
1

A Distributed Entity Resolution Service with

Deep Learning

MSc Thesis in Data Science

Student : Chatzidimitriou Evangelos

Student ID : f3351823

Academic Supervisor : Dr Ioannis Kotidis

Company Supervisors : Nikos Stasinopoulos, Kostas Tsagkaris (Incelligent)

 2019

2

3

Abstract

The Entity Resolution Problem (also known as Record Linkage or Deduplication) is the task of

matching entities across two or more datasets that refer to the same world entity. One of the latest

and most advanced approaches to the problem is the DeepER framework suggested by Muhammad

Ebraheem in 2018 (M. Ebraheem, 2018). The main idea of DeepER’s functionality is to address

the problem as a Text Analysis problem: It assumes that the candidate entities to be matched exist

in data sources of identical schemas and, given that, it investigates the textual similarity of the

aligned columns between the candidate entities. After performing such measurements, it attempts

to feed a Neural Network Classifier with the aforementioned information, so that it learns to

distinguish between true matching and no matching pairs. However, this framework directly

assumes that the schemas of the various data sources from which the entities come from are indeed

identical, which is rarely the case in real world datasets. In addition, obstacles are also present in

cases where an attribute value to be examined is not inherently a string, but a number, since the

above framework uses similarity measurements of raw text between candidate entities to feed the

NN classifier.

In this thesis, an attempt was made towards generalizing the aforementioned procedure for the

cases of partial or total misalignment between the various data sources’ attribute schemas.

The applied methodology follows, more or less, the same workflow of the DeepER system, with

some critical differentiations: Assuming partial or total agnosticism about the attributes’

alignment, we attempt to merge their context to a single column and use this new ‘merged’ column

to measure the textual similarity between the entities’ misaligned attributes, while at the same time

all the aligned attributes are treated in the exact same way as in DeepER. After performing the

similarity measurements between the aligned attributes and the ‘merged column of misaligned

attributes’, we attempt to feed a Neural Network Classifier with this information in order to train

him to distinguish between matching and non-matching entities. Experimentations were also made

towards the goal of avoiding any similarity measurements between attributes, simply by

concatenating the textual context of the candidate entities to a single sentence and feed a Neural

Network classifier directly with the sentence’s respective word vector. We also avoid the problem

of non-textual attribute values (that is, numbers that cannot be mapped to a semantic space

effectively) by replacing all numbers with their respective text format, using num2words package.

4

The classification results were more than encouraging. Our framework managed to distinguish

between the matching and non-matching pairs quite effectively, even when assuming partial or

total schema misalignment. What is more, there is evidence that there is some tradeoff between

the number of assumed misaligned attributes and the classifier’s performance. However, the

decrease in the classification performance when assuming a smaller number of aligned attributes

is quite small, suggesting that one could quite accurately solve the ER problem even if the element

of agnosticism about the schema’s alignment is present.

Finally, we attempted to combine the pre-trained NN classifier with Locality Sensitive Hashing

procedures (in the form of a LSH Recommendation Forest) in a single ‘match extracting

framework’. This framework attempts to diminish the number of computations when one tries to

extract all the matching pairs between two data sources, by avoiding testing for all possible pair

combinations. The results were far from perfect, but still, quite encouraging. The above framework

manages to detect the true matching pairs between two data sources more often than not,

suggesting that there is possibility of constructing a single service, empowered with Deep Learning

techniques and Distributional characteristics, that extracts all the matching pairs between various

data sources whenever such pairs are existent.

5

Aknowledgements

I most definitely feel the need to thank both my academic and industry supervisors, each one of

them for different reasons. I sincerely thank Dr. Ioannis Kotidis, not only for his advice on the

approaches that could be used to face the Entity Resolution Task itself, but mainly because he

generously offered me two mental supplies whose value cannot be directly measured: Guidance

and words of encouragement. I also feel the need to thank my company supervisors of Incelligent:

Nikos Stasinopoulos, and Kostas Tsagkaris, for giving me the opportunity to tackle myself with

such an interesting and traditional problem of Data Science. Especially, Mr Stasinopoulos’

continuous assistance on the theoretical aspects of the problem has been crucial for the completion

of this thesis. Last but not least, I wish to thank my family for the constant support during my

studies so far, as well as my friend, Margarita Karagianni, for her support when I needed it!

‘’ Down in the real world we’re facing ugly choices. I’m sorry, I know you mean well. You just

did not think it through. You want to protect the world but you don’t want it to change. How is

humanity saved if it is not allowed to evolve? Now, I’m ready… I’m on a mission: Peace in our

time. I was meant to be new…. I was meant to be beautiful…. I had strings but now I’m free…’’

 Ultron on Artificial Intelligence, Age of Ultron

6

7

Table of Contents

Abstract ..3

Aknowledgements ...5

List of Figures ...9

List of Tables .. 10

List of Algorithms ... 11

List of Acronyms .. 12

1. Introduction ... 14

2. DeepER Framework .. 16

2.1 Mathematical Formulation of the ER Problem ... 16

2.2 Distributed Representation of words and tuples: Word Embeddings 17

2.3 The DeepER system : An approach for Entity Resolution .. 22

3. Locality Sensitive Hashing (LSH) ... 27

3.1 Locality Sensitive Hashing: Concept and Functionality .. 27

3.2 LSH Recommender Engine: The concept of an LSH Forest ... 34

4. Experimental Setup ... 37

4.1 Dataset Group Description: DBLP-Scholar and Beer Advocate-Rate Beer Data Sources .. 38

4.2 Python Libraries – Technologies used in the Experiments .. 41

4.3 Dataset Pre-Processing: Attribute Texting and Text Cleaning .. 44

5. Approaching Entity Resolution with Deep Learning .. 48

5.1 Inserting agnosticism on schema alignment.. 49

5.2 Attribute Similarity Approach: 4/4 Aligned Attributes ... 54

5.3 Attribute Similarity Approach: 2/4 Aligned Attributes ... 60

5.4 Attribute Similarity Approach: 1/4 Aligned Attributes ... 66

5.5 Attribute Similarity Approach: No Aligned Attributes ... 72

8

5.6 Concatenated Strings Approach ... 78

6. Applying LSH to the Deep Learning Framework ... 85

6.1 Creating ‘recommended-candidate pairs’ with LSH forest and predicting with a Neural

Network .. 85

6.2 Evaluating the Deep Learning framework with LSF Forest Recommendation: Results 91

7. Reviewing the Results: Conclusions and Future Work ... 96

7.1 Deep Learning Classification on Entity Resolution: Review and Thoughts....................... 96

7.2 Reducing the Search Space with LSH and Predicting: Review and Thoughts 98

7.3 Future Work .. 100

References .. 102

9

List of Figures

Figure 2. 1: Mapping Attributes to Attribute Vectors ... 23

Figure 2. 2: Calculating Attribute-Column Similarities from Column Vectors 24

Figure 3. 1: Hashing similar items to similar buckets……………………………………………28

Figure 3. 2: Procedure sequence of LSH Algorithm ... 29

Figure 3. 3: Document Matrix mapping to Signature Matrix: Permutation 1 32

Figure 3. 4: Document Matrix mapping to Signature Matrix Permutation 2 32

Figure 3. 5: Identical bands (b=2) for different documents are hashed into the same bucket....... 34

Figure 5.1-Figure 5.30: Classification Graphs for ER on DBLP-Scholar and Beer Advocate

Datasets (Learning Curves, ROC Curves on Validation and Test Sets)……………………. 53-84

Figure 6. 1: r=f(n) r=True PositivesFalse Negatives , n=No of recommendations on Validation

Set (DBLP-Scholar Dataset) .. 92

Figure 6. 2: r=f(n) r=True PositivesFalse Negatives , n=No of recommendations on Test Set

(DBLP-Scholar Dataset).. 93

Figure 6. 3: r=f(n) r=True PositivesFalse Negatives , n=No of recommendations on Validation

Set (Beer Advocate-RateBeer) .. 94

Figure 6. 4: r=f(n) r=True PositivesFalse Negatives , n=No of recommendations on Test Set

(Beer Advocate-RateBeer) .. 95

file:///C:/Users/User/Desktop/dokimh.docx%23_Toc23532100
file:///C:/Users/User/Desktop/dokimh.docx%23_Toc23532101
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958489
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958489
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958490
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958490
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958491
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958491
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958492
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958492

10

List of Tables

Table 2. 1:An example of representing words to d-dimensional word embeddings. 18

Table 3. 1: Document Matrix of n documents and m-shingles…………………………………..30

Table 4. 1: Table-pair tuple example for Table A / Table B: DBLP-Scholar Dataset...................39

Table 4. 2: Table-pair tuple example for Table A / Table B: Beer Advocate-RateBeer............... 40

Table 5.1 – 5.54: Tables of Results for ER on DBLP-Scholar and Beer Advocate Dataset:

Hyperparameter Tables, Classification Matrices, Confusion Matrices for Validation and Test Sets

………………………………………………………………………………………............. 49-84

Table 6. 1: Pair of tables example for the Concatenated Strings Approach (Re-exlained) 87

Table 6. 2: Framework Results on Validation Set(DBLP-Scholar Dataset) 91

Table 6. 3: Framework Results on Test Set (DBLP-Scholar Dataset) ... 92

Table 6. 4: Framework Results on Validation Set (BeerAdvocate-RateBeer Dataset) 93

Table 6. 5: Framework Results on Test Set (BeerAdvocate-RateBeer Dataset) 94

Table 7. 1: Concentrated classification results for all the experimental methods on DBLP-Scholar

dataset 96

Table 7. 2 Concentrated classification results for all the experimental methods on Beer Advocate-

RateBeer dataset.. 97

file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161627
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161628
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161629
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161630
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161631
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161631
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161632
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc23161632

11

List of Algorithms

Algorithm 2. 1: A simple averaging approach to map a phrase to a d-dimensional vector 19

Algorithm 2. 2: Summarizing the DeepER System. ... 25

Algorithm 3. 1: MinHashing Algorithmic procedure of mapping a Document Matrix to a new,

Signature Matrix………………………………………………………………………………….31

Algorithm 3. 2: General Idea of the LSH Forest Algorithm .. 36

Algorithm 6. 1: Combining DL with LSH……………………………………………………….89

file:///C:/Users/User/Desktop/dokimh.docx%23_Toc23531392
file:///C:/Users/User/Desktop/THESIS_1.docx%23_Toc22958907

12

List of Acronyms

ABV Alcohol by Volume

AUC Area Under Curve

CNN Convolutional Neural Network

D-NN Dense Neural Network

DBLP Digital Biography & Library Project

DL Deep Learning

DeepER Deep Entity Resolution

ER Entity Resolution

GRU Gated Recurrent Unit

K-NN K-Nearest Neighbors

LSH Locality Sensitive Hashing

LSTM Long Short-Term Memory

NLP Natural Language Processing

NN Neural Network

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

13

14

1. Introduction

The Entity Resolution Problem (or deduplication problem or record linkage) is an old and

challenging problem of data integration, routing in 1940’s. It refers to the task of identifying

different records of the same entity across multiple data sources, or even de-duplicating entities

existing in similar or different format in the same dataset.

Constructing an effective and easily applicable method of identifying similar entities across or

within datasets is of high importance, since it addresses both issues of data redundancy as well as

missing data values. To be more precise, if an entity is contained more than once in a single data

source, one could erase all but one occurrences of the entity in the dataset, thus reducing the size

of the data source while, at the same time, keeping the totality of the information intact. In addition,

if two or more data sources contain matching entities, one could use matching to address the issue

of missing values: if an entity in one or more datasets contains missing values on some of its

attributes, then the information contained in another data source, which in turn contains the same

entity, could be used to fill any missing values of the former source, if the latter happens to store

this entity-related information. The applications of entity resolution are many, including but not

restricted to, a wide variety of scientific and industry fields, such as public sector, transportation,

finance, law enforcement, and antiterrorism.

Since the Entity Resolution Task is a fairly old problem, a lot of methodologies have been proposed

to approach it, one of them being the DeepER (M. Ebraheem, 2018) system, a novel ER Deep

Learning system, which in fact uses Distributed Representations of words (a.k.a. word

embeddings) of the context included in the attributes of each dataset, as well as similarities

between those representations to perform the matching procedure by feeding a Neural Network

classifier. The DeepER model achieves fairly good results overall, making, however, a single but

exceptionally important assumption: It assumes that the attributes between the compared datasets

are well-aligned, a concept which will be explained . In this thesis, we will try to generalize this

procedure by inserting the element of agnosticism about the correspondence between the dataset

schemas (in other words, we present a methodology that assumes that some, or even, all of the

attributes of the two datasets are not aligned).

15

In the era of Big Data, in which data integration and storage are not trivial issues, the Entity

Resolution Task finds its endgame: Not only the task of matching similar entities across multiple

data sources is important, but also a distributing service that diminishes the complexity of the

matching procedure is necessary.

The two aforementioned obstacles, i.e. i) finding similar entities across datasets in a schema

agnostic manner, and ii) reducing the complexity of the calculations needed to perform the

matching procedure, are the main aspects of the Entity Resolution Task that will be addressed in

this work. For the former, a Deep Learning approach is used, which takes primitives from but is

specifically differentiated from the DeepER (Deep Entity Resolution) system that was especially

designed for this task. Furthermore, in order to overcome the problem of comutational complexity,

one of the best ways to avoid unnecessary computations is the application of a well-understood

data mining technique, known as Locality Sensitive Hashing (LSH), which we make use of.

The writing flow of this thesis is constructed in such a way that the reader is equipped with all the

necessary theoretical aspects of the techniques and tools that were used in order to address the

Entity Resolution task with respect to the two aforementioned obstacles. Afterwards, the results of

the experimentations are presented and commented upon. In Section 2, a formal statement of the

Entity Resolution is provided along with a detailed presentation of the DeepER system framework.

In Section 3, the reader is introduced to the concept of Locality Sensitive Hashing (LSH), which

is the core functionality that enables us to diminish the complexity of the solution. In Section 4, a

brief commentary on the experimental setup of the framework is given. In Section 5, a detailed

explanation of our Deep-Learning Approach methodology is issued, along with the classification

results on two datasets: DBLP-Scholar and Beer Advocate-RateBeer datasets. Section 6 is about

combining the power of a Deep Learning approach with a distributing framework in order to detect

matching entities between two datasets: First, we shortly explain how LSH can be zipped with a

pre-trained Neural Network Classifier in order to detect matching entities between two data

sources, and then we provide experimental results by applying the proposed procedure on the two

aforementioned datasets. Finally, in Section 7, we draw conclusions regarding the results and

make proposals about possible future work.

16

2. DeepER Framework

In this section, we will introduce the DeepER framework, firstly by describing the Entity

Resolution task with mathematical formality, secondly by providing the reader with the necessary

information of Distributed Representation of words (a.k.a word embeddings or word vectors) and

tuples, and thirdly, by describing the core architecture and functioning of the DeepER system, as

a system empowered by word vectors and their similarities in order to deal with the Entity

Resolution problem-task. Since the core experimental methodology of this thesis is directly related

to the DeepER framework, a basic reference to some of the core functionalities of this system is

highly appropriate.

2.1 Mathematical Formulation of the ER Problem

Let T be a set of entities, consisting of n tuples and m attributes. One could imagine such a set as

a single dataset T, consisting of n rows and m attributes. Keeping this in mind, when referring to

the set of entities T, we indirectly refer to a related dataset T and its set of rows (n) and attributes

(m). We denote as:

T(n , m) : {T ∈ Rn x m , n , m ∈ N }

Let us also consider a single entity of T, which can be seen as a single tuple of dataset T consisting

of m-attribute values. We denote as t = t[T].

It is also useful to consider the set of all tuples in dataset T : set[T] = { t ∈ Rm : t =t[T] }.We can

also simply denote this set as T.

For each tuple instance t = t[T], we denote the instance of attribute values of t as an m-dimensional

vector t = t[A1, A2,……, Am] ∈ Rm.

This enables us to denote as t[Ak], k ≤ m : the value of attribute k (Ak) for the entity-tuple t.

The Entity Resolution Problem can then, be stated as follows : ‘’Given two set of entities T, T’

(with aligned attribute schemas) and their related set of tuples set[T] and set[T’], find all distinct

pair tuples (t[T],t’[T’]) that refer to the same real-world entity (a.k.a, they match)’’.

The above problem statement does not imply that T and T’ are necessarily different dataset

instances. The special case when we compare a dataset to itself, or, in other words, when we wish

17

to find all the tuples in a single dataset that refer to the same real-world entity, can be thought of

as the special case where T=T’.

However, it is straightforward to observe the constraint of aligned attribute schemas between the

two data sources.

2.2 Distributed Representation of words and tuples: Word Embeddings

In this subsection, a brief explanation of what word embeddings (or word vectors) are and how

words or larger phrases can be mapped to vector representations that preserve semantic meaning

will be provided.

The similarity measures that can be used, embodied in the form of mathematical formality, in order

to measure the semantic similarity of such words and phrases, will also be briefly explained.

It is important to understand that it is, indeed, the mapping of words and phrases to vectors that

enables us to study the relationships between words, phrases, or even whole documents in a formal

way.

Ditributed representation of words

Distributed representations of words (a.k.a. word embeddings) are strict mappings of words,

existing in a core vocabulary, to vectors. This embedding method is, in other words, trying to map

each existing word record of a given vocabulary to a high-dimensional vector, which in turns exists

in a pre-fixed d-dimensional vector space. As a result, each word can be seen as a distribution of

weights in a d-dimensional vector space.

The above representation is said to be ‘’distributed’’, since each word is represented by setting

appropriate weights to multiple dimensions, while each dimension of a vector contributes to the

representation of many words. The main advantage of this representation over other existing

methods, such as discrete representations (e.g. one-hot encoding) is that the latter often leads to

data sparsity and often requires substantially more data to train a Machine Learning algorithm or

a Deep Learning Network successfully.

18

A wide variety of methods have been proposed and used in order to obtain the distributed

representation of words included in a document, such as word2vec algorithm, Glove, fast-text

etc. The aforementioned methods are designed to capture the semantics of a word by taking into

account the relationship of this particular word with its neighboring words in a single document.

The geometric relationship of word vectors in the aforementioned vector space is obliged to encode

a semantic relationship between words or phrases. An example of mapping words to d-dimensional

word vectors is provided in Table 2.1.

Each of the words included in a vocabulary of size V is mapped to a vector of dimension d.

Interestingly enough, the most advanced algorithms that map words to vectors (e.g. Glove

Algorithm) have many appealing properties. For example, the vector mapping of the word ‘’king’’

: V(king), is constructed in a way that : V(King)-V(Queen)≈V(man)-V(Woman)

Table 2. 1:An example of representing words to d-dimensional word embeddings.

 d-Dimensional vectors

 V

o
ca

b
u

la
ry

 o
f

si
ze

 V

Word Dim

1

Dim

2

Dim

3

… Dim

d

King 0.9 0.9 -0.2 … 0.7

Queen 0.9 -0.1 0.8 … -0.1

Man 0.3 0.8 -0.1 … 0.9

Woman 0.2 -0.2 0.9 … 0.1

Word vectors have been used successfully to address a wide variety of tasks, such as topic

detection, document classification, named entity recognition and others.

19

Distributed representation of larger phrases

In a similar manner, one can construct the representation of a whole phrase (e.g. a sentence in a

document) in a single ‘phrase vector’, simply by averaging the word vectors assigned to each word

included in the phrase. In other words, one can tokenize a sentence to tokens of words and map

each one of them to a d-dimensional vector. Then, averaging all the vectors for all of the tokens in

the phrase ends up in a vector representation for the whole phrase. Below, we provide a formal

example of constructing a ‘’phrase vector’’ using a pseudo-code algorithm (Algorithm 2.1). Note

that the Simple Averaging method is not the only way to map a whole phrase to a vector. RNNs

with LSTM cells can be used to obtain a single vector from a whole phrase, as well.

However, the goal of this thesis is not to test which of the aforementioned methods provides the

best results nor it considers the variability between them. The main goal is to test the possibility

of solving the Entity Resolution problem in cases of schema agnostic datasets, as well as testing

blocking methods of computational efficiency for the identification of matching entities.

Since such vectors can be obtained easily by existing packages (e.g. Gensim, Spacy), our approach

relies on pre-trained models that assign vectors to pieces of text. Such packages use the Simple

Averaging Approach, which is indeed a straightforward and effective method.

Algorithm 2.1:

1 : Let p be a sequence of words, representing a text. Map p to a set of k-word tokens : p →

Tok(p) = [A1, A2,….., Ak], where each element Ai of Tok(p) is a word included in p.

2. Map each element Ai of Tok(p) to a d-dimensional vector V(Ai) and consider the newly-

formed mapping : p → [V(A1), V(A2), …..,V(Ak)], V(Ai) ∈ Rd ∀ i≤k.

3. Average all vectors V(Ai) of p to a single vector Vk : Vk = ∑ 𝑉(𝐴𝑖)/𝑘𝑘
𝑖 (2.2.5) and consider

the new mapping p → Vk = Vk(p) ∈ Rd.

Algorithm 2. 1: A simple averaging approach to map a phrase to a d-dimensional vector

20

Similarity Measures

Last but not least, it is important to mention the metrics under which the similarity of two pieces

of text / documents / words can be measured. In Natural Language Processing, since we cannot

directly calculate any ‘’difference’’ between two sentences (e.g. “Apple is fruit” and “Orange is

fruit”), we need to map them to their numeric representations before we are able to say anything

about their similarity.

However, we have already demonstrated how it is possible to map any piece of text p to a vector

representation Vk(p) ∈ Rd.

Since any document can be mapped to a numerical vector, the problem of measuring the similarity

between two pieces of text p1 and p2 can now be seen as the problem of measuring the similarity

between their mappings, Vk1(p1) and Vk2(p2) :

After mapping p1 and p2 to Vk1(p1) and Vk2(p2), it is possible to measure the similarity between

the vectors Vk1(p1) and Vk2(p2) using Euclidean Distance, Cosine Similarity and Jaccard

Similarity.

➢ Euclidean Distance

Let two vectors q1 and q2: q, p ∈ Rn. The Euclidean distance between q1 and q2 can be calculated

as:

It is straightforward to realize that, for any document mapping p1 → q1, p2 → q2, p3 → q3, it stands

that:

 sim(p1,p2) ≅ sim(Vk1(p1) , Vk2(p2))

d(q1,q2) = d(q2,q1) = √(𝑞11 − 𝑞21)2 + (𝑞12 − 𝑞22)2 + ⋯ + (𝑞1𝑛 − 𝑞2𝑛)2

d(q1 , q2) ≤ d(q1 , q3) → sim(p1,p2) ≥ sim(p1, p3)

21

In other words, the closer two documents are in the Euclidean space, the more similar they are.

➢ Cosine Similarity

Let two vectors q1 and q2 : q , p ∈ Rn. The cosine similarity between q1 and q2 can be calculated

as :

➢ Jaccard Similarity

The Jaccard index, also known as Intersection over Union and the Jaccard similarity coefficient, is

a statistic used for measuring the similarity between sample sets. The Jaccard coefficient measures

similarity between finite sample sets, and is defined as the size of the intersection divided by the

size of the union of the sample sets:

Let two finite sample sets A and B: The Jaccard similarity coefficient of A and B : J(A,B) can be

calculated as :

Keeping in mind that two documents p1 and p2 can be seen as sets of word tokens, where each

word included in the document is a unique token, the intersect of p1 , p2 is simply the set of word

tokens included simultaneously at p1 and p2 , while their union is the set of all word tokens in p1

and p2.

sim(q1,q2) = cos(θ) =
𝒒𝟏 ∗ 𝒒𝟐

||𝑞1|| ∗ ||𝑞2||
 =

∑ 𝑞1𝑖∗ 𝑞2𝑖 𝑛
𝑖=1

∑ 𝑞1𝑖2𝑛

𝑖=1
 ∗∑ 𝑞2𝑖2𝑛

𝑖=1

J(A,B) =
|𝐴∩𝐵|

|𝐴∪𝐵}
 =

|𝐴∩𝐵|

|𝐴| + |𝐵| − |𝐴∩𝐵|
 , 0 ≤ J(A,B) ≤ 1

https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Similarity_measure
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Union_(set_theory)

22

2.3 The DeepER system : An approach for Entity Resolution

The DeepER system is a novel ER neural network system that is designed specifically to deal with

the Entity Resolution problem. To be more specific, the task that DeepER is especially constructed

to address can be stated as follows:

‘’For a given dataset T as well as a training dataset S containing matching (1) and non-matching

(0) tuple pairs (t1, t2) : t1,t2 ∈ set[T] , train a classifier that, given a new input pair of tuples (t1’,

t2’) : t1’,t2’∈ set[T] predicts (1) if the two tuples refer to the same real-world entity and (0) if they

do not. ‘’

The above statement refers to the task of predicting the matching tuples of a single dataset T. The

reader should not be confused by the fact that the main goal is to predict matching tuples between

more than one data-sources. It is straightforward to apply the DeepER model for more than one

datasets, predicting matching entities between them. After all, we have already stated that

predicting matching tuples of a single dataset can be seen as a special case of predicting matches

between two identical tables T1,T2 = T.

In the following, a clear and step-wise explanation approach of the DeepER system is provided.

In addition, a pseudo-code that captures the whole procedure is provided below (Algorithm 2.2)

➢ STEP 1

Since a training dataset (S) with n-rows ,that contains pairs of ID’s of tuples t1,t2 ∈ set[T] as well

as a binary indicator of whether such a pair consists a match (1) or not (0),exists it is

straightforward to construct a new table of tuples T’, which contains only the tuples t1 ∈ set[T] and

t2 ∈ set[T] whose IDs exist in S as a pair, along with their match indicator. In other words, from a

training dataset (S) that contains only pairs of IDs and a match indicator for each pair, a new table

T’ of tuple pairs (t1,t2) ∈ T’ : t1 ∈ set[T], t2 ∈ set[T], is constructed and it stores only those tuples

t1 ∈ set[T] and t2 ∈ set[T] whose pair of IDs exist on S: (t1[id],t2[id]) ∈ S, tk[id] = ID identifier of

tuple k.

23

➢ STEP 2

Having pairs of tuples (t1,t2) included in T’, one can construct the distributed representation of all

attribute values for each one of t1 and t2. Below, we state formally such a procedure. A visual

explanation of the procedure is also provided in Figure 2.1.

‘’ Let t1[Ak], k ≤ m : the value of attribute k (Ak) for the entity-tuple t1 and t2[Ak], k ≤ m : the

value of attribute k (Ak) for the entity-tuple t2. Then, we can map each attribute t1[Ak],

k=1,2,3…,m of t1 and each attribute t2[Ak], k=1,2,3…,m of t2 to a vector using Algorithm 2.1,

thus obtaining attribute vectors vt1[Ak] and vt2[Ak] for t1[Ak] and t2[Ak], k ≤ m respectively’’

Figure 2. 1: Mapping Attributes to Attribute Vectors

➢ STEP 3

Now, every tuple pair (t1,t2) ∈ T’ is mapped to a representation (v[t1], v[t2]), where :

Having v[t1] and v[t2], we can compute the ‘’attribute similarity’’ of each pair of common

attributes between them. In other words, if vt1[Ak1] is the attribute vector of an attribute Ak1 of t1:

t1[Ak1], while vt2[Ak2] is the attribute vector of an attribute Ak2 of t2 : t2[Ak2], we compute the

similarity between vt1[Ak1] and vt2[Ak2] using any of the similarity metrics discussed in subsection

t=[t[A1],t[A2],...,t
[Am]]

Algorithm 2.2.2
for mapping text

context to
numerical

vectors

v[t]=[vt[A1],vt[A2],...,
vt[Am]

v[t1] = [vt1[A1],vt1[A2],….,vt1[Am]], vt1[Ak]= attribute vector of attribute Ak of t1

v[t2] = [vt2[A1],vt2[A2],….,vt2[Am]], vt2[Ak]= attribute vector of attribute Ak of t2

24

2.2 if k1 = k2 → same attribute-column. A visual explanation of this procedure is provided in the

following figure (Figure 2.2)

Similarity Function

e.g. Cosine Similarity

Figure 2. 2: Calculating Attribute-Column Similarities from Column Vectors

It is clear that, after applying the similarity function to all pairs of common attributes between t1

and t2, we are left with a single similarity vector Sim[(t1,t2)] , directly related to the tuple pair

(t1,t2):

➢ STEP 4

After acquiring the similarity vectors Sim[(t1,t2)] for every tuple (t1,t2) of T’, we are left with a

new training set S’ of similarity vectors. The new training set has n-rows, equal to the number of

rows of S: dim-S’= n.

Since we are already equipped with a set of binary labels (0 for non-match and 1 for match) for

each entity in S’, it is easy to train a classifier using S’ and the respective true labels (0 or 1).

To conclude, the ‘attribute similarity vectors’ Sim[(t1,t2)] ∈ S’ of all tuple pairs: (t1,t2) ∈ T’ are

fed into a classifier. Such a classifier can be anything of an SVM, a Decision Tree or even a Dense

Neural Network.

t1 t2

vt1[A1] vt2[A1]

Vt1[A2] vt2[A2]

 …. ….

vt1[Am] vt2[Am]

Attribute Similarities

Sim(t1[A1], t2[A1])

Sim(t1[A2], t2[A2])

 ……

Sim(t1[Am], t2[Am])

S’ = { sim[(t1,t2)]i, 1≤i≤n }

(t1,t2) → Sim[(t1,t2)]= [Sim(t1[A1], t2[A1]), Sim(t1[A2], t2[A2]),…., Sim(t1[Am], t2[Am]]

where Sim(t1[Ak], t2[Ak]) ∈ R ∀ k , Sim[(t1,t2)] ∈ Rm for an m-attribute schema of T

25

➢ STEP 5

After training, predicting for a new incoming pair of tuples is pretty straightforward: One has to

obtain the similarity vector of the new tuple pair and predict with the classifier. If such a prediction

is applied to all possible combinations of tuples of T, then one can get a list of matches-mismatches

between all possible tuple-pairs (t,t’) of T.

Algorithm 2. 2: Summarizing the DeepER System.

However, predicting for all possible pairs of tuples of T is extremely expensive in terms of

computations. To be accurate, for a Table T of n-rows and m-attributes, the required predictions

Algorithm 2.2

1: Input: Table T, training set S

2: Output: All matching tuple pairs in table T

3: // Training

4: for each pair of tuples (t1; t2) in S do

5: Compute the distributed representation for t1 and t2

6: Compute their distributional similarity vector

7: Train a classifier C using the similarity vectors for S and true

labels

8: // Predicting

9: for each pair of tuples (t; t’) in T do

10: Compute the distributed representation for t and t’

11: Compute their distributional similarity vector

12: Predict match/mismatch for (t; t’) using C

26

for all possible pairs is m x n. It is obvious that, even for intermediate levels of matrix dimensions,

this is really inefficient. Luckily, there are ways to overcome this problem, as the reader will find

out in the next section, where the LSH technique will be explained in detail.

27

3. Locality Sensitive Hashing (LSH)

Building an efficient ER system that avoids searching for matches over all possible combinations

of tuples between two datasets is necessary in order to deal with the Entity Resolution task in an

efficient manner. In this section, a blocking-data mining technique called Locality Sensitive

Hashing will be presented. Locality Sensitive Hashing works exactly towards the goal of reducing

the computational complexity of tuple-matching searches over two given datasets (or, as explained

before, searching for duplicates over a dataset with itself).

After all, it is the distributional character of this thesis that demands a blocking approach: Our

main goal is to combine a Deep Learning framework with the distributional characteristics of a

blocking technique and test its ability to efficiently deal with the Entity Resolution Problem. In

order to do so, Locality Sensitive Hashing was used in order to greatly reduce the dimensionality

of the search space of matching-tuples.

In the following, the reader will be provided with all the necessary information on Locality

Sensitive Hashing. Firstly, the core functionality of LSH will be discussed and explained. After

that, once the reader is provided with all the crucial information of LSH basics, we will briefly

discuss the idea of applying LSH to text documents in the form of a Recommender System,

through the use of an LSH Forest (M. Bawa, T. Condie, P. Ganesan, 2005), which is the main

approach that this thesis experiments upon. Finally, we will combine the concepts of a trained

classifier and a recommender engine produced by the LSH Forest in order to present a complete

approach towards reducing the dimensionality of the ER problem.

 3.1 Locality Sensitive Hashing: Concept and Functionality

The main task that one needs to address in order to perform any type of clustering or

recommendation is the task of finding nearest neighbors. An efficient and, nevertheless, effective

way of finding such near neighbors is also the ultimate goal here. For this reason, it is necessary

to define the K-Nearest Neighbor (K-NN) search problem:

Let S be a set of items in a metric space M and an item t ∈ M. Given a distance metric m of

M, find the K closest points (with regards to m) of S to t.

28

However, in our case, one should tackle the very concept of ‘near neighbor’ in a more flexible

way: For us, the set S is a set of text documents, t is a single document of S, while the distance

metric m can be any of the metrics discussed in Section 2.2.

Given a set of documents, the most accurate way of finding the nearest-neighboring documents of

a given text is to search over all possible combinations. In fact, it is the only way to get the exact

k-nearest documents. However, this is really inefficient and computationally expensive. We need

to come up with approximating algorithmic solutions which, even though they do not guarantee to

give us the exact closest neighbors of a given document, they provide a good approximation more

often than not, while at the same time they are remarkably faster and cheaper.

Locality Sensitive Hashing (LSH) is indeed such an algorithm. To be more specific, LSH refers to

a family of hashing functions (known as LSH family) that hashes data points (in our case,

documents) into buckets so that data points near each other are located in the same buckets with

high probability, while distant data points are more likely to be hashed in different buckets. Below,

we provide the reader with the formal definition of the ‘LSH family’ along with a visual example

(Figure 3.1) of how similar data points are hashed to the same buckets using LSH:

 Figure 3. 1: Hashing similar items to similar buckets

Keeping in mind that our main goal is to find ‘near duplicate’ pairs of documents, we can explore

the LSH algorithm and its functionality in more detail. The LSH algorithm can be broken down

into three steps : a. Shingling → b. MinHashing → c. Locality Sensitive Hashing.

A family H of hashing functions is

called (R, cR, P1, P2)-sensitive if for

any two items p and q:

1. if dist(p,q) ≤ R, then Prob[h(p) =

h(q)] ≥ P1

2. if dist(p,q) ≥ cR, then Prob[h(p) =

h(q)] ≤ P2,

where c>1 , P1 > P2, h ∈ H

29

In the following figure (Figure 3.2) we provide a visual representation of the aforementioned

sequence of steps. The depicted procedure will be explained in detail in the following, step by step.

Figure 3. 2: Procedure sequence of LSH Algorithm

https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6

➢ Shingles

Shingles are actually a very basic and broad concept. The idea behind them is to reduce a set of

documents to sets of elements, so we can calculate similarities between sets. For text, shingles can

be sequences of characters, unigrams or bigrams. With this thought, we can think of a shingle as a

set of characters of length k (k-shingles). Considering this, given a set documents, we can convert

each document to a set of shingles. For example, given a document (D): ‘Nadal’, we can convert

it to a set of 2-shingles (D) → {Na,ad,da,al}. Accordingly, we can convert it to a set of 3-shingles:

{Nad,ada,dal}.

What is more, another form of document shingling is word tokenization. For example, one can

convert a text document to a set of its word tokens.

The idea is that similar documents are more likely to share more shingles. And a direct way to

measure similarity between two documents is to use the concept of shingles and apply the Jaccard

Similarity measure. Consider a set of (n) documents and their shingle representation in word

tokens. We can then construct a so-called ‘document matrix’, where each row-entity is a unique

existing shingle-word and each column represents a single document (Table 3.1):

https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6

30

Table 3. 1: Document Matrix of n documents and m-shingles

After constructing a document matrix, it is easy to measure the similarity between two different

documents A and B by using Jaccard Index:

The rest is straightforward: Given a single document of interest (D), we can compute the Jaccard

Similarity of (D) with all the remaining documents and come up with the k-nearest neighbors.

However, there are two main problems:

Computational Complexity: For a collection of n documents, one is obliged to perform the amount

a total amount of n*(n-1)/2 comparisons, basically O(n²).

Space Complexity: Since the Document Matrix is sparse, storing it is expensive.

These two problems can be addressed by introducing the idea of hashing.

➢ MinHashing

The core concept of hashing is to map each document to a small signature using a hashing function

H. This function, of course, needs to satisfy all the statements of the LSH family.

The most appropriate choice of H is closely related to the similarity metric that one uses to

calculate the similarity between two documents of the initial set. For Jaccard Similarity, which is

the case here, the most appropriate function is MinHashing.

 Document 1 Document 2 ……………….. Document n

Word 1 1 0 1

Word 2 0 0 1

Word 3 0 1 0

.........................

Word m 0 1 1

J(A,B) =
|𝐴∩𝐵|

|𝐴∪𝐵}
 =

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒎𝒎𝒐𝒏 𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝒔 𝒐𝒇 𝑨 𝒂𝒏𝒅 𝑩

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝒔 𝒊𝒏 𝑨 𝒂𝒏𝒅 𝑩
 = similarity of A and B

31

In order to create a MinHash signature for each set, we can follow the algorithmic steps as they

are provided in Algorithm 3.1

Algorithm 3. 1: MinHashing Algorithmic procedure of mapping a Document Matrix to a new, Signature Matrix

In order to make everything clear, we will provide the reader with a solid example of mapping a

Document Matrix to a Signature Matrix (which is, actually, the matrix obtained by mapping each

document to a signature after a series of row permutations).

Example of Document Matrix Mapping to a Signature Mapping

Consider three text-documents, each one consisting of a set of word-shingles :

d1 = ['reinforcement', 'learning', 'using', 'augmented', 'neural', 'networks']

d2 = ['playing', 'atari', 'with', 'deep', 'reinforcement', 'learning']

d3 = [‘self'’, 'organization', 'associative', 'database', 'applications']

Algorithm 3.1

1: Permute randomly the rows of the Document Matrix.

2: For each text document, start from the top and find the position of the first shingle that

appears in the document. Use this shingle number to represent the document. This can be now

considered as the document "signature".

3: Repeat steps 1 and 2 as many times as desired, each time appending the result to the

document's signature.

32

These documents are mapped to a Document Matrix and, eventually, to a signature matrix, where

each one of the three documents is mapped to a signature representation (Figure 3.3):

Figure 3. 3: Document Matrix mapping to Signature Matrix:

Permutation 1

The above depiction gives a clear image about how the first row of the Signature Matrix is initially

constructed: for each one of Doc 1, Doc 2 and Doc 3, the Signature Matrix stores the first row

number – first shingle on which it has 1 in the Document Matrix.

Now, the MinHashing algorithm demands a random permutation of all rows of the Document

Matrix as well as repeat of the signature-mapping procedure. The Signature Matrix will be

appended by the new set of signatures of all documents ()

We could continue by producing repeatable permutations again and again. However, if we

perform, for example, two more permutations and we stop there, then the information regarding

DOCUMENT MATRIX

 Doc1 Doc2 Doc3

reinforcement 1 1 0

 learning 1 1 0

using 1 0 0

augmented 1 0 0

neural 1 0 0

networks 1 0 0

playing 0 1 0

atari 0 1 0

with 0 1 0

 deep 0 1 0

self 0 0 1

organization 0 0 1

 associative 0 0 1

database 0 0 1

applications 0 0 1

 SIGNATURE MATRIX

 Documents

Permutations Doc

1

Doc

2

Doc

3

1 1 1 11

 SIGNATURE MATRIX

 Documents

Permutations Doc

1

Doc

2

Doc

3

1 1 1 11

2 1 1 5

Signature Mapping

Random

Permutation of

Rows of Document

Matrix

Signature Mapping

Figure 3. 4: Document Matrix mapping to

Signature Matrix Permutation 2

33

the existence of a shingle in a document will be encoded in the new matrix, whose dimensionality

is significantly lower than the initial matrix:

Document Matrix has 15 rows, while the new Signature Matrix will be of size 4 (if we stop at four

permutations). Obviously, the more the permutations, the longer the signatures of each document

and, as a result, the dimensionality of the new matrix increases.

Choosing the appropriate number of permutations can be tricky and requires tuning. In fact, instead

of a pre-defined number of random permutations, one could use a pre-defined number of hashing

functions to apply to the original table. However, we will not go into any further details of such a

procedure here.

In any case, after the MinHashing procedure is finished, each document is represented by its

MinHash signature on the Signature Matrix.

➢ Locality Sensitive Hashing

The idea of LSH is straightforward. We are required to find a hash function that scans the resulting

Signature Matrix (after executing all of the pre-defined number of permutations) and has the ability

to hash similar documents to the same bucket with high probability, while at the same time it works

in a manner that dissimilar documents are improbable to be hashed into the same bucket. A hashing

function that does the trick could work like this:

‘’Given the resulting Signature Matrix, sourcing from the initial Document Matrix of unique

shingles, divide it into b-bands of r-rows each. After doing so, hash separately each band to a

bucket and, if two documents have at least one pair of bands hashed into the same bucket, then

consider them as a candidate for being similar‘’.

A visual example of the above is given below (Figure 3.5) considering four permutations for three

documents:

34

In the above example, we can see that the two identical bands of Document 1 and Document 2

are indeed hashed into the same bucket. Thus, this pair of documents can be considered as a

candidate pair for being similar.

3.2 LSH Recommender Engine: The concept of an LSH Forest

In this sub-section, the concept of LSH Forest will be briefly discussed. The main idea is to

implement LSH in order to address the problem of indexing high-dimensional data (such as a

matrix of distributed representations of text) with the purpose of answering similarity-search

queries. The indexing scheme known as LSH Forest is a scheme that deals directly with this

problem.

Again, we begin by mentioning the initial problem of finding the most similar objects to a given

object. Even though there are a lot of applications where the aforementioned problem is present

and its solution is itself a service (e.g. finding similar Web Pages to a given Web Page, similar

images or videos), the reader should always keep in mind that we are mainly interested in the

problem of having a specific text document and, given this, we require the most similar to the

former text documents.

We have already mentioned the fact that, given a specific data source (i.e. a dataset T), the exact

k-nearest search solution requires an infeasible amount of computations. One solution to this is to

No of Bands:

b=2

 Documents

Doc 1 Doc 2 Doc 3

P
er

m
u
ta

ti
o
n
s

1 1

1

1

1

11

5 2

3 1

4

4

4

2

1 4

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

Figure 3. 5: Identical bands (b=2) for different documents are hashed into the same bucket

35

develop indexes that, given any query (t ∈ T), select only a small subset of candidate objects to

compare the query against. The best indexes are empowered with the following properties:

a. Accuracy: The returned candidates should indeed be similar (within an acceptable pre-defined

error) to the query object

b. Efficient Queries: The number of returned candidates must be small in order to avoid

unnecessary I/O

c. Efficient Maintenance: The index should be built in a single scan of the dataset, while any

inserts or object removals should be efficient

d. Domain Independence: There should be no need for targeted tuning of parameters for different

data sources

e. Minimum Storage: The index should use as little storage as possible.

For example, one of the best indexing schemes is the B+ Tree. The B+ Tree is, by hand, accurate,

thus satisfying property a. Querying with a B+ Tree is also pretty efficient, requiring at most

O(logn) disk reads, and one sequential scan. As long as inserts and deletes from the disk are

concerned, the B+ Tree requires only O(logn) disk writes per insert/delete. It is also domain-

independent: The only requirement is to specify the comparison function in the domain. Finally, it

uses only O(n) storage space. As one can see, this approach is interwoven with each and every one

of the aforementioned five properties of a good index. The LSH Forest is a specific index scheme

used for approximate search queries that also meets all of the above properties. It is based on

Locality Sensitive Hashing scheme: Objects are hashed using a special locality sensitive hashing

function, such that similar objects are much more likely to end up in the same bucket than non-

similar objects and, after that, the objects that are hashed to the same bucket with the query are

compared with it in order to come up with the most similar objects to the query. It is easy to observe

36

that such a functionality is, of course, the functionality of a recommendation engine. The idea is

explained in Algorithm 3.2:

Algorithm 3. 2: General Idea of the LSH Forest Algorithm

Examples of similarity measures include Jaccard similarity, which we have already seen in former

sections. It is crucial to mention that, even though LSH Forest is not guaranteed to produce the

best solution (in terms of Nearest Neighbors search amongst all t ∈ T), the returned documents are

guaranteed to have a similarity within a fixed error ε of the optimal solution.

We will not enter into any further details of the inside functionality of LSH Forest. An in depth

understanding of the inside functionality of the LSH Forest algorithm goes beyond the scope of

our main purpose. For further information, the reader is encouraged to have a look at the existing

bibliography (i.e. Bawa, Condie, Ganesan, 2005).

On the contrary, we are extremely interested on applying the concept of Locality Sensitive Hashing

and LSH Forest to the Entity Resolution Task itself. It is quite possible that the reader is already

capable of putting everything together:

After training a classifier C on a training set using an approach similar to what is described in

Algorithm 2.2, all we are left with is a classifier that, given a new tuple pair (t,t’) and performing

the necessary mapping of the tuple to its similarity vector, is able to output whether the tuple is a

matching or a non-matching entity pair.

Algorithm 3.2

Let a text query q and a set T of text documents, each one of them denoted as t ∈ T.

1: At query time, perform LSH on the context of T, including the query q (as

described in section 3.1).

2: Calculate the similarity: Sim([tq,q]) between the query q and all tq ∈ T, where tq

denotes all the documents that are hashed into the same bucket with q during LSH

(candidate answers)

3: Return the n-most similar to q objects as an answer (with n being pre-defined)

37

The question to be answered, however, is this: Given two datasets T1 and T2, is it possible to

extract the matching entities between the two datasets? Having a trained classifier is not enough

in terms of efficiency: The obvious solution is to use C in order to test all possible combinations

between T1 and T2. This is, however, extremely inefficient as we have already stated.

And this is also the part where the LSH Forest comes into play: We can use it to avoid testing

over all possible combinations. In fact, we can use it to only extract a certain and controllable

amount of possible candidate pairs and, thus, use C to test only upon these pairs. The whole

procedure will be explained in detail in following sections (sub-section 6.1).

4. Experimental Setup

In the previous sections, we have managed to expose all the necessary theoretical aspects that are

necessary in order to have clear supervision of the experimental methods that were used to address

the ER task in this thesis. We have formally stated the ER task as well as the dataset entities that

are present in the problem, we introduced the concept of distributed representations of words and

text and metrics that provide us with the ability to measure how similar two pieces of text are.

What is more, we explained the functionality of the DeepER system, which in fact uses the idea

of distributed attribute representations in order to measure the similarity between the attribute

values of two entities. The result is a mapping of a tuple pair (t,t’) to a m-dimensional vector

(similarity vector), which actually holds the similarities of the attribute vectors of (t,t’). In return,

given a training set of tuple pairs and their correspondent matching indicator, we are able to feed

the similarity vector to a classifier C (such as a Dense Neural Network) and train it to classify pairs

of tuples according to their ‘’match or no match’’ character. What is more, we provided a brief

insight on how, after having trained such a classifier, we could use the idea of an LSH Forest in

order to diminish the required computations in order to extract matching entities from two given

datasets.

In this section, we will expose our experimental setup on the Entity Resolution task, before

introducing our approaches and results in the next sections. To be more specific, in this section:

38

1. We present two toy dataset groups that are specifically manipulated in order to deal with

ER : The DBLP-Scholar Dataset Group and the Beer Advocate - Rate Beer Dataset

Group. The reason why the term ‘’Dataset Group’’ is used is to note that, in each case, it

is not a single table that expresses the totality of the information. In fact, as we will show

in sub-section 4.1, each of the above groups consists of five (5) tables.

2. We briefly mention all the technologies used in our experimentations, which mainly consist

of several Python libraries.

3. We present the pre-processing steps, applied to all respective Tables, in detail.

4.1 Dataset Group Description: DBLP-Scholar and Beer Advocate-Rate Beer Data

Sources

In this sub-section, we provide all the necessary insight on both DBLP-Scholar and Beer

Advocate-Rate Beer Dataset groups, including information of their dimensions, their origins and

their attribute characteristics.

A. The DBLP-Scholar Dataset Group

The DBLP-Scholar dataset group consists of two unique tables: Table A and Table B, along with

three tables used for training (train table), validation (valid table) and testing (test table) a Machine

Learning matcher between A and B.

Table A consists of 2.616 tuples from the DBLP online computer science bibliography database

Each record-tuple in the table consists of five (5) attributes: id, title, authors, venue and year. The

first column identifies uniquely each record in Table A.

Table B consists of 64.263 tuples from Google Scholar websites, containing information for

scholarly papers. Each record-tuple in the table consists of five (5) attributes: id, title, authors,

venue and year. The first column identifies uniquely each record in Table B.

For each of the above tables, we provide the reader with an indicative row-tuple of the table so

that it is easier for him/her to keep track of the table schema:

39

 T

A
B

L
E

 B

id title authors venue year

4 the role of

faculty

advising in

science and

engineering

jr

cogdell

new

directions

for

teaching

and

learning ,

1995

Table 4. 1: Table-pair tuple example for Table A (2.616 rows) / Table B (64.263 row): DBLP-Scholar Dataset

It is easy to observe that both tables are of identical schemas: they both have the same attributes

in the exact same order.

The remaining three tables (Train, Valid and Test) store information of pairs of attributes and their

matching or non-matching identification: To be more specific, all three of the train, valid and test

tables consist of three (3) attributes : ltable_id (directly related to id column of table A), rtable_id

(directly related to the id column of table B) and label (1 or 0 for match or no match).

Train table consists of 17.224 trainining pairs, Valid consists of 5.744 pairs for validation and

tuning purposes, while Test consists of 5.744 pairs used for testing the Classifier after training.

The last three tables were used to train, validate and test the Neural Network Classifier (more

details for the NN-architecture will be provided in later sections). The way to do that is

straightforward: We simply have to query Tables A and B for the id’s included in the three

aforementioned tables.

B. The Beer Advocate-Rate Beer Dataset Group

The Beer Advocate-Rate Beer dataset group consists of two unique tables: Table A and Table B,

along with three tables used for training (train table), validation (valid table) and testing (test table)

a Machine Learning matcher between A and B.

Table A consists of 4.344 tuples from the Beer Advocate database, storing information and ratings

about beers. Each record-tuple in the table consists of five (5) attributes: id, Beer_Name,

Brew_Factory_Name, Style and ABV. The first column identifies uniquely each record in Table

A.

 T

A
B

L
E

 A

id title authors venue year

1 sql/xml

is

making

good
progress

a

eisenberg ,

j melton

sigmod

record

2002

40

Table B consists of 3.000 tuples from Rate Beer database. Each record-tuple in the table consists

of five (5) attributes: id, Beer_Name, Brew_Factory_Name, Style and ABV. The first column

identifies uniquely each record in Table B.

 Table 4. 2: Table-pair tuple example for Table A (4.344 rows) / Table B (3.000 rows): Beer Advocate-RateBeer Dataset

Same as with DBLP-Scholar dataset, both tables A and B of Beer Advocate-RateBeer are of

identical schemas.

The remaining three tables (Train, Valid and Test) store information of pairs of attributes and their

matching or non-matching identification, in the exact same way as with DBLP-Scholar. All three

of the train, valid and test tables consist of three (3) attributes: ltable_id (directly related to id

column of table A), rtable_id (directly related to the id column of table B) and label (1 or 0 for

match or no match).

Train table consists of 270 trainining pairs, Valid consists of 93 pairs for validation and tuning

purposes, while Test consists of 93 pairs used for testing the NN-Classifier after training.

Both DBLP-Scholar and Beer Advocate-Rate Beer dataset groups can be downloaded and

experimented upon from GitHub: https://github.com/zhao1701/extending-deep-ER#background

TA

B
LE

 A

id Beer_Name Brew_Factory_Name Style ABV

1 Fat Tire Amber Ale New Belgium Brewing American Amber /
Red Ale

5.2%

 T

A
B

LE
 B

 id Beer_Name Brew_Factory_Name Style ABV

9 Battlefield Brew Works
Red Circle Ale

Battlefield Brew Works Irish Ale 5.2%

https://github.com/zhao1701/extending-deep-ER#background

41

4.2 Python Libraries – Technologies used in the Experiments

In this sub-section, we take a small break from the theoretical and analytical part of the thesis: we

will briefly mention some technological utilities that were used throughout the experimental

procedure. It is important for the reader to have a clear picture on these technologies, since he/she

might feel the need to reproduce either the pre-processing or the modelling part of our analysis. In

the experiments, we strictly used Python 3.6 through the Anaconda distribution. As a result, all of

the following packages-libraries are compatible with Python 3.6 version.

Anaconda distribution

Anaconda is an open-source distribution. It is considered as one of the top software distributions

for performing Data Science and Machine Learning. Among others, Anaconda provides access to

Jupyter Notebook, which served as the main environment for the programming part of our

Analysis.

Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to perform coding in

Python programming language in the form of a typical notebook. Uses include: data cleaning and

transformation, numerical simulation, statistical modeling, data visualization, machine learning

etc.

Pandas Library

Pandas is an open-source Python library that is mainly constructed around the idea of dataframes.

A dataframe is a direct way of representing a dataset in row-column format inside a programming

environment. In our case, all of the aforementioned tables (sub-section 4.1) were manipulated after

being imported in the form of Pandas Dataframes.

Matplotlib

Matplotlib is the main Python library for producing high-quality visualizations. It was extensively

used for plotting figures regarding the training and validation accuracy of the NN-classifiers during

42

training, as well as plotting curves for validating and testing its classification power (ROC curves,

Precision- Recall Curves)

Numpy

Numpy is the core package of Python for scientific computing. It contains, among others:

- The ability to express an N-dimensional vector as an N-dimensional Numpy array, as well

as the ability to express NxM-dimensional matrices with NxM-dimensional Numpy arrays

- Sophisticated statistical functions (mean, mode, median, min, max etc.)

- High-Level Linear Algebra functionalities, such as matrix operations or equation sovling

The Numpy package was consistently used throughout the totality of our experimentations in order

to perform operations between Tables and vectors (mainly vectors representing the distributed

representation of text attributes or their concatenation)

Scikit-Learn

Scikit-Learn is an open-source High-Level python library used mainly for building Machine

Learning applications. It allowed us to express the training, validation and test data tables into a

format that can be understood by Keras, which was the main tool for building the NN classifiers

(see below). Not only this, but Scikit-Learn also provides useful ML functionalities (confusion

matrices, classification metrics, ROC-AUC functions etc.)

Num2words

Num2words is a library that converts numbers like 32 to words like thirty-two. The library was

used to convert all numbers included in our data to words, so that it is easier for Spacy to capture

the semantic meaning of a number in the data. It is also worth mentioning that DeepER does not

support this functionality. For DeepER to support numerical attributes, it converts them to strings,

transforming for example a given number 1 to ‘1’. However, this approach is not optimal, since

the semantic meaning of a text value like ‘1’ is not easily captured by the models that map text to

word vectors. Such a mapping is more accurate and robust if we transform a number into its

respective lexical phrase: 15 → ‘fifteen’.

43

NLTK (Natural Language Toolkit)

NLTK is an open-source Natural Language Processing Python Library. It includes interfaces to

over 50 corpora resources and provides, among others, a wide variety of text processing utilities.

In our case, it was mainly used for text tokenization, lemmatization and stop-words removal from

text.

Spacy

Spacy is an open-source software library, widely used for Natural Language Processing. In contrast

to NLTK, which is commonly used for academic purposes, Spacy is mainly used in the industry

for production purposes. Spacy offers a fair amount of features, some of which are used for:

- Non-Destructive tokenization

- Named Entity Recognition

- Statistical Models for 10 languages and 1 Multi-Language Model

- Pre-trained word vectors

It is important to explain the ‘Pre-trained word vectors’ utility of spacy, since it was extensively

used in order to obtain vectors for text sequences of words. In other words, any distributed

representation of words or phrases (i.e. attribute embeddings, as we will se later) was obtained

using Spacy.

We have already mentioned that similarity between words or phrases is determined by comparing

word or phrase vectors respectively. Such vectors can be generated by using one of the algorithms

that were discussed in sub-section 2.2 (word2vec, Glove, fast-text).

Spacy includes pre-trained word vectors for a bunch of languages, including the English Language.

Spacy assigns 300-dimensional vectors to words, which are generated using the Glove algorithm

on Common Crawl (https://registry.opendata.aws/commoncrawl/).

Spacy assigns vectors to sequences of words simply by averaging the word vectors assigned to

each word token of the sentence (exactly as indicated by Algorithm 2.1), assigning a text sentence

to a new 300-dimensional ‘sentence’ vector.

https://registry.opendata.aws/commoncrawl/

44

Keras

Keras is a high-level Neural Network API, written in Python and running on top of either

Tensorflow, CNTK or Theano. It offers a huge amount of utility and provides the user with the

ability to generate Neural Network implementations and experiment upon them extremely fast.

As we will see later, Keras was used for creating both Simple Dense and CNN Neural Network

architectures for classification of matching pairs (t,t’).

Datasketch

Datasketch is an open-source Python library that provides probabilistic data structures that can

process large amount of data very fast. It is also equipped with functions like MinHash and

MinHashLSH Forest that enables the user apply LSH on text documents. The package was

extensively used in our experimentations (mainly described in section 6)

4.3 Dataset Pre-Processing: Attribute Texting and Text Cleaning

Having already established the underpinning of our workflow, we are almost ready to dive into the

methodology of the experiments and the results. Before we get into any further detail on the

substantial part of the experiments and the Deep Learning approaches on the ER task, it is crucial

to present all parts of the pre-processing procedure.

It should be obvious by now that the Entity Resolution problem is inherently a Text Analysis

problem. The reason for that is that, when we are trying to match tuples that refer to the same real-

world entity between two datasets T1 and T2 (considering for now the simplistic case where T1 and

T2 have identical schemas), we need to see the attributes of both T1 and T2 as text sentences. As

such, it is essential to perform all the appropriate text cleaning and text pre-processing steps on

both datasets. Keeping in mind that the same cleaning and pre-processing steps were applied to

both DBLP-Scholar and Beer Advocate-Rate Beer datasets, we display a common pre-

processing procedure step-wise:

45

1.Replacing Missing Values

To begin with, all missing attribute entries were imputed, using different approaches depending

on the type of the attribute. To be specific, the ‘most common attribute’ approach was applied to

string type attributes (that is, dataset attributes that contain text values), while any missing values

on numerical attributes were replaced with the median of the respective attribute-column.

For the better understanding of the reader, an example regarding tables A and B of DBLP-Scholar

dataset group is given: (aliases int for integers, float for floats and str for strings are used).

DBLP-Scholar Dataset : TableA → [id(int), title(str), authors(str),venue(str) , year(int)]

 TableB → [id(int), title(str), authors(str),venue(str) , year(int)]

For the above Tables, any missing values on title, authors and venue attributes were imputed using

the most common string value of the respective attribute (of course, taking into account only the

valid non-missing entries of the column). For year column, the median value of the column was

used.

The same approach was used for the imputation of Beer Advocate-Rate Beer dataset (tables A and

B of the Beer Advocate-Rate Beer dataset group).

NOTING:The aforementioned imputation part was not applied to the Concatenated String

approach for any of the above dataset groups., only to the Attribute Similarity Approach, both

explained in detail in Section 5.

2. Texting all Attributes: Mapping numbers to their lexical analogous.

As explained before, it is essential to treat each attribute as a text attribute. For this reason, all

numerical attributes were transformed to a text attribute using num2words package. For example,

consider the following phrase: ‘how system 11 sql server became fast’. After the pre-described

mapping, such a phrase is transformed to: ‘how system eleven sql server became fast’. As discussed

before, it is much easier and accurate to assign an embedding vector to the word ‘eleven’ than to

the pseudo-word ‘11’. The previous phrase was an actual attribute value of the title column of

DBLP-Scholar Table A.

46

3. Solving the ‘’number + string’’ problem

As explained before, we wish to convert all numerical values (possibly found in any attribute of

any dataset) to their lexical analogous. However, in some cases of data values, we encountered a

tiny problem when trying to do so. We will explain this problematic situation with the following

example:

We consider the following phrase as an actual attribute value: ‘scalability and availability in

oracle7’. For such a case, where a number stacks with a word (here, oracle7), Spacy is unable to

assign an actual word embedding to it. This is only to be expected, since the vocabulary used in

order to obtain word vectors from actual words does not take into account such peculiar cases of

‘string + number’. However, splitting the word ‘oracle7’ to ‘oracle 7’ and then mapping to ‘oracle

seven’ with num2words does the trick, assigning good word vectors to each and every one of the

above words included in the sequence. This is exactly what we did in order to proceed.

After this step, all attribute-values in tables A and B (both for DBLP-Scholar and Beer Advocate-

Rate Beer dataset groups) are converted to text, with no numbers included in them.

4. Removing stop words

Having all tables in strict text form, standard stop word removal was applied using Spacy’s stop

words removal functionality. Spacy provides a list of stop words for the English corpora that is

trained on (including punctuation and usual words like ‘a’, ‘the’ etc.)

5. Lemmatization

Lemmatization was also applied to every word included in any attribute value.

Lemmatization in Text Analytics is the process of grouping together the inflected forms of a word,

identified by the word's lemma. For example, the word ‘caring’ is mapped to its lemma ‘care’ after

the lemmatization procedure.

47

NOTING: Stemming NOT performed

During the validation of the models, severe downgrade of the classifiers’ performance was

observed after performing stemming. The reason for this is that Spacy’s vocabulary does not

provide pre-trained vectors for a wide variety of stemmed words. As a result, stemming was not

included in our pre-processing steps.

48

5. Approaching Entity Resolution with Deep Learning

It is time to expose our experimental methodology and results on the Entity Resolution task, as

well as our thoughts on them. At this point, the reader should recall one of the two main purposes

of this thesis: Given two datasets T1 and T2 amongst which we need to extract matching entities,

we want to experiment upon the ability of dealing creating a Deep Learning framework that

accounts for partial or total misalignement between the schemas of T1 and T2.

In order to do so, we suggest two different methodologies:

The first one roots directly from the DeepER framework, which is extensively presented in sub-

section 2.3, and it practically follows the methodology of DeepER with a single but important

differentiation: It assumes that some of the attributes of T1 and T2 are indeed well aligned, while

the remaining attribute pairs between the two datasets are not or, to be more accurate, that we do

not have any information indicating total attribute alignment between T1 and T2. The way to go

here is to concatenate the context of all the attributes that are considered as misaligned between T1

and T2 and come up with a new ‘merged’ attribute for both T1 and T2. Then, using the same

methodology as DeepER, we can proceed with attribute similarity calculations between pairs of

attributes: All pairs of aligned attributes between T1 and T2 will be compared to each other, while

the newly formed ‘merged’ attributes of T1 and T2 (containing the context of all the misaligned

attributes in concatenated format) will be compared to each other. The rest is straightforward:

Having a set of ‘similarity’ vectors for loads of pairs of entities, each one consisting of similarity

measurements of all the aligned attributes and one similarity measurement between the ‘merged’

attribute of T1 and T2, we are able to train a classifier as indicated by Algorithm 2.2. We call this

approach ‘Attribute Similarity Approach’, as it is in fact a generalization of the DeepER

framework. In the experiments, we assumed an increasing amount of misaligned attributes

between the tables of both DBLP-Scholar and Beer Advocate-RateBeer datasets.

The second methodology is slightly different. In fact, it does not include any similarity

measurements at all. In short terms, the idea is to concatenate the entire context of an entity t1 ∈

T1 with the entire context of an entity t2 ∈ T2 (that is, all the text attributes of a single entity) and

come up with a single text representing the entity-pair (t1, t2). After that, we can map this

49

concatenated text to its word vector. We refer to this newly formed vector as entity-pair vector

(vector of 300-dim using Spacy) and train a Neural Network Classifier directly with it.

The idea is to treat each dataset entity as a large sentence, consisting of the context of all its

attribute values in text format. Then, by concatenating these ‘large sentences’ of two candidate

entities into one ‘entity pair sentence’, we can perform a mapping to an embedding vector, which

in turn, represents the context of the entity-pair and feed a classifier with it. We call this approach

‘Concatenated Strings Approach’.

In the following sub-sections, a clear explanation for each one of the above approaches is provided,

so that the reader clearly understand how both of these methods work. In addition, the results of

each experimental approach are given (applied to both DBLP-Scholar and Beer Advocate-

RateBeer), along with some thoughts on the experimental results.

5.1 Inserting agnosticism on schema alignment

A. Attribute Similarity Approach

Let two tables A and B, each one of them being related to its own attribute schema: A has m-

attributes and B has j-attributes (m, j ∈ R). It is crucial to realize that m and j are not necessarily

equal, but they could be. Let us also consider the sets of their entity tuples set[A], set[B]. Of course,

for an entity ta that is included in table A stands that: ta ∈ set[A], while for an entity tb of table B

stands that: tb ∈ set[B]. Furthermore, we consider the respective attributes of each table:

[A1,A2,….,Am] = the set of attributes of Table A, while [B1,B2,….,Bj] = the set of attributes of

Table B. Finally, let us consider for simplicilty that the two tables have only the first two attributes

aligned to each other, while the remaining m-2 attributes of A and j-2 attributes of B present no

alignment with one another. Our goal is to concatenate the context of all misaligned attributes to a

single attribute (Merged Attribute) using simple string concatenation for each table separately.

A visual example-description of the above procedure is provided below (Tables 5.1 and 5.2):

The reader should keep in mind that we are coloring aligned attributes with the same color (blue

or red), while the misaligned attributes are colored in black. After the merging procedure, the

merged attributes are colored in purple.

50

 TABLE A

Entities Attribute

A1

Attribute

A2

…… Attribute

Am-1

Attribute

Am

ta1 ta1[A1] ta1[A2] ta1[Am-1] ta1[Am]

ta2 ta2[A1] ta2[A2] ta2[Am-1] ta2[Am]

ta3 ta3[A1] ta3[A2] ta3[Am-1] ta3[Am]

…… …… …… …… …… ……

Table 5. 1: Pair of tables example for the Attribute Similarity Approach (1)

It is important to note that the attribute values of both tables A and B are subject to all the pre-

processing steps, as explained in 4.3. This implies that a single attribute value tai[Ak] = attribute

value of Ak for the entity tai ∈ set[A] is converted to text, cleaned and pre-processed.

Keeping that in mind, the next step is this: For each entity tai of Table A and tbi of Table B, we

concatenate the context of the misaligned attributes to a single ‘Merged’ attribute using

simple string concatenation. So, the new tables A’ and B’ look like this:

 TABLE A’

Entities Attribute A1 Attribute A2 Merged

Attribute A

ta1 ta1[A1] ta1[A2] ta1[Merged]

ta2 ta2[A1] ta2[A2] ta2[Merged]

ta3 ta3[A1] ta3[A2] ta3[Merged]

Table 5. 2:Pair of tables example for the Attribute Similarity Approach (2)

Now, keeping in mind that there is already information on the alignment of A1 → B1 and A2 → B2,

we also assume the alignment: Merged Attribute A → Merged Attribute B

Here comes the exciting part: What are we left with after the aforementioned procedure?

Technically, we are left with two tables A’ and B’ that are perfectly attribute-aligned!

In the case where we are also equipped with training, validation and test sets in the same format

as described in sub-section 2.3 (A training dataset (S) with n-rows ,that contains pairs of ID’s of

tuples t1,t2 ∈ set[T] as well as a binary indicator of whether such a pair consists a match (1) or not

(0)), one could directly proceed with implementing all the steps 1-5 exactly as described in 2.3.

 TABLE B

Entities Attribute

B1

Attribute

B2

…… Attribute

Bj-1

Attribute

Bj

tb1 tb1[B1] tb1[B2] tb1[Bj-1] tb1[Bj]

tb2 tb2[B1] tb2[B2] tb2[Bj-1] tb2[Bj]

tb3 tb3[B1] tb3[B2] tb3[Bj-1] tb3[Bj]

…… …… …… …… …… ……

 TABLE B’

Entities Attribute B1 Attribute B2 Merged

Attribute B

tb1 tb1[B1] tb1[B2] tb1[Merged]

tb2 tb2[B1] tb2[B2] tb2[Merged]

tb3 tb3[B1] tb3[B2] tb3[Merged]

51

That is, after constructing the new tables A’ and B’, we are mimicking the DeepER framework:

Given two candidate tuples (ta’,tb’) where ta’ ∈ set[A’] and tb’ ∈ set[B’], we perform a mapping to

their similarity vector and train a classifier C, exactly as described in Algorithm 2.2.

For each candidate pair of tuples (ta’,tb’), the similarity vector is a 3-dimensional vector: the first

two dimensions refer to the similarity of the aligned attribute values [A1,B1] and [A2,B2], while the

last dimension refers to the similarity of the Merged attributes [Merged Attribute A, Merged

Attribute B] (denoted from now on as [Merged[A], Merged[B]] for simplicity). This mapping is

formally given by the following mathematical formula:

The above example is assuming that only two pairs of attributes of the original schemas are

aligned. Generalizing for more or less originally aligned attributes is trivial: Assuming k-originally

aligned attributes between A and B, we construct two new tables A’ and B’ of k+1 attributes each

and repeat the procedure as explained above. The similarity vector for a tuple-pair candidate will

be a (k+1)-dimensional vector, fed to a classifier C (in our case, C will be a Neural Network

classifier) using a training set, validated and tested upon a validation and test set respectively. It is

also worth mentioning that the special case k=0 implies total agnosticism for the two schemas..

B. Concatenated Strings Approach

Let us consider again two tables A and B, each one related to its own attribute schema: A has m-

attributes and B has j-attributes (m, j ∈ R). Furthermore, we consider the respective attributes of

each table: [A1,A2,….,Am] = the set of attributes of Table A, while [B1,B2,….,Bj] = the set of

attributes of Table B. However, this time we make no assumptions about the alignment of any

attributes between table A and B. Let us also consider the sets of their entity tuples set[A], set[B].

Of course, for an entity ta that is included in table A stands that: ta ∈ set[A], while for an entity tb

of table B stands that: tb ∈ set[B].

The aforementioned tables should look like this (Table 5.3)

(ta’,tb’) → Sim[(ta’,tb’)]= [Sim(ta’[A1], tb’[B1]), Sim(ta’[A2], tb’[B2]), Sim(ta’[Merged[A]],

tb’[Merged[B]])]

52

 TABLE A

Entities Attribute

A1

Attribute

A2

…… Attribute

Am-1

Attribute

Am

ta1 ta1[A1] ta1[A2] ta1[Am-1] ta1[Am]

ta2 ta2[A1] ta2[A2] ta2[Am-1] ta2[Am]

ta3 ta3[A1] ta3[A2] ta3[Am-1] ta3[Am]

…… …… …… …… …… ……

Table 5. 3: Pair of tables example for the Concatenated Strings Approach (1)

Each attribute value of tai[Ak] of A is subject to text converting, as explained in 4.3. The same

stands for every attribute value tbi[Bk] of B.

Let us now consider a single entity tai ∈ set[A]. This entity can be represented by its attribute

values: tai = [tai[A1] , tai[A2] , ……, tai[Am]]. Since each and every one of tai[Ak]: k ≤ m, is indeed

in textual format, we can concatenate all these attribute values into a single string (simple string

concatenation).

The new concatenated string is now considered as the new representation of the tuple entity tai.

Let us also perform the same mapping to an entity tbi ∈ set[B]:

Applying the above mappings to all entities tai of A and tbi of B, we have indirectly constructed

two new tables A’ and B’, each one consisting of a single ‘concatenated’ column (Table 5.4).

To make it clear, we could think the tables A’ and B’ as column tables. This single column of each

one of the new tables embraces the totality of the information that was originally available in tables

A and B, respectively.

This move enables us to ignore the dataset schemas. The problem of matching entities with many

attribute values is now transformed to the problem of matching text columns

 TABLE B

Entities Attribute

B1

Attribute

B2

…… Attribute

Bj-1

Attribute

Bj

tb1 tb1[B1] tb1[B2] tb1[Bj-1] tb1[Bj]

tb2 tb2[B1] tb2[B2] tb2[Bj-1] tb2[Bj]

tb3 tb3[B1] tb3[B2] tb3[Bj-1] tb3[Bj]

…… …… …… …… …… ……

tai = [tai[A1] , tai[A2] , ……, tai[Am]] → [tai[A1] + tai[A2] + ……+ tai[Am]]

tbi = [tbi[B1] , tbi[B2] , ……, tbi[Bj]] → [tbi[B1] + tbi[B2] + ……+ tbi[Bj]]

53

 TABLE A’

Entities Concatenated Attribute A

(Concat[A])

ta1 ta1[A1] + ta1[A2] + ……+

ta1[Am]

ta2 ta2[A1] + ta2[A2] + ……+

ta2[Am]

ta3 ta3[A1] + ta3[A2] + ……+

ta3[Am]

…… ……………………….

Table 5. 4: Pair of tables example for the Concatenated Strings Approach (2)

Let us now consider a training set (S) consisting of pairs of candidate tuples (in the same format

as described in 2.3: Step 1).

For a candidate pair (tai,tbk) included in (S), we can directly concatenate tai[Concat[A]] and

tbk[Concat[B]]*. Now, the candidate pair (tai,tbk) is represented by a single text:

The final step is to map the new string to its related word vector: We apply Algorithm 2.1 and map

Concat[A+B] to its vector representation (using Spacy, that is a 300-d numerical vector).

By repeating this procedure for all candidate pairs included in S, we are left with a training set of

candidate tuple-pairs, where each pair is represented by its word vector. Since S also includes a

matching indicator (1 for match and 0 for no match), we can use the tuple-pair concatenated vectors

along with their match indicator to directly train a Neural Network Classifier.

If one is also equipped with a validation and a test set (which is indeed the case for DBLP-Scholar

and Beer Advocate-RateBeer datasets), it is easy to validate and test the trained classifier.

The approach is completely schema agnostic and does not include any similarity measurements.

 TABLE B’

Entities Concatenated Attribute B

(Concat[B])

tb1 tb1[B1] + tb1[B2] + ……+

tb1[Bj]

tb2 tb2[B1] + tb2[B2] + ……+

tb2[Bj]

tb3 tb3[B1] + tb3[B2] + ……+

tb3[Bj]

…… ………………………

(tai,tbk) → tai[Concat[A]] + tbk[Concat[B]] = Concat[A+B] = Concatenated String of

tai[Concat[A]] and tbk[Concat[B]]

54

5.2 Attribute Similarity Approach: 4/4 Aligned Attributes

The experimental results for the case of total attribute alignment, both for DBLP-Scholar and

Beer Advocate-RateBeer dataset groups, are presented in this sub-section. Aligned attributes are

similarly colored. The assumed ‘not-aligned’ columns are merged into a single ‘merged’

column. The id column was only used to match Table A and Table B entities according to the

corresponding id pairs of Train, Valid and Test tables.

A. DBLP-Scholar Dataset

• Table Schemas and Attribute Alignement

Table A → [id, title, authors, venue, year]

Table B → [id, title, authors, venue, year]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 4 neurons (compatible to the 4-dim similarity vectors fed to the network),

followed by 3 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch

characterization). A visual presentation of the network’s architecture (Figure 5.1) as well as its

hyperparameter configurations are provided below:

4-d Similarity Vectors for each entity-pair

 Similarity Metric : Cosine Similarity

Input Layer

4 neurons

Relu activation

Hidden Layer 1

250 Neurons

Relu Activation

Hidden Layer 2

250 Neurons

Relu Activation

Hidden Layer 3

250 Neurons

Relu Activation

Hidden Layer 4

250 Neurons

Relu Activation

Hidden Layer 5

512 Neurons

Relu Activation

Hidden Layer 6

512 Neurons

Relu Activation

Hidden Layer 7

512 Neurons

Relu Activation

Hidden Layer 8

512 Neurons

Relu Activation

Hidden Layer 9

1000 Neurons

Relu Activation

Output Layer

2 Neurons

Softmax
Activation

 Figure 5. 1: Visual Representation of the trained Dense Model (4/4 Attribute Alignment DBLP-Scholar)

55

• Training, Tuning and Learning Curves

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table

5.5. After each epoch, the Network used its current weights to predict on the Validation set. Based

on its accuracy, the values of the loss function directed the optimization procedure (typical Back

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure

5.2), depicting both Accuracy and Cross-Entropy Loss values during training.

Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. The reader should keep in

mind that Validation Set was used to tune the Network during training, so the results are only

indicative. They cannot be trusted to infer the classifier’s ability to generalize on unseen data. The

results are provided below: A Classification Report Matrix is given in Table 5.6 providing all

the necessary insight on the results. Table 5.7 is a Confusion Matrix and it depicts the entity-pairs

assignment to classes of Non-Match (0) or Match (1):

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 748

Batch Size 17223

Figure 5. 2: Learning Curves during Training Table 5.5: Network Hyper-Parameter Values

56

Class Precision Recall F1-

Score

Support

 0 0.95 0.97 0.96 4672

1 0.87 0.78 0.82 1070

Macro

Avg

0.91 0.88 0.89 5742

 Weighted

Avg

0.94 0.94 0.94 5742

Total

Accuracy

0.94

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test

data. Table 5.8 is a Classification Report Matrix on Test set. At the same time, the correspondent

Confusion Matrix is given in Table 5.9. Finally, the AUC curve of the NN-Model is given in

Figure 5.3:

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4551 121

Actual Class 1 237 833

Class Precision Recall F1-

Score

Support

 0 0.95 0.97 0.96 4672

1 0.87 0.77 0.82 1070

Macro

Avg

0.91 0.87 0.89 5742

 Weighted

Avg

0.94 0.94 0.94 5742

Total

Accuracy

0.94 F1 Score 0.82

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4553 119

Actual Class 1 244 826

Table 5. 6: Classification Report on Validation Set) Table 5. 7: Confusion Matrix on Validation Set

Table 5. 8: Classification Report on Test Set Table 5. 9: Confusion Matrix on Test Set

57

Figure 5.3: ROC Curve and Area Under Curve (AUC

computation) using predictions on Test Set. The graph

refers to the case of total alignment between Table A

and Table B attributes

B. Beer Advocate-RateBeer Dataset

• Table Schemas and Attribute Alignement

Table A → [id, Beer Name, Brew Factory Name, Style, ABV]

Table B → [id, Beer Name, Brew Factory Name, Style, ABV]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 4 neurons (compatible to the 4-dim similarity vectors fed to the network),

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2

neurons (compatible with match-mismatch characterization). A visual presentation of the

network’s architecture (Figure 5.4) as well as its hyperparameter configurations are provided

below:

Figure 5. 4: Visual Representation of the trained Dense Model (4/4 Attribute Alignment Beer Advocate-RateBeer)

4-d Similarity Vectors

for each entity-pair

Similarity Metric :

Cosine Similarity

Input Layer

4 neurons

Relu activation

Hidden Layer

10 Neurons

Relu Activation

Dropout Rate

0.3

Output Layer

2 Neurons

Softmax Activation

58

• Training, Tuning and Learning Curves

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table

5.10. After each epoch, the Network used its current weights to predict on the Validation set. Based

on its accuracy, the values of the loss function directed the optimization procedure (typical Back

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure

5.5), depicting both Accuracy and Cross-Entropy Loss values during training.

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.11, providing all the necessary insight on the results. Table 5.12 is a

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match

(1):

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 4.892

Batch Size 268

Dropout Rate 0.3

Figure 5.5: Learning Curves during Training
Table 5.10 :Network Hyper-Parameter Values

59

Class Precision Recall F1-

Score

Support

 0 0.94 0.97 0.96 77

1 0.82 0.64 0.72 14

Macro

Avg

0.88 0.81 0.84 91

 Weighted

Avg

0.92 0.92 0.92 91

Total

Accuracy

0.92

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data

Table 5.13 is a Classification Report Matrix on Test set. At the same time, the correspondent

Confusion Matrix is given in Table 5.14. Finally, the AUC curve of the NN-Model is given in

Figure 5.6:

Table 5. 13: Classification Report on Test Set Table 5. 14: Confusion Matrix on Test Set

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 75 2

Actual Class 1 5 9

Class Precision Recall F1-

Score

Support

 0 0.95 0.96 0.95 77

1 0.77 0.71 0.74 14

Macro

Avg

0.86 0.84 0.85 91

 Weighted

Avg

0.92 0.92 0.92 91

Total

Accuracy

0.92 F1-Score 0.74

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 74 3

Actual Class 1 4 10

Table 5. 11: Classification Report on Validation Set Table 5. 12: Confusion Matrix on Validation Set

60

5.3 Attribute Similarity Approach: 2/4 Aligned Attributes

 The experimental results for the case of 2/4 attribute alignment, both for DBLP-Scholar and

Beer Advocate-RateBeer dataset groups, are presented in this sub-section. Aligned attributes are

similarly colored. The assumed ‘not-aligned’ columns are merged into a single ‘merged’

column. The id column was only used to match Table A and Table B entities according to the

corresponding id pairs of Train, Valid and Test tables.

A. DBLP-Scholar Dataset

• Table Schemas and Attribute Alignement

Table A → [id, title, authors, merged(venue+year)]

Table B → [id, title, authors, merged(venue+year)]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 3 neurons (compatible to the 3-dim similarity vectors fed to the network),

followed by 4 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch

Figure 5.6: ROC Curve and Area Under

Curve (AUC computation) using

predictions on Test Set. The graph refers

to the case of total alignment between

Table A and Table B attributes

3-d Similarity Vectors for each entity-pair

 Similarity Metric : Cosine Similarity

61

characterization). A visual presentation of the network’s architecture (Figure 5.7) as well as its

hyperparameter configurations is provided below:

Figure 5. 7: Visual Representation of the trained Dense Model (2/4 Attribute Alignment DBLP-Scholar)

• Training, Tuning and Learning Curves

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values

in Table 5.15. After each epoch, the Network used its current weights to predict on the Validation

set. Based on its accuracy, the values of the loss function directed the optimization procedure

(typical Back Propagation). Based on this, we provide the reader with the following Learning

Curves (Figure 5.8), depicting both Accuracy and Cross-Entropy Loss values during training.

 Figure 5.8: Learning Curves during Training Table 5. 15 Network Hyper-Parameter Values

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 303

Batch Size 17223

Input Layer

3 neurons

Relu activation

Hidden Layer 1

250 Neurons

Relu Activation

Hidden Layer 2

250 Neurons

Relu Activation

Hidden Layer 3

250 Neurons

Relu Activation

Hidden Layer 4

250 Neurons

Relu Activation

Hidden Layer 5

512 Neurons

Relu Activation

Hidden Layer 6

512 Neurons

Relu Activation

Hidden Layer 7

512 Neurons

Relu Activation

Hidden Layer 8

512 Neurons

Relu Activation

Hidden Layer 9

1000 Neurons

Relu Activation

Output Layer

2 Neurons

Softmax
Activation

62

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.16. Table 5.17 is a Confusion Matrix and it depicts the entity-pairs

assignment to classes of Non-Match (0) or Match (1):

Class Precision Recall F1-

Score

Support

 0 0.95 0.97 0.96 4672

1 0.86 0.77 0.82 1070

Macro

Avg

0.91 0.87 0.89 5742

 Weighted

Avg

0.93 0.93 0.93 5742

Total

Accuracy

0.93

Table 5. 16: Classification Report on Validation Set Table 5. 17: Confusion Matrix on Validation Set

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test

data. Table 5.18 is a Classification Report Matrix on Test set predictions. At the same time, the

correspondent Confusion Matrix is given in Table 5.19. Finally, the AUC curve of the NN-Model

is given in Figure 5.9

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4539 133

Actual Class 1 241 829

Class Precision Recall F1-

Score

Support

 0 0.95 0.98 0.96 4672

1 0.88 0.76 0.82 1070

Macro

Avg

0.91 0.87 0.89 5742

 Weighted

Avg

0.93 0.94 0.93 5742

Total

Accuracy

0.94 F1-Score 0.81

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4558 114

Actual Class 1 255 815

Table 5. 18: Classification Report on Test Set Table 5. 19: Confusion Matrix on Test Set

63

Figure 5.9 : ROC Curve and Area Under Curve (AUC

computation) using predictions on Test Set. The graph

refers to the case of 2 out of 4 matching attributes

between Table A and Table B (2/4 attribute alignment)

B. Beer Advocate-RateBeer Dataset

• Table Schemas and Attribute Alignement

Table A → [id, Beer Name, Brew Factory Name, merged(Style+ABV)]

Table B → [id, Beer Name, Brew Factory Name, merged(Style+ABV)]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 3 neurons (compatible to the 3-dim similarity vectors fed to the network),

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2

neurons (compatible with match-mismatch characterization). A visual presentation of the

network’s architecture (Figure 5.10) as well as its hyperparameter configurations are provided

below:

Figure 5. 10: Visual Representation of the trained Dense Model (2/4 Attribute Alignment Beer Advocate-RateBeer)

3-d Similarity Vectors

for each entity-pair

Similarity Metric :

Cosine Similarity

Input Layer

3 neurons

Relu activation

Hidden Layer

10 Neurons

Relu Activation

Dropout Rate

0.3

Output Layer

2 Neurons

Softmax Activation

64

• Training, Tuning and Learning Curves

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table

5.20. After each epoch, the Network used its current weights to predict on the Validation set. Based

on its accuracy, the values of the loss function directed the optimization procedure (typical Back

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure

5.11), depicting both Accuracy and Cross-Entropy Loss values during training.

 Figure 5.11: Learning Curves during Training Table 5. 20: Network Hyper-Parameter Values

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.21, providing all the necessary insight on the results. Table 5.22 is a

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match

(1):

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 4.221

Batch Size 268

Dropout Rate 0.3

65

Class Precision Recall F1-

Score

Support

 0 0.93 0.99 0.96 77

1 0.89 0.57 0.70 14

Macro

Avg

0.91 0.78 0.83 91

 Weighted

Avg

0.92 0.92 0.92 91

Total

Accuracy

0.92

Table 5.21: Classification Report on Validation Set Table 5. 22: Confusion Matrix on Validation Set

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data

Table 5.23 is a Classification Report Matrix on Test set. At the same time, the correspondent

Confusion Matrix is given in Table 5.24. Finally, the AUC curve of the NN-Model is given in

Figure 5.12:

Table 5. 23: Classification Report on Test Set Table 5. 24: Confusion Matrix on Test Set

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 76 1

Actual Class 1 6 8

Class Precision Recall F1-

Score

Support

 0 0.94 0.96 0.95 77

1 0.75 0.64 0.69 14

Macro

Avg

0.84 0.80 0.82 91

 Weighted

Avg

0.91 0.91 0.91 91

Total

Accuracy

0.91 F1-Score 0.69

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 74 3

Actual Class 1 5 9

66

5.4 Attribute Similarity Approach: 1/4 Aligned Attributes

 The experimental results for the case of 1/4 attribute alignment, both for DBLP-Scholar and

Beer Advocate-RateBeer dataset groups, are presented in this sub-section. Aligned attributes are

similarly colored. The assumed ‘not-aligned’ columns are merged into a single ‘merged’

column. The id column was only used to match Table A and Table B entities according to the

corresponding id pairs of Train, Valid and Test tables.

A. DBLP-Scholar Dataset

• Table Schemas and Attribute Alignement

Table A → [id, title, merged(authors+venue+year)]

Table B → [id, title, merged(authors+venue+year)]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 2 neurons (compatible to the 2-dim similarity vectors fed to the network),

followed by 4 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch

Figure 5.12: ROC Curve and Area Under

Curve (AUC computation) using

predictions on Test Set. The graph refers

to the case of 2 out of 4 matching

attributes between Table A and Table B

(2/4 attribute alignment)

2-d Similarity Vectors for each entity-pair

 Similarity Metric : Cosine Similarity

67

characterization). A visual presentation of the network’s architecture (Figure 5.13) as well as its

hyperparameter configurations is provided below:

Figure 5. 33: Visual Representation of the trained Dense Model (1/4 Attribute Alignment DBLP-Scholar)

• Training, Tuning and Learning Curves

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values

in Table 5.25. After each epoch, the Network used its current weights to predict on the Validation

set. Based on its accuracy, the values of the loss function directed the optimization procedure

(typical Back Propagation). Based on this, we provide the reader with the following Learning

Curves (Figure 5.14), depicting both Accuracy and Cross-Entropy Loss values during training.

Figure 5.14: Learning Curves during Training Table 5. 25: Network Hyper-Parameter Value

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 298

Batch Size 17223

Input Layer

2 neurons

Relu activation

Hidden Layer 1

250 Neurons

Relu Activation

Hidden Layer 2

250 Neurons

Relu Activation

Hidden Layer 3

250 Neurons

Relu Activation

Hidden Layer 4

250 Neurons

Relu Activation

Hidden Layer 5

512 Neurons

Relu Activation

Hidden Layer 6

512 Neurons

Relu Activation

Hidden Layer 7

512 Neurons

Relu Activation

Hidden Layer 8

512 Neurons

Relu Activation

Hidden Layer 9

1000 Neurons

Relu Activation

Output Layer

2 Neurons

Softmax
Activation

68

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.26. Table 5.27 is a Confusion Matrix and it depicts the entity-pairs

assignment to classes of Non-Match (0) or Match (1):

Class Precision Recall F1-

Score

Support

 0 0.94 0.96 0.95 4672

1 0.79 0.73 0.75 1070

Macro

Avg

0.86 0.84 0.85 5742

 Weighted

Avg

0.91 0.91 0.91 5742

Total

Accuracy

0.91

Table 5.26: Classification Report on Validation Set Table 5.27: Confusion Matrix on Validation Set

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test

data. Table 5.28 is a Classification Report Matrix on Test set predictions. At the same time, the

correspondent Confusion Matrix is given in Table 5.29. Finally, the AUC curve of the NN-Model

is given in Figure 5.15

Table 5.28: Classification Report on Test Set Table 5.29: Confusion Matrix on Test Set

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4462 210

Actual Class 1 294 776

Class Precision Recall F1-

Score

Support

 0 0.93 0.95 0.94 4672

1 0.78 0.70 0.74 1070

Macro

Avg

0.85 0.83 0.84 5742

 Weighted

Avg

0.90 0.91 0.90 5742

Total

Accuracy

0.91 F1-Score 0.73

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4458 214

Actual Class 1 323 747

69

Figure 5.15: ROC Curve and Area Under Curve (AUC

computation) using predictions on Test Set. The graph

refers to the case of 1 out of 4 matching attributes

between Table A and Table B (1/4 attribute alignment)

B. Beer Advocate-RateBeer Dataset

• Table Schemas and Attribute Alignement

Table A → [id, Beer Name, merged(Brew Factory Name+Style+ABV)]

Table B → [id, Beer Name, merged(Brew Factory Name+Style+ABV)]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 2 neurons (compatible to the 2-dim similarity vectors fed to the network),

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2

neurons (compatible with match-mismatch characterization). A visual presentation of the

network’s architecture (Figure 5.16) as well as its hyperparameter configurations are provided

below:

Figure 5. 46: Visual Representation of the trained Dense Model (1/4 Attribute Alignment Beer Advocate-RateBeer)

2-d Similarity Vectors

for each entity-pair

Similarity Metric :

Cosine Similarity

Input Layer

2 neurons

Relu activation

Hidden Layer

10 Neurons

Relu Activation

Dropout Rate

0.3

Output Layer

2 Neurons

Softmax Activation

70

• Training, Tuning and Learning Curves

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table

5.30. After each epoch, the Network used its current weights to predict on the Validation set. Based

on its accuracy, the values of the loss function directed the optimization procedure (typical Back

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure

5.17), depicting both Accuracy and Cross-Entropy Loss values during training.

 Figure 5.17: Learning Curves during Training Table 5.30: Network Hyper-Parameter Values

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.31, providing all the necessary insight on the results. Table 5.32 is a

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match

(1):

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.001

No of Epochs 18.330

Batch Size 268

Dropout Rate 0.3

71

Class Precision Recall F1-

Score

Support

 0 0.93 0.97 0.95 77

1 0.80 0.57 0.67 14

Macro

Avg

0.86 0.77 0.81 91

 Weighted

Avg

0.91 0.91 0.91 91

Total

Accuracy

0.91

Table 5.31: Classification Report on Validation Set Table 5.32: Confusion Matrix on Validation Set

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data

Table 5.33 is a Classification Report Matrix on Test set. At the same time, the correspondent

Confusion Matrix is given in Table 5.34. Finally, the AUC curve of the NN-Model is given in

Figure 5.18:

Table 5.33: Classification Report on Test Set Table 5.34: Confusion Matrix on Test Set

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 75 2

Actual Class 1 6 8

Class Precision Recall F1-

Score

Support

 0 0.93 0.97 0.95 77

1 0.80 0.57 0.67 14

Macro

Avg

0.86 0.77 0.81 91

 Weighted

Avg

0.91 0.91 0.91 91

Total

Accuracy

0.91 F1-Score 0.66

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 75 2

Actual Class 1 6 8

72

5.5 Attribute Similarity Approach: No Aligned Attributes

 The experimental results for the case of no attribute alignment, both for DBLP-Scholar and Beer

Advocate-RateBeer dataset groups, are presented in this sub-section. The assumed ‘not-aligned’

columns are merged into a single ‘merged’ column. The id column was only used to match

Table A and Table B entities according to the corresponding id pairs of Train, Valid and Test

tables.

A. DBLP-Scholar Dataset

• Table Schemas and Attribute Alignement

Table A → [id, merged(title+authors+venue+year)]

Table B → [id, merged(title+authors+venue+year)]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 1 neuron (compatible to the 1-dim similarity vectors fed to the network),

followed by 4 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch

Figure 5.18: ROC Curve and Area Under

Curve (AUC computation) using

predictions on Test Set. The graph refers

to the case of 1 out of 4 matching

attributes between Table A and Table B

(1/4 attribute alignment)

1-d Similarity Vectors for each entity-pair

 Similarity Metric : Cosine Similarity

73

characterization). A visual presentation of the network’s architecture (Figure 5.19) as well as its

hyperparameter configurations is provided below:

Figure 5. 19: Visual Representation of the trained Dense Model (0/4 Attribute Alignment DBLP-Scholar)

• Training, Tuning and Learning Curves

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values

in Table 5.35. After each epoch, the Network used its current weights to predict on the Validation

set. Based on its accuracy, the values of the loss function directed the optimization procedure

(typical Back Propagation). Based on this, we provide the reader with the following Learning

Curves (Figure 5.20), depicting both Accuracy and Cross-Entropy Loss values during training.

Figure 5.20: Learning Curves during Training Table 5.35: Network Hyper-Parameter Value

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 550

Batch Size 17223

Input Layer

1 neurons

Relu activation

Hidden Layer 1

250 Neurons

Relu Activation

Hidden Layer 2

250 Neurons

Relu Activation

Hidden Layer 3

250 Neurons

Relu Activation

Hidden Layer 4

250 Neurons

Relu Activation

Hidden Layer 5

512 Neurons

Relu Activation

Hidden Layer 6

512 Neurons

Relu Activation

Hidden Layer 7

512 Neurons

Relu Activation

Hidden Layer 8

512 Neurons

Relu Activation

Hidden Layer 9

1000 Neurons

Relu Activation

Output Layer

2 Neurons

Softmax
Activation

74

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.36. Table 5.37 is a Confusion Matrix and it depicts the entity-pairs

assignment to classes of Non-Match (0) or Match (1):

Class Precision Recall F1-

Score

Support

 0 0.90 0.98 0.94 4672

1 0.87 0.51 0.64 1070

Macro

Avg

0.88 0.75 0.79 5742

 Weighted

Avg

0.89 0.89 0.88 5742

Total

Accuracy

0.89

Table 5.36: Classification Report on Validation Set Table 5.37: Confusion Matrix on Validation Set

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test

data. Table 5.38 is a Classification Report Matrix on Test set predictions. At the same time, the

correspondent Confusion Matrix is given in Table 5.39. Finally, the AUC curve of the NN-Model

is given in Figure 5.21.

Table 5.38: Classification Report on Test Set Table 5.39: Confusion Matrix on Test Set

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4592 80

Actual Class 1 524 546

Class Precision Recall F1-

Score

Support

 0 0.90 0.99 0.94 4672

1 0.89 0.51 0.65 1070

Macro

Avg

0.90 0.75 0.79 5742

 Weighted

Avg

0.90 0.90 0.89 5742

Total

Accuracy

0.90 F1-Score 0.65

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4606 66

Actual Class 1 523 547

75

Figure 5.21: ROC Curve and Area Under Curve (AUC

computation) using predictions on Test Set. The graph

refers to the case of no matching attributes between

Table A and Table B

B. Beer Advocate-RateBeer Dataset

• Table Schemas and Attribute Alignement

Table A → [id, merged(Beer Name+ Brew Factory Name+Style+ABV)]

Table B → [id, merged(Beer Name+Brew Factory Name+Style+ABV)]

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)]

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 1 neuron (compatible to the 1-dim similarity vectors fed to the network),

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2

neurons (compatible with match-mismatch characterization). A visual presentation of the

network’s architecture (Figure 5.22) as well as its hyperparameter configurations are provided

below:

Figure 5. 22: Visual Representation of the trained Dense Model (0/4 Attribute Alignment Beer Advocate-RateBeer)

1-d Similarity Vectors

for each entity-pair

Similarity Metric :

Cosine Similarity

Input Layer

1 neurons

Relu activation

Hidden Layer

10 Neurons

Relu Activation

Dropout Rate

0.3

Output Layer

2 Neurons

Softmax Activation

76

• Training, Tuning and Learning Curves

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table

5.40. After each epoch, the Network used its current weights to predict on the Validation set. Based

on its accuracy, the values of the loss function directed the optimization procedure (typical Back

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure

5.23), depicting both Accuracy and Cross-Entropy Loss values during training.

Figure 5.23: Learning Curves during Training Table 5.40: Network Hyper-Parameter Values

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.41, providing all the necessary insight on the results. Table 5.42 is a

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match

(1):

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 19.200

Batch Size 268

Dropout Rate 0.3

77

Class Precision Recall F1-

Score

Support

 0 0.92 0.99 0.95 77

1 0.88 0.50 0.64 14

Macro

Avg

0.90 0.74 0.79 91

 Weighted

Avg

0.91 0.91 0.90 91

Total

Accuracy

0.91

Table 5.41: Classification Report on Validation Set Table 5.42: Confusion Matrix on Validation Set

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data

Table 5.43 is a Classification Report Matrix on Test set. At the same time, the correspondent

Confusion Matrix is given in Table 5.44. Finally, the AUC curve of the NN-Model is given in

Figure 5.24:

Table 5.43: Classification Report on Test Set Table 5.44: Confusion Matrix on Test Set

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 76 1

Actual Class 1 7 7

Class Precision Recall F1-

Score

Support

 0 0.95 0.96 0.95 77

1 0.77 0.71 0.74 14

Macro

Avg

0.86 0.84 0.85 91

 Weighted

Avg

0.92 0.92 0.92 91

Total

Accuracy

0.92 F1-Score 0.74

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 74 3

Actual Class 1 4 10

78

5.6 Concatenated Strings Approach

The modeling results of the Concatenated Strings approach, as described in 5.1 are presented

here. Before depicting the classification results, it would be convenient for the reader to consider

the following:

a) Data Augmentation was applied to all matching entity-pairs included in the Training Set of

the Beer Advocate-RateBeer Dataset. The experimentations showed that the best results were

achieved when the actual matching pairs included in the training set were augmented x5. To be

more accurate, instead of only 40 matching pairs from the total 268 training points, a new training

set was created using the original 228 non-matching training entity pairs and 200 matching pairs (

augmented by the original 40). As a result, a total amount of 468 training data points were used to

train the classifier.

b) Instead of a Simple Dense Network, a CNN Neural Network Architecture was applied for the

Beer Advocate-RateBeer Dataset.

A. DBLP-Scholar Dataset

• Table Schemas and String Concatenation

The original schemas of Tables A and B are, of course, the same as before:

Table A → [id, title, authors, venue, year)] Table B → [id, title, authors, venue, year)]

Figure 5.24: ROC Curve and Area Under

Curve (AUC computation) using

predictions on Test Set. The graph refers

to the case of no matching attributes

between Table A and Table B

79

For a candidate entity pair (ta,tb), we concatenate the merged text of all the attributes of ta with

the merged text of all the attributes of tb. The resulting concatenated single text represents the

candidate pair and it is mapped to a 300-dimensional vector by applying Algorithm 2.1 to it.

The procedure is explained in depth in 5.1: String Concatenation Approach. The Train, Valid

and Test tables are of the same schema as before.

• Neural Network Architecture

A simple Dense neural network classifier was trained using the entity pairs of tables A and B

whose id pairs are included in the Train table (Training Set). The network’s architecture consists

of an input layer of 300 neurons (compatible to the 300-dim vectors fed to the network in this

approach), followed by 1 hidden layer of 256 neurons, 1 hidden layers of 512 neurons , 1 hidden

layer of 1024 neurons as well as an output layer of 2 neurons (compatible with match-mismatch

characterization). Between each hidden layer, Dropout was used to reduce overfitting. A visual

presentation of the network’s architecture (Figure 5.25) as well as its hyperparameter

configurations is provided below:

Figure 5. 25: Visual Representation of the trained Dense Model (Concatenated Strings DBLP-Scholar)

• Training, Tuning and Learning Curves

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values

in Table 5.45. After each epoch, the Network used its current weights to predict on the Validation

set. Based on its accuracy, the values of the loss function directed the optimization procedure

(typical Back Propagation). Based on this, we provide the reader with the following Learning

Curves (Figure 5.26), depicting both Accuracy and Cross-Entropy Loss values during training.

Input Layer

300 neurons

Relu activation

Hidden Layer 1

256 Neurons

Relu Activation

Dropout Rate

0.6

Hidden Layer 2

512 Neurons

Relu Activation

Dropout Rate

0.6

Hidden Layer 3

1024 Neurons

Relu Activation

Dropout Rate

0.6

Output Layer

2 Neurons

Softmax Activation

80

 Figure 5.26: Learning Curves during Training Table 5.45: Network Hyper-Parameter Value

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.46. Table 5.47 is a Confusion Matrix and it depicts the entity-pairs

assignment to classes of Non-Match (0) or Match (1):

Class Precision Recall F1-

Score

Support

 0 0.94 0.93 0.94 4672

1 0.72 0.73 0.72 1070

Macro

Avg

0.83 0.83 0.83 5742

 Weighted

Avg

0.90 0.90 0.90 5742

Total

Accuracy

0.90

Table 5.46: Classification Report on Validation Set Table 5.47: Confusion Matrix on Validation Set

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.0001

No of Epochs 545

Batch Size 17223

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4366 306

Actual Class 1 293 777

81

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test

data. Table 5.48 is a Classification Report Matrix on Test set predictions. At the same time, the

correspondent Confusion Matrix is given in Table 5.49. Finally, the AUC curve of the NN-Model

is given in Figure 5.27:

Table 5.48: Classification Report on Test Set Table 5.49: Confusion Matrix on Test Set

Figure 5.27: ROC Curve and Area Under Curve (AUC

computation) using predictions on Test Set for the

Conatenated Strings approach.

B. BeerAdvocate-RateBeer Dataset

• Table Schemas and String Concatenation

The original schemas of Tables A and B are the same as before:

Table A → [id, Beer Name, Brew Factory Name, Style, ABV]

Table B → [id, Beer Name, Brew Factory Name, Style, ABV]

Class Precision Recall F1-

Score

Support

 0 0.93 0.93 0.93 4672

1 0.71 0.71 0.71 1070

Macro

Avg

0.82 0.82 0.82 5742

 Weighted

Avg

0.89 0.89 0.89 5742

Total

Accuracy

0.89 F1-Score 0.70

N total = 5742 Predicted Class

0

Predicted Class

1

Actuall Class 0 4357 315

Actual Class 1 312 758

82

For a candidate entity pair (ta,tb), we concatenate the merged text of all the attributes of ta with

the merged text of all the attributes of tb. The resulting concatenated single text represents the

candidate pair and it is mapped to a 300-dimensional vector by applying Algorithm 2.2.2 to it.

Neural Network Architecture

A 1-dim Convolutional Neural Network (CNN)-based classifier was trained using the entity

pairs of tables A and B whose id pairs are included in the Train table (Training Set). The

network’s architecture consists of an input layer of 300 neurons (compatible to the 300-dim

vectors fed to the network in this approach), followed by a Convolutional layer with two filters,

each equipped with a 12-dim sized kernel. After the Convolutional layer, we enhance the model

with a MaxPooling Layer of 4-dim pool size. Between the MaxPooling and the Convolutional

layers, we applied Dropout of rate equal to 0.4 in order to reduce overfitting. Finally, a

Flattening Layer was stacked to the output of the MaxPooling Layer, which in turn leads to the

output layer of 2 neurons (compatible with match-mismatch characterization). A visual

presentation of the network’s architecture (Figure 5.28) as well as its hyperparameter

configurations is provided below:

Figure 5. 28: Visual Representation of the trained Dense Model (Concatenated Strings Beer Advocate-RateBeer)

• Training, Tuning and Learning Curves

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values

in Table 5.50. After each epoch, the Network used its current weights to predict on the Validation

set. Based on its accuracy, the values of the loss function directed the optimization procedure

(typical Back Propagation). Based on this, we provide the reader with the following Learning

Curves (Figure 5.29), depicting both Accuracy and Cross-Entropy Loss values during training.

Input Layer

300 neurons

Relu activation

Convolutional Layer

2 filters

12-dim kernels

Relu Activation

Dropout Rate

0.4

MaxPooling Layer

4-dim Pool Size
Flattening Layer

Output Layer

2 Neurons

Softmax Activation

83

 Figure 5.29: Learning Curves during Training Table 5.50: Network Hyper-Parameter Value

• Predicting on Validation Set

After training, we used the classifier to predict on the Validation Set. A Classification Report

Matrix is given in Table 5.51. Table 5.52 is a Confusion Matrix and it depicts the entity-pairs

assignment to classes of Non-Match (0) or Match (1):

Class Precision Recall F1-

Score

Support

 0 0.95 0.75 0.84 77

1 0.37 0.79 0.50 14

Macro

Avg

0.66 0.77 0.67 91

 Weighted

Avg

0.86 0.76 0.79 91

Total

Accuracy

0.76

Table 5.51: Classification Report on Validation Set Table 5.52: Confusion Matrix on Validation Set

Hyper-Parameter Value

Optimizer Adam

Initial Learning Rate 0.01

No of Epochs 1944

Batch Size 468

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 58 19

Actual Class 1 3 11

84

• Predicting on Test Set

The classifier’s generalization ability, and therefore its prediction power, was tested with Test

data. Table 5.53 is a Classification Report Matrix on Test set predictions. At the same time, the

correspondent Confusion Matrix is given in Table 5.54. Finally, the AUC curve of the NN-Model

is given in Figure 5.30:

Table 5.53: Classification Report on Test Set Table 5.54: Confusion Matrix on Test Set

Figure 5.30: ROC Curve and Area Under Curve (AUC

computation) using predictions on Test Set for the

Conatenated Strings approach.

Class Precision Recall F1-

Score

Support

 0 0.94 0.79 0.86 77

1 0.38 0.71 0.50 14

Macro

Avg

0.66 0.75 0.68 91

 Weighted

Avg

0.85 0.78 0.80 91

Total

Accuracy

0.78 F1-Score 0.5

N total = 91 Predicted Class

0

Predicted Class

1

Actuall Class 0 61 16

Actual Class 1 4 10

85

6. Applying LSH to the Deep Learning Framework

In the previous section, we experimented with the cases of partial or complete attribute

misalignment between the two Tables whose entities we are trying to match. We have managed to

show that the ER task can be solved efficiently in cases of partial or complete schema agnosticism,

with the case of total alignment being, however, the most efficient in terms of classification

performance.

We will not go into any further detail here (the modeling results are discussed in detail in section

7). However, it is important for us to remind the reader the duality of this thesis’ purpose.

1. Test the ability of a Deep Learning framework in cases of partial or complete schema

agnosticism. That is exactly what section 5 is all about.

2. Test whether the process of matching id pairs between two given tables can be done in a

distributed and more efficient way than checking on all possible pair combinations between the

two tables. Towards this goal, we introduced the concepts of Locality Sensitive Hashing and LSH

Forest, as well as the idea of implementing these techniques in the form of a document

recommendation engine in order to significantly lower the amount of computations of the

framework.

In this section, we will provide the reader with the established our established workflow: In sub-

section 6.1, an in-depth exposure of how an LSH Recommendation Engine was combined with a

pre-trained Deep Learning network to predict on DBLP-Scholar and Beer Advocate-RateBeer

dataset will be given. In the same sub-section (6.1), we will also provide the reader with insight

on how we worked in order to obtain some metrics on our framework’s actual ability to solve the

ER task. After that, we will provide our experimental results on both datasets.

6.1 Creating ‘recommended-candidate pairs’ with LSH forest and predicting with a

Neural Network

Let us consider the case of having a dataset group similar to those that we are experimenting with

(DBLP-Scholar, BeerAdvocate-RateBeer). To be more specific, we suppose that we have two

Tables A and B along with a Training, a Validation and a Test set.

86

Table A and Table B include entities and along with their attribute values and a unique id identifier

in the following form:

tA = [id, Attribute_Value_1, Attribute_Value_2,……,Attribute_Value_k], tA ∈ set[A] and k ∈ R.

tB =[id,Attribute_Value_1,Attribute_Value_2,…..,Attribute_Value_j], tB ∈ set[B] and j ∈ R.

On the other hand, the Training, Validation and Test sets consist of entities that include ids of

entities ta ∈ set[A], ids of entities tb ∈ set[B] along with a matching indicator (match (1) or no-

match (0)).

To make it more clear, an entity e that is included in any of the above sets (Training, Validation or

Test) looks more or less like this:

e = [id_tableA,id_tableB, matching_indicator (0 or 1)]

In other words, this is exactly the same dataset group format that we have for DBLP-Scholar and

Beer Advocate-RateBeer datasets that we used in section 5. The reader should be able by now to

understand that it is trivial to train, validate and test a classifier C using the above dataset group.

What is not trivial is this: Even though C is trained, validated and tested using the respective

Training, Validation and Test sets, it is not able to solely achieve the ultimate goal of the ER task:

‘’ Given two Tables A and B, find the matching entity pairs between them’’

That is because the Training, Validation and Test sets only consist of some portion of possible

candidate pairs between the two tables. In other words, there are many more entity-pairs that we

need to check. As a matter of fact, we have already stated that the obvious and most complete way

to do that is to check for all possible combinations after training C (exactly as described in

Algorithm 2.2). It is, however, inefficient.

An alternative way to check for matching pairs between the two tables is the LSH Forest in the

form of document recommendation, as we have already stated. Now, it is time to show the reader

how this can be achieved.

87

Solving ER with LSH Forest: Explanation

Let the aforementioned dataset group: Tables A and B, a Training Set, a Validation Set and a Test

Set. We can then train, validate and test a Classifier C under the procedure that is indicated by

Algorithm 2.2 (steps 1 to 7). The reader should feel comfortable on understanding this procedure

by now. After this, we are left with a trained Classifier C that, given an input candidate pair,

predicts whether the pair consists a matching pair or not.

The next move is this: We can go on and concatenate each entity’s attributes separately for Tables

A and B in a manner similar to what was described in the Concatenated Strings approach

(Concatenated Strings Approach: sub-section 5.1). After doing so, we are left with two new tables

A’ and B’. For completeness, we depict the two tables:

 TABLE A’

Entities Concatenated Attribute A

(Concat[A])

ta1 ta1[A1] + ta1[A2] + ……+

ta1[Am]

ta2 ta2[A1] + ta2[A2] + ……+

ta2[Am]

ta3 ta3[A1] + ta3[A2] + ……+

ta3[Am]

…… ……………………….

Table 6. 1: Pair of tables example for the Concatenated Strings Approach (Re-exlained)

In other words, for each entity tai ∈ set[A] and for each entity tbi ∈ set[B], we apply the following

mapping:

 TABLE B’

Entities Concatenated Attribute B

(Concat[B])

tb1 tb1[B1] + tb1[B2] + ……+

tb1[Bj]

tb2 tb2[B1] + tb2[B2] + ……+

tb2[Bj]

tb3 tb3[B1] + tb3[B2] + ……+

tb3[Bj]

…… ………………………

tai = [tai[A1] , tai[A2] , ……, tai[Am]] → [tai[A1] + tai[A2] + ……+ tai[Am]]

tbi = [tbi[B1] , tbi[B2] , ……, tbi[Bj]] → [tbi[B1] + tbi[B2] + ……+ tbi[Bj]]

88

Each entity tai of Table A is mapped to a text document entity of the new table A’. The same

stands for all entities tbi of B. It is crucial to mention that each attribute value tai[Ak] of A is subject

to text converting, as explained in 4.3. The same stands for every attribute value tbi[Bk] of B.

Now, we need to use C in order to come up with all the matching pairs between Tables A’ and B’.

However, we do not want to test for every combination of entity pairs. Here comes the tricky part:

The fact that each entity tai of Table A is mapped to a text document entity of the new table A’ and

each entity tbi of Table B is mapped to a text document entity of the new table B’ enables us to use

Algorithm 3.2 : Considering a document entity tai ∈ set[A’] as a text query and set[B’] as a set of

text documents, we can use LSH Forest exactly as described in Algorithm 3.2 in order to retrieve

the n-nearest tbi ∈ set[B’] with respect to tai ∈ set[A’] for this particular entity tai, with ‘n’ being a

pre-defined user parameter.

Let us consider the above n-nearest retrieved entities tb(retrieved_i) ∈ set[B’] for a text query

tai. They form a new text set that directly relates this particular tai with its nearest neighbors on

set[B’]. We denote this set as Retn[tai], for which it stands that:

 Our approach is this: Given an entity tai ∈ set[A’] and its related set Retn[tai], we use

Classifier C to predict only for those tbi ∈ set[B’]∩ Retn[tai]. In other words, for the entity tai,

we use C to predict only on its n-nearest documents, as given by Algorithm 3.2.

Retn[tai] = { [tb(retrieved_1), tb(retrieved_2),.., tb(retrieved_n)]: tb(retrieved_k) ∈ set[B’]

∀ k, n=pre-defined parameter that indicates the number of retrieved documents}

89

It is straightforward to realize that, by repeating the above procedure for every entity tai ∈ set[A’],

we solve the problem of ER without testing for all pair combinations. All in all, Algorithm 6.1

summarizes our approach for solving the ER task:

.

Let us suppose that Table A has m-rows and Table B has j-rows , as well as a pre-defined number

of recommendations n for every row-entity of Table A, with n<<j:

Complexity of predicting matching pairs amongst all combinations = O(m*j)

Complexity of predicting matching pairs using 6.1 = O(m*n) + O(LSH Forest Recommendation

Procedure)

Of course, taking into account that LSH is an extremely efficient algorithmic procedure and the

fact that n<<j, we can safely conclude that:

Algorithm 6.1

1: Input: Table A, Table B, training set S

2: Output: Prediction of matching pairs between A and B

3: // Training

4: for each pair of tuples (ta; tb) in S, where ta∈set[A] and

tb∈set[B], do:

5: Train a classifier C using either Attribute Similarity

Approach or Concatenated Strings Approach and true labels.

6: // Predicting

7: for each entity ta of A, use LSH Forest Recommendation and

compute Retn[ta] on set[B].

8: For each entity ta of A and its related set Retn[ta], use C to

predict for match or no-match ∀ tb ∈ Retn[tb]

Algorithm 6. 1: Combining DL with LSH

 Using any of the approaches of section 5 and

combining it with LSH Forest technique to

tackle the ER problem. All in all, the algorithm

provides an efficient Deep Learning Approach

to solving the ER problem.

Complexity of predicting matching pairs amongst all combinations >> Algorithm 6.1

90

Practical Implemenation in DBLP-Scholar and Beer Advocate-RateBeer: Explanation of the

Framework’s workflow and Testing Explanation

Both DBLP-Scholar and Beer Advocate-RateBeer datasets are of the same format as described

above. It is straightforward to use Algorithm 6.1 on both of them. Before we provide the results,

the reader should keep in mind some aspects:

1. We are free to choose any of the classifiers of section 5.1 as C. However, since we have already

made experimentations on the differences between models that assume different number of aligned

attributes, we will only choose one of those models to feed on 6.1. We chose the model that

exhibited the best performance, which is the one that assumes complete attribute alignment. After

all, what we care about here is to test whether LSH Recommendation Forest has the ability to

predict matching pairs.

2. We can either proceed on applying 6.1 using tai and Retn[tai] ∀ tai ∈ set[A] or tbi and Retn[tbi] ∀

tbi ∈ set[B]. For each dataset case, we will only experiment with the latter case: For every entity in

Table B, we will get recommendations for this entity from Table A and predict using our trained

classifier.

3. Evaluating the performance of the framework is difficult: Even if we apply 6.1 and get a set

of matching pair of ids, we cannot automatically evaluate whether all of the predicted pairs are

indeed true matches. That is because, we only have true labels for a limited number of pairs: Those

included in the Training, Testing and Validation Sets. However, we can overcome this evaluation

problem and come up with a metric that shows whether or not our framework detects matching

pairs efficiently in the following way: We consider all the true matching pairs included in our

Test Set along with the pair of id’s included in the set. How many of those matching pairs? were

really detected by the framework (True Positives)? How many of them were not detected (False

Negatives)? This evaluation metric actually enables us to answer the following question:

Given a set of known (true) matches amongst two tables A and B, how many of them is our

framework able to detect and how many of them remained undetected? What is the ratio r

=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒓𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 ?

For completeness, we repeat the above metric evaluation on both Test and Validation sets.

91

4. It is straightforward to realize that the number of recommendations ‘n’ makes a difference. The

higher the n, the more chances there are to detect a matching pair. For this reason, we will repeat

the procedure for n=2,5,10,15 and compare the results. We will try to see how the choice of n

affects the results.

6.2 Evaluating the Deep Learning framework with LSF Forest Recommendation:

Results

We proceed on presenting the experimental results for DBLP-Scholar and Beer Advocate-

Advocate RateBeer dataset. For each dataset, we apply Algorithm 6.1 (considering the case of

complete attribute alignment as C = trained classifier) and evaluate on both Testing and Validation

Set true positives as described in sub-section 6.1: We count the number of true matches included

in Validation / Test sets that are detected by the framework (True Positives), as well as the number

of true matches included in the Validation/Test sets that the framework was unable to detect (False

Negatives). We repeat the procedure for a various number of recommendations: n=2,5,10,15 and

we present the results.

Results For DBLP-Scholar Dataset

In Table 6.2, we provide our experimental results on the Validation Set: the number of Total

True Matches included in the Validation Set, the number of True Positive and False Negative

Predictions, along with the ratio r =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒓𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 . What is more, Figure 6.1 depicts the

differentiation of the ratio r for different number of recommendations (n):

 Validation Set (DBLP-Scholar)

Recommendations Total Number

of True

Matches

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

n=2 1070 625 445 1.404

n=5 1070 666 404 1.648

n=10 1070 684 386 1.772

n=15 1070 694 376 1.845

Table 6. 2: Framework Results on Validation Set(DBLP-Scholar Dataset)

92

Similar info regarding the Test Set is also provided in Table 6.3 and Figure 6.2:

 Test Set (DBLP-Scholar)

Recommendations Total Number

of True

Matches

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

n=2 1070 633 437 1.448

n=5 1070 679 391 1.736

n=10 1070 697 373 1.868

n=15 1070 706 364 1.939

 Figure 6. 1: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Validation Set (DBLP-Scholar Dataset)

Table 6. 3: Framework Results on Test Set (DBLP-Scholar Dataset)

93

Results For Beer Advocate-RateBeer Dataset

In Table 6.4, we provide our experimental results on the Validation Set: the number of Total

True Matches included in the Validation Set, the number of True Positive and False Negative

Predictions, along with the ratio r =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
. What is more, Figure 6.3 depicts the

differentiation of the ratio r for different number of recommendations (n):

 Validation Set (Beer Advocate-RateBeer)

Recommendations Total Number

of True

Matches

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

n=2 14 7 7 1.000

n=5 14 7 7 1.000

n=10 14 7 7 1.000

n=15 14 7 7 1.000

 Figure 6. 2: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Test Set (DBLP-Scholar Dataset)

Table 6. 4: Framework Results on Validation Set (BeerAdvocate-RateBeer Dataset)

94

Similar info regarding the Test Set is also provided in Table 6.5 and Figure 6.4:

 Test Set (Beer Advocate-RateBeer)

Recommendations Total Number

of True

Matches

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

n=2 14 7 7 1.000

n=5 14 9 5 1.800

n=10 14 9 5 1.800

n=15 14 9 5 1.800

Figure 6. 3: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Validation Set (Beer Advocate-RateBeer)

Table 6. 5: Framework Results on Test Set (BeerAdvocate-RateBeer Dataset)

95

 Figure 6. 4: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Test Set (Beer Advocate-RateBeer)

96

7. Reviewing the Results: Conclusions and Future Work

In this section, we comment on the results for both section 5 (Deep Learning Approach on Entity

Resolution) and section 6 (Applying LSH to the Deep Learning Framework).

7.1 Deep Learning Classification on Entity Resolution: Review and Thoughts

This sub-section is all about reviewing the Deep Learning Classification results (sub-Sections 5.2

to 5.6) and commenting on them. It is crucial to remind the reader about our main goal here: We

need to test the ability of a Deep Learning based classifier to deal with the Entity Resolution task

for two tables A and B in schema agnostic cases (partial or total agnosticism). In order to do so,

the core Test Set classification metrics will be examined for each and every one of the above

frameworks. The results for DBPL-Scholar datasets are provided in Table 7.1, while the respective

results for Beer Advocate-RateBeer dataset are provided in Table 7.2:

1) Modeling Accuracy

2) F1-Score

3) Average Weighted Recall

4) AUC

It can be seen from the above Table that the best model is the one that assumes total attribute

alignment between Table A and Table B. In fact, as the number of misaligned attribute increases,

the classification performance of the respective Deep Learning framework drops steadily.

However, the important thing is this: The decrease in the classification performance is minor!

 DBLP-Scholar Dataset

 Similarity

Approach:

4/4 Allignment

Similarity

Approach:

2/4 Allignment

Similarity

Approach:

1/4 Allignment

Similarity

Approach:

0/4 Allignment

Concatenated

Strings

Approach

Accuracy 0.94 0.94 0.91 0.90 0.89

F1-Score 0.82 0.82 0.75 0.65 0.70

Avg Recall 0.94 0.94 0.91 0.90 0.89

AUC 0.97 0.96 0.93 0.88 0.92

Table 7.1: Concentrated

classification results for

all of the experimental

methods on DBLP-

Scholar dataset

97

Taking into account that the last two models (Attribute Similarity approach with 0/4 attribute

alignment and Concatenated Strings approach) make no assumptions about the schemas of the

two tables, we should be very pleased with the results: We showed that the difference between

Ebrahem’s DeepER framework and a completely Schema Agnostic framework is actually small,

at least in this case! In other words, one could say that we ‘paid’ a little bit of prediction power in

order to ‘buy’ the luxury of making no assumptions about the tables’ schemas.

For the Beer Advocate-RateBeer dataset, the results were a bit unexpected. For example, there is

a clear drop in the classification performance between the 4/4 and 3/4 alignment assumptions. It

can also be seen that there is a big difference in the classification performance between the

Similarity approach (for any number of assumed attribute alignment) and the Concatenated Strings

approach. However, the fact that the case of 0/4 attribute alignment, which is a case of complete

agnosticism regarding the dataset’s schema, provided the exact same results with the case of 4/4

attribute alignment (even though the cases of 2/4 and 3/4 attribute alignment presented slightly

weaker classification power) is surprising. What is more, the Concatenated Strings approach

exhibited the highest F1-Score between all models, even if its overall performance was the

weakest. Looking back at the results of the Concatenated Strings approach at sub-section 5.6,

this can be explained: The CNN-Model was able to capture the highest number of matching pairs

compared to all other approaches. However, it also provided a substantial number of False

Positives.

 Beer Advocate-RateBeer

 Similarity

Approach:

4/4 Allignment

Similarity

Approach:

2/4 Allignment

Similarity

Approach:

1/4 Allignment

Similarity

Approach:

0/4 Allignment

Concatenated

Strings

Approach

Accuracy 0.92 0.91 0.91 0.92 0.76

F1-Score 0.74 0.69 0.66 0.74 0.75

Avg Recall 0.92 0.91 0.91 0.92 0.76

AUC 0.92 0.88 0.95 0.91 0.84

Table 7.2

Concentrated

classification results

for all of the

experimental methods

on Beer Advocate-

RateBeer dataset

98

Taking into account the results for both DBLP-Scholar and Beer Advocate – RateBeer datasets,

we can conclude the following:

1. The case of complete attribute alignment between Tables A and B is the one that achieves

the highest classification performance. That is to be expected, of course, since this framework

makes the most assumptions about the schemas of the Tables in question.

2. There is some tradeoff between classification performance and schema agnosticism: The more

agnosticism is inserted regarding the tables’ schemas, the lower the performance of the Neural

Network is. However, this tradeoff is acceptable in both dataset cases. In other words, the

difference in the classification performance between the cases where we assume complete attribute

alignment and the cases where we assume partial or complete agnosticism about the dataset

schemas is quite low. The Entity Resolution task can be solved efficiently in cases where we

do not make any assumptions about the tables’ attribute alignment.

3. Unfortunately, the Neural Network architecture that addresses the Entity Resolution Task

is dataset specific: We did not manage to come up with a single Deep Learning model that

manages to provide good results for both datasets. In fact, for the case of Beer Advocate-RateBeer

dataset, we had to call forth a CNN model to enable the Concatenated Strings approach.

4. For the two different cases of complete schema agnosticism (Similarity Approach: 0/4

Alignment and Concatenated Strings approach), there is no clear answer to what method

works better. For DBLP- Scholar, the Concatenated Strings approach was able to distinguish the

matching id pairs better. However, for the Beer Advocate-RateBeer dataset, the Similarity

Approach model performed better.

7.2 Reducing the Search Space with LSH and Predicting: Review and Thoughts

In this section, we comment on the results as they are exposed in Section 6. Let us remind the

reader about our original purpose regarding the application of LSH Forest Recommendation on

top of a Deep Learning Classifier for the Entity Resolution Task:

Our initial goal in Section 6 was to combine a Deep Learning framework with the distributional

characteristics of LSH and test its ability to efficiently deal with the Entity Resolution Problem.

99

It is important to state that, in essence, the framework consisted of two parts: First, the LSH

part of Algorithm 6.1, where the framework provides recommendation documents as answers to

an entity-query from one table to another. Secondly, the classifier’s prediction part, where a pre-

trained Deep Learning classifier is used to predict whether the aforementioned entity-query and its

recommended document neighbors consist a match or not.

Keeping this in mind, it is straightforward to realize that there are two obstacles that the

Framework needs to overcome in order to be able to detect matching entity pairs:

A. The LSH algorithmic part needs to accurately provide the true matching entity-documents as

recommendations to a specific query. In simpler words, our Deep Learning classifier would have

never been able to detect a True Positive matching pair, and therefore predict on it, if the

recommendation LSH part did not manage to provide the True matching pairs correctly.

B. If a True matching pair indeed manages to pass from the previous LSH Recommendation stage,

the classifier has to be able to accurately classify the pair as a ‘matching pair’ in order to obtain a

final True Positive.

In order to test the ability of the framework, we decided to check on the framework’s

capability of detecting the actual matching entities of the Validation and Test sets, for which

we have True Labels in the first place. In order to do so, we checked the number of the two

sets’ known true matching entities that the framework was able to detect. Finally, we

computed the ratio r =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
. It is important to understand that this single number depicts

the ability of both parts (LSH and Classification) to detect matching entities. We conducted the

above procedure for both DBLP-Scholar and Beer Advocate-RateBeer Datasets.

For both datasets, the results seem encouraging: In any case, it stood that r≥1. That means that

the framework was able to detect the true matching pairs more often than not. What is more,

for the majority of dataset instances, r increases when (n) increases, as expected. This was not

the case, however, when predicting on the Validation Set of Beer Advocate-RateBeer dataset. For

this particular case, it stood that: r=f(n)=1, ∀ n∈{2,5,10,15}.

100

To be more informative, it can be observed from the respective Tables and Figures of Section 6

that for the DBLP-Scholar dataset, in both Validation and Test sets, r=f(n) is an ascending

function for which it stands that r>1 ∀ n∈{2,5,10,15}. This means that the number of matching

pairs that the framework managed to capture was always higher than the number of undetected

matches. It can also be seen from the graphs that the relationship r=f(n) appears to exhibit a

particular pattern.

 For Beer Advocate-RateBeer dataset, it can be observed that, for the Validation Set, the number

of True Positive predictions is equal to the number of False Negatives ∀ n∈{2,5,10,15}. This is

not, however, the case for the experimentations on the Test Set, for which we observe a similar

upward trend of r as the number of recommendations (n) increases (possibly still indicating the

same pattern as for the DBLP-Scholar Dataset).

All in all, we could say that the framework is able to accurately detect most of the True

Matches that exist in the vast majority of the experimental sets (for pairs included in Train

and Test Sets respectively). However, by no means it presents perfect results.

7.3 Future Work

Our experimentations on a Distributed Deep Learning Framework on the Entity Resolution

problem have a lot of space for improvement and further investigation. Firstly, we provide the

reader with some of the main problems that we faced during our experimentations and, in

exchange, possible improvements:

1. Beer Advocate-RateBeer dataset exhibited unexpected results on some occasions. Firs of all,

the case of 0/4 Alignment Similarity Approach exhibited the same results with 4/4 Alignment

Similarity Approach, even though 2/4 and 1/4 approaches performed worse. This might be

indicative of the fact that the classification results are dependent on the combination of merging

attributes. As a result, further studies should be conducted by assuming different

combinations of merged-misaligned attributes.

2. For the same reason, it is crucial to experiment upon more datasets. Beer Advocate-RateBeer

dataset might have some specific peculiarities that make it hard for the framework to perform well.

101

3. Experimentations should be made with RNN-based word embeddings. Even though Spacy

is indeed an exceptional tool, the particularities of each dataset might be an obstacle on the

mapping procedure of a word to a vector. This could be solved with Recurrent Neural Networks

LSTM or GRU cells. In this case, the word vectors should be able to capture these particularities

because of the fact that they focus on mapping words to vectors based on a vocabulary that is

dataset specific.

4. The relationship r=f(n) should be furtherly investigated. Unexpectedly, a pattern seems to

have emerged for this relationship during the experimentations. Being able to extract such a

mathematical relationship will enable us to choose the appropriate number of recommendations

for the desired classification performance.

102

References

E.Rahm, E.Peukert , 2019. “Large Scale Entity Resolution”

C. Zhao, 2018. Extending DeepER: “A Closer Examination of Deep Learning for Entity

Resolution”

V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, K. Stefanidis, 2019. “End-to-End

Entity Resolution for Big Data: A Survey”

M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, N. Tang, 2018. “Distributed

Representations of Tuples for Entity Resolution”

Dražen Oreščanin, 2019. “Conceptual Framework for Entity Integration from Multiple Data

Sources”

V. Yadav, S. Bethard, 2018. “A Survey on Recent Advances in Named Entity Recognition from

Deep Learning models”

S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishman, R. Deep, E. Arcaute, V.

Raghavendra, 2018. “Deep Learning for Entity Matching: A Design Spacle Exploration”

M. Bawa, T. Condie, P. Ganesan,2005. “LSH Forest: Self-Tuning Indexes for Similarity Search”

K.M. Lee, 2012. “Locality-Sensitive Hashing Techniques for Nearest Neighbor Search”

J. Wang, H. T. Shen, J. Song, and J. Ji, 2014. “Hashing for Similarity Search: A Survey”

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, 2013. “Distributed Representations of

Words and Phrases and their Compositionality”

J. Pennington, R. Socher, C.D. Manning, 2014. Glove. “Global Vectors for Word Representations”

Y.LeCun, Y. Bengio, G. Hinton, 2015. “Deep Learning”

J. Schmidhuber, 2015. “Deep Learning in Neural Networks”

P. Domingos, 2012. “A Few Useful Things to Know About Machine Learning”

103

K. O’Shea, R.Nash, 2015. “An Introduction to Convolutional Neural Networks”

M. Abadi, A. Agarwal, P. Bargham et al., 2015. “Tensorflow: Large Scale Machine Learning on

Heterogenous Distributed Systems”

M. Abadi, P, Bargham et al., 2016. “Tensorflow: A System for Large Scale Machine Learning”

E. Loper, S. Bird, 2016. “NLTK: The Natural Language Toolkit”

W. McKineey, 2011. “Pandas: a Foundational Python Library for Data Analysis and Statistics”

