ2.H2. Transfer-learning performs inferior compared
todirectlearning. L 111
DISCUSSION o 113

viii

5231 Isthereanysilver-bullet? 113
523.2 Performance comparison with baseline 113
5.2.3.3 Poor performance in detecting a designsmell 114
52.3.4 Trading performance with training-time 115
5.3 Results of Maintainability Analysis on Confguration Code 116
53.1 C-RQ1. What is the distribution of maintainability smells in confg-
urationcode? 116
532 C-RQ2. What is the relationship between the occurrence of design
confguration smells and implementation confguration smells? . . . 117
5.3.3 C-RQa3. Is the principle of coexistence applicable to smells in con-
fguration projects? 118
534 C-RQ4. Does smell density depend on the size of the confguration
Project? 120
535 DISCUSSION 121
54 Results of Maintainability Analysis on Database Code 122
54.1 Developers’ Survey on Database Smells 122
54.2 DB-RQ1. What are the occurrence paterns of database smells? . . . 124
54.3 DB-RQ2. Does the size of the project or the database play a role in
smelldensity? 125
54.4 DB-RQ3. Does the nature of code (type of the application, or usage
of orm frameworks) afect the smell density? 126
545 DB-RQ4. What is the degree of co-occurrence among database smells? 127
546 DISCUSSION 128
54.6.1 Qalitative Analysis of theResults 128
55 TreatstoValidity 130
55.1 Construct Validity 130
552 Internal Validity 131
553 Externmal Validity 131
$PODMVTIJPOTBOE 'VUVSF 8PSL
6.1 SummaryoftheResults., 133
6.2 Contributionsofthe Tesis 135
6.3 Future Work 137

#JCMJIPHSBQIZ

-JTUPG "JHVSFT

2.1

2.2

2.3

2.4

31
3.2
3.3
34
35

4.1
4.2
43
4.4
45

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8

Overview of the study; a number in brackets shows the number of associated
references 13
A layered overview of smell detection methods. Each detection method
starts from the code (or other source artifact) and goes through various steps
to detect smells. T e direction of the arrows shows the fow direction and
annotations on the arrows show the detection method (frst part) and the

step number (second part). 25
A recorded smell could be a false-positive instance, a smell that is not a

quality problem, or a defnite quality problem. 32
T e number of studies detecting aspecifcsmell 37
Overview of the maintainability analysis study on C#code 43
Overview of the Proposed Method 45
Overview of the maintainability analysis study on confguration (Puppet) code 46
Overview of the maintainability analysis study on database schema code . . 48
An annotated Puppet example with all the cataloged implementation con-

fgurationsmells 54
Presentation of identifed smells in Designite 64
Architecture of thetool 65
Tokens generated by Tokenizer foranexample 73
Architecture of employedcnn 75
Architecture ofemployed RNN o 76
Scater plots showing co-occurrence between smells in two granularities . . 90
Correlation between individual architecture and design smells 91
Average co-occurrence (intra-category) for architecture smells 92
Average co-occurrence (intra-category) for designsmells 92
Average co-occurrence (intra-category) for implementation smells 93
Smell density for implementation, design, and architecture smells against

linesofcode 94
Collocation analysis between architecture and designsmells 97
Removed architecture smells (in percentages) afer simulating design smells

refactoring 100

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19
5.20

5.21

Scater plots of the performance (F1) exhibit by the considered deep learning
models along with their corresponding trendline
Boxplots of the performance (F1) exhibit by the considered deep learning
models for all the foursmells
Comparative performance of the deep learning models for each considered
smell . . .
Scater plots for each model and for each considered smell comparing F1 of
direct-learning and transfer-learning along with corresponding trendline . .
Comparative performance of the deep learning models for each considered
smell in transfer-learning setings
Comparison of performance of the deep learning models between direct-
learning (DL) and transfer-learning (TL) setings
Co-occurrence between implementation and design confguration smells by
(@ volumeand by (b)existence L
Average co-occurrence (intra-category) for implementation and design con-
fgurationsmells
Smell density for (a) implementation confguration smells and (b) design
confguration smells against linesofcode
Experience of respondents in terms of number of years as well as the number
of database applications developed by them
Respondents’ perspective of considered database smells
Average smell density of diferent types of applications (lef) and projects
using ORM frameworks and rest of the projects (right)
Average co-occurrence among databasesmells

-JTUPG S5BCMEFT

2.1
2.2
2.3
2.4
2.4
2.4
2.5
2.6
2.7
2.7
2.7
2.8
2.8
2.8

31
3.2
3.3

41
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

5.1
5.2

Studies selected inthe Phase 1,
Studies selected inthe Phase 2
Typesofsmells
Commoncodesmells
Commoncodesmells
Commoncodesmells
Actor-based Classifcation of SmellsCauses
Impactof Smells
Smell Detection Methods and Corresponding References
Smell Detection Methods and Corresponding References
Smell Detection Methods and Corresponding References
Smell Detection Methods and supportedsmells
Smell Detection Methods and supportedsmells
Smell Detection Methods and supportedsmells

Description of Detected Design Smells
Description of Detected Implementation Smells and T eir Distribution
Mapping Between Implementation Confguration Smells and Correspond-
ing Best Practices

Characteristics of the Analyzed Repositories
Results of Manual Validation
Number of samples in each step of preparing inputdata
Chosen values of hyper-parameters for thecnnmodel
Chosen values of hyper-parameters for the rnnmodel
Characteristics of the Downloaded Repositories
Characteristics of the analyzed industrial (I) as well as open-source (OSS)

FEPOSITONIES
Performance of the sql extraction process
Detected smells and identifed false-positives

Distribution of ImplementationSmells
Number of detected instances and smell density (per kloc) of design smells
inthe analyzed repositories

xii

5.3

5.4
5.5

5.6

5.7

5.8
5.9

5.10

5.11

5.12

5.13
5.14
5.15
5.16
5.17

Number of detected instances and smell density (per kloc) of architecture

smells in the analyzed repositories 88
Contingency matrix for a design and architecture smell 95
Architecture smell instances detected before and afer the refactoring simu-
lation for designsmells L 100
Number of positive (P) and negative (N) samples used for training and eval-
uationforRQL 103

Performance of all three models with confguration corresponding to the
optimal performance. L refers to deep learning layers, F refers to number
of Flters, K refers to kernel size, MPW refers to maximum pooling window
size, ED refers to embedding dimension, LSTM refers to number of LSTM

units, and E refers to number ofepochs. 106
Performance (F1) comparison of RNN with CNN-1D and CNN-2D 107
Positive (P) and negative (N) number of samples used for training and eval-
uationforRQ2 110
Performance of all three models with confguration corresponding to the

optimal performance. L refers to deep learning layers, F refers to number
of Flters, K refers to kernel size, MPW refers to maximum pooling window
size, ED refers to embedding dimension, LSTM refers to number of LSTM

units, and E refers to number ofepochs.o 111
Diference in ratio (in percent) of positive and negative evaluation samples
in RQ2 compared to sampleratioinRQL 112
Comparison of performance (Precision, Recall, and F1) with a random clas-

sifer (RC) following the training set frequencies or responding always indi-
catingasmell 114
Average training-time taken by the models to train a single epoch in seconds 115

Distribution of Detected Implementation and Design Confguration Smells . 117
Results of Correlation Analysis 119
Results of Correlation Analysis 121
Occurrences of database schema smells for industry () as well as open-

source (OSS) repositories 124

"DLOPXMFEHENFOUT

—by 7TFEB 7ZIABBBOEB 1VSBOB

. F B O JQWy Guru (teacher) is the representative of # SBI,NBJ T | @nd
41 J WHB creates, sustains knowledge and destroys the weeds of ignorance.
| ofer my obeisance to my Guru.

Te above TI1M Piedsely capture my thoughts about my teachers Prof. Diomidis
Spinellis and Prof. Panos Louridas. Prof. Spinellis put a lot of faith in me and accepted
me as his student. He is a great mentor, researcher, developer, and administrator. Despite
his very busy schedule, he always ofered his help and advice related to research, teaching,
or even non-technical aspects coming from his abundant knowledge and experience. He
doesn’t forget to pat the back on our achievements but also stand tall and support his stu-
dents on each tumble (such as a paper rejection). Behind his technical avatar, he is a person
with very pure heart who is always ready to ofer his help on any mater. From the begin-
ning, whether | required his help with the initial paperwork to come to Greece, advice on
Tnding good restaurants or nice islands to visit, fnding a tax consultant, or discussing the
trade-ofs between academia and industry to choose the future course, his unparalleled sup-
port made my migration to Greece and staying in Athens possible and a joyful experience. |
am indebted to him for the great amount of energy and time he invested in supervising me.

Prof. Panos Louridas — well, self declared non-statistician who in reality knows statistics
probably more than the rest of the lab combined. If any of us dealing with any mathematics,
machine learning, or algorithms, he is our go-to person. T e frst thing you will notice about
him is his smile and energy; he is kind and always ready to help. He is a ground to earth
person who reveals the richness of his copious knowledge when one works with him. He
pays atention to the details, seeks perfection, and makes you work harder. | learned a lot
of things from him.

Marios is the frst Greek friend | got. When | landed in Athens frst time with some
worries of unknown future, this warm-hearted and friendly person’s smile welcomed me.
He not only came to pick me up from the airport (which was o¥cially not required and not

Xiii

Xiv

expected), and dropped me to my airbnb but also helped me with the Greek supermarkets
to make sure a smooth setling down for me. Geting resident permit in Greece is a lengthy
and laborious afair; without Marios’s help | don’t think | could have done it. He spent
countless days and went the extra mile always to facilitate me fulflling the requirements of
staying in Greece. We also enjoy our technical discussions on various topics — whether it
is about our ongoing work, some random ideas that may lead to interesting papers, or even
startup ideas. | am sure TU Delf is giving more wings to his career.

I can’t forget our erstwhile lab in the main building of aueb wherea , B M J NrBr&Naria
used to welcome me every morning. Maria is a hardworking, determined, and cheerful
person. | remember countless discussions with her not limited to technical topics that used
to start during our lunch break but frequently used to spill over even when we come back
to the lab. I miss the delicious N P V T U Pdn@ deke thd her mother cooks for her and she
generously shared with us.

Antonis and Stefanos — my beer buddies. Both are the living alarms — Stefanos for lunch
and Antonis for beer; well, for Antonis it is a litle bit exaggeration but not at all for Stefanos
1). We are like brothers — we shared many activities such as having lunch, drinking beers,
sharing thoughts, admiring ;) and laughing on each other and literally grew up for three
years together. We did many trips together and | thoroughly enjoyed their company. Both
of them value friendship and they know how to earn and keep people as friends. T ey go
to any extreme to help their friends in need and | am blessed to be their friend. Antonis is
mature and sensible while Stefanos gained the wisdom tooth recently when he entered into
his thirties.

When you organize a big event such as sattose!, you need reliable and dependable
shoulders to share your load of thousand things that you need to put together. Vasiliki
gladly accepted the challenge and put tremendous efort to make the event successful; she
is the single biggest reason behind the fawless execution of the event. She is always ready
to listen, share her honest opinions, and most importantly sacrifce her time to help anybody
in need. She has reviewed many of my papers and this thesis and helped me improve the
text and my writing. She put a lot of efort in whatever she takes up; | realized this yet again
when we were working on using machine learning techniques on smell detection. | wish
her more elke-less time.

sattose reminds me of another person, Alexandra, who volunteered herself for the
event and contributed to the event even when she was doing her summer internship. She put
together the initial structure and contributed generously towards the DesigniteJava project.
We developed a connection and friendship beyond technical discussions as the frequency
of our thoughts strikes a harmonious note.

What! Stereo is down!! You know, you need to contact Konstantinos — the new young
lad who is carrying the responsibilities of maintaining Stereo. He is smart, patient, and
multi-tasker. Beside ensuring that Stereo always on and hot, he knows how to use a hot
oven to produce delicacies.

Singular Logic, as my industrial host in Athens, supported well in the entire journey.

llJuuQ TBUUPTF PSH

http://sattose.org/2018

XV

Specifcally, Matina was always motivating and supporting. She not only shaped and fne-
tuned the technical ideas (especially when | was analyzing database schemas) but also pro-
vided her unparalleled support to organizational and operational aspects.

My industrial host in Amsterdam, J Big not only hosted me in their o¥ce multiple
times but also mentored my thoughts and supported my research. Specifcally, both Joost
and Magiel gratifed me with their ample experience and knowledge apart from providing
exceptional operational support from seneca perspective.

T e support of the Department of Management Science and Technology at aueb along
with all the professors, teaching and support staf has contributed to my journey. Specif-
ically, 1 would like to convey my sincere thanks to Prof. Damianos Chatziantoniou for
reviewing an earlier draf of my database schema quality paper and providing improvement
suggestions. | would also like to thanks Anna Klouvatou from business administration to
ensure processing my payments on time.

My sincere thanks to Prof. Paramvir Singh from NIT Jalandhar who thoroughly sup-
ported me with my work on architecture smells. | wish him success for his new academic
journey at the University of Auckland.

My stay in Greece would have not been possible if | didn’t get fully funded by the
seneca project. | am sincerely thankful to the Marie Sktodowska-Curie Innovative Training
Networks (itn-eid) under which the seneca project was funded (grant agreement number
642954). Also, | would like to convey my warm thanks to all the partners that participated
in the project.

T e support that | received from my family whether it was the bold decision to leave a
setled life and move to Greece, or have patience when | was burning mid-night oil gave me
strength to keep going on.

Last but not the least, | ofer a bow to all the Greeks in general who accepted me socially
and made my three years a memorable life experience. | can recall countless people such
as students from my seip class, Vangelis (my landlord), our neighbors as well as unknown
Greeks who directly or indirectly made my stay easier and joyful.

- Tushar Sharma

4VNNBSZ

Code smells indicate the presence of quality problems impacting many facets of sofware
quality such as maintainability, reliability, and testability. Te presence of an excessive
number of smells in a sofware system makes it hard to maintain and evolve.

Sofware engineering researchers have carried out many empirical and mining studies
on code smells impacting various dimensions of sofware development. Our frst aim in this
thesis is to understand the characteristics of code smells, such as their occurrence frequency,
and relationships such as correlation and collocation among smells arising at diferent gran-
ularities. We aim to realize the experiment with an extended scale (J Rumber of analyzed
subject systems) and breadth (J Bining a large variety of smells).

T e sofware engineering community has proposed various methods to detect smells.
Machine learning techniques ofer a promising alternative to deterministic smell detection
methods and provide the grounds for applying transfer-learning from one programming
language to another. We aim to perform an exploratory study to investigate the feasibility
of detecting smells using deep learning methods without carrying out extensive feature
engineering. We would also like to explore whether transfer-learning can be employed in
the smell detection context.

Apart from the production source code, other sub-domains of sofware such as confg-
uration code in Infrastructure as Code (IaC) paradigm and database code are also prone to
maintainability issues. Our next goal is to propose a method to identify quality issues in
confguration code and carry out a maintainability analysis. We also would like to explore
the relationships between diferent kinds of smells at inter- as well as intra-category. Simi-
larly, we would like to propose a mechanism to collate, evaluate, and detect smells that may
arise in database schema design. We would like to propose a method to investigate code
quality of embedded sql statements, understand the impact of quality issues in connection
with properties of database and production code, and pinpoint areas where improvement in
tools, processes, or methods could be proposed to keep the database quality high.

We perform a large-scale empirical study to analyze production code writen in C# from
maintainability perspective. We mine seven architecture, 19 design, 11 implementation
smells from a large set of 3;209 open-source repositories containing more than 83 mil-
lion lines of code. We fndthat DZDMJD EFRQEDMFOBMMZ EFQFQ&BEOU NPEV
N BHJD O sdtkkSst frequently occurring architecture, design, and implementation
smells respectively. T is observation may prompt developers to pay additional atention to
avoid frequently occurring smells. Our analysis observes that smell density and size of a C#

XVi

XVii

project show a weak correlation. T e co-occurrence analysis shows that the architecture
smells exhibit a strong positive correlation with design smells. Tis implies that a project
containing a high number of design smells would also exhibit a high number of architec-
ture smells and vice-versa. We also perform fne-grain correlation between individual smell
pairs using Spearman correlation analysis. T e results of individual pair-wise correlation
analysis indicate that design and architecture smells exhibit a non-monotonic relationship.
T e collocation analysis reveals that apart from a few selected smell pairs, architecture and
design smells do not collocate with each other. We also explore the potential infuence of
design smells refactoring on architecture smells. Our analysis shows that up to one-third of
architecture smells (in case of HP E D P N)QriayQyet @ivoved if we refactor all detected
design smells in the component. However, a signifcant number of architecture smells per-
sist even afer all the smells at design granularity were refactored. T is result emphasizes
the need to carry out smell detection and refactoring at all source-code granularities.

In our exploration with deep learning techniques to identify smells, we develop a set of
tools (such as Designite, CodeSplit, and Tokenizer) and put together an experimental setup
to detect smells, generate code fragments, and tokenize them to feed into our deep learning
models (specifcally, Convolution Neural Network and Recurrent Neural Network). We per-
form the experiments with various combination of hyper-parameters for each of the model.
Our result establishes that deep learning methods (specifcally cnn and rnn in our case)
can be used for smell detection though the performance of individual models varies sig-
nifcantly. We fnd that there is no clear winner between 1-D and 2-D convolution neural
networks; cnn-1d performs beter for smells FN QU Z D B Wi INCVWMPWLDIIGBDFUFE BCTU S
while cnn-2d performs superior than its one-dimensional counterpart for smells DPNQMFY
NFUIlAAENBHJD O.W\W &lsb &bserve that performance of the deep learning models
is smell-specifc. Our experiment with applying transfer-learning proves the feasibility of
practicing transfer-learning in the context of smells detection especially for the implemen-
tation smell.

We extend the maintainability analysis to confguration code. We propose a catalog
of 13 implementation and 11 design confguration smells based on commonly known best
practices. We analyze 4;621Puppet repositories containing 142 662 Puppet fles and more
than 8:9 million lines of code using Puppeteer — a confguration smell detection tool that we
developed. Our analysis fnds that the developers of Puppet repositories either do not intro-
duce code-clones at all or they do it massively. T e inter-category correlation analysis for
confguration smells shows a strong correlation between smells belonging to diferent cat-
egories. Design confguration smells show 9% higher average co-occurrence among them-
selves than the implementation confguration smells. Tis observation a®rms the belief
that one wrong or non-optimal design decision introduces many quality issues and there-
fore suggests the developers to take design decisions critically and diligently. Design con-
fguration smell density shows negative correlation whereas implementation confguration
smell density exhibits no correlation with the size of a project. It shows that the number of
design confguration smells decrease as the size of the confguration code increases.

Further, we carry out a comparative study between open-source and industrial code-

Xviii

base from database schema quality perspective. T e study investigates relational database
schema smells and its relationships with application and database characteristics. We present
a catalog of 13 database schema smells based on commonly known best practices to design
databases. We carry out a survey to understand developers’ perspective on database schema
smells. We download 16;0520pen-source and acquire 840industrial repositories, select to-
tal 2;925 repositories containing sql statements, analyze more than 629 million lines of
code, extract more than 393 thousand sql statements, and detect more than 66 thousand
instances of database schema smells. We observe that the smell JO E FY &€uké mést fre-
quently in database code. We also fnd that some smells such as adjacency list show signif-
icantly higher proneness to occur in industrial projects compared to open-source projects.
Our analysis shows that the size of the host application has no impact on the density of
database smells; however, smell density shows a positive correlation with the size of the
database whereas application type (Desktop, Mobile, or Web) has no signifcant impact on
database smell density. Finally, the use of an orm framework does not help developers to
avoid database schema smells.

In summary, the thesis ofers contributions to both research and practice aspects. From
the research perspective, the thesis proposes methods to carry out large-scale (both in terms
of number of subject systems and kinds of code smells detected) empirical studies for not
only production source code but also for confguration and database code. T e methods
aim to understand characteristics of code smells at diferent granularities and subfelds of
sofware engineering as well as to explore interesting relationships among the smells. In
addition, the thesis presents a detailed mechanism to show the feasibility of detecting code
smells using deep learning methods. Also, the method applies transfer-learning to show-
case that a deep learning classifer trained from a programming language can be used to
identify smelly code fragments belonging to another programming language. Apart from
research-oriented contributions, the thesis also adds contributions towards sofware engi-
neering practice. T e thesis ofers a set of tools: % F T J-H@OdetddE a wide variety of im-
plementation, design, and architecture smells in C# source code, 1V Q Q +t0 iddntsy con-
Tfguration smells in Puppet code, % C %t Rdentify database schema smells in embedded
sql statements. Practitioners may use the various features ofered by the tools to identify
maintainability issues in not only their production source code but also in their database
and confguration code to reduce technical debt.

$IBQUFS

*OUSPEVDUJPO

| $SPOUFYUJT UIF XBUFS GPS UIF TIFTPGP

In this chapter, we provide the context of the work presented in this thesis, the problem
statement, our proposed solution and a summary of contributions.

$POUFYU

Kent Beck coined the term “code smell” in the landmark book of refactoring [Fow99] and
defneditas I DFSUBJO TUSVDUVSFT JO UIF DPEF UIBU TVHHFTU P
J O. lg&le smells indicate the presence of quality problems impacting many facets of qual-
ity [SS18] of a sofware system [Fow99, SSS14]. T e manifestation of an excessive number
of smells in a sofware system makes it hard to maintain and evolve.

T e impact of code smells on sofware development is multi-dimensional. Researchers
have explored and discussed the impact of the high number of code smells on specifc aspects
of sofware development extensively. T ese aspects are associated with one of the three
dimensions of sofware development: TP D X B S F,QSSHPEOIUDA-TP Rydvhhe sof-
ware product perspective, aspects such as maintainability [BQO™* 12, MY12, YM13a, Yam14],
reliability [JGHK13, HZBS14, ZSSS11, BQO™ 14], change proneness [OCBZ09, KDPG09] and
testability [SDPAG13] have been investigated in considerable depth. In addition, source
code mining studies have examined empirical aspects associated with developers and code
smells [BDLDP* 15, SCY™ 16].

Detecting smells is the frst step towards identifying quality issues that lays the ground
work for improving maintainability by applying appropriate refactorings. From the research
perspective, detected smells form the basis of empirical studies. Te sofware engineer-
ing community has proposed various methods to detect smells. Common methods to de-
tect smells are metric-based [Mar05, VMDP14], rules/heuristic-based [MGDM10, SMT16],

1

2/168 130#-&.45"5&.&/5

history-based [PBDP* 15], machine learning-based [MAB* 12b, KVGS09], and optimization-
based smell detection [OKKI15].

Apart from the production code, the metaphor of code smells could be extended to sub-
domains of sofware systems such as confguration system and databases. Confguration
code writen in languages such as Puppet [Pup18] and Chef [Chel18] may also become un-
maintainable if the changes to confguration code are made without diligence and care. Sim-
ilarly, database code is also prone to smells. Typically, the use of a database in a sofware
system manifests itself as a series of dd1 (Data Defnition Language — e.g., create table) or
dml (Data Manipulation Language — e.g., select) sql statements. Similar to code, avoiding
best practices of the domain may lead to smells in these sgl statements. In this context, Bill
Karwin [Kar10] documents a catalog of database anti-paterns. T erefore, production code
and design quality practices must be adopted to similar sub-domains of sofware systems
including confguration and database systems.

1SPCMEFEN 4UBUFNFOU

% (PBMPGUIFUIFTJT
T e goal of this thesis is to enrich the existing body of knowledge about code smells by
carrying out empirical studies on production source code, by investigating the feasibil-
ity of automating smell detection through deep learning techniques, and by extending
the maintainability analysis to other sub-domains of sofware systems.

Sofware engineering researchers have carried out many empirical and mining studies
on code smells impacting various facets of sofware development or developers. However,
we observe that existing mining studies on smells lack T D B MtkeylreFy on a limited num-
ber of subject systems analyzed for the study. T e majority of the studies analyze a handful
of subject systems (< 10). Generalizing a theory based on a few subject systems presents
a considerable threat to validity. Also, existing mining studies do poorly with respect to
C S F BEhelexperiment J Ehe types of smells analyzed in a study. Most of the existing
mining studies consider a small subset of known smells. T is under-analysis makes a min-
ing study incomplete or even incorrect. Finally, most of the mining studies on code smells
are performed on the Java programming language. T e under-representation of other pro-
gramming languages makes us wonder whether the results of the existing mining studies
are applicable in other similar languages.

Along the similar lines, despite the presence of a large body of work for smell detection,
the existing research has supported detection of mainly implementation and some design
smells. Te research on architecture smells and their detection is still in a budding stage
[GPEMAO09, SSS16], and requires a serious atention from the community, given their impor-
tance and impact on the quality of sofware systems. T e relationship (such as correlation
and collocation) among smells at various granularities has not been explored in detail.

Carrying forward the discussion about smell detection, creating a deterministic smell de-
tection tool for a specifc programming language is an expensive and arduous task since it

3/168 130#-&.45"5&.&/5

requires source code analysis starting from parsing, symbol resolution, intermediate model
preparation, and applying an appropriate mechanism (such as heuristics and metrics) on the
model. Machine learning techniques ofer promising alternatives to deterministic solutions
as they not only have the potential to bring subjectivity, that in turn improves efective-
ness, in the smell detection but also provide the grounds for transferring results from one
problem to another. In particular, transfer-learning refers to the technique where a learning
algorithm exploits the commonalities between diferent learning tasks to enable knowledge
transfer across the tasks [BCV13]. In this context, it would be interesting to explore the
possibility of leveraging the availability of tools and data related to code smell detection in
a programming language in order to train machine learning models that address the same
problem on another language. Te cross-application of a machine learning model could
provide opportunities for detecting smells without actually developing a language-specifc
smell detection tool from scratch.

Apart from the production source code, other sub-domains of sofware such as confgu-
ration code in the Infrastructure as Code (IaC) paradigm and database code are also prone to
maintainability issues. Infrastructure as Code (I1aC) [HF10] is the practice of specifying com-
puting system confgurations through code, automating system deployment, and managing
the system confgurations through production sofware engineering methods. Confgura-
tion code writen in Puppet [Pupl8], or Chef [Chel8], may also become unmaintainable if
the changes to confguration code are made without diligence and care. In a recent study,
Jiang et at. [JA15] argued that confguration code must be treated as production code due
to the characteristics and maintenance needs of the confguration code. T erefore, produc-
tion code and design quality practices must be adopted to write and maintain high quality
confguration code.

Databases are an integral element of enterprise applications. T e efective use of database
afects vital quality parameters, such as performance and maintainability, of these applica-
tions. Similar to production code, the sql statements may also indicate smells. Bill Kar-
win [Kar10] documents a catalog of database anti-paterns to reveal many of the practices
afecting database quality. However, their presence in sofware systems and their relation-
ships with other sofware artifacts have not been explored yet.

SFTFBSDIHPBMT
With the above background, we defne the following research goals for the thesis.

» Understand characteristics of code smells and relationships such as frequency,
correlation, and collocation among smells arising at diferent granularities by
extending the scale (J Rumber of analyzed subject systems) and breadth (J
mining a large variety of smells) of the mining study.

» Perform an exploratory study to investigate the feasibility of detecting smells
using deep learning methods without carrying out extensive feature engineer-
ing. Explore whether transfer-learning can be employed in the smell detection
context.

417168 130104&% 40-65*0/"/% $0/53*#65*0/

» Propose a method to identify quality issues in confguration code and carry out a
maintainability analysis for code writen in the Infrastructure as Code paradigm.
In addition, explore the relationships among diferent kinds of smells at inter-
as well as intra-category.

» Explore a mechanism to collate, evaluate, and detect smells that may arise in
database schema design. Ofer a method to investigate code quality of embed-
ded sqgl statements, understand the impact of quality issues in connection with
properties of database and production code, and pinpoint areas where improve-
ment in tools, processes, or methods could be proposed to keep the database
quality high.

1SPQPTFE4PMVUJPO BOE $POUSJCVUJ|

T e thesis fulflls the frst goal by carrying out a large scale empirical study to mine code
smells in C# projects. Te study reveals fundamental, yet interesting, characteristics of
code smells in C# projects. T ese characteristics include — frequently occurring smells,
inter-category and intra-category correlation between design and implementation smells,
and the relationship of smell density with lines of code in each repository. Smell density is
a normalized metric that represents the average number of smells identifed per thousand
lines of code.

To study architecture smells in production source code we automate the detection of
seven architecture smells in our tool Designite. We analyze a large set of repositories and
infer relationships among the smells belonging to two granularities (architecture and design)
through correlation and collocation analysis. In particular, the analysis explores whether
there are specifc design smells that may act as indicators for specifc architecture smells.

To fulfll the second goal, we develop a set of tools (such as Designite, CodeSplit, and To-
kenizer) and put together an experimental setup to detect smells, generate code fragments,
and tokenize them to feed into our deep learning models (specifcally, Convolution Neu-
ral Networks and Recurrent Neural Networks). We perform the experiments with various
combinations of hyper-parameters for each of the models. With the above setup, we frst
experiment to investigate the feasibility of employing deep learning to detect smells; we
keep both our training and evaluation samples from C#. To show the feasibility of transfer-
learning, we replace the evaluation samples writen in C# with Java samples and document
the performance of our models.

For the next goal, we perform a quality analysis of confguration code and explore the
distribution of confguration smells. $PO HVSBUJPO TNFMMT BSF UIF DIBSBL

HVSBUJPO QSPHSBN PS TDSJQU UIBUWJPMBUF UIF SFDPNNF!
GFDU UIF QSPHSBNET RV B RefeiXZ SdofioB 3Q.FferBHd détdiredc&alog.
We investigate the relationship between the occurrence of design confguration smells and
implementation confguration smells. Other related dimensions concerning confguration
code quality that we explore are whether the principle of coexistence is applicable to smells

5/168 130104&% 40-65*0/"/% $0/53*#65*0/

in confguration projects and the relationship between smell density and the size of the
confguration project.

Further, towards the last goal defned in this work, we mine database smells in production-
quality systems including both industrial as well as the open-source sofware. % BUBCBTF
TNFMMT BSF UIF DIBSBDUFSJTUdIDPIGRIGQEBUBUBNF @WPE F EBIWB E
TZTUFN PS TUPSFE EBUB UIBU JOEJDBUF WIJPMBUJPO PG UIF
UJBMMZ B FDU UIF RVBMJUZ PG UIF TPYDWXrBag Fefar ZorSeckiad JO B OF H
3.2.4 for a detailed catalog. We analyze sql statements to measure schema quality of rela-
tional databases with a focus on performance and maintainability quality atributes. Specif-
ically, we explore occurrence paterns of database schema smells and fgure out the degree
of co-occurrence among schema smells. We also study the factors that afect the density of
database smells and compare these factors between industrial and open-source projects.

In summary, the thesis ofers the following contributions:

A method to carry out a large-scale empirical study to mine smells from a large num-
ber of repositories and to study smells’ characteristics in relation with project prop-
erties.

» A method to perform correlation and collocation analysis among smells belonging to
diferent granularities.

» A method to explore the feasibility of employing deep learning models in detecting
code smells and to investigate whether transfer-learning can be applied in the context
of smell detection.

» A method to prepare a catalog of confguration smells and perform an empirical study
on quality issues and their characteristics in the 1aC paradigm.

» A method to investigate the code quality of embedded sql statements by identifying
database schema smells in a large set of repositories and study the impact of smells
on project properties.

» Asetof tools to identify code smells. T is includes Designite (for C#) to identify archi-
tecture, design, and implementation smells, Puppeteer to identify confguration code
smells in Puppet, DbDeo to extract sql statements and detect database schema smells.
Practitioners may use these tools to identify quality issues impacting the maintain-
ability of their sofware system.

» Teexperimental setup with all the required tools and scripts to apply deep learning
on source code. T e research community may build new ideas over it or replicate the
experiment with the setup.

6/ 168 38&4&"3%) .&5)0%

SFTFBSDINFUIPE

Te journey of the research method starts from a literature review to understand the state
of the art and to identify gaps in the current research and practice. Te review reveals
the potential opportunities for researchers in the feld in general and provides a basis for
defning the problem defnition of the thesis.

In the design phase, we perform experimental design to address the problems that we
identify. We aim to perform a large scale empirical study to detect smells in C# code and
to carry out a study on architecture smells to identify their relationship with design smells.
We conceptualize a feasibility study to detect smells using deep learning models and to ap-
ply transfer-learning in the smell detection context. We also design an exploratory study
on confguration smells to frst defne confguration smells and support detection these
smells in open-source repositories. Along similar lines, we put together a study for database
schema smells; the study aims to reveal relationship between database quality and produc-
tion code in the context of both open-source and close-source proprietary code. We identify
relevant research questions to investigate for each experiment.

T e implementation phase involves developing necessary tools and perform the exper-
iments. We developed Designite to analyze C# code, Puppeteer for confguration smell de-
tection, and DbDeo for database smell detection. We download open-source repositories
from GitHub and perform our analysis on the them. Apart from quantitative analysis, we
also perform qualitative analysis as well as developers’ survey to strengthen the evaluation
of the database analysis. We develop a set of tools and scripts to analyze and curate data
from existing repositories. We put together the experimental setup to detect smells using
deep learning and to establish feasibility of transfer-learning.

SFTJTPVUMJOF

Tis dissertation has six chapters. We outline the remaining fve below.

$ 1B Q U Fp®ovides a holistic status quo of various dimensions associated with sofware
smells. It presents the state-of-the-art in the current research concerning sofware
smells, reveals defciencies in present tools and techniques, and identifes research
opportunities.

$ 1 B Q U Hl&ustrates the theoretical model and study design of our experiments along with
specifc research objectives for each experiment.

$ 1 B Q U Fp®ovides implementation details of each experiment including tool support, and
qualitative and quantitative analysis.

$ 1 B Q U Fp®esents results from our study and discusses the implications of the obtained
results.

71168 5)&4*4 065-*/&

$ 1B Q U Fp®esents conclusions of the thesis and chalks out some potential avenues for
future extensions.

@ $POWFOUJPO VTFE GPS IJHIMJHIUFE CPY|FT

We use the following convention for the highlighted boxes in this thesis.

% (PBMT

(4 $POUSJCVUJPOT

4 JFZSFTVMUT

*NQMJIDBUJPOT

o

Y/
|/

: *OGPSNBUJPO PS TJEF OPUF

’-\@’- OQQPSUVOJUJIFT

$IBQUFS

SFMBUFE 8PSL

KFQBTUJT PVS UFBDIFS UP CVIJME B CFGI
XFMFBSO GSPN JU

In this chapter, we present a comprehensive literature review of the domain of sofware
smells. Section 2.1 introduces the term D P E F TaNdpkbWidEs background of the related
literature reviews. We discuss the method employed to perform the literature survey in
Section 2.2 and defne the research questions to explore. In Section 2.3, we present results
and provide discussion for each addressed research question.

*OUSPEVDUJPO

Kent Beck coined the term “code smell” in the context of identifying quality issues in code
that can be refactored to improve the maintainability of a sofware [Fow99]. He emphasized
that the presence of excessive number of smells in a sofware system makes the sofware
hard to maintain and evolve.

Since then, the smell metaphor has been extended to various related subdomains of sof-
ware systems including testing [Deu01], database [Kar10], and confguration [SFS16]. Fur-
ther, since the inception of the metaphor, the sofware engineering community has explored
various associated dimensions that include proposing a catalog of smells, detecting smells
using a variety of techniques, exploring the relationships among smells, and identifying the
causes and efects of smells.

T e large number of available resources poses a challenge, equally to researchers and
practitioners, to comprehend the status quo of tools, methods, and techniques concerning
sofware smells. Analyzing and synthesizing available information could not only help the
sofware engineering community understand the existing knowledge, but also reveal the
challenges that exist in the present set of methods and opportunities to address them.

8

9/168 .&5)0%

T ere have been a few atempts to understand current practices and provide an overview
of the existing knowledge about sofware smells. Singh F U [BKHM7] present a systematic lit-
erature review on code smells and refactoring in object-oriented sofware systems by study-
ing 238 primary studies. T e survey focuses on the smell detection methods and tools as
well as the techniques and tools used to refactor them. Te authors divide smell detec-
tion methods based on the degree of automation employed in implementing smell detection
methods.

Similarly, Zhang F U ENB11] review studies from year 2000to 2009and draw a few
observations about current research on smells. Tey reveal a large gap in existing smell
literature — current studies have chosen a small number of smells for their study and some
of the smells (such as message chains) are poorly explored by the community. Further, the
study emphasizes that the impact of code smells is not well understood.

Various tools have been proposed to detect smells. Fernandes F U [BON/* 16] provide a
comprehensive study containing a comparison of 84 smell detection tools. Similarly, Rasool

F U [BM5] also review existing code smell detection tools and reveal the challenges asso-
ciated with them. A few studies [AD15, MT04] provide an extensive coverage to techniques
available for refactoring smells.

In this chapter, we thoroughly explore the resources related to smells that were pub-
lished between the years 1999— 2016and present the current knowledge in a synthesized
and consolidated form. Additionally, our goal is to identify challenges in the present knowl-
edge and fnd opportunities to overcome them.

(% $POUSJCVUJPOT

T is survey makes the following contributions to the feld.

» Te study provides a holistic status quo of various dimensions associated with
sofware smells. T ese dimensions include defnition, classifcation, types, de-
tection methods, as well as causes and impacts of smells.

* It presents the state-of-the-art in the current research, reveal defciencies in
present tools and techniques, and identifes research opportunities to advance
the domain.

.FUIPE

In this section, we frst present the objectives of this literature review and derived research
questions. We illustrate the search protocol that we used to identify relevant studies. Te
search protocol includes not only the steps to collect the initial set of studies, but also in-
clusion and exclusion criteria that we apply on the initial set of studies to obtain a fltered
set of primary studies.

10/ 168 .&5)0%

SFTFBSDI PCKFDUJWFTBOE RVFTUJPOT

SFTFBSDIPCKFDUJWEFT
T e goal of this study is to provide a consolidated yet extensive overview of sofware

smells covering their defnition, types, causes, detection methods, and impact on var-
ious aspects of sofware development.

In this study, we address the following research questions:

-3 32 8IBUJTUIFEF OJUJPOPGBTPDXBSFTNFMM
We aim to understand how the term “smell” is defned by various researchers. We
infer basic defning characteristics and types of smells.

-3 32)PXEPTNFMMTHFUJOUSPEVDFEJO TPDXBSFTZTUFNT
We explore the reasons that cause smells in sofware systems.

-3 32)PXEPTNFMMTB FDUUIFTPDXBSFEFWFMPQNFOU QSPD
We present the impact of smells on sofware systems. Specifcally, we study impacts
of smells on processes, artifacts, and people.

-3 32)PXEPTNFMMTHFUEFUFDUFE
We discuss the techniques employed by researchers to identify smells.

-3 32 8IBUBSFUIFPQFO SFTFBSDIRVFTUJPOT
We present the perceived defciencies and the open research questions with respect
to smells, their detection, and their interpretations.

Te purpose of the prefx -3(J F MJUF S BWNB B uSdd Wohd With research
questions labels, is to separate this set of research questions with other questions in the
thesis.

-JUFSBUVSF TFBSDI QSPUPDPM

Te literature search protocol aims to identify primary studies which form the basis of the
survey. Our search protocol has three phases:

1. We identify a list of relevant conferences and journals and manually search their pro-
ceedings.

2. We search seven well-known digital libraries.

3. We perform Fltering and consolidation of the studies identifed in the previous phases
and prepare a single library of relevant studies.

11/168

-JUFSBUVSFTFBSDIT1IBTF

We identify a comprehensive list of conferences and journals based on papers published in
these venues related to smells. We manually search the proceedings of the selected venues
between the year 1999and 2016 T e start year has been selected as 1999since the smell
metaphor was introduced in 1999 During the manual search, the following set of terms
were searched in the title of studies;: TNFMM BOUJQBGFSO RVBMJUZ
B O E N FAIISReDtudies containing at least one of the search terms in their title were
selected and recorded. Table 2.1 presents the selected conferences and journals along with
their corresponding number of studies selected in Phase 1.

T e domain of refactoring is closely related to that of sofware smells. However, given
the vast knowledge present in the feld of refactoring, it requires a separate study specifcally
for sofware refactoring. T erefore, we consider work concerning refactoring outside the
scope of this study:.

Table 2.1: Studies selected in the Phase 1

7TFOVF 5ZQF 4UVEJFT
Automated Sofware Engineering Conference 24
Empirical Sofware Engineering Journal 61
Empirical Sofware Engineering and Measurement Conference 68
European Conference on Object-Oriented Program- Conference 2
ming

Foundations of Sofware Engineering Conference 19
IEEE Sofware Journal 78
International Conference of Sofware Maintenance and Conference 220
Evolution

International Conference on Program Comprehension Conference 38
International Conference on Sofware Engineering Conference 85
Journal of Systems and Sofware Journal 146
Mining Sofware Repositories Conference 28
Sofware Analysis, Evolution, and Reengineering / Conference 135
European Conference on Sofware Maintenance and

Reengineering

Source Code Analysis and Manipulation Conference 22
Systems, Programming, Languages and Applications: Conference 8
Sofware for Humanity

Transactions on Sofware Engineering Journal 83
Transactions on Sofware Engineering and Methodol- Journal 11

ogy
SPUBM TFMFDUFE TUVEJFT JO 111

.&5)0%

NBJOUB.

12/ 168 .&5)0%

-JUFSBUVSFTFBSDIT1IBTF

In the second phase, we carried out search on seven well-known digital libraries. T e terms
used for thesearchare: TPDXBSF TNFMM BOUJQBGFSO TPDXBSFRVBMJ
O B GabdFT P D X B S F \NeRapp&hdidd the term “sofware” to the search terms in order to
obtain more relevant results. Additionally, we apply flters such as “computer science” and
“sofware engineering” wherever it was possible and relevant to refne the search results.
Table 2.2 shows the searched digital libraries and corresponding number of selected studies.

Table 2.2: Studies selected in the Phase 2

%JHJUBM -JCSBSZ IVNCFS PG TUVEJFT
Google Scholar 196
SpringerLink 44

ACM Digital Library 108
ScienceDirect 40

Scopus 150

IEEE Xplore 151

Web of Science 58

5PUBM TFMFDUFE TU\ F

-JUFSBUVSFTFBSDIT1IBTF

In the third phase, we defned inclusion and exclusion criteria to Flter out irrelevant studies
and to prepare a consolidated library. T e inclusion/exclusion criteria are listed below.
*ODMVTIJPO DSJUFSJB

« Studies that discuss smells in sofware development, present a catalog of one of the
diferent types of sofware smells (such as code smells, test smells, and confguration
smells), produce factors that cause smells, or explore their impact on any facet of
sofware development (for instance, artifacts, people, or process).

« Studies introducing smell detection mechanisms or providing a comparison using any
suitable technique.

» Resources revealing the defciencies in the present set of methods, tools, and practices.
&YDMVTIPODSJUFSJB

« Studies focusing on external (in-use) sofware quality or not directly related with sof-
ware smells.

» Studies that propose the refactoring of smells, or identifes refactoring opportunities.

* Articles comprising keynote, extended abstract, editorial, tutorial, poster, or panel
discussion (due to insufcient details and small size).

13/ 168 3&46-54"/% %*4$644*0/

« Studies whose full text is not available.

Each selected article from phase 1 or 2 went through a manual inspection of title, key-
words, and abstract. T e inspection applied the inclusion and exclusion criteria leading to
inclusion or exclusion of the articles. We obtained 445articles afer completing the inspec-
tion and removing the duplicates. T ese articles are the primary studies that we studied in
detail. We took notes while studying the selected articles. We then mark all the relevant
articles for each research question and included them in the corresponding discussion.

We did not limit ourselves only to the primary studies. We included secondary sources
of information and articles as and when we spoted them while studying primary studies.
T erefore, although our primary studies belong to the period 1999- 20186 due to the inclu-
sion of the secondary studies, we refer studies in this survey that were published before or
afer the selected period. An interested reader may fnd the list of all the selected papers in
each phase online [SS17].

Afer we completed the detailed study, we categorized the resources based on the dimen-
sions of smells they belong to. Figure 2.1 provides an overview of the studied dimensions
of sofware smells; a number in brackets shows the number of associated references.

Figure 2.1: Overview of the study; a number in brackets shows the number of associated
references

SFTVMUT BOE %JTDVTTJPO

In this section, we present our synthesized observations corresponding to each research
question addressed in this study.

14/ 168 3&46-54"/% %*4$644*0/

-3 32 38IBUJTUIFEFQOJUJPOPGBTP,XBSF TN

We break down the question into the following sub-questions where each sub-question deals
with precisely one specifc aspect of sofware smells’ defnition.

-3 32 8IBUBSFUIFEF OJOHDIBSBDUFSJTUJDT PGB TPDXBSF
-3 32 8IBUBSFUIFUZQFTPG TNFMMT
-3 32)PXBSFUIFTNFMMTDMBTTJ FE

-3 32 "SFTNFMMTBOEBOUJQBGFSOTDPOTJEFSFETZOPOZN™

-3 32 8IBUBSFUIFEFQOJOHDIBSBDUFSJTUJDT PG B

Kent Beck coined the term “code smell” [Fow99] and defned it informallyas |DFSUBJO TUSVD
UVSFTJOUIFDPEFUIBUTVHHFTU TPNFUJNFTUIFZAt&rDSFBN GP
various researchers gave diverse defnitions of sofware smells. A complete list of defni-

tions of smells provided by various authors can be found in Appendix 6.3. Based on these,

we synthesize the following fve possible defning characteristics of a sofware smell.

* *O E JD BWhdE defne smells as an indicator to or a symptom of a deeper design
problem [MGDM10, Yam14, SSS14, dSS16].

1PPS TP MY&lidePatre describes smells as a suboptimal or poor solution [KVGS11,
KEAL6, FBA1l, ADPAG13, VEM02, CDMT14].

7JPMBUFT CF T WQsIBidptauihérIsuch as Suryanarayana F U [B3914]
and Sharma F U [BA916], smells violate recommended best practices of the domain.

*NQBDUT RIBIM h&k&it difcult for a sofware system to evolve and main-
tain [Yam14, KVGS11]. It is commonly agreed that smells impact the quality of the
system [JGHK13, MG07, ADPAG13, GPEMO09, SFS16, SSS14].

3 F DV S S Mary kuthors defne smells as recurring problems [MAB* 12b, PZ12,
KVGS11].

-3 32 8IBUBSFUIFUZQFTPG TNFMMT

Authors have explored smells in diferent domains and in diferent focus areas. Within
sofware systems domain, authors have focused on specifc aspects such as confguration
systems, tests, and models. T ese explorations have resulted in various smell catalogs. Table
2.3 presents a summary of catalogs and corresponding references.

We have compiled an extensive catalog belonging to each focus area. Here, considering
the space constraints, we provide a brief catalog of code smells in Table 2.4. We have se-
lected the smells included in this table based on the popularity of the smells J Based on

15/ 168

3&46-54"/% %*4%$644*0/

Table 2.3: Types of smells

'"PDVT S3FGFSFODFT

Implementation [Fow99], [ADPAG13],
[BMMMOS], [FM13]
[AHTM11], [GKA* 16]

Design [SSS14] [BGH™ 08]

Architecture [GPEMO09], [BMMM98] [LK00]

Tests [GvDS13], [HIE" 13] [Deu01]

Performance [Smi00], [SA14], [WHTK14]

Confguration systems [SFS16]

Database [Kar10]

Aspect-oriented systems [AFF14], [BGvS11]

Energy [VAPM13]

Models [EAMO09], [DD16]

Services [PDMG14], [KZ07], [PM15]

Usability [ACSS15]

Reuse [Lon01]

Web [NNN*12]

the number of times the smell has been studied in the literature. T e comprehensive and

evolving taxonomy of sofware smells can be accessed online.?

$PEF 4NFN
SFGFSFODH

Table 2.4: Common code smells

/MFTDSJIQUJIPO
=T

God class [Rie96]

Feature
envy[Fow99]
Shotgun surgery
[Fow99]

Data class
[Fow99]

Te god class smell occurs when a huge class which is sur-
rounded by many data classes acts as a controller (J £kes most
of the decisions and monopolises the functionality ofered by the
sofware). Te class defnes many data members and methods
and exhibits low cohesion.

SFMBUFE T M$uifiddnt modularization [SSS14], Blob
[BMMMO98], Brain class [VMDP14].

Tis smell occurs when a method seems more interested in a
class other than the one it actually is in.

Tis smell characterizes the situation when one kind of change
leads to a lot of changes to multiple diferent classes. When the
changes are all over the place, they are hard to nd, and it’s easy
to miss an important change.

Tis smell occurs when a class contains only felds and possibly
geters/seters without any behavior (methods).

3FMBUFE BMkeMmbdularization [SSS14].

lfjuuQ XXX U

VTIBSNB JO TNFMMT

http://www.tusharma.in/smells

16/ 168 3&46-54"/% %*4%$644*0/
Table 2.4: Common code smells

$PEF ANFMBFTDSJQUJPO
SFGFSFODERET

Long
method[Fow99]

Functional
decomposi-
tion[BMMM98]
Refused bequest
[Fow99]
Spagheti code
[BMMM98]

Divergent change
[Fow99]

Long parameter
list[Fow99]
Duplicate
[Fow99]

code

Cyclically-
dependent
modularization
[SSS14]

Defcient encap-
sulation [SSS14]

Lava fow

[BMMM98]

Speculative gen-
erality [Fow99]

Lazy class

[Fow99]

T'is smell occurs when a method is too long to understand.

3 F M B U F E Tohofethdd[Rie96], Brain method [VMDP14].
Tis smell occurs when highly procedural and non-object-
oriented code is writen in an object-oriented language.

Tis smell occurs when a subclass rejects some of the methods
or properties ofered by its superclass.

3 FMB UF E RtbéllMud Aierarchy [SSS14]

Tis smell refers to an unmaintainable, incomprehensible code
without any structure. T e smell does not exploit and prevents
the use of object-orientation mechanisms and concepts.
Divergent change occurs when one class is commonly changed
in diferent ways for diferent reasons.

3FMBUFE T™NIEft&ted abstraction [SSS14].

Tis smell occurs when a method accepts a long list of parame-
ters. Such lists are hard to understand and difcult to use.

T is smell occurs when same code structure is duplicated to mul-
tiple places within a sofware system.

3 FMBUFE TDNgHddtMabstraction [SSS14], Unfactored hi-
erarchy [SSS14], Cut and paste programming [BMMMO98].

Tis smell arises when two or more abstractions depend on each
other directly or indirectly.

3 FMB U F E DiperdeRty cycles [Mar01]

Tis smell occurs when the declared accessibility of one or more
members of an abstraction is more permissive than actually re-
quired.

3FMBUFE ExésdMdyIobal variables [FM13].

Tis smell is characterized by a piece of code that nobody re-
members the purpose and usage, and is largely not utilized.

3 F M B U F E TUNuUtilzdd abstraction [SSS14].

T is smell occurs where an abstraction is created based on spec-
ulated requirements. It is ofen unnecessary that makes things
difcult to understand and maintain.

3 FMBUF E BpéuMtiMeThierarchy [SSS14]

Tis smell occurs where a class is not doing enough J K does
not realize a concrete responsibility.

17/ 168 3&46-54"/% %*4$644*0/

Table 2.4: Common code smells

$PEF ANFMBAFTDSJQUJPO

SFGFSFODFT

3 FMB UF E TNnEdesddry abstraction [SSS14].

Switch statement | T is smell occurs when switch statements that switch on type
[Fow99] codes are spread across the sofware system instead of exploiting
polymorphism.

SFMBUFE Tumhé&Mdiled encapsulation [SSS14], Missing
hierarchy [SSS14].

Primitive obses- | T is smell occurs when primitive data types are used where an
sion [Fow99] abstraction encapsulating the primitives could serve beter.

3 FMB U F E Mibsirlg ahstraction [SSS14].

Swiss army knife | T issmell arises when the designer atempts to provide all possi-
[BMMMO98] ble uses of the class and ends up in an excessively complex class
interface.

3 FMB UF E ™NIEftéted abstraction [SSS14].

We further elaborate this research question to focus on the related work corresponding
to the investigations taken up in this thesis.

%BMJUZ 1SBDUJDFT GPS 4P, XBSF "SDIJUFDUVSF

T e topic of architecture smells and its impact on sofware development is a subject of in-
terest for sofware engineering community for many years. Garcia F U [BREMO09] defne
an initial set of architecture smells and prepare a catalog of architecture smells with their
mathematical defnitions [Garl4]. Tese formal defnitions are helpful in implementing
smell detection tools for architecture smells. Brown F U BMMM98] also document a set
of architecture smells in the enterprise setings.

Andrade FU BIAMAC14a] defne a set of architecture smells with respect to Product
Line Architecture (pla). Mo F U PA@KX15] identify a set of hotspot paterns, referring
as recurring architecture problems based on a combination of historical and architectural
information of sofware systems.

Yamashita F U B EFW15, YC13] empirically investigate the inter-smell relationships,
termedas DP M M &D B B NV Bhist m&inly comprise design smells and a few implemen-
tation smells. One of the insights from their work is that the explanatory power of code
smell relationships need further investigations with complementary perspectives in order
to be deemed useful. Inter-smell relationships have also been leveraged to fnd optimal
smell-removing refactoring sequences [LMSN12].

Palomba F U [B&8] investigate the collocation (termed as co-occurrences) among 13
code (design and implementation) smells over multiple releases of 30 open source sofware
systems. Similarly, Walter F U PBAWF18] conduct an experimental study to explore the
collocation relationship among 14 code (design and implementation) smells across 92 java
applications. Tey explore the efect of application domain on these relationships. Both

18 /168 3&46-54"/% %*4$644*0/

of these studies foresee the importance of smell collocations in identifying classes requir-
ing high maintenance efort, and developing appropriate refactoring approaches and smell
detection tools supporting collocation analysis.

It is believed that the sofware architecture is afected by the presence and criticality of
code anomalies or smells. Macia F U BAGP™ 12] present an empirical study on the rela-
tionship between code anomalies and architecture degradation. T ey conclude that 50% of
the automatically detected code anomalies causes the architectural modularity problems.

Oizumi F U [BBIC* 15, OGdSS* 16] believe that the architecture problems are refected
in source code through groups of code smells and study the impact of a number of code
smell agglomerations on architecture problems. Guimaraes F U [B®IC14, GVG™] conduct
a controlled experiment utilizing architecture blueprints to prioritize various types of code
smells based on their architecture relevance.

Martini FU PWBR18] conduct a case study based research on three architectural
smells employing questionnaires, interviews, and code inspections on four industrial sof-
ware projects. T e main aim of this study is to identify and prioritize the architecture debt
with the help of architecture smells. Te fndings of this study acknowledge the adverse
efects of architecture smells, and emphasize on the unavailability of automatic smell detec-
tion tools. Le F U [RINM18] perform an empirical investigation on the nature and impact
of six architecture smells that most frequently appeared in eight Apache Sofware Founda-
tion open-source projects. T ey design detection algorithms for these smells and explored
relationships between issues and the architecture smells under study. T e outcome of this
study states the negative impacts of architecture smells on maintenance efort in terms of
increased number of implementation issues and code commits.

%BMJUZ 1SBDUJDFTJO 4ZTUFN $POQHVSBUJPO .BOBHFNFOU
In the landscape of system confguration management, empirical studies on confguration
code writen in languages such as Puppet [Pup18] and Chef [Chel8] are scarce. Jiang F U
B MA15] study the co-evolution of Puppet and Chef confguration fles with source, test,
and build code. T ey analyze the sofware repositories of 2560penStack projects and distin-
guish Fles as infrastructure, which contain confguration code in Puppet or Chef language,
production, build, and test. Tey fnd that confguration code comes in large fles, changes
more frequently, and presents tight coupling with test fles.

Puppet Forge [Pupl6b] — the repository of Puppet modules, provides an evaluation of
confguration code quality through a quality score based on three aspects: code quality
score provided by Puppet-Lint [Pupl6c], compatibility with Puppet, and metadata quality.
Metadata quality is subject to a set of guidelines that metadata fles should adhere to.

Sonar-Puppet [Pupl6a] is a SonarQbe [Son16] plug-in that has numerous rules to detect
quality violations in Puppet code; most of the rules applied by Sonar-Puppet are common
with Puppet-Lint. Although the quality score provides useful and quick feedback to Puppet
code authors, it is not near to a comprehensive code analysis from the laC point of view.

In addition, various authors have published their ideas describing best practices for con-
fguration code in the form of blog-posts, articles, and technical talks [Lar16a, Larl6b, Sty16,

19/ 168 3&46-54"/% %*4$644*0/

Larl6c].

%BMJUZ 1SBDUJDFTJO %BUBCBTF "QQMJDBUJPOT
Tere is scant research that explores the quality characteristics of database code. Kar-
win [Kar10] presents a comprehensive catalog of database antipaterns drawn from industry
experience. He organizes antipaterns in four categories: logical database design, physical
database design, query, and application development antipaterns.

Authors have atempted studies to explore the quality aspect of database code. Brink F U
B MBLVO07] discuss the challenges in extracting sql statements from the host source code
and present a method to extract and distil sql statements. T e study provides a set of basic
metrics concerning databases such as number of tables and nested queries. Chen [Chel5]
proposes strategies for reducing the impedance mismatch between the relational and object-
oriented models in order to improve database performance and integrity.

Te knowledge and experience accumulated in popular question and answer sites can
be leveraged to help developers avoid smells in sql queries. Nagy F U [BI®L5] mine Stack
Overfow questions that are relevant to sql queries. T e study extracts sql error paterns
as a frst step towards a recommendation system that aids developers to construct correct
queries. Eessaar [EV15] also discusses a few heuristics that can be employed to detect some
of the database smells outlined by Karwin [Karl0]. Many authors have explored object-
relational mapping in the context of their implications on application design [TGPM17] and
performance [CSJ* 14].

-3 32 JPXBSFUIFTNFMMTDMBTTJQFE

An appropriate classifcation is required to beter comprehend a long list of smells based on
their characteristics. We collected, categorized, inferred, and synthesized the following set
of meta-classifcation of sofware smells.

« &PFDU CBTFE TNFMM adtAar F U (BR3P dPas3iTed smells based
on their efects on sofware development activities. T e categories provided by the
classifcation include CM P BIWAF\EQeNIFLBSIBOHF QSFWFOUFST

* 1SJODJQMF CBTFE TN F SakhithyhB T UJEISB3addPSOryanarayana
FU B3314] classifed design smells based on the primary object-oriented design
principles that the smells violate. T e principle-based classifcation divided the smells
in four categories namely: BC T U S BNIPEEMVAMOB S F (BB @ Q¥ BIFRISPES D | Z
smells.

« "SUJGBDU DIBSBDUFSJTUJDT C B Weke [WakB3yipvododelBa T TJQ D B U
smell classifcation based on characteristics of the types (i.e., classes or interfaces).
Categories such as E B,UB U F S&SBMFAQ dnd C/IMIRZFTTBS 2rDI-NQMFY JU
cluded in his classifcation. Similarly, Karwin [Kar10] classifed sql antipaterns in
the following categories — MPHJDBM EBURBCABTIMBMIEB QBROVB-TSZEFTJH
and BQQMJIDBUJP QnEfa¥iAM PQNFOU

20/ 168 3&46-54"/% %*4$644*0/

* (SBOVMBSJUZ CBTFE TN FWWokb M BAADMQID BaksiFedGmells
using a two-level classifcation. At frst, a smell is classifed in either JOUFSnDMBTT
J O U S Beaf2ddrg. TTTe second level of classifcation assigns non-orthogonal cate-
gories J F T U SN DYkRKOSEBEM/B T V ® Bh&sMdHs. Similarly, Brown F U [BIMMO98]
discussed antipaterns classifed in three major categories — TPDXBSF EFWFMPQNF
TPDXBSF BSBNWTUFDXB/SFQSPKF DatidBO8HFNFO U

@ WFTIJSBCMFQSPQFSUJFTPGBDMBTTJQDBUJPO
Kenneth Bailey [Bai94] discusses a few desirable properties of a classifcation. By
applying them in the context of our study, we propose that an ideal classifcation of
smells must exhibit the following properties.

* &Y IBVT Wlas¥ifyall the considered smells,
* 4 J N Q t¥ssify smells within the scope and granularity efortlessly,

* $P OTJT préaGrela consistent classifcation even if it carried out by diferent
people, and

* $PIF S Fproduce clearly distinguishable categories without overlaps.

We encourage authors that propose a classifcations, in general within sofware engi-
neering context or specifcally for smells, adhere to the above-mentioned properties.

-3 32 "SFTNFMMTBOEBOUJQBUUFSOTDPOTJEFSFE 1

Sofware engineering researchers and practitioners ofen use the terms “antipatern” and
“smell” interchangeably. Specifcally, authors such as Palma FU PMG13], Palomba F U
B WNT* 15], and Linares F U [RWKM™ 14] use both the terms as synonyms. For instance,
Linares F U BRWKM™ 14] assert this notion explicitly — |°XF VTF UIF XPSE ! TNFMMT§ |
UP CPUIDPEFTNFMMTBOEBOUJQBGFSOT °8§
Some authors treat antipaterns and smells as quality defects at diferent granularity.
For example, Moha F U [B1K407, MGDM10] defned design defects as antipaterns at design
granularity and as smells at implementation granularity.

Andrew Koenig [Koe95] coined the term “antipaterns” in 1995 and defned it as follows:
'"OBOUJQBGFSOJTKVTUMILFQBGFSO FYDFQUUIBUJOTUFBE
TVQFS DJBMMZ MJLF B T Fa¥aV B WHBIMT Q0] Wisd GeSefilid eiip&t8rns
inthisvein— [TPNFUIJOH UIBU MPPLT MJLFBHPPEJEFB CVUXIJDIC
Based on Koening’s defnition, our following interpretation makes antipaterns fundamen-
tally diferent from smells— BOUJQBGFSOT HFU DIPTFO CVU TNEMMT PDD
An antipatern is chosen in the assumption that the usage will bring more benefts than
liabilities whereas smells get introduced due to the lack of knowledge and awareness most
of the times.

21/168 3&46-54"/% %*4$644*0/

Brown FU BMMM98] specify one key characteristic of antipaterns as one (°UIBU
HFOFSBUFT EFDJEFEMZ OFiH éharacidistiDrRakeT &hRpatte@Isignits
cantly diferent from smells — a smell is considered as an J O E J [r&fdd &&ion 2.3.1.1)
of a problem (rather than the problem itself) whereas antipaterns bring decidedly negative
consequences.

An antipatern may lead to smells. For instance, a variant of Singleton introduces sub-
type knowledge in a base class leading to cyclic hierarchy [SSS14] smell in the code [FDW™ 16].
Further, the presence of smells may indicate that a certain practice is an antipatern rather
than a recommended practice in a given context. For example, the Singleton patern makes
an abstraction difFcult to test and hence introduces test smells; the presence of test smells
helps us identify that the employed patern is deteriorating the quality more than helping
us solving a design problem.

(® *NQMJIDBUJPOT
We can draw the following implications from the above-discussed research question.

» We found that smells may occur in various stages of sofware development and
impair many dimensions of sofware quality of diferent artifact types. Tis im-
plies that sofware developers should adopt practices to avoid smells at diferent
granularities, artifacts, and quality dimensions at all stages of sofware develop-
ment.

* We identifed the core characteristics of sofware smells. Tis can help the re-
search community to identify smells even when they are not tagged as smells.
For example, it is a recommended practice to avoid accessing external dependen-
cies, such as a database, in a unit test [Bec02]. A code fragment violating this
recommended practice shows presence of code smells as the fragment exhibits
properties WIJPMBUFT Cé&d U NQGBD W D (RSB Mability and per-
formance) of a smell. T erefore, such a violation of the recommended practice
could be identifed as a test smell despite not being referred to as a smell.

* We elaborated on the distinction between antipaterns and smells. T is distinc-
tion can be further explored in future research on these topics.

-3 32)PXEPTNFMMTHFUJOUSPEVDFEJOTP,

Authors have explored factors that introduce smells in sofware systems. We classify such
causal factors into the following consolidated list.

*$ -BDLPGTLIJMM P RABYd & EhatTcause smells in sofware sys-
tems is poor technical skills of developers and lack of awareness towards writing high
quality code. Many authors [SSS14, MBC14, CMRP16, TAV13] have pointed out this
cause in their studies.

22 /168 3&46-54"/% %*4$644*0/

*$ 'SFRVFOUMZ DIBOHJOHC&fIR edign-ddcisions dre made to
fulfl the requirements at hand; however, frequent changes in requirements impair
the efective decision making and introduce smells [MBC14, LR15].

$ -BOHVBHF QMBUGPSN PS UFDTéecerMielHeradiie QIWBSBJOUT
MBC14, KHRS12, LR15, CMRP16] shows that the chosen technology infuences design
decisions and could be another reason that leads to smells.

$,OPXMFE HMiddiBg@r complex documentation introduces a knowledge
gap which in turn could lead to smells in a sofware [LR15, MBC14].

$ 1SPDFT¢&ddpted processes may help avoid smells to occur or remain in
a sofware system. T erefore, an inefective or a missing set of processes could also
become a cause for sofware smells [TAV13, SSS15].

$ 4DIFEVMF Q SévalapetsSddopt a quick Fx rather than an appropriate
solution in the scarcity of time. T ese quick Fxes are a source of smells in sofware
systems [LR15, MBC14, SSS14].

$ 1SJIPSJUZ UP GFBUYV SvaiadgemcerSisemB pebduidse the devel-
opment teams to deliver new features quickly and ignore the quality of the system
[MBC14].

« $ 1P MJOrddpitational politics for control, position, and power infuence the
sofware quality [CMRP16, LR15, SMO6].

*« $ 5FBN DV Manyadhors [AGJ08, CMRP16, TAV13] have recognized the
practices and the culture prevailed within a team or an organization as a cause of
sofware smells.

* $ 1PPSIVNBO SFTPVS PdorQlehBi@ Of h@ntdn resources required
for a sofware project may force the present development team to adopt quick Fxes
to meet the deadlines [LR15].

A cause-based classifcation can help us understand the categories of factors that causes
smells. We propose an alternative to cause-based classifcation in the formof BDUPS CBTFE
D M BT T J DeBdtiod-BaGed classifcation assigns the responsibility of the causes to spe-
cifcactor(s). Teidentifed actors should either correct smells in the current project or learn
from the experience so as to avoid these smells in the future. For example, in the current
context, we consider three actors — N B O B(kepr&enting individuals in the management
hierarchy), U F D | O J DtBeldergbR Bading the technical eforts of a sofware development
team), and a sofware E F W F. MaBI€XF resents the classifcation of causes following the
actor-based classifcation scheme. Such a classifcation can help us in identifying the ac-
tionable tasks. For example, if the skill or awareness of sofware developers is lacking, the

23 /168 3&46-54"/% %*4$644*0/

Table 2.5: Actor-based Classifcation of Smells Causes

"DUPRBVT $¢ $ $ $ $ $ $ $ $ 8
Manager X X X X X
Technicallead X X X X X X
Developer X X X

actor-based classifcation suggests that developers as well as their technical-leads are re-
sponsible to take a corrective action. Similarly, if appropriate processes are not in-place, it
is the responsibility of the technical-lead to deploy them.

T e above discussed roles and responsibility assignment is an indicative example. Te
classifcation has to be adapted based on the team dynamics and the context. For instance,
the roles could difer in sofware development teams that follow diferent development
methods (e.g. agile, traditional waterfall, and hybrid). Furthermore, some development
teams are mature to take collective decisions whereas some teams have roles such as scrum
master to take decisions that impact the whole team.

& *NQMJIJDBUJPOT

T e above exploration consolidates factors reported in the literature that cause smells.
It would be interesting to observe their comparative degree of impact on sofware
smells. Further, we propose a classifcation that identifes the actors responsible to
correct or avoid the causes of specifc smells. T is explicit identifcation of responsible
actors is actionable; sofware development teams can improve code quality by making
the actors accountable and working with them to correct the underlying factors that
lead to specifc smells.

-3 32)PXEPTNFMMTBPFDUUIFTP,XBSF EFW|
DFTTFT BSUJGBDUT PSQFPQMF

Smells impact not only sofware product but also the processes and people working on
the product. Table 2.6 summarizes the impact of smells on sofware product, process, and
people.

Smells have multi-fold impact on the artifacts produced in the sofware development
process and associated quality. Specifcally, smells impact maintainability, reliability, testa-
bility, performance, and change-proneness of the sofware. Further, smells also increase
efort (and hence cost) required to produce a sofware.

Presence of excessive amount of smells in a product may infuence the outcome of a
process; for instance, a high number of smells in a piece of code may lead to pull request
rejection [SVT16].

A high number of smells (and hence high technical debt) negatively impact the morale
and motivation of the development team and may lead to high atrition [TAV13, SSS14].

24 /168 3&46-54"/% %*4$644*0/

Table 2.6: Impact of Smells

&0OUJUZ "UUSJCVUF BFGFSFODFT

[BQO'12], [PR11], [MY12],
[YM13a], [Yam14], [YM13b],
[SYKG16]

Efort/Cost [SYA*13], [SZV*13], [SDPAG13],
[MS16]

[JGHK13], [HZBS14], [ZSSS11],
[BQO* 14], [MNK™* 02], [KDPGA12]
Change proneness [OCBZ09], [KDPGA12], [ZSSS11],

Maintainability

Sofware product

Reliability

[KDPGO09]
Testability [SDPAG13]
Performance [CSJ* 14], [HMR16], [SA14]
Sofware development [SVT16]
Processes
Morale and motivation [TAV13], [SSS14]
People

Productivity [TAV13]

& *NQMJIJDBUJPOT

| Te above exploration reveals that impact of smells on certain aspects has not been
studied in detail. For example, the impact of smells on testability of a sofware system
and productivity of a sofware development team have been studied only by one study
each. Further research in this area can quantify the degree of the smells’ impact on
diverse product and process quality aspects along with the corresponding implications.

-3 32)PXEPTNFMMTHFUEFUFDUFE

A large body of knowledge exists to detect sofware smells. Smells have been detected in
many studies by employing various techniques. We classify the smell detection strategies
in Fve broad categories; we describe these categories below. Figure 2.2 shows an abstract
layered process fow that we have synthesized by analyzing existing approaches to detect
smells using the fve categories of smell detection.

1. NFUSJD CBTFE TN FMtipieaFmétri®bddsdds@ell detection method takes
source code as the input, prepares a source code model, such as an ast (Abstract
Syntax Tree), (step 1.1 in the Fgure 2.2) typically by using a third-party library, detects
a set of source code metrics (step 1.2) that capture the characteristics of a set of smells,
and detects smells (step 1.3) by applying a suitable threshold [Mar05].

For example, an instance of the god class smell can be detected using the following set
of metrics: wmc (Weighted Methods per Class), atfd (Access To Foreign Data), and
tcc (Tight Class Cohesion) [Mar04, VMDP14]. T ese metrics are compared against
pre-defned thresholds and combined using logical operators. Apart from these, the

25/ 168 3&46-54"/% %*4$644*0/

Figure 2.2: A layered overview of smell detection methods. Each detection method starts
from the code (or other source artifact) and goes through various steps to detect smells. Te
direction of the arrows shows the fow direction and annotations on the arrows show the
detection method (frst part) and the step number (second part).

community frequently uses other metrics such as noc (Number of Children), nom
(Number of Methods), cbo (Coupling Between Objects), rfc (Response For Class),
and Icom (Lack of Cohesion of Methods) [CK94] to detect other smells.

2. 3VMFT)FVSJTUJD CBTFESmallkdkdlida methods thateéne rules
or heuristics [MGDM10] (step 2.2 in the fgure 2.2) typically takes source code model
(step 2.1) and sometimes additional sofware metrics (step 2.3) as inputs. T ey detect
a set of smells when the defned rules/heuristics get satisfed.

Tere are many smells that cannot be detected by the currently available metrics
alone. For example, we cannot detect rebellious hierarchy, missing abstraction, cyclic
hierarchy, and empty catch block smells using commonly used metrics. In such cases,
rules or heuristics can be used to detect smells. For example, the cyclic hierarchy
[SSS14] smell (when the supertype has knowledge about its subtypes) is detected by
defning a rule that checks whether a class is referring to its subclasses. Ofen, rules

26 /168 3&46-54"/% %*4$644*0/

or heuristics are combined with metrics to detect smells.

3.)JTUPSZ CBTFE TN F 86k BELEhor§Havd deRe€@ed smells by using source
code evolution information [PBDP* 15]. Such methods extract structural informa-
tion of the code and how it has changed over a period of time (step 3.1 in the fgure
2.2). Tis information is used by a detection model (step 3.2) to infer smells in the
code. For example, by applying association rule mining on a set of methods that have
been changed and commited ofen to the version control system together, divergent
change smell can be detected [PBDP* 15].

4 .BDIJOF MFBSOJOH CBTFE [h EhE tdchhtEifmdd, FNDBJIJIROF MFBSOJOF

CBTFE TN F MikktRaddd hEvD dtdabr€d sofware engineering researchers. Var-
ious machine learning methods such as Support Vector Machines [MAB™ 12b], and
Bayesian Belief Networks [KVGS09] have been used to detect smells. A typical ma-
chine learning method starts with a mathematical model representing the smell detec-
tion problem (step 4.1 in the fgure 2.2). Existing examples (step 4.2) and source code
model (step 4.3 and 4.4) could be used to instantiate a concrete populated model. Te
method results in a set of detected smells by applying a chosen machine learning algo-
rithm (step 4.5) on the populated model. We elaborate on the machine learning-based
methods in the next sub-section in greater detail.

5 OQUJIJNJ[BUJPO CBTFE TApprvhdhekiR thisdatehdry &ply optimiza-
tion algorithms such as genetic algorithms [OKKI15] to detect smells. Such methods
apply an optimization algorithm on computed sofware metrics (step 5.4 in the fgure
2.2) and, in some cases, existing examples (step 5.1) of smells to detect new smells in
the source code.

Among the surveyed papers, we selected all the papers that employ a smell detection
mechanism. We classify these atempts based on the employed smell detection method.
Table 2.7 shows existing atempts to identify smells using one of the smell detection meth-
ods. Te table also shows number of smells detected by each of the method and target
language/artifact.

Table 2.7: Smell Detection Methods and Corresponding References

ANFMM EFUBBPG¥FBBGODF ANFMMT -BOHVBHFT "S|
NFUIPE

[DPXT13] 1 Java

[Mar05] 10 Java, C++

[Mun05] 2 Java

[SLTO6] 5 Java

[VRDBDRO7] 2 Java

[MHB10] 1 Java

[OKAG10] 1 Java

metric-based

3&46-54"/% %*4%$644*0/

-BOHVBHFT

Optimization-based

27 /168
Table 2.7: Smell Detection Methods and Corresponding References
ANFMM EFUBBG¥FBBGODF ANFMMT
NFUIPE
[MGvS10] 11 Java
[FBAL1] 5 UML Diagrams
[BGvS11] 7 Aspects-oriented sys-
tems
[SA13] 3 Java
[FM13] 13 JavaScript
[VMDP14] 10 Java
[PPF* 14] 2 Java
[APFC15] 3 NA
[FSMS15] 1 <
[Non15] 1 Java
[VVDP* 16] 10 JavaScript
[OCBZ09] 2 Java
[KVGS09] 1 Java
[BBEAM10] 1 Java
. . [KVGS11] 3 Java
Machine learning-based [MAB* 12b] 4 Java
[CMC15] 1 Java
[MKMD16] NA Java
. [FS15] 3 Java
History-based [PBDP* 15] 5 Java
[Ram10] 5 C
[EAMO09] 8 Use-case Model
[AHTM11] 8 C++
[FTCO7] 1 Java
. [TCCO08] 1 Java
Rule/Heuristics-based [TC11] 1 Java
[CMRT10] 4 UML Models
[ABT15] 1 UML Models
[PPDL* 16] 5 Java
[LCCY13] 1 Java
[PDMG14] 8 REST APIs
[MGDM10] 4 Java
[TK11] 6 Palladio Component
Model
[ADPAG13] 17 Java
[SMT16] 30 C#
[KKS* 14] 8 Java

"S|

28 /168 3&46-54"/% %*4$644*0/

Table 2.7: Smell Detection Methods and Corresponding References

ANFMM EFUBBGFBGODF ANFMMT -BOHVBHFT
NFUIPE

[SKBD14] 7 Java

[GEBK15] 3 Java

[OKKI15] 5 XML (WSDL)

Each detection method comes with a set of strengths and weaknesses. metric-based
smell detection is convenient and relatively easy to implement; however, as discussed be-
fore, one cannot detect many smells using only commonly known metrics. Another im-
portant criticism of metric-based methods is their dependence on choosing an appropriate
set of thresholds, which is a non-trivial challenge. Rule/Heuristic-based detection meth-
ods expand the horizon of metric-based detection by strengthening them with the power
of heuristics defned on source code entities. T erefore, rule/heuristic-based methods com-
bined with metrics ofer detection mechanisms that can reveal a high proportion of known
smells. History-based methods have a limited applicability because only a few smells are
associated with evolutionary changes. T erefore, a source code entity (such as a method
or a class) that has not necessarily evolved in a certain way to sufer from a smell cannot
be detected by history-based methods. Machine learning approaches depend heavily on
training data and the lack of such training datasets is a concern [KVGS09]. Also, it is still
unknown whether machine learning-based detection algorithms can scale to the large num-
ber of known smells. Further, optimization-based smell detection methods depend on metric
data and corresponding thresholds. T is fact makes them sufer from limitations similar to
metric-based methods.

.BDIJOF MFBSOJOH UFDIOJRVFT PO TPVSDF DPEF

In this section, we present an introduction to deep learning and machine learning techniques
applied on source code including code smells detection.

*OUSPEVDUJPO UPEFFQ MFBSOJOH

Machine learning is a subfeld of artifcial intelligence that U S BsdlGtibns to problems
rather than modeling them through hard-coded rules. In this approach, the rules that solve a
problem are not set a-priori; rather, they are inferred in a data-driven manner. In supervised
learning, a model is trained by being exposed to examples of instances of the problem along
with their expected answers and statistical regularities are drawn. T e representations that
are learned from the data can in turn be applied and generalized to new, unseen data in a
similar context.

Deep learning is a subfeld of machine learning that allows computational models com-
posed of multiple processing layers to learn representations of data with multiple levels of
abstraction [LBH15, GBCB16]. Even though the idea of layered neural networks with inter-
nal “hidden” units was already introduced in the 80s [RHW86], a breakthrough in the feld

"S|

29 /168 3&46-54"/% %*4$644*0/

came in 2006 by Hinton F U BHNDTO06] who introduced the idea of learning a hierarchy
of features one level at a time. Ever since, and particularly during the course of the last
decade, the feld has taken of due to the advances in hardware, the release of benchmark
datasets [DDS* 09, KH09, LCB10], and a growing research focus on optimization methods
[Mar10, KB14]. Although deep learning architectures ofen consist of tens or hundreds of
successive layers, much shallower architectures may also fall under the category of deep
learning, as long as at least one hidden layer exists between the input and the output layer.

Deep learning architectures are being used extensively for addressing a multitude of
detection, classifcation, and prediction problems. Architectures involving layers of cnns
are inspired by the hierarchical organization of the visual cortex in animals, which consists
of alternating layers of simple and complex cells [FVE91, HW62]. cnns have been proven
particularly efective for problems of optical recognition and are widely used for image clas-
sifcation and detection [KSH12, SLJ* 15, LBBH98], segmentation of regions of interest in
biological images [KBF16], and face recognition [LGTB97, PVZ* 15]. Besides recognition
of directly interpretable visual features of an image, cnns have also been used for patern
recognition in signal spectograms, with applications in speech recognition [SKS* 15]. In
these applications the input data are given in the form of matrices (2d arrays) for repre-
senting the 2d grid layout of pixels in an image. 1d representations of data have been used
for applying 1d convolutions in sequential data such as textual paterns [JZ15] or temporal
event paterns [LYC17, AAK™ 17]. However, when it comes to sequential data, Recurrent
Neural Networks (rnns) [RHW86] have been proven superior due to their capability to
dynamically “memorize” information provided in previous states and incorporate it to a
current state. Long Short Term Memory (Istm) networks are a special kind of rnn that can
connect information spanning long-term intervals, thus capturing long-term dependencies.
Istms have been found to perform reasonably well on various data sets within the context of
representative applications that exhibit sequential paterns, such as speech recognition and
music modeling [GSK™* 17, GIM13]. In addition, they have been established as state-of-the-
art networks for a variety of natural language processing tasks; indicative applications in-
clude natural language generation [WGM™ 15], sentiment classifcation [WHZ* 16, BPD17]
and neural machine translation [CvMG™ 14], among others.

.BDIJOF MFBSOJOHUFDIOJRVFTPOTPVSDFDPEF

Te emergence of online open-source repository hosting platforms such as GitHub in re-
cent years has led to an explosion on the volumes of openly available source code along
with metadata related to sofware development activities; this bulk of data is ofen referred
to as “Big Code” [ABDS18]. As an efect, sofware maintenance activities have started lever-
aging the wealth of openly available data, the availability of computational resources, and
the recent advances in machine learning research. In this context, statistical regularities
observed in source code have revealed the repetitive and predictable nature of program-
ming languages, which has been compared to that of natural languages [HBS™ 12, Ern17].
To this end, problems of automation in natural language processing, such as identifca-
tion of semantic similarity between texts, translation, text summarisation, word prediction

30/ 168 3&46-54"/% %*4$644*0/

and language generation have been examined in parallel with the automation of sofware
development tasks. Relevant problems in sofware development include clone detection
[WTVP16, WL17], de-obfuscation [VCD17], language migration [NNN13], source code sum-
marisation [IKCZ16], auto-correction [PNSLB16, GPKS17], auto-completion [FGL12], gen-
eration [OFN™ 15, LBG* 16, YN17], and comprehension [APG17].

On a par with equivalent problems in natural language processing, the methods em-
ployed to address these sofware engineering problems have switched from traditional rule-
based and probabilistic n-gram models to deep learning methods. T e majority of the pro-
posed deep learning solutions rely on the use of rnns which provide sophisticated mech-
anisms for capturing long term dependencies in sequential data, and specifcally Istms
[HS97] that have demonstrated particularly efective performance on natural language pro-
cessing problems.

Alternative approaches to mining source code have employed cnns in order to learn
features from source code. Li FU B.MIZL17] have used a single-dimension cnns to learn
semantic and structural features of programs by working at the ast level of granularity and
combining the learned features with traditional hand-crafed features to predict sofware
defects. Tis method however incorporates hand-crafed features in the learning process
and is not proven to yield transferable results. Similarly, a one-dimensional cnn-based ar-
chitecture has been used by Allamanis F U PBAMS16] in order to detect paterns in source
code and identify “interesting” locations where atention should be focused. T e objective
of the study is to predict short and descriptive names of source code snippets (F Il method
body) given solely its tokens. cnns have also been used by Huo F U BHMZ16] in order
to address the problem of bug localization. T is approach leverages both the lexical infor-
mation expressed in the natural language of a bug report and the structural information of
source code in order to learn unifed features. A more coarse-grain approach that also em-
ploys cnns has been proposed in the context of program comprehension [OAH" 18] where
the authors use imagery rather than text in order to discriminate between scripts writen in
two programming languages, namely Java and Python.

$PEFTNFMMT EFUFDUJPO VTJOH NBDIJOF MFBSOJOH UFDIOJR

Foutse FU BAMMGS09, KVGS11] use a Bayesian approach for the detection of smells.
Teir study forms a Bayesian graph using a set of metrics and determines the probability
whether a class belongs to a smell or not. Similarly, Abdou FU BEWAB* 12b, MAB* 12a]
employ support vector machine-based classifers trained using a set of 60 object-oriented
metrics for each class to detect design smells(CMBEBUVSF DPORQBO USRI PPF
TXJTT BS N EterinGre; Sérgio F U BREAM10] detect M P O H Nshelllifseances
by employing binary logistic regression. T ey use commonly used method metrics, such
as Method Lines of Code (mloc) and cyclomatic complexity as regressors. Bardez FU B M
[BKG19] presents an ensemble method that combine outcome of multiple tools to detect
HP E DaMiBGTHB U V SrrelisONéWidentify a set of key metrics for each smell and feed
them to a cnn-based architecture. Fontana F U BRRZ16] compare performance of various

31/168 3&46-54"/% %*4$644*0/

machine learning algorithms in detecting EBUB DMBTT HPE DMBN P OGIFBRIWISPEF O

However, machine learning techniques to detect smells are considered far from ma-
ture. In a recent study, Di Nucci F U PNMIT™ 18] note that the problem of detecting smells
still requires extensive research to atain a maturity that would produce results of practical
use. In addition, machine learning techniques (such as Bayesian networks, support vector
machines, and logistic regression) that have been applied so far require considerable pre-
processing to generate features for the source code, a substantial efort that hinders their
adoption in practice. Traditionally, researchers use machine-learning methods that require
extracting feature-sets from source code. Typically, code metrics are used as the feature
set for smell detection purposes. We perceive two shortcomings in such usage of machine-
learning methods for detecting smells. First, we need an external tool to compute metrics
for the target programming language on which we would like to apply the machine learn-
ing model. T ose that have a metrics computation tool may deduce many smells directly
by combining these metrics [Mar04, SS18] and thus applying a machine-learning method is
redundant. Second and more importantly, we are limiting the machine learning algorithm
to use only the metrics that we are computing and feeding as feature-set. T erefore, the ma-
chine learning algorithm cannot observe any patern that is not captured by the provided
set of metrics.

o *NQMJIDBUJPOT

We identify Fve categories of smell detection mechanisms. An implication of the cate-
gorization for the research community is the positioning of new smell detection meth-
ods; the authors can classify their new methods as one of these categories or propose
a new smell detection method category.

Among the Fve types of smell detection methods, metric-based tools are the most
popular and relatively easier to develop. On the other hand, researchers are atracted
towards machine learning-based methods to overcome the shortcomings of other smell
detection methods such as the dependence on choosing appropriate threshold values
for metrics. However, many challenges remain in using machine learning techniques.
T e availability of a standard training dataset and advancements in employing deep
learning models would encourage researchers to develop beter smell detection tools
using machine learning approaches.

-3 32 8IBUBSFUIFPQFO SFTFBSDIRVFTUJPO

Despite the availability of huge amount of literature on smells and associated aspects, we
perceive many opportunities to expand the domain knowledge.

'BMTF QPTJUJWFT B O E RdsBIB prdrized By @he)prégddt set of smell de-
tection tools are prone to false-positive instances [FDW™ 16, KVGS11].

» T e major reason of the false-positive proneness of the smell detection methods
is that metrics and rule-based methods depend heavily on the metrics thresh-

32/168 3&46-54"/% %*4$644*0/

olds. Te sofware engineering community has identifed threshold selection
as a challenge [KKS™ 14], [FBA11]. Tere have been many atempts to identify
optimal thresholds [FFZY15, LLNL16, FBB* 12]; however, the proneness to false-
positives cannot be eliminated in metrics and rule-based methods since one set
of thresholds (or a method to derive thresholds) do not apply in another context.

» Many authors have asserted that smell detection is a subjective process [MLO6,
PBP* 14, MHB08]. As Gil FU EBMS6] say — |#MVOUMZ UIF DPEF NFUSJ
XIFOJOTQFDUFE PVU PG D$ndlatlly, ¥odtam FRIJBOWR UG O H §
list a set of commonly detected smells that solve a specifc design problem in the
real-world.

We suggest that the smells identifed using tools must go through an expert-
based scrutiny to fnally tag them as quality problems. Essentially, the present
set of smell detection methods are not designed to take D P O dtB &tdunt. One
potential reason is that it is not easy to defne, specify, and capture context. Tis
presents an interesting yet challenging opportunity to signifcantly improve the
S F M F o @&eciedsmells.

 Another interesting concern related to smells in the context of false-positives
is that smells are J O E J Db teFMiBn and thus it is unfair to tag smells as
false-positive based on the context. As shown in Figure 2.3, a recorded smell
could be a false-positive instance (and thus not an actual smell) when it does
not fulfll the criteria of a smell by the defnition of a smell. When the recorded
smell is not a false-positive instance, it could either be a smell which is not a
quality problem considering the context of the detected smell or it could be a
defnite quality problem contributing to technical debt. SJT CSJOHT VQ UIF
JOUFSFTUJOH JOTJHIU UIBU SFTFBSDIFST BOE QSBDUJ
TNFMMT BTJOEJDBUPST EJPFSFOUMZ GSPNEFQOJUF

Figure 2.3: A recorded smell could be a false-positive instance, a smell that is not a quality
problem, or a defnite quality problem.

For example, consider a tool reports an instance of data class smell in a sofware
system. As explained in Table 2.4, this smell occurs when a class contains only
data felds without any methods. A common practice is to tag the instance of a

33/168 3&46-54"/% %*4$644*0/

data class as a false-positive when it is serving a specifc purpose in that con-
text [FDW™ 16]. However, we argue that rather than tagging the instance as a
false-positive (based on the context), we defne smells as being separate from the
defnite quality problems. A fowl smell in a restaurant may indicate something
is roten, but can also accompany the serving of a strongly smelling cheese.

In a manual inspection, if we fnd that the class has one method apart from
data felds then the reported smell is a false-positive instance since it does not
fulFll the condition of a data class smell. On the other hand, if the class only
contains data felds without any method defnition, it is a smell. As a developer,
if one considers the context of the class and infers that the class is being used,
for instance, as a dto (Data Transfer Object) [Fow02] the smell is not a quality
problem because it is the result of a conscious design decision. However, if the
above case does not apply and the developer is using another class (typically a
N B O Ba& B P O U @aBsMdviée&s and manipulate the data members of the
data class, the identifed smell is a defnite quality problem.

-JNJUFE EFUFDUJPO TVQ QP S ThiifR.&shoyal De SriveF ddthstion
tools selected in this study and their corresponding supported smells. Itis evident that
most of the existing tools support detection of a signifcantly smaller subset of known
smells. Researchers [PDLBO14, RA15, SMT16] have identifed the limited support
present for identifying smells in the existing literature. T e defciency poses a serious
threat to empirical studies that base their research on a severely low number of smells.

Table 2.8: Smell Detection Methods and supported smells

= =

= =

g B =

- S | = qé'J’ pu I'zL

S o] (<D < D

> | g 2|2 |3 |8 (6|2 |2 |5

3 7 [) 0 = [3 — = ©) =

£ 2 o |5 |8 |25 |5 8 |g|& |5 |o

< = = g” = o | B & S g %—> 5 |2

5 . 8 8|2 5 5|58 8|z 5 5%

o Detection Method O | | |O |[J | | | |O |3 |O |Wv
[Mar05] metric-based X X X X X X 4
[Mun05] metric-based 2
[SLTO6] metric-based X X X X X 0
[VRDBDRO7] | metric-based 2
[FTCO7] Rule/Heuristic-based X 0
[TCCO8] Rule/Heuristic-based 1
[KVGS09] Machine learning-based X 0
[EAMO9] Rule/Heuristic-based 8
[OCBZ09] metric-based X X 0
[BBEAM10] Machine learning-based X 0
[MGDM10] Rule/Heuristic-based X X X 1
[MHB10] metric-based X 0
[Ram10] Rule/Heuristic-based X X 3
[OKAG10] metric-based X 0
[MGVS10] metric-based 11
[CMRT10] Rule/Heuristic-based 4
[TC11] Rule/Heuristic-based X 0
[KVGS11] Machine learning-based X X X 0

89T/ v€

[0xV V98V % %/, VG-9VRE

Table 2.8: Smell Detection Methods and supported smells

>

3 = =

o a5 L L

- s = 2 | z

S - |8 |8 |8 & |8 =
S |5 e |® |z |8 |0 |g |2

8 @ 5] % o] qé g = ﬁ <) ‘5_‘5 g o0

3 s1513 3/5/2 8|28 8 %z |2

2 2§ |2 |E|5|5 |8 |2 |2 |5 |8 |5

o Detection Method o |& |&§ | |2 |2 |&¢ & & |3 O |w»
[BGVS11] metric-based 7
[FBA11] metric-based X X X 2
[TK11] Rule/Heuristic-based 6
[AHTM11] Rule/Heuristic-based 8
[MAB* 12b] Machine learning-based X X X 1
[FM13] metric-based X X X 110
[SA13] metric-based X 2
[ADPAG13] Rule/Heuristic-based 17
[DPXT13] metric-based X 0
[LCCY13] Rule/Heuristic-based X 0
[VMDP14] metric-based X X X X X 5
[SKBD14] Optimization-based X | X X X X X 1
[PPF* 14] metric-based X X X 0
KKS* 14] Optimization-based X | X | X |X X X X |0

[p

[PDMG14] Rule/Heuristic-based 8
[APFC15] metric-based X X X 0
[GEBK15] Optimization-based X X X 0
[CMC15] Machine learning-based X 0

89T / G€

[0xV V98V % %/, VG-9VRE

Table 2.8: Smell Detection Methods and supported smells

=

3 = =

o a5 L L

- s = 2 | z

-~ | & - |8 |8 |8 |8 |8 |, |F

& E > .8 = D 8 O S = s

D 7)) (7p) [72] +— @ o) o — h— ©

o 73 D c &) c - S < = m
= e L S E |2 |3 @ > | a 2

et O S > S o | B 8 | S S o |5 |2

3 BIE|ZE|E|5|5|58 |8 |2 |5 |8 |3

o Detection Method o & | o |2 |2 | & |6 |3 |0 |w
[PBDP* 15] History-based X | X |X X 1
[FSMS15] metric-based X 0
[FS15] History-based X X 1
[OKKI15] Optimization-based 5
[Non15] metric-based X 0
[ABT15] Rule/Heuristic-based X 0
[PPDL™ 16] Rule/Heuristic-based X | X X 2
[VVDP* 16] metric-based X | X | X |X X 5
[SMT16] Rule/Heuristic-based X X X X X X X 23
[MKMD16] Machine learning-based X X X X X 0

89T/ 9€

/O’FVV9$V¥% %/II V9-9V788

37 /168 3&46-54"/% %*4$644*0/

Figure 2.4 shows number of studies detecting a specifc smell sorted by the number of
studies detecting the smells (the top 20 most frequently detected smells). Te fgure
shows that god class smell has been detected the most in the smells literature. On
the other hand, some of the smells have been detected only by one study; these smells
include parallel inheritance hierarchy [PBDP* 15], closure smells [FM13], isp violation
[Mar05], hub-like modularization [SMT16], and cyclic hierarchy [SMT16]. Obviously,
there are many other smells that have not been detected by any study. T e importance
and relevance of a smell cannot be determined by its popularity. Hence, the research
community also needs to explore the relatively less commonly detected smells and
strengthen the quality analysis.

Figure 2.4: T e number of studies detecting a specifc smell

Further, academic researchers have concentrated heavily on a single programming
language, namely Java [RA15]. T e 46smell detection methods for source code shown
in Table 2.8 have their targets distributed as follows: 31 for Java, six for models, two
for C, two for C++, two for JavaScript, one for C#, and one each for XML and REST
APIs. Expanding the smell detection tools to support a wide range of known smells
and diverse programming languages and platforms is another open opportunity.

*NNBUVSF BQQMJDBUJPO PG NBDIJOF MFBSOJOHRIFDIOJRVF
cently many researchers atempted machine learning techniques to detect smells [KVGSQ09,
KVGS11, MAB* 12b, MAB* 12a]. However, machine learning techniques to detect
smells are considered far from mature. In a recent study, Di Nucci FU BRI 18]
note that the problem of detecting smells requires much more research to atain a ma-
turity. T ere are two shortcomings in the current usage of machine-learning methods
for detecting smells. First, heavy feature engineering — current techniques typically

38 /168 3&46-54"/% %*4$644*0/

use traditional code metrics as the feature-set. Some authors use customized metrics
such as distance metrics used by Liu FU BRXE18]. Terefore, they need an exter-
nal tool to compute the set of metrics for the target programming language. If one
has a metrics computation tool, she may deduce many smells by combining these
metrics [Mar04, SS18] and thus applying a machine-learning method is redundant es-
pecially when the human factors and context have not been taken into account during
the training process. Second and more importantly, existing atempts limit the ma-
chine learning algorithm to use only the metrics that are fed as feature-set. T e main
premise of using machine-learning method is to bring context and human factor into
consideration. However, feeding an algorithm with only metrics, that does not cover
either the context or the human factors, defes the purpose of applying machine learn-
ing algorithms.

*ODPOTJTUFOU TNFMM EFQOJUJP O T 8abuad&nEeldRieshdeR O NFU I P E
literature has produced inconsistencies in the defnition of smells and their detection
methods. For example, god class is one of the most commonly researched smells;
however, researchers have defned it diferently. Riel [Rie96] has defned it as the class
that tend to centralize the knowledge in the system. On the other hand, Gabriela F U
B MMC15] defned it as a class that has too many methods and Mazeiar F U [BLVI06]
specifed it as the class which is used more extensively than others.

Similarly, based on their description and interpretation, their detection methods also
difer signifcantly and they detect smells inconsistently. Furthermore, in some cases,
identical interpretation of smells may also produce diferent results due to the varia-
tion in chosen thresholds of employed metrics.

Even further, metrics tools show inconsistent results even for well-known metrics
such as Icom, cc, and loc. For example, one tool might implement one variation of
Icom and another tool may realize another or custom variation of the metric while
both the tools refer to the metric with the same name. Such inconsistencies in smell
defnition and their detection methods have been identifed by the community [RA15,
AFBZ12, SSSG13].

It is, therefore, important and relevant to establish a standard with respect to smell
defnition, their implementation, as well as commonly used metrics.

*NQBDU PG TNFMMT P OnQe&ierE2\3.B) Welphéskht Zhe available literature
that discusses the impact of smells on sofware quality as well as processes and people.
Itis believed that smells aFect mainly maintainability and poor maintainability in turn
impacts productivity of the development team. As shown in Section 2.3.3, the current
literature draws connection between impact of smells and maintainability. However,
the impact of smells on productivity is not yet explored to a sufcient detail. Other
researchers [ZHB11] have also identifed the need to beter understand the impact of
smells. We believe that establishing an explicit and concrete relation between smells
and productivity will enhance the adoption of the concepts concerning smells among

39/ 168 $0/$-64*0/4

practitioners.

ou *NQMIDBUJPOT

In the above discussion, we elaborated on the inherent defciencies in the present set of
smell detection methods. T ese defciencies include lack of context and a small number
of detectable smells on a very small number of platforms. T is analysis clearly calls
for efective and widely-applicable smell detection tools and techniques. Inconsistent
smell defnitions and detection methods indicate the need to set up a standard for smell
defnitions as well as verifed datasets of smells.

$PODMVTIPOT

Tis survey presents a synthesized and consolidated overview of the current knowledge in
the domain of sofware smells. We extensively searched a wide range of conferences and
journals for the relevant studies published from year 1999to 2016 T e studies selected
in all the phases of the selection, an exhaustive smell catalog, as well as the program that
generates the smell catalog are made available online.?

Our study has explored and identifed the following dimensions concerning sofware
smells in the literature.

* We reveal fve defning characteristics of sofware smellss JOEJD@RPS TPMVUJIPO
WIPMBUFT CENQBBBDARIBMIWISFODF

» We identify and catalog a wide range of smells (more than 250at the time of writing
this thesis) that we made available online and classify them based on 14 focus areas.

» We classify existing smell classifcations into four categories: F FDU ,GBSIFEDJQMF
CBTBEUJGBDU DIB S,Bid HBEBIOWNB SORTZFEBTFE

» We curate ten factors that cause smells to occur in a sofware system. We also classify
these causes based on their actors.

» We categorize existing smell detection methods into fvegroups: NFUSJD SOBUWFIE IFVSJ
CBTRHUPSZNBENEEOF MFB Ss@dJPGUAOBRITFEUJPO CBTFE

» We observe that the existing literature does not diferentiate between a smell (as an
indicator) and a defnite quality problem.

2JUUQT HJUIVC DPN UVTIBSUVTIBS TNAMM® XXX UVTIBSNB JO
TNFMMT

https://github.com/tushartushar/smells
http://www.tusharma.in/smells/
http://www.tusharma.in/smells/

40 /168 $0/$-64*0/4

% 3FTFBSDIPQQPSUVOJUJFT

We identify the following gaps and research opportunities in the present set of tools
and techniques.

* Te community believes that the existing smell detection methods sufer from
high false-positive rates. Also, existing methods cannot defne, specify, and cap-
ture the context of a smell.

* Te currently available tools can detect only a very small number of smells.
Further, most of the tools largely only support the Java programming language.

» T e machine learning mechanism used to detect smells do not exploit the power
of the machine/deep learning are considered far from the maturity.

* Existing literature has produced inconsistent smell defnitions. Similarly, smell
detection methods and the corresponding produced results are highly inconsis-
tent.

» Te current literature does not establish an explicit connection between smells
and their impact on productivity of a sofware development team.

$IBQUFS

.FUIPEPMPHZ

SFTFBSDI GPSNBMJ[FTDVSJPTJUZ
NFUIPEPMPHZ GPSNBMJ[FT SFTFBSDI ° JC

In this chapter, we shed light on the thesis objectives, defne scope of each subsequent
experiment by specifying research questions, and provide an overview of the study design.
We frst present the study design for production source code, then we elaborate on the study
to detect smells using deep learning. Further, we describe our study design for maintain-
ability analysis for confguration code and database schema code.

SFTFBSDIOCKFDUJWEFT

Te problem of maintainability analysis for traditional production source code and other
sub-domains of sofware needs to be broken into smaller experiments in order to do justice
to each aspect of the larger investigation. In the next sub-sections, we elaborate on the
individual experiments that helped us realize the bigger goal.

To separate the discussion, each research question is prefxed with a one or two leter
acronym. For research questions investigating maintainability in production source code,
we put las prefx. Similarly, we use %for deep learning, $for maintainability analysis for
confguration code, and % for database schema quality analysis related research questions.

.BJouBJOBCIJMJUZ "OBMZTJT GPS 1SPEVDUJPC

Te frst experiment concerns maintainability analysis for production code belonging to a
mainstream programming language J E#. Itinvolves analyzing source code and revealing

41

42 /168 3&4&"3%) 0#+&$5*7&4

aspects such as distribution of architecture, design, and implementation smells, relation-
ships such as correlation and collocation among the smells at diferent granularities, and
the relationship between project size and corresponding quality issues.

We formulated the following research questions towards the quality analysis goal of C#
projects.

1 32 8IBUJTUIFEJTUSJCVUJPOPGJIJNQMFNFOUBUJPO EFTJH(
JOS$ DPEF
We investigate the distribution of smells to £nd out whether there exists a set of im-
plementation, design, and architecture smells that is more prevalent in the analyzed
open-source repositories. T e answer to this research question may caution the devel-
opers about a set of smells expected to have more chances of occurrence and prompts
them to take precautionary measures.

132 %P UIFEFUFDUFE TNFMM JOTUBODFT CFMPOHJOH UP EJ
MBUF
We explore the correlation between smell instances arising at diferent granularities.
Specifcally, we explore correlation between design and implementation, as well as
architecture and design smell instances. A strong correlation between kinds of code
smells would encourage us to understand the occurrence paterns and provide valu-
able insights into the similarity between these pairs.

Further, we also investigate the correlation between individual design smells and ar-
chitecture smells. Tis would help us to ¥nd out whether there exist specifc types of
design smells that are strongly correlated to architecture smells.

132 *TUIFQSJODIJQMFPGDPFYJTUFODFBQQMJDBCMF UP TNI
It is commonly believed that paterns (and smells) co-exist [BMR™ 96a, SSS14] J
we fnd one smell, it is very likely that we will fnd many more smells around it. We
investigate the intra-category co-occurrences of a smell with other smells to ¥nd out
whether and to what degree the folklore is true.

132 %YPFTTNFMMEFOTJUZEFQFOEPOUIFTIJ[FPGUIFS$ SFQP
It is commonly believed that the complexity of a sofware system increases with the
size of the system. We investigate the relationship between the size of a C# repository
and associated smell density to ¥nd out how the smell density changes as the size of a
C# project increases. Smell density is a normalized metric that represents the average
number of smells identifed per thousand lines of code.

1 32 "SFBSDIJUFDUVSFTNFMMTDPMMPDBUFE XJUIEFTJHO T1

T e question aims to explore whether architecture and design smell occur at the same
location (J FElasses) within the source code. A positive result of the collocation anal-
ysis would establish a strong relationship between architecture and design smells.

Apart from exploring collocation cumulatively between both kinds of smells, the
question investigates the collocation relationships between individual pairs of design

43 /168 3&4&"3%) 0#+&$5*7&4

smells and architecture smells. T is would help us to fgure out whether and to what
extent specifc design smells show collocation with architecture smells.

1 32 $BOUIF SFGBDUPSJOHPG EFTJHO TNFMMT MFBE UP GFXF

In this research question, we fgure out the impact of design smell refactorings on
architecture smells. It will reveal the degree of infuence of design smells on archi-
tecture smells. A high infuence will hint that by refactoring design smells we can
remove a high number of architecture smells. On the other hand, a low infuence of
architecture smells will lead us to conclusion that we need to put efort to refactor
smells at each granularity separately.

Figure 3.1: Overview of the maintainability analysis study on C# code

Figure 3.1 shows the overview of the experiment. We defne a set of aforementioned
research questions, select a set of repositories containing C# code by using RepoReapers
[MKCN17] and download them. We use Designite [SMT16] to analyze the downloaded
repositories and to detect implementation, design, and architecture smells. We analyze the
detected smells and perform distribution, correlation, and collocation analysis to address
the research questions.

%FUFDUJOHANFMMT VTIJOH %FFQ -FBSOJOH

T e goal of this research is to explore the possibility of applying state-of-the-art deep learn-
ing methods to detect smells. Further, this work inquires into the feasibility of applying
transfer-learning. Transfer-learning refers to the technique where a a learning algorithm

44 /168 3&4&"3%) 0#+&$5*7&4

exploits the commonalities between diferent learning tasks to enable knowledge transfer
across the tasks [BCV13]. Based on the above stated goals, we defne the following research

questions to explore in this work.

%

%

32 *TJUQPTTJCMF UP VTF EFFQ MFBSOJOH NFUIPET UP EI
XIJDIEFFQ MFBSOJOH NFUIPE QFSGPSNTTVQFSJPS

We use cnn and rnn models in this exploration. For the cnn-based architecture, we
provide input samples in 1d and 2d format to observe the diference in their capabili-
ties due to the added dimension; we refer to them as cnn-1d and cnn-2d respectively.
In the context of this research question, we defne the following hypotheses.

% 32) *UJTGFBTJCMFUPEFUFDUTNFMMTVTJOHEFFQ MI
Te considered deep learning models are powerful mechanisms that have the
ability to detect complex paterns with sufcient training. T ese models have
demonstrated high performance in the domain of image processing [KSH12,
SLJ* 15] and natural language processing [LPM15]. We believe we can lever-
age these models in the presented context.

% 32)cnn-2d QFSGPSNT Ch&E@IBBG DPOUFYU PG EFUFDUJC
T e rationale behind this hypothesis is the added dimensionality incnn-2d. Te
2d model might observe inherent paterns when input data is presented in two
dimensions that may possibly be hidden in one dimensional format. For in-
stance, a 2-d variant could possibly identify the nesting depth of a method easier
than its 1-d counterpart when detecting DP N QM F YsiNéHU | P E

% 32)"Onn NPEFM QFSGPSBhhn OPEFSUTUBDOUIF TNFMM EFUFI
UFYU
rnn are considered beter for capturing sequential paterns and have the reputa-
tion to work well with text. T us, taking into account the similarities that source
code and natural language share, rnn could prove superior than cnn models.

32 *TUSBOTGFS MFBSOJOHGFBTJCMFJO UIFDPOUFYUPGE

EFFQ MFBSOJOH NPEFM FYIJCJUT TVQFSJPS QFSGPSNBOL
BOQOQMIJFEJOUSBOTGFS MFBSOJOH TF&AJOH

Transfer-learning is the capability of an algorithm to exploit the similarities between

diferent learning tasks and ofering a solution of a task by transferring knowledge

acquired while solving another task. We would like to explore whether it is feasible

to train a deep learning model from samples of C# and predict the smells using this

trained model in samples of Java programming language.

We derive the following hypotheses.

%

32)*UJTGFBTJCMFUPBQQMZUSBOTGFS MFBSOJOH JO UI

We train the deep learning models using C# code fragments and evaluate the trained
model using Java fragments. Given the high similarity in the syntax between the

45 /168 3&4&"3%) 0#+&$5*7&4

two programming languages, we believe that we may train the model from training
samples and use the trained model to classify smelly and non-smelly fragments from
our evaluation samples.

% 32)5SBOTGFS MFBSOJOH QFSGPSNTJOGFSJPSDPNQBSFE
Direct-learning in the context of our study refers to the case where training and eval-
uation samples belong to the same programming language. We expect that the per-
formance of the models in the transfer-learning could be inferior to that compared
to direct-learning given both the problems are equally hard J Regative and positive
sample showing similar distribution.

Figure 3.2: Overview of the Proposed Method

Figure 3.2 provides an overview of the experiment. We download 1;072 C# and 100
Java repositories from GitHub. We use Designite and DesigniteJava to analyze C# and Java
code respectively. We use CodeSplit to extract each method and class defnition into sep-
arate fles from C# and Java programs. T en the learning data generator uses the detected
smells to bifurcate code fragments into positive or negative samples for a smell—positive
samples contain the smell while the negative samples are free from that smell. Tokenizer
takes a method or class defnition and generates integer tokens for each token in the source
code. We apply preprocessing operation, specifcally duplicates removal, on the output of
Tokenizer. T e processed output of Tokenizer is ready to feed to the neural networks.

.BJOUBJOBCJMJUZ "OBMZTJT GPS $POQHVSBU.

In the pursuit to extend the maintainability analysis, we carry out a study to analyze the
existing confguration code and evaluate the associated code quality to examine the existing
practices towards keeping confguration code maintainable.

46 /168 3&4&"3%) 0#+&$5*7&4

We formulated the following research questions towards the quality analysis goal of
confguration code.

$ 32 8IBUJTUIFEJTUSJCVUJPO PG NBJOUBJOBCJIJMJUZ TNFMI
We investigate the distribution of confguration smells to ¥nd out whether there exists
a set of implementation and design confguration smells that occur more frequently
with respect to another set of confguration smells.

$ 32 8IBUJT UIF SFMBUJPOTIJQ CFUXFFO UIF PDDVSSFODF F
TNFMMTBOEJNQMFNFOUBUJPO DPO-HVSBUJPO TNFMMT
We study the instances of design confguration smells and implementation confgu-
ration smells to discover the degree of co-occurrence between the two categories of
confguration smells.

$ 32 *TUIFQSJODJQMFPGDPFYJTUFODFBQQMIJDBCMFUP TNI
In traditional sofware engineering, it is said that paterns (and smells) co-exist as
“No patern is an island” [BMR™ 96b] i.e. if we fnd one, it is very likely that we will
fnd many more around it [BMR™ 96b, SSS14]. We investigate the intra-category co-
occurrence of a smell with other smells to ¥nd out whether the folklore is true in the
context of confguration smells. Furthermore, we investigate whether all the smells
in each of the categories follow the principle with a same degree.

$ 32 WPFTTNFMMEFOTJUZEFQFOEPOUIFTIJ[FPGUIFDPO=-H
We investigate the relationship between the size of a confguration project and associ-
ated smell density for both smell categories to ¥nd out how the smell density changes
as the size of the confguration project increases.

Figure 3.3: Overview of the maintainability analysis study on confguration (Puppet) code

47 /168 3&4&"3%) 0#+&$5*7&4

Figure 3.3 provides an overview of the maintainability analysis study on confguration
smells. We collate best practices followed in [aC domain and defne a taxonomy of con-
fguration smells. To detect the majority of implementation confguration smells, we use
Puppet-Lint [Pupl6c]. Due to the lack of an existing tool that can detect design confgura-
tion smells, we develop a tool namely 1V Q Q Fdu dete@ing the cataloged design confg-
uration smells. We identify repositories containing Puppet code and download them from
GitHub [Git16]. We download 4,621 repositories containing 142,662 Puppet fles and 8.9 mil-
lion lines of code and analyze them with the help of Puppet-Lint and Puppeteer. We grouped
the information collected based on the data required to answer the research questions and
deduce our observations.

.BJOUBJOBCJMJUZ "OBMZTJT GPS %BUBCBTF $

Further, we set out a study to understand database code quality by mining database schema
smells and explore their relationship with other sofware artifacts. T e chosen subject sys-
tems are a wide variety of industrial as well as open-source sofware systems. We keep
the focus of the study on performance and maintainability quality atributes of relational
database code. Characteristics of smells, such as frequency (or the occurrence patern) of
smells [HPvD12, LVKM™ 14, BQO™ 12], provide dimensions of prioritization and refactoring.
Similarly, relationships of smells with domains, frameworks, and other application charac-
teristics [LVKM™ 14, FFM™ 13], help us understand the interplay of smells with application
characteristics. In the context of database programming, orm (Object-Relational Mapping)
frameworks simplify database access by providing an abstraction. However, it is not under-
stood whether the usage of an orm framework in an application will lead us to fewer number
of smells. Further, studying co-occurrence of database schema smells will complement the
existing studies exploring properties of co-occurrence among smells [MVL03, SFS16].
With this background, we explore the following research questions.

% #

% #

% #

% #

32 8IBUBSFUIFPDDVSSFODFQBaAFSOT PG EBUBCBTF TNFM
We examine the distribution of database smells to ¥nd out whether there exists a set

of database smells that occurs more frequently in general than another set of database

smells.

32 %PFTUIFTJ[FPGUIFQSPKFDUPSUIFEBUBCBTFQMBZB
We investigate the relationship of the size of the project (both the total lines of code
as well as total number of create table statements) and smell density.

32 %PFT UIF OBUVSF PG DPEF UZQF PG UIthmBGOBINBPBUJPO
XPSLT B«FDUUIFTNFMMEFOTJUZ

Te usage of an orm framework makes it easier to work with a database. We ex-

plore whether the usage of orm frameworks and the type of the application infuence

database smell density.

32 8IBUJTUIFEFHSFFPGDP PDDVSSFODFBNPOHEBUBCB"
Paterns and smells tend to occur together [BMR™ 96a, SSS14]. We examine the degree

48 /168 5)&03&5*$"- #"$,(306/%

of co-occurrence among database smells to fnd out a set of database smells that is
likely to occur when a database smell gets detected.

Figure 3.4. Overview of the maintainability analysis study on database schema code

Figure 3.4 provides an overview of the experiment. To study the addressed questions,
we compiled a catalog of 13 database schema smells. We atempt to understand developers’
perspective on database schema smells through an online survey. We developed a tool viz.
% C %d-eRtract embedded sql statements from host source code (in which the sqgl state-
ments are embedded) and identify cataloged database smells. We analyzed 2,568 GitHub
open-source repositories and 357 industrial close-source repositories containing sql state-
ments and provide empirical answers to each of the posed research questions.

SFPSFUJDBM #BDLHSPVOE

In this section, we present the necessary theoretical background on which the experiments
in this thesis are based on. We defne and specify each category of smells — code smells (at
three granularities — implementation, design, and architecture), confguration smells, and
database schema smells and elaborate on the challenges of applying a deep learning-based
smell detection mechanism.

$SPEFANFMMT

Teterm D P E F Tiduruvhbella term; depending upon the granularity, scope, and impact,
code smells can be classifed as implementation, design, and architecture smells [SSS16].

49 /168 5)&03&5*$"- #"$,(306/%

"SDIJUFDUVSFANFMMT

Smells arising at architecture granularity (typically perceived at component level) and af-
fecting sofware quality at system-level are referred as architecture smells. In this thesis,
we examine, detect, and analyze seven common architecture smells. We provide their def-
nitions below.

1. $ZDMJID % F Q FOEsmal Brides when two or more architecture components
depend on each other directly or indirectly [MCKX15, LR06].

2. 60 TUBCMF % F QIHOBdH @ Beg when a component depends on other less
stable components [FDW™ 16]. Stable Dependencies Principle (sdp) [Mar02] states
that the dependencies between packages should be in the direction of the stability of
the packages. Hence, a package should only depend on packages that are more stable
than it is.

3. "NCJIJHVPVT *O UIRsSs@db @rises when a component ofers only a single,
general entry-point into the component [GPEMO09]. Tis smell typically appears in
event-based publish-subscribe systems where interactions are not explicitly modelled
and multiple components exchange event messages via a shared event bus.

4, (PE $PNQ P OFSidell occurs when a component is excessively large either in
terms of loc (Lines Of Code) or number of classes [LR06].

5 '"FBUVSF $PODF O $RlUatéud when a component realizes more than
one architectural concerns or features [dAAC14b]. In other words, the component is
not cohesive.

6. 4ADBUUFSFE 'VO OU dneDaisdsImbien multiple components are responsi-
ble for realizing the same high-level concern [GPEMO09]. It is an indication that pos-
sibly classes or methods must be moved from one component to another in order to
reduce coupling among components and enhance cohesion within each component.

7. % FOTF 4U SYDB &in¢lEaFses when components have excessive and dense de-
pendencies without any particular structure [SFS16].
%FTIJHO ANFMMT

Design smells are structures in the design that indicate violation of fundamental design
principles and negatively impact design quality [SSS14]. Table 3.1 lists all the design smells
[SSS14] considered in this work along with their brief descriptions.

*NQMFNFOUBUJPO 4ANFMMT

T e scope and granularity of implementation smells is limited to typically a method. Table
3.2 lists all the implementation smells taken into consideration in this study.

50/ 168

5)&03&5*$"- #"$,(306/%

Table 3.1: Description of Detected Design Smells

%FTJHO TNFM #SJFGEFTDSJQUJPO

Broken Hierarchy
Broken Modulariza-
tion

Cyclically-dependent
Modularization

Cyclic Hierarchy
Deep Hierarchy
Defcient Encapsula-
tion

Duplicate Abstraction

Hub-like Modulariza-
tion
Imperative
tion
InsufFcient Modular-
ization

Abstrac-

Missing Hierarchy

Multifaceted Abstrac-
tion
Multipath Hierarchy

Rebellious Hierarchy
Unexploited Encapsu-
lation

Unfactored Hierarchy
Unnecessary Abstrac-
tion

Unutilized Abstraction
Wide Hierarchy

a supertype and its subtype conceptually do not share an
“IS-A” relationship

data and/or methods that ideally should have been localized
into a single abstraction are separated and spread across
multiple abstractions

two or more abstractions depend on each other directly or
indirectly

a supertype in a hierarchy depends on any of its subtypes
an inheritance hierarchy is “excessively” deep

the declared accessibility of one or more members of an ab-
straction is more permissive than actually required

two or more abstractions have identical names or identical
implementation

an abstraction has high incoming and outgoing dependen-
cies

an operation is turned into a class

an abstraction exists that has not been completely decom-
posed, and a further decomposition could reduce its size, or
implementation complexity

a code segment uses conditional logic to explicitly manage
variation in behaviour

an abstraction has more than one responsibility assigned to
it

a subtype inherits both directly as well as indirectly from a
supertype

a subtype rejects the methods provided by its supertype(s)
client code uses explicit type checks

there is unnecessary duplication among types in a hierarchy
an abstraction that is actually not needed

an abstraction is lef unused
an inheritance hierarchy is “too” wide

&YQMPSJOH %FFQ -FBSOJOH CBTFE 4PMVUJPO

In this section, we present challenges in applying deep learning techniques on source code
as well as selection of code smells for our exploration.

51/ 168 5)&03&5*$"- #"$,(306/%

Table 3.2: Description of Detected Implementation Smells and T eir Distribution

*NQMFNFOUBUJPO TN #SJFG EFTDSJQUJPO

Complex Conditional a complex conditional statement

Complex Method a method with high cyclomatic complexity
Duplicate Code a code clone within a method

Empty Catch Block a catch block of an exception is empty

Long Identifer an identifer with excessive length

Long Method a method is excessively long

Long Parameter List a method has long parameter list

Long Statement an excessive long statement

Magic Number an unexplained number is used in an expression
Missing Default a switch statement does not contain a default case
Virtual Method Call from Construc- a constructor calls a virtual method

tor

$IBMMFOHFTJO "QQMZJOH %FFQ -FBSOJOH PO 4PVSDF &

Applying deep learning techniques on source code is non-trivial. In this section, we present
challenges that we face in the process of applying deep learning techniques on source code.

"OBMPHJFT XJUIPUIFS QSPCMFENT

Deep learning is advancing rapidly in domains that address problems of image, video, audio,
text, and speech processing [LBH15]. Consequently, these advances drive current trends in
deep learning and inspire applications across disciplines. As such, studies that apply deep
learning on source code rely heavily on results from these domains, and particularly that of
text mining.

Based on prior observations that demonstrate similarity between source code and natu-
ral language [HBS™ 12], the research community has largely addressed relevant problems on
mining source code by adopting latest state-of-the-art natural language processing methods
[APS16, PPDL* 16, IKCZ16, VCD17, YN17]. However, besides similarities, there also exist
major diferences that need to be taken into consideration when designing such studies. First
of all, source code, unlike natural language, is semantically britle; minor syntactic changes
can drastically change the meaning of code [ABDS18]. As an efect, treating code as text by
ignoring the underlying formal semantics carries the risk of not preserving the appropriate
meaning. Besides formal semantics, the syntax of source code obviously presents substan-
tial diferences compared to the syntax found in text. As a result, methods that perform
well on text are likely to under-perform on source code. Architectures involving cnn-1d
layers, for instance, have been proven efective for matching subsequences of short lengths
[Chol7], which are ofen found in natural language where the length of sentences is limited.
T'is however does not necessarily apply on self-contained fragments of source code, such
as method defnitions, which tend to be longer. Finally, even though good practices dictate
naming conventions in coding, unlike natural language, there is no universal vocabulary of
source code. Tis results to a diversity in the artifcial vocabulary found in source code that

52 /168 5)&03&5*$"- #"$,(306/%

may afect the quality of the models learned.

Approaches that treat code as text mainly focus on the mining of sequential paterns of
source code tokens. Other emerging approaches look into structural characteristics of the
code with the objective of extracting visual paterns delineated on code [OAH* 18]. Even
though there are features in source code, such as nesting, which demonstrate distinctive
visual paterns, treating source code in terms of such paterns and ignoring the rich inter-
twined semantics carries the risk of oversimplifying the problem.

-BDLPG SFTPVSDFT

Research employing deep learning technigues on sofware engineering data, including source
code as well as other relevant artifacts, is still young. Consequently, results against tradi-
tional baseline techniques are very limited [FM17, HD17]. Especially when it comes to
processing solely source code artifacts, relevant studies are scarce and mostly address the
problem of drawing out semantics related to the functionality of a piece of code [APS16,
WVLVP15, WTVP16, MLZ" 16, PHN™ 15]. To the best of our knowledge, our study is the
frst to thoroughly investigate the application of deep learning techniques with the objec-
tive of examining characteristics of source code quality. T erefore, a major challenge in
studies of this kind is that there is no prior knowledge that would guide this investigation,
a challenge refected on all stages of the inquiry. At the level of designing an experiment,
there exist no rules of thumb indicating a set up for a deep learning architecture that ad-
equately models the fne-grained features required for the problem in hand. Furthermore,
at the level of training a model, there is no prior baseline for hyper-parameters that would
lead to an optimal solution. Finally, at the level of evaluating a trained model, there exist
no benchmarks to compare against; there is no prior concrete indication on the expected
outcomes in terms of reported metrics. Hence, a result that would appear sub-optimal in
another domain such as natural language processing, may actually account for a signifcant
advance in sofware quality assessment.

Besides challenges that relate to the know-how of applying deep learning techniques
on source code, there are technical difculties that arise due to the paucity of curated data
in the feld. Te need for openly available data that can serve for replicating data-driven
studies in sofware engineering has been long stressed [Rob10]. T e release of curated data
in the feld is encouraged through badging artifact-evaluated papers as well as dedicated
data showcase venues for publication. However, the sofware engineering domain is still far
from providing benchmark datasets, whereas the available datasets are limited to curated
collections of repositories with associated metadata that lack ground truth annotation that
is essential for a multitude of supervised machine learning tasks. T erefore, unlike domains
such as image processing and natural language processing where an abundance of annotated
data exist [KH09, DDS* 09, LCB10, MDP* 11], in the Feld of sofware engineering the lack of
gold standards induces the inherent difculty of collecting and curating data from scratch.

53 /168 5)&03&5*$"- #"$,(306/%

4FMFDUJPO PG 4A4NFMMT

Over the last two decades, the sofware engineering community has documented many
smells associated with diferent granularities, scope, and domains [SS18]. A comprehensive
taxonomy of the sofware smells can be found online.! For this study, selection of smells is a
crucial decision. T e scope of the higher granularity smells, such as design and architecture
smells, is large, ofen spanning to multiple classes and components. It is essential to provide
all the intertwined source code fragments to the deep learning model to make sure that the
model captures the key deciding elements from the provided input source code. Hence, it is
naturally difcult to detect them using deep learning approaches, unless extensive feature
engineering is performed beforehand in order to atain an appropriate representation of the
data. We started with implementation smells because they can be detected typically just
by looking at a method. However, we would like to avoid very simple smells (suchas M P O H
N F U) Ritich can be easily detected by less sophisticated techniques.

We chose D P N QM F Y(¢h~U | Bx&Emethod has high cyclomatic complexity), NBHJD
OV N @mS J Bnunexplained numeric literal is used in an expression),and FNQU Z DBUD |
C M R&btJ E catch block of an exception is empty). T ese three smells represent three
diferent kinds of smells where neural networks have to spot specifc features. For instance,
todetect N B HJ D O,¥hblr@ursb networks must spot a specifc range of tokens represent-
ing magic numbers. On the other hand, detection of D P N Q M F Yrdqriresli8oKing at the
entire method and the structural property within it (J Resting depth of the method). For
the detection of FN Q U Z D B UHa hedrigl RebBnlork has to recognize a sequence of a try
block followed by an empty catch block.

To expand the horizon of the experiment, we alsoselect NVMUJGBDFUmMB-BICFUSBDUJ
a class has more than one responsibility assigned to it) design smell. T e scope of this smell
islarger (J #he whole class) and detection is not trivial since the neural network has to cap-
ture cohesion aspect (typically captured by the Lack of Cohesion of Methods (Icom) metric
in deterministic tools) among the methods to detect it accurately. T is smell not only allows
us to compare the capabilities of neural networks in detecting implementation smells with
design smells but also sets the stage for the future work to build on.

$POQHVSBUJPO ANFMMT

We defne confguration smells as follows:

$PO HVSBUJPO TNFMMT BSF UIF DIBSBDUFSJTUJDT PG B DI
ulBu WJPMBUF UIF SFDPNNFOEFE CFTU QSBDUJDFT BOE Q|
RVBMJUZJOBOFHBUJWEF XBZ

Similar to traditional sofware engineering practices where smells are classifed based
on granularity and scope, confguration smells are also classifed as implementation con-
Tfguration smells, design confguration smells, documentation confguration smells, and so

lJUuUQ XXX UVTIBSNB JO TNFMMT

http://www.tusharma.in/smells

54 / 168 5)&03&5*$"- #"$,(306/%

on. In this work, our focus is on two major categories of confguration smells namely im-
plementation confguration smells and design confguration smells.

*NQMENFOUBUJPO $POQHVSBUJPO ANFMMT

Implementation confguration smells are quality issues such as naming convention, style,
formating, and indentation in confguration code. We prepare a list of recommended best
practice by studying available resources, such as the Puppet style guide [Sty16] and rules
implemented by Puppet-Lint. We group the best practices based on their similarity and
arrive at a corresponding implementation confguration smell when a best practice is vio-
lated. Table 3.3 lists the implementation confguration smells and corresponding set of best
practices.

Here, we present a list of implementation confguration smells with a brief description.
Figure 3.5 shows an annotated Puppet example with all the cataloged implementation con-
fguration smells,

Figure 3.5: An annotated Puppet example with all the cataloged implementation confgura-
tion smells

1. .JTTJOH % F G Bivhty) Al dbfBult Ease is missing ina D Bor H F M BtBtdhen®

2. *ODPOTJTUFOU /BN JQiAch T Qusgdnanting BoBvention deviates from
the recommended naming convention.

55 / 168 5)&03&5*$"- #"$,(306/%

Table 3.3: Mapping Between Implementation Confguration Smells and Corresponding Best
Practices

ANFMMT #FTU QSBDUJDFT

Missing default case Case and Selector statements should have a default case
Inconsistent naming T e names of variables, classes and defnes should not con-
convention tain a dash

Complex expression Expressions should not be too complex

Duplicate entity Duplicated hash keys and parameters should be removed
Misplaced atribute “ensure” atribute should be the frst atribute speci-
Ted

» Terequired parameters for a class or ‘defne’ should
be listed before optional parameters

* Right-to-lef chaining arrows should not be used
Improper alignment * Properly align arrows (arrows are not all placed one

space ahead of the longest atribute)

) Tabulation characters should not be used)
Invalid property value * “ensure” property of fle resource should be valid

* File mode should be represented by a valid 4-digit oc-
tal value (rather than 3) or symbolically

» Te path of “puppet:///” url should start with “mod-

les/”
Incomplete tasks “fixmg” %Sr<d “todo” tags should be handled

Deprecated statement Deprecated node inheritance and “import” statement
usage should not be used

Improper guote usage » Booleans should not be quoted

* Variables should not be used in single quoted strings

Unquoted node names should not be used

Resource titles should be quoted

Literal boolean values should not be used in compar-
ison expressions

Long statement Lines should not be too long
Incomplete condi- “if ... elsif” constructs shall be terminated with an “else”
tional clause

Unguarded variable Variables should be enclosed in braces when being interpo-
lated in a string

3. SPNQMFY &Y Q&6 ATpddgram contains a difcult to understand complex
expression.

4. %V Q M J D B U(kd& Duglitétezhash keys or duplicate parameters present in the

56 / 168 5)&03&5*$"- #"$,(306/%

confguration code.

5 .JTQMBDFE " UUtbbACiMIte Blacement within a resource or a class has not
followed a recommended order (for example, mandatory atributes should be specifed
before the optional atributes).

6. *NQSPQFS "M JithD NefFe@ldJis not properly aligned (such as all the arrows
in a resource declaration) or tabulation characters are used.

7. *OWBMJE 1S P Q(h9 BrzinvaliMvdlEe of a property or atribute is used (such
as a Fle mode specifed using 3-digit octal value rather than 4-digit).

8. *ODPNQM F UiR)5BelcadE has “fixme” and “todo” tags indicating incomplete
tasks.

9. %FQSFDBUFE 4UB UK He twnFgueatibR code uses one of the depre-
cated statements (such as “import”).

10. *NQSPQFS %o P U(Fop Silyt Bnd double quotes are not used properly. For
example, boolean values should not be quoted and variable names should not be used
in single quoted strings.

11. -P OH 4 U B UH$ T &ddde contains long statements (that typically do not ft in
a screen).

12. *ODPNQMFUF $ P(cEAN . RIGB ddnstruct used without a terminating
“else” clause.

13. 6 OHVBSEFE 7(818)AB/&ible is not enclosed in braces when being interpo-
lated in a string.

%FTIJHO $POQHVSBUJPO 4ANFMMT

Design confguration smells reveal quality issues in the module design or structure of a con-
fguration project. Various available sources, such as the Puppet style guide [Sty16], blog
entries [Larl6a, Lar16b], and videos of technical talks [Lar16c] highlight the best practices to
be followed for confguration code. We obtain a list of commonly occurring design confg-
uration smells from the violation of these best practices at design-level. We assign relevant
names (ofen inspired by the traditional names of smells) to the smells and document their
forms representing variations of the smells. Here, we present design confguration smells
with a brief description.

1. .VMUJGBDFUFE "(@fHEKBdbdtracBad (e.g. a resource, class, ‘defne’, or
module) should be designed to specify the properties of a single piece of sofware. In
other words, each abstraction should follow single responsibility principle [Mar02].
An abstraction sufers from NV M U J G B D F U wkerBt: €leheBdflihk BbGtrac-
tion are not cohesive.

57/ 168 5)&03&5*$"- #"$,(306/%

T e smell may occur in the following two forms:

« aresource (Fle, package, or service) declaration specifes atributes of more than
one physical resources, or

« all the language elements declared in a class, ‘defne’, or a module are not cohe-
sive.

2. 600FDFTTBSZ "(Cdud)SPBcladd, Jdefne’, or module must contain decla-
rations or statements specifying the properties of a desired system. An empty class,
‘defne’, or module shows the presenceof VOO FD FT T B S ZnRICamdtri8niusd J P O
be removed.

3. *NQFSBUJWF "(Cdid Suphetisidedarative in nature. T e presence of im-
perative statements (such as “exec”) defes the purpose of the language. An abstrac-
tion containing numerous imperative statements sufers from INQFSBUJWF BCTUSB
smell.

4 . JTTJOH "CTU(BnapRdsbired declarations and statements are easy to use
and reuse when they are encapsulated in an abstraction such as a class or ‘defne’.
A module sufers from the NJTTJOH B Gmdll 8/BeD tdsb&r€@s and language
elements are declared and used without encapsulating them in an abstraction.

5. *OTVSDJFOU .PEYV MiB)3AhpBstyatto®suters from this smell when it is
large or complex and thus can be modularized further. T is smell arises in following
forms:

« if a fle contains a declaration of more than one class or ‘defne’, or
« if the size of a class declaration is large crossing a certain threshold, or
* the complexity of a class or ‘defne’ is high.
6. % V QM JD B Uddb} Mduplitate block containing a set of statements more than a

threshold indicates that probably a suitable abstraction defnition is missing. Tus a
module containing such a duplicate block sufersfrom EVQMJD BroeR. CMPD L

7. #SPLF O)JF Sdb)Oeduse of inheritance must be limited to the same module.
T e smell occurs when, the inheritance is used across namespaces where inheritance
is not natural (“is-a” relationship is not followed).

8. 60TUSVDUYVS RdumfEEcK tabEule in a confguration repository must have a
well-defned and consistent module structure. A recommended structure for amodule
is the following.

- PEVMF OBNF

9 manifests
9 Fles

58 /168 5)&03&5*$"- #"$,(306/%

1 templates
1 lib

9 facts.d

1 examples

1 spec

An ad-hoc structure of a repository sufers from VO TU SV D U VsElEhstnE V M F
pacts understandability and predictability of the repository.

9. % FOTF 4U Sade) OSrrell arises when a confguration code repository has
excessive and dense dependencies without any particular structure.

100 % FQDJFOU &OD BdQey Y 8ridlD &i€s when a node defnition or ENC
(External Node Classifer) declares a set of global variables to be picked up by the
included classes in the defnition.

11. 8FBLFOFE .PEMdhBSEAdh hodule must strive for high cohesion and low
coupling. Tis smell arises when a module exhibits high coupling and low cohesion.

%BUBCBTFANFMMT

We defne database smells as follows:

%BUBCBTF TNFMMT BSF UIF DIBSBD UWEEP®U3AT PG EBUBCB
TUBUFNFOUT EBUBCBTFTZTUFN PSTUPSFE EBUB UIBU J
NFOEFECFTU QSBDUJDFTBOE QPUFOUJBMMZ B FDU UIF R\
BOFHBUJWF XBZ

We categorize database smells in three categories to understand them beter.

* 4DIFNB T NSmmIMhat arise due to poor schema design are classifed as database
schema smells. Smells presented in this section suchas DPNQPVOE,BI®@EFXYV UF
B C Vahd- H P E UaB:E@Xshiples of database schema smells.

* ¢FSZ TN F3hélstarising from poorly writen sql queries are specifed as database
query smells. .J TV TF HKarWOMWhen null is used as an ordinary value in sql
queries)and OPO HSPVQFE D P MaIN|QvBeh &duay-refddeRces at least
one non-grouped column in the presence of H S P VdauSeXare examples of database
query smells.

* % B UB T NDatd dvhdlls arise from poor data handling in databases. *OUFSNJOHMFE
E B U B (nhé&pemtimbers and alphabets are intermingled leading to confusion and
subtle bugs; for instance, using ‘O’ instead of ‘0’ in 7034) is an example of data smells.

59 /168 5)&03&5*$"- #"$,(306/%

In this thesis, we focus only on database schema smells. We carry out a comprehensive
exploration of resources that discuss best practices as well as common database smells or
anti-paterns. We study wide variety of resources including books [Kar10], research liter-
ature [Chel5, NC15, EV15], industrial white-paper [Red17], and discussions on question-
answer sites [dbS10]. We summarize the result of our exploration in the form of a catalog
of database schema smells.

1. $" $PNQPVOE BAa¥Fi3aélUarises when a column is used to store a non-
atomic atribute. For instance, storing comma-separated lists for an atribute to avoid
creating an intersection table for a many-to-many relationship [Kar10, Red17] or stor-
ing a json fle which is not used atomically [dbS10].

Each atribute value must be stored and retrieved atomically. If a table does not adhere
to this practice, the resultant schema introduces multiple problems. For instance,
a user has to write more complex queries (using patern-matching expressions) to
retrieve data from this table. Such complex queries are prone to inaccurate results.
Also, such queries cannot exploit available indexes. Even further, these queries are
not portable due to vendor specifc support to patern-matching expressions.

2. "- "EKBDF O DEelghdEll bccurs when an atribute in a table refers another
row in the same table J & table has a recursive relationship to model hierarchical
structure [Karl10, Red17].

Qerying a tree with adjacency list is quite difcult and error-prone. Specifcally,
deleting a node from a tree which is modelled using adjacency list is non-trivial and
prone to introduce errors in the database.

3. 4, 4VQFSGMVWTNK ImElFaZises when an unnecessary superfuous pseudo
key is defned in a table where other atribute(s) in the table may serve as a primary
key [Kar10].

Choosing an appropriate primary key is an essential requirement for a table. A pseudo
key could be defned when the present set of atributes could not serve as a primary
key. However, a pseudo key is unnecessary and even erroneous (leads to duplicate
rows) when the existing set of atributes of the table could be used as a primary key.

4 .$. JTTJIOH DP O TlUs@ell@riseF when constraints for a foreign key are
missing from a schema defnition [Kar10, Red17].

Referential integrity is an essential property of relational databases. Values referenced
in a foreign key column must exist in the columns of primary or unique keys of the
parent table. It can be easily achieved by defning constraints on foreign keys. How-
ever, when such constraints are missing for a foreign key it leads to compromized
referential integrity of the database.

5. .% .FUBEBUB BTigEdbtIBccurs when metadata is stored as data in the
form of eav (Entity-Atribute-Value) patern [Karl0, Red17].

60/ 168 5)&03&5*$"- #"$,(306/%

In a relational table, all the atributes are equally applicable for all the rows in the
table. It is tempting to implement eav patern when a subset of atributes applicable
for a subset of rows and the rest of atributes for rest of the rows. However, this
arrangement introduces many defciencies in the database; for example, one can’t use
native sql data types (leading to invalid data), enforce referential integrity, or make
up atribute names.

6. 1" 1PMZNPSQIJD B TisRrel BctudshvBen a table uses a multi-purpose
foreign key [Karl10, Red17].

Relational database schema does not allow us to declare polymorphic association.
However, many times developers defne an additional column in a table as a tag to
realize a polymorphic association. T is arrangement makes it difcult to query the
table and compromises readability and understandability.

7.." .VMUJDPMVNO BHiS sheelVddises when multiple serial columns are
created for an atribute [Kar10, dbS10].

In cases when an atribute may have one or more values, it is tempting to create
multiple columns for the atribute in a table. However, such a schema design makes
querying the table very difcult and verbose.

8. $5 $MP OF UIBCsMdH Becurs when a table is split horizontally in multiple
tables using some criterion (for example, year) to achieve scalability [Kar10].

Tis smell not only makes the querying difcult but also introduces problems man-
aging data integrity.

9. 7" 7TBMVFT JO B&SJCV UlRsErreH @ri3dd wRe@specifc values are de-
Tned in an atribute defnition to restrict possible values of the atribute [Kar10].

Specifying all possible values for an atribute in schema defnition mixes metadata
with data which is not recommended. T is smell makes it difcult to extend or modify
the list of accepted values for an atribute.

10. *" *OEFY BTIiVsmEll arises when the indexes are used poorly [Kar10, Red17].
T'is smell has the following variants: 1) Missing indexes 2) Insu®cient indexes (in-
dexes must be prepared at least for primary and foreign keys), and 3) Unused indexes

Creating efective indexes is not trivial; it requires judicious planning. A database
with a defcient plan for indexes performs poorly.

11. (5 (P E U BTibsmell arises when a table contains excessive number of atributes
[dbS10, Red17].

Excessive number of atributes tend to violate the principles of normalization which
in turn introduce a variety of problems. Additionally, it impacts maintainability of
the database.

61 /168 5)&03&5*$"- #"$,(306/%

12.

13.

./ .FBOJOHMFTTT® BM¢IFoccurs when a table or an atribute name is
cryptic or meaningless [dbS10].

Meaningless or cryptic names hamper readability of the database’s schema.
0" OWFSMPBEFE BasSJLi¥sodl aa&ind witen two or more atributes
are defned with identical names but as distinct data types in diferent tables [Red17].

Identical names with diferent data types create confusion and could lead to subtle
bugs in queries.

$IBQUFS

*NOMFNFOUBUJPO

‘ &WFO UIFCFTU EFTIJHOT BSF VTFMFTT XJ
NFOUBUJPO

In this chapter, we elaborate on the implementation details for each experiment that
we carried out. We illustrate the tools, such as smell detection tools, employed for the
experiments, detection method for each supported smell, and the realization of qualitative
mechanisms.

"OBMZ[JOH 1SPEVDUJPO $PEF GPS %BC
UBJOBCJIJMJUZ "TTFTTNFOU

In this section, we illustrate the process we adopted to select, download, and mine C# repos-
itories. We also discuss the implementation details of Designite — a sofware design quality
assessment tool that we developed to analyze C# code.

.JOJOH $ 3FQPTJUPSJFT

We used the following protocol to identify our subject systems.

* We use RepoReapers [MKCN17] to select a set of repositories as subject systems from
GitHub. RepoReapers analyzes GitHub repositories and provides their quality char-
acteristics based on eight dimensions. T ese dimensions are architecture (as evidence
of code organization), continuous integration and unit testing (as evidence of qual-
ity), community and documentation (as evidence of collaboration), history, issues (as
evidence of sustained evolution), and license (as evidence of accountability). RepoRe-
apers assigns a score corresponding to each dimension.

62

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
63 /168 "448&44.&15

» We select all the repositories containing C# code where at least six out of eight Re-
poReapers’ dimensions had suitable scores. We consider a score to be suitable if it has
score greater than zero.

* Next, the repositories selected through the above-mentioned criteria are sorted based
on the number of assigned stars. We select repositories tagged with more than 10
stars.

 Following these criteria, we download more than 3;400 repositories using our code
smell detection and analyze them using our quality analysis tool — Designite. Some
of the repositories could not be analyzed due to either missing external dependencies
or custom build mechanisms (J Rissing standard C# project fles). We successfully
analyze 3;209repositories for the study.

* Test code contains diferent types of smells (W Jtest smells [Deu01]) which is not
in the scope of this experiment. Hence, we exclude the test code belonging to the
selected sofware repositories from our empirical analysis.

A complete list of the selected C# repositories along with their analyzed results can be
found online [Shal9c]. Table 4.1 presents some key characteristics of the selected subject
systems.

Table 4.1: Characteristics of the Analyzed Repositories

"UUSJCVUFT SPUBM WBMVFT

Repositories 3209
Components 75205
Types 724 854
Methods 3739387

Lines of code (C# only) 83135679

"OBMZ[JOH $ 3FQPTJUPSJFT6TJOH %FTJHOJU

Designite [Shal6, SMT16] is a sofware design quality assessment tool. We use Designite’s
version 2.3.0 to analyze repositories. Apart from supporting detection of a wide variety of
design and implementation smells, it detects seven well-known architecture smells for C#
code. Other key features supported by the tool are object-oriented code metrics computa-
tion, dependency structure matrix, trend analysis of smells, code-clone detection, integra-
tion with external tools via its console application, and hotspot analysis. Apart from its
gui-based desktop application, Designite also ofers a console application which is partic-
ularly useful for analyzing a large number of repositories automatically. Customization is
one of the major features of the tool — a user can customize the way input source code
is provided to the tool, certain smells to skip in an analysis session, or change thresholds
that are used to detect certain smells. T e tool provides interactive visualizations (such as

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
64 /168 "448&44.&15

sunburst) for the detected smells and metrics; these visualization aids make it easier for the
users to comprehend the results. Figure 4.1 provides an overview of major features of the
tool. Te tool ofers free B D B E kdsinddd for all academic purposes.

Figure 4.1: Presentation of identifed smells in Designite

"SDIJUFDUVSF

Figure 4.2 shows the major components of the tool. Designite uses Roslyn! to parse C#
code and prepares Abstract Syntax Tree (ast). T e source model layer accesses the ast and
prepares a simple hierarchical source code model. T e model contains information about all
the analyzed source code elements (such as namespaces, classes, methods, and Felds). Itisa
hierarchical model; therefore, for example, an object of a project holds references to all the
namespace objects in the project. T e model is used by the tool’s back-end to infer smells
and compute metrics. T e back-end hosts the domain logic J Fules to detect smells. Apart
from a desktop application, the tool ofers Microsof Visual Studio extension? as well as a
console application.

%FUFDUJPO .FDIBOJTN GPS4VQQPSUFE "SDIJUFDUVSF

In this section, we elaborate on the detection mechanism used to detect the supported ar-
chitecture smells.

LJjJuuQT HJUIVC DPN EPUOFU SPTMZO
2JUUQT NBSLFUQMBDF WJTVBMTUVEJP DPN JUFNT JUFN/BNF EFTJHOJ
%FTIJHOJUF

https://github.com/dotnet/roslyn
https://marketplace.visualstudio.com/items?itemName=designite.Designite
https://marketplace.visualstudio.com/items?itemName=designite.Designite

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
65/ 168 "448&44.&15

Figure 4.2: Architecture of the tool

$ZDMJID % F Q FIO detecd tig smell, we frst compute a dependency list for each
component. T erefore, such a list for component A represents the components on
which component A depends. Component A depends on component B if at least one
of the classes in A refer (by association, aggregation, or composition) to at least one of
the classes in component B. We construct a directed graph using the above informa-
tion where ‘nodes’ refer to components and ‘edges’ refer to their dependencies. We
then apply depth-frst algorithm to detect cycles in the graph for each component.
For large graphs, we stop the exploration afer a threshold (currently set to 5 hops) to
avoid extraneous computation.

60TUBCMF % F QristabHify Of @ @mponent is computed as follows:

Ce
Cet+ Ca

(4.1)

Here, *represents the degree of instability of the component, &, represents the afer-
ent coupling (or incoming dependencies), and % represents the eferent coupling (or
outgoing dependencies). We compare the computed metric value of each component
against its dependent components, and detect the smell when a dependent component
is more stable.

"NCIJHVPVT *O Wk &&cBtbissmell when we fnd a component containing only
one QV GoMJO U F&thdd.M\n J O U FM&thdsl M C# has the visibility inside the
assembly; hence, other components (namespaces) within the assembly may access it.
In order to avoid small components from geting reported as ambiguous interfaces,
we detect the smell only when the component has at least 5 classes.

(PE $P N Q P OWeQ@edtect the smell when a component has more than 30 classes or
27,000 loc following the recommendations by Lippert et al. [LR06].

'"FBUVSF $P O D F &nil& BoUdom Qack of Cohesion of Methods) [CK94] metric
which is applicable to classes, we compute Icc (Lack of Component Cohesion) to
measure the cohesion of a component. To compute Icc, we identify related classes in
a component, prepare a dependency graph, and identify the number of disconnected

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
66 / 168 "448&44.&15

sub-graphs. Two classes are related if they share any of the association, aggregation,
composition, or inheritance relationships.

Number of disconnected sub-graphs
LCC=
Total number of classes

(4.2)

Tis smell is detected if Icc is more than a pre-defned threshold. We use 0:2 as the
Icc threshold to detect this smell.

ADBUUFSFE 'V O D/éter@iBeNhé kteesses to at least two external components
that occur together from a method. If such accesses happen frequently (minimum 2
times) in a component, this indicates the presence of scatered functionality architec-
ture smell.

%FOTF 4US VWl éccurs when components form a very dense dependency
graph. In order to detect this smell, a dependency graph involving all the components
is formed and the average degree of the graph is computed.

2 Ej

Average degree = ——
g g Vi

(4.3)

Where &is the set of all the edges and 7 is the set of all vertices belonging to the
graph. We detect the smell when the average degree is greater than a pre-defned
threshold. We have set the threshold to 5. Since the dependency graph is formed
by considering all the components present in the analyzed solution, maximum one
instance of this smell can occur for the solution.

%FUFDUJPO .FDIBOJTN GPS4VQQPSUFE %FTJHO 4NFMM

In this section, we present the detection method used to detect the supported design smells.
Here, type/abstraction refers to a class or interface.

%VQMJIDBUF "CWudstBcDthisJshél when we fnd code clones (type-1) of size
> 20lines.

*NQFSBUJWEF "CIfatasshadsdli?ade public method and the size of the class (in
terms of loc) is greater than a pre-defned threshold (J EO0O), we detect this smell.

.VMUJGBDFUF E " @acongpBt®lcbhinPLack of Cohesion among Methods) metric
for each type. If the value of the metric is greater than a threshold (J B:8) and the
type is not very small — number of felds and methods are greater than or equal to a
threshold (J), we detect the smell.

60OO0OFDFTTBSZ "CITadtgBhadhd méhods and the number of felds and prop-
erties are less than a threshold (J B), we detect this smell.

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
67 /168 "448&44.&15

60VUJIMJI[FE "C RUuWBIHUdutiRzed if fan-in of the type is zero J Ehere is no
users of this type and if the type has no super class. In case the type has super class
the the type sufers from unutilized abstraction if fan-in of both the type and its super
class is zero.

%FQDJFOU & O D BfQaTygdh& dtJeasbDone public feld or global feld (declared
as public static), we detect this smell.

60OFYQMPJUFE & O DB @tiievehi listbPtypes that are being explicitly checked
inamethod. We fnd the number of checked types that belong to the same inheritance
hierarchy. If the number is greater than a threshold (J E), we detect this smell.

#SPLFO .PEVMB $&[tpe ddesinot have any methods and count of felds and
properties is greater than a certain threshold (J B), we detect this smell.

$ZDMIDBMMZ EFQFO EF OWe.drehaveM @:feddddity iR of types from
fan-in and fan-out information. We use this dependency graph to detect direct or
indirect cycles.

)VC MJLF .PEV M BIfant&itadd,fén-in of a type is greater than a threshold (J F
20), the type sufers from this smell.

*OTVSDJFOU .PEYV MBS drBnickd Bidhs of this smell.

* If the count of public methods in a type crosses a threshold (J BO), the type is
sufering from insu®Fcient modularization.

* |If the total methods in a type exceed a threshold (J BO0), we detect this smell.

» We compute wmc (Weighted Methods per Class) metric for each type. We detect
this smell if the value of the metric is more than a threshold (J EOO.

#SPLFO)JF S BsdadhZclass which has at least one super class with at least one
public method, we check whether the class satisfy the condition of broken hierarchy
smell. If the class does not have any method overridden or “leniently” overridden
from its super classes, we detect the smell. A method is leniently overridden when
the method name matches (but not necessarily the parameter types) with any of the
public methods in the super classes.

$ZDMJID)JF EBg2 htesses any of the sub-types then we detect this smell.

% FFQ)JF S B\B héasure the dit (Depth of Inheritance Tree) metric for each type.
If the value of the metric crosses a threshold (J B), we detect this smell.

.JTTJIOH)JF S\BeSyEx bdist of types checked explicitly in a method, for example,
by using J O T U BdpdpakoP G en, if more than one of the types in this list are not
belonging to an inheritance hierarchy then we conclude that an inheritance hierarchy
is missing.

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
68 / 168 "448&44.&15

.VMUJQBUI)JFWdBdsrivée Z list of the direct super classes of a class. We also
retrieve all the ancestors of all the parents. If there is any type in common between
these two lists, we conclude the presence of this smell.

SFCFMMJPVT) We 8hBck allitAe non-private methods in a class. If any method
is overridden and either the method is empty or has only throw statement, then we
detect this smell.

6 OGBDUPSFE) Y\ 8RA& thisAmell when we detect code clones in sibling types
(where the classes share super type).

8JEF)JF S B B/®dafmpute the nc (Number of Children) metric for each type. If the
value of the metric crosses a threshold (J EQ), we detect this smell.
%FUFDUJPO .FDIBOJTNGPS4VQQPSUFE *NQMFNFOUBU.

$PNQMFY $P O BEwWddieé i@ bnell when a conditional expression (in statements
such as J G R&l X | J)Mdve more than three sub-expressions separated by logical
operators.

$PNQMFY .F WeRdnNpute cyclomatic complexity [CK94] for all the methods. If
cyclomatic complexity of a method crosses the threshold (J B), the tool detects this
smell.

% V QM J D B UWhé&rPve ind duplicate code blocks within a method, we detect this
smell.

&NQUZ $BUD I Wivdet&t the smell when the try-catch statement has an empty
catch block.

-P OH *E F OWeadgtecsthis smell when the length of an identifer (J Focal variable,
parameter name, or a feld) is greater than a threshold (J BO).

-P OH . FU M amethod is longer than 1001oc, we tag the method with this smell.

-P OH 1B S BN F WHaSthadh&ving more than fve parameters, sufers from the long
parameter list smell.

-POH 4UBU KRKhE @A) fnds a statement larger (in terms of number of characters
including white-spaces) than a threshold (J EZ20), it detects this smell.

.BHJD /V N CIre$resence of a numeric literal (except 0 and 1) anywhere except as-
signment statements indicates this smell.

.JTTJOH % R® Betedd tdis smell when E F G BaseM bhissing in a switch case.

7JSUVBM .FUIPE $BMM G S AN $elDgEth detecRddy Sur implementa-
tion, when a constructor calls at least one virtual method.

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
69 /168 "448&44.&15

&WBMVBUJPO

We conducted a manual validation to establish the accuracy of the tool. We chose a project

% P U/F U0 Q F OftaitawdIFkSon open-source repository % P U/F U 0 G foxha/ U |
purpose. T e selected project contains 16;6631oc, 136types, and 7 components. We sought
help from two volunteers to carry out manual validation — one volunteer works in a sof-
ware development company (three years of industry experience) and another volunteer is a
PhD student with one year of industry experience. Both the volunteers did not work on the
analyzed repository in advance; however, they have hands-on experience on working with
complex industrial solutions and have a fair idea of sofware architecture and code smells.

We enforced the following protocol for the validation.

» Each volunteer carried out the initial manual analysis individually without discussing
it with another volunteer.

 Given their industry experience, they were aware of the basic concept of smells and
commonly known smells. Each volunteer picked all the considered design and archi-
tecture smells one by one and understood the semantics of the smell. We provided
additional material to make their learning faster.

* Both the individuals went through all the source code fles one by one patiently and
checked the existence of each smell.

» While identifying smells, they were allowed to use ide featuressuchas HP UP EF OJUJPO
and MJTU B M MaSnelGak adtrasiyéndrated from other tools.

» Once both the volunteers completed the analysis, we computed Cohen’s Kappa [Coh60]
to measure the mutual agreement between the volunteers’ fndings. We obtained
k = 0:33as the value of Cohen’s Kappa.

» Both the volunteers discussed their results, sorted out diferences, and prepared a
consolidated mutually agreed results. T e consolidated results had 52 design and 18
architecture smells.

* At this point, they used Designite and analyzed the considered project and obtained
a list of design and architecture smells.

» Tey compared the results obtained from the tool with their set of smells and tagged
them as true-positive, false-positive, and false-negative. During this categorization,
they observed that a subset of smells are identifed by the tool which were not re-
vealed by their manual analysis. T ey analyzed each of the smells in the subset and
categorized them as well similar to the rest of the smells.

Table 4.2 presents the result of the manual validation showing smell instances detected
by Designite and the consolidated set of smells identifed by the volunteers. T e table also

3JUUQT HJUIVC DPN %PU/FUOQFO"VUI %PU/FUOQFO"VUI

https://github.com/DotNetOpenAuth/DotNetOpenAuth

"I"-*1(130%6%$5*0/ $0% & '03 26" /5*5"5*7& ("F/5"x["#* -
70 /168 "448&44.&15

Table 4.2: Results of Manual Validation

n

cleNoNolleoNolleNoloNololelloleNollol =Wl P

Smells Designite Manual F
Broken Hierarchy 2 1
Broken Modularization 3
Cyclically-dependent Modularization 3
Duplicate Abstraction

Hub-like Modularization

Imperative Abstraction

Insufcient Modularization

Multipath Hierarchy

Rebellious Hierarchy

Unnecessary Abstraction 2
Unutilized Abstraction

Wide Hierarchy

Cyclic Dependency 1
Unstable Dependency

God Component

Feature Concentration

Scatered Functionality

Dense Structure

N
w
S

O O OO OO O NP OOOODODOOO O T

P WOk, PO, OMNPE OTO R O
P WOk, PO, OLWODNPE Ol ©O - O

shows number of false-positives and false-negatives that we found in this validation. Te
detailed report showing individual smells along with the names of component or class where
they occur and corresponding classifcation can be found online [Shal9d].

Interestingly, volunteers did not fnd all the legitimate smells manually; though, when
the tool reported these instances, they found these instances true-positive. Te highest
number of smells that were missed by the volunteersare DZDMJDBMMZ EFQFOEFOUNP
and DZDMJD E F @R Edh®G The volunteers found only unit-cycles J [Eycles
involving only two classes or components. However, the tool reported cycles with more
than one length. Volunteers verifed all of these non-unit cycles and found them as true-
positive. It implies that many smells go unnoticed even one actively looks for them; this
observation emphasizes the importance of using tools.

T e tool reported two false-positive instances of VOV UJM J[F E. Ba&hlobtBeBrD UJ P O
stances are reported for exception types J [Elasses that are used as custom exceptions.

T e tool could not resolve the instances of the types when they are thrown from a return
statement.

Te tool also fails to detect an instance of CS P LF O N P E \sMell. ST ®ludtee
classifed the smell because the class only has a few data members and an empty constructor.
However, due to the presence of the constructor, the tool did not identify the smell.

We compute precision and recall exhibit by the tool in the following way.

TP

Preciaion= 5 FP (4.4)

71/168 %&5&%$5*/(4.&--464*/(%&&L -&"3/*/

TP
Recall= TP+ EN (4.5)

Here, tp, fp, and fn refer to true-positive, false-positive, and false-negative instances.
Based on the above analysis, we obtain precision = 117=(117+ 4) = 96.6% and recall =
117=(117+ 1) = 99:1%.

%FUFDUJOHA4ANFMMT VTJOH %FFQ -FBSC

In this section, we discuss the implementation details of the experiment in which we at-
tempt to detect smells and explore the possibility of applying transfer-learning using deep
learning methods. It includes data curation process starting from downloading repositories,
detecting smells, generating positive and negative samples for training and evaluation of
the models, and tokenizing samples. Also, we elaborate on the architecture of deep learning
models.

%»BUB (FOFSBUJPO BOE $VSBUJPO

In this section, we elaborate on the process of generating training and evaluation samples
along with the tools used in the process. We download the C# and Java repositories and
detect smells in the repositories using Designite. Designite results are used as ground truth
for training as well evaluating the performance of the deep learning models. Further, we
split each individual method or class and classify them into either a positive or negative
sample based on the presence of the smell. Finally, we tokenize and preprocess each of the
sample to feed them to deep learning models.

%PXOMPBEJOH 3FQPTJUPSJFT

We use the following protocol to identify and download our subject systems.

» We download repositories containing C# and Java code from GitHub. We use RepoRe-
apers [MKCN17] to Fiter out low-quality repositories. RepoReapers analyzes GitHub
repositories and provides scores for eight dimensions of their quality. T ese dimen-
sions are architecture, community, continuous integration, documentation, history,
license, issues, and unit tests.

» We select all the repositories where at least six out of eight and seven out of eight Re-
poReapers’ dimensions have suitable scores for C# and Java repositories respectively.
We consider a score suitable if it has a value greater than zero.

» We ensure that RepoReapers results do not include forked repositories.

» We discard repositories with fewer than fve stars and less than 1;000 loc.

72 /168 %&5&%$5*/(4.&--464*/(%&&L -&"3/*/

* Following these criteria, we get a fltered list of 1;072C# and 2;528Java repositories.
We select 100repositories randomly from the Fltered list of Java repositories. Finally,
we download and analyze the 1;072C# and 100Java repositories.

ANFMM %FUFDUJPO

We use Designite to detect smells in C# code. Designite [SMT16, Shal6] is a sofware design
quality assessment tool for code writen in C#. It supports detection of eleven implementa-
tion, 19design, and seven architecture smells. It also provides commonly used code metrics
and other features such as trend analysis, code clone detection, and dependency structure
matrix to help developers assess the sofware quality. A free academic license of Designite
can be requested.

Similar to the C# version, we have developed DesigniteJava [Shal8c], which is an open-
source tool for analyzing and detecting smells in a Java codebase. T e tool supports detec-
tion of 17 design and ten implementation smells.

We use the console version of Designite (version 2:5:10) and DesigniteJava (version
1:1:0) to analyze C# and Java code respectively and detect the specifed design and im-
plementation smells in each of the downloaded repositories.

4QMJUUJOH $PEF'SBHNFOUT

CodeSplit is a set of two utility programs, one for each programming language, that split
methods or classes writen in C# and Java source code into individual fles. Hence, given
a C# or Java project, the utilities can parse the code correctly (using Roslyn for C# and
Eclipse jdt for Java), and emit the individual method or class fragments into separate fles
following hierarchical structure (J Ramespaces/packages becomes folders). CodeSplit for
Java is an open-source project that can be found on GitHub [Shal9b]. CodeSplit for C# can
be downloaded freely online [Shal9a].

(FOFSBUJOH5SBJOJOHBOE &&WBMVBUJPO %BUB

T e learning data generator requires information from two sources—a list of detected smells
for each analyzed repository and a path to the folder where the code fragments correspond-
ing to the repository are stored. Te program takes a method (or class in case of design
smells) at a time and checks whether the given smell has been detected in the method (or
class) by Designite. If the method (or class) sufers from the smell, the program puts the
code fragment into a “positive” folder corresponding to the smell otherwise into a “nega-
tive” folder.

5PLFOJ[JOH -FBSOJOH %BUB

Machine learning algorithms require the inputs to be given in a representation appropriate
for extracting the features of interest, given the problem in hand. For a multitude of ma-
chine learning tasks it is a common practice to convert data into numerical representations

73 /168 %&5&%$5*/(4.&--464*/(%&&L -&"3/*/

before feeding them to a machine learning algorithm. In the context of this study, we need
to convert source code into vectors of numbers honoring the language keywords and other
semantics. Tokenizer [Spil9] is an open-source tool that provides, among others, function-
ality for tokenizing source code elements into integers where diferent ranges of integers
map to diferent types of elements in source code. Figure 4.3 shows a small C# method
and corresponding tokens generated by Tokenizer. Currently, it supports six programming
languages, including C# and Java.

Figure 4.3: Tokens generated by Tokenizer for an example

%BUB 1SFQBSBUJPO

T e stored samples are read into O V N rays, preprocessed, and fltered. We frst perform
bare minimum preprocessing to clean the data—for both 1d and 2d samples, we scan all the
samples for each smell and remove duplicates if any exist.

We split the samples in the ratio of 70-30 for training; J F0% of the samples are used
for training a model while 30% samples are used for evaluation. We limit the maximum
number of positive/negative training samples to 5;000 T erefore, for instance, if negative
samples are more than 5; 000 we drop the rest of the samples. We perform model training
using balanced samples J Mkve balance the number of samples for training by choosing
the smaller number from the positive and negative sample count; we discard the remaining
training samples from the larger side. Table 4.3 presents an example of data preparation.

Table 4.3: Number of samples in each step of preparing input data

Initial samples 70-30 split Applying max limit Balancing

. Training 3,472 3,472 3,472
PosItive ¢\ 2 luation 4,961 1,489 1,489 1,489
. Training 122,936 5,000 3,472
Negative £ aluation 175,623 52,687 52,687 52,687

Each individual input instance, either a method in the case of implementation smells, or a
class in the case of design smells, is stored in the appropriate data structure depending upon

741168 %&5&%$5*/(4.&--464*/(%&&L -&"3/*/

the model that will use it. In 1d representation, each individual input instance is represented
by a fat 1d array of sequences of tokens, compatible for use with the rnn and the cnn-1d
models. In the 2d representation, each input instance is represented by a 2d array of tokens,
preserving the original statement-by-statement delineation of source code thus providing
the grid-like input format that is required by cnn-2d models. All the individual samples
are stored in a few Fles (where each fle size is approximately 50 mb) to optimize the 1/0
operations due to a large number of fles. We read all the samples intoa O V N &rdy and
we flter out the outliers. In particular, we compute the mean input size and discard all the
samples with length over one standard deviation away from the mean. T is Fltering helps
us keep the training set in reasonable bounds and avoids waste of memory and processing
resources. We pad the input array with zeros to the extent of the longest remaining input
in order to create vectors of uniform length and bring the data in the appropriate format for
using with the deep learning models. Finally, we shufe the array of input samples along
with its corresponding labels array.

"SDIJUFDUVSFPG %FFQ -FBSOJOH .PEFMT

In this section, we present the architecture of the neural network models that we use in this
study. Te Python implementation of the experiment using the Keras library can be found
online.*

chnn .PEFM

Figure 4.4 presents the architecture of cnn model used to detect smells. T is architecture
is inspired by typical cnn architectures used in image classifcation [KSH12] and consists
of a feature extraction part followed by a classifcation part. T e feature extraction part is
composed of an ensemble of layers, specifcally, convolution, batch normalization, and max
pooling layers. T is set of layers form the hidden layers of the architecture. T e convolution
layer performs convolution operations based on the specifed flter and kernel parameters
and computes accordingly the network weights to the next layer, whereas the max pooling
layer efectuates a reduction on the dimensionality of the feature space. Batch normalization
[IS15] mitigates the efects of varied input distributions for each training mini-batch, thus
optimizing training. In order to experiment with diferent confgurations, we use one, two,
and three hidden layers.

Te output of the last max pooling layer is connected to a dropout layer. Dropout per-
forms another type of regularization by ignoring some randomly selected nodes during
training in order to prevent over-fting [SHK™* 14]. In our experiments we set the dropout
rate for the layer to be equal to 0:1 which means that the nodes to be ignored are randomly
selected with probability 0:1.

T e output of the last dropout layer is fed into a densely connected classifer network
that consists of a stack of two dense layers. T ese classifers process 1d vectors, whereas the

AluuQT HJUIVC DPN UVTIBSUVTIBS %FFQ-FBSOJOH4NFMMT

https://github.com/tushartushar/DeepLearningSmells

75/ 168 %&5&%$5*/(4.&--464*/(%&&L -&"3/*/

incoming output from the last hidden layer is a 3D tensor (that corresponds to height and
width of an input sample, and channel; in this case, the number of channels is one). For this
reason, a Faten layer is used frst, to transform the data in the appropriate format before
feeding them to the frst dense layer with number of units =32unitsand S FdetiVation. T is
is followed by the second dense layer with one unitand T J H NaBtiv&ion. T is last dense
layer comprises the output layer and contains a single neuron in order to make predictions
on whether a given instance belongs to the positive or negative class in terms of the smell
under investigation. Te layer uses the sigmoid activation function in order to produce a
probability within the range of O to 1:

Figure 4.4 Architecture of employed cnn

We use dynamic batch size depending upon the size of samples to train. We divide the
training sample size by 512and use the result as the index to choose one of the items in the
possible batch size array (32, 64; 128 256). For instance, we use 32 as batch size when the
training sample size is 500and 256 when the training sample size is 200Q

T e hyper-parameters are set to diferent values in order to experiment with diferent
confgurations of the model. Table 4.4 lists all the diferent values chosen for the hyper-
parameters. We execute cnn models for 144 confgurations that result from generating
combinations of diferent values of hyper-parameters and number of repetitions of the set
of hidden units. We label each confguration between 1 and 144where confguration 1 refers
to number of repetitions of the set of hidden units = 1; number of flters = 8; kernel size = 5;
and pooling window size = 2: Similarly, confguration 144 refers to number of repetitions
of the set of hidden units = 3; number of flters = 64; kernel size = 11; and pooling window
size = 5: Both the 1d and 2d variants use the same architecture replacing the 2d version of
Keras layers for their 1d counterparts.

We ensure the best atainable performance and avoid over-fting by using FBSMZ TUPQ

76 /168 %&5&%$5*/(4.&--464*/(%&&L -&"3/*/

Table 4.4: Chosen values of hyper-parameters for the cnn model

JZQFS QBSBNFUFS 7TBMVFT
Filters in convolution layer {8, 16, 32, 64}
Kernel size in convolution layer {5, 7, 11}
Pooling window size in max pooling layer {2, 3, 4,5}
Maximum epochs 50

Q J°Quda regularization method. It implies that the model may reach a maximum of 50
epochs during training. However, if there is no improvement in the validation loss of the
trained model for fve consecutive epochs (since patience, a parameter to early stopping
mechanism, is set to fve), the training is interrupted. Along with it, we also use NP EF M
DIF DL @@FPedtaréthe best weights of the trained model.

For each experiment, we compute the following performance metrics — accuracy, roc-
auc (Receiver Operating Curve-Area Under Curve), precision, recall, F1, and average pre-
cision score. We also record the actual epoch count where the models stopped training
(due to early stopping). Afer we complete all the experiments with all the chosen hyper-
parameters, we choose the best performing confguration and the corresponding number of
epochs used by the experiment and retrain the model and record the fnal and best perfor-
mance of the model.

rnn .PEFM

Figure 4.5 presents the architecture of the employed rnn model which is inspired by state-
of-the-art models in natural language modeling that employ an Istm network as a recurrent
layer [SSN12]. T e model consists of an embedding layer followed by the feature learning
part — a hidden Istm layer. It is succeeded by the regularization (realized by a dropout
layer) and classifcation (consisting of a dense layer) part.

Figure 4.5: Architecture of employed RNN

T e embedding layer maps discrete tokens into compact dense vector representations.
One of the advantages of the Istm networks is that they can efectively handle sequences of

SluuQT LFSBT JP DBMMCBDLT

https://keras.io/callbacks/

771168 %&5&%$5*/(4.&--464*/(%&&L -&"3/*/

varying lengths. To this end, in order to avoid the noise produced by the padded zeros in the
input array, we setthe N B T L @#dfar8efer to 5 S Wrbvided by the Keras embedding layer
implementation. T us the padding is ignored and only the meaningful part of the input
data is taken into account. We set ES P QMiRIVAF D V S S F O par@rets £aD IRtvh Uayer
to 0:1. T e regular dropouts mask (or drop) network units at inputs and/or outputs whereas
recurrent dropouts drop the connections between the recurrent units along with dropping
units at inputs and/or outputs [GG15]. T e output from the embedding layer in fed into the
Istm layer, which in turn outputs to the dropout layer. As in the case of the cnn model,
we experiment for diferent depths of the rnn model by repeating multiple instances of the
hidden layer.

Te dropout layer uses a dropout rate equal to 0:2, which we empirically found efec-
tive for preventing over-training, yet conservative enough for avoiding under-training. Te
dense layer, which comprises the classifcation output layer, is confgured with one unit and
T J H NaBti¥&ion as in the case of the cnn model. Similarly to the cnn model, weuse FBS M Z
T U P Q(@ithOniaximum epochs = 50 and patience =2) and NPEFM D | F llbagke®. J O U
Also, we use the dynamic batch size selection as explained in the previous subsection.

We try diferent values for the model hyper-parameters. Table 4.5 presents diferent
values selected for each hyper-parameter. We measure the performance of the rnn model
in 18 confgurations by forming the combinations produced by the diferent chosen values
of hyper-parameters and the number of repetitions of the set of hidden units.

Table 4.5: Chosen values of hyper-parameters for the rnn model

J)ZQFS QBSBNFUFS ITBMVFT
Dimensionality of embedding layer {16, 32}
Istm units {32, 64, 128}
Maximum epochs 50

As described earlier, we pick the best performing hyper-parameters and number of
epochs and retrain the model to obtain the ¥nal and best performance of the model.

)BSEXBSF4QFDJQDBUJPO

We perform all the experiments on the super-computing facility ofered by grnet (Greek
Research and Technology Network). T e experiments were run on gpu nodes (NVidia K40).
Each gpu incorporate 2880 cuda cores. We request 1 gpu node with 64 gb of memory for
most of the experiments while submiting the job to the super computing facility. Some rnn
experiments require more memory to perform the training; we request 128 gb of memory
for them.

"IU- 1 ($0/'*(63"5*0/ $0% & '03 26"/5*5"5*¥ 7 & (KB KH[HX-*E
78 /168 "448&44.&15

"OBMZ[JOH$POQHVSBUJPO $PEFGPS %ol
UBJOBCJIJMJUZ "TTFTTNFOU

We discuss the protocol that we used to select and download repositories containing Puppet
code in this section. We also discuss the detection mechanism that we employ for detecting
confguration smells using our tool Puppeteer.

4FMFDUJOHBOE %PXOMPBEJOH 1VQQFU SFQP

We follow the procedure given below to select and download the repositories.

We employ GHTorrent [Goul3, GS12] to select GitHub repositories to download. T ere
are various options to choose from to select the subject systems such as number of commits
and commiters, stars, and number of relevant fles in the repository. Each of the options
(or their combinations) present diferent trade-ofs. For instance, there are only 838Puppet
repositories that have fve or more stars. We wanted to analyze larger number of repos-
itories to increase the generalizability of the observations. Reducing the number of stars
as a selection criterion would have resulted in more number of repositories; however, the
signifcance of the criterion would have reduced. A high number of commits in a repository
shows continuous evolution and thus we chose number of commits as the selection crite-
rion. We choose to download all the repositories where the number of commits was more
than or equal to 40: T e above criterion provide us a list of 5; 387 Puppet repositories to
download. We download 4; 621 repositories except some private ones.

Table 4.6 summarizes the characteristics of the downloaded repositories. We observed,
by random sampling, that the downloaded repositories were either standalone Puppet-only
repositories or system repositories (where production code as well as confguration code
has been put together into a repository).

Table 4.6: Characteristics of the Downloaded Repositories

"UUSJCVUFT 5PUBM DPVOU
Repositories 4,621
Puppet Fles 142,662
Class declarations 132,323
Defne declarations 39,263
File resources 117,286
Package resources 49,841
Service resources 18,737
Exec declarations 43,468

Lines of code (Puppet only) 8,948,611

We analyze the downloaded repositories to detect implementation and design confgu-
ration smells. We use Puppet-Lint [Pupl6c] tool to detect the majority of implementation
confguration smells. We execute the tool on all the repositories and store the generated

"IU- 1 ($0/'*(63"5*0/ $0% & '03 26"/5*5"5*¥ 7 & (KB KH[HX-*E
79/ 168 "448&44.&15

output. In addition to using Puppet-Lint, we write our custom rules to detect the implemen-
tation confguration smells that the tool was not detecting (for instance, DPNQMFY FYQSFTTJ
and JODPNQMFU F. /etdek dddrédat® tdvhumber of individual implementation
smells that occur in each repository using the generated output and our mapping of best
practices to the implementation smells (see Table 3.3).
We developed a tool, 1V Q Q Fdd IR0 detect design confguration smells listed in
Section 3.2.3.2. We discuss detection strategies of all the smells detected by Puppeteer in
the rest of the section. T e generated data by the tools mentioned above for both the smell
categories for all the analyzed repositories can be found online [Sha].

%FTJHO $POQHVSBUJPO 4ANFMMT - %FUFDUJPO

Tis section discusses detection strategies that Puppeteer uses to identify design confgura-
tion smells.

.VMUJGBDFUFE "OE dega&ibnsti&eqy for the two forms of the smell is as
followvs.

1. We compute a metric, ¢11ZTIJDBM SFTPVSDFT EF OFEf®FS SFTP\
each declared resource. We report the smell when the metric value is more than
one.

2. We compute lack of cohesion for the confguration abstractions to detect the
second form of the smell. In traditional sofware engineering, we use the lcom
(Lack of Cohesion Of Methods) [CK94] metric to compute lack of cohesion for
an abstraction. T e same metric cannot be used for confguration code due to
its diferent structure and characteristics. We use the following algorithm to
compute Icom in a confguration code abstraction.

(@) Consider each declared element (such as fle, package, service resources
and exec statements) as a node in a graph. Initially, the graph contains the
disconnected components (dc) equal to the number of elements.

(b) Identify the parameters of the abstraction, used variables, and literals (such
as fle name). Call them as data members collectively.

(c) For each data member, repeat the following: identify the components that
uses the data member. Merge the identifed components in a single compo-
nent.

(d) Compute Icom:

,-D%- if jDCj > 0

LCOM = (4.6)

"W AW 00

1 otherwise

Note that we compute Icom for each class, ‘defne’, and fle. Terefore, it is quite
possible that the tool reports more than one instance of this smell in a single Puppet
Tle.

"IU- 1 ($0/'*(63"5*0/ $0% & '03 26"/5*5"5*¥ 7 & (KB KH[HX-*E
80/ 168 "448&44.&15

6O0OOFDFTTBSZ " CWdrahipltd hiretélc namely ¢4J[F PG UIFBCTWSBDUJPO
zero value of the metric shows that the abstraction does not contain any declarations
and thus sufersfrom VOOFDFTTBSZ2nRICTUSBDUJPO

*NQFSBUJWF "C W &Biutd a Pétric namely ¢5PUBM ¢FYFDAnBEFDMBSB L
given abstraction. T e tool reportsthe JN Q F S B U J W FsiBe@ WhdrStBe2dstdal: O
tion has more than two ‘exec’ declarations and ratio of the ‘exec’ declarations against
all the elements in the abstraction is more than 20%

JTTJOH "CTU 9/8itenrihyddal number of confguration elements except classes
or defnes that are not encapsulated in a class or a ‘defne’. A module sufers from the
smell if there are more than two such elements in the module.

*OTVSDJFOU .PEV VIR SeldcHdn 3tPa@gy for the three forms of the smell is
as follows.

1. We count the number of classes and defnes declared in a Puppet fle. We report
the smell if a Fle defnes more than one class and ‘defne’.

2. We count the number of lines in an abstraction. If a class or ‘defne’ contains
more than 40 lines of code, it sufers from the smell.

3. We compute maximum nesting depth for an abstraction. An abstraction with
maximum nesting depth more than three sufers from this smell.

%V Q MJ D B U Wetubsé BhB imd-cpd [CPD16] tool to identify code clones. A module
sufers from this smell when a code clone of larger than 150tokens gets identifed in
the module.

#SPLFO)JF SB#&d Lz class defnitions, we identify the inherited class (if any).
If the inherited class is defned in any other module, the class sufers from “broken
hierarchy” smell.

6 OTUSVDUYVSF He Bekettibhtrategy for the three forms of the smell is as fol-
lows.

1. We search for a folder named “manifests” in the root folder of the repository. If
the total number of Puppet fles in the folder is more than fve while there is no
folder containing the string “modules”, the smell gets detected.

2. We Tnd a folder containing the string “modules” and treat all the sub-folders as
separate modules. Each module must have a folder named “manifests”. Absence
of the folder shows the presence of the smell.

3. In each module, we count the unexpected fles and folders. Expected fles and
folders are: “manifests”, “Fles”, “templates”, “lib”, “tests”, “spec”, “readme”, “li-
cense”, and “metadata”. A module with more than three such unexpected fles
or folders sufers from the smell.

81/168 - (%5 #"4& $0%& 03 /SR HX-*5:"44&44.&]

% FOTF 4 U SWdptdpar® &graph for each repository to detect the smell. Each module
is treated as a node and any reference from the module to another module is treated
as an edge. We, then compute average degree of the graph.

2| Ej

Vi 4.7

AvgDegreé€G) =

where jEj and jVj are number of edges and nodes respectively. A graph with an
average degree higher than 0.5 sufers from % FOTF TW®ANDUV SF

% FQDJFOU & O D B/exauvitvhB ruihBeof global variables declared for each node
declaration, followed by at least one include statement. If a node declaration has one
or more such global variables, the module sufersfrom EF DJFOU FOBDRIQTVMBUJP

SFBLFOFE .PEVW&E&WpUtZ NP EV M B S JBINELS] Bodehéh module as fol-

lows: _
CohesiofA)

Mod UlantyRatK(A) = (m

(4.8)

where, CohesiolfA) refers to the number of intra-module references and Coupling A)
refers to the number of inter-module references from module A. We report the smell
if the ratio is less than one.

"OBMZ[JOH%BUBCBTF$PEFGPS .BJOUB
NFOU

In this section, we discuss our method to select and mine repositories as well as the detection
strategies that we employ in our tool % C % F P

JOJOH3FQPTJUPSJFT
We used the following protocol to select the subject systems. We also illustrate the mecha-
nism that we employ in extracting sql statements and detecting smells.
4FMFDUJOH *OEVTUSJBM 3FQPTJUPSJFT

We approached two organizations sig (Sofware Improvement Group) and silo (Singular
Logic) and sought access to their (or their clients’) projects to analyze them. We analyzed a
total of 840projects that belong to various domains including banking, crm, and telecom.

4FMFDUJOHOQFO TPVSDF 3FQPTJUPSJFT

We employ RepoReapers [MKCN17] to select subject systems for the study. RepoReapers
provides assessment about GitHub open-source repositories on eight dimensions (architec-
ture, community, continuous integration, documentation, history, license, issues, and unit

82 /168 - (%5 #"4& $0%& 03 /SR HX-*5:"44&44.&]

tests) along with number of stars. We select all the 16;057 repositories that score greater
than zero for eight or nine dimensions. We download these repositories one by one, looked
for sql statements in each repository, and discard the repositories that does not have any
sql statements.

&EYUSBHULUBR FNFOUT

We use regular expressions to extract sql statements from the acquired repositories in % C
% F W/ implement a two-step process to extract sql statements. In the frst step, we use
relaxed regular expressions optimized for speed and in the second step we use stringent
regular expression optimized for correctness.

"OBMZ[JOHBOE %FUFDUJOH 4NFMMT

We fnd 357 industrial projects and 2;568 open-source projects that contained sql state-
ments. T en, we compute metrics such as the number of select, create table, and insert
statements as well as the number of fles belonging to each programming language and
corresponding total lines of code. Finally, we analyze all the sql statements from all the
repositories using our tool % C %dd-detect database schema smells. Te raw data gener-
ated by the tool can be accessed online [Shal8a].

Table 4.7 shows some characteristics of the analyzed repositories. On average, industrial
projects are 3:87 times bigger than open-source projects by loc (average loc for industrial
and open-source projects are 617,617 and 159, 328 respectively) and 5:05 times bigger by
number of sql statements (average number of sql statements for industrial and open-source
projects are 455and 90 respectively). Although, create table statements are the major
source of information to detect schema smells, many times other sgl statements are required
to detect these smells. For example, we require create table, create index, and select
statements in a repository to detect J O E F Y 8n€lINV T Erefore, we extract select, insert,
update, and create index statements also in addition to create table statements. We
analyze 393 989sql statements from 2; 925repositories (on average 135sql statements
per repository).

%C%FP BOE %FUFDUJPO 4USBUFHJFT GPS %BU

We developed % C %-FdR open-source database smell detection tool [Shal8b]. Te tool
has a meta-model generator component that uses the third-party library SQLParse® to parse
sqgl statements and prepare a meta-model. T e meta-model component defnes abstractions
such as $ S F B U F 5 BaBdVFBAQWNA FU$ Ehtorgdrres them in a hierarchical structure.
For instance, a $S F B U F 5 Babjbttrcdritahéla list of 5B C M F $ BbjctsN Mese ab-
stractions contain information about the parsed sql statements. For example, one of the
atributes belongingto $SFB U F5 BCWHU B M &P M V T &smélCiete: ol fodule
in turn uses the meta-model to detect database schema smells.

Shtps://github.com/andialbrecht/sqlparse

83 /168 - (%5 #"4& $0%& 03 /SR HX-*5:"44&44.&]

Table 4.7: Characteristics of the analyzed industrial (1) as well as open-source (OSS) reposi-
tories

"UUSJCVUFT * 044
Initial set of repositories 840 16,057
Repositories with sql statements 357 2,568
Files 2,559,984 3,297,932
Lines of code (source code only) 220,489,273 409,155,497
select statements 51,652 74,096
create table statements 18,907 50,682
insert statements 74,416 66,830
update statements 10,454 29,002
create index statements 7,152 10,798

In the rest of this section, we discuss detection strategies employed by % C %d-detect
database smells.

$PNQPVOE BUWSIddk¥oUgatern-matching expressions in an sql query. In a
select statement, we check the presence of regex in a where clause. We inquire
whether a comma is used to separate values that are inserted against an atribute
using an insert statement. For update statements, we check the use of a comma in
the set clause.

"E KB D F O D/ Mok Toda foreign key constraint referring to an atribute in the same
table.

.FUBE B U B BWeHoBWfd a schema defnition containing only three atributes. We
detect the smell if we fnd two of the atributes, among three, of type varchar.

.VMUJ DPMVNO BA&JbeSkitiaz\gcea for a patern € B G S CAMwhEre N is
a number. We detect this smell in the table, if the schema has more than one atribute
that matches with the above patern.

$MP O F U B/Echeeknll the schema defnitions within a database for apatern €« 5BCMF
O B N E /where N is a number. We conclude that a database has this smell when the
database has two or more tables matching with the above patern.

7TBMVFT JO BUUSJC W\ &eteckE tQe@nidll ByPciecking the schema for “enum”
or “check” where the construct imposes a restriction on the possible values that can
be entered for an atribute.

*OEFY BCYTTFJOH JONE KI¥ETY this variant of the smell when there exists at
least one table and the number of indexes in the database are zero.

*OTVIDJF O U dodmdaly &/ailable database vendors support creating indexes
for primary keys implicitly. We look for missing indexes for foreign keys to detect
this smell variant.

84 /168 - (%5 #"4& $0%& 03 /SR HX-*5:"44&44.&]

6 OV TFE JOWHdeRtiTy this variant when the indexed atributes don’t appear
in any query.

(P E U B @Wldeunt the total number of atributes defned in a schema defnition. Te
table sufers from this smell if the number of atributes defned in the table crosses a
threshold (currently we use 10 atributes as a threshold).

OWFSMPBEFE BUU SVeGddraH tBeBtribultes and their properties in schema
defnitions. If we fnd two or more atributes that have an identical name but defned
as diferent data types, we report this smell.

We also considered detecting the remaining four smells automatically. However, we
found it technically challenging to detect them automatically with high accuracy. For in-
stance, TVQF S V Ravi Theldétected automatically if we have both the database schema
and the data. However, devising heuristics without looking into data is prone to high false-
positives.

"DDVSBDZ PG %C%FP

We selected ten repositories randomly, performed each step listed in Section 4.4.1 (J EXx-
tract sgl code, compute basic metrics, and detect smells) on these repositories, and analyzed
the output of each step.

"DDVSBDZPGUBBFNFOUT &YUSBDUJPO

An sqgl statement may appear in host source code either independently (in separate fles)
or embedded in the host source code. Majority of the times, an embedded sql statement
receives some or all arguments dynamically by the host code. Tis property, along with
diverse vendor-specifc syntax of sql statements, makes it difcult to cover all forms of sql
statements and extract them accurately using regular expressions. Brink F U [BIM/07] also
reveals challenges in separating embedded sql statements from host source code consid-
ering possible variations in host programming language and vendor specifc sql syntaxes.
Given the importance of the extracted sgl statements’ quality and associated challenges,
we frst assess the quality of the extracted sql statements.

As mentioned earlier, % C %eRiRcts sql statements in two steps. In the frst step, it
extracts the sql statements embedded in the source code using generic regular expressions.
Te tool employs a few heuristics and stringent regular expressions in the second step. Te
second step is rigorous and relatively more time consuming. Extracting potential sql state-
ments in the frst step and then cleanse them gives us performance without compromising
on the quality of the extracted statements.

We manually analyzed all the statements in the selected ten repositories and classifed
them either as an sql statement, or as an incomplete sql statement, an extraneous sql
statement, or a non-sql statement. An extraneous sql statement has valid sql statement

85/ 168 - (%5 #"4& $0%& 03 /SR HX-*5:"44&44.&]

followed by extraneous text or code that is not part of the sql statement but was matched
by the used regular expression.

Table 4.8 shows the performance of the sql statement extraction process. We found
two incomplete and two non-sqgl statements in the extracted statements. One of the incom-
plete sql statementsis $3&"5& 5"# x&x.yyy (...). Similarly, one of the non-sqgl statements
IS 4&-&$ANGE '30. ARCHIVE.. Te statement is writen as a comment but fulfls sql
grammar and thus gets extracted by the tool.

Table 4.8: Performance of the sql extraction process

Total sgl statements 818
Incomplete sgl statements 2
Extraneous sqgl statements 0
Non-sql statements 2

"DDVSBDZ PG 4NFMM %FUFDUJPO

We detect database smells in all the ten repositories using % C % RP then verify each
detected smell manually to measure the accuracy of the tool. Table 4.9 shows the total
number of detected instances for each smell as well as the identifed false-positive instances.

Table 4.9: Detected smells and identifed false-positives

ANFMMT *OTUB({ ANFMMT *OTUBODFT
Compound atribute 4 (0) | Adjacency list 0(0)

God table 26 (0) | Values in atribute defnition 0(0)
Metadata as data 3(0) | Multicolumn atribute 15 (0)

Clone table 23 (0) | Overloaded atribute name 26 (2)

Index abuse 30 (0)

As the table shows, we identifed two false-positive instances in detected smells. Te
Trst false-positive instance of PWFSMPBEF E B Gntell G Yourid i© 8éNfbllbwing
create table statement (shown partially).

$38&"58& 5" #-®rl_nonce’ (1id* */5UNSIGNED AUTO_INCREMENT /0 /6-- 13*."3: ,&:,
7 ‘nonce’ $)"3(64) /05 /6--,

T e tool detects the smell because the employed parser interprets “*’ as the name of an
atribute and the tool found another such atribute defned as diferent type in a diferent
table. However, a manual inspection reveals that this sql statement exists in a repository
writen mainly in C. T e above sql statement appears in a comment and the parser used in
the tool does not diferentiate comments from the rest of the code. Similarly, the source of
another false-positive is also a misinterpretation by the parser. Apart from these instances,
we fnd other detected instances as genuine cases of schema smells.

$IBQUFS

SFTVMUT BOE %JTDVTTJPO

KFQSPDFTTPGHFGIJOHSFTVMUTJT NPSF
JUTFMG

In this chapter, we elaborate on the results that we obtained from our experiments and
our documented observations. We present results from our maintainability analysis on C#,
confguration, and database code as well as from our exploration on applying deep learning
to detect code smells.

SFTVMUT PG .BJOUBJOBCJMJUZ "OBMZ"
$PEF

Tis section presents the results gathered from the maintainability analysis that we carried
out for C# repositories and our observations X Seddh research question addressed.

1 32 8IBUJT UIF EJTUSJCVUJPO PG JNQMFENF
BOEBSDIJUFDUVSF TNFMMTJO $ DPEF

"QQSPBDI
We compute the total number of detected smells for all the smells belonging to implemen-
tation, design, and architecture smell categories.

3FTVMUT

Tables 5.1, 5.2, and 5.3 list the total number of instances detected for each smell. From the
implementation smells side, NBHJD O 8N P H T Udd.ite MbsOftdquently oc-

curring smells. On the other hand, WJSUVBM NFUIP E D B Mltht [BaStBdsuRiRgO TUS VD U
implementation smell.

86

87 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

We observe that analyzed C# code on average contains one magic number per 16lines
of code. It is surprizing to see a large number of N B HJ D O IS despite the fact
that Designite excludes literals 0 and 1 while detecting the smell.

At design granularity, DZDMJD EFQF O E F Cabd VFOBAUM B1S) FEEURERRBU SBD U J P
most frequently occurring smells. On the other hand, % F F Q | J FiStBeSdast Accurring
design smell.
Interestingly, EV Q M J D B U Fifo@etite Bt fréduéntly occurring design smells
but EV Q M JD B bre d tReéast frequently occurring implementation smells. It is be-
cause the scope of the two smells difers signifcantly; clones belongingto EVQMJDBUF BCTUS
U J &t€r anywhere in a project (but not in the same method) while clones belonging to
EV QMJD anlyectuPviEathin a method.

Table 5.1: Distribution of Implementation Smells

*NQMFNFOUBUJPO TNF *OTUB!' 4NFMM EFOTJUZ

Complex Conditional 21,643 0.4389
Complex Method 95,244 1.9317
Duplicate Code 17,921 0.3634
Empty Catch Block 14,560 0.2953
Long Identifer 7,741 0.1570
Long Method 17,521 0.3553
Long Parameter List 79,899 1.6205
Long Statement 462,491 9.3805
Magic Number 2,993,353 60.7130
Missing Default 23,497 0.4765
Virtual Method Call from Constructor 4,545 0.0921

Table 5.3 lists the total number of architecture smells in all the analyzed repositories.
Te table reveals that the DZD M JD E HQe@BsEf@duéhtly occurring architecture
smell followedby GFB UV S F D Pso@ FODd p&éhtinlreaéon forthe DZDMJIJD EFQFOEFO
to occur in a high volume is the permutations of the cycles due to one dependency that is
mainly responsible for introducing a cycle. For instance, assume we have three components
A B, and C with the following dependencies: A depends on B, A depends on C, B depends
on A, and C depends on B. Now, since B depends on A, not only the tool will detect a cyclic
dependency between component A and B, but also another cycle among A, B, and C.

Te EFOTF T Un®eNHadbatisdetected the least number of times among the detected
smells. T is can mainly be atributed to the fact that, by defnition, the smell can be detected
at most once in a repository while all other architecture smells can be spoted multiple times
in a repository. Te smell has been detected in only approximately 10% of the analyzed
repositories. We observed that the median of loc computed for all the analyzed repositories
is 4;3915 while it is 29;147.5 for the repositories where the smell has been detected. It
clearly indicates that the smell is more prone to occur in large repositories. However, the

88 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

Table 5.2: Number of detected instances and smell density (per kloc) of design smells in the
analyzed repositories

%FTJHO TNFMM *OTUB' ANFMM EFOTJUZ
Cyclically-dependent Modularization 193,188 2.3238
Unutilized Abstraction 182,638 2.1969
Duplicate Abstraction 118,429 1.4245
Unnecessary Abstraction 89,340 1.0746
Defcient Encapsulation 57,606 0.6929
Insucient Modularization 35,595 0.4282
Broken Modularization 32,154 0.3868
Broken Hierarchy 29,668 0.3569
Unfactored Hierarchy 25,352 0.3049
Rebellious Hierarchy 23,371 0.2811
Imperative Abstraction 18,640 0.2242
Unexploited Encapsulation 11,299 0.1359
Cyclic Hierarchy 6,736 0.0810
Wide Hierarchy 4,838 0.0582
Multipath Hierarchy 3,359 0.0404
Missing Hierarchy 2,688 0.0323
Multifaceted Abstraction 2,104 0.0253
Hub-like Modularization 1,468 0.0177
Deep Hierarchy 286 0.0034

Table 5.3: Number of detected instances and smell density (per kloc) of architecture smells
in the analyzed repositories

"SDIJUFDUVSFE *OTUB' 4ANFMM EFOTJUZ

Cyclic Dependency 34556 0.4157
Feature Concentration 17420 0.2095
Scatered Functionality 11623 0.1398
Unstable Dependency 10195 0.1226
God Component 4774 0.0574
Ambiguous Interface 852 0.0102
Dense Structure 302 0.0036

large size of a repository is not the only deciding factor. We fnd that 364 repositories
are larger than the median loc 29;147:5 where the smell does not occur. It implies that
evolution of a sofware focused on quality may result in maintainable sofware systems.

Both GFBUV SF D P @tRrehitddt8rB grahBl@ity) and NVMUJGBDFURE BCTUS
(at design granularity) capture the cohesion aspect. It is surprising to note that the
GFBUVSF DPmélfcusSmeng gferOat architecture granularity (23% of the
components) than its design granularity counterpart— NVMUJGBDFU BB CTUSBDU

89 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

of all the types). T is clearly indicates that components are more prone to violate the
single responsibility principle than the classes at design granularity. T erefore the
sofware developers must pay atention to the component composition and cohesion
when they extend the component.

1 32 %P UIFEFUFDUFE TNFMMJOTUBODEFT CFI
HSBOVMBSJUJFT DPSSFMBUF

"QQSPBDI

We compute the total instances of implementation, design, and architecture smells in each
repository. We then compute the Spearman correlation coe¥cient between the detected
instances of implementation and design smells. Similarly, we fnd the Spearman correla-
tion between the sums of detected architecture and design smells. Further, we compute
the Spearman coefcient between the individual pairs of architecture and design smells to
observe the fne-grain correlation.

SFTVMUT

Figure 5.1a presents a scater graph showing the co-occurrence between total instances of
detected implementation and design smells. T e Spearman correlation coefcient between
implementation and design smell instances detected is 0:78059(with p-value < 2:2e 16).

It shows that high volume of design (or implementation) smells is a strong indication
of the presence of high volume of implementation (or design) smells in a C# project.

Similarly, the number of detected instances of architecture and design smells exhibit
a high correlation coefcient (r) value of 0:86787(with p-value <2:2e 16). Figure 5.1b
shows a scater plot between total detected instances of architecture and design smells in
each repository. SJT JOEJDBUFT UIBU BSDIJUFDUVSF TNFMMT FYIJCJ
DPSSFMBUJPO XJUI Elreiehbk, Gt dal e Mhfdriled that a large population of
design smell instances present in a repository indicates the presence of a high number of
architecture smell instances and vice-versa. T ese observations might encourage a sofware
developer to fnd and refactor architecture smells when she fnds a large number of design
smells in her sofware system.

To fnd deeper and more fne-grained relationships, we compute Spearman correlation
coefcients between individual types of design smells and architecture smells. Figure 5.2
presents Spearman correlation coe¥cient values for all 133architecture-design smell pairs
in a heatmap. T e darker color of a cell in the heatmap shows stronger correlation. A cell
with coefcient in the red color shows statistical insignifcant values (p-value greater than
or equal to 0:005).

T e heatmaps in Fgure 5.2 show both the Spearman and Pearson correlation coe fcient
values for all 133architecture-design smell pairs. T e darker color of a cell in the heatmap

90/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

(@) Co-occurrence between detected imple- (b) Co-occurrence between detected design
mentation and design smells and architecture smells

Figure 5.1: Scater plots showing co-occurrence between smells in two granularities

shows stronger correlation. A cell with coe®cient in the red color shows statistically in-
signifcant values (p-value greater than or equal to 0:005).
Te correlation coefcient values show almost no correlation between individual ar-
chitecture and design smells. Te highest correlation shown by the smell pair VOVUJMJ[FE
BCTUSBOGBEBOVSF DPOD GZ)ULSB ¢dddba@on results are inline with the
results presented by Macia F U[BIGP* 12] where they found that 60%of the automatically
detected code smells are not correlated with architecture smells.

L/

T e correlation analysis presented in this research question reveals that cumulatively
design and architecture smells show a very strong correlation. However, fne-grain
correlation analysis suggests that both the kinds of smells are not correlated and do
not follow a monotonic relationship.

132 *TUIFQSJODJQMFPGDPFYJTUFODF BQUC
$ QSPKFDUT

"QQSPBDI

We compute the average intra-category co-occurrence for each smell. Co-occurrence is
commonly used in bio-geography; we use the co-occurrence index used by Connor F U [B348].
T e following equation computes the co-occurrence coeFcient C between smells s1 and s2.

nl n2

C(sl;2) = N

(5.1)

91/168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

Figure 5.2: Correlation between individual architecture and design smells

Here, nl and n2 are the number of detected instances of smells s1 and s2 respectively. N is
the total number of detected smells in the repository.

SFTVMUT

Figures 5.3, 5.4, and 5.5 present the average co-occurrence for each smell for all the three

smell categories. $Z D M JD E FSQdwOtkethighiasfand EF O T F T WHewshe NVt

co-occurrence in the architecture smells category. For the design smells category, DZDMJDBMM Z
EFQFOEFOU N Paad/ VBRI [B RéSHBh®Té Ztrongest and weakest intra-category
co-occurrence. Similarly, fgure 5.5 showsthat NBHJD ON@WRSUVBM NFUIPE DBMN
D P O T UeShibid tidhighest and lowest co-occurrence respectively in the implementation

smells category.

It implies that whenever DZDMJD EFQEODEMBOBMMZ EFQFOBIHOU NPEV
N BHJD O IS &&found in C# code, it is more likely to nd other smells from

92 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

Figure 5.3: Average co-occurrence (intra-category) for architecture smells

Figure 5.4. Average co-occurrence (intra-category) for design smells

the same smell category in the project. On the other hand, the smells EFOTF TUSVDUVSHF
EFFQIJF&8WIDSUVBM NFUIPE DB btoarGh&e®inddpan@itiy SMDUP S

Co-occurrence of implementation smells (Fgure 5.5) shows a large variation due to the huge
diference in the number of detected instances for each smell in the category.

1 32 %YPFTTNFMMEFOTJUZEFQFOEPOUIFTIJ]
JUPSZ

"QQSPBDI

We compute smell density for implementation, design, and architecture smells for all the
analyzed repositories. We draw scater plots between lines of code in a repository and the
corresponding smell density for all the three smell categories. We also compute correlation

93/168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

Figure 5.5: Average co-occurrence (intra-category) for implementation smells

coefcients for implementation, design, and architecture smell density and the repository
size (in terms of loc).

SFTVMUT

Figure 5.6 shows the distribution of smell density for implementation, design, and archi-
tecture smells against lines of code. A visual inspection of the above plots shows that the
distribution of implementation as well as architecture smell density is more scatered and
random than the distribution of design smell density. We compute the Spearman correla-
tion coefcient between smell densities for all the three categories and loc. T e analysis
reports 0:2780Q 0:25426 and 0:37476as correlation coefcient (p-value < 2:2e 16)
X Simplementation, design, and architecture smell density respectively. T e results show
a weak positive correlation for implementation smell density and weak negative correlation
for design smell density with size of the project.

Given the low values for both the coe®cients, the size of the project has low impact
on the number of design and implementation smells. Architecture smell density ex-
hibits moderate positive correlation indicating that the number of architecture smells
increases as the size of the project grows.

132 "SFBSDIJUFDUVSFTNFMMTDPMMPDBUFI

"QQSPBDI

T e architecture and design smells difer in granularity, hence they get reported in a set of
components and a set of classes, respectively. To analyze whether both kinds of smells are
collocated, we identify a set of Q B S U JD J Q B fdrJeach a2t&ure biell. A partic-
ipating class contributes non-trivially to the occurrence of an architecture smell instance.

94 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

Figure 5.6: Smell density for implementation, design, and architecture smells against lines
of code

Specifcally, a design smell instance D and architecture smell instance A are considered to
be “collocated” if a class reported by the instance D participates in the A instance.

We create a table containing all the classes belonging to all the analyzed repositories
with their corresponding total architecture and design smell instances. We create 2 2
contingency matrices for both the smell categories and compute the phi-coe®cient. Phi-
coefcient, or mean square contingency coefcient, measures the degree of association be-
tween two binary variables. We perform the analysis for cumulative instances of both smell
categories as well as 133 individual smell pairs. Naturally, the frequencies of architecture
and design smell instances are not same due to the diference in the granularity and scale;

95/168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

thus the instances of architecture smells are signifcantly lower than those of design smells.
We have to normalize both numbers for semantically correct analysis and therefore we nor-
malize the number of design smells by multiplying the ratio of the specifc design and ar-
chitecture smell.

Table 5.4: Contingency matrix for a design and architecture smell

Design smell
1 0
Architecture smell é a z

Table 5.4 shows the contingency matrix for a design and architecture smell pair. Te
values of variables B CanD Eare used to compute phi-coefcient. However, as described
above, we normalize the number of design smells instances (J F). D

0 Number of architecture smells
c=c - (5.2)
Number of design smells

We compute the phi-coe¥cient using the following equation.

. a d & d

“ParD (@rd (@9 (br) 3)

.FDIBOJTNUPJOGFSQBSUJDJQBUJOHDMBTTFT

To fnd out the collocation between architecture and design smell instances, we identify
participating classes for each architecture smell. A participating class contributes to the
architecture smell non-trivially. We formulated and implemented the following heuristics
to infer participating classes for each architecture smell.

$ZDMJID EF @dr €aéhRdenfited cycle, we fnd the classes (belonging to each
component contributing to the formation of the cycle) that participate in the cycle.
We include all these classes to the participating classes list.

*« 60TUBCMF EH nelEEcOr®vichen a component depends on another com-
ponent which is less stable than itself. In this case, all the classes that refer to classes
of a less stable component are the participating classes for this smell.

* "NCJIJHVPVT J\WkeUddtest@B $nEll when a component has only one public or
internal method. We assign as the class responsible for the architecture smell the one
that has the public or internal method.

* (PE DPNQH® ta dketects two variants of this smell. First, using loc-based
detection where the loc of the component crosses a threshold and second, using noc
(Number of Classes)-based detection where the number of classes in the component
crosses a threshold.

96 / 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

For the frst smell variant, we sort the classes in a component by loc in descending
order. Ten, we add classes from this list to the participating classes list one by one
until the remaining size of the component becomes smaller than the threshold used for
the smell detection. For the other variant, we choose the smallest classes (by number
of methods) in the component assuming that these classes ofer less functionality than
the rest of the classes in the component. We select classes one by one in increasing
order and add them to the list of participating classes until the remaining size of the
component (in terms of number of classes) becomes smaller than the used threshold.

* '"FBUVSF D P OWdderddt3He emkeP 6y inferring a dependency graph for each
component. We nd the size of disconnected sub-graphs within a component and sort
them in ascending order. We add all the classes belonging to the sub-graphs to the
participating classes list starting from the smallest sub-graph until the remaining sub-
graphs show smaller Icc (Lack of Component Cohesion) than the selected threshold.

« 4DBGF SFE G VIohiusinellOcRdsed ddatered in multiple components realize
the same architectural concern. We identify these classes and tag them as participat-
ing for this architecture smell.

* %FOTF T WE\nettheSépendency graph of the sofware, measure the degree
of each component (which is the number of other components the component refers
to), and sort them by decreasing degree. We add components one by one from this
sorted list to the participating components until the cumulative degree of remaining
components becomes smaller than the threshold used for detecting this smell. We
include all the classes belonging to the identifed responsible components that refer
to classes belonging to other components.

SFTVMUT
We found that cumulative collocation between architecture and design is low based on the
computed phi-coefcient = 0:32 We also computed phi-coe¥cients for individual architec-
ture and design smell pairs. Figure 5.7 shows collocation analysis heatmap of architecture
and design smells. Each cell shows the computed phi-coe¥cient between an architecture-
design smell pair.
Te phi-coeFcient between GFBUVSF DPODDOVY¥OVSESBVMIFE B@VItHsSBDUJIPO
highest collocation. T is collocation makes sense because the presence of one or more unuti-
lized abstractions increase the value of Icc for a component. T is increased value of Icc in
turn leads to feature concentration smell as discussed in detection mechanism for the smell
(Section 4.1.2.2).
Along the expected lines, DZDMJDBMMZ EFQF Odesigd mdllBHew MIB SJ[BUJP C
tively higher collocation with D Z D M J D E Fa@hitéatire SnBlIZ T e smell also collocate
with TDB G FSF E G \ad EW DPTO-BINGEHdtury ssElls. $Z2DMJID EFQFOEFODZ I
V M B S 48wkl Bs both the architecture smells share the common characteristics J F
coupling. It is understandable that presence of one of these smells indicates the presence of
other related smells.

97 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

Figure 5.7: Collocation analysis between architecture and design smells

T e majority of the collocation coefcients shows very low or no collocation among
the smell pairs suggesting that the majority of the architecture and design smells do
not collocate with each other.

1 32 $BO UIF SFGBDUPSJOH PG EFTJHO TNFMI
DIJUFDUVSF TNFMMT

"QQSPBDI
To further expand the analysis exploring the relationship between architecture and design
smells, we examine the impact of design smell refactorings on architecture smells.

In order to perform this analysis, we need to obtain the refactored state of the project
where all detected design smells are eliminated. It is prohibitively expensive to carry out
refactoring for all detected design smells for a large number of projects either manually or
automatically. T ere are numerous refactoring techniques that can be applied to refactor
a smell [SSS14] based on the context; the present set of tools cannot adopt an appropriate
refactoring automatically. T ough it would be ideal to refactor all the projects to measure

98 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

the impact of the refactoring, given the above challenges it is not feasible. To overcome the
challenge, we simulate the refactored state in which we assume that all the design smells are
refactored. We proposea U I F P S F U JibvihMh@vBriap & set of design smells that may
impact the existence of an architecture smell, derive a set of D P O T F RoV¥ the&CaBiied
refactoring applied to remove each design smell instance, and B O B NhZ ¢dele again to de-
tect the architecture smell instance considering the corresponding discovered consequences.

We illustrate the mechanism described above with the help of an examplefor DZDMJD EF
Q F O E BEréhidezture smell. Our theoretical base is that refactoringpa DZDMJD EFQFOEFO
N P E VM B S3dighradd @ay lead to the removal of a DZD M JD E @kt OD Z
smell. To nd out whether the refactoringofa DZDMJD EFQFOEFOBZINREVMBSJ]|
movesa D ZD M J D E R@hiétdre mEllAve frst £nd out the consequences of refactor-
ing an instanceofa DZDMJD EF QF O EF O BnelNT &cdrisegugnt¢ Bfthd Refac-
toring is the removal of a dependency (say between X and Y classes) among all the classes
that participate in the cycle. Ten, we detectthe D ZD M J D E RaQHitéatdre smEllAagain,
this time considering that there is no dependency between classes X and Y. If the design
smell refactoring removes the dependency that was causing the architecture smell, then the
refactoring has an impact on the corresponding architecture smell.

We implement an extension of Designite to carry out the simulation. T e extension
processes the smell information generated by Designite, uses the mapping defned in this
section, and computes the potential infuences of design smell refactorings on architecture
smells. We simulate the refactoring separately for each architecture smell. We compare the
number of architecture smell instances before and afer the refactoring.

1PUFOUJBM JORVFODFTPGEFTJHO TNFMM SFGBDUPSJOH PO E
We outline the theoretical basis in the form of potential infuences of design smells refac-

toring corresponding to each architecture smell and mechanism to derive consequences of

design smells refactoring in the subsection below.

* $ZDMJID % F QéfaCt&iRgaDYZDMJID EFQF O EF Qlésigd BntieNmwbip SJ[B U J P (
infuence the occurrences of a DZD M J D E R@ltertfe il We fgure out
the number of participating componentsina DZDMJD EFQFOEFQeINPEVMBS.
instance. If the number of participating components are more than one, then the
design smell may impact DZD M JD E FQdH h&dne@D Zo know whether the
refactoring of an instanceofa DZDMJD EFQF O E F @bhdveR dny DI B3N [BUB P O
Q F O E $n@IDvite follow the following heuristicc A DZDMJD EFQFOEFOU NPEVN
is removed when one of the dependencies in the cycle is removed. If classes A, B, and
C form a cycle then the smell DZDMJD EFQFOEFQWI hoRdagéM®BsSII [BUJP O
we remove a dependency (for instance C! A). In this case, we need to check if the
same class (say C) is present inthe D ZD M JD E R@t&thre @BIE If C is the
only class from its component in the cycle and has only one dependency to one of the
involved components, thenthe D ZD M J D E Rartexttre nBllAvill be removed
by refactoringthe DZDMJD EFQFOEFQGRINPEVMBSJ[BUJPO

* 60TUBCMF E Refadtailig AI0DVAJ J M J [F EnBaZiffuefdd thdbdcBr@nces

99 /168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

of this architecture smell. To know whether refactoring of an instance of VOVUJMJ[FE
BCTU SmBniedtheOV O T U B C M F BriRel), wOrecen@piéthe instability met-

ric for each component afer removing classes sufering from VOVUJMJ[FE BCTUSBI
smells.

e "NCJHVPVT JWadurireSoes BILBAN C J H V P V Tnda@ddtinF@riddd By refac-
toring the VOV U JM J[F E d3sipyin $n8IB \vd thdelkOnvhether the class responsi-
ble for the architecture smell is unutilized to fnd whether refactoring an instance of
VOVUJIMJI[F E en@VettiB\DAJIPBC M F BREQ.FOEFODZ

« (PE DPN Q Rtdst@lance, one may think that refactoring JOTV!DJFOU NPEVMB
J [B Undaly i@fuence the occurrence of HP E D P N @¢hileet@dsmell. However,
refactoring JOTV!DJFOU N P Boeshid $ldyf B kdlé mQhis context because
when one refactors it, the refactoring may reduce the size of the class but one has
to move the remaining functionality to another (possibly in a new) class. Hence, in
most cases component size does not change and there is no infuenceon HPE DPNQP
O F sinell.

Carrying out refactoring for the VOV U JM J [F E @i &nsSIBniayidhpact the

occurrences of HP E D P N.Gét @hé&1tst(loc-based) variant, we subtract the loc

associated with V OV U J M J [F EcB$Ses i thB@rpanPndand check the new loc

of the component against the corresponding threshold. For other (noc — Number of

Classes) variant, we reduce the number of classes suferingfrom VOVUJMJ[FE BCTUSBI
and detect the smell again.

* 'FBUVSF DPO RefaCidsiSgBVYO N O I M J [F E Bay TnBusriddDthkJdete-
tion of the GFB UV SF D P #chitec@uk Sreell. JTB ®nd whether refactoring an
instance of VOV UJM J[F E iBnbVed &y iDstaidce @ the GFBUVSF DPODFOUS|
smell, we recompute pcc afer removing the classes sufering from VOVUJMJ[FEBCTUS
UJPO

* 4DBGFSFE GVRdtbdyOBIM/ILIAM J [F E rBag Se&inSdiDfuehde e
detection of the TD B G F S F E G \A©hindotdre smBlIMHbWeXrer, if the class is not
used then it cannot participate in this architecture smell. T erefore, no refactoring of
any design smell is expected to infuence the occurrence of this architecture smell.

* %WFOTF TUBGWrenSeofthe EF O T F T WdiShutdatury/sg &l may get infu-
enced by the refactoring of the VOV U JM J [F E d8siyiT 4h&IBTD 6ndl Eh®impact
on the occurrence of a specifc instance, we recompute the average degree of all the
components afer removing classes sufering from VOVUJMJ[FE ®Cch&diSBDUJP O
whetherthe EF O TF T Wrell ilUpéISists.

SFTVMUT
We employ the extension of Designite that implement the mechanism described above to fg-
ure out potential infuences of design smells refactoring on architecture smells. We perform

100/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

the analysis using the extension and detect architecture smells in the same set of repositories
while taking the consequences of the design smells refactoring into consideration. Table 5.5
shows the number of architecture smells detected before and afer the refactoring simula-
tion for design smells. Figure 5.8 shows the percentage of architecture smells removed afer
the design smells refactoring.

Table 5.5: Architecture smell instances detected before and afer the refactoring simulation
for design smells

"SDIJUFDUVSFE *OTUBODFT *OTUBODFT B,FS

Cyclic Dependency 34556 29573
Unstable Dependency 10195 9431
Ambiguous Interface 852 599
God Component 4774 3235
Feature Concentration 17420 13301
Scatered Functionality 11623 11623
Dense Structure 302 284

Figure 5.8: Removed architecture smells (in percentages) afer simulating design smells
refactoring

(PE DPNQaAOBFRUIHYV PV T atddhd m&GFeRced architecture smells —
this indicates that refactoring design smells removes these two smells signifcantly. On the
other hand, there is no impact of design smells refactoringon TDBGFSFE G\a@DUJPOBM
there is a litle impact on instancesof EFOTF TUSVDUVSF
T e results of this exploration are inline with the collocation analysis. Te colloca-
tion analysis shows high collocationfor GFBUV SF D P(O&DF @ B E BPNEBYP FO U
and BNCJHVPVT(O:D)IHE @BV P JMJ[F E dsiyi $h8lBHehkd, Pe@ctoring
V OV UJMJ|F El&dctd rensoiimy thdse Bree architecture smells as shown in the anal-
ysis presented in this section. Similarly, DZD M JD E RQIFEOFEFTOFDZLAISoexhibiv S F
high collocation with DZDMJDBMMZ EF Q F O(B:83paud NVFOEAMMI BIS] FEEURI®@ DU S B [

(0:27).

101/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

0/ With this exploration, we observe that refactoring smells at design granularity may
remove smells at architecture granularity to a degree as high as one third of the smells
(in case of HP E D P N)Q HAdwEver,Wbur exploration also leads to another impor-
tant observation — refactoring smells is important at all granularities; design smells
refactoring may remove some instances of architecture smells but a large number of
architecture smells remain even afer all the design smells are refactored.

%JTDVTTJPOBOE *NQMJDBUJPOT

In this section, we extend our discussion on the smell relationships explored in this work.
We also include implications for the sofware development community.

%JTDVTTJIPO

We examine the collocation relationship between architecture and design smells; the results
show that they exhibit selective collocation. It implies that though architecture smells arise
from code and implementation choices made during the sofware development, their causal
domain is larger and they have their individuality diferent from smells at design granularity.
We explore correlations between architecture and design smells cumulatively as well
as between individual pairs. Very high correlations may indicate that a given smell is
TV QFS. Wdr¥xample, tracking humans’ lef-eye and right-eye colors will show an
extremely high correlation between the two, and consequently storing only eye color is
enough. Although, our analysis shows very strong correlation between the two kinds of
smells when considered cumulatively, we observed almost no correlation for the individual
smell pairs. Tis result demonstrates that each smell provides value-adding information.
Furthermore, interestingly, even the similar smells at diferent granularities do not show
strong correlation. Five architecture smells have corresponding similar smells at design
granularity; it means that these smells represent and capture the same concept at diferent
granularities. T ese smell pairs with their corresponding correlationsare DZDMJD EFQFOEFO
— DZDMJD EFQFOEFQrU=NRZE \GCNFBEMVBHU DPONVOIUSBBDFOQFE BCTL
UJPG 0, TDBGFSFE GWVOOYRIPEMB MB H ¥ M-B SA(8 HFPEODPNQPOFOU
—JOTV!IDIJFOU NPE¥NMBY AIBRINBOHVPVTIONRESBOFWF BCTUSB
(r = 0:03). Te almost no correlation outlines the non-monotonic relationship between
these smell pairs and further emphasize the individuality of these smells.

»

w *NQMJIDBUJPOTPGOVS 'JOEJOHT
We infer the following implications for the sofware development community.
Sofware development teams must detect, analyze, and refactor smells at all gran-
ularities. Tis implication is derived from our correlation analysis for smells arising
at diferent granularities. Our results show that the presence of high volume of de-

7 >0
N/

102/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*40/130%6%$5*0/ $0

sign smells indicates presence of high number of architecture smells and vice versa.
Existing tools (such as NDepend Band Sonar@Qbe “mainly detect implementation and
some design issues. Due to this limitation, a sofware development team using these
tools perceives only a limited set of quality issues and thus issues at higher granulari-
ties go unnoticed. Furthermore, we observed that a signifcant amount of architecture
smells persists even if all the detected design smells were refactored. T is result also
emphasizes the importance of detecting and refactoring smells at all granularities.

T e sofware development community must avoid cycles among classes as well as
among components to keep structure of the sofware easy to understand. Our results
show that cyclic dependencies at both design and architecture granularities occur the
most in open-source C# repositories. Higher number of cycles in a sofware introduce
tangles and make the sofware difcult to comprehend.

Sofware development teams must pay more atention to their code quality as size
of their sofware grows. Tis implication is derived from our analysis in which we
Tnd that architecture smell density tends to increase as the sofware grows. Actively
used sofware systems grow; however, whether the sofware evolves by keeping the
focus on code quality defnes maintainability of the sofware. For example, in our
analysis, EFOTF T W8l Ddyd be&hdetected in only approximately 10% of the
analyzed repositories. We observed that the median of loc computed for all the ana-
lyzed repositories is 4; 3915 while it is 29;147.5 for the repositories where the smell
has been detected. It clearly indicates that the smell is more prone to occur in large
repositories. However, the large size of a repository is not the only deciding factor.
We fgure out that 364repositories are larger than the median loc 29; 147:5 where the
smell does not occur. It implies that evolution of a sofware focused on quality may
result in a maintainable sofware system.

BIUUQ XXX OEFQFOE DPN
QUUQT XXX TPOBSRVCF PSH

4FDPOEBSZG6TFTPGUIJT 8PSL

We have added support to detect seven architecture smells in Designite. T e sofware de-
velopment community may use the tool to analyze their source code and improve main-
tainability of their code. T e research community may utilize the tool to carry out studies
concerning code smells. Te tool is available online [Shal6] and free for all academic pur-
poses.

Smells mining dataset is the basis of the research questions addressed in this work. Te
dataset contains all the supported implementation, design, and architecture smells detected
in 3,209 open-source repositories. We have made the dataset available online [Shal9c]. Te
sofware engineering research community may utilize it in many ways including bench-
marking and comparison as well as exploring other dimensions of source code with smells.

http://www.ndepend.com/
https://www.sonarqube.org/

103/ 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

SFTVMUT PG %FUFDUJOH ANFMMT VTJO

In this section, we elaborate on the results of our experiments exploring the application of
deep learning methods for smell detection and present our observations.

% 32 *TIJUQPTTIJCMF UP VTF EFFQ MFBSOJO'
DPEFTNFMMT *G ZFT XIJDIEFFQMFBSOJOH NF
QFSJPS

"QQSPBDI

We prepare the input samples as described in Section 4.2.1. Table 5.6 presents the number

of positive and negative samples used for each smell for training and evaluation; cnn-1d

and rnn use 1d samples and cnn-2d uses 2d samples. As mentioned earlier, we train our

models with the same number of positive and negative samples. Sample sizefor NVMUJGBDFUFE
B CTU SB& W9 daAdizierably low compared to other smells because each sample in this

smell is a class (other smells use method fragments). T e one-dimensional sample counts are

diferent from their two-dimensional counterparts because we apply additional constraint

for outlier exclusion, on permissible height, in addition to the width.

Table 5.6: Number of positive (P) and negative (N) samples used for training and evaluation
for RQ1

cnn-1d and rnn cnn-2d
Training Evaluation Training Evaluation
pandn p n| pandn p n
cm 3472 1,489 51,926 2,641 1132 45204
ecb 1,200 515 52,900 982 422 45915
mn 5000 5,901 47514 5000 5,002 41,334
ma 290 125 22,727 284 122 17,362
SFTVMUT

Figure 5.9 presents the performance (F1) of the models for the considered smells for all the

confgurations that we experimented with. T e results from each model perspective show

that performance of the models varies depending on the smell under analysis. Another

observation from the trendlines shown in the plots is that performance of the convolution

models remains more or less stable and unchanged for diferent confgurations while rnn

exhibits beter performance as the complexity of the model increases exceptfor NVMUJGBDFUFE
BCTUS®#BIUW PPlies that the hyper-parameters that we experimented with do not

play a very signifcant role for convolution models.

Figure 5.10 presents the boxplots comparing for each smell performance of all trained
models, under all confgurations. For D P N Q M F Y sidH Wadth Eonvolution models out-
perform the rnn. In between the convolution models, overall the various confgurations
of the cnn-1d model appear accumulated around the mean, whereas cnn-2d shows higher

104/ 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

(a) Performance of CNN-1D (b) Performance of CNN-2D

(c) Performance of RNN

Figure 5.9: Scater plots of the performance (F1) exhibit by the considered deep learning
models along with their corresponding trendline

variance among the F1 scores obtained at diferent confgurations. T ough, cnn-1d shows

lower variance, the model has higher number of outliers compared to cnn-2d model. rnn

model performs signifcantly superior compared to convolution models for FNQU Z DBUDII

C M Bnizll with an F1 score of 0:22 versus 0:04 and 0:02 achieved by cnn-1d and cnn-

2d respectively; the performance of the model, however, shows a wide variation depending

on the chosen hyper-parameters. For N B H J D O 8hdICrRaSt of the rnn confgurations

do beter than the best of the convolution-based confgurations. rnn exhibits a very high

variance in the performance compared to convolution models for NVMUJGBDFUFE BCTU S
smell.

Equipped with experiment results, we atempt to validate the hypotheses. We present
auc, precision, recall, and F1 to show the performance of the analyzed deep learning models.
We atempt to validate each of the addressed hypotheses in the rest of the section.

105/ 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

(@) Complex method (b) Empty catch block

(c) Magic number (d) Multifaceted abstraction

Figure 5.10: Boxplots of the performance (F1) exhibit by the considered deep learning models
for all the four smells

% 32) *UJTGFBTJCMFUPEFUFDUTNFMMT VTJOH EFF

Table 5.7 lists performance metrics (auc, precision, recall, and F1) for the optimal confg-
uration for each smell, comparing all three deep learning models. It also lists the hyper-
parameters associated with the optimal confguration for each smell. Figure 5.11 presents
the performance (F1) of the deep learning models corresponding to each smell considered
in this exploration.

For D P N Q M F YsiNeH, @i El performs the best; though, performance of cnn-1d is
comparable. Tis could be an implication of the fact that the smell is exhibited through the
structure of a method; hence, cnn models, in this case, could identify the related structural
features for classifying the smells correctly. On the other hand, cnn models perform signif-
icantly poorer than rnn in identifying FN Q U Z D B WiBelllCMdXmdll is characterized
by a micro-structure where catch block of a try-catch statement is empty. rnn model iden-
tifes the sequence of tokens (J Bpening and closing braces), following the tokens of a try
block, whereas cnn models fail to achieve that and thus rnn performs signifcantly beter
than the cnn models. Also, the rnn model performs remarkably beter than cnn models for

NBHJD O ShiNIC A8 smell is characterized by a specifc range of tokens and the rnn
does well in spoting them. . VMU J G B D F U FigaBdD-Trlvi&l Bni2lUtaP réquires anal-
ysis of method interactions to observe incohesiveness of a class. None of the employed deep
learning models could capture the complex characteristics of the smell, implying that the

106 / 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

Table 5.7: Performance of all three models with confguration corresponding to the optimal
performance. L refers to deep learning layers, F refers to number of flters, K refers to kernel
size, MPW refers to maximum pooling window size, ED refers to embedding dimension,
LSTM refers to number of LSTM units, and E refers to number of epochs.

Performance Confguration
Smells AUC Precision Recall F1 |1 f k mpw ed Istm e
cm 0.82 0.26 069 0382 16 7 4 - - 25
cnn-1d ech 0.59 0.02 031 0042 64 11 4 - - 40
mn 0.68 0.18 077 0292 16 5 5 - - 17
ma 0.83 0.05 075 0093 16 11 5 - - 36
cm 0.82 0.30 068 0413 64 5 4 - - 17
cnn-2d ech 0.50 0.01 1 0023 64 7 2 - - 32
mn 0.65 0.31 041 0351 16 11 2 - - 50
ma 0.87 0.03 095 0062 8 7 2 - - 19
cm 0.85 0.19 080 0313 — - 16 32 8
nn ecb 0.86 0.13 076 022 2 - - 16 128 15
mn 0.91 0.55 091 068 |2 — - 16 128 19
ma 0.69 0.01 086 002 1 — - 32 128 9

Figure 5.11: Comparative performance of the deep learning models for each considered
smell

token—level representation of the data may not be appropriate for capturing higher—level
features required for detecting the smell. It is evident from the above discussion that all the
employed models are capable of detecting smells in general; however, their smell-specifc
performances difer signifcantly.

T erefore, the hypothesis exploring the feasibility of detecting smells using deep learn-
ing models holds true.

107/ 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

% 32 ¥nn-2d QFSGPSNT CFahrEHISIOIBIF DPOUFYU PG EFUFD
TNFMMT

Table 5.7 shows that cnn-1d performs beter than cnn-2d model for FNQU Z DB lmil CMPDL
NV MUJG B D F U BrielB @ithd@idd ddrfguation. On the other hand, cnn-2d per-

forms slightly beter than its one dimension counterpart for detecting DPNQMF YahNdFU I P E
NBHJD O selS. Aissummary, there is no universal superior model for detecting all

four smells; their performance varies depending on the smell under analysis.

Terefore, we reject the hypothesis that cnn-2d performs overall beter than cnn-1d
as none of the models is clearly superior to another in all the cases.

% 32 Yynn NPEFM QFSGPSNTc@FMFERMBAQO UIF TNFMM EF
UJPODPOUFYU

Table 5.8 presents the comparison of rnn with cnn-1d and cnn-2d by comparing pairwise

F1 measure diferences in percentages, where the F1 values are obtained by the optimal
confguration in each case. Here, the performance diference in percentage is calculated

by (F1Irnn Flenn)=F1rnn 100 rnn performs far superior for FNQU Z DB lmdl CMPDL
NBHJD O NI &&nst both convolution models. However, the performance of rnn

islowerfor DPNQMF YahdFNUOVRID JGBDFUBERIBCTUSBDUJPO

Table 5.8: Performance (F1) comparison of RNN with CNN-1D and CNN-2D

Smell | rnnvs cnn-1d rnnvs cnn-2d
cm -22.94% -33.81%
ecb 80.23% 91.94%
mn 57.19% 48.48%
ma -353.15% -208.00%

T e analysis suggests that performance of the deep learning models is smell-specifc.
Terefore, we reject the hypothesis that rnn models perform beter than cnn models
for all considered smells.

& *NQMJIJDBUJPOT

| Tisis the frst atempt in the sofware engineering literature to show the feasibility of
detecting smells using deep learning models from the tokenized source code without
extensive feature engineering. It may motivate researchers and developers to explore
this direction and build over it. For instance, D P O pl&y¥ dd important role in de-
ciding whether a reported smell is actually a quality issue for the development team.
One of the future works that the community may explore is to combine the models

108 / 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

trained using samples classifed by the existing smell detection tools with the devel-
oper’s feedback to identify more relevant smells considering the context.

Our results show that, though both convolution methods perform superior for spe-
cifc smells, their performance is comparable for each smell. T'is imply that we may
use one-dimensional or two-dimensional cnn interchangeably without compromising
the performance signifcantly.

T e comparative results on applying diverse deep learning models for detecting
diferent types of smells suggest that there exists no universal optimal model for de-
tecting all smells under consideration. T e performance of the model is highly depen-
dent on the kind of smell that the model is trying to classify. T is observation provides
grounds for further investigation, encouraging the sofware engineering community
to propose improvements on smell-specifc deep learning models.

% 32 *TUSBOTGFS MFBSOJOH GFBTJCMF JO |
JOHTNFMMT *G ZFT XIJDIEFFQ MFBSOJOH NP
SIPSQFSGPSNBODFJOEFUFDUJOHTNFMMT XIF
MFBSOJOH TFUUJOH

We explore the feasibility of applying transfer-learning in smell detection context. Ifitis fea-
sible, we are interested to learn which deep learning model exhibits superior performance.

"QQSPBDI

In the case of direct-learning, the training and evaluation samples belong to the same pro-
gramming language whereas in the transfer-learning case, the training and evaluation sam-
ples come from two similar but diferent programming languages. T is research question
inquires the feasibility of applying transfer-learning J FEain neural networks by using C#
samples and employ the trained model to classify code fragments writen in Java.

For the transfer learning experiment we keep the training samples exactly the same as
the ones we used in RQ1. For evaluation, we download repositories containing Java source
code and preprocess the samples as described in Section 4.2.1. Similar to RQ1, evaluation is
performed on a realistic scenario, J ke use all the positive and negative samples from the
selected repositories. T is arrangement ensures that the models would perform as reported
if employed in a real-world application. Table 5.9 shows the number of samples used for
training and evaluation for this research question.

SFTVMUT

As an overview, Figure 5.12 shows the scater plots for each deep learning model comparing

the performance (F1) of both the direct-learning and transfer-learning for all the consid-

ered smells for all the confgurations. T ese plots outline the performance exhibited by the

models in both the cases with trend lines distinguishing the compared series. T e plots im-

ply that the models perform beter in the transfer-learning case for all except NVMUJGBDFUFE
B C T U Sdadigk shielD

109/ 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

(@) CNN-1D for DP N Q)FCKN-1D for FNQU Z @©EBNNDID for NBHJD OVNCFS
N F U Isdl C M BhiiL smell

(d) CNN-1D for NV MU J @B ICRN-EE for D P N QIMENK-2D for FNQUZ DBUDI
BCTUSEBIUJPO N F U sl C M BnizlL

(99 CNN-2D for NBHJD O MNGADBIRED for NVMUJG@BRNNUFBEDPNQMFY NFUIPE
smell BCTUS®EBIUJPO smell

() RNNfor FNQUZ DBUK) RENMfeDNBHJIJD OWMENBr NVMUJGBDFUFE BC
smell smell TUSBIMENIP O

Figure 5.12: Scater plots for each model and for each considered smell comparing F1 of
direct-learning and transfer-learning along with corresponding trendline

110/ 168

Table 5.9: Positive (P) and negative (N) number of samples used for training and evaluation

3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

for RQ2
1-d 2-d
Training Evaluation Training Evaluation
pandn p n| pandn p n
cm 3472 2,163 48,633 2,641 2001 30,215
ecb 1,200 597 50,199 982 538 31,678
mn 5000 42,037 50,905 5000 7,778 24,438
ma 290 25 13,110 284 23 11,812

In the rest of the section, we report quantitative results on applying transfer learning
between C# to Java. T e results are based on the optimal confguration of each model for
each smell.

% 32) *UJTGFBTJCMFUPBQQMZUSBOTGFS MFBSOJ
TNFMMT EFUFDUJPO

Table 5.10 presents the performance of the models for all the considered smells demonstrat-
ing strong evidence on the feasibility of applying transfer-learning for smell detection. Te
performance patern is in alignment to that in the direct-learning case; Spearman corre-
lation between the performance produced by direct-learning and transfer-learning is 0:98
(with p-value = 1:309 10 9).

T erefore, we accept the hypothesis that transfer-learning is feasible in the context of
code smells detection.

Figure 5.13: Comparative performance of the deep learning models for each considered
smell in transfer-learning setings

Figure 5.13 presents a comparison among the performance (J F1) exhibited by all the
deep learning models for each considered smell. rnn performs signifcantly superior for

111/ 168 3&46-540' %&5&$5*/(4.&--464%/(%&&1 -&"3

Table 5.10: Performance of all three models with confguration corresponding to the optimal
performance. L refers to deep learning layers, F refers to number of flters, K refers to kernel
size, MPW refers to maximum pooling window size, ED refers to embedding dimension,
LSTM refers to number of LSTM units, and E refers to number of epochs.

Performance Confguration
Smells AUC Precision Recall F1 |1 f k mpw ed Istm e
cm 0.87 0.38 079 0512 32 7 4 - - 23
cnn-1d ech 0.56 0.05 015 0083 8 5 5 - - 27
mn 0.64 0.48 037 0421 32 11 3 - - 12
ma 0.52 0.01 004 0022 8 11 5 - - 13
cm 0.88 0.43 08 0571 8 7 2 - - 37
cnn-2d ech 0.54 0.04 012 006 |3 16 5 4 - - 19
mn 0.65 0.43 054 048 |1 64 5 4 - - 8
ma 0.50 0.0 00 003 8 5 5 - - 17
cm 0.66 0.62 032 042 1 — - 32 64 8
nn ecb 0.90 0.09 091 016 | 3 - - 32 32 27
mn 0.95 0.94 091 092 1 — - 32 32 22
ma 0.51 0.0 008 001 — - 32 32 18

FNQUZ DB Wria INNBVHRI D LO 3miliS felBwing a trend comparable to direct-training.
For DP N Q M F Y shdHlchia2d performs the best followed by cnn-1d. All the three
models perform poorly with NVMUJGBDFUB®RIBCTUSBDUJPO

% 32) 5SBOTGFS MFBSOJOHQFSGPSNTJOGFSJPSDP
JOH

Figure 5.14: Comparison of performance of the deep learning models between direct-
learning (DL) and transfer-learning (TL) setings

Figure 5.14 compares the performance of the models at their optimal confgurations ap-

112/ 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

plied in the transfer-learning and in direct-learning. We observe that, in majority of cases,
transfer-learning performs beter than the corresponding direct-learning counterpart mod-
els. Teonly exception for implementation smellsis rnnappliedon FNQU Z DB WnllCMP DL
where direct-learning shows beter results. For the only designsmell, J F NVMUJGBDFUFE
T U S B &lliwha lailels perform poorly in both cases.
To dig deeper into the cause of beter performance of deep learning models in the
transfer-learning case, we calculate the ratio of positive and negative evaluation samples in
both research questions. Table 5.11 presents the ratio for samples used in both the research
questions as well as percentage diference of the ratios of positive and negative samples
in RQ2 compared to the sample ratio in RQ1. Te percentage diference is computed as
follows: (Raticrge Raticrgr)=Raticrgr 10Q It is evident that Java code samples have
higher ratio of positive samples, up to 188% higher, compared to C# samples for imple-
mentation smells. We deduce that due to signifcantly higher number of positive samples,
the deep learning models show beter performance statistics in the transfer-learning case.
On the other hand, NV M U J G B D F U BrielBoCclirs)sgyBitrahtlyPl@ver (up to 72%) in
Java code compared to C# code and this lower ratio further degrades the performance of the
modelsfor NVMUJGBDFUBRIBCTUSBDUJPO

Terefore, due to size discrepancies in the samples available for evaluation in direct-
learning and transfer-learning, we cannot conclude the superiority or inferiority of the
results produced by applying transfer-learning compared to those of direct-learning.

Table 5.11: Diference in ratio (in percent) of positive and negative evaluation samples in
RQ2 compared to sample ratio in RQ1

Ratio (RQ1) Ratio (RQ2) Diference %

Smell 1d 2d 1d 2d 1d 2d
cm 0.0287 0.0250 | 0.0445 0.0662 | 3553 62.19
ecb |0.0097 0.0092 | 0.0119 0.0170 | 1814 4588
mn 0.1242 0.1210 | 0.2084 0.3183 | 4040 61.98
ma 0.0055 0.0070 | 0.0019 0.0019 | -188.42 -260.87

*NQMJIDBUJPOT
Our results demonstrate that it is feasible to apply transfer-learning in the smell detec-
tion context. Exploiting this approach can lead to a new category of smell detection
tools, specifcally for the programming languages where comprehensive smell detec-
tion tools are not available.

113/ 168 3&46-540"' %&5&%$5*/(4.&--464*/(%&&1-&"3

%JTDVTTJPO

As is the case with most research, our results are sobering rather than sensational. Although
it is possible to detect some code smells using deep learning models, the method is by no
means universal, and the outcome is sensitive to the training set composition and the train-
ing time. In the rest of the section, we elaborate on these observations emerging from the
presented results.

*TUIFSFBOZTIJMWFS CVMMFU

In practical setings one would want to employ a universal deep learning model that per-
forms well for a variety of smells. In addition, a universal model architecture that performs
consistently well for all the considered smells would allow the implementation of tools sim-
pler.

rnn has the reputation to perform well with textual data and sequential paterns while
cnn is considered good for imaging data and visual paterns. Given the similarity of source
code and natural language, it is expected to obtain good performance from rnn. Our results
show that rnn signifcantly outperforms both cnn models in the casesof FNQUZ DBUDI CMPD
and NBHJD O.\HYUE¥SE in the case of D P N Q M F Y, tReFcdr Bhé&dels outperform
the rnn whereas in the case of NVM U J G B D F U FilenBd th&nsoBeB WieldPsatisfac-
tory results. T ese outcomes suggest that there is not one deep learning model that can
be used for all kinds of smells. We have a uniform model architecture for each model and
we observed that the performance of the model difers signifcantly for diferent smells. It
suggests that it is non-trivial, if not impossible, to propose a universal model architecture
that works for all smells. Each smell exhibits diverse distinctive features and hence their
detection mechanisms difer signifcantly. T erefore, given the nature of the problem, it is
unlikely that one universal model architecture will be the silver-bullet for the detection of
a wide range of smells.

1FSGPSNBODFDPNQBSJTPO XJUICBTFMJOF

It is not feasible to compare the results presented in this paper with other atempts [KVGS09,
KVGS11, MAB™ 12b, MAB™ 12a, BBEAM10, BKG19, FPRZ16] that use machine learning for
smell detection due to the following reasons. First, the replication packages of the related
atempts are not available. Second, for most of the existing atempts, the ratio of positive
and negative evaluation samples is not known; in the absence of this information, we cannot
compare them with our results fairly since the ratio plays an important role in the perfor-
mance of machine learning models. Furthermore, the existing approaches compute metrics
and feed them to machine learning models while we feed tokenized source code.

We compare our results with the results obtained from two baseline random classifers
that do not really learn from the data but use only the distribution of smells in the training
set to form their predictions. Table 5.12 presents the comparison. T e frst random classifer
generates predictions by following the training set’s class distribution: that is, for every item
in the evaluation set it predicts whether it is a smell or not based on the frequency of smells

114/ 168 3&46-540' %&5&$5*/(4.&--464%/(%&&1 -&"3

in the training data. We did that for both balanced and unbalanced evaluation samples to
mimic the learning process of the actual experiment. In the middle three columns, referred
toas‘rc G S F R Vdf thdxable we show the results for the balanced seting, as they were
beter than the results for the unbalanced seting. Te second random classifer predicts
always that a smell is present; this gives perfect recall, but low precision, as you can see in

the columns corresponding to ‘rc B M M T of Ehdtablg. Overall, our models perform far
beter than a random classifer for all but NV M U J G B D F U BielBfGr batiSiaselide] P O
variants.

Table 5.12: Comparison of performance (Precision, Recall, and F1) with a random classifer
(RC) following the training set frequencies or responding always indicating a smell

Performance

Our results RC (frequency) RC (all smells)

Smells P R Fl P R F1 P R Fl

cm 038 079 051|003 050 005|003 1 0.05

cnn-1d ech 0.05 015 0.08 | 0.01 050 0.2 001 1 0.02
mn 048 037 042|011 050 018|011 1 0.20

ma 0.01 0.04 002001 050 001|001 1 0.1

cm 043 0.84 057002 050 005|002 1 0.05

cnn-2d ecb 0.04 012 0.06 001 050 0.2 001 1 0.02
mn 043 054 048|011 050 018|011 1 0.19

ma 00 00 00 001 050 001001 1 0.01

cm 0.62 032 042 0.03 050 0.05|0.03 1 0.05

nn ech 0.09 091 0.16 001 050 0.02 001 1 0.02
mn 094 091 092011 050 018|011 1 0.20

ma 0.0 008 00001 050 001|001 1 o0.01

I1PPPSQFSGPSNBODFJO EFUFDUJOHBEFTJHO TNFMM

Te presented neural networks perform very poor when it comes to detecting the sole
design smell NV MU JG B D F U FW®eBn:il theSd@I®nihg BAO reasons for this under-
performance. First, design smellssuchas NV M U J G B D F U Rk iehedntlySiBFioult foP O
spot unless a deeper semantic analysis is performed. Specifcally, in thecaseof NVMUJGBDFUFE
B C T U S Biferactidh€among methods of a class as well as the member felds are required

to observe cohesion among the methods which is a non-trivial aspect and the neural net-
works could not spot this aspect with the provided input. T erefore, we need to provide
refned semantics information in the form of engineered features along with the source
code to help neural networks identify the inherent paterns. Second, the number of posi-
tive training samples were very low, thus signifcantly restricting our training set. Te low
number severely impacts the ability of neural networks to infer the responsible aspect that
cause the smell. Tis limitation can be addressed by increasing the number of repositories
under analysis.

115/ 168 3&46-540' %&5&$5*/(4.&--464%/(%&&1 -&"3

SSBEJOH QFSGPSNBODF XJUIUSBJOJOH UJNF

As observed in the results section, rnn performs signifcantly superior than cnn in some
specifc cases. However, we also note that rnn models take considerable more time to train
compared to cnn models. We log the time taken by each experiment for the comparison.
Table 5.13 presents the average time taken by each model for each smell per epoch. T e table
shows that the rnn performance is coming from much more intense processing compared
to cnn. T erefore, if the performance of rnn and cnn is comparable for a given task, one
should go with cnn-based solution for signifcantly faster training time.

Table 5.13: Average training-time taken by the models to train a single epoch in seconds

cnn-1d cnn-2d rnn
cm 1.2 1.0 2134
ecb 0.8 05 1,038
mn 3.2 39 5,737
ma 0.8 46 2,208

',
™

OQQPSUVOJUIFT

T e study may encourage the research community to explore the deep learning meth-
ods as a viable option for addressing the problem of smell detection. Given that we did
not consider the context and developers’ opinion on smells reported by deterministic
tools, it would be acutely interesting to combine these aspects either by considering
the developers’ opinion (by manually tagging the samples) while segregating positive
and negative samples or by designing the models that take such opinions as an input
to the model.

We have shown that transfer-learning is feasible in the context of code smells. Tis
result introduces new directions for automating smell detection which is particularly
useful for programming languages for which smell detection tools are either not avail-
able or not matured.

T ough this work shows the feasibility of detecting implementation smells; how-
ever, complex smells suchas NVMUJG B D F U FduBeJurttes &plddafiéh@nd
present many open research challenges. T e research community may build on the
results presented in this study and further explore optimizations to the presented mod-
els, alternative models, or innovative model architectures to address the detection of
complex design and architecture smells.

Beyond smell detection, proposing an appropriate refactoring to remove a smell is
a non-trivial challenge. Tere have been some atempts [TME* 18, BSH* 11] to sep-
arate refactoring changes from bug fxes and feature additions. One may exploit the
information produced from such tools and the power of deep learning methods to
construct tools that propose suitable refactoring mechanism.

116/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*4 0/ $0/'*(63"5*0/ $0Y¥

SFTVMUTPG .BJOUBJOBCJIJMJUZ"OBMZT
$PEF

Tis section presents the results gathered from the analysis of confguration code and our
observations X Sedch research question addressed.

We use the term “total detected smells (by volume)” to refer to all the smell instances
detected in a project. We use the term “total detected smells (by existence)” to refer to the
number of diferent types of smell instances detected in a project. Additionally, we refer to
each cataloged confguration smell as a three leter acronym as defned in the Section 3.2.3.

$ 32 8IBUJTUIFEJTUSJCVUJPO PG NBJOUBJC
DPOQHVSBUJPO DPEF

"QQSPBDI
We compute the total number of detected smell instances (by volume and by existence) for
all the smells belonging to both implementation and design confguration smells categories.

SFTVMUT
Telef pane of Table 5.14 shows the number of smell instances detected for implementation
confguration smells (ics) both by volume (i(v)) and by existence (i(e)). Te three most
frequently occurring smells by volume and by existence are ila (JINQSPQFS BMPHONFOU
(JNQSPQFS RMRIUS MPEOHHFT U BlthHady ided EV Q M J D BiondF(NO U BXOH
EFGBV)Mid DBDRP OTJTUF OU O B JobhéoDite (8ag¢ fre@uenili? docurring
smells.
Te right pane of Table 5.14 shows the similar distribution for detected design confgu-
ration smells (dcs). T e most frequently occurring design confguration smells are dim (J O
TVIDJFOU NP E)\aM BniFJ N\BAMIP G B D F U F- EnBILIY, thSIBaf fuedjireatly
occurring smellsaredoh (CSPLFO IJe8BEeDHE DJFOU FODBQTVMBUJPO
A few observations from the above table are the following.

» Tereisarelatively large number of smell instances reported forddb(EVQMJDBUF CMPD
by volume; however, the smell only occurs in less than one forth of the analyzed
repositories. SJT JOEJDBUFT UIBU FJUIFS UIF EFWFMPQFST PG
EPOPUEVQMIDBUF UIFDPEFBUBMMPSUIFZEP JUNBTTJW

 Although, investigating and establishing the potential reasons of identifed smell in-
stances is not in the scope of this study, the nascent maturity phase of current confg-
uration systems could be a cause for a few smells. Specifcally, the support for system
confguration code in terms of beter tools and IDEs is still maturing which could
potentially help avoiding smells suchasiia(JNQSPQFS BMJHONFOU

Te reported frequently occurring smells may also motivate eforts in the future to
identify their causes and steps to avoid them. Such eforts may focus on improving
existing documentation, enhancing language support, and developing new tools.

117/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*4 0/ $0/'*(63"5*0/ $0Y¥

Table 5.14: Distribution of Detected Implementation and Design Confguration Smells

*NQM DPOQH * 7 *& WFTIHODPOQ * 7 * &

TNFMMT
Missing default case 4,604 706 | Multifaceted 64,266 4,339
abstraction
Inconsistent naming 4,804 440 | Unnecessary 4,319 1,427
convention abstraction
Complex expression 3,994 963 | Imperative abstraction 4,354 1,575
Duplicate entity 65 29 | Missing abstraction 1,913 813
Misplaced atribute 22,976 1,383 | Insufcient 96,033 4,422

modularization
Improper alignment 780,265 3,064 | Unstructured module 4,653 3,337

Invalid property value 14,360 729 | Duplicate block 17,601 1,016

Incomplete tasks 11,071 1,467 | Broken hierarchy 83 37

Deprecated statement 6,466 674 | Dense structure 1760 1760

usage

Improper quote usage 428,951 2,463 | Defcient 1,075 424
encapsulation

Long statement 527,637 4,115 | Weakened modularity 13,944 2,890

Incomplete 4,797 1,217

conditional

Unguarded variable 71339 1,405

* It is interesting to note that dds (EFO TF T Yfally D thy I8ast occurring smell
category by volume but most frequently occurring smell category by existence. It is
due to the fact that there could be only one instance at the most for this smell in a
project.

dum (VO TU SV D UV aleoeexNiBitE siMlar characteristics. Since the tool ana-
lyzes the structure of a module as a whole, dum gets identifed at the most once for
a module. Since each project deals with only a limited number of modules, the de-
tected smell instances are relatively low whereas the smell occurred in relatively large
number of analyzed projects.

$ 32 8IBUJTUIFSFMBUJPOTIJQCFUXFFOUIFF
TIHO DPOQHVSBUJPO TNFMMT BOE JNQMFNFOL
TNFMMT

"QQSPBDI

We count the total number of implementation and design confguration smells for each Pup-
pet repository both by volume and by existence. Next, we compute Spearman correlation
coefcient between the counted implementation and design confguration smells for each
repository by volume and by existence.

118/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*4 0/ $0/'*(63"5*0/ $0Y¥

SFTVMUT

Figure 5.15a presents a scater graph (with alpha set to 0:3) showing the co-occurrence be-
tween implementation and design confguration smells by volume. T e fgure shows a dense
accumulation towards the lef-botom indicating that implementation and design confgu-
ration smells co-occur for relatively small number of identifed smell instances.

Figure 5.15b shows a density graph showing the co-occurrence between implementation
and design confguration smells by existence. T e fgure reveals a dense correlation between
implementation and design confguration smells (by existence) in the lef botom quadrant
of the Fgure where the number of identifed smell types is half or less.

(2) (b)

Figure 5.15: Co-occurrence between implementation and design confguration smells by (a)
volume and by (b) existence

We compute Spearman correlation coe®cient for both the cases. Table 5.15 shows the
correlation coeFcients and associated p-values. Both the analyses show positive correlation
between implementation and design confguration smells with high statistical signifcance;
however, correlation analysis by volume exhibits stronger correlation than correlation anal-
ysis by existence.

<

It shows that high volume of design (or implementation) confguration smells is a
strong indication of the presence of high volume of implementation (or design) confg-
uration smells in a project. Whereas, a project that shows presence of large number of
design (or implementation) confguration smell types moderately indicates presence
of large number of implementation (or design) confguration smell types.

$ 32 *TUIFQSJODJQMF PG DPFYJTUFODF BQC
DPOQHVSBUJPO QSPKFDUT

"QQSPBDI
To compute intra-category co-occurrence for a smell, we count the number of occurrences

119/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*4 0/ $0/'*(63"5*0/ $0Y¥

Table 5.15: Results of Correlation Analysis

$PSSFMBUJBOWBMVF
Analysis by volume 0.66410 <2.2e 16
Analysis by existence 0.44526 <2.2e 16

of other smells in the same category (by existence), only when the smell occurred. We
evaluate the average co-occurrence for each smell across all the repositories considering
only those values where the smell has occurred. We compute the average co-occurrence
for all the implementation and design confguration smells and compared their normalized
values.

SFTVMUT

Figure 5.16 presents the average co-occurrence computed for each smell for both the im-
plementation and design confguration smells. ide (EV Q M J D B With &veraged @75 and
I (JNQSPQFS RWrhJakeMde B:B9Fare the implementation confguration smells
that show the highest and lowest co-occurrences respectively in the category. In the design
confguration smells category, dbh (CSPLF O 1) wBHBageag@0:73and dim (JO T V!
DIJFOU NPEVMBSIA§ Briif] R @M U J G B D F U FtiBaRefageDBEshbwR1®
highest and lowest co-occurrences respectively.

Figure 5.16: Average co-occurrence (intra-category) for implementation and design confg-
uration smells

120/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*4 0/ $0/'*(63"5*0/ $0Y¥

Teresult implies that whenever EV Q M J D BoU € § PIUR@ EIsmE B é8eldund,
itisvery likely to fnd other smells from the same category in the project. Whereas, the
smells INQSPQFS Ran® UG MWI'BH F O U N P &duMB8 ihfigpehddntly.

Average normalized correlation for implementation and design confguration smells is
0:43and 0:47 respectively. T is leads to another interesting observation. EFTJHO DPOQHYV
SBUJPO TNFt3lITHRKS DP PDDVSSFODFBNPOHUIFNTFMWEFT U
NFOUBUJPO DPOQHYV SiBdd d desym addisidnMinTpacts the sofware in many
ways, it is believed that one wrong or non-optimal design decision introduces many quality
issues. T e statistics reported above a®rm the belief.

$ 32 %PFTTNFMMEFOTJUZEFQFOE PO UIF TJ
SBUJPO QSPKFDU

"QQSPBDI
We compute normalized smell density for both the smell categories for all the repositories
and plot scater graphs between lines of code in the repository and the smell density. We
then perform correlation analysis on both sets and document our observations based on the
received results.

SFTVMUT
Figure 5.17 presents the distribution of normalized smell density for implementation and
design confguration smells against lines of code (with alpha = 0:3).

(@) (b)

Figure 5.17: Smell density for (a) implementation confguration smells and (b) design con-
Tguration smells against lines of code

Te visual inspection of the above graphs reveals the following observations.

» Te distribution shown in Figure 5.17a is very scatered and random in comparison
with the distribution in the Figure 5.17b. Although, both the fgures show a weak

121/ 168 3&46-54 0" ."*/5"*["#*-*5:"["-:4*4 0/ $0/'*(63"5*0/ $0Y¥

linear relationship between smell density and lines of code, Figure 5.17a shows a rel-
atively stronger linear relationship than the Figure 5.17b.

* Large projects show maturity and tend to demonstrate lower smell density compared
to smaller projects in both the cases.

We, then, compute Spearman correlation coe®cient for both the data sets. T e results
of the correlation analysis are summarized in Table 5.16.

Table 5.16: Results of Correlation Analysis

$PSSFMBUJBOWBMVF
Implementation smells 0.03833 0.00980
Design smells -0.32851 <2.2e 16

Te results show no correlation between implementation smell density and size of
the project. However, a weak negative correlation is perceived with high statistical
signifcance between design smell density and the size of the project. T is shows that
as the project size increases, design confguration smell density tends to decrease. Tis
result is interesting since it is believed traditionally that the complexity (and therefore,
smell density) of a piece of sofware increases as the size of the sofware grows.

%JTDVTTJPO

Our empirical study reveals a large number of class declarations where the correspond-
ing defnitions are not found in the same repository. We fnd that 59% of the repositories
that we analyze have at least one such instance. T e majority of such missing defnitions
relate to third-party modules. A possible explanation is that sofware development teams
exclude third-party modules from their Puppet code under version control. Tis practice
provides the advantage of not having to maintain the used third-party modules as they
change. However, it breaks the fundamental principle of 1aC, i.e. production and confgura-
tion code should co-evolve. Such instances hurt the confguration process automation and
are bound to lead to trouble in the form of missing dependencies. More interestingly, the
Puppet language does not ofer any solution to this problem since module installation, as
opposed to package installation, cannot be part of a confguration code specifcation.

Yet another observation concerns language design (in this context Puppet). Diligent
use of language features and adherence to best practices can drastically reduce smells dis-
cussed in this work. However, careful language design can also signifcantly avoid many
confguration smells. For example, dua (VOOFDFTTBS Y ®KC(OBFELFOIRE SBSDI1Z
anddde (EF DJFOU F O)x& Qelcohitdbidd ditl @voided by suitable changes in the

122/ 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

Puppet language. Similarly, many implementation confguration smells such as iuv (V O
HVBSEFE WS BBTOMBD F FaBdddeJ EV Q M J D B thi ak®be checKed
at Puppet language level itself and can be avoided without any compromise in functionality
and convenience.

SFTVMUTPG .BJOUBJOBCJMJUZ"OBMZT

In this section, we frst present the results of a survey that we carried out to understand
developers’ perspective. We then present the results specifc to each addressed research
question. We also provide a discussion covering qualitative analysis and opportunities we
perceive from this work.

YWFWFMPQFSTY 4VSWFZ PO %BUBCBTFANFMMT

We carried out an online survey targeting sofware developers to understand their perspec-
tive about the signifcance of various database schema smells. We divided the survey in
three sections. In the frst section, we collected information about participants’ experience.
In the second section, we asked the participants to read the description of each potential
smell presented (total 13 questions based on the catalog presented in Section 3.2.4) and to
rate each of them based on their J N Q P S (B ediégree of smell’s association with sof-
ware quality issues), and VT F G \{ M @ @efree of accuracy of the smell in predicting
sofware quality issues). All the questions in this section were Likert scale questions. We
asked the respondents whether they consider the presented practice as a database schema
smell, a recommended practice, both a smell and a recommended practice depending on the
context, or neither a smell nor a recommended practice. T e third section presented a cou-
ple of open-ended questions to get participants’ view on the presented catalog and missing
database schema smells. T e questionnaire that we used is available online [Shal8a].

We ran a pilot for the survey, collected the feedback, and improved the survey. We
shared the survey to all online social media channels and sought participation from the
developer community. We received 52 complete responses out of 136total responses.

Figure 5.18: Experience of respondents in terms of number of years as well as the number
of database applications developed by them

123/ 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

Figure 5.19: Respondents’ perspective of considered database smells

Most of the respondents belong to experienced developer groups. Figure 5.18 shows the
distribution of respondents’ experience in terms of number of years and number of database
applications they have developed. We summarize our fndings from the survey below.

* A large majority of 88%agrees (42%strongly agree and 46%agree) that the aware-
ness and knowledge of database smells is crucial for sofware developers to develop
high quality applications. None of the respondents marked disagree or strongly dis-
agree options.

* Figure 5.19 shows a consolidated perspective provided by the respondents for section
2 questions. Based on the responses we infer that some practices,suchas NFBOJOHMFTT
OBN8&% and NJTTJOH D RGO%UagRIdgaDlyrmarked as database smells.
However, we found that practices suchas WBMVFT JO B G S hGiVBJEKEBBD POD ZP O
M &rE bhore context-sensitive.

» Te respondents had the option to add their views either in terms of smells that we
have not included but they have seen in practice as well as their feeling, objection,
or reservation on the presented smells. A few respondents underline the subjec-
tivity involved in database smell detection. For instance, one respondent said that
I"EBUBCBTF TNFMMT JO HFOFSBMEFQFOE NVDINPSF PO B(
VTF PG ESBriudl§y¬her respondent shared an instance of duplicating values
in a table (which is a smell) to avoid querying 60 tables to load a single record. Yet
another respondent provided his/her opinionon JOEFY 8€IV TFUIF QSPQFS VTF
PGJOEFYFTJTEFQFOEFOUPONBOZUIJOHTBOE XJUIPVU S
EFDJEF XIFUIFSJOEFYFTBSFBDUVBMMZ CFJOHNJTVTFE 8§

124/ 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

Q‘4VNNBSZPGUIFTVSWFZ
As a conclusion of our survey, developers seem to acknowledge the need for detecting

database smells. However, their systematic identifcation remains an open problem.
Tis points to the need for a tool that automatically detects the database smells. De-
velopers may then, considering the context of the smell, decide whether the detected
smells are indeed quality issues or serving a required purpose.

32 8IBUBSFUIFPDDVSSFODFQBUUFSOT P

"QQSPBDI

We use % C %d-detect 9 types of database schema smells in the 357 industrial and 2568
open-source repositories. We collate all the detected instances of smells by their type and
we compute average smell density for each type of smell.

SFTVMUT
Table 5.17 summarizes the detected instances of database schema smells and corresponding
average occurrences per repository in all the analyzed repositories.

Table 5.17: Occurrences of database schema smells for industry (1) as well as open-source
(OSS) repositories

ANFMMT ODDVSSF "WH TNFMMEFOTJUZ
| OSS I 0SS
Compound atribute 5517 7,966 0.04 0.04
Adjacency list 733 297 0.15 0.02
God table 4,428 5507 0.44 0.24
Values in atribute defnition 85 326 0.00 0.02
Metadata as data 944 1,003 0.16 0.09
Multi-column atribute 1,624 3,137 0.10 0.07
Clone table 101 3,704 0.00 0.05
Overloaded atribute names 1814 7,300 0.20 0.21
Index abuse 12,643 9,475 1.25 1.76

We make the following observations from the collected data in the context of this ques-
tion. We fndthat JOEFY B @&/nidst frequently occurring smell in both industrial as
well as open-source projects. However, it is interesting to note that although the number
of instances of J O E FY 8rElMaiiefhigher in industrial projects, they occur relatively less
frequently than open-source projects considering their density. On the other hand, WBMV F T
JO BG SJCVUiiBdustdal prdjét®and B E K B D Fi@ dpehIsbdrteyprojects are the
least frequently occurring smells.

In industrial projects, some smells show signifcantly higher proneness to occur com-
pared to open-source projects. For instance, smell density of B E K B D F $onBll4s lepproxd
imately seven times higher in industrial projects than the open-source projects. A potential

125/ 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

reason of the observation is the higher size and complexity of the industrial projects. On the
other hand, D M P O RetdI8tCdetEr in open-source projects considerably more frequently
than in industrial projects.

From the developers’ survey, we learned that smellsca (DPNQPVOE)Bu@$a CVUF
(J O E FY)BE wthd Ieast subjective smells (J [Eontext maters the least for such smells)
whereassmellsal (BEKBD F@Qd afWBMVFT JO B G S J@&evodt sebfectvd UJ P O
in nature. T is observation implies that a developer might be hesitant to introduce ca or ia
and more open to adopt a solution that involves smells such as al or va. Interestingly, the
occurrence paterns show exactly the opposite trend with respect to these smells; J Bmells
ca and ia occur the most and smells al and va occur the least frequently in both industrial
and open-source systems.

%# 32 PFT UIF TJ[F PG UIF QSPKFDU PS UIF
SPMFJOTNFMMEFOTJUZ

"QQSPBDI

We computed smell density for all the detected database smells. In this work, we defne
smell density as the number of database smells detected per 10 sql statements. We then
compute the Spearman correlation coe¥cient between total loc (Lines Of Code) and smell
density of the repository. We also compute the Spearman coe¥cient between size of the
database (J Rumber of create table statements) and smell density of the repository.

SFTVMUT

T e Spearman correlation coeFcient (r) for the dataset is 0:2420(p-value = 3:724 10 2
for industrial projects and 0:0006 (p-value = 0:9731]) for open-source projects. Tis indi-
cates that density of database smells has low correlation for the industrial projects and no
correlation for the open-source projects with the total lines of code in the repository.

We also explore the relationship between smell density and size of the database where
size of a database is measured by the number of create table statements in the reposi-
tory. Te Spearman correlation analysis provides us r = 0:7338(p-value < 2:2 10 16
for industrial projects and r = 0:6174(p-value < 2:2 10 19) for open-source projects.

T evalues of the correlation coeFcient show that smell density and size of the database
share a fairly strong correlation J &5 the size of database increases, density of database
smells tends to increase.

126 / 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

%# 32 %PFTUIFOBUVSFPGDPEF UZQF PG Ul
VIBHBrR@SBNFXPSLT BPFDUUIFTNFMMEFOTJ

"QQSPBDI
We extract information concerning the nature of subject systems; specifcally, we infer the
type of application and used orm (Object-Relational Mapping) framework in each reposi-
tory.

We infer the type of application among the following set — % F T L UFRQQI@ther ios
or Android), or 8 F.QMe use the following heuristics to classify a repository to one of the
application types.

» We fgure out the programming language used primarily in a repository. To know
the programming language used primarily in a repository, we scan all the fles in
the repository, detect the fles containing source-code using their fle extensions, and
count the number of fles for each programming language that we detect. We look
for the following programming languages: asp, c, c#, c++, html, Java, JavaScript,
Objective c, php, Perl, Python, Ruby, sql, vb, and xml.

« If the prime programming language is Java and there exists a manifest fle with name
‘AndroidManifest.xml’, we conclude that the application isoftype .PCJMF "OESPJE

* If the prime programming language is Objective c, we tag the application asa . P
C J bsFapplication.

* If the repository contains one of the folders ‘Static’, ‘css’, or ‘public_html’ and pri-
marily used programming language is one of the php, asp, xml, or Python, then we
classify the application type as 8 F.C

* If the prime language is html, then also we interpret the application type as 8 F.C

* If none of the above conditions are met for a repository, we classify itasa % FTLUP Q
application.

Once we identify the type of all the repositories, we measure the average smell density
for each application type. We select a list of 19 well-known orm frameworks targeting dif-
ferent programming languages — C++ (LiteSQL, ODB, QxOrm), Java (ActiveJDBC, Apache
Cayenne, Eclipse Link, Enterprise JavaBeans, Hibernate, Mybatis), Objective C (Core Data),
C# (Dapper, Entity Framework, lingto sql, NHibernate), php (Doctrine, Propel), and Python
(SQLAIchemy, Django, SqlObject). We scan the dependencies of a repository specifed in
J N Q PpBdimilar) statements to detect whether the repository uses an orm framework.
For instance, we look at import statements in Java applications for the presence of INQP S U
PSH B QB D I Ro hWBZtraDtBeRpplication is using Apache Cayenne framework. We
measure and compare the average smell density for both orm-based and non-orm-based
repositories.

127/ 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

SFTVMUT

Figure 5.20 (leF) shows average smell density for diferent types of applications. Te fg-

ure shows that 1998open-source and 346 industrial repositories are classifedas % FTLUP Q
40 open-source and 2 industrial repositories as . P C Jdid=530 open-source and 9 indus-

trial repositories as 8 F @pplications. For open-source repositories, all three application

types exhibit similar database schema smell density. Tis indicates that application type

is not a signifcant factor that afects database smell density for open-source repositories.

On the other hand, industrial 8 F @pplications show signifcantly lower smell density than

the industrial % F T LappRcgtions although the sample for mobile and web applications in
industrial projects is not signifcant from a statistical perspective.

Figure 5.20: Average smell density of diferent types of applications (lef) and projects using
ORM frameworks and rest of the projects (right)

Right side of fgure 5.20 shows average smell density for repositories separated based
on whether they use an orm framework or not. We observed that 681 open-source and
238 industrial projects use orm frameworks among the analyzed projects. For industrial
projects, non-orm-based projects show lower average smell density than the projects based
on orm frameworks whereas we observe an opposite trend for open-source projects. How-
ever, Mann-Whitney U test shows that the diference in the average smell density is not sta-
tistically signifcant (p-value = 0:0252for industrial and p-value = 0:1612for open-source
projects).

| Tus, orm frameworks do not bring immunity from database schema smells.

32 8IBUJTUIFEFHSFFPGDP PDDVSSFODF
TNFMMT

"QQSPBDI

For each detected smell, we count occurrences of rest of the smells in the repository to
investigate the degree of co-occurrence among database smells. We compute average co-
occurrence for each smell across all the repositories. We take the average of the co-occurrences

128 / 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

taking into consideration only those values where the smell has occurred at least once. Fur-
ther, we normalize the average co-occurrence values with number of detected smells. Tis
exercise reveals the normalized co-occurrence paterns among database smells.

SFTVMUT

Figure 5.21 shows average co-occurrence among database smells. Te fgure reveals that

D M P O FouislGsividt projectsand WBMV FT JO B G S J& vpdr-sduice ordjests P O

show highest co-occurrence with other smells. * O E F Y 81@l\eXhibits lowest co-occurrence

with other smells for both the categories of projects. It implies that whenevera DM PO MUBCMF
an industrial projector WBMV FT JO B G S 3@ell i enBpen@alikdeldPdict occurs,

it is very likely to fnd other database smells in the project. On the other hand, JOEFY BCVTF
smell occurs more independently.

Figure 5.21: Average co-occurrence among database smells

Another interesting observation from fgure 5.21 is that smells show considerably higher
correlations in industrial projects. A potential reason of the fact could be the larger size of
industrial projects than the open-source projects (industrial projects are fve times larger on
average in terms of loc compared to open-source projects).

%JTDVTTJPO

In this section, we Frst discuss our observations about accuracy of the developed tool % C % F P
We also present our qualitative analysis of the results presented in Section 5.1.

%BMIJUBUJIJWF "OBMZTJT PG UIF3FTVMUT

In this section, we discuss the results obtained from our analysis presented in Section 5.1
from a qualitative perspective.
Our analysis found a considerable number of PWFSMPBEFE B @®UsCintéi+ OBNFT
estingly, many times developers declare atributes, even the primary keys, with identical
names but with diferent types in a repository. We found that id is the most popularly used
name for a primary key. More than 40% of the analyzed tables belonging to open-source
projects use id as a primary key. For industrial projects, it is considerably lower (11%). An

129/ 168 3&46-54 0" ."*[5"*["#*-*5:"["-14*4 0/ %"5"#"4& $09

interesting observation is that their type difers signifcantly. We found 13 and 12 difer-
ent types being used for the atribute id across all the analyzed open-source and industrial
repositories respectively.

During manual exploration, we also observed one of the reasons for smells DMPOF UBCMF
and PWFSMPBEFE B G &dut Weldbser&itRat these smells occur ofen in test or
example code. T is observation highlights the quality defcit introduced in test or example
code and possibly reveals the casual mindset of developers while writing test or example
code.

Parameterized queries (where values or even sometimes atribute names are supplied
dynamically) are very common for embedded sql statements in source code. We observed
create table statements are majorly defned statically; however, understandably, the ma-
jority of select statements are defned as parameterized queries. T is observation has an
impacton JOEFY Br€IV D& analysis reveals that more than 77% detected instances
of JOEFY BhEIVBEIBng to the third variant of the smell (J fnused indexes). When
parameterized queries expect atribute names dynamically, our tool cannot identify the used
atribute names and produce false-positive instancesof JOEFY 8€IV TF

% 0QQPSUVOJUJFT
In the context of this study, we outline possible ways to improve the state of scientifc
and industrial practice.

5PPM TV Qidf@rUprovide support, native or extended (via plug-ins), for
sql statements. T is may allow developers to spot common problems, suchas JOEBEFY

B C\aidFN VM U J D P M V N@yBeaBd rectifiythem. Along the same lines, orm
frameworks may raise an alarm, for instance in the form of warnings, to atract devel-
opers’ atention towards potential faws in the database design. Sophisticated external
tools may extend their support to detect database smells and improve the quality of
database schemas. Further, language extensions may support the native treatment to
embedded sql statements. T e native treatment allows a developer to employ existing
tools (the ones used for the host programming language) for embedded sql code.

5SBJOJOH BOE BK&d8doTIdedsdd training sessions to increase aware-
ness of database quality among developers cannot be denied. Such sessions would en-
able them to learn from existing peer knowledge and keep themselves updated with
the changing technology.

%BUBCBTF T USBRQl&d Sre d collection of common practices followed
globally or within an organization to ensure the consistency and efectiveness of the
database environment. A database element naming convention is an example of such a
standard. Organizations may adopt stringent standards for designing database schemas
to ensure the quality of the database system. Across the industry, a move toward
stricter and comprehensive standards would prohibit some of the smells we identifed.

% B U B C B T Batdb4sE apis can also be improved to support high quality schema
design. Apart from deprecating obsolete features and issuing a warning for common

130/ 168 5)3&"54 50 7"-*%*5:

mistakes, apis may ofer a new mechanism to verify the schema design. For example, a
new check statement (or an optional clause) may allow interested developers to check
their schema design upfront and refactor the detected smells before they make their
way to the production code.

SSFBUT UP 7BMJEJUZ

Tis section presents threats to validity for all the experiments presented in this thesis.

$POTUSVDU 7TBMJEJUZ

$P O TU SV DroeddlBMhEHehkéeZto which our tools and metrics actually measure the
properties they are suppose to measure. It concerns the appropriateness of observations
and inferences made on the basis of measurements taken during the study.

Static code analysis is typically prone to false-positives and false-negatives. To mitigate
this concern, we employed a comprehensive set of tests for the tools presented in this thesis
(viz. Designite, Puppeteer, and DbDeo) to rule out obvious defciencies. Also, the efect of
false positives and negatives is reduced when two or more streams of results are compared
as in this experiment. Additionally, we found the results of manual validation of the detected
instances by the tools very satisfactory.

T e tools that we used in this thesis use various metric thresholds to detect smells. Al-
though, some authors such as Rosenberg F U [B:99] have suggested the chosen threshold
values afer careful analysis. However, it is a known and accepted fact that there is no one
globally accepted threshold set for various metrics [KKS* 14, FBA11]. We chose the thresh-
olds that are commonly used by the sofware engineering community. Moreover, in the
specifc case of Designite, the tool allows to change the thresholds if one would like to re-
peat the experiment with custom metric thresholds.

Further, a source-code analysis may adopt one of the numerous techniques to collect
source-code information such as ast parsing, refection, and string matching [Spil5]. For
our tool Puppeteer, due to the lack of available parser library for Puppet, our tool uses
regular expression based string matching extensively which is not as efcient as ast parsing.
In addition to test the tool with unit-tests that check the correctness of the used regular
expressions, we carried out manual testing to ensure the behaviour of the used expressions.
Similarly, due to the lack of an available tool to extract cleansed sql statements from a
host source code, we implemented the extraction functionality in our tool (DbDeo) using
regular expressions. Although, the regular expression-based solution cannot be as e¥cient
as ast parsing (for example, separating sql statements that are appearing in comments is
inherently difFcult with regular expressions). We employed two-step extraction process to
overcome the defciency. Additionally, we checked the results using both automated and
manual tests.

In the context of using deep learning techniques for smell detection, we use Designite
and DesigniteJava to detect smells in C# and Java code respectively and used the detected

131/ 168 5)3&"54 50 7"-*%*5:

smells by them as ground truth. Relying on the outcome of two diferent tools may pose a
threat to validity especially in the case of transfer-learning. To mitigate the risk, we make
sure that both the tools use exactly the same set of metrics and heuristics to detect smells.
Also, we ensure the smell detection similarity by employing automated as well as man-
ual testing. Similarly, to address potential threats posed by representational discrepancies
between the two languages we ensure that Tokenizer generates same tokens for same or
similar language constructs. For instance, all the common reserved words are mapped to
the same integer token for both the programming languages.

*OUFSOBM 7BMJEJUZ

*O U F S O B kfaks Bolvhd ealidity’of the research fndings. It is primarily concerned with
controlling the extraneous variables and outside infuences that may impact the outcome.

In the context of refactoring simulation that we carried out in one of our experiments,
there are many refactoring techniques to refactor the identifed design smells. It is not
feasible to predict precise impact of design smell refactorings on architecture smells. Te
observations of the refactoring simulations can vary in practice depending on the actual
chosen refactoring. We follow a simple rationale to simulate the infuence of design smell
refactoring.

T e higher the abstraction, the more important becomes the context of the system. Con-
text and domain knowledge play an important role while detecting and refactoring, espe-
cially, design and architecture smells. Given the sheer scale, it was not possible to carry out
a qualitative analysis for all the repositories. Considering the large number of repositories
mined in the exploration, we believe that the results are still relevant and generalizable.

In the context of our investigation exploring the feasibility of applying transfer-learning
for smell detection, we assume that both the programming languages are similar by paradigm,
structure, and language constructs. It would be interesting to observe how two completely
diferent programming languages (for example, Java and Python) can be combined in a
transfer-learning experiment.

&YUFSOBM 7BMJEJUZ

& Y U F S O B kbiveB8/yariehlizability and repeatability of the produced results. In our
production code analysis study, we analyze only open-source C# repositories as subject
systems. Given the fact that most of the current literature focuses only on subject systems
writen in Java programming language, our study complements the existing literature. Fur-
thermore, we have considered a large set of 3; 209C# repositories of varied size and contexts,
making this the largest mining study by scale so far for sofware smells.

To encourage the replication and building over the deep learning work, we have made
all the tools, scripts, and data available online.!

LijuuQT HJUIVC DPN UVTIBSUVTIBS %FFQ-FBSOJOH4NFMMT

https://github.com/tushartushar/DeepLearningSmells

132/ 168 5)3&"54 50 7"-*%*5:

Similarly, our confguration code analysis experiment analyzes only Puppet repositories
whereas there are many other confguration management systems. Although the employed
tools are specifc to one confguration language, the proposed theoretical model is general
and language agnostic. We believe that it will open doors for similar studies for other con-
Tfguration management systems.

For our database schema quality analysis, we cover syntaxes used for major database
providers and new syntaxes can be adopted by modifying the currently used regular ex-
pressions. Also, the experiment is reproducible; we have made the tool open-source under
a liberal license. Further, the raw data generated by the presented analysis has been made
available online.

Finally, the extraction of the full schema of a database is not guaranteed using our em-
ployed method in our database quality assessment study. T e implication of such a limita-
tion is that our smell detection method will not report smells that may exist in the uncovered
sql statements.

$IBQUFS

$SPODMVTIPOT BOE '"VUVSF 8P

| &BDIDPODMVTJPO NBSLTB CFHJOOJOH

T is thesis presents maintainability analysis on production source code and extends the
scope of analysis to sub-domains of sofware systems. In this chapter, we summarize the
results of our research, present the contributions of the thesis, elaborate our vision for future
work, and conclude the thesis.

4VNNBSZ PG UIF3FTVMUT

In the pursuit to perform a comprehensive maintainability analysis of production code writ-
ten in C#, we perform a large-scale empirical study. We mine seven architecture, 19 design,
11 implementation smells from a large set of 3 209 open-source repositories containing more
than 83 million lines of code. Stringing fner-grain code smells with the coarse-grain smells
could make the task of maintaining high quality of a sofware product easier. Apart from
exploring basic characteristics of smells (such as frequency of smells) arising at diferent
granularities, we carry out correlation and collocation analysis also to identify the degree
of relationships among smells at diferent granularities.

We fndthat DZDMJD EFQGOQHFIDDF E, 87€ NBSB D LOIsP@a:MBst
frequently occurring architecture, design, and implementation smells respectively. T is may
prompt developers to pay additional atention to avoid frequently occurring smells. Our
analysis observes that smell density and lines of code in a C# project do not show a strong
correlation.

T e co-occurrence analysis shows that the architecture smells exhibit a strong positive
correlation (r = 0:72) with design smells. Tis implies that a project containing a high
number of design smells would also exhibit a higher number of architecture smells and
vice-versa. We perform fne-grain correlation also between individual smell pairs. Te fne-

133

134/ 168 46.."3:0'5)& 3&46-54

grain correlation analysis suggests that both the kinds of smells are not correlated and do
not follow a monotonic relationship.

Te collocation analysis reveals that unutilized abstraction and feature concentration
are highly collocated. Similarly, cyclically-dependent modularization show relatively high
collocation with cyclic dependency, scatered functionality, and dense structure architecture
smells. Apart from the above-mentioned smell pairs, individual pairs of architecture and
design smells do not collocate with each other. We also explore the potential infuence of
design smells refactoring on architecture smells. Our analysis reveals that upto one third of
architecture smells (in case of HP E D P N QrayyEt @fldoved if we refactor all detected
design smells. However, a signifcant number of architecture smells persist even afer all
the smells at design granularity were refactored. T is observation emphasizes the need to
carry out smell detection and refactoring for each granularity.

In our exploration with deep learning techniques to identify smells, we establish that
deep learning methods can be used for smell detection. Specifcally, we found that cnn and
rnn deep learning models can be used for smell detection though with varying performance.
We did not tnd a clearly superior method between 1d and 2d convolution neural networks;
cnn-1d performed slightly beter for the smells FNQU Z D B Wil ICWWPWDIGBDFUFE BCT L
U J While cnn-2d performed superior than its one dimensional counterpart for DPNQMFY
NFUIdRENBHJD O.\FiNtGeF, Sur results indicate that rnn performs far beter than
convolutional networks for smells FN Q U Z D B Latdl NKCB/MHPIDL O.\ONICGkp&riment
on applying transfer-learning proves the feasibility of practicing transfer-learning in the
context of smell detection, especially for the implementation smells.

We extended the maintainability analysis to confguration code. We propose a catalog
of 13 implementation and 11 design confguration smells based on commonly known best
practices. We analyzed 4,621 Puppet repositories containing 142,662 Puppet fles and more
than 8.9 million lines of code using Puppeteer — a confguration smell detection tool that
we developed. We investigated four research questions using smell instances detected by
our analysis.

Our analysis found that the developers of Puppet repositories either do not introduce
code-clones at all or they do it in a massive scale. Confguration smells belonging to a
smell category tend to co-occur with confguration smells belonging to another smell cat-
egory when correlation is computed by volume of identifed smells. Design confguration
smells show 9% higher average co-occurrence among themselves than the implementation
confguration smells. Tis observation a®rms the belief that one wrong or non-optimal de-
sign decision introduces many quality issues and therefore suggests the developers to take
design decisions critically and diligently. Design confguration smell density shows nega-
tive correlation whereas implementation confguration smell density exhibits no correlation
with size of a project. It shows that design confguration smells decrease as the size of the
confguration code increases.

Further, we carried out a comparative study of relational database schema smells and
its relationship with application and database characteristics. We present a catalog of 13
database schema smells based on commonly known best practices to design databases. We

135/ 168 $0/53*#65*0/40'5)& 5)&4*4

carried out a survey to understand developers perspective on database schema smells. We
downloaded 16,052 open-source and acquired 840 industrial repositories, selected total 2925
repositories containing sql statements, analyzed more than 629 million lines of code, ex-
tracted more than 393 thousand sql statements, and detected more than 66 thousand in-
stances of database schema smells. We investigated four research questions and provided
empirical observations based on the data obtained.

We observed that the smell J O E F Y &€k mést frequently in database code. We also
found that some smells such as B E K B D F shawZAighiFdakkly higher proneness to occur
in industrial projects compared to open-source projects. Our analysis shows that the size of
the host application has no impact on the density of database smells; however, smell density

shows positive correlation with the size of the database whereas application type (% FTLUP Q

. P C M B F Xhas no signifcant impact on database smell density, Another observation
is that the use of an orm framework does not avoid database schema smells. Finally, the
smell DM P O nlth&uemidlfprojects and smell WBMV FT JO B G S Jroped-bolde
projects exhibit the highest co-occurrence with other database smells.

$POUSJCVUIJPOTPGUIFSFTJT

In this section, we summarize the contributions ofered by the thesis in two dimensions —
SFTFBEQ § B DrkdhEnkresearch perspective, we identify the following contributions
from the thesis.

» A method to carry out large-scale empirical study (both in terms of number of subject
systems and number of code smells detected) for production source code to under-
stand characteristics of code smells at diferent granularities and to explore interesting
relationships such as correlation and collocation.

» Tesofware engineering research community may utilize the dataset of smells. Te
dataset could be useful in many ways including benchmarking and comparison as
well as exploring other dimensions and characteristics of source code with smells.

» A method to identify smell catalog belonging to a domain (for instance, Infrastructure
as Code). Te method performs empirical study to analyze confguration code and
explore characteristics specifc to confguration code as well as analysis such as intra-
as well as inter-category correlation.

* A way to design a qualitative survey aimed to collect developers’ perspective on
database schema design practices and smells.

» A method to investigate code quality of embedded SQL statements by mining a large
set of repositories belonging to both open-source and proprietary categories. Te
method also outlines the challenges involved (such as extracting embedded sql state-
ments).

OJUJPO

136/ 168 $0/53*#65*0/40'5)& 5)&4*4

* A detailed mechanism to show the feasibility of detecting code smells using deep
learning methods. Also, the method implements transfer-learning to showcase that a
deep learning classifer trained from a programming language can be used to identify
smelly code fragments belonging to another programming language.

Apart from research-oriented contributions, the thesis also ofers contributions towards
sofware engineering practice.

» Tethesis ofers a comprehensive code smells detection tool — Designite which could
be used to detect a wide variety of implementation, design, and architecture smells
in C# source code. Practitioners may use the tool and various features ofered by the
tool to identify maintainability issues in their code and reduce technical debt.

» As a by-product of our literature survey, we ofer a large catalog of sofware smells.
Tis catalog summarize the smells by providing a description, related smells, tools
that could be used to detect them, as well as the reference to the article where it was
introduced. Not only the catalog is publicly accessible! but also the data and source
code to build the smell catalog has been made open source.

* Practitioners may take advantage of of correlation analysis that makes it imperative
for the development teams to analyze and refactor smells at all granularities. Similarly,
sofware development teams may emphasize the importance of detecting and refac-
toring smells at all granularities following our observations that a signifcant amount
of architecture smells persists even if all the detected design smells were refactored.

* Practitioners can identify confguration smells using the tool viz. Puppeteer employed
in this study and adopt best practices to write maintainable confguration code. Pup-
peteer [Shal9e] has been made open-source under liberal license and the time of writ-
ing this statement, it atracted 34 stars and 10 forks.

* Practitioners can learn the potential quality issues that may arise in their database
schema so that they can avoid them. Furthermore, practitioners can identify database
schema smells using our open-source tool (J MbDeo [Shal8b]) employed in this
thesis. Finally, our results pinpoint areas where improvements in database APIs, tool
support, training, and standards can increase the quality of database schemas.

* Te tool developers may induct the deep learning methods in their smell detection
tools for efective smell detection and using transfer-learning to detect smells for pro-
gramming languages where the comprehensive code smell detection tools are not
available.

lJUUQ XXX UVTIBSNB JO TNFMMT

http://www.tusharma.in/smells/

137/ 168 '6563& 803,

'VUVSF 8PSL

We would like to extend and build upon our work presented in the thesis. Specifcally, we
would like to explore the following in the future.

« . BLIJOHDPEF TNFMMT EFUFDUJPO UR prsséhtNePFBmEIPFDUJW F
detection tools generate a list of smells; the number of reported smells could be over-
whelming for a large project. Despite some research atempts to prioritize smells, the
production quality tools at large lack the features to identify smells that the developers
really consider quality issues and propose highly impactful refactoring to eliminate
them. Deep learning methods show a promising mechanism to achieve the goal.

* "WUPNBUFE SFGBDUPSJOH TVQQP S Ré&SeBreh@shavedden-FD UV SF T1

tifed the lack of adequate tool support as one of the deterrents for sofware devel-
opers in adopting and performing refactoring regularly. Providing automated refac-
toring support to remove the detected code smells is inherently challenging even for
implementation granularity given the various possible alternative refactorings for a
smell. T e challenge becomes immense when it comes to refactor architecture smells
because a composite refactoring involves many smaller scale refactorings spanning
multiple components.

« 4P ,XBSF EBUDB B Q#isstlvBrd systems are producing diferent kinds
of data throughout the life-cycle; it includes, source-code itself and version control
system data, reported bugs/issues and the discussion that follows, sofware quality
data including metrics and smells, profling data, logs and crash reports, and test ex-
ecution data. All of this tells something about a diferent aspect about the sofware.
Furthermore, combining them together may reveal further insights which can be ac-
tionable and useful for sofware development teams. For example, carrying out a
postmortem analysis upon fling a new bug/issue may reveal interesting insights and
paterns about the individual developers by analyzing code that has been changed,
version control system data and test coverage. We would be very interested to apply
exploratory machine learning methods to bring it to life.

"QQFOEJY * ANFMM %FQOJUJE

Many authors have defned smells from their perspective. T is appendix atempts to provide
a consolidated list of such defnitions.

1. Smells are certain structures in the code that suggest (sometimes they scream for) the
possibility of refactoring [Fow99].

2. Code smells are a metaphor to describe paterns that are generally associated with
bad design and bad programming practices [VEM12].

3. Code smells are indicators or symptoms of the possible presence of design smells
[MGO07].

4. Code smells are implementation structures that negatively afect system lifecycle prop-
erties, such as understandability, testability, extensibility, and reusability; that is, code
smells ultimately result in maintainability problems [GPEMO09].

5. A “bad smell” describes a situation where there are hints that suggest there can be a
design problem [PC09].

6. We defne design defects as solutions to recurring problems that generate negative
consequences on the quality of object-oriented systems [MGDM10].

7. Antipaterns are “poor” solutions to recurring implementation and design problems
that impede the maintenance and evolution of programs [KVGS11].

8. Anti-paterns are bad solutions to recurring design problems [FBA11].

9. An anti-patern is a commonly occurring solution to a recurring problem that will
typically negatively impact code quality. Code smells are considered to be symptoms
of anti-paterns and occur at source code level [PZ12].

10. Antipaterns are defned as paterns that appear obvious but are inefective or far from
optimal in practice, representing worst practices about how to structure and design
an ontology [RCSZ* 12].

11. Anti-paterns are “poor” solutions to recurring design and implementation problems
[MAB* 12b].

138

139/ 168 '6563& 803,

12. Developers ofen introduce bad solutions, anti-paterns, to recurring design prob-
lems in their systems and these anti-paterns lead to negative efects on code quality
[JGHK13].

13. Linguistic antipaterns in sofware systems are recurring poor practices in the nam-
ing, documentation, and choice of identifers in the implementation of an entity, thus
possibly impairing program understanding [ADPAG13].

14. Design smells are structures in the design that indicate violation of fundamental de-
sign principles and negatively impact design quality [SSS14].

15. Code smells are indicators of deeper design problems that may cause difculties in
the evolution of a sofware system [Yam14].

16. Performance Antipaterns defne bad practices that induce performance problems,
and their solutions [CDMT14].

17. Antipaterns are typically acommonly used set of design and coding constructs which
might appear intuitive initially, but eventually may be detrimental to one or more
aspects of the system [SA14].

18. Bad design practices at the code level are known as bad smells in the literature [KEAL6].

19. Code smells — microstructures in the program —- have been used to reveal surface
indications of a design problem [dSS16].

20. Confguration smells are the characteristics of a confguration program or script that
violate the recommended best practices and potentially afect the program’s quality
in a negative way [SFS16].

#JCMJIPHSBQIZ

[AAK* 17] Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and
Daniel J Inman. Real-time vibration-based structural damage detection us-
ing one-dimensional convolutional neural networks. +PVSOBM PG 4PVOE B
7 J C S B3BBILRUEL70, 2017.

[ABDS18] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Suton.
A survey of machine learning for big code and naturalness. "$. $PNQVUJOH
4V SWFZT 51%4:832018.

[ABT15] Davide Arcelli, Luca Berardinelli, and Catia Trubiani. Performance Antipat-
tern Detection through fUML Model Library. In 8041 £ 1SPDFFEJOHT PG
8PSLTIPQ PO $IBMMFOHFT JO 1FSGPSNBODF .FUIP
N F (pagdes 23-28. University of L’Aquila, ACM, January 2015.

[ACSS15] Diogo Almeida, José Creissac Campos, Jodo Saraiva, and Jodo Carlos Silva.
Towards a catalog of usability smells. In 4"$ £ 1SPDFFEJOHT PG UI
"OOVBM "$. 4ZNQPTJVN PO "Qpaukt 1F-ELSE RUNI@NityJO H
of Minho, ACM, April 2015.

[AD15] Jehad Al Dallal. Identifying refactoring opportunities in object-oriented
code: A systematic literature review. *OGPSNBUJPO BOE 4PDXBSF 5F
58:231-249, January 2015.

[ADPAG13] Venera Arnaoudova, Massimiliano Di Penta, Giuliano Antoniol, and Yann-
Gaél Guéhéneuc. A New Family of Sofware Anti-paterns: Linguistic Anti-
paterns. In $4.3 £ 1SPDFFEJOHT PG UIF Ul &VSPQFI
4PDXBSF .BJOUFOBOD F, ja@ELFFIBOEEE Odmipiel EpH
ciety, March 2013.

[AFBZ12] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic
detection of bad smells in code: An experimental assessment. KF +PVSOBM PG
OCKFDU 5F DLZpFLIMBE, K.

[AFF14] Péricles Alves, Eduardo Figueiredo, and Fabiano Ferrari. Avoiding Code Pit-
falls in Aspect-Oriented Programming. In $PNQVUBUJPOBM 4DJFODF B
QMJIDBUJPOT, pay8sB4-46. Springer International Publishing, 2014.

140

141/ 168

[AGJ0S]

[AHTM11]

[APFC15]

[APG17]

[APS16]

[Bai94]

[BBEAM10]

[BCV13]

[BDLDP* 15]

H*#-*0(3"1):

Silvia T Acufia, Marta Gomez, and Natalia Juristo. Towards understand-

ing the relationship between team climate and sofware quality—a quasi-
experimental study. &NQJSJDBM 4P D XBBE):335-8#2 Gdgkss J O H
2008.

Surafel Lemma Abebe, Sonia Haiduc, Paolo Tonella, and Andrian Marcus. Te

efect of lexicon bad smells on concept location in source code. In 1SPDFFE
JOHT Ul*&&& *OUFSOBUJPOBM8PSLIJOH $POGFSFOL
.BOJQV MB U JP Qpade$ 125-134. Fondazione Bruno Kessler, Trento,

Italy, IEEE, November 2011.

Ramon Abilio, Juliana Padilha, Eduardo Figueiredo, and Heitor Costa. De-

tecting Code Smells in Sofware Product Lines — An Exploratory Study. In

*5/(£ 1SPDFFEJOHT PG UIF UI*OUFSOBUJPOBM
SFDIOPMPHZ [FX [fdges 83838, IHEEOCbmputer Society, April

2015.

Carol V Alexandru, Sebastiano Panichella, and Harald C Gall. Replicating

parser behavior using neural machine translation. In 1SPDFFEJOHT PG UIF
*OUFSOBUJPOBM $POGFSFODF, pagesIBEHPHDSIBEE $SPNQSFI
Press, 2017.

Miltiadis Allamanis, Hao Peng, and Charles Suton. A convolutional aten-
tion network for extreme summarization of source code. In *OUFSOBUJP OB\
$POGFSFODF PO .B pagdsQi®1-F1B0S2016.0 H

Kenneth D Bailey. 5ZQPMPHJFTBOEUBYPOPNJFT BOJOUSPE
U F D | O yduvhé& I02. Sage, 1994.

Sérgio Bryton, Fernando Brito E Abreu, and Miguel Monteiro. Reducing sub-

jectivity in code smells detection: Experimenting with the Long Method.

In 1SPDFFEJOHT Ul *OUFSOBUJPOBM $POGFSFODF F
BOE $PNNVOJDBUJPOT 5FD | g +32. Fadildatsbde

Ciencias e Tecnologia, New University of Lisbon, Caparica, Portugal, IEEE,

December 2010.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. *&&& USBOTBDUJPOT PO QBGF
BOE NBDIJOF J&0)EMBML32G, 2003D F

Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto,

and Fabio Palomba. An experimental investigation on the innate relationship

between quality and refactoring. +PVSOBM PG 4ZTUFINTTIBHE 4PDXB!
January 2015.

142 /168

[Bec02]

[BGH* 08]

[BGVS11]

[BINF12]

[BKG19]

[BLVO7]

[BMMM98]

[BMR* 964]

[BMR* 96D]

[BPD17]

H*#-*0(3"1):

Beck. 5FTU %SJWFO %FW F M PAQdisénNEsley Foggiviah RuD-M F
lishing Co., Inc., Boston, MA, USA, 2002.

David Binkley, Nicolas Gold, Mark Harman, Zheng Li, Kiarash Mahdavi, and

Joachim Wegener. Dependence Anti Paterns. In "SBNJT TU*OUFSOI
UJPOBMS8PSLTIPQPO"VUPNBUFEFOHJOFF3JOHPG "V
*OH4ZTUFNT BOE "4& UIF SE *&&& "$. *OU $POG
& O HJ O,pé&yss 28-34. King’s College London, London, United Kingdom,

IEEE, December 2008.

Isela Macia Bertran, Alessandro Garcia, and Arndt von Staa. An exploratory

study of code smells in evolving aspect-oriented systems. In "04 % £ 1SP
DFFEJOHT PG UIFUFOUI JOUFSOBUJPOBM DPOGFSFO
W F M P,@add~2081Pontifcal Catholic University of Rio de Janeiro, ACM,

March 2011.

P. Bhatacharya, M. lliofotou, I. Neamtiu, and Michalis Faloutsos. Graph-
based analysis and prediction for sofware evolution. In Ul *OUFSOBUJPOE
$POGFSFODF PO 4PDXB S pageOtbINF-Bre 20H *$4 &

Antoine Barbez, Foutse Khomh, and Yann-Gaél Guéhéneuc. A machine-
learning based ensemble method for anti-paterns detection, 2019.

Huib Van Den Brink, Rob Van Der Leek, and Joost Visser. Qality assess-

ment for embeddedsgl. In 1SPDFFEJOHT PG UIF4FWFOUI *&&& *O
JOH $POGFSFODF PO 4PVSDF $PEFSCANBWIZoEgeY BOE .BO
163-170. IEEE Computer Society, 2007.

William H. Brown, Raphael C. Malveau, Hays W. "Skip” McCormick, and
Tomas J. Mowbray. "OUJ1BGFSOT 3FGBDUPSJOH 4PDXBSF
1 SPKF DU TahoV$iBy& Soms, Inc., 1st edition, 1998.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. 1BGFSO 0SJFOUFE 4PDXBSF "SDIJUFDUVSF 7
1B G F Wiy, 1 edition, 1996.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. 1BGFSO 0SJFOUFE 4PDXBSF "SDIJUFDUVSF 7
1B G F Wiy, 1 edition, 1996.

Christos Baziotis, Nikos Pelekis, and Christos Doulkeridis. Datastories at

semeval-2017 task 4: Deep Istm with atention for message-level and topic-

based sentiment analysis. In 1SPDFFEJOHT PG UIF Ul *OUFSOBU
PO 4FNBOUJD &WB MYV B,pahEs@47-4764N281W B M

143/ 168 H*#-*0(3"1):

[BQO™ 12] Gabriele Bavota, Abdallah Qsef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. An empirical analysis of the distribution of unit test smells and their
impact on sofware maintenance. In *& & & *OUFSOBUJPOBM $POGFSFC
.BJOUF OB Q pafes 565-85. Universita di Salerno, Salerno, Italy, IEEE,
December 2012.

[BQO* 14] Gabriele Bavota, Abdallah Qsef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. Are test smells really harmful? An empirical study. & NQJSJDBM 4PD
XBSF & O H 204 RIDH, May 2014.

[BSH* 11] Benjamin Biegel, Qinten David Soetens, Willi Hornig, Stephan Diehl, and
Serge Demeyer. Comparison of similarity metrics for refactoring detection.
In1SPDFFEJOHT PG UIF UI8PSLJOH $POGFSFEODF PO .J
MSR ’11, pages 53—62. ACM, 2011.

[CDMT14] Vitorio Cortellessa, Antinisca Di Marco, and Catia Trubiani. An approach
for modeling and detecting sofware performance antipaterns based on frst-
orderlogics. 4APDXBSFBOE 4ZTUFNT, l8EPM®BA Fbradry Z .
2014,

[Chel5] T. Chen. Improving the quality of large-scale database-centric sofware sys-
tems by analyzing database access code. TU *&&& *OUFSOBUJPOBNM
FODFPO %BUB &OHJOFFSJOH2BBSLTIPQT *$%&8

[Chel8] Chef: Do Change, Last accessed on: Nov 14, 2018. Availableat: TUUQT
XXX DIFG JP

[Chol7] Francois Chollet. % FFQ MF B S O J Q Maxning P@lchtibRsCo., 2017.

[CK94] S.R.Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
*&&& 5SBOTBDUJPO PG 4BBXB3RB, @EHVBOFFSIOH

[CMC15] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Detecting
sofware design defects using relational association rule mining. ,OPXMFEHF
BOE *OGPSNB 2B &45-Z7T, MEthR015.

[CMRP16] Karina Curcio, Andreia Malucelli, Sheila Reinehr, and Marco Anténio Paludo.
An analysis of the factors determining sofware product quality: A compar-
ative study. $SPNQVUFS 4UBO E B, 8E018 o\ F T

[CMRT10] Vitorio Cortellessa, Anne Martens, Ralf Reussner, and Catia Trubiani. A
process to efectively identify “guilty” performance antipaterns. In -FDUV SF
/IPUFTJO $PNQVUFS 4DJFODF JODMVEJOH TVCTFSJFT
MJHFODF BOE -FDUVSF /P paget 3&-382 BnverGt® @iBUJID T
Studi dell’Aquila, L’Aquila, Italy, Springer Berlin Heidelberg, April 2010.

https://www.chef.io/
https://www.chef.io/

144 / 168 H*#-*0(3"1):

[Coh60] Jacob Cohen. A coefcient of agreement for nominal scalesss. SEVDBUJPOBM BO
QTZDIPMPHJD B MMBBA6MHE N F O U

[CPD16] PMD-CPD: Copy Paste Detectorr ITUUQT QNE HJUIVC 201B.
[Online; accessed 22-Jan-2016].

[CS78] E.F. Connor and D. Simberlof. Species number and compositional similarity
of the galapagos fora and avifauna. &DPMPHJDBM (4®ARRPMEBQIT
1978.

[CSJ* 14] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mohamed
Nasser, and Parminder Flora. Detecting performance anti-paterns for appli-
cations developed using object-relational mapping. In *$4 & 1SPDFFEJOH
PGUIF UI*OUFSOBUJPOBM $POGFIGIEQDI®E 4PDXBSF
1001-1012. Qeen’s University, Kingston, ACM, May 2014.

[CYMG* 14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder—decoder for statistical machine translation. In
1SPDFFEJOHT PG UIF $POGFSFODFPO &NQJSJDBM
1SPDFTTJO,ldagé 1724-1734, 2014.

[dAAC14a] Hugo Sica de Andrade, Eduardo Almeida, and lvica Crnkovic. Architectural
bad smells in sofware product lines: An exploratory study. In 1LSPDFFEJOHT PG
UIF8*$4" $ P N Q B O, YR@A'PANE omddRion, pages 12:1-12:6.
ACM, 2014,

[dAAC14b] Hugo Sica de Andrade, Eduardo Almeida, and Ivica Crnkovic. Architectural
bad smells in sofware product lines: An exploratory study. In 1SPDFFEJOHT PG

UIF8*$4" $ P N Q B O, YREAPAZAfrigdRion, pages 12:1-12:6.
ACM, 2014,
[dbS10] What are the most common SQL anti-paterns? lUuQ

TUBDLPWEFESGMPX DPN RVFTUJPOT
XIBU BSF UIF NPTU DPNNPO TRM BOUJ QRWUFSOT
[Online; accessed 25-Jan-2017].

[DD16] Tuhin Kanti Das and Juergen Dingel. Model development guidelines for
UML-RT: conventions, paterns and antipaterns. 4PDXBSF 4ZTUFNT .PEF
J Qpdges 1-36, July 2016.

[DDS* 09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In $ 7 1 3, 2009.

[Deu01] Deursen, A. Van and L. Moonen and Bergh, A. Van Den and G. Kok. Refac-
toring test code. In M. Marchesi, editor, 1 SPDFFEJOHT PG UIF OE *OU

https://pmd.github.io/
http://stackoverflow.com/questions/346659/what-are-the-most-common-sql-anti-patterns
http://stackoverflow.com/questions/346659/what-are-the-most-common-sql-anti-patterns
http://stackoverflow.com/questions/346659/what-are-the-most-common-sql-anti-patterns

145/ 168

[DPXT13]

[dSS16]

[EAMO9]

[Ern17]

[EV15]

[FBA11]

[FBB* 12]

[FDW* 16]

[FFM* 13]

[FFZY15]

H*#-*0(3"1):

$POGFSFODF PO &YUSFNF 1SPHSBNNJOH@&®E 'MFYJC
92-95. University of Cagliari, 2001.

Jiang Dexun, Ma Peijun, Su Xiaohong, and Wang Tiantian. Detection and
Refactoring of Bad Smell Caused by Large Scale. *OUFSOBUJPOBM +PVS
APDXBSF &0HJOFF SJQ51-1QPed2B2U3.PO T

Leonardo da Silva Sousa. Spoting design problems with smell agglomera-

tions.In *$4 & £ 1SPDFFEJOHTPGUIF UI*OUFSOBUJPO
& OHJOFF S J O Hp&yesa3-B6b. Pehfcal Catholic University of Rio

de Janeiro, ACM, May 2016.

Mohamed EI-Atar and James Miller. Improving the quality of use case mod-
els using antipaterns. 4P DXBSF 4ZT U F N(2): 1A ELBVFeCuBFY
2009.

Michael D Ernst. Natural language is a programming language: Applying

natural language processing to sofware development. In -*1*DT -FJCOJ[*O
UFSOBUJPOBM 1SP D F,auh@ ATSchds$ DaGsi8-Nebhiz3 D T
Zentrum fuer Informatik, 2017.

Erki Eessaar and Janina Voronova. 6 TJOH 42- JFSJFT UP &WBMVBUF |
PG 42- % B | pb8&B79-H36. Springer International Publishing, 2015.

Rahma Fourati, Nadia Bouassida, and Hanéne Ben Abdallah. A Metric-Based
Approach for Anti-patern Detection in UML Designs. In $PNQVUFS BOE *O
GPSNBUJP O 4ages1d-B3FSpringer Berlin Heidelberg, 2011.

Kecia A M Ferreira, Mariza A S Bigonha, Roberto S Bigonha, Luiz F O Mendes,
and Heitor C Almeida. Identifying thresholds for object-oriented sofware
metrics. +PVSOBM PG 4ZT U RN B4HOI574AeHudrBE DR,

Francesca Arcelli Fontana, Jens Dietrich, Bartosz Walter, Aiko Yamashita, and

Marco Zanoni. Antipatern and Code Smell False Positives: Preliminary Con-

ceptualization and Classifcation. In *&&& SE*OUFSOBUJPOBM $
PO 4PDXBSF "OBMZTJT &WPMVUJIP PagBs®GE-BB.FOHJOFF
IEEE, 2016.

Francesca Arcelli Fontana, Vincenzo Ferme, Alessandro Marino, Bartosz Wal-

ter, and Pawel Martenka. Investigating the Impact of Code Smells on System’s

Qality: An Empirical Study on Systems of Diferent Application Domains.

In *&&& *OUFSOBUJPOBM $POGFSFODFMRgs4PDXBSF
260-269. IEEE, September 2013.

Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Ya-
mashita. Automatic metric thresholds derivation for code smell detection.

146 / 168 H*#-*0(3"1):

In 8&54P. £ 1SPDFFEJOHT PG UIF4JYUI *OUFSOBUJP(
5SFOET JO 4P D Xdagsd44-53J) Gniverdity of Lugano, IEEE Press,
May 2015.

[FGL12] Stephen R Foster, William G Griswold, and Sorin Lerner. Witchdoctor: Ide
support for real-time auto-completion of refactorings. In 4PDXBSF &OHJOFFS
JOH *$4& Ul *OUFS OB WpddgesQB-NM3% EEERFISFODF PO

[FM13] Amin Milani Fard and Ali Mesbah. JSNOSE: Detecting javascript code
smells. In *&& & UI*OUFSOBUJPOBM 8PSLJOH $POGFSFO
ZTJT BOE .BOJQV MB,pagesQ164185. T e University of British
Columbia, Vancouver, Canada, IEEE, January 2013.

[FM17] Wei Fu and Tim Menzies. Easy over hard: A case study on deep learning.
In1SPDFFEJOHT PG UIF Uul+PJOU .FFUJOHPO'PVO
O F F SdgeskH49-60. ACM, 2017.

[FOV* 16] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, T anis Paiva, and Ed-
uardo Figueiredo. A review-based comparative study of bad smell detection
tools. In &"4 & £ 1SPDFFEJOHTPGUIF UI*OUFSOBUJPO
UJPOBOE"TTFTTNFOU JO, gagebI8RE Feder@ Hniversity S JO H
of Minas Gerais, ACM, June 2016.

[Fow99] Martin Fowlerr 3SFGBDUPSJOH *NQSPWJOH UIF %FTJHO P
Addison-Wesley Professional, 1 edition, 1999.

[Fow02] Martin Fowlerr 1BGFSOT PG &OUFSQSJTF "QMdIDBUJP O "S
Wesley Professional, 1 edition, 2002.

[FPRZ16] Francesca Arcelli Fontana, llaria Pigazzini, Riccardo Roveda, and Marco
Zanoni. Automatic detection of instability architectural smells. In 4P DXBSF
.BJOUFOBODF BOE &WPMVUJPO *$4.& *&& & *OUF
pages 433—-437. IEEE, 2016.

[FS15] Shizhe Fu and Beijun Shen. Code Bad Smell Detection through Evolutionary
Data Mining. In *OUFSOBUJPOBM 4ZNQPTJVN PO &NQJSJDE
JOH BOE .F B peg8sEN-HChhnghai Jiaotong University, Shanghai,
China, IEEE, November 2015.

[FSMS15] Wolfram Fenske, Sandro Schulze, Daniel Meyer, and Gunter Saake. When
code smells twice as much: Metric-based detection of variability-aware code
smells. In *&&& Ul *OUFSOBUJPOBM 8PSLJOH $POGF:
"OBMZTJTBOE .BOJQVMBUJP O, payés171-180.AtDRPODFFEJOHT
Guericke University of Magdeburg, Magdeburg, Germany, IEEE, November
2015.

147 / 168 H*#-*0(3"1):

[FTCO7] Marios Fokaefs, Nikolaos Tsantalis, and Alexander Chatzigeorgiou. JDeodor-
ant: Identifcation and Removal of Feature Envy Bad Smells. In *&&&
*OUFSOBUJPOBM $POGFSFODpages®»14-B10. P8 &K-. BJOUF O |
timion Makedonias, T essaloniki, Greece, IEEE, 2007.

[FVE91] DanielJFelleman and David C Van Essen. Distributed hierarchical processing
in the primate cerebral cortex. $F S F C S B,M13} P& UPY

[Garl4] Joshua Garcia. Technical report: Architectural Smell Defnitions and Formal-
izations. 1UUQ DTTF VTD FEV 5&%)3154 SFQPSUT
VTD DTTF Q EZB14. [Online; accessed 16-June-2017].

[GBCBL16] lan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. % F F Q
M F B S\OldreH. MIT press Cambridge, 2016.

[GEBK15] Adnane Ghannem, Ghizlane El Boussaidi, and Marouane Kessentini. On the
use of design defect examples to detect model refactoring opportunities. 4 P D
XBSF JBMJU Adagéd V-SONBMh 2015.

[GG15] Yarin Gal and Zoubin Ghahramani. A Teoretically Grounded Appli-
cation of Dropout in Recurrent Neural Networks. BS9JW F @dgJOUT
arXiv:1512.05287, Dec 2015.

[GGC14] E. Guimaraes, A. Garcia, and Y. Cai. Exploring blueprints on the prioritiza-
tion of architecturally relevant code anomalies — a controlled experiment. In
*&&& UI"OOVBM $PNQVUFS 4PDXBSF, Bage& "QQMJID|
344-353, July 2014.

[Gitl6] GitHub. TUUQT HJUIVC D®DM. [Online; accessed 22-Jan-2016].

[GIM13] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech
recognition with deep bidirectional Istm.In "VUPNBUJD 4QFFDI3FDPHOJ
6OEFSTUBOEJOH "436 , Page& K38 H'S IEHH, ROB.P O

[GKA™ 16] Latifa Guerrouj, Zeinab Kermansaravi, Venera Arnaoudova, Benjamin C M
Fung, Foutse Khomh, Giuliano Antoniol, and Yann-Gaél Guéheneuc. Investi-
gating the relation between lexical smells and change- and fault-proneness:
an empirical study. 4P D XBSF JB M J,pgages 30 SMay3201 6.

[GL16] Joseph Yossi Gil and Gal Lalouche. When do Sofware Complexity Metrics
Mean Nothing? — When Examined out of Context. KF +PVSOBM PG O0CKF
S5F D 1 O PIM1}.2422016.

[Goul3] Georgios Gousios. Te GHTorrent dataset and tool suite. In 1L1SPDFFEJOHT PG
UIF UI8PSLJOH $SPOGFSFODF PO .JRSROB padeOD XBSF 3F¢
233-236, Piscataway, NJ, USA, 2013. IEEE Press.

http://csse.usc.edu/TECHRPTS/2014/reports/usc-csse-2014-500.pdf
http://csse.usc.edu/TECHRPTS/2014/reports/usc-csse-2014-500.pdf
https://github.com/

148 / 168 H*#-*0(3"1):

[GPEMO09] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. To-
ward a catalogue of architectural bad smells. In 1SPDFFEJOHT PG UIF UI
OBUJPOBM $POGFSFODFPOUIFJBMJUZPG 4PDXBSF "
"EBQUJWF 4P D X®oSA09,5agesAATL62. Springer-Verlag, 2009.

[GPKS17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfx: Fix-
ing common c¢ language errors by deep learning. In """ * pages 13451351,
2017.

[GS12] G. Gousios and D. Spinellis. GHTorrent: Github’s data from a frehose. In U |
*&& & 8PSLJOH $POGFSFODF PO .JQayS3 2P uXeBSF 3FQP
2012.

[GSK* 17] Klaus Gref, Rupesh K Srivastava, Jan Koutnik, Bas R Steunebrink, and Jiirgen
Schmidhuber. Lstm: A search space odyssey. *& & & USBOTBDUJPOT PO
OFUXPSLT BOE MEB@PR2D2H2N2T10.FN T

[GvDS13] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Automated
Detection of Test Fixture Strategies and Smells. In *&& & 4JYUI *OUFSOI
UJPOBM$POGFSFODFPO4PDXBSF5FTUJQddesFSJ DBU
322-331. IEEE, January 2013.

[GVG*] E. Guimardaes, S. Vidal, A. Garcia, J. A. Diaz Pace, and C. Marcos. Exploring
architecture blueprints for prioritizing critical code anomalies: Experiences
and tool support. 4PDXBSF 1SBDUJDESBRQE/EYQFSIFODF

[HAT*04] H H Hallal, E Alikacem, W P Tunney, S Boroday, and A Petrenko.
Antipatern-Based Detection of Defciencies in Java Multithreaded Sofware.
In 24*$ £ 1SPDFFEJOHT PG UIF JBMJUZ 4PDXBSF 'P)\
G F S,p&ydd P58-267. Cent de Recherche Informatique de Montreal, IEEE
Computer Society, September 2004.

ram Hindle, Ear arr, Zhendong Su, Mark Gabel, and Premkumar De-
[HBS*12] Ab Hindle, Earl T Barr, Zhend Su, Mark Gabel, and Premk D
vanbu. On the naturalness of sofware. In 4PDXBSF &OHJOFFSJOH *$%$4
Ul *OUFSOBUJP O Bhjes BB-&F IEEECPOE P O

[HD17] VincentJ Hellendoorn and Premkumar Devanbu. Are deep neural networks
the best choice for modeling source code? In 1SPDFFEJOHT PG UIF
+PJOU .FFUJOH PO 'PVOEBUJP QpagesG63dHM. A8 F &OHJOF
2017.

[HF10] Jez Humble and David Farley. $POUJOVPVT % FMIJWFSZ 3FMJBCMF
KSPVHI #VJME 5FTU BOE % F QuUBahN\EIRYPIofest PNBUJP O
sional, 1 edition, 2010.

149 / 168 H*#-*0(3"1):

[HJE* 13] Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Lars Heinemann,
Rudolf Vaas, and Peter Braun. Hunting for smells in natural language tests.
In *$4& £ 1SPDFFEJOHT PG UIF *OUFSOBUJPOBM $
O F F SpddgesH217-1220. Technical University of Munich, IEEE Press, May
2013.

[HLZ16] Xuan Huo, Ming Li, and Zhi-Hua Zhou. Learning unifed features from nat-
ural and programming languages for locating buggy source code. In *+ $"*
pages 1606—1612, 2016.

[HMR16] Geofrey Hecht, Naouel Moha, and Romain Rouvoy. An empirical study of the
performance impacts of Android code smells. In .0#*-&4PD £ 1SPDFFEJO
PG UIF *OUFSOBUJPOBM 8PSLTIPQ PO .PCJMF 4PDXB S
Universite Lille 2 Droit et Sante, ACM, May 2016.

[HOTO06] Geofrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning al-
gorithm for deep beliefnets. /FV SB M D P NIQ(V):UbB7Y1332,Q006.

[HPvD12] F.Hermans, M. Pinzger, and A. van Deursen. Detecting code smells in spread-
sheetformulas.In Ul *&&& *OUFSOBUJPOBM$POGFSFODFPO
*$ 4,.pages 409-418, Sept 2012.

[HS97] Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. /FV S B M
DPNQVWB)UBR-080, 1997.

[HW62] David H Hubel and Torsten N Wiesel. Receptive Felds, binocular interaction
and functional architecture in the cat’s visual cortex. KF +PVSOBM PG QIZTJ
P H1B0(1):106—154, 1962.

[HZBS14] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some Code Smells Have
a Signifcant but Small Efecton Faults. "$. 5SBOTBDUJPOT PO 4PDXBS
OFFSJOH BOE .FUIP EBMB+Z Scp@digr 2014.

[IKCZ16] Srinivasan lyer, loannis Konstas, Alvin Cheung, and Luke Zetlemoyer. Sum-
marizing source code using a neural atention model. In 1SPDFFEJOHT PG U
Uul"OOVBM .FFUJOHPGUIF"TTPDJBUJPO GPS $PNQV!I
-POH 1B/Qunas T, pages 2073—2083, 2016.

[1S15] Sergey lofe and Christian Szegedy. Batch normalization: accelerating deep
network training by reducing internal covariate shif. In 1SPDFFEJOHT PG
UIF OE *OUFSOBUJPOBM $POGFSFODF PO *OUFSOB
-FBSOJOH 7phids4nBFA56. IMLR. org, 2015.

[JA15] Yujuan Jiang and Bram Adams. Co-evolution of Infrastructure and Source
Code: An Empirical Study. In 1SPDFFEJOHT PG UIF Ul 8PSLJOH
PO .JOJOH 4PDXB S MSRFIQ page3 UbP5S, Piscataway, NJ, USA,
2015. IEEE Press.

150/ 168

[JGHK13]

[JZ15]

[Kar10]

[KB14]

[KBF16]

[KDPG09]

[KDPGA12]

[KEA16]

[KH09]

[KHRS12]

[KKS* 14]

H*#-*0(3"1):

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and Foutse Khomh. Min-

ing the relationship between anti-paterns dependencies and fault-proneness.

In 1SPDFFEJOHT 8PSLJOH $POGFSFODF paggsSFWFSTF
351-360. Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, 2013.

Rie Johnson and Tong Zhang. Efective use of word order for text catego-

rization with convolutional neural networks. In 1SPDFFEJOHT PG UIF {
GFSFODF PG UIF /PSUI "NFSJDBO $IBQUFS PG UIF "TT|
-JOHVJTUJDT)VNBO -BQphye8IaF15E5DI0OPMPHIFT

Bill Karwin. 42-"OUJQBGFSOT "WPJEJOHUIF1JUGBMMT PC
Pragmatic Bookshelf, 1st edition, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. BS9JW QSFQSJOUBKBIIW

Oren Z Kraus, Jimmy Lei Ba, and Brendan J Frey. Classifying and segment-
ing microscopy images with deep multiple instance learning. #JPJOGRSNBUJDT
32(12):i52—i59, 2016.

Foutse Khomh, Massimiliano Di Penta, and Yann-Gaél Guéhéneuc. An Ex-

ploratory Study of the Impact of Code Smells on Sofware Change-proneness.

In Ul 8PSLJOH $POGFSFODF R ag8s§Efole SOHJOFF
Polytechnique de Montreal, Montreal, Canada, IEEE, December 2009.

Foutse Khomh, Massimiliano Di Penta, Yann-Gaél Guéhéneuc, and Giuliano
Antoniol. An exploratory study of the impact of antipaterns on class change-

and fault-proneness. &NQJSJDBM 4P D XB &R)&43-273,Quné& SJOH
2012.

Yasser A Khan and Mohamed El-Atar. Using model transformation to refac-
tor use case models based on antipaterns. *OGPSNBUJPO 4ZTUFNT 'S
18(1):171-204, 2016.

Alex Krizhevsky and Geofrey Hinton. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

Sebastian Kleinschmager, Stefan Hanenberg, Romain Robbes, and Andreas

Stefk. Do static type systems improve the maintainability of sofware sys-

tems? An empirical study. In *&&& Ul *OUFSOBUJPOBM $PO
1SPHSBN $P NQSF |,pes 133-Q62*dnivdrsitat Duisburg-Essen,

Essen, Germany, IEEE, 2012.

Wael Kessentini, Marouane Kessentini, Houari Sahraoui, Slim Bechikh, and

Ali Ouni. A Cooperative Parallel Search-Based Sofware Engineering Ap-

proach for Code-Smells Detection. *& & & 5SBOTBDUJPOTPO,4PDXBSF
40(9):841-861, 2014.

151/ 168

[Koe95]

[KSH12]

[KVGS09]

[KVGS11]

[KZ07]

[Larl6a]

[Larl6b]

[Larl6c]

[LBBH98]

[LBG" 16]

[LBH15]

H*#-*0(3"1):

Andrew Koenig. Paterns and antipaterns. + 0 Q &(1):46—48, 1995.

Alex Krizhevsky, llya Sutskever, and Geofrey E Hinton. Imagenet classifca-
tion with deep convolutional neural networks. In "EWBODFT JO OFVSBM J
NBUJPO QS P D F, papesQ97-TL70%, ROEAIN T

Foutse Khomh, Stéphane Vaucher, Yann-Gaél Guéhéneuc, and Houari

Sahraoui. A Bayesian Approach for the Detection of Code and Design Smells.

In 24*$ £ 1SPDFFEJOHT PG UIF /[JOUI *OUFSOBUJP
4 P D X Ba§es 305—-314. IEEE Computer Society, August 20009.

Foutse Khomh, Stéphane Vaucher, Yann-Gaél Guéhéneuc, and Houari
Sahraoui. BDTEX: A GQM-based Bayesian approach for the detection of
antipaterns. In +PVSOBM PG 4ZT U Fasdges B39-R72 PDIXMIS-F
technique de Montreal, Montreal, Canada, 2011.

Jaroslav Kréal and Michal Zemlicka. Te most important service-oriented an-

tipaterns. In OE *OUFSOBUJPOBM $POGFSFODF PO 4PDXB S
*$4&" |, pages 29-29. Charles University in Prague, Prague, Czech Re-

public, IEEE, December 2007.

Gary Larizza. Building a Functional Puppet Workfow Part 1: Module Struc-
ture. TUUQ XXX XFCDJUBUJPO PSH H201.: [oa-
line; accessed 15-Mar-2016].

Gary Larizza. Building a Functional Puppet Workfow Part 2: Module Struc-
ture. TUUQ XXX XFCDJUBUJPO PSH H2016- JOM
line; accessed 15-Mar-2016].

Gary Larizza. Doing the Refactor Dance — Making Your Puppet Modules
More Modular. lTUuUQ XXX XFCDJUBUJPO PSH H EO/,P
2016. [Online; accessed 15-Mar-2016].

Yann LeCun, Léon Botou, Yoshua Bengio, and Patrick Hafner. Gradient-
based learning applied to document recognition. 1SPDFFEJOHT PG UIF *
86(11):2278-2324, 1998.

Wang Ling, Phil Blunsom, Edward Grefenstete, Karl Moritz Hermann,

Tomas Kotisky, Fumin Wang, and Andrew Senior. Latent predictor networks

for code generation. In LSPDFFEJOHT PG UIF UI"OOVBM .FFUJ
BUJPO GPS $PNQVUBUJPOBM -JOH Wallrnell[pages’ PMV N F
599-609, 2016.

Yann LeCun, Yoshua Bengio, and Geofrey Hinton. Deep learning. OBUV SF
521(7553):436, 2015.

http://www.webcitation.org/6g23RY7yS
http://www.webcitation.org/6g23YeuFl
http://www.webcitation.org/6g23dnNKo

152 / 168 H*#-*0(3"1):

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwriten digit
database. "5 5 -BCT <OOMJOF> "WBJMBCMF 1GQ, zZBOO N
2, 2010.

[LCCY13] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis. ldentifca-
tion of refused bequest code smells. In *&&& *OUFSOBUJPOBM $PO(
4PDXBSF .BJ@ddds B-8%) Fept 2013.

[LGTB97] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face
recognition: A convolutional neural-network approach. *& & & USBOTBDUJPOT
OFVSBM CBR)HHPLS, 19D7.

[LHZL17] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Sofware defect prediction
via convolutional neural network.In 4PDXBSFJBMJUZ 3FMJBCJMJUZ
234 *& & & *OUF S OB U JPpageS83B-8EBBOREE AFFODF PO

[LKOO] A Lauder and S Kent. Legacy System Anti-Paterns and a Patern-Oriented
Migration Response. In 4ZTUFNT &OHJOFFSJOH GPS,#VTJOFT
pages 239-250. Springer London, 2000.

[LLNL16] Hui Liu, Qiurong Liu, Zhendong Niu, and Yang Liu. Dynamic and Automatic
Feedback-Based T reshold Adaptation for Code Smell Detection. *& & & 5SBOT
BDUJPOT PO 4P D X Bi&6):5849558) Jorfe E0%$6) O H

[LLSM18] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical study
of architectural decay in open-source sofware. In *&&& *OUFSOBUJPC
$POGFSFODF PO 4P D XB S,pdyssD163-rt0n Apvil2e18.x $ 4

[LMSN12] H.Liu, Z. Ma, W. Shao, and Z. Niu. Schedule of bad smell detection and reso-
lution: A new way to save efort. *& & & 5SBOTBDUJPOT PO 4PDXBSF
38(1):220-235, 2012.

[Lon01] John Long. Sofware reuse antipaterns. "$. 4*(40'5 4PDXBSF &OHJOFF ¢
/ P U E#):68—76, July 2001.

[LPM15] Tang Luong, Hieu Pham, and Christopher D Manning. Efective ap-
proaches to atention-based neural machine translation. In 1SPDFFEJOHT PG U
$POGFSFODFPO &NQJSJDBM .FUIPET,pdgesBUVSBM -
1412-1421, 2015.

[LRO6] Martin Lippert and Stephen Roock. 3aFGBDUPSJOH JO MBSHF TPDXBS
GPSNJOHDPNQMFY SFTU SourDAI®yXISOons 2006V DDFTTGV MM

[LR15] Mathieu Lavallée and Pierre N Robillard. Why good developers write bad
code: An observational case study of the impacts of organizational factors

153/ 168

[LVKM* 14]

[LXZ18]

[LYC17]

[MAB* 12a]

[MAB* 12b]

[Mar01]

[Mar02]

[Mar04]

[Mar05]

H*#-*0(3"1):

onsofware quality. In 1SPDFFEJOHT *OUFSOBUJPOBM $POGF
H J O F p&ds®H—-687. Polytechnique Montréal, Montreal, Canada, IEEE,
August 2015.

Mario Linares-Vasquez, Sam Klock, Collin McMillan, Aminata Sabane, Denys

Poshyvanyk, and Yann-Gaél Guéhéneuc. Domain maters: bringing further

evidence of the relationships among anti-paterns, application domains, and

quality-related metrics in Java mobile apps. In *$1 $ 1SPDFFEJOHT PG
OE*OUFSOBUJPOBM$POGFSFO,DdgeRI2128FP HSBN $PNQ

College of William and Mary, ACM, June 2014.

Hui Liu, Zhifeng Xu, and Yanzhen Zou. Deep learning based feature envy

detection. In 1SPDFFEJOHT PG UIF SE "$. *&&& *OUFSOBU
"VUPNBUFE 4P D XB SASR2018 p&yds B&S-B@BBH\ew York, NY,

USA, 2018. ACM.

Song-Mi Lee, Sang Min Yoon, and Heeryon Cho. Human activity recognition

from accelerometer data using convolutional neural network. In #JH % BUB
BOE4NBSUS$PNQVUJOH #JH$SPNQ *& Qp8GED UFSOBU
131-134. IEEE, 2017.

Abdou Maiga, Nasir Ali, Neelesh Bhatacharya, Aminata Sabané, Yann-Gaél

Guéhéneuc, and Esma Aimeur. SMURF: A SVM-based incremental anti-

patern detection approach. In 1SPDFFEJOHT 8PSLJOH $POGFSFC
& OHJOFF S Jfagts BS-3%&. Ptidej Team, IEEE, December 2012.

Abdou Maiga, Nasir Ali, Neelesh Bhatacharya, Aminata Sabané, Yann-Gaél

Guéhéneuc, Giuliano Antoniol, and Esma Aimeur. Support vector machines

for anti-patern detection. In "4 & 1SPDFFEJOHT PG UIF UI *,
*OUFSOBUJPOBM $POGFSFODF PO ' pagePNB2EE 4P D XB ¢
Polytechnic School of Montreal, ACM, September 2012.

K. Marquardt. Dependency structures—architectural diagnoses and therapies.
In 1SPDFFEJOHT PQOIF &VSP1-PQ

Robert C Martin. "HIJMF TPDXBSF EFWFMPQNFOU QSJODJQN
U J.[Prertice Hall, 2002.

Radu Marinescu. Detection strategies: Metrics-based rules for detecting de-
signfaws.In LSPDFFEJOHT PG UIF UI*&&& *OUFSOBUJPOB
.BJ O U F,OBND Hpages 350—359. IEEE Computer Society, 2004,

R Marinescu. Measurement and quality in object-oriented design.In TU *& & &
*OUFSOBUJPOBM $POGFSFODF PO 4fdes<&ls/B4.BJOUFOE
Universitatea Politehnica din Timisoara, Timisoara, Romania, IEEE, Decem-

ber 2005.

154 /168

[Mar10]

[MBC14]

[MCKX15]

[MDP* 11]

[MFBR18]

[MGO7]

[MGDM10]

[MGP* 12]

[MGVS10]

[MHBOS]

H*#-*0(3"1):

James Martens. Deep learning via hessian-free optimization. In *$. ; vol-
ume 27, pages 735—742, 2010.

A. Martini, J. Bosch, and M. Chaudron. Architecture technical debt: Under-
standing causes and a qualitative model. In Ul&630.*30POGFSFOL
PO 4PDXBSF &0HJOFFSJOH B Q adeE8s-B20MDd2B12Q QM JIDB U

Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot Paterns: T e For-
mal Defnition and Automatic Detection of Architecture Smells. In 8 *$ 4"
pages 51-60. IEEE Computer Society, 2015.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y.

Ng, and Christopher Pots. Learning word vectors for sentiment analysis. In
1SPDFFEJOHT PG UIF UI"OOVBM .FFUJOHPG UIF"TT
-JOHVJTUJDT)VNBO -B QphyeSIkPF1S0-HDtiand, drfedgdn] F T

USA, June 2011. Association for Computational Linguistics.

Antonio Martini, Francesca Arcelli Fontana, Andrea Biaggi, and Riccardo

Roveda. Identifying and prioritizing architectural debt through architectural

smells: A case study in a large sofware company. In Ul &VSPQFBO $POGF
FODF PO 4PDXBSF "SDIJUSEdenhtS2518& $4 "

Naouel Moha and Yann-Gaél Guéhéneuc. Decor: a tool for the detection

of design defects. In "4 & £ 1SPDFFEJOHT PG UIF UXFOUZ TI
JOUFSOBUJPOBM DPOGFSFODF PO, hatesB2N-B23.FE TP D XB
University of Montreal, ACM, 2007.

Naouel Moha, Yann-Gaél Guéhéneuc, Laurence Duchien, and Anne-
Francoise Le Meur. DECOR: A method for the specifcation and detection
of code and design smells. *& & & 5SBOT 4 PIBEXRSI6, QOOOH

Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Med-

vidovic, and Arndt von Staa. Are automatically-detected code anomalies rele-

vant to architectural modularity? In UIF UIBOOVBM JOUFSOBUJPOB
pages 167—178. ACM Press, 2012.

Isela Macia, Alessandro Garcia, and Arndt von Staa. Defning and applying

detection strategies for aspect-oriented code smells. In 1SPDFFEJOHT Ul
#SB[JMJIJBO 4ZNQPTJVN PO 4P D XB,9%e8+I PoOR-FSIJOH 4+
tifcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, IEEE,

December 2010.

Emerson Murphy-Hill and Andrew P Black. Seven habits of a highly efective
smell detector. In U | F JOUF S OB U JdesBoi4X PostlaridIStae@
University, Portland, United States, ACM Press, 2008.

155 / 168 H*#-*0(3"1):

[MHB10] Emerson Murphy-Hill and Andrew P Black. An interactive ambient visual-
ization for code smells. In 40'57*4 £ 1SPDFFEJOHT PG UIF UI J
TZNQPTJVN PO 4P D X B SdrtWCardlMBtate B ivedsRyDACM,

October 2010.

[MKCN17] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Cu-
rating github for engineered sofware projects. & NQJSJDBM 4PDXBSF &0OH
J Q2A(6):3219-3253, Dec 2017.

[MKMD16] Usman Mansoor, Marouane Kessentini, Bruce R Maxim, and Kalyanmoy Deb.
Multi-objective code-smells detection using good and bad design examples.
4P DXBSF JBM J gages P-243-Ehiidvly 2016.

[MLO6] Mika V Méntyla and Casper Lassenius. Subjective evaluation of sofware
evolvability using code smells: An empirical study. &NQJSJDBM 4PDXBSF &
O F F SLI(8):895—431, September 2006.

[MLZ" 16] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural net-
works over tree structures for programming language processing. In """ *
volume 2, page 4, 2016.

[MNK*02] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, and Ken-ichi
Matsumoto. Sofware Qality Analysis by Code Clones in Industrial Legacy
Sofware. In .&53*$4 £ 1SPDFFEJOHTPGUIF UI*OUFSOBI
4P D XBSF,fag¢ 8/JIBEE Computer Society, June 2002.

[MS16] Alan MacCormack and Daniel J. Sturtevant. Technical debt and system archi-
tecture: T e impact of coupling on defect-related activityy +PVSOBM PG 4ZTUF|
BOE 4P DIXOB®F 182, 2016.

[MT04] Tom Mens and Tom Tourwé. A Survey of Sofware Refactoring. *& & & 5SBOT
BDUJPOT PO 4P D X BEH:1262139) kel iy 2004

[Mun05] Mathew James Munro. Product Metrics for Automatic Identifcation of "Bad
Smell” Design Problems in Java Source-Code. In . &53*$4 £ 1SPDFFEJOH™
UIF Ul *&&& *OUFSOBUJPOBM 4PDXBSF ,pddeSJDT 4ZNC
15-15. University of Strathclyde, IEEE Computer Society, September 2005.

[MVLO03] Mika Mantyla, Jari Vanhanen, and Casper Lassenius. A Taxonomy and an
Initial Empirical Study of Bad Smellsin Code. In *$4 . £ 1SPDFFEJOHT PC
*OUFSOBUJPOBM $POGFSFOD FEBEQohpuRXBckty, BJOUFO
September 2003.

[MY12] Leon Moonen and Aiko Yamashita. Do code smells refect important main-
tainability aspects? In *$4. £ 1SPDFFEJOHT PG UIF *&&& ¥
$POGFSFODF PO 4PDXBSF. SBnl® Reberdd Qdbdratorsh 4 .
IEEE Computer Society, September 2012.

156 / 168

[NC15]

[NNN*12]

[NNN13]

[Non15]

[NPT* 18]

[OAH* 18]

[OCBZ09]

[OFN* 15]

[OGC™ 15]

H*#-*0(3"1):

Csaba Nagy and Anthony Cleve. Mining stack overfow for discovering er-
ror paterns in sql queries. *&&& *OUFSOBUJPOBM $POGFSFC
.BJOUFOBODF BOE &WEMWH0IPIE *$4.&

Hung Viet Nguyen, Hoan Anh Nguyen, Tung Tanh Nguyen, Anh Tuan

Nguyen, and Tien N Nguyen. Detection of embedded code smells in dy-

namic web applications. In "4 & 1SPDFFEJOHTPGUIF Ul*&&&
OBUJPOBM $POGFSFODF PO "V U PpsigBsUR-E285.PovX BSF & OH
State University, ACM, September 2012.

Anh Tuan Nguyen, Tung T anh Nguyen, and Tien N Nguyen. Lexical statisti-

cal machine translation for language migration.In 1SPDFFEJOHT PG UIF
+PJOU .FFUJOH PO 'PVOEBUJP QpagesG54-B833. 86N F &OHJOF
2013.

Kwankamol Nongpong. Feature envy factor: A metric for automatic feature

envy detection. In 1SPDFFEJOHT PG UIF Ul *OUFSOBUJP
,OPXMFEHF BOE 4NBSU 5Fgage®d M. AsdumptidrbUniver-

sity, Bangkok, Bangkok, T ailand, IEEE, January 2015.

D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia.

Detecting code smells using machine learning techniques: Are we there yet?

In *£&& UI*OUFSOBUJPOBM $POGFSFODF PO 4PDXI
3FFOHJOFF S JWIdmed0/gades 612—621, March 2018.

Jordan Ot, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson,
Cristiano Firmani, and Erik Linstead. Learning lexical features of program-
ming languages from imagery using convolutional neural networks. pages
336-339, 2018.

Stefen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zazworka. T e evo-

lution and impact of code smells: A case study of two open source systems.

In SE*OUFSOBUJPOBM 4ZNQPTJVN PO &NQJSJDBM
.FBTVSFNF Q hage& 398-400. IEEE, August 2009.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,

Tomoki Toda, and Satoshi Nakamura. Learning to generate pseudo-code from

source code using statistical machine translation (t). In "VUPNBUFE 4PDXBSF
&OHJOFFSJOH "4& Ul *&&& "$. *OUR@OBUJPOB
574-584. IEEE, 2015.

Willian N. Oizumi, Alessandro F. Garcia, Telma E. Colanzi, Manuele Fer-

reira, and Arndt V. Staa. On the relationship of code-anomaly agglomera-

tions and architectural problems. +PVSOBM PG 4PDXBSF &OHJOFFS
BOE % FW F 3(Lp1Q, ROE50 U

157 / 168 H*#-*0(3"1):

[OGdSS* 16] Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo,
and Yixue Zhao. Code anomalies fock together: Exploring code anomaly
agglomerations for locating design problems. In LSPDFFEJOHT PG UIF Ul
OBUJPOBM $POGFSFODF PIOSE RPEpEdRSHO-AD RO FFSJOH

[OKAG10] Rocco Oliveto, Foutse Khomh, Giuliano Antoniol, and Yann-Gaél Guéhéneuc.
Numerical Signatures of Antipaterns: An Approach Based on B-Splines. In

$4.3 £ 1SPDFFEJOHTPGUIF UI&VSPQFBO $POGH
UFOBODF BOE 3 pdg® p48-QF AEEE Qdnputer Society, March
2010.

[OKKI15] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, and Katsuro Inoue.
Web Service Antipaterns Detection Using Genetic Programming. In (& $$0
£ 1SPDFFEJOHT PG UIF "OOVBM $POGFSFODF PC
$P N QV Uages)B3D-1358. Osaka University, ACM, July 2015.

[Pal18] A large-scale empirical study on the lifecycle of code smell co-occurrences.
*OGPSNBUJPOBOE 4PBXBBRBFEDIOPMPHZ

[PBDP* 15] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. Mining version histories for de-
tecting codesmells. *& & & 5SBOTBDUJPOT P O,4R5D4BBBF &OHJIOF |
May 2015.

[PBP* 14] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrea De Lucia. Do Tey Really Smell Bad? A Study on Developers’ Per-
ception of Bad Code Smells. In *&& *OUFSOBUJPOBM $POGFSF(
.BJOUFOBODF BOE & \Vpdgdd A01+-01P. (EEE, $dy. 214,

[PC09] Javier Pérez and Yania Crespo. Perspectives on automated correction of bad
smells. In UIF KPJOU JOUFSOBUJPOBM B,(pdgeBO-M08.BM &33$*.
Universidad de Valladolid, Valladolid, Spain, ACM Press, 2009.

[PDLBO14] Fabio Palomba, Andrea De Lucia, Gabriele Bavota, and Rocco Oliveto. Anti-
Patern Detection. In "OUJ QBGFSO EFUFDUJPO .FUIPET DIB
J T T, pafes 201-238. Elsevier, 2014.

[PDMG14] Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaél Guéhéneuc. De-
tection of REST paterns and antipaterns: A heuristics-based approach. In
Xavier Franch, Aditya K Ghose, Grace A Lewis, and Sami Bhiri, editors, - F D
UVSF/PUFT JO $PNQVUFS 4DJFODF JODMVEJOH TVCT
*OUFMMJHFODF BOE -FDUYV $kgé280F274IDivedsRed0 GP SN B U .
Qebec a Montreal, Montreal, Canada, Springer Berlin Heidelberg, January
2014.

158 / 168

[PHN* 15]

[PM15]

[PMG13]

[PNSLB16]

[PNT* 15]

[PPDL* 16]

[PPF* 14]

[PR11]

[Pupl6a]

H*#-*0(3"1):

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran

Sahami, and Leonidas Guibas. Learning program embeddings to propagate
feedback on student code. In *OUFSOBUJPOBM $POGFSFEODF PO .
pages 1093-1102, 2015.

Francis Palma and Naouel Mohay. A study on the taxonomy of service an-

tipaterns. In *&&& OE*OUFSOBUJPOBMS8PSLTIPQ PO 1B
"OUJ 1BGFSOT 1SFWFOUJP O, pdges'3-8. EcolePAReECWFFEJOHT
nique de Montreal, Montreal, Canada, IEEE, January 2015.

Francis Palma, Naouel Moha, and Yann-Gaél Guéhéneuc. Detection of pro-

cess antipaterns: A BPEL perspective. In 1SPDFFEJOHT *&&& *OUFS
&OUFSQSJTF %JTUSJCVUFE 0CKF, pages$I?P3NIQNVBFIJOH 8PS L
cole Polytechnique, Canada, IEEE, January 2013.

Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzi-

lay. sk_p: a neural program corrector for moocs. In $SPNQBOJPO 1SPDFFEJ
PG UIF "$.4*(1-"/*OUFSOBUJPOBM $POGFSFODF PO
-BOHVBHFTBOE"QQMJDBUJP (pageBRr-BIXAEB RGP S)VNBO.

Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco

Oliveto, Denys Poshyvanyk, and Andrea De Lucia. Landfll: An open dataset

of code smells with public evaluation.In 1SPDFFEJOHT PG UIF UI8PSL
GFSFODF PO .JOJOH 4B MSRBLS pagek 4322485, LEPEPdessT

2015.

Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and

Andy Zaidman. A textual-based technique for Smell Detection. In *&&&
UlI*OUFSOBUJPOBM $POGFSFODF PQd@g&RP-HBEBN $PNQ

Universita di Salerno, Salerno, Italy, IEEE, 2016.

Juliana Padilha, Juliana Pereira, Eduardo Figueiredo, Jussara Almeida,

Alessandro Garcia, and Claudio Sant’Anna. On the efectiveness of concern

metrics to detect code smells: An empirical study. In -FDUVSF /PUFT JO $PN
QVUFS 4DJFODF JODMVEJOH TVCTFSJFT -FDUVSF /P
-FDUVSF /PUFT JO , pdgeshah-& A SINietdidddelFederal de Mi-

nas Gerais, Belo Horizonte, Brazil, Springer International Publishing, January

2014,

Mikhail Perepletchikov and Caspar Ryan. A controlled experiment for eval-
uating the impact of coupling on the maintainability of service-oriented sof-
ware. *&&& 5SBOTBDUJPOT PO ,8RIDMBLHT, Audust IOLFFS IO H

Sonar Puppet. SonarQbe Puppet Plugin, Last accessed on: 22nd
Jan 2016. Available at: 1TUUQT HJUIVC DPN JXBSBQUFS
TPOBS QVQQFU

https://github.com/iwarapter/sonar-puppet
https://github.com/iwarapter/sonar-puppet

https://forge.puppetlabs.com
http://puppet-lint.com
https://puppet.com/
http://assets.red-gate.com/community/books/sql-code-smells.pdf
http://assets.red-gate.com/community/books/sql-code-smells.pdf

168 / 168 B#*#-*0(3"1):

Sofware and Systems (JSS). Apr 2018.

» Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis. On the
Feasibility of Transfer-learning Code Smells using Deep Learning. April 2019. Eprint
availableat: TUUQT BSYJW PSH BCT SSL

SFMFWBOU BDDFQUFE QVCMJDBUJPOT OPU

» Tushar Sharma, Pratibha Mishra and Rohit Tiwari, “Designite - A Sofware Design
Qality Assessment Tool,” IEEE/ACM 1st International Workshop on Bringing Ar-
chitectural Design T inking Into Developers’ Daily Activities (BRIDGE), Austin, TX,
2016, pp. 1-4. doi: 10.1109/Bridge.2016.009

» Tushar Sharma, “Designite: A Customizable Tool for Smell Mining in C# Reposito-
ries”, in SATTOSE, Madrid, 7-9 June 2017. Online: TUUQ XXX UVTIBSNB
JO QSFQSJOUT EFTIJHOJUF@4"55P4& QEG

» Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. “Refactoring for
sofware architecture smells”, In Proceedings of the 1st International Workshop on
Sofware Refactoring (IWoR 2016). ACM, New York, NY, USA, 1-4.
lTUuUQ EY EPJ PSH

OUIFSQVCMJDBUJPOT EVSJOHUIFUIFTJIT Q

» Tushar Sharma and Girish Suryanarayana, "Augur: Incorporating Hidden Depen-
dencies and Variable Granularity in Change Impact Analysis,” 2016 IEEE 16th Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM),
Raleigh, NC, 2016, pp. 73-78. doi: 10.1109/SCAM.2016.32

» Maria Kechagia, Tushar Sharma and Diomidis Spinellis, "Towards a Context Depen-
dent Java Exceptions Hierarchy,” 2017 IEEE/ACM 39th International Conference on
Sofware Engineering Companion (ICSE-C), Buenos Aires, 2017, pp. 347-349. doi:
10.1109/ICSE-C.2017.134

https://arxiv.org/abs/1904.03031
http://www.tusharma.in/preprints/designite_SATToSE2017.pdf
http://www.tusharma.in/preprints/designite_SATToSE2017.pdf
http://dx.doi.org/10.1145/2975945.2975946

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Proposed Solution and Contributions
	1.4 Research method
	1.5 Thesis outline

	2 Related Work
	2.1 Introduction
	2.2 Method
	2.3 Results and Discussion
	2.4 Conclusions

	3 Methodology
	3.1 Research Objectives
	3.2 Theoretical Background

	4 Implementation
	5 Results and Discussion
	5.1 Results of Maintainability Analysis on Production Code

	6 Conclusions and Future Work
	6.1 Summary of the Results
	6.2 Contributions of the Thesis
	6.3 Future Work

	Bibliography

