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CHAPTER 1 

 

INTRODUCTION 

 

 

 Longitudinal data is a special type of multivariate data that occur when 

counts, measurements or categorical responses are obtained from one or 

more experimental units or subjects through time. A number of various 

approaches for representing longitudinal data in terms of a statistical model 

have been developed.  

 The data used in this thesis are from Kenward (1987) that reports an 

experiment in which cattle were assigned randomly to two treatment groups 

A and B, and their weights were recorded to study the effect of treatments 

on intestinal parasites. Thirty animals received treatment A and another 30 

received treatment B. They are weighed 11 times over a 133-day period; the 

first 10 measurements on each animal were made at two-week intervals and 

the final measurement was made one week later. The measurement times 

were common across animals and were rescaled to t=1,2,…,10,11. No 

observation was missing so this is a balanced longitudinal dataset. 

 Our goal is to find which model among these presented in this thesis 

fits best to the two different groups of our data. We compare among joint 

mean- covariance models (Pourahmadi, 1999) and mixed effects models.  



  
 

 

 

 

 



  
 

 

 

CHAPTER 2 

 

THEORY 

 

2.1 Joint mean- covariance model 

 

2.1.1 Cholesky Decomposition 

Let our data Yi (i=1,2,…,30) where  Yi  ~ N(µ,Σ) is the vector of the weight 

of the i-th cattle through time. We parameterize the covariance matrix Σ in 

terms of covariates. We are dropping the subscript i for avoiding confusions 

and we will use subscript t where Y t  is the weight of the cattle on the t-th 

moment (t=1,2,,,T=11).  A link now that connects linear least predictors of 

Yt, based on its predecessors, with the covariance matrix is the Cholesky 

Decomposition. Specifically, the modified Cholesky Decomposition of Σ-1, 

not Σ, provides us an unconstrained parameterization of covariance 

(Pourahmadi, 1999). Since Σ 1−  is the canonical covariance parameter of a 

multivariate normal distribution, modeling its unconstrained parameters as a 

linear combination of covariates is in agreement with the approach of 

generalized linear models. 

We assume the following linear predictor of Yt  

tY
)

 = µ t  + ∑
−

=

1

1

t

j

φ jt , (Υ j - µ j )⇒  Y t  = µ t  + ∑
−
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j

φ jt , (Υ j - µ j ) + et  ⇒  

Y t  - µ t  - ∑
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φ jt , (Υ j - µ j )= et  where et ~N(0, 2

tσ ) 

Supposing zt are the centred observations where zt = Y t  - µ t  

Y t  - µ t = zt ⇒   
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Also since prediction errors et are uncorrelated D=cov(e) is a diagonal 

matrix 

D = cov(e) = 



























Τ
2

2

2

2

1

0..00

0.0...

.0.0..

..0.0.

0..00

00..0

σ

σ
σ

= Tcov( Τ′ΤΣ=′Τ=Τ′ Tyy )cov()~ ⇒  

D= cov(e) = Τ′ΤΣ  

The Cholesky Decomposition gives us the matrix T which bellow-diagonal 

entries are the negatives of the coefficients of  Ŷ t  = µ t  + ∑
−

=

1

1

t

j

φ jt , (Υ j -µ j ), 

the linear least-squares predictor of Υ t  based on its predecessors Y 1−t , … , 

Y 1  . It also provides us matrix D which diagonal entries are the prediction 

error variances σ 2

t = var(Υ t - Ŷ t ), for  1≤ t ≤T.  

Consequently, since the above entries of T and D have statistical meaning, 

we can trade in the 
2

1
n(n+1) constrained and hard-to-model parameters of Σ  

for the 
2

1
n(n+1)  unconstrained and interpretable parameters φ jt , ,log σ 2

t , 

for 1 ≤ t ≤T and 1 ≤ j ≤ t-1. We refer to the new parameters φ jt , ’s and σ 2

t ’s as 

the generalized autoregressive parameters and the innovation variances of Σ 

or Y. 



  
 

 

2.1.2 Linear mean- covariance model 

In order to make the most of the results given from the Cholesky 

Decomposition we use a joint mean-covariance model composed of three 

submodels describing the mean, variance and dependence of a random 

vector. Since φ jt ,  and logσ 2

t  as we have defined them above are 

unconstrained, they are modeled in terms of covariates. To this end, for 

t=1,…,T  and  j=1,..,t-1, we consider the below three models 

µ t  = m(x t ,β),    logσ 2

t =u(z t ,λ),    φ jt , =d(z jt , ,γ) 

where m(.,.), u(.,.), d(.,.) are functions,  x t , z t , z jt ,  are p x 1, q 1  x 1, q 2  x 1 

vectors of covariates, and β=(β 1 ,…,β p )΄, λ=(λ 1 ,…,λ
1q )΄ and 

γ=(γ 1 ,…,γ
2q )΄are parameters corresponding to the mean, variance and 

dependence, respectively.  

When m(.,.), u(.,.) and d(.,.) are linear functions of their parameters we 

refer to such a model as a linear mean-covariance model. 

h(Σ)=(φ '

2 ,…,φ '

n , logσ 2

1 ,…, logσ 2

n )΄=Ζ α , 

is the link function (McCullagh & Nelder, 1989, p.27) for a linear mean-

covariance model. In order for this linear framework to be useful for our 

longitudinal data analysis, following Diggle, Liange & Zeger (1994, p.16), 

we use the following notation for the data, parameters and covariates: 

Y=(Y '

1 ,…,Y '

m )΄,   µ=(µ '

1 ,…,µ '

m )΄,   Σ=block diag(Σ 1 ,…,Σ m ), 

Χ=(Χ '

1 ,…,Χ '

m )΄,   µ i =Χ i β i ,  Ζ= block diag(Ζ 1 ,…,Ζ m ),  h(Σ i )=Ζ i α, 

where now the subscript i refers to the ith subject (cattle) of our data.  

Additionally we can write h(Σ) as a symmetric matrix Θ, where its main 

diagonal is the logarithm of the diagonal entries of D, its first subdiagonal, 

i.e. the lag-one regression coefficients, is the first subdiagonal of T and so 

forth. Since its entries are merely rearrangements of those of Z α , we have  

Θ=∑
=

q

j

jjU
1

α , 

where the U j ’s are symmetric covariate matrices. 



  
 

 

2.1.3 Examples 

Example1. (a) (Pinheiro & Bates, 1996). For this Σ, its 6x1 vector of 

covariance predictors h(Σ) is computed using 

    Σ = 
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,   D = diag(1,4,9),  h(Σ) = (1,0,1,0,log4,log9)΄ . 

 It follows that Y 1 =ε 1 , Υ t =Y 1−t +ε t , for t=2,3. 

  (b) Given h(Σ) = (3, -1.5, -1, 0, -1, 2)΄ for an unknown 3x3 matrix Σ, the 

matrix is recovered by first constructing T and D : 

                T = 















−

115.1

013

001

,   D = diag(1, e 1− ,e 2 ). 

Then one computes Σ. 

  

Example 2. (a) For n=2 and q=1 and an arbitrary covariance covariate Z= 

(z ),, 321 zz ΄, the generalised linear model amounts to the following 

reparameterisation of Σ: 

                Σ = e 







+ − azz

az

eazaz

az
)(22

11

1

21

2
1

, 

containing only one unconstrained parameter α. The parameterised 

correlation coefficient between Y 1  and Y 2  is given by  

z 1 a ( ){ }[ ] 2

1

23

22

1 exp
−

−+ azzaz , which approaches ± 1 when z 23 z−  approaches  -

∞ . In a longitudinal study with two measurements made on a subject at 

times  

t 1 < t 2 , the choice of z 1 = t 1 ,  

z 2 = -(t 2 - t 1 ) and z 3 =-(t 2 - t 1 ) 2  leads to a covariance matrix with many 

desirable decay properties when t 1  and t 2  grow far apart. 



  
 

 

 

(b) For n=2 and q=2, α= (α 1 ,α 2 )΄ and 

                           Z = 

′










321

111

zzz
 , 

the linear model for the unconstrained entries of h(Σ)=Z α  can be solved 

using h(Σ) to express entries of Σ in terms of the new covariance parameters 

α 1  and α 2  and the explanatory variables in Z as follows : 

   σ 11 = e 221 αα z+ ,  σ
21

= ( ) 221

211

az
ez

++ ααα ,   σ 22  = e 231 αα z+
+ ( ) 221

2

211

azez ++ ααα . 

(c) The alternative representation of h(Σ) above is  

                     Θ = ,
log

log
2211

31

12

212

212

12

2

1 UaU
zz

zz
aJa +=








+=








α

σφ
φσ

      

where U 1 =J is the 2 x 2 matrix of 1’s and the choice for U 2  is obvious. 

  Next, we highlight recognizable features of regressograms for AR(1) and 

compound symmetry. 

 

  Example 3. The covariance matrix of an AR(1) model is given by 

Σ=σ ( )n
ji

ji

1,

2

=
−ρ , for 1<ρ  and σ 2 >0. It follows that, for t ≥2, φ t =(0,…,0,ρ)΄, 

σ 2

t =σ 2 , and σ ( ) 1222

1 1
−

−= ρσ , so that, assuming that µ=0, Υ 1 ,…,Υ n  satisfy 

Y 1 =ε 1  and Y t =ρΥ 1−t +ε t , for 2 nt ≤≤ . 

 Here, only the lag-one generalised autoregressive parameters are nonzero 

and σ 2

1  is a nonlinear function of ρ. Thus, the theoretical regressograms for 

AR(1) and more generally for AR(p) models are simpler to recognise; they 

drop off to zero for lags j>p and σ 2

t  is constant for t>p. 

 

 

 

 

 

 



  
 

 

2.1.4 Estimation - The likelihood function 

We will compute the multivariate normal likelihood function, which has 

three distinct representations corresponding to the three sets of submodels 

when the observations ( )Σ,~ µNYi , for i=1,2,…,m, are independent.  

We define ( )m

itiiii ryr
1, =

=−= µ , we obtain Tri= ii rr
)

− , for i= 1,2,…,m, where 

tir ,

)
 is the best linear predictor of ri,t based on its predecessors ri, j, for  

1≤j≤t-1. In the following, we also need r(t) = ( )m
itir 1, =

 which is the vector of 

the centred observations made on the tth occasion on all m subjects. 

The quadratic form Q in the exponent of the likelihood function can be 
written  

( ) ( ) i
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where  

( )
2

1

,,∑
=

−=
m

i

titit rrRSS
)

 

is the residual sum of squares for the analysis of covariance of r(t) with 

r(t-1),…,r(1) as covariates (Kenward, 1987). 

When we assume a linear mean-covariance model  

h(Σ)=(φ '

2 ,…,φ '

n , logσ 2

1 ,…, logσ 2

n )΄=Ζ α  

it is evident that RSSt and hence Q are quadratic functions of the correlation 

parameters γ: 
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where   

  ∑
−

=

=
1

1

,, ,),(
t

j

jijt rztiz  Z(i) = (z(i,1),…,z(i,n))΄, 

are respectively q2x1 and nxq2 matrices. 

The loglikelihood L(β,λ,γ;Y), up to the additive constant mnlog2π, satisfies 

( ) ( )∑ ∑ ∑
= = =

− =+=−Σ′−+Σ=−
m

i

n

t

n

t t

t
tiiii

RSS
mXyXymYL

1 1 1
2

21 loglog);,,(2
σ

σββγλβ  

=
2

1

log t

n

t

m σ∑
+

=

{ } { }γγ )()(
1

1
iZrDiZr i

m

i

i −′−+∑
=

−
       

If we use the above representations of the likelihood, the score vector and 

the Fisher expected information can be computed. Also a three-stage 

estimation procedure can be developed as involving three sub-models for 

the mean, variance and correlation (Smyth, 1989; Verbyla, 1993 ). For 

given (λ,γ) or Σ, the first equation defines the mean model with yi as its 

response; for given β and γ, the second identity is viewed as the variance 

model with RSSt as response; and, for given β and λ, the third identity can 

be viewed as the correlation model with ri as response. In this thesis we 

used the Matlab package and specifically the simplex algorithm to minimize 

the -2loglikelihood function. 

 

2.1.5 Hypothesis Testing 

To compare the fits rigorously, it is standard to rely on penalised likelihood 

criteria such AIC and BIC.  We use the BIC criteria which in our context of 

covariance model selection is defined as 

                                      BIC = ,
log

)(
2

21
m

m
qqpL

m
+++−  

(Pan and Mackenzie, 2003) where m is the sample size, L is the maximised 

loglikelihood for the joint mean-covariance model and p+q1+q2 is the 

number of parameters in the 3 associated submodels. A smaller value of 

BIC is associated with a better fitting model. As we can see from the 



  
 

 

definition of the BIC criteria presented above a large value of the 

maximized loglikelihood will give a small value of BIC. On the contrary a 

large amount of parameters will give a big value of BIC. 

 

2.2 Normal Mixed model 

Mixed models analysis is a type of statistical analysis based on linear 

regression models. In particular, it applies to research involving factor 

whose levels can be controlled by the researcher (fixed) as well as factors 

whose levels are beyond the researcher’s control (random effects).  

 Here, the mixed model is defined using a general matrix notation which 

provides a compact means to specify all types of mixed model. We start by 

defining the fixed effects model and then extend this notation to encompass 

the mixed model. 

 

2.2.1 The fixed effects model 

All fixed effects model can be specified in the general form 

yi = µ + iippii exxx ++++ ααα ...2211  

var(ei) = σ2 

This model fits p+1 fixed effects parameters, α1 to αp, and an intercept term, 

µ. If there are n observations, then these may be written as 

y1 = µ + 11122111 ... exxx pp ++++ ααα  

y2 = µ + 22222211 ... exxx pp ++++ ααα  

. 

. 

. 
 

yn = µ + nnppnn exxx ++++ ααα ...2211  

var(e1) = σ2, 

. 

. 

. 
var(en) = σ2. 

 

 



  
 

 

This can be expressed more concisely in matrix notation as 

y= Xα+ e, 

V = var(y) = σ2
 I 

where  

y = (y1, y2, y3,…,yn)΄= observed values, 

α = (µ, α1, α2,…, αp)΄ = fixed effects parameters, 

e= (e1, e2, e3,…,en)΄ = residuals,  

σ2   = residual variance, 

I   = n x n identity matrix 

 

The parameters in α may encompass several variables. Those could be 

qualitative or categorical variables and we will refer to such effects as 

categorical effects. They are also sometimes referred to as factor effects. 

More generally, categorical effects are those where observations will belong 

to one of several classes. There may also be several covariate effects (such 

as time or baseline measurement) contained in a. These relate to variables 

which are measured in a quantitative scale. Several parameters may be 

required to model categorical effects, but just one parameter is needed to 

model a covariate effect. 

 X is known as the design matrix and has the dimension n x p (i.e. n 

rows and p columns). It specifies values of fixed effects corresponding to 

each parameter for each observation. For categorical effects the values of 

zero and one are used to denote the absence and presence of effect 

categories, and for covariate effects the variables themselves are used in X.  

 V is a matrix containing the variances and covariances of the 

observations. In the usual fixed effects model, variances for all observations 

are equal and no observations are correlated. Thus V is simply σ2
I. 

 

2.2.2 The mixed model 

Extend our fixed effects model to incorporate random effect, the mixed 

model may be specified as  

yi = µ + iiqqiiippii ezzzxxx ++++++++ βββααα ...... 22112211  



  
 

 

for a model fitting p fixed effect parameters and q random effect (or 

coefficient) parameters. Random effects are assumed to follow a 

distribution, whereas fixed effects are regarded as fixed constants. 

The model can be expressed in matrix notation as  

y= Xα+ Zβ +e, 

where y, X, α and e are as defined in the fixed effects model, and  

β = (β1, β2, β3,…,βn)΄ = random effect/ coefficient parameters. 

Z is a second design matrix with dimension n x q giving the values of 

random effects corresponding to each observation. It is specified in exactly 

the same way as X was for the fixed effects, except that an intercept term is 

not included. 

 

2.2.3 Covariance matrix Σ 

 

We saw in the fixed effects model that all observations have equal variances 

and the observations are uncorrelated. This leads to the Σ matrix being 

diagonal. Random effects result in correlated observations. The covariance 

of y, var(y) = Σ can be written as  

Σ = var(Xα + Zβ + e) 

Since we assume that the random effects and the residuals are uncorrelated. 

 

Σ = var(Xα )+ var(Zβ) +var (e) 

Since α describes the fixed effects parameters, var(Xα) = 0 . Also, Z is a 

matrix of constants. Therefore,  

Σ = Z var(β)Z΄+var (e) 

We will let G denote var(β), and since the random effects are assumed to 

follow normal distributions we may write β ~ Ν(0,G). Similarly, we write 

var(e) = R, the residual covariance matrix and  

e~ N(0, R). Hence, 

Σ= ZGZ΄+R 

 

 

 

 



  
 

 

2.2.4 Likelihood function 

The mixed model can be fitted by maximising the likelihood function for 

values of the data. The likelihood function, L, measures the likelihood of 

the model parameters given the data and is defined using the density 

function of the observations. In models where the observations are assumed 

independent (e.g. fixed effects models), the likelihood function is simply 

the product of the density functions for each observation. However, 

observations in a mixed model are not independent and the likelihood 

function therefore needs to be based on a multivariate density function for 

the observations. The likelihood for the variance parameters and the fixed 

effects can be defined using the multivariate normal distribution for y (the 

term ‘variance parameters’ encompasses all parameters in the G and R 

matrix, i.e. variance components and the covariance parameters). As 

random effects have expected values of zero and therefore do not affect the 

mean, this distribution has a mean vector Xα and a covariance matrix Σ. 

The likelihood function based on the multivariate normal density function is 

then 

( ) ( )

( )( ) ( )2/12/1

1

2

2

1
exp

Σ






 −Σ′−−
=

−

n

XYXY

L
π

αα
 

 

In practice the log likelihood function is usually used in place of the 

likelihood function since it is simpler to work with and its maximum value 

coincides with that of the likelihood. The log likelihood is given by 

log(L)= ( ) ( )



 −Σ′−+Σ− − XaYXaYk 1log

2

1
 

where  

k= - ( )π2log
2

1
n  a constant that can be ignored in the maximization process 

n= number of observations. 

The values of the model parameters which maximize the log likelihood can 

then be determined. 

 

 



  
 

 

2.2.5 Hypothesis Testing 
 

 To find the mixed effects model that fits better our data we will use the 

BIC criteria 

                                      BIC = ,
log2

m

m
pL

m
+−  

where m is the sample size, L is the maximised loglikelihood for the mixed 

effects model and p is the sum of the parameters included in the model. We 

will use again the BIC criteria so we will be able to compare the results 

from the several models to find out which fits best. 



  
 

 

CHAPTER 3 

 

ANALYSIS 

 

 

3.1 Outline of the data 

 

We have taken our data from an experiment (Kenward, 1987) where 60 

cattle were partitioned randomly into two different groups (A, B) of 30 

cattle. Each group received a different treatment on intestinal parasites in 

order to observe the difference between the weights of the cattle of the two 

different groups. They were weighted n=11 times over a 133-day period. 

The first 10 measurements on each animal were made at two-week intervals 

and the final measurement was made one week later. The measurement 

times were common across animals and were rescaled to t=1,2,…,10,11.We 

study each group separately starting with group A. 

 

3.2 Cattle analysis for group A 

 

Our primary intention is to detect a model that will explain in the most 

effective way the weight through time of the 30 cattle that belong to group 

A. In the first place we will apply the joint- mean covariance model when 

the mean is assumed to be a common vector µ and when we describe the 

mean model with a broken line model. Afterwards we will apply mixed –

effects models in our data to discover which one (random intercept-random 

intercept and slope) suits us the most, also when the mean is assumed to be 

a common vector µ and when we refer to the mean model as a broken line 

model. 
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Figure 3.1. Plot of weight through time 
 

This plot is useful for assessing overall aspects of the data. For example, 

the plot above suggests that there is a general linear increase in the weights 

across time and that there is considerable individual homogeneity in this.  

 

3.2.1 Joint mean- covariance model for group A 

Our purpose is to find, for the treatment group A with m=30 animals, the 

joint-mean covariance model  

µ t  = m(x t ,β),    logσ 2

t =u(z t ,λ),    φ jt , =d(z jt , ,γ) 

(Pourahmadi, 1999) that fits best. Firstly, for the mean model we assume a 

common mean vector µ = (µ1, µ2,…, µ11) where  

µt =
30

1 ∑
=

30

1i

ity ,t=1,2,…,11.We will use this vector µ as initial values to 

estimate the parameters that will maximize the likelihood. Then, we apply 

the Cholesky Decomposition in our 11x11 sample covariance matrix 



  
 

 

S=
30

1 ∑
=

30

1

(
i

iy -µ)(y i -µ)΄ to find the T,D matrices that give us the φ jt , ’s and 

σ 2

t ’s sample parameters.  

Since we have found the φ jt , ’s and σ 2

t ’s sample parameters using Cholesky 

Decomposition we assume that our data are independent and we are trying 

to find linear models that will fit well to our parameters. The parameters of 

the models that fit  better to our sample parameters will be used as initial 

values to the logσ 2

t =u(z t ,λ),  φ jt , =d(z jt , ,γ) submodels of the joint mean- 

covariance model. 

 

3.2.1.1. Model for the generalized autoregressive parameters 

From the plot of φ jt ,  versus time lags j=1,2,…,t-1 we observe that the 

sample generalized autoregressive parameters could be a linear function and 

specifically a cubic function.  
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Figure 3.2 . Plot of the sample generalized autoregressive parameters through 
time with linear, quadratic and cubic function 

 
 

We applied to our parameters three linear models to find out which is the 

most suitable according to the F test and the R2. The models with the 

corresponding analysis of variance are cited below. 



  
 

 

 

a) The linear polynomial 

( ) djtjt jt ,,21, εγγφ +−+=
)

 ⇒ ( ) djtjt jt ,,, 0939,05567,0 εφ +−−=
)

  

b) The quadratic polynomial 

( ) ( ) djtjt jtjt ,,

2

321, εγγγφ +−+−+=
)

 

⇒ ( ) ( ) djtjt jtjt ,,

2

, 036,0434,0121,1 εφ +−+−−=
)

 

c) The cubic polynomial 

( ) ( ) ( ) djtjt jtjtjt ,,

3

4

2

321, εγγγγφ +−+−+−+=
)

 ⇒  

( ) ( ) ( ) djtjt jtjtjt ,,

32

, 010,0186,0052,1743,1 εφ +−−−+−−=
)

 

 

 

MODEL  SUM OF 

SQUARES 

df MEAN 

SQUARES 

F p-

value 

LINEAR REGRESSION 2,910 1 2,910 28,823 0,000 

RESIDUAL 5,352 53 0,101   

TOTAL 8,262 54    

QUADRATIC REGRESSION 5,609 2 2,805 54,970 0,000 

RESIDUAL 2,653 52 0,051   

TOTAL 8,262 54    

CUBIC REGRESSION 6,837 3 2,279 81,531 0,000 

RESIDUAL 1,425 51 0,028   

TOTAL 8,262 54    

Table 3.1.Anova for the sample generalized autoregressive parameters 

 

 

MODEL R
2
 R

2
 ADJUSTED 

LINEAR 0,352 0,340 

QUADRATIC 0,679 0,667 

CUBIC 0,827 0,817 

Table 3.2. R2 values for the sample generalized autoregressive parameters 
 
 
 



  
 

 

 
As far as we can see from the tables above, all models fit well to our 

generalized autoregressive parameters according to the F-test since p-

value<0,001. On the other hand, the F-value appears to take bigger values 

when we increase the number of parameters γ and respectively the degrees 

of the polynomial. Similarly the R2 adjusted seems to augment while we add 

terms, meaning that the cubic function 

( ) ( ) ( ) djtjt jtjtjt ,,

3

4

2

321, εγγγγφ +−+−+−+=
)

⇒  

( ) ( ) ( ) djtjt jtjtjt ,,

32

, 010,0186,0052,1743,1 εφ +−−−+−−=
)

 

 is the most appropriate for the parameters. 

 
 
3.2.1.2. Model for the innovation parameters 

From the plot of σ 2

t  versus time t=1,2,…,11 we observe that the logarithms 

of the sample innovation parameters could also be a linear function and 

specifically a cubic function.  
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Figure 3.3 . Plot of the sample innovation parameters through time with linear, 
quadratic and cubic function 

 
 
 
 



  
 

 

We applied to our parameters four linear models to find out which is the 

most suitable according to the F test and the R2. The models with the 

corresponding analysis of variance are cited below. 

a) The linear polynomial 

vtt t ,21

2log ελλσ +=
)

⇒ vtt t ,

2 142,0229,4log εσ +−=
)

 

b) The quadratic polynomial 

vtt tt ,

2

321

2log ελλλσ ++=
)

⇒ vtt tt ,

22 006,018,2393,4log εσ ++−=
)

 

c) The cubic polynomial 

vtt ttt ,

3

4

2

321

2log ελλλλσ ++++=
)

⇒

vtt ttt ,

322 012,0227,0326,1735,5log εσ +−+−=
)

 

d) The 4th degree polynomial 

vtt tttt ,

4

5

3

4

2

321

2log ελλλλλσ +++++=
)

⇒

vtt tttt ,

4322 0007,0029,03607,07196,10611,6log εσ ++−+−=
)

 

 

 

MODEL  SUM OF 

SQUARES 

df MEAN 

SQUARES 

F p-

value 

LINEAR REGRESSION 2,229 1 2,229 13,839 0,005 

RESIDUAL 1,450 9 0,161   

TOTAL 3,679 10    

QUADRATIC REGRESSION 2,263 2 1,131 6,393 0,022 

RESIDUAL 1,416 8 0,177   

TOTAL 3,679 10    

CUBIC REGRESSION 3,196 3 1,065 15,438 0,002 

RESIDUAL 0,483 7 0,069   

TOTAL 3,679 10    

4th DEGREE REGRESSION 3,210 4 0,8025 10,275 0,004 

RESIDUAL 0,469 6 0,0781   

TOTAL 3,679 10    

Table 3.3.Anova for the sample innovation parameters 

 

 



  
 

 

 

MODEL R
2
 R

2
 ADJUSTED 

LINEAR 0,606 0,562 

QUADRATIC 0,615 0,519 

CUBIC 0,869 0,812 

4
th 

DEGREE 0,874 0,790 

Table 3.4. R2 values for the sample innovation parameters 
 

As far as we can see from the tables above all models fit adequately 

according to the F-test since p-value<0,01 for all models except the 

quadratic polynomial. Particularly, we observe that the models that explain 

better the variance of the innovation parameters are the cubic and the 4 th 

degree polynomials. We will prefer the cubic polynomial  

vtt ttt ,

3

4

2

321

2log ελλλλσ ++++=
)

⇒

vtt ttt ,

322 012,0227,0326,1735,5log εσ +−+−=
)

 

because its R2
adjusted value is bigger (0,812> 0,790). 

 

3.2.1.3 Broken line model  

In the linear mean- covariance model that we structured above we let a full 

model for the mean. In this session we will replace the common mean 

vector µ = (µ1, µ2,…, µ11) where µt=
30

1 ∑
=

30

1i

ity ,t=1,2,…,11 that we assumed 

before with a broken line model in order to reduce the number of the mean 

parameters. As we can observe from the plot of the weights of the cattle 

through time, we can represent the data easily with three broken lines. We 

see in the plot two turning points that distinguish on time points 2 and 5. 

We construct a new design matrix for the mean that consist of three new 

variables x, y, z . 

     1      t=1 0        t≤2 0     t≤7 

Let x=    2     t>1   ,     y=       t-2     t>2      ,   z=    t-7    t>7 

 

Afterwards we apply this design matrix for the mean and we study how this 

model fits to our longitudinal data. 
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Figure 3.4. Plot of weight through time 

 
We suppose the linear model  

yi j= β0 + β1xij +β2yij +β3zij + εi j  

 

for the mean where i=1, 2 ,.., 30 , j=1, 2, …, 11 and εij  ~ N( 0, σ2)  

From the tables below we find out that according to regression linear 

analysis our broken line model has the form 

 yij= β0 + β1xij +β2yi j +β3zij+ εi j ⇒  yi= 219,685 + 6,515xi j +15,125yi j 

+4,459zij + εij  

The analysis of variance indicates that this model fits adequately to our data 

and explain a significant percentage of variance. The p-value of the F-test is 

0,000 meaning that the F-value= 485,857 belongs to the F3,326 distribution. 

We are also able to see that the R2 value of the model is very satisfactory 

(R2 = 0,817). On the other hand we observe from the scatterplot of the 

studentized residuals and the unstandardised predicted values that the 

residuals of the model do not have a random form that indicates a bad fit for 

our model. 

 
 



  
 

 

Model 

Sum of 

Squares df 

Mean 

Square F p-value 

Regression 407101,496 3 135700,499 485,857 ,000 

Residual 91052,201 326 279,301   

Total 498153,697 329    

Table 3.5. Anova for broken line model 
 
 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t p-value B Std. Error Beta 

Constant 219,685 6,477  33,918 ,000 

x 6,515 3,744 ,048 1,740 ,083 

y 15,125 ,662 ,775 22,851 ,000 

z 4,459 ,844 ,158 5,285 ,000 

Table 3.6. Estimated coefficients and t-test for broken line model 
 

 

R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

,904 ,817 ,816 16,71231 

Table 3.7. Model summary (R2 values) for broken line model 
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Figure 3.5. Studentized residuals of broken line model 



  
 

 

 

 
Figure 3.6. Plot of estimated values (mean model) 

 
 
 

The figure above presents graphically how the predicted values for the 

mean of the broken line model abstain from the initial model for the mean.  

 

3.2.2 Fit of the joint- mean covariance model  

As we have already mentioned we will use the BIC criteria to distinguish 

the models with the best fit among those presented in the former sessions. 

We have decided after specific statistical analysis that when we assume a 

common vector µ for the mean in the joint- mean covariance model the 

generalised autoregressive parameters and the innovation variances are 

cubic functions. On the other hand, when we assume a broken line model 

this may change. We have applied several combinations of linear functions 

for the generalised autoregressive parameters and the innovation variances 

to the broken line model with the intention to find a model that will give 

satisfactory results. The following table shows the -2loglikelihood and the 

BIC criteria of several models that we have applied to our data. The criteria 

in the table are displayed in smaller-is-better forms. The first line shows the 

result from the first model where then mean is a common vector, the 
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generalised autoregressive parameters and the innovation variances are 

cubic functions. The sum of parameters in this case is 19 since we have 11 

parameters for the mean, 4 for the autoregressive coefficients and 4 for the 

innovation variances. After the application of many combinations of 

potential functions we detect no model that fits better than the former 

($3.2.1). All the broken line models that we have applied in our data have 

bad fit since they result in larger values of -2loglikelihood and bigger 

values of BIC, even though we have reduced the number of parameters . We 

conclude that the full model for the mean is though without a great 

difference a better one.  

 

 

Mean  Autoregressive 

coef. 

Innovation 

variance 

-2loglikelihood BIC 

11 4 4 1.570,1 54,4908 

4 4 4 1.628,6 55,6471 

4 3 3 1.635,4 55,6471 

4 3 5 1.630,8 55,7205 

4 5 5 1.602,1 54,9906 

4 5 3 1.610,1 55,0305 

4 4 5 1.623,5 55,5905 

4 5 4 1.602,7 54,8972 

4 6 4 1.580,0 54,2539 

Table 3.8 Number of parameters and fit of the joint mean-covariance model 

 

 

3.2.3 Mixed effects model  

Our purpose in this session is to find the essential mixed effects model for 

our data where depending variable is the weight of the cattle (yi j). 

  

 

 

 



  
 

 

 

3.2.3.1 Random intercept model  

Firstly we assume a mixed effects model with a random intercept u0i 

yi j = µ + t j + u0i + eij 

This is the random-intercepts model with only time as a regressor (factor), 

where time t j is treated using incremental values from j=1 to 11 and  

i=1, 2 ,.., 30. We proceed under the assumption that the structure of the 

covariance matrix is an identity matrix of the form 



















10.0

0.0.

.010

0.01

2σ . This 

structure has constant variance and there is assumed to be no correlation 

between any elements. The characteristics of the model is thoroughly 

presented below 

 
 

-2 Log Likelihood 2412,628 

Schwarz's Bayesian 
Criterion (BIC) 

81,8948 

Table 3.9. Information Criteria 
 

 

 
Number 

of Levels 
Covariance 
Structure 

Number of 
Parameters 

Fixed Effects Intercept 1  1 

 time 11  10 
Random 
Effects 

Intercept 
1 Identity 1 

Residual   1 

Total 13  13 

Table 3.10. Model Dimension 
 

 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 30 11.330E4 ,000 

time 10 300,000 647,989 ,000 

Table 3.11.Tests of Fixed Effects 
 
 
 



  
 

 

 
 
 

Parameter Estimate 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 325,4667 3,0078 47,87 108,205 ,000 319,41 331,514 

[time=1] -99,266 2,0502 300 -48,416 ,000 -103,3 -95,231 

[time=2] -95,133 2,0502 300 -46,400 ,000 -99,16 -91,098 

[time=3] -78,600 2,0502 300 -38,336 ,000 -82,63 -74,565 

[time=4] -59,833 2,0502 300 -29,183 ,000 -63,86 -55,798 

[time=5] -44,3 2,0502 300 -21,607 ,000 -48,33 -40,265 

[time=6] -30,6 2,0502 300 -14,925 ,000 -34,63 -26,565 

[time=7] -20,7333 2,0502 300 -10,112 ,000 -24,76 -16,698 

[time=8] -12,6 2,0502 300 -6,146 ,000 -16,63 -8,565 

[time=9] -10,33 2,0502 300 -5,040 ,000 -14,36 -6,29 

[time=10] -1,40 2,0502 300 -,683 ,495 -5,43 2,63 

[time=11] 0a 0 . . . . . 

a. This parameter is set to zero because it is redundant. 

Table 3.12. Estimates of Fixed Effects 

 
 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 63,054 5,148 12,247 ,000 53,729 73,997 

Intercept  Variance 208,36 55,28 3,769 ,000 123,875 350,472 

Table 3.13. Estimates of Covariance Parameters 

 

We proceed with another mixed effects model with a random intercept and 

an identity covariance matrix with the difference that time is a covariate, 

meaning that the model is of the form 

yi j =β0 + β1ij + u0i + eij  

where i=1, 2 ,.., 30 and j=1, 2, …, 11.The results of this analysis are shown 

in the following tables. 



  
 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

time 1  1 

Random 

Effects 

Intercept 
1 Identity 1 

Residual   1 

Total 3  4 

Table 3.14. Model Dimension 

 
 

-2 Log Likelihood 2596 

Schwarz's Bayesian 

Criterion (BIC) 

86,9868 

 

Table 3.15. Information Criteria 

 

Parameter Estimate Std. Error 

Wald 

Z 

p-

value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 116,2740 9,493 12,247 ,000 99,079 136,453 

Intercept  Variance 203,5246 55,28 3,681 ,000 119,507 346,608 

Table 3.16. Estimates of Covariance Parameters 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 41,844 5.624 ,000 

time 1 300 3.377 ,000 

Table 3.17.Tests of Fixed Effects 

 

Parameter 

Estimat

e 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 217,896 2,9055 41,84 74,992 ,000 212,032235 223,760968 

time 11,152 ,1919 300 58,109 ,000 10,774548 11,529901 

Table 3.18. Estimates of Fixed Effects 
 



  
 

 

 

 
3.2.4 Broken lines in mixed effects model  

In this session we present mixed effects models as before but not directly to 

our data. We use the broken line design matrix that we have already applied 

to the joint mean-covariance model. Given that we use the design matrix of 

the broken line model we are seeking for the mixed effects model that will 

have the best fit. 

 

3.2.4.1 Random intercept model 
 
First of all we apply a random intercept model of the form  

yi j =β0 + β1xj + β2yj + β3zj + u0i + eij  

 
for i=1, 2 ,.., 30 and j=1, 2, …, 11 where x, y, z are covariates and u0i is a 

random intercept. The covariance matrix is assumed to have an identity 

structure. The results of this analysis are shown in the following tables. 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

x 1  1 

y 1  1 

z 1  1 

Random 

Effects 

Intercept 
1 Identity 1 

Residual   1 

Table 3.19. Model Dimension 

 

 

-2 Log Likelihood 2435 

Schwarz's Bayesian 

Criterion (BIC) 
81,8469 

Table 3.20. Information Criteria 

 

 

 



  
 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 68,00289 5,552 12,247 ,000 57,946 79,804 

Intercept Variance 207,9129 55,28 3,761 ,000 123,468 350,110 

Table 3.21. Estimates of Covariance Parameters 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 144,683 2.815 ,000 

x 1 300,000 12,434 ,000 

y 1 300,000 2.145 ,000 

z 1 300,000 114,714 ,000 

Table 3.22.Tests of Fixed Effects 

 

 

Parameter Estimate Std. Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 219,6851 4,140555 144,68 53,057 ,000 211,501 227,868 

x 6,514902 1,847560 300 3,526 ,000 2,879 10,150 

y 15,12549 ,326606 300 46,311 ,000 14,482 15,768 

z 4,459216 ,416342 300 10,710 ,000 3,639 5,278 

Table 3.23. Estimates of Fixed Effects 
 

 

3.2.4.2 Random intercept and slope model 

The following model is a random intercept and slope model.  

 
yi j =β0 + β1xj + β2yj + β3zj + u0i + u1ixj + u2iyj + u3izj + e ij  

for i=1, 2 ,.., 30 and j=1, 2, …, 11 where x, y, z are covariates, u0i is a 

random intercept and u1i, u2i, u3i, are the random slope coefficients of the x, 

y, z respectively. The covariance matrix is also assumed to have an identity 

structure. 



  
 

 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

x 1  1 

y 1  1 

z 1  1 

Random 

Effects 

Intercept + x + y 

+ z 
4 Identity 1 

Residual   1 

Total 8  6 

Table 3.24. Model Dimension 

 

-2 Log Likelihood 2220 

Schwarz's Bayesian 

Criterion (BIC) 
74,6802 

Table 3.25. Information Criteria 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lowe

r 

Boun

d 

Upper 

Bound 

Residual 
21,05 1,963 10,724 ,000 

17,53

9 
25,278 

Intercept + 

x + y + z  

Variance 
13,9 2,321 5,988 ,000 

10,02

0 
19,283 

Table 3.26. Estimates of Covariance Parameters 

 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 297,138 1,331E4 ,000 

x 1 325,311 27,918 ,000 

y 1 82,807 460,898 ,000 

z 1 90,043 38,460 ,000 

Table 3.27.Tests of Fixed Effects 



  
 

 

 

Parameter Estimate 

Std. 

Error df t 

p-

value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 
219,6 1,904 

297,13

8 

115,37

0 
,000 215,937 223,432 

x 
6,514 1,233 

325,31

1 
5,284 ,000 4,089 8,940 

y 15,12 ,704 82,807 21,469 ,000 13,724 16,526 

z 4,459 ,719 90,043 6,202 ,000 3,030 5,887 

Table 3.28. Estimates of Fixed Effects 
 
 

The model presented below is also a random intercept and slope model.  

 
yi j =β0 + β1xj + β2yj + β3zj + u0i + u1ixj + u2iyj + u3izj + e ij  

for i=1, 2 ,.., 30 and j=1, 2, …, 11 where x, y, z are covariates, u0i is a 

random intercept and u1i, u2i, u3i, are the random slope coefficients of the x, 

y, z respectively. In this case the covariance structure is assumed to be 

diagonal. 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

x 1  1 

y 1  1 

z 1  1 

Random 

Effects 

Intercept + x + y 

+ z 
4 Diagonal 4 

Residual   1 

Total 8  9 

Table 3.29. Model Dimension 

 

-2 Log Likelihood 2196 

Schwarz's Bayesian 

Criterion (BIC) 
74,2204 

Table 3.30. Information Criteria 



  
 

 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 20,1136 1,893 10,620 ,000 16,724 24,190 

Intercept + 

x + y + z  

Var: 

Intercept 
60,5942 2,734 2,216 ,027 25,023 146,725 

Var: x 21,6505 9,261 2,338 ,019 9,361 50,070 

Var: y 6,37083 1,844 3,455 ,001 3,612 11,235 

Var: z 6,54617 2,071 3,160 ,002 3,520 12,172 

Table 3.31. Estimates of Covariance Parameters 

 

 

Source Numerator df 

Denominator 

df F p-value 

Intercept 1 58,279 9.574 ,000 

x 1 59,224 24,515 ,000 

y 1 31,472 937,963 ,000 

z 1 30,522 73,790 ,000 

Table 3.32.Tests of Fixed Effects 

 

 

Parameter Estimate 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 219,685 2,245 58,279 97,848 ,000 215,191 224,178 

x 6,5149 1,315 59,224 4,951 ,000 3,882 9,147 

y 15,1254 ,493 31,472 30,626 ,000 14,118 16,132 

z 4,4592 ,519 30,522 8,590 ,000 3,399 5,518 

Table 3.33. Estimates of Fixed Effects 
 
 
 
 
 
 
 



  
 

 

Finally the last model is a random intercept and slope model with the 

difference that even if the random part of the model is the same as before 

the fixed part has changed. This model assumes only a fixed integer and not 

fixed slopes for the three covariates. On the contrary there are only random 

slopes assumed 

yi j =β0 +u0i + u1ixj + u2iyj + u3izj  + eij  

for i=1, 2 ,.., 30 and j=1, 2, …, 11 where x, y, z are the covariates, u0i is a 

random intercept and u1i, u2i, u3i, are the random slope coefficients of the x, 

y, z respectively. The covariance matrix is assumed to have a diagonal 

structure. 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

Random 

Effects 

Intercept + x + y 

+ z 
4 Diagonal 4 

Residual   1 

Total 5  6 

Table 3.34. Model Dimension 

 

-2 Log Likelihood 2360 

Schwarz's Bayesian 

Criterion (BIC) 
79,3469 

Table 3.35. Information Criteria 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 20,75 2,0433 10,156 ,000 17,109 25,168 

Intercept 

+ x + y + 

z  

Var: 

Intercept 
51,72 29,010 1,783 ,075 17,229 155,278 

Var: x 46,38 17,219 2,694 ,007 22,406 96,023 

Var: y 245,18 63,561 3,857 ,000 147,513 407,527 

Var: z 25,737 7,0558 3,648 ,000 15,038 44,047 

Table 3.36. Estimates of Covariance Parameters 



  
 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 28,319 13.640 ,000 

Table 3.37.Tests of Fixed Effects 

 

Parameter Estimate 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 
224,04 1,918 28,319 116,79 ,000 220,118 227,972 

Table 3.38. Estimates of Fixed Effects 
 
 
3.2.5 Fit of the mixed-effects models 
 
As we can figure out from the results of the former sessions the mixed-

effects models is comparatively to the joint mean covariance model a very 

bad fit. The table below is a summary of the mixed –effects  models we 

have applied. The BIC values of these models vary from 74,220 to 86,986 

while the BIC value of the joint – mean covariance model with the worst fit  

was 55,7205. The same behavior we observe with the loglikelihood. In this 

case the smallest value of the -2loglikelihood is 2.196 while the biggest 

value observed in the joint – mean covariance models is 1.635,4. This 

indicates that the joint- mean covariance model excels significantly the 

mixed effect model. Furthermore, we can notice from the table that the 

broken line models seem to fit better in our data as they also seemed to fit  

better in the previous case of the joint mean covariance model. That 

indicates that the broken line model seems to give better results in both 

models we have applied. 

 

 

 

 

 

 



  
 

 

Covariance 

structure 

Fixed 

effects 

Random 

effects 

Sum of 

param. 

-2 loglikel. BIC 

Identity Intercept & 

time effect 

Intercept 13 2.412 81,894 

Identity Intercept & 

time effect 

Intercept 4 2.596 86,986 

Identity  Broken 

lines 

Intercept 6 2.435 81,847 

Identity  Broken 

lines 

Broken 

lines 

6 2.220 74,680 

Diagonal  Broken 

lines 

Broken 

lines 

9 2.196 74,220 

Diagonal  Intercept Broken 

lines 

6 2.360 79,347 

Table 3.39. Fit of the mixed-effects models 
 

3.2.6 Analysis of the best model  
 

According to the results of former section we have concluded that the model 

that fits better to the data of group A is the model that assumes a common 

vector µ for the mean and a cubic function for the generalized 

autoregressive parameters and the innovation variances as it is shown 

below. 
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This model concentrates the largest value of the loglikelihood and the 

smallest value of BIC criteria. We observe from the following scatterplots 

that the distribution of the standardized residuals does not seem to follow a 

specific pattern which is an indicator of the good fit of our model. 

Furthermore, the graph below and the Kolmogorov –Smirnov test (Z= 

0.631), with  p-value=0.821>0.05, show that the residuals follow the normal 

distribution.  



  
 

 

 

 

Figure 3.7. Plot of the standardized residuals 

 

 
Figure 3.8. Plot of residuals through time 
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Figure 3.9. Distribution of the standardized residuals
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3.3 Cattle analysis of group B 
 
In group B we will proceed in the same way as we have worked with group 

A. We start again with the joint mean covariance model. The structure of 

group B is more complicated in modelling than that of group A. Firstly we 

will find potential models for the innovation variances and for the 

autoregressive parameters. Afterwards we will apply the joint mean 

covariance model under the assumption of these models and a common 

vector µ for the mean. We will continue with the application of the broken 

lines model for the mean with several models for the innovation variances 

and for the autoregressive parameters.  

We will also study the fit of mixed effects models to our data with weight 

as a depending variable and time as an independent. Finally, we will try to 

find a satisfactory mixed effects model under the assumption of a new 

design matrix of broken lines. 
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Figure 3.10. Plot of weight through time 

 

 

In the figure above we assess that the weights tend to increase over time 

with exception the last time point when we observe a massive decline. The 

subjects also seem to have overall the same behaviour. 

 



  
 

 

3.3.1 Joint mean- covariance model for group B 

We are seeking for the treatment group B with m=30 animals, the joint-

mean covariance model  

µ t  = m(x t ,β),    logσ 2

t =u(z t ,λ),    φ jt , =d(z jt , ,γ) 

(Pourahmadi, 1999) that fits best. Firstly, for the mean model we assume a 

common mean vector µ = (µ1, µ2,…, µ11) where µt =
30

1 ∑
=

30

1i

ity ,t=1,2,…,11. 

Then, we apply the Cholesky Decomposition in the 11x11 sample 

covariance matrix S=
30

1 ∑
=

30

1

(
i

iy -µ)(y i -µ)΄ to find the T,D matrices that give 

us the φ jt , ’s generalized autoregressive sample parameters and σ 2

t ’s 

sample innovation variances. 

 

3.3.1.1. Model for the generalized autoregressive parameters 

The plot φ jt ,  versus time lags j=1,2,…,t-1 does not really enable us to 

figure out the degree of the linear function that will suit to the 

autoregressive parameters. This plot also shows us the linear, quadratic and 

cubic function that indicate the need of a high degree polynomial. 
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Figure 3.11 . Plot of the sample generalized autoregressive parameters through 
time with linear, quadratic and cubic function 

 



  
 

 

We applied to our parameters eight linear models to find out which is the 

most suitable according to the R2. The models are cited below. 

a) The linear polynomial 
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b) The quadratic polynomial 
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c) The cubic polynomial 
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d) The 4th degree polynomial 
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e) The 5th degree polynomial 

( ) ( ) ( ) ( ) ( ) djtjt jtjtjtjtjt ,,

5

6

4

5

3

4

2

321, εγγγγγγφ +−+−+−+−+−+=
)

⇒  

( ) ( ) ( ) ( ) ( ) djtjt jtjtjtjtjt ,,

5432

, 0001732,0008774,01414,09697,0877,2971,2 εφ +−−−+−−−+−−=
)

f) The 6th degree polynomial 
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MODEL R
2
 R

2
 ADJUSTED 

LINEAR 0,136 0,120 

QUADRATIC 0,231 0,202 

CUBIC 0,301 0,259 

4
th

 DEGREE 0,361 0,310 

5
th

 DEGREE 0,361 0,296 

6
th

 DEGREE 0,418 0,346 

Table 3.40. R2 values for the sample generalized autoregressive parameters 



  
 

 

 
From the table above we observe that the R2 and the R2 adjusted seem to 

enlarge while we add terms but none of these values indicate that there is a 

model that fits adequately to the parameters. Because of this we will not be 

restricted to one model as we have done with group A but we will try 

several combinations of models to find out which maximizes the 

loglikelihood. 

 
 
3.3.1.2. Model for the innovation parameters 

We assume that our data is independent and we are trying to find a linear 

model that will be the best fit in order to use its parameters as initial values 

From the plot of σ 2

t  versus time t=1,2,…,11 we observe that the logarithms 

of the sample innovation parameters could be a linear function and 

specifically a quadratic function.  
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Figure 3.12. Plot of the sample innovation parameters through time with linear, 

quadratic and cubic function 

 

We applied to our parameters four linear models to find out which is the 

most suitable according to the F test and which has the biggest value of R2. 

The models with the corresponding analysis of variance are cited below. 



  
 

 

 

a) The linear polynomial 
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b) The quadratic polynomial 
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c) The cubic polynomial 
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d) The 4th degree polynomial 
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MODEL  SUM OF 

SQUARES 

df MEAN 

SQUARES 

F p-

value 

LINEAR REGRESSION 0,007 1 0,007 0,009 0,926 

RESIDUAL 6,685 9 0,743   

TOTAL 6,692 10    

QUADRATIC REGRESSION 4,674 2 2,337 9,263 0,008 

RESIDUAL 2,018 8 0,252   

TOTAL 6,692 10    

CUBIC REGRESSION 4,723 3 1,574 5,599 0,028 

RESIDUAL 1,968 7 0,281   

TOTAL 6,692 10    

4
th

 DEGREE REGRESSION 4,779 4 1,194 3,754 0,000 

RESIDUAL 1,913 6 0,318   

TOTAL 6,692 10    

Table 3.41. Anova for the sample innovation parameters 

 

 

 

 



  
 

 

MODEL R
2
 R

2
 ADJUSTED 

LINEAR 0,001 -0,110 

QUADRATIC 0,698 0,623 

CUBIC 0,706 0,580 

4
th 

DEGREE 0,714 0,523 

Table 3.42. R2 values for the sample innovation parameters 

 

From the statistical analysis presented in the tables above we conclude that 

the quadratic and the linear functions have the better fit to the innovation 

variances and especially the quadratic polynomial that has the biggest value 

of R2
adjusted = 0,623 . Furthermore according to the linear regression analysis 

it has the largest F- value = 9,263 from all the other models with p-value = 

0,008 < 0,01  

 

 

3.3.1.3 Broken line model  

 

In this session we will replace the common mean vector µ = (µ1, µ2,…, µ11) 

where µt=
30

1 ∑
=

30

1i

ity ,t=1,2,…,11 , that we assumed before, with a broken line 

model in order to minimise the number of the mean parameters. In this case 

we observe from the plot of the weights of the cattle through time that we 

can represent our data with four broken lines. We see in the plot three 

turning points that distinguish on time points 2 and 7 and 10.  

      1      t=1                 0        t≤2                 0     t≤7                             0   t<11 

Let y =      2    t> 2,   z =        t-2      t>2  ,   d =      t-7  11>t>7    and q =      1   t=11 

                                          3      t=11 

We construct a new design matrix for the mean that consist of the above 4 

new variables y, z, d, q and we study how this model fits to our longitudinal 

data. 
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Figure 3.13. Plot of weight through time 
 
We suppose the linear model  

yi j= β0 + β1yij +β2zij +β3dij  + β4qij  + εij  

 

for the mean where i=1, 2 ,.., 30 and j=1, 2, …, 11and εij   ~ N( 0, σ2)  

From the tables below we find out that according to regression linear 

analysis our broken line model has the form 

 yij= β0 + β1yi j +β2zij +β3di j + β4qij + εi j ⇒  yi j= 219,640 + 4,960yij +15,037zi j 

+7,81dij -7,873qi j + εij  

The analysis of variance indicates that this new design matrix gives 

satisfying results and the new model for the mean explain a significant 

percentage of the variance since R2 = 0,840 and R2
adjusted=0,838 values are 

close to 1. The p-value of the F-test is 0,000 meaning that the  

F-value= 425,697 belongs to the F4,325 distribution. On the other hand we 

observe from the scatterplot of the studentized residuals and the 

unstandardised predicted values that the residuals seem to follow a specific 

pattern that indicates a bad fit for our model. 

. 

 

 

 

 

 



  
 

 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t p-value B Std. Error Beta 

1 (Constant) 219,640 6,214  35,347 ,000 

y 4,960 3,596 ,036 1,379 ,169 

z 15,037 ,654 ,754 22,986 ,000 

d 7,810 1,133 ,234 6,893 ,000 

q -7,873 3,789 -,057 -2,078 ,039 

Table 3.43. Estimated coefficients and t-test for broken line model 

 

R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

,916 ,840 ,838 16,02405 

Table 3.44. Model summary for broken line model 

 

Model 

Sum of 

Squares df Mean Square F p-value 

 Regression 437224,848 4 109306,212 425,697 ,000 

Residual 83450,307 325 256,770   

Total 520675,155 329    

Table 3.45. Anova for broken line model 
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Figure 3.14. Studentized residuals of broken line 



  
 

 

 
 

Figure 3.15. Plot of estimated values (mean model) 
 
The figure above presents the predicted values of the broken lines model 

and the means of the cattle weights at each time point meaning the model 

for the mean initially assumed. We assess graphically that there is no great 

difference between the two models since the observations are close to each 

other. 

 

3.3.2 Fit of the joint- mean covariance model  

We judge the fit of our models according to the BIC criteria that depends on 

the number of parameters included in the model and the value of the 

loglikelihood. The joint- mean covariance model as we have already 

explained is partitioned of three submodels. The parameters included are p 

for the mean model, q1 for the autoregressive parameters and q2 for the 

innovation variances. Our goal is to find the combination of the three 

submodels, with the least possible parameters, that maximises the 

loglikelihood. The table below presents the number of parameters that were 

included in every submodel and the values of the -2loglikelihood and the 

BIC criteria that resulted from the analysis.  

The models where we assume a common vector µ for the mean are those 

with 11 mean parameters and the models with 5 mean parameters are those 

where the broken lines model is assumed for the mean. As far as we can see 
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from the table the models with 11 parameters for the mean have a better fit, 

meaning that the full model must be preferred. Specifically, the model with 

the smallest  

-2loglikelihood value is that where a 5th degree polynomial was assumed for 

the autoregressive coefficients and a 7 th degree polynomial was assumed for 

the innovation variances. However, the smallest BIC value was presented in 

the model where a 5th degree polynomial was also assumed for the 

autoregressive coefficients but a  cubic polynomial was assumed for the 

innovation variances, which has fewer parameters and that may have 

resulted in a smaller BIC value. 

Mean 

Parameters 

Autoregressive 

coef. 

Innovation 

variance 

-2loglikelihood BIC 

11 4 3 1.504,6 52,1941 

11 4 4 1.503,0 52,2541 

11 4 5 1.497,2 52,1741 

11 4 6 1.530,5 53,3975 

11 4 7 1.494,1 52,2975 

11 5 3 1.496,7 52,0441 

11 5 4 1.496,2 52,1408 

11 5 5 1.492,4 52,1275 

11 5 6 1.518,2 53,1009 

11 5 7 1.489,9 52,2709 

5 5 7 1.624,6 56,0807 

5 5 6 1.626,4 56,0273 

5 5 5 1.629,4 56,0139 

5 5 4 1.631,0 55,9539 

5 5 3 1.636,7 56,0305 

5 4 7 1.625,6 56,0006 

5 4 6 1.628,0 55,9673 

5 4 5 1.631,2 55,9606 

5 4 4 1.632,6 55,8939 

5 4 3 1.637,8 55,9538 

Table 3.46. Number of parameters and fit of the joint mean-covariance 

model 

 



  
 

 

3.3.3 Mixed effects model  

Our purpose in this session is to find the essential mixed effects model for 

our data where depending variable is the weight of the cattle (yi j). 

 

3.3.3.1 Random intercept model  

We start with a random intercept model with time as a depending variable 

yi j = µ + t j + u0i + eij 

where u0i  is the random intercept, j=1 to 11 and i=1, 2 ,.., 30. We proceed 

under the assumption that the structure of the covariance matrix is an 

identity matrix of the form 



















10.0

0.0.

.010

0.01

2σ . This structure has constant 

variance. There is assumed to be no correlation between any elements. The 

characteristics of the model is thoroughly presented below. 

 

-2 Log Likelihood 2.406 

Schwarz's Bayesian 

Criterion (BIC) 
81,67 

Table 3.47. Information Criteria 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

time 11  10 

Random 

Effects 

Intercept 
1 Identity 1 

Residual   1 

Total 13  13 

Table 3.48. Model Dimension 

 

 

 

 

 



  
 

 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 30,000 12.660 ,000 

time 10 300 702,660 ,000 

Table 3.49.Tests of Fixed Effects 

 

Parameter Estimate 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 320,3 2,864 50,27 111,817 ,000 314,547 326,052 

[time=1,00] -95,7 2,041 300 -46,868 ,000 -99,718 -91,6817 

[time=2,00] -92,4 2,041 300 -45,252 ,000 -96,418 -88,3817 

[time=3,00] -76,76 2,041 300 -37,596 ,000 -80,7849 -72,7484 

[time=4,00] -57,80 2,041 300 -28,307 ,000 -61,8182 -53,7817 

[time=5,00] -43,86 2,041 300 -21,483 ,000 -47,8849 -39,8484 

[time=6,00] -30,16 2,041 300 -14,774 ,000 -34,1849 -26,1484 

[time=7,00] -21,06 2,041 300 -10,317 ,000 -25,0849 -17,0484 

[time=8,00] -2,633 2,041 300 -1,290 ,198 -6,6515 1,3849 

[time=9,00] -,633333 2,041 300 -,310 ,757 -4,6515 3,3849 

[time=10,0] 6,633 2,041 300 3,249 ,001 2,615 10,6515 

[time=11,0] 0a 0 . . . . . 

Table 3.50. Estimates of Fixed Effects 
 

Parameter Estimate Std. Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 62,53986 5,106358 12,247 ,000 53,291 73,393 

Intercept Variance 183,6194 48,88051 3,756 ,000 108,974 309,39 

Table 3.51. Estimates of Covariance Parameters 



  
 

 

 

We continue with another mixed effects model with a random intercept and 

an identity covariance matrix with the difference that time is a covariate not 

a factor, meaning that the model is of the form 

yi j =β0 + β1t ij + u0i + eij 

where i=1, 2 ,.., 30 and j=1, 2, …, 11.The results of this analysis are shown 

in the following tables 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

time 1  1 

Random 

Effects 

Intercept 
1 Identity 1 

Residual   1 

Total 3  4 

Table 3.52. Model Dimension 

 

-2 Log Likelihood 2.600 

Schwarz's Bayesian 

Criterion (BIC) 
87,00 

Table 3.53. Information Criteria 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 119,07 9,722 12,247 ,000 101,461 139,734 

Intercept  Variance 178,48 48,88 3,651 ,000 104,338 305,307 

Table 3.54. Estimates of Covariance Parameters 

 

Source 

Numerator 

df Denominator df F p-value 

Intercept 1 43,867 5.974 ,000 

time 1 300,000 3.548 ,000 

Table 3.55.Tests of Fixed Effects 



  
 

 

 

Parameter Estimate 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 213,74 2,765 43,86 77,29 ,000 208,167 219,315 

time 11,568 ,1942 300 59,56 ,000 11,186 11,95 

Table 3.56. Estimates of Fixed Effects 

 
3.3.4 Broken lines in mixed effects model  

In this session we present mixed effects models as before but not directly to 

our data. We use the broken line design matrix that we have already applied 

to the joint mean-covariance model. Given that we have assumed the design 

matrix of the broken line model we are seeking for the mixed effects model 

that will have the best fit. 

 

3.3.4.1 Random intercept model 

 
First of all we apply a random intercept model of the form  

yi j = β0 + β1yi j +β2z ij +β3di j + β4qij + u0i + eij  

 
for i=1, 2 ,.., 30 and j=1, 2, …, 11 where y, z, d, q are covariates and u0i is a 

random intercept. The covariance matrix is assumed to have an identity 

structure.The results of this analysis are shown in the following tables. 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

y 1  1 

z 1  1 

d 1  1 

q 1  1 

Random 

Effects 

Intercept 
1 Identity 1 

Residual   1 

Total 6  7 

Table 3.57. Model Dimension 



  
 

 

 

-2 Log Likelihood 2.440 

Schwarz's Bayesian 

Criterion (BIC) 
82,12 

Table 3.58. Information Criteria 

 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 69,932 5,7099 12,247 ,000 59,59 82,06 

Intercept  Variance 182,94 48,881 3,743 ,000 108,36 308,85 

Table 3.59. Estimates of Covariance Parameters 

 

Source 

Numerator 

df 

Denominator 

df F p-value. 

Intercept 1 164,186 2.904 ,000 

y 1 300,000 6,984 ,009 

z 1 300,000 1.940 ,000 

d 1 300,000 174,443 ,000 

q 1 300,000 15,850 ,000 

Table 3.60.Tests of Fixed Effects 

 

Parameter Estimate 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 219,64 4,076 164,18 53,886 ,000 211,591 227,688 

y 4,960 1,8768 300 2,643 ,009 1,266 8,653 

z 15,036 ,3414 300 44,044 ,000 14,364 15,708 

d 7,8100 ,5913 300 13,208 ,000 6,646 8,973 

q -7,873 1,977 300 -3,981 ,000 -11,765 -3,981 

Table 3.61. Estimates of Fixed Effects 

 

 

 



  
 

 

3.3.4.2 Random intercept and slope model 

The following model is a random intercept and slope model.  

 
yi j = β0 + β1yi j +β2z ij +β3di j + β4qij + u0i + u1iyj + u2izj + u3idj + u4iq j + eij  

 

for i=1, 2 ,.., 30 and j=1, 2, …, 11 where  y, z, d, q are covariates, u0i is a 

random intercept and u1i, u2i, u3i, u4i are the random slope coefficients of the 

y, z, d, q  respectively. The covariance matrix is also assumed to have an 

identity structure. 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

y 1  1 

z 1  1 

d 1  1 

q 1  1 

Random 

Effects 

Intercept + y + z + d 

+ q 
5 Identity 1 

Residual   1 

Total 10  7 

Table 3.62. Model Dimension 

 

-2 Log Likelihood 2.316 

Schwarz's Bayesian 

Criterion (BIC) 
77,99 

Table 3.63. Information Criteria 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 30,331 2,9786 10,183 ,000 25,021 36,769 

Intercept + 

y + z + d + 

q  

Variance 

15,008 2,7439 5,470 ,000 10,488 21,475 

Table 3.64. Estimates of Covariance Parameters 



  
 

 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 267,606 9.532 ,000 

y 1 329,002 12,130 ,001 

z 1 74,040 410,474 ,000 

d 1 106,196 93,561 ,000 

q 1 326,066 28,220 ,000 

Table 3.65.Tests of Fixed Effects 

 

Parameter Estimate 

Std. 

Error df t 

p-

value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 219,64 2,2497 267,6 97,629 ,000 215,210 224,069 

y 4,96 1,4241 329,002 3,483 ,001 2,158 7,761 

z 15,036 ,7421 74,04 20,260 ,000 13,557 16,515 

d 7,81 ,8074 106,19 9,673 ,000 6,209 9,410 

q -7,873 1,482 326,06 -5,312 ,000 -10,789 -4,957 

Table 3.66. Estimates of Fixed Effects 

 

 

The model presented below is also a random intercept and slope model.  

 
yi j = β0 + β1yi j +β2z ij +β3di j + β4qij + u0i + u1iyj + u2izj + u3idj + u4iq j + eij  

 

for i=1, 2 ,.., 30 and j=1, 2, …, 11 where  y, z, d, q are covariates, u0i is a 

random intercept and u1i, u2i, u3i, u4i  are the random slope coefficients of 

the y, z, d, q respectively. In this case the covariance structure is assumed 

to be diagonal. 

 

 

 

 

 

 



  
 

 

 

 

  Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters 

Fixed Effects Intercept 1  1 

y 1  1 

z 1  1 

d 1  1 

q 1  1 

Random 

Effects 

Intercept + y + z + 

d + q 
5 Diagonal 5 

Residual   1 

Total 10  11 

Table 3.67. Model Dimension 

 

-2 Log Likelihood 2.276 

Schwarz's Bayesian 

Criterion (BIC) 
77,11 

Table 3.68. Information Criteria 

 

Parameter Estimate 

Std. 

Error Wald Z p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 26,26 2,537 10,349 ,000 21,731 31,738 

Intercept + 

y + z + d + 

q  

Var: 

Intercept 
65,118 30,37 2,144 ,032 26,101 162,460 

Var: y 13,17 8,533 1,544 ,123 3,700 46,892 

Var: z 3,194 1,096 2,914 ,004 1,630 6,259 

Var: d 9690 3,382 2,865 ,004 4,888 19,207 

Var: q 99,09 36,56 2,710 ,007 48,081 204,249 

Table 3.69. Estimates of Covariance Parameters 

 

 

 

 



  
 

 

 

 

Source 

Numerator 

df 

Denominator 

df F p-value 

Intercept 1 65,486 7.883 ,000 

y 1 63,813 13,963 ,000 

z 1 33,772 1.505 ,000 

d 1 32,366 134,256 ,000 

q 1 30,640 12,990 ,001 

Table 3.70.Tests of Fixed Effects 

 

 

Parameter Estimate 

Std. 

Error df t p-value 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 219,64 2,473 65,486 88,786 ,000 214,700 224,579 

y 4,96 1,327 63,813 3,737 ,000 2,308 7,611 

z 15,03 ,387 33,772 38,791 ,000 14,248 15,824 

d 7,81 ,674 32,366 11,587 ,000 6,437 9,182 

q -7,873 2,184 30,640 -3,604 ,001 -12,330 -3,415 

Table 3.71. Estimates of Fixed Effects 

 

 
3.3.5 Fit of the mixed-effects models 
 
In order to conclude the results of the former sessions we present the 

following table. As we can see from the table the BIC values are much 

higher from those of the joint mean-covariance models as we have already 

observed for group A. This means that the joint mean-covariance models fit  

much more adequately to all our data from the mixed-effects models. 

However among the mixed -effects models the smallest BIC values are 

concentrated in the broken lines models. Finally, the best model is the last 

one where a diagonal covariance structure is assumed. 

 
 
 
 



  
 

 

 
 
 

Covariance 

structure 

Fixed effects Random 

effects 

Sum of 

param.  

-2loglikel. BIC 

Identity Intercept & 

time effect 

Intercept 13 2.406 81,6739 

Identity Intercept & 

time effect 

Intercept 3 2.600 87,0068 

Identity  Broken lines Intercept 7 2.440 82,1269 

Identity  Broken lines Broken 

lines 

7 2.316 77,9936 

Diagonal  Broken lines Broken 

lines 

11 2.276 77,1138 

Table 3.72. Fit of the mixed-effects models 
 
3.3.6 Analysis of the best model  
 

The analysis fulfilled in former sections proves that the best model for 

group B is, likewise group A, the one that assumes a common vector µ for 

the mean and in this case a 4th degree polynomial for the generalized 

autoregressive parameters and a quadratic function for the innovation 

variances.  

The estimated parameters for these functions are the following. 
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)

vtt tt ,

2

321

2log ελλλσ +++=
)

⇒ vtt tt ,

22 0854,09402,02879,5log εσ ++−=
)

 

 

This model concentrates the largest value of the loglikelihood and the 

smallest BIC= 52,04. We observe from the following scatterplots that the 

standardized residuals seem to be distributed randomly which indicates a 

good fit for our model. Furthermore, the graph below and the Kolmogorov –

Smirnov test (Z= 0,714) with p-value=0,687>0.05 show that the residuals 

follow the normal distribution.  

 
 



  
 

 

 

 

Figure 3.16. Plot of standardized residuals  

 

 

 

 

 
 

Figure 3.17. Plot of residuals through time 
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Figure 3.18. Distribution of the standardized residuals  
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Table A1-  Kenward (1987) cattle data  
SUBJECT TIME WEIGHT GROUP SUBJECT TIME WEIGHT GROUP 

1 1 210 2 31 1 233 1 

1 2 215 2 31 2 224 1 

1 3 230 2 31 3 245 1 

1 4 244 2 31 4 258 1 

1 5 259 2 31 5 271 1 

1 6 266 2 31 6 287 1 

1 7 277 2 31 7 287 1 

1 8 292 2 31 8 287 1 

1 9 292 2 31 9 290 1 

1 10 290 2 31 10 293 1 

1 11 264 2 31 11 297 1 

2 1 230 2 32 1 231 1 

2 2 240 2 32 2 238 1 

2 3 258 2 32 3 260 1 

2 4 277 2 32 4 273 1 

2 5 277 2 32 5 290 1 

2 6 293 2 32 6 300 1 

2 7 300 2 32 7 311 1 

2 8 323 2 32 8 313 1 

2 9 327 2 32 9 317 1 

2 10 340 2 32 10 321 1 

2 11 343 2 32 11 326 1 

3 1 226 2 33 1 232 1 

3 2 233 2 33 2 237 1 

3 3 248 2 33 3 245 1 

3 4 277 2 33 4 265 1 

3 5 297 2 33 5 285 1 

3 6 313 2 33 6 298 1 

3 7 322 2 33 7 304 1 

3 8 340 2 33 8 319 1 

3 9 354 2 33 9 317 1 

3 10 365 2 33 10 334 1 

3 11 362 2 33 11 329 1 

4 1 233 2 34 1 239 1 

4 2 239 2 34 2 246 1 

4 3 253 2 34 3 268 1 

4 4 277 2 34 4 288 1 

4 5 292 2 34 5 308 1 

4 6 310 2 34 6 309 1 

4 7 318 2 34 7 327 1 

4 8 333 2 34 8 324 1 

4 9 336 2 34 9 327 1 

4 10 353 2 34 10 336 1 

4 11 338 2 34 11 341 1 

5 1 238 2 35 1 215 1 

5 2 241 2 35 2 216 1 

5 3 262 2 35 3 239 1 

5 4 282 2 35 4 264 1 

5 5 300 2 35 5 282 1 

5 6 314 2 35 6 299 1 

5 7 319 2 35 7 307 1 



  
 

 

Table A1 (continued) 
SUBJECT TIME WEIGHT GROUP SUBJECT TIME WEIGHT GROUP 

5 8 331 2 35 8 321 1 

5 9 338 2 35 9 328 1 

5 10 348 2 35 10 332 1 

5 11 338 2 35 11 337 1 

6 1 225 2 36 1 236 1 

6 2 228 2 36 2 226 1 

6 3 237 2 36 3 242 1 

6 4 261 2 36 4 255 1 

6 5 271 2 36 5 263 1 

6 6 288 2 36 6 277 1 

6 7 300 2 36 7 290 1 

6 8 316 2 36 8 299 1 

6 9 319 2 36 9 300 1 

6 10 333 2 36 10 308 1 

6 11 330 2 36 11 310 1 

7 1 224 2 37 1 219 1 

7 2 225 2 37 2 229 1 

7 3 239 2 37 3 246 1 

7 4 257 2 37 4 265 1 

7 5 268 2 37 5 279 1 

7 6 290 2 37 6 292 1 

7 7 304 2 37 7 299 1 

7 8 313 2 37 8 299 1 

7 9 310 2 37 9 298 1 

7 10 318 2 37 10 300 1 

7 11 318 2 37 11 290 1 

8 1 237 2 38 1 231 1 

8 2 241 2 38 2 245 1 

8 3 255 2 38 3 270 1 

8 4 276 2 38 4 292 1 

8 5 293 2 38 5 302 1 

8 6 307 2 38 6 321 1 

8 7 312 2 38 7 322 1 

8 8 336 2 38 8 334 1 

8 9 336 2 38 9 323 1 

8 10 344 2 38 10 337 1 

8 11 328 2 38 11 337 1 

9 1 237 2 39 1 230 1 

9 2 224 2 39 2 228 1 

9 3 234 2 39 3 243 1 

9 4 239 2 39 4 255 1 

9 5 256 2 39 5 272 1 

9 6 266 2 39 6 276 1 

9 7 276 2 39 7 277 1 

9 8 300 2 39 8 289 1 

9 9 302 2 39 9 289 1 

9 10 293 2 39 10 300 1 

9 11 269 2 39 11 303 1 

10 1 233 2 40 1 232 1 

10 2 239 2 40 2 240 1 

10 3 259 2 40 3 247 1 



  
 

 

Table A1 (continued) 
SUBJECT TIME WEIGHT GROUP SUBJECT TIME WEIGHT GROUP 

10 4 283 2 40 4 263 1 

10 5 294 2 40 5 275 1 

10 6 313 2 40 6 286 1 

10 7 320 2 40 7 294 1 

10 8 347 2 40 8 302 1 

10 9 348 2 40 9 308 1 

10 10 362 2 40 10 319 1 

10 11 352 2 40 11 326 1 

11 1 217 2 41 1 234 1 

11 2 222 2 41 2 237 1 

11 3 235 2 41 3 259 1 

11 4 256 2 41 4 289 1 

11 5 267 2 41 5 311 1 

11 6 285 2 41 6 324 1 

11 7 295 2 41 7 342 1 

11 8 317 2 41 8 347 1 

11 9 315 2 41 9 355 1 

11 10 308 2 41 10 368 1 

11 11 301 2 41 11 368 1 

12 1 228 2 42 1 237 1 

12 2 223 2 42 2 235 1 

12 3 246 2 42 3 258 1 

12 4 266 2 42 4 263 1 

12 5 277 2 42 5 282 1 

12 6 287 2 42 6 304 1 

12 7 300 2 42 7 318 1 

12 8 312 2 42 8 327 1 

12 9 308 2 42 9 336 1 

12 10 328 2 42 10 349 1 

12 11 332 2 42 11 353 1 

13 1 241 2 43 1 229 1 

13 2 247 2 43 2 234 1 

13 3 268 2 43 3 254 1 

13 4 290 2 43 4 276 1 

13 5 309 2 43 5 294 1 

13 6 323 2 43 6 315 1 

13 7 336 2 43 7 323 1 

13 8 348 2 43 8 341 1 

13 9 359 2 43 9 346 1 

13 10 372 2 43 10 352 1 

13 11 370 2 43 11 357 1 

14 1 221 2 44 1 220 1 

14 2 221 2 44 2 227 1 

14 3 240 2 44 3 248 1 

14 4 253 2 44 4 273 1 

14 5 273 2 44 5 290 1 

14 6 282 2 44 6 308 1 

14 7 292 2 44 7 322 1 

14 8 307 2 44 8 326 1 

14 9 306 2 44 9 330 1 

14 10 317 2 44 10 342 1 



  
 

 

Table A1 (continued) 
SUBJECT TIME WEIGHT GROUP SUBJECT TIME WEIGHT GROUP 

14 11 318 2 44 11 343 1 

15 1 217 2 45 1 232 1 

15 2 220 2 45 2 241 1 

15 3 235 2 45 3 255 1 

15 4 259 2 45 4 276 1 

15 5 262 2 45 5 293 1 

15 6 276 2 45 6 309 1 

15 7 284 2 45 7 310 1 

15 8 305 2 45 8 330 1 

15 9 303 2 45 9 326 1 

15 10 315 2 45 10 329 1 

15 11 317 2 45 11 330 1 

16 1 214 2 46 1 210 1 

16 2 221 2 46 2 225 1 

16 3 237 2 46 3 242 1 

16 4 256 2 46 4 260 1 

16 5 271 2 46 5 272 1 

16 6 283 2 46 6 277 1 

16 7 287 2 46 7 273 1 

16 8 314 2 46 8 295 1 

16 9 316 2 46 9 292 1 

16 10 320 2 46 10 305 1 

16 11 298 2 46 11 306 1 

17 1 224 2 47 1 229 1 

17 2 231 2 47 2 241 1 

17 3 241 2 47 3 252 1 

17 4 256 2 47 4 265 1 

17 5 265 2 47 5 274 1 

17 6 283 2 47 6 285 1 

17 7 295 2 47 7 303 1 

17 8 314 2 47 8 308 1 

17 9 313 2 47 9 315 1 

17 10 328 2 47 10 328 1 

17 11 334 2 47 11 328 1 

18 1 200 2 48 1 204 1 

18 2 203 2 48 2 198 1 

18 3 221 2 48 3 217 1 

18 4 236 2 48 4 233 1 

18 5 248 2 48 5 251 1 

18 6 262 2 48 6 258 1 

18 7 276 2 48 7 272 1 

18 8 294 2 48 8 283 1 

18 9 291 2 48 9 279 1 

18 10 311 2 48 10 295 1 

18 11 310 2 48 11 298 1 

19 1 238 2 49 1 220 1 

19 2 232 2 49 2 221 1 

19 3 252 2 49 3 236 1 

 
 
 



  
 

 

Table A1 (continued) 
SUBJECT TIME WEIGHT GROUP SUBJECT TIME WEIGHT GROUP 

19 4 268 2 49 4 260 1 

19 5 285 2 49 5 274 1 

19 6 298 2 49 6 295 1 

19 7 303 2 49 7 300 1 

19 8 320 2 49 8 301 1 

19 9 324 2 49 9 310 1 

19 10 320 2 49 10 318 1 

19 11 327 2 49 11 316 1 

20 1 230 2 50 1 233 1 

20 2 222 2 50 2 234 1 

20 3 243 2 50 3 250 1 

20 4 253 2 50 4 268 1 

20 5 268 2 50 5 280 1 

20 6 284 2 50 6 298 1 

20 7 290 2 50 7 308 1 

20 8 316 2 50 8 319 1 

20 9 314 2 50 9 318 1 

20 10 330 2 50 10 336 1 

20 11 330 2 50 11 333 1 

21 1 217 2 51 1 234 1 

21 2 224 2 51 2 234 1 

21 3 242 2 51 3 254 1 

21 4 265 2 51 4 274 1 

21 5 284 2 51 5 294 1 

21 6 302 2 51 6 306 1 

21 7 309 2 51 7 318 1 

21 8 324 2 51 8 334 1 

21 9 328 2 51 9 343 1 

21 10 338 2 51 10 349 1 

21 11 332 2 51 11 350 1 

22 1 209 2 52 1 200 1 

22 2 209 2 52 2 207 1 

22 3 221 2 52 3 217 1 

22 4 238 2 52 4 238 1 

22 5 256 2 52 5 252 1 

22 6 267 2 52 6 267 1 

22 7 281 2 52 7 284 1 

22 8 295 2 52 8 282 1 

22 9 301 2 52 9 282 1 

22 10 309 2 52 10 284 1 

22 11 289 2 52 11 288 1 

23 1 224 2 53 1 220 1 

23 2 227 2 53 2 213 1 

23 3 245 2 53 3 229 1 

23 4 267 2 53 4 252 1 

23 5 279 2 53 5 254 1 

23 6 294 2 53 6 273 1 

23 7 312 2 53 7 293 1 

23 8 328 2 53 8 289 1 

23 9 329 2 53 9 294 1 



  
 

 

 
Table A1 (continued) 

SUBJECT TIME WEIGHT GROUP SUBJECT TIME WEIGHT GROUP 

23 10 297 2 53 10 292 1 

23 11 297 2 53 11 298 1 

24 1 230 2 54 1 225 1 

24 2 231 2 54 2 239 1 

24 3 244 2 54 3 254 1 

24 4 261 2 54 4 269 1 

24 5 272 2 54 5 289 1 

24 6 283 2 54 6 308 1 

24 7 294 2 54 7 313 1 

24 8 318 2 54 8 324 1 

24 9 320 2 54 9 327 1 

24 10 333 2 54 10 347 1 

24 11 338 2 54 11 344 1 

25 1 216 2 55 1 236 1 

25 2 218 2 55 2 245 1 

25 3 223 2 55 3 257 1 

25 4 243 2 55 4 271 1 

25 5 259 2 55 5 294 1 

25 6 270 2 55 6 307 1 

25 7 270 2 55 7 317 1 

25 8 290 2 55 8 327 1 

25 9 301 2 55 9 328 1 

25 10 314 2 55 10 328 1 

25 11 297 2 55 11 325 1 

26 1 231 2 56 1 231 1 

26 2 239 2 56 2 231 1 

26 3 254 2 56 3 237 1 

26 4 276 2 56 4 261 1 

26 5 294 2 56 5 274 1 

26 6 304 2 56 6 285 1 

26 7 317 2 56 7 291 1 

26 8 335 2 56 8 301 1 

26 9 333 2 56 9 307 1 

26 10 319 2 56 10 315 1 

26 11 307 2 56 11 320 1 

27 1 207 2 57 1 208 1 

27 2 216 2 57 2 211 1 

27 3 228 2 57 3 238 1 

27 4 255 2 57 4 254 1 

27 5 275 2 57 5 267 1 

27 6 285 2 57 6 287 1 

27 7 296 2 57 7 306 1 

27 8 314 2 57 8 312 1 

27 9 319 2 57 9 320 1 

27 10 330 2 57 10 337 1 

27 11 330 2 57 11 338 1 

28 1 227 2 58 1 232 1 

 
 



  
 

 

 
Table A1 (continued) 

SUBJECT TIME WEIGHT GROUP SUBJECT TIME WEIGHT GROUP 

28 2 236 2 58 2 248 1 

28 3 251 2 58 3 261 1 

28 4 264 2 58 4 285 1 

28 5 276 2 58 5 292 1 

28 6 287 2 58 6 307 1 

28 7 297 2 58 7 312 1 

28 8 315 2 58 8 323 1 

28 9 309 2 58 9 318 1 

28 10 313 2 58 10 328 1 

28 11 292 2 58 11 329 1 

29 1 221 2 59 1 233 1 

29 2 232 2 59 2 241 1 

29 3 251 2 59 3 252 1 

29 4 274 2 59 4 273 1 

29 5 284 2 59 5 301 1 

29 6 295 2 59 6 316 1 

29 7 300 2 59 7 332 1 

29 8 323 2 59 8 336 1 

29 9 319 2 59 9 339 1 

29 10 333 2 59 10 348 1 

29 11 322 2 59 11 345 1 

30 1 233 2 60 1 221 1 

30 2 238 2 60 2 219 1 

30 3 254 2 60 3 231 1 

30 4 266 2 60 4 251 1 

30 5 282 2 60 5 270 1 

30 6 294 2 60 6 272 1 

30 7 295 2 60 7 287 1 

30 8 310 2 60 8 294 1 

30 9 320 2 60 9 292 1 

30 10 327 2 60 10 292 1 

30 11 326 2 60 11 299 1 

 

 



  
 

 



  
 

 

APPENDIX B 
 
 



  
 

 



  
 

 

Program 1 

Cattle data are entered in a format which uses 4 variables. The first denotes 

the subject, the second denotes the group, the third denotes the time and the 

fourth is the observation (weight). 

The next lines in Matlab transpose observed data (4th column) into 11 

columns as a 

typical longitudinal data set and compute the empirical covariance matrix 

 

load cattle.dat 

k=0; 

y0=[]; 

for i=1:60 

    y1=[]; 

    for j=1:11 

        y1=[y1 cattle(k+j,4)]; 

    end 

    y0=[y0;cattle(k+1,2) y1]; 

    k=k+11; 

end 

% The data used are those of group 1 

y=y0((y0(:,1)==1),2:12); 

[n,q]=size(y); 

% empirical covariance matrix and modified cholesky decomposition 

sig1=((y-ones(n,1)*mean(y))'*(y-ones(n,1)*mean(y)))/(n-1); 

[t1,d1]=modchol(sig1); 

 

Program 2 

Calculates in Matlab the modified Cholesky decomposition of the empirical 

covariance matrix of observation (sigma)  

 

function [t,d]=modchol(sigma) 

r=chol(sigma); 

d=diag(diag(r))*diag(diag(r)); 

t=inv((inv(diag(diag(r)))*r)'); 



  
 

 

Program 3 

Cattle data analysis in Matlab (for one group) through Pourahmadi's method 

and Pan, McKenzie. This program finds the -2loglikelihood value, the 

estimated generalized autoregressive parameters and the estimated 

innovation parameters given the initial values (gamma, delta). 

 

y=cattle(:,4); 

[n0 p0]=size(y); 

n=n0/11; 

x=[(cattle(:,3)==1) (cattle(:,3)==2) (cattle(:,3)==3) (cattle(:,3)==4) 

(cattle(:,3)==5) (cattle(:,3)==6)... 

    (cattle(:,3)==7) (cattle(:,3)==8) (cattle(:,3)==9) (cattle(:,3)==10) 

(cattle(:,3)==10.5)]; 

 [n0,p]=size(x); 

beta=[226.2;230.3;246.9;265.6;281.2;294.9;304.7;312.9;315.1;324.1;325.5]; 

betaml=beta+0.1; 

gamma=[6.7346;-1.4561;7.2275;-0.0123]; 

delta=[1.7434;-1.0522;0.1857;-0.01]; 

zeta=[]; 

for j=1:11 

    for i=j+1:11 

        zeta=[zeta;1 cattle(i,3)-cattle(j,3) (cattle(i,3)-cattle(j,3))^2 (cattle(i,3)-

cattle(j,3))^3]; 

    end 

end 

eta=[ones(11,1) cattle(1:11,3) cattle(1:11,3).^2 cattle(1:11,3).^3]; 

nparam=[4 4]; 

prm=[gamma; delta;beta]; 

param=zeros(sum(nparam)+p,1); 

q=11; 

options=optimset('MaxFunEvals',200000,'MaxIter',200000,'TolX',1e-

8,'TolFun',1e-8,'LargeScale', 'off'); 

m=0; 

 



  
 

 

 
Program 3 (continued) 

while (norm(beta-betaml)/norm(beta)>0.00001) 

    m=m+1 

beta=betaml; 

prminit=prm(1:sum(nparam)); 

gamma=prm(1:nparam(1)); 

delta=prm(nparam(1)+1:sum(nparam)); 

[invsigmaml,tml,dml]=makesig(q,gamma,delta,zeta,eta); 

k=0; 

y0=[]; 

for i=1:30 

        y0=[y0;y(k+(1:11))']; 

        k=k+11; 

end 

sig=((y0-(ones(n,1)*(beta')))'*(y0-(ones(n,1)*(beta'))))/(n); 

[t,d]=modchol(sig); 

[prm,mxlik,exitflag,output]=fminsearch(@lik_pour,prminit,options,n0,q,bet

a,y,x,nparam,zeta,eta); 

gamma=prm(1:nparam(1)); 

delta=prm(nparam(1)+1:sum(nparam)); 

[invsigmaml,tml,dml]=makesig(q,gamma,delta,zeta,eta); 

tmp1=zeros(p,p); 

tmp2=zeros(p,1); 

betaml=zeros(p,1); 

m0=0; 

for i=1:n0/11 

    tmp1=tmp1+x(m0+(1:11),:)'*invsigmaml*x(m0+(1:11),:); 

    tmp2=tmp2+x(m0+(1:11),:)'*invsigmaml*y(m0+(1:11)); 

    m0=m0+11; 

end 

betaml=inv(tmp1)*tmp2; 

end 

 



  
 

 

Program 4 

Cattle data (for one group) analysis in Matlab through Pourahmadi's method 

and Pan, McKenzie when we assume a broken line model for the mean. This 

program finds the -2loglikelihood value, the estimated generalized 

autoregressive parameters and the estimated innovation parameters given 

the initial values (gamma, delta). 

 

y=cattle(:,4); 

[n0 p0]=size(y); 

n=n0/11; 

x=matrix1 

[n0,p]=size(x); 

means=[226.2;230.3;246.9;265.6;281.2;294.9;304.7;312.9;315.1;324.1;325.

5]; 

beta=[219.685;6.515;15.125;4.459]; 

betaml=beta+0.1; 

gamma=[1.746;-0.6785;-0.4973;0.432;-0.1365;0.02175;-

0.001722;0.00005342]; 

delta=[1.7434;-1.0522;0.1857;-0.01]; 

zeta=[]; 

for j=1:11 

    for i=j+1:11 

        zeta=[zeta;1 cattle(i,3)-cattle(j,3) (cattle(i,3)-cattle(j,3))^2 (cattle(i,3)-

cattle(j,3))^3 cattle(i,3)-cattle(j,3)^4 (cattle(i,3)-cattle(j,3))^5 (cattle(i,3)-

cattle(j,3))^6 (cattle(i,3)-cattle(j,3))^7]; 

    end 

end 

eta=[ones(11,1) cattle(1:11,3) cattle(1:11,3).^2 cattle(1:11,3).^3]; 

nparam=[8 4]; 

prm=[gamma; delta;beta]; 

param=zeros(sum(nparam)+p,1); 

q=11; 

options=optimset('MaxFunEvals',200000,'MaxIter',200000,'TolX',1e-

8,'TolFun',1e-8,'LargeScale', 'off'); 



  
 

 

Program 4 (continued) 

m=0; 

while (norm(beta-betaml)/norm(beta)>0.00001) 

    m=m+1 

beta=betaml; 

prminit=prm(1:sum(nparam)); 

gamma=prm(1:nparam(1)); 

delta=prm(nparam(1)+1:sum(nparam)); 

[invsigmaml,tml,dml]=makesig(q,gamma,delta,zeta,eta); 

k=0; 

y0=[]; 

for i=1:30 

        y0=[y0;y(k+(1:11))']; 

        k=k+11; 

end 

sig=((y0-(ones(n,1)*(means')))'*(y0-(ones(n,1)*(means'))))/(n); 

[t,d]=modchol(sig); 

[prm,mxlik,exitflag,output]=fminsearch(@lik_pour,prminit,options,n0,q,bet

a,y,x,nparam,zeta,eta); 

gamma=prm(1:nparam(1)); 

delta=prm(nparam(1)+1:sum(nparam)); 

[invsigmaml,tml,dml]=makesig(q,gamma,delta,zeta,eta); 

tmp1=zeros(p,p); 

tmp2=zeros(p,1); 

betaml=zeros(p,1); 

m0=0; 

for i=1:n0/11 

    tmp1=tmp1+x(m0+(1:11),:)'*invsigmaml*x(m0+(1:11),:); 

    tmp2=tmp2+x(m0+(1:11),:)'*invsigmaml*y(m0+(1:11)); 

    m0=m0+11; 

end 

betaml=inv(tmp1)*tmp2; 

end 

 



  
 

 

Program 5 

The following program in Matlab is a function that is used in programs 3 

and 4 to calculate the value of the likelihood: 

function lik_pour=lik_pour(param,n0,q,beta,y,x,nparam,zeta,eta) 

gamma=param(1:nparam(1)) 

delta=param(nparam(1)+1:sum(nparam)) 

[n0,p]=size(x); 

lik_pour=0; 

[invsigma,t,d]=makesig(q,gamma,delta,zeta,eta); 

k=0; 

for i=1:n0/q 

    r=y(k+(1:q))-x(k+(1:q),:)*beta; 

    lik_pour=lik_pour+r'*invsigma*r+log(prod(1./diag(d))); 

    k=k+q; 

end 

lik_pour 

 

Program 6 

The following program in Matlab is a function that is used in programs 3 

and 4 to compute the estimated inverted covariance matrix given the 

estimated parameters: 

function [invsigma,t,d]=makesig(q,gamma,delta,zeta,eta) 

phihat=zeta*gamma; 

logshat=eta*delta; 

t=zeros(q); 

k=0; 

for j=1:q 

    t(j,j)=1; 

    for i=j+1:q 

        k=k+1; 

        t(i,j)=phihat(k); 

    end 

end 

d=diag(1./exp(logshat)); 
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