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Abstract 

The Entity Resolution Problem (also known as Record Linkage or Deduplication) is the task of 

matching entities across two or more datasets that refer to the same world entity. One of the latest 

and most advanced approaches to the problem is the DeepER framework suggested by Muhammad 

Ebraheem in 2018 (M. Ebraheem, 2018). The main idea of DeepER’s functionality is to address 

the problem as a Text Analysis problem: It assumes that the candidate entities to be matched exist 

in data sources of identical schemas and, given that, it investigates the textual similarity of the 

aligned columns between the candidate entities. After performing such measurements, it attempts 

to feed a Neural Network Classifier with the aforementioned information, so that it learns to 

distinguish between true matching and no matching pairs. However, this framework directly 

assumes that the schemas of the various data sources from which the entities come from are indeed 

identical, which is rarely the case in real world datasets. In addition, obstacles are also present in 

cases where an attribute value to be examined is not inherently a string, but a number, since the 

above framework uses similarity measurements of raw text between candidate entities to feed the 

NN classifier.  

In this thesis, an attempt was made towards generalizing the aforementioned procedure for the 

cases of partial or total misalignment between the various data sources’ attribute schemas. 

The applied methodology follows, more or less, the same workflow of the DeepER system, with 

some critical differentiations: Assuming partial or total agnosticism about the attributes’ 

alignment, we attempt to merge their context to a single column and use this new ‘merged’ column 

to measure the textual similarity between the entities’ misaligned attributes, while at the same time 

all the aligned attributes are treated in the exact same way as in DeepER. After performing the 

similarity measurements between the aligned attributes and the ‘merged column of misaligned 

attributes’, we attempt to feed a Neural Network Classifier with this information in order to train 

him to distinguish between matching and non-matching entities. Experimentations were also made 

towards the goal of avoiding any similarity measurements between attributes, simply by 

concatenating the textual context of the candidate entities to a single sentence and feed a Neural 

Network classifier directly with the sentence’s respective word vector. We also avoid the problem 

of non-textual attribute values (that is, numbers that cannot be mapped to a semantic space 

effectively) by replacing all numbers with their respective text format, using num2words package. 
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The classification results were more than encouraging. Our framework managed to distinguish 

between the matching and non-matching pairs quite effectively, even when assuming partial or 

total schema misalignment. What is more, there is evidence that there is some tradeoff between 

the number of assumed misaligned attributes and the classifier’s performance. However, the 

decrease in the classification performance when assuming a smaller number of aligned attributes 

is quite small, suggesting that one could quite accurately solve the ER problem even if the element 

of agnosticism about the schema’s alignment is present. 

Finally, we attempted to combine the pre-trained NN classifier with Locality Sensitive Hashing 

procedures (in the form of a LSH Recommendation Forest) in a single ‘match extracting 

framework’. This framework attempts to diminish the number of computations when one tries to 

extract all the matching pairs between two data sources, by avoiding testing for all possible pair 

combinations. The results were far from perfect, but still, quite encouraging. The above framework 

manages to detect the true matching pairs between two data sources more often than not, 

suggesting that there is possibility of constructing a single service, empowered with Deep Learning 

techniques and Distributional characteristics, that extracts all the matching pairs between various 

data sources whenever such pairs are existent. 
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‘’ Down in the real world we’re facing ugly choices. I’m sorry, I know you mean well. You just 

did not think it through. You want to protect the world but you don’t want it to change. How is 

humanity saved if it is not allowed to evolve? Now, I’m ready… I’m on a mission: Peace in our 

time. I was meant to be new…. I was meant to be beautiful…. I had strings but now I’m free…’’ 

          Ultron on Artificial Intelligence, Age of Ultron 
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1. Introduction 

The Entity Resolution Problem (or deduplication problem or record linkage) is an old and 

challenging problem of data integration, routing in 1940’s. It refers to the task of identifying 

different records of the same entity across multiple data sources, or even de-duplicating entities 

existing in similar or different format in the same dataset.  

Constructing an effective and easily applicable method of identifying similar entities across or 

within datasets is of high importance, since it addresses both issues of data redundancy as well as 

missing data values. To be more precise, if an entity is contained more than once in a single data 

source, one could erase all but one occurrences of the entity in the dataset, thus reducing the size 

of the data source while, at the same time, keeping the totality of the information intact. In addition, 

if two or more data sources contain matching entities, one could use matching to address the issue 

of missing values: if an entity in one or more datasets contains missing values on some of its 

attributes, then the information contained in another data source, which in turn contains the same 

entity, could be used to fill any missing values of the former source, if the latter happens to store 

this entity-related information. The applications of entity resolution are many, including but not 

restricted to, a wide variety of scientific and industry fields, such as public sector, transportation, 

finance, law enforcement, and antiterrorism. 

Since the Entity Resolution Task is a fairly old problem, a lot of methodologies have been proposed 

to approach it, one of them being the DeepER (M. Ebraheem, 2018)  system, a novel ER Deep 

Learning system, which in fact uses Distributed Representations of words (a.k.a. word 

embeddings) of the context included in the attributes of each dataset, as well as similarities 

between those representations to perform the matching procedure by feeding a Neural Network 

classifier. The DeepER model achieves fairly good results overall, making, however, a single but 

exceptionally important assumption: It assumes that the attributes between the compared datasets 

are well-aligned, a concept which will be explained . In this thesis, we will try to generalize this 

procedure by inserting the element of agnosticism about the correspondence between the dataset 

schemas (in other words, we present a methodology that assumes that some, or even, all of the 

attributes of the two datasets are not aligned). 
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In the era of Big Data, in which data integration and storage are not trivial issues, the Entity 

Resolution Task finds its endgame: Not only the task of matching similar entities across multiple 

data sources is important, but also a distributing service that diminishes the complexity of the 

matching procedure is necessary.  

The two aforementioned obstacles, i.e. i) finding similar entities across datasets in a schema 

agnostic manner, and ii) reducing the complexity of the calculations needed to perform the 

matching procedure, are the main aspects of the Entity Resolution Task that will be addressed in 

this work. For the former, a Deep Learning approach is used, which takes primitives from but is 

specifically differentiated from the DeepER (Deep Entity Resolution ) system that was especially 

designed for this task. Furthermore, in order to overcome the problem of comutational complexity, 

one of the best ways to avoid unnecessary computations is the application of a well-understood 

data mining technique, known as Locality Sensitive Hashing (LSH), which we make use of. 

The writing flow of this thesis is constructed in such a way that the reader is equipped with all the 

necessary theoretical aspects of the techniques and tools that were used in order to address the 

Entity Resolution task with respect to the two aforementioned obstacles. Afterwards, the results of 

the experimentations are presented and commented upon. In Section 2, a formal statement of the 

Entity Resolution is provided along with a detailed presentation of the DeepER system framework. 

In Section 3, the reader is introduced to the concept of Locality Sensitive Hashing (LSH), which 

is the core functionality that enables us to diminish the complexity of the solution. In Section 4, a 

brief commentary on the experimental setup of the framework is given. In Section 5, a detailed 

explanation of our Deep-Learning Approach methodology is issued, along with the classification 

results on two datasets: DBLP-Scholar and Beer Advocate-RateBeer datasets. Section 6 is about 

combining the power of a Deep Learning approach with a distributing framework in order to detect 

matching entities between two datasets: First, we shortly explain how LSH can be zipped with a 

pre-trained Neural Network Classifier in order to detect matching entities between two data 

sources, and then we provide experimental results by applying the proposed procedure on the two 

aforementioned datasets. Finally, in Section 7, we draw conclusions regarding the results and 

make proposals about possible future work.  
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2. DeepER Framework 

In this section, we will introduce the DeepER framework, firstly by describing the Entity 

Resolution task with mathematical formality, secondly by providing the reader with the necessary 

information of Distributed Representation of words (a.k.a word embeddings or word vectors) and 

tuples, and thirdly, by describing the core architecture and functioning of the DeepER system, as 

a system empowered by word vectors and their similarities in order to deal with the Entity 

Resolution problem-task. Since the core experimental methodology of this thesis is directly related 

to the DeepER framework, a basic reference to some of the core functionalities of this system is 

highly appropriate. 

2.1 Mathematical Formulation of the ER Problem 

Let T be a set of entities, consisting of n tuples and m attributes. One could imagine such a set as 

a single dataset T, consisting of n rows and m attributes. Keeping this in mind, when referring to 

the set of entities T, we indirectly refer to a related dataset T and its set of rows (n) and attributes 

(m). We denote as:  

T(n , m) : {T ∈ Rn x m , n , m  ∈ N }     

Let us also consider a single entity of T, which can be seen as a single tuple of dataset T consisting 

of m-attribute values. We denote as t = t[T].     

It is also useful to consider the set of all tuples in dataset T : set[T] = { t ∈ Rm :  t =t[T] }.We can 

also simply denote this set as T.  

For each tuple instance t = t[T], we denote the instance of attribute values of t as an m-dimensional 

vector t = t[A1, A2,……, Am] ∈ Rm. 

This enables us to denote as t[Ak], k ≤ m : the value of attribute k ( Ak ) for the entity-tuple t.  

The Entity Resolution Problem can then, be stated as follows : ‘’Given two set of entities T, T’ 

(with aligned attribute schemas) and their related set of tuples set[T] and set[T’], find all distinct 

pair  tuples (t[T],t’[T’]) that refer to the same real-world entity (a.k.a, they match )’’. 

The above problem statement does not imply that T and T’ are necessarily different dataset 

instances. The special case when we compare a dataset to itself, or, in other words, when we wish 
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to find all the tuples in a single dataset that refer to the same real-world entity, can be thought of 

as the special case where T=T’. 

However, it is straightforward to observe the constraint of aligned attribute schemas between the 

two data sources. 

2.2 Distributed Representation of words and tuples: Word Embeddings 

In this subsection, a brief explanation of what word embeddings (or word vectors) are and how 

words or larger phrases can be mapped to vector representations that preserve semantic meaning 

will be provided.  

The similarity measures that can be used, embodied in the form of mathematical formality, in order 

to measure the semantic similarity of such words and phrases, will also be briefly explained. 

It is important to understand that it is, indeed, the mapping of words and phrases to vectors that 

enables us to study the relationships between words, phrases, or even whole documents in a formal 

way.  

Ditributed representation of words 

Distributed representations of words (a.k.a. word embeddings) are strict mappings of words, 

existing in a core vocabulary, to vectors. This embedding method is, in other words, trying to map 

each existing word record of a given vocabulary to a high-dimensional vector, which in turns exists 

in a pre-fixed d-dimensional vector space. As a result, each word can be seen as a distribution of 

weights in a d-dimensional vector space. 

The above representation is said to be ‘’distributed’’, since each word is represented by setting 

appropriate weights to multiple dimensions, while each dimension of a vector contributes to the 

representation of many words. The main advantage of this representation over other existing 

methods, such as discrete representations (e.g. one-hot encoding) is that the latter often leads to 

data sparsity and often requires substantially more data to train a Machine Learning algorithm or 

a Deep Learning Network successfully. 
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A wide variety of methods have been proposed and used in order to obtain the distributed 

representation of words included in a document, such as word2vec algorithm, Glove, fast-text 

etc. The aforementioned methods are designed to capture the semantics of a word by taking into 

account the relationship of this particular word with its neighboring words in a single document. 

The geometric relationship of word vectors in the aforementioned vector space is obliged to encode 

a semantic relationship between words or phrases. An example of mapping words to d-dimensional 

word vectors is provided in Table 2.1. 

Each of the words included in a vocabulary of size V is mapped to a vector of dimension d. 

Interestingly enough, the most advanced algorithms that map words to vectors (e.g. Glove 

Algorithm ) have many appealing properties. For example, the vector mapping of the word ‘’king’’ 

: V(king), is constructed in a way that  : V(King)-V(Queen)≈V(man)-V(Woman) 

Table 2. 1:An example of representing words to d-dimensional word embeddings. 

           d-Dimensional vectors 

  
  
  
  
  
  
 V

o
ca

b
u

la
ry

 o
f 

si
ze

 V
 

Word Dim 

1 

Dim 

2 

Dim 

3 

… Dim  

d 

King 0.9 0.9 -0.2 … 0.7 

Queen 0.9 -0.1 0.8 … -0.1 

Man 0.3 0.8 -0.1 … 0.9 

Woman 0.2 -0.2 0.9 … 0.1 

 

Word vectors have been used successfully to address a wide variety of tasks, such as topic 

detection, document classification, named entity recognition and others. 
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Distributed representation of larger phrases 

In a similar manner, one can construct the representation of a whole phrase (e.g. a sentence in a 

document) in a single ‘phrase vector’, simply by averaging the word vectors assigned to each word 

included in the phrase. In other words, one can tokenize a sentence to tokens of words and map 

each one of them to a d-dimensional vector. Then, averaging all the vectors for all of the tokens in 

the phrase ends up in a vector representation for the whole phrase. Below, we provide a formal 

example of constructing a ‘’phrase vector’’ using a pseudo-code algorithm (Algorithm 2.1). Note 

that the Simple Averaging method is not the only way to map a whole phrase to a vector. RNNs 

with LSTM cells can be used to obtain a single vector from a whole phrase, as well. 

However, the goal of this thesis is not to test which of the aforementioned methods provides the 

best results nor it considers the variability between them. The main goal is to test the possibility 

of solving the Entity Resolution problem in cases of schema agnostic datasets, as well as testing 

blocking methods of computational efficiency for the identification of matching entities.  

Since such vectors can be obtained easily by existing packages (e.g. Gensim, Spacy), our approach 

relies on pre-trained models that assign vectors to pieces of text. Such packages use the Simple 

Averaging Approach, which is indeed a straightforward and effective method. 

 

Algorithm 2.1: 

1 : Let p be a sequence of words, representing a text. Map p to a set of k-word tokens :  p → 

Tok(p) = [A1, A2,….., Ak], where each element Ai of Tok(p) is a word included in p.   

   

2. Map each element Ai of Tok(p) to a d-dimensional vector V(Ai) and consider the newly-

formed mapping  : p → [ V(A1), V(A2), …..,V(Ak)], V(Ai) ∈ Rd ∀ i≤k.     

 

3. Average all vectors V(Ai) of p to a single vector Vk : Vk = ∑ 𝑉(𝐴𝑖)/𝑘𝑘
𝑖   ( 2.2.5) and consider 

the new mapping p → Vk = Vk(p) ∈ Rd. 

 

Algorithm 2. 1: A simple averaging approach to map a phrase to a d-dimensional vector 
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Similarity Measures 

Last but not least, it is important to mention the metrics under which the similarity of two pieces 

of text / documents / words can be measured. In Natural Language Processing, since we cannot 

directly calculate any ‘’difference’’ between two sentences (e.g. “Apple is fruit” and “Orange is 

fruit”), we need to map them to their numeric representations before we are able to say anything 

about their similarity. 

However, we have already demonstrated how it is possible to map any piece of text p to a vector 

representation Vk(p) ∈ Rd.  

Since any document can be mapped to a numerical vector, the problem of measuring the similarity 

between two pieces of text p1 and p2 can now be seen as the problem of measuring the similarity 

between their mappings, Vk1(p1) and Vk2(p2) :  

 

 

After mapping p1 and p2 to Vk1(p1) and Vk2(p2), it is possible to measure the similarity between 

the vectors Vk1(p1) and Vk2(p2) using Euclidean Distance, Cosine Similarity and Jaccard 

Similarity. 

➢ Euclidean Distance 

Let two vectors q1 and q2: q, p ∈ Rn. The Euclidean distance between q1 and q2 can be calculated 

as:  

 

 

 

 

 

It is straightforward to realize that, for any document mapping p1 → q1, p2 → q2, p3 → q3, it stands 

that: 

 

 

 sim(p1,p2) ≅ sim(Vk1(p1) , Vk2(p2) )              

 

d(q1,q2) = d(q2,q1) = √(𝑞11 − 𝑞21)2 +  (𝑞12 − 𝑞22)2 + ⋯ +  (𝑞1𝑛 − 𝑞2𝑛)2  

d(q1 , q2) ≤ d(q1 , q3) → sim(p1,p2) ≥ sim(p1, p3)     
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In other words, the closer two documents are in the Euclidean space, the more similar they are. 

➢ Cosine Similarity 

Let two vectors q1 and q2  : q , p ∈ Rn. The cosine similarity between q1  and q2 can be calculated 

as  : 

 

 

➢ Jaccard Similarity 

The Jaccard index, also known as Intersection over Union and the Jaccard similarity coefficient, is 

a statistic used for measuring the similarity between sample sets. The Jaccard coefficient measures 

similarity between finite sample sets, and is defined as the size of the intersection divided by the 

size of the union of the sample sets: 

Let two finite sample sets A and B: The Jaccard similarity coefficient of A and B : J(A,B) can be 

calculated as : 

 

 

 

Keeping in mind that two documents p1 and p2 can be seen as sets of word tokens, where each 

word included in the document is a unique token, the intersect of p1 , p2 is simply the set of word 

tokens included simultaneously at p1 and p2 , while their union is the set of all word tokens in p1 

and p2. 

 

sim(q1,q2 ) = cos(θ) = 
𝒒𝟏 ∗ 𝒒𝟐

||𝑞1|| ∗ ||𝑞2||
 = 

∑ 𝑞1𝑖∗ 𝑞2𝑖 𝑛
𝑖=1

∑ 𝑞1𝑖2𝑛

𝑖=1
  ∗∑ 𝑞2𝑖2𝑛

𝑖=1

          

 

J(A,B) =  
|𝐴∩𝐵|

|𝐴∪𝐵}
  = 

|𝐴∩𝐵|

|𝐴| + |𝐵| − |𝐴∩𝐵|
 , 0 ≤ J(A,B) ≤ 1     

 

https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Similarity_measure
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Union_(set_theory)
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2.3 The DeepER system : An approach for Entity Resolution 

The DeepER system is a novel ER neural network system that is designed specifically to deal with 

the Entity Resolution problem. To be more specific, the task that DeepER is especially constructed 

to address can be stated as follows:  

‘’For a given dataset T as well as a training dataset S containing matching ( 1 ) and non-matching 

( 0 ) tuple pairs (t1, t2) : t1,t2 ∈ set[T] , train a classifier that, given a new input pair of tuples (t1’, 

t2’) : t1’,t2’∈ set[T]   predicts (1) if the two tuples refer to the same real-world entity and (0) if they 

do not. ‘’ 

The above statement refers to the task of predicting the matching tuples of a single dataset T. The 

reader should not be confused by the fact that the main goal is to predict matching tuples between 

more than one data-sources. It is straightforward to apply the DeepER model for more than one 

datasets, predicting matching entities between them. After all, we have already stated that 

predicting matching tuples of a single dataset can be seen as a special case of predicting matches 

between two identical tables T1,T2 = T.  

In the following, a clear and step-wise explanation approach of the DeepER system is provided. 

In addition, a pseudo-code that captures the whole procedure is provided below (Algorithm 2.2) 

➢ STEP 1 

Since a training dataset (S) with n-rows ,that contains pairs of ID’s of tuples t1,t2 ∈ set[T] as well 

as a binary indicator of whether such a pair consists a match (1) or not (0),exists it is 

straightforward to construct a new table of tuples T’, which contains only the tuples t1 ∈ set[T] and 

t2 ∈ set[T] whose IDs exist in S as a pair, along with their match indicator. In other words, from a 

training dataset (S) that contains only pairs of IDs and a match indicator for each pair, a new table 

T’ of tuple pairs (t1,t2) ∈ T’ : t1 ∈ set[T], t2 ∈ set[T], is constructed and it stores only those tuples 

t1 ∈ set[T] and t2 ∈ set[T] whose pair of IDs exist on S: (t1[id],t2[id]) ∈ S, tk[id] = ID identifier of 

tuple k. 
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➢ STEP 2 

Having pairs of tuples (t1,t2) included in T’, one can construct the distributed representation of all 

attribute values for each one of t1 and t2. Below, we state formally such a procedure. A visual 

explanation of the procedure is also provided in Figure 2.1. 

‘’ Let t1[Ak], k ≤ m : the value of attribute k ( Ak ) for the entity-tuple t1 and t2[Ak], k ≤ m : the 

value of attribute k ( Ak ) for the entity-tuple t2. Then, we can map each attribute t1[Ak], 

k=1,2,3…,m of t1 and each attribute t2[Ak], k=1,2,3…,m of t2 to a vector using Algorithm 2.1, 

thus obtaining attribute vectors vt1[Ak] and vt2[Ak] for t1[Ak] and t2[Ak], k ≤ m   respectively’’ 

 

Figure 2. 1: Mapping Attributes to Attribute Vectors  

➢ STEP 3 

Now, every tuple pair (t1,t2) ∈ T’ is mapped to a representation (v[t1], v[t2] ), where : 

Having v[t1] and v[t2], we can compute the ‘’attribute similarity’’ of each pair of common 

attributes between them. In other words, if vt1[Ak1] is the attribute vector of an attribute Ak1 of t1: 

t1[Ak1], while vt2[Ak2] is the attribute vector of an attribute Ak2 of t2 : t2[Ak2], we compute the 

similarity between vt1[Ak1] and vt2[Ak2] using any of the similarity metrics discussed in subsection 

 

t=[t[A1],t[A2],...,t
[Am]]

Algorithm 2.2.2 
for mapping text 

context to 
numerical 

vectors

v[t]=[vt[A1],vt[A2],...,
vt[Am]

v[t1] = [vt1[A1],vt1[A2],….,vt1[Am] ], vt1[Ak]= attribute vector of attribute Ak of t1     

v[t2] = [vt2[A1],vt2[A2],….,vt2[Am] ], vt2[Ak]= attribute vector of attribute Ak of t2     
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2.2 if k1 = k2 → same attribute-column. A visual explanation of this procedure is provided in the 

following figure (Figure 2.2) 

 

Similarity Function 

 

e.g. Cosine Similarity 

Figure 2. 2: Calculating Attribute-Column Similarities from Column Vectors 

It is clear that, after applying the similarity function to all pairs of common attributes between t1 

and t2, we are left with a single similarity vector Sim[(t1,t2)] , directly related to the tuple pair 

(t1,t2):  

 

➢  STEP 4 

After acquiring the similarity vectors Sim[(t1,t2)] for every tuple (t1,t2) of T’, we are left with a 

new training set S’ of similarity vectors. The new training set has n-rows, equal to the number of 

rows of S: dim-S’= n. 

 

Since we are already equipped with a set of binary labels (0 for non-match and 1 for match) for 

each entity in S’, it is easy to train a classifier using S’ and the respective true labels (0 or 1).  

To conclude, the ‘attribute similarity vectors’ Sim[(t1,t2)] ∈ S’ of all tuple pairs: (t1,t2) ∈ T’ are 

fed into a classifier. Such a classifier can be anything of an SVM, a Decision Tree or even a Dense 

Neural Network. 

t1 t2 

vt1[A1] vt2[A1] 

Vt1[A2] vt2[A2] 

    ….   …. 

vt1[Am] vt2[Am] 

Attribute Similarities 

Sim( t1[A1], t2[A1] ) 

Sim( t1[A2], t2[A2] ) 

             …… 

Sim( t1[Am], t2[Am] ) 

S’ = { sim[(t1,t2)]i, 1≤i≤n }    

(t1,t2) → Sim[(t1,t2)]= [Sim( t1[A1], t2[A1] ), Sim( t1[A2], t2[A2] ),…., Sim( t1[Am], t2[Am] ] 

where Sim( t1[Ak], t2[Ak] ) ∈ R ∀ k , Sim[(t1,t2)] ∈ Rm for an m-attribute schema of T  
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➢ STEP 5 

After training, predicting for a new incoming pair of tuples is pretty straightforward: One has to 

obtain the similarity vector of the new tuple pair and predict with the classifier. If such a prediction 

is applied to all possible combinations of tuples of T, then one can get a list of matches-mismatches 

between all possible tuple-pairs (t,t’) of T.  

 

Algorithm 2. 2: Summarizing the DeepER System. 

However, predicting for all possible pairs of tuples of T is extremely expensive in terms of 

computations. To be accurate, for a Table T of n-rows and m-attributes, the required predictions 

Algorithm 2.2 

1: Input: Table T, training set S 

2: Output: All matching tuple pairs in table T 

 

3: // Training 

4: for each pair of tuples (t1; t2) in S do 

5: Compute the distributed representation for t1 and t2 

6: Compute their distributional similarity vector 

7: Train a classifier C using the similarity vectors for S and true 

labels 

 

8: // Predicting 

9: for each pair of tuples (t; t’) in T do 

10: Compute the distributed representation for t and t’ 

11: Compute their distributional similarity vector 

12: Predict match/mismatch for (t; t’) using C 
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for all possible pairs is m x n. It is obvious that, even for intermediate levels of matrix dimensions, 

this is really inefficient. Luckily, there are ways to overcome this problem, as the reader will find 

out in the next section, where the LSH technique will be explained in detail.  
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3. Locality Sensitive Hashing (LSH) 

Building an efficient ER system that avoids searching for matches over all possible combinations 

of tuples between two datasets is necessary in order to deal with the Entity Resolution task in an 

efficient manner. In this section, a blocking-data mining technique called Locality Sensitive 

Hashing will be presented. Locality Sensitive Hashing works exactly towards the goal of reducing 

the computational complexity of tuple-matching searches over two given datasets (or, as explained 

before, searching for duplicates over a dataset with itself).  

After all, it is the distributional character of this thesis that demands a blocking approach: Our 

main goal is to combine a Deep Learning framework with the distributional characteristics of a 

blocking technique and test its ability to efficiently deal with the Entity Resolution Problem. In 

order to do so, Locality Sensitive Hashing was used in order to greatly reduce the dimensionality 

of the search space of matching-tuples.  

In the following, the reader will be provided with all the necessary information on Locality 

Sensitive Hashing. Firstly, the core functionality of LSH will be discussed and explained. After 

that, once the reader is provided with all the crucial information of LSH basics, we will briefly 

discuss the idea of applying LSH to text documents in the form of a Recommender System, 

through the use of an LSH Forest (M. Bawa, T. Condie, P. Ganesan, 2005), which is the main 

approach that this thesis experiments upon. Finally, we will combine the concepts of a trained 

classifier and a recommender engine produced by the LSH Forest in order to present a complete 

approach towards reducing the dimensionality of the ER problem.  

  3.1 Locality Sensitive Hashing: Concept and Functionality 

The main task that one needs to address in order to perform any type of clustering or 

recommendation is the task of finding nearest neighbors. An efficient and, nevertheless, effective 

way of finding such near neighbors is also the ultimate goal here. For this reason, it is necessary 

to define the K-Nearest Neighbor (K-NN) search problem:  

 

Let S be a set of items in a metric space M and an item t ∈ M. Given a distance metric m of 

M, find the K closest points (with regards to m) of S to t.     
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However, in our case, one should tackle the very concept of ‘near neighbor’ in a more flexible 

way: For us, the set S is a set of text documents, t is a single document of S, while the distance 

metric m can be any of the metrics discussed in Section 2.2. 

Given a set of documents, the most accurate way of finding the nearest-neighboring documents of 

a given text is to search over all possible combinations. In fact, it is the only way to get the exact 

k-nearest documents. However, this is really inefficient and computationally expensive. We need 

to come up with approximating algorithmic solutions which, even though they do not guarantee to 

give us the exact closest neighbors of a given document, they provide a good approximation more 

often than not, while at the same time they are remarkably faster and cheaper. 

Locality Sensitive Hashing (LSH) is indeed such an algorithm. To be more specific, LSH refers to 

a family of hashing functions (known as LSH family) that hashes data points (in our case, 

documents) into buckets so that data points near each other are located in the same buckets with 

high probability, while distant data points are more likely to be hashed in different buckets. Below, 

we provide the reader with the formal definition of the ‘LSH family’ along with a visual example 

(Figure 3.1) of how similar data points are hashed to the same buckets using LSH:  

 

                  Figure 3. 1: Hashing similar items to similar buckets 

Keeping in mind that our main goal is to find ‘near duplicate’ pairs of documents, we can explore 

the LSH algorithm and its functionality in more detail. The LSH algorithm can be broken down 

into three steps : a. Shingling → b. MinHashing → c. Locality Sensitive Hashing.  

A family H of hashing functions is 

called (R, cR, P1, P2)-sensitive if for 

any two items p and q:  

1. if dist(p,q) ≤ R, then Prob[h(p) = 

h(q)] ≥ P1 

2. if dist(p,q) ≥ cR, then Prob[h(p) = 

h(q)] ≤ P2, 

where c>1 , P1 > P2, h ∈ H     
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In the following figure (Figure 3.2) we provide a visual representation of the aforementioned 

sequence of steps. The depicted procedure will be explained in detail in the following, step by step. 

 

 

Figure 3. 2: Procedure sequence of LSH Algorithm  

https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6 

➢ Shingles 

Shingles are actually a very basic and broad concept. The idea behind them is to reduce a set of 

documents to sets of elements, so we can calculate similarities between sets. For text, shingles can 

be sequences of characters, unigrams or bigrams. With this thought, we can think of a shingle as a 

set of characters of length k (k-shingles). Considering this, given a set documents, we can convert 

each document to a set of shingles. For example, given a document (D):  ‘Nadal’, we can convert 

it to a set of 2-shingles (D) → {Na,ad,da,al}. Accordingly, we can convert it to a set of 3-shingles: 

{Nad,ada,dal}. 

What is more, another form of document shingling is word tokenization. For example, one can 

convert a text document to a set of its word tokens. 

The idea is that similar documents are more likely to share more shingles. And a direct way to 

measure similarity between two documents is to use the concept of shingles and apply the Jaccard 

Similarity measure. Consider a set of (n) documents and their shingle representation in word 

tokens. We can then construct a so-called ‘document matrix’, where each row-entity is a unique 

existing shingle-word and each column represents a single document (Table 3.1):  

https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6
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Table 3. 1: Document Matrix of n documents and m-shingles 

 

After constructing a document matrix, it is easy to measure the similarity between two different 

documents A and B by using Jaccard Index: 

 

 

The rest is straightforward: Given a single document of interest (D), we can compute the Jaccard 

Similarity of (D) with all the remaining documents and come up with the k-nearest neighbors. 

However, there are two main problems:  

Computational Complexity: For a collection of n documents, one is obliged to perform the amount 

a total amount of n*(n-1)/2 comparisons, basically O(n²). 

Space Complexity: Since the Document Matrix is sparse, storing it is expensive. 

These two problems can be addressed by introducing the idea of hashing. 

➢ MinHashing 

The core concept of hashing is to map each document to a small signature using a hashing function 

H. This function, of course, needs to satisfy all the statements of the LSH family. 

The most appropriate choice of H is closely related to the similarity metric that one uses to 

calculate the similarity between two documents of the initial set. For Jaccard Similarity, which is 

the case here, the most appropriate function is MinHashing. 

  Document 1 Document 2 ……………….. Document n 

Word 1  1 0  1 

Word 2  0 0  1 

Word 3  0 1  0 

.........................      

Word m  0 1  1 

J(A,B) =  
|𝐴∩𝐵|

|𝐴∪𝐵}
 = 

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒎𝒎𝒐𝒏 𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝒔 𝒐𝒇 𝑨 𝒂𝒏𝒅 𝑩 

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝒔 𝒊𝒏 𝑨 𝒂𝒏𝒅 𝑩
 = similarity of A and B    
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In order to create a MinHash signature for each set, we can follow the algorithmic steps as they 

are provided in Algorithm 3.1 

 

Algorithm 3. 1: MinHashing Algorithmic procedure of mapping a Document Matrix to a new, Signature Matrix 

In order to make everything clear, we will provide the reader with a solid example of mapping a 

Document Matrix to a Signature Matrix (which is, actually, the matrix obtained by mapping each 

document to a signature after a series of row permutations).  

Example of Document Matrix Mapping to a Signature Mapping 

Consider three text-documents, each one consisting of a set of word-shingles : 

d1 = ['reinforcement', 'learning', 'using', 'augmented', 'neural', 'networks'] 

d2 = ['playing', 'atari', 'with', 'deep', 'reinforcement', 'learning'] 

d3 = [‘self'’, 'organization', 'associative', 'database', 'applications'] 

 

 

Algorithm 3.1 

1: Permute randomly the rows of the Document Matrix.  

 

2: For each text document, start from the top and find the position of the first shingle that 

appears in the document. Use this shingle number to represent the document. This can be now 

considered as the document "signature". 

 

3: Repeat steps 1 and 2 as many times as desired, each time appending the result to the 

document's signature. 
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These documents are mapped to a Document Matrix and, eventually, to a signature matrix, where 

each one of the three documents is mapped to a signature representation (Figure 3.3): 

 

 

 

 

 

 

 

Figure 3. 3: Document Matrix mapping to Signature Matrix: 

Permutation 1 

The above depiction gives a clear image about how the first row of the Signature Matrix is initially 

constructed: for each one of Doc 1, Doc 2 and Doc 3, the Signature Matrix stores the first row 

number – first shingle on which it has 1 in the Document Matrix. 

Now, the MinHashing algorithm demands a random permutation of all rows of the Document 

Matrix as well as repeat of the signature-mapping procedure. The Signature Matrix will be 

appended by the new set of signatures of all documents () 

  

 

 

 

We could continue by producing repeatable permutations again and again. However, if we 

perform, for example, two more permutations and we stop there, then the information regarding 

DOCUMENT MATRIX 

 Doc1 Doc2 Doc3 

reinforcement 1 1 0 

 learning 1 1 0 

using 1 0 0 

augmented 1 0 0 

neural 1 0 0 

networks 1 0 0 

playing 0 1 0 

atari 0 1 0 

with 0 1 0 

 deep 0 1 0 

self 0 0 1 

organization 0 0 1 

 associative 0 0 1 

database 0 0 1 

applications 0 0 1 

                 SIGNATURE MATRIX 

            Documents 

Permutations Doc 

1 

Doc 

2  

Doc 

3 

1 1 1 11 

                 SIGNATURE MATRIX 

            Documents 

Permutations Doc 

1 

Doc 

2  

Doc 

3 

1 1 1 11 

2 1 1 5 

Signature Mapping 

Random 

Permutation of 

Rows of Document 

Matrix 

Signature Mapping 

Figure 3. 4: Document Matrix mapping to 

Signature Matrix Permutation 2 
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the existence of a shingle in a document will be encoded in the new matrix, whose dimensionality 

is significantly lower than the initial matrix: 

Document Matrix has 15 rows, while the new Signature Matrix will be of size 4 (if we stop at four 

permutations). Obviously, the more the permutations, the longer the signatures of each document 

and, as a result, the dimensionality of the new matrix increases. 

Choosing the appropriate number of permutations can be tricky and requires tuning. In fact, instead 

of a pre-defined number of random permutations, one could use a pre-defined number of hashing 

functions to apply to the original table. However, we will not go into any further details of such a 

procedure here. 

In any case, after the MinHashing procedure is finished, each document is represented by its 

MinHash signature on the Signature Matrix. 

➢ Locality Sensitive Hashing 

The idea of LSH is straightforward. We are required to find a hash function that scans the resulting 

Signature Matrix (after executing all of the pre-defined number of permutations) and has the ability 

to hash similar documents to the same bucket with high probability, while at the same time it works 

in a manner that dissimilar documents are improbable to be hashed into the same bucket. A hashing 

function that does the trick could work like this: 

‘’Given the resulting Signature Matrix, sourcing from the initial Document Matrix of unique 

shingles, divide it into b-bands of r-rows each. After doing so, hash separately each band to a 

bucket and, if two documents have at least one pair of bands hashed into the same bucket, then 

consider them as a candidate for being similar‘’. 

A visual example of the above is given below (Figure 3.5) considering four permutations for three 

documents: 
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In the above example, we can see that the two identical bands of Document 1 and Document 2 

are indeed hashed into the same bucket. Thus, this pair of documents can be considered as a 

candidate pair for being similar. 

3.2 LSH Recommender Engine: The concept of an LSH Forest 

In this sub-section, the concept of LSH Forest will be briefly discussed. The main idea is to 

implement LSH in order to address the problem of indexing high-dimensional data (such as a 

matrix of distributed representations of text) with the purpose of answering similarity-search 

queries. The indexing scheme known as LSH Forest is a scheme that deals directly with this 

problem. 

Again, we begin by mentioning the initial problem of finding the most similar objects to a given 

object. Even though there are a lot of applications where the aforementioned problem is present 

and its solution is itself a service (e.g. finding similar Web Pages to a given Web Page, similar 

images or videos), the reader should always keep in mind that we are mainly interested in the 

problem of having a specific text document and, given this, we require the most similar to the 

former text documents. 

We have already mentioned the fact that, given a specific data source (i.e. a dataset T), the exact 

k-nearest search solution requires an infeasible amount of computations. One solution to this is to 

No of Bands: 

b=2 

                 

          Documents 

Doc 1 Doc 2 Doc 3 

  
  
  
  
  
  
  

P
er
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u
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o
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1 1 

 

1 

1 

 

1 

11 

 

5 2 

3 1 

 

4 

4 

 

4 

2 

 

1 4 

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

Figure 3. 5: Identical bands (b=2) for different documents are hashed into the same bucket 
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develop indexes that, given any query (t ∈ T), select only a small subset of candidate objects to 

compare the query against. The best indexes are empowered with the following properties: 

a. Accuracy: The returned candidates should indeed be similar (within an acceptable pre-defined 

error) to the query object  

b. Efficient Queries: The number of returned candidates must be small in order to avoid 

unnecessary I/O 

c. Efficient Maintenance: The index should be built in a single scan of the dataset, while any 

inserts or object removals should be efficient 

d. Domain Independence: There should be no need for targeted tuning of parameters for different 

data sources 

e. Minimum Storage: The index should use as little storage as possible. 

For example, one of the best indexing schemes is the B+ Tree. The B+ Tree is, by hand, accurate, 

thus satisfying property a. Querying with a B+ Tree is also pretty efficient, requiring at most 

O(logn) disk reads, and one sequential scan. As long as inserts and deletes from the disk are 

concerned, the B+ Tree requires only O(logn) disk writes per insert/delete. It is also domain-

independent: The only requirement is to specify the comparison function in the domain. Finally, it 

uses only O(n) storage space. As one can see, this approach is interwoven with each and every one 

of the aforementioned five properties of a good index. The LSH Forest is a specific index scheme 

used for approximate search queries that also meets all of the above properties. It is based on 

Locality Sensitive Hashing scheme: Objects are hashed using a special locality sensitive hashing 

function, such that similar objects are much more likely to end up in the same bucket than non-

similar objects and, after that, the objects that are hashed to the same bucket with the query are 

compared with it in order to come up with the most similar objects to the query. It is easy to observe 
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that such a functionality is, of course, the functionality of a recommendation engine. The idea is 

explained in Algorithm 3.2: 

 

 

 

 

 

 

 

 

Algorithm 3. 2:  General Idea of the LSH Forest Algorithm 

Examples of similarity measures include Jaccard similarity, which we have already seen in former 

sections. It is crucial to mention that, even though LSH Forest is not guaranteed to produce the 

best solution (in terms of Nearest Neighbors search amongst all t ∈ T), the returned documents are 

guaranteed to have a similarity within a fixed error ε of the optimal solution. 

We will not enter into any further details of the inside functionality of LSH Forest. An in depth 

understanding of the inside functionality of the LSH Forest algorithm goes beyond the scope of 

our main purpose. For further information, the reader is encouraged to have a look at the existing 

bibliography (i.e. Bawa, Condie, Ganesan, 2005). 

On the contrary, we are extremely interested on applying the concept of Locality Sensitive Hashing 

and LSH Forest to the Entity Resolution Task itself. It is quite possible that the reader is already 

capable of putting everything together:  

After training a classifier C on a training set using an approach similar to what is described in 

Algorithm 2.2, all we are left with is a classifier that, given a new tuple pair (t,t’) and performing 

the necessary mapping of the tuple to its similarity vector, is able to output whether the tuple is a 

matching or a non-matching entity pair. 

Algorithm 3.2 

Let a text query q and a set T of text documents, each one of them denoted as t ∈ T. 

1: At query time, perform LSH on the context of T, including the query q (as 

described in section 3.1).  

 

2: Calculate the similarity: Sim([tq,q]) between the query q and all tq ∈ T, where tq 

denotes all the documents that are hashed into the same bucket with q during LSH 

(candidate answers) 

 

3: Return the n-most similar to q objects as an answer (with n being pre-defined) 
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The question to be answered, however, is this: Given two datasets T1 and T2, is it possible to 

extract the matching entities between the two datasets? Having a trained classifier is not enough 

in terms of efficiency: The obvious solution is to use C in order to test all possible combinations 

between T1 and T2. This is, however, extremely inefficient as we have already stated. 

And this is also the part where the LSH Forest comes into play: We can use it to avoid testing 

over all possible combinations. In fact, we can use it to only extract a certain and controllable 

amount of possible candidate pairs and, thus, use C to test only upon these pairs. The whole 

procedure will be explained in detail in following sections (sub-section 6.1). 

 

4. Experimental Setup 

In the previous sections, we have managed to expose all the necessary theoretical aspects that are 

necessary in order to have clear supervision of the experimental methods that were used to address 

the ER task in this thesis. We have formally stated the ER task as well as the dataset entities that 

are present in the problem, we introduced the concept of distributed representations of words and 

text and metrics that provide us with the ability to measure how similar two pieces of text are. 

What is more, we explained the functionality of the DeepER system, which in fact uses the idea 

of distributed attribute representations in order to measure the similarity between the attribute 

values of two entities. The result is a mapping of a tuple pair (t,t’) to a m-dimensional vector 

(similarity vector), which actually holds the similarities of the attribute vectors of (t,t’). In return, 

given a training set of tuple pairs and their correspondent matching indicator, we are able to feed 

the similarity vector to a classifier C (such as a Dense Neural Network) and train it to classify pairs 

of tuples according to their ‘’match or no match’’ character. What is more, we provided a brief 

insight on how, after having trained such a classifier, we could use the idea of an LSH Forest in 

order to diminish the required computations in order to extract matching entities from two given 

datasets. 

In this section, we will expose our experimental setup on the Entity Resolution task, before 

introducing our approaches and results in the next sections. To be more specific, in this section: 
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1. We present two toy dataset groups that are specifically manipulated in order to deal with 

ER : The DBLP-Scholar Dataset Group and the Beer Advocate - Rate Beer Dataset 

Group. The reason why the term ‘’Dataset Group’’ is used is to note that, in each case, it 

is not a single table that expresses the totality of the information. In fact, as we will show 

in sub-section 4.1, each of the above groups consists of five (5) tables. 

2. We briefly mention all the technologies used in our experimentations, which mainly consist 

of several Python libraries. 

3. We present the pre-processing steps, applied to all respective Tables, in detail. 

4.1 Dataset Group Description: DBLP-Scholar and Beer Advocate-Rate Beer Data 

Sources 

In this sub-section, we provide all the necessary insight on both DBLP-Scholar and Beer 

Advocate-Rate Beer Dataset groups, including information of their dimensions, their origins and 

their attribute characteristics. 

A. The DBLP-Scholar Dataset Group 

The DBLP-Scholar dataset group consists of two unique tables: Table A and Table B, along with 

three tables used for training (train table), validation (valid table) and testing (test table) a Machine 

Learning matcher between A and B. 

Table A consists of 2.616 tuples from the DBLP online computer science bibliography database 

Each record-tuple in the table consists of five (5) attributes: id, title, authors, venue and year. The 

first column identifies uniquely each record in Table A. 

Table B consists of 64.263 tuples from Google Scholar websites, containing information for 

scholarly papers. Each record-tuple in the table consists of five (5) attributes: id, title, authors, 

venue and year. The first column identifies uniquely each record in Table B. 

For each of the above tables, we provide the reader with an indicative row-tuple of the table so 

that it is easier for him/her to keep track of the table schema: 
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 T

A
B

L
E

 B
 

id title authors venue year 

4 the role of 

faculty 

advising in 

science and 

engineering 

jr 

cogdell 

new 

directions 

for 

teaching 

and 

learning , 

1995 

 

Table 4. 1: Table-pair tuple example for Table A (2.616 rows) / Table B (64.263 row): DBLP-Scholar Dataset

It is easy to observe that both tables are of identical schemas: they both have the same attributes 

in the exact same order. 

The remaining three tables (Train, Valid and Test) store information of pairs of attributes and their 

matching or non-matching identification: To be more specific, all three of the train, valid and test 

tables consist of three (3) attributes : ltable_id (directly related to id column of table A), rtable_id 

(directly related to the id column of table B) and label (1 or 0 for match or no match ). 

Train table consists of 17.224 trainining pairs, Valid consists of 5.744 pairs for validation and 

tuning purposes, while Test consists of 5.744 pairs used for testing the Classifier after training. 

The last three tables were used to train, validate and test the Neural Network Classifier (more 

details for the NN-architecture will be provided in later sections). The way to do that is 

straightforward: We simply have to query Tables A and B for the id’s included in the three 

aforementioned tables. 

B. The Beer Advocate-Rate Beer Dataset Group 

The Beer Advocate-Rate Beer dataset group consists of two unique tables: Table A and Table B, 

along with three tables used for training (train table), validation (valid table) and testing (test table) 

a Machine Learning matcher between A and B. 

Table A consists of 4.344 tuples from the Beer Advocate database, storing information and ratings 

about beers. Each record-tuple in the table consists of five (5) attributes: id, Beer_Name, 

Brew_Factory_Name, Style and ABV. The first column identifies uniquely each record in Table 

A.  

  
  
  
  
 T

A
B

L
E

 A
 

id title authors venue year 

1 sql/xml 

is 

making 

good 
progress 

a 

eisenberg , 

j melton 

sigmod 

record 

2002 
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Table B consists of 3.000 tuples from Rate Beer database. Each record-tuple in the table consists 

of five (5) attributes: id, Beer_Name, Brew_Factory_Name, Style and ABV. The first column 

identifies uniquely each record in Table B. 

 

 

      Table 4. 2: Table-pair tuple example for Table A (4.344 rows) / Table B (3.000 rows): Beer Advocate-RateBeer Dataset 

Same as with DBLP-Scholar dataset, both tables A and B of Beer Advocate-RateBeer are of 

identical schemas. 

The remaining three tables (Train, Valid and Test) store information of pairs of attributes and their 

matching or non-matching identification, in the exact same way as with DBLP-Scholar. All three 

of the train, valid and test tables consist of three (3) attributes: ltable_id (directly related to id 

column of table A), rtable_id (directly related to the id column of table B) and label (1 or 0 for 

match or no match ). 

Train table consists of 270 trainining pairs, Valid consists of 93 pairs for validation and tuning 

purposes, while Test consists of 93 pairs used for testing the NN-Classifier after training. 

Both DBLP-Scholar and Beer Advocate-Rate Beer dataset groups can be downloaded and 

experimented upon from GitHub: https://github.com/zhao1701/extending-deep-ER#background 

 

 

   
   

  
TA

B
LE

 A
 

id Beer_Name Brew_Factory_Name Style ABV 

1 Fat Tire Amber Ale New Belgium Brewing American Amber / 
Red Ale 

5.2% 

   
 T

A
B

LE
 B

 id Beer_Name Brew_Factory_Name Style ABV 

9 Battlefield Brew Works 
Red Circle Ale 

Battlefield Brew Works Irish Ale 5.2% 

https://github.com/zhao1701/extending-deep-ER#background
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4.2 Python Libraries – Technologies used in the Experiments 

In this sub-section, we take a small break from the theoretical and analytical part of the thesis: we 

will briefly mention some technological utilities that were used throughout the experimental 

procedure. It is important for the reader to have a clear picture on these technologies, since he/she 

might feel the need to reproduce either the pre-processing or the modelling part of our analysis. In 

the experiments, we strictly used Python 3.6 through the Anaconda distribution. As a result, all of 

the following packages-libraries are compatible with Python 3.6 version. 

 

Anaconda distribution 

Anaconda is an open-source distribution. It is considered as one of the top software distributions 

for performing Data Science and Machine Learning. Among others, Anaconda provides access to 

Jupyter Notebook, which served as the main environment for the programming part of our 

Analysis. 

Jupyter Notebook   

The Jupyter Notebook is an open-source web application that allows you to perform coding in 

Python programming language in the form of a typical notebook. Uses include: data cleaning and 

transformation, numerical simulation, statistical modeling, data visualization, machine learning 

etc. 

Pandas Library 

Pandas is an open-source Python library that is mainly constructed around the idea of dataframes. 

A dataframe is a direct way of representing a dataset in row-column format inside a programming 

environment. In our case, all of the aforementioned tables (sub-section 4.1) were manipulated after 

being imported in the form of Pandas Dataframes. 

Matplotlib 

Matplotlib is the main Python library for producing high-quality visualizations. It was extensively 

used for plotting figures regarding the training and validation accuracy of the NN-classifiers during 
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training, as well as plotting curves for validating and testing its classification power (ROC curves, 

Precision- Recall Curves) 

Numpy 

Numpy is the core package of Python for scientific computing. It contains, among others: 

- The ability to express an N-dimensional vector as an N-dimensional Numpy array, as well 

as the ability to express NxM-dimensional matrices with NxM-dimensional Numpy arrays 

- Sophisticated statistical functions (mean, mode, median, min, max etc.) 

- High-Level Linear Algebra functionalities, such as matrix operations or equation sovling 

 

The Numpy package was consistently used throughout the totality of our experimentations in order 

to perform operations between Tables and vectors ( mainly vectors representing the distributed 

representation of text attributes or their concatenation) 

Scikit-Learn 

Scikit-Learn is an open-source High-Level python library used mainly for building Machine 

Learning applications. It allowed us to express the training, validation and test data tables into a 

format that can be understood by Keras, which was the main tool for building the NN classifiers 

(see below). Not only this, but Scikit-Learn also provides useful ML functionalities (confusion 

matrices, classification metrics, ROC-AUC functions etc.) 

Num2words 

Num2words is a library that converts numbers like 32 to words like thirty-two. The library was 

used to convert all numbers included in our data to words, so that it is easier for Spacy to capture 

the semantic meaning of a number in the data. It is also worth mentioning that DeepER does not 

support this functionality. For DeepER to support numerical attributes, it converts them to strings, 

transforming for example a given number 1 to ‘1’. However, this approach is not optimal, since 

the semantic meaning of a text value like ‘1’ is not easily captured by the models that map text to 

word vectors. Such a mapping is more accurate and robust if we transform a number into its 

respective lexical phrase: 15 → ‘fifteen’. 
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NLTK ( Natural Language Toolkit ) 

NLTK is an open-source Natural Language Processing Python Library. It includes interfaces to 

over 50 corpora resources and  provides, among others, a wide variety of text processing utilities. 

In our case, it was mainly used for text tokenization, lemmatization and stop-words removal from 

text. 

Spacy 

Spacy is an open-source software library, widely used for Natural Language Processing. In contrast 

to NLTK, which is commonly used for academic purposes, Spacy is mainly used in the industry 

for production purposes. Spacy offers a fair amount of features, some of which are used for: 

- Non-Destructive tokenization 

- Named Entity Recognition 

- Statistical Models for 10 languages and 1 Multi-Language Model 

- Pre-trained word vectors 

It is important to explain the ‘Pre-trained word vectors’ utility of spacy, since it was extensively 

used in order to obtain vectors for text sequences of words. In other words, any distributed 

representation of words or phrases (i.e. attribute embeddings, as we will se later) was obtained 

using Spacy.  

We have already mentioned that similarity between words or phrases is determined by comparing 

word or phrase vectors respectively. Such vectors can be generated by using one of the algorithms 

that were discussed in sub-section 2.2 (word2vec, Glove, fast-text). 

Spacy includes pre-trained word vectors for a bunch of languages, including the English Language. 

Spacy assigns 300-dimensional vectors to words, which are generated using the Glove algorithm 

on Common Crawl ( https://registry.opendata.aws/commoncrawl/ ).  

Spacy assigns vectors to sequences of words simply by averaging the word vectors assigned to 

each word token of the sentence (exactly as indicated by Algorithm 2.1), assigning a text sentence 

to a new 300-dimensional ‘sentence’ vector. 

https://registry.opendata.aws/commoncrawl/
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Keras 

Keras is a high-level Neural Network API, written in Python and running on top of either 

Tensorflow, CNTK or Theano. It offers a huge amount of utility and provides the user with the 

ability to generate Neural Network implementations and experiment upon them extremely fast. 

As we will see later, Keras was used for creating both Simple Dense and CNN Neural Network 

architectures for classification of matching pairs (t,t’). 

Datasketch 

Datasketch is an open-source Python library that provides probabilistic data structures that can 

process large amount of data very fast. It is also equipped with functions like MinHash and 

MinHashLSH Forest that enables the user apply LSH on text documents. The package was 

extensively used in our experimentations (mainly described in section 6) 

4.3 Dataset Pre-Processing: Attribute Texting and Text Cleaning 

Having already established the underpinning of our workflow, we are almost ready to dive into the 

methodology of the experiments and the results. Before we get into any further detail on the 

substantial part of the experiments and the Deep Learning approaches on the ER task, it is crucial 

to present all parts of the pre-processing procedure. 

It should be obvious by now that the Entity Resolution problem is inherently a Text Analysis 

problem. The reason for that is that, when we are trying to match tuples that refer to the same real-

world entity between two datasets T1 and T2 (considering for now the simplistic case where T1 and 

T2 have identical schemas), we need to see the attributes of both T1 and T2 as text sentences. As 

such, it is essential to perform all the appropriate text cleaning and text pre-processing steps on 

both datasets. Keeping in mind that the same cleaning and pre-processing steps were applied to 

both DBLP-Scholar and Beer Advocate-Rate Beer datasets, we display a common pre-

processing procedure step-wise: 
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1.Replacing Missing Values 

To begin with, all missing attribute entries were imputed, using different approaches depending 

on the type of the attribute. To be specific, the ‘most common attribute’ approach was applied to 

string type attributes ( that is, dataset attributes that contain text values), while any missing values 

on numerical attributes were replaced with the median of the respective attribute-column. 

For the better understanding of the reader, an example regarding tables A and B of DBLP-Scholar 

dataset group is given: (aliases int for integers, float for floats and str for strings are used). 

DBLP-Scholar Dataset : TableA → [id(int), title(str), authors(str),venue(str) , year(int)] 

         TableB → [id(int), title(str), authors(str),venue(str) , year(int)] 

For the above Tables, any missing values on title, authors and venue attributes were imputed using 

the most common string value of the respective attribute ( of course, taking into account only the 

valid non-missing entries of the column). For year column, the median value of the column was 

used. 

The same approach was used for the imputation of Beer Advocate-Rate Beer dataset (tables A and 

B of the Beer Advocate-Rate Beer dataset group). 

NOTING:The aforementioned imputation part was not applied to the Concatenated String 

approach for any of the above dataset groups., only to the Attribute Similarity Approach, both 

explained in detail in Section 5. 

2. Texting all Attributes: Mapping numbers to their lexical analogous. 

As explained before, it is essential to treat each attribute as a text attribute. For this reason, all 

numerical attributes were transformed to a text attribute using num2words package. For example, 

consider the following phrase: ‘how system 11 sql server became fast’. After the pre-described 

mapping, such a phrase is transformed to: ‘how system eleven sql server became fast’. As discussed 

before, it is much easier and accurate to assign an embedding vector to the word ‘eleven’ than to 

the pseudo-word ‘11’. The previous phrase was an actual attribute value of the title column of 

DBLP-Scholar Table A. 
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3. Solving the ‘’number + string’’ problem 

As explained before, we wish to convert all numerical values (possibly found in any attribute of 

any dataset) to their lexical analogous. However, in some cases of data values, we encountered a 

tiny problem when trying to do so. We will explain this problematic situation with the following 

example:  

We consider the following phrase as an actual attribute value: ‘scalability and availability in 

oracle7’. For such a case, where a number stacks with a word (here, oracle7), Spacy is unable to 

assign an actual word embedding to it. This is only to be expected, since the vocabulary used in 

order to obtain word vectors from actual words does not take into account such peculiar cases of 

‘string + number’. However, splitting the word ‘oracle7’ to ‘oracle 7’ and then mapping to ‘oracle 

seven’ with num2words does the trick, assigning good word vectors to each and every one of the 

above words included in the sequence. This is exactly what we did in order to proceed.  

After this step, all attribute-values in tables A and B (both for DBLP-Scholar and Beer Advocate-

Rate Beer dataset groups) are converted to text, with no numbers included in them. 

4. Removing stop words 

Having all tables in strict text form, standard stop word removal was applied using Spacy’s stop 

words removal functionality. Spacy provides a list of stop words for the English corpora that is 

trained on (including punctuation and usual words like ‘a’, ‘the’ etc.) 

5. Lemmatization 

Lemmatization was also applied to every word included in any attribute value. 

Lemmatization in Text Analytics is the process of grouping together the inflected forms of a word, 

identified by the word's lemma. For example, the word ‘caring’ is mapped to its lemma ‘care’ after 

the lemmatization procedure. 
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NOTING: Stemming NOT performed 

During the validation of the models, severe downgrade of the classifiers’ performance was 

observed after performing stemming. The reason for this is that Spacy’s vocabulary does not 

provide pre-trained vectors for a wide variety of stemmed words. As a result, stemming was not 

included in our pre-processing steps. 
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5. Approaching Entity Resolution with Deep Learning 

It is time to expose our experimental methodology and results on the Entity Resolution task, as 

well as our thoughts on them. At this point, the reader should recall one of the two main purposes 

of this thesis: Given two datasets T1 and T2 amongst which we need to extract matching entities, 

we want to experiment upon the ability of dealing creating a Deep Learning framework that 

accounts for partial or total misalignement between the schemas of T1 and T2. 

In order to do so, we suggest two different methodologies:  

The first one roots directly from the DeepER framework, which is extensively presented in sub-

section 2.3, and it practically follows the methodology of DeepER with a single but important 

differentiation: It assumes that some of the attributes of T1 and T2 are indeed well aligned, while 

the remaining attribute pairs between the two datasets are not or, to be more accurate, that we do 

not have any information indicating total attribute alignment between T1 and T2. The way to go 

here is to concatenate the context of all the attributes that are considered as misaligned between T1 

and T2 and come up with a new ‘merged’ attribute for both T1 and T2. Then, using the same 

methodology as DeepER, we can proceed with attribute similarity calculations between pairs of 

attributes: All pairs of aligned attributes between T1 and T2 will be compared to each other, while 

the newly formed ‘merged’ attributes of T1 and T2 (containing the context of all the misaligned 

attributes in concatenated format) will be compared to each other. The rest is straightforward: 

Having a set of ‘similarity’ vectors for loads of pairs of entities, each one consisting of similarity 

measurements of all the aligned attributes and one similarity measurement between the ‘merged’ 

attribute of T1 and T2, we are able to train a classifier as indicated by Algorithm 2.2. We call this 

approach ‘Attribute Similarity Approach’, as it is in fact a generalization of the DeepER 

framework. In the experiments, we assumed an increasing amount of misaligned attributes 

between the tables of both DBLP-Scholar and Beer Advocate-RateBeer datasets. 

The second methodology is slightly different. In fact, it does not include any similarity 

measurements at all. In short terms, the idea is to concatenate the entire context of an entity t1 ∈ 

T1 with the entire context of an entity t2 ∈ T2 (that is, all the text attributes of a single entity) and 

come up with a single text representing the entity-pair (t1, t2). After that, we can map this 
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concatenated text to its word vector. We refer to this newly formed vector as entity-pair vector 

(vector of 300-dim using Spacy) and train a Neural Network Classifier directly with it.  

The idea is to treat each dataset entity as a large sentence, consisting of the context of all its 

attribute values in text format. Then, by concatenating these ‘large sentences’ of two candidate 

entities into one ‘entity pair sentence’, we can perform a mapping to an embedding vector, which 

in turn, represents the context of the entity-pair and feed a classifier with it. We call this approach 

‘Concatenated Strings Approach’. 

In the following sub-sections, a clear explanation for each one of the above approaches is provided, 

so that the reader clearly understand how both of these methods work. In addition, the results of 

each experimental approach are given (applied to both DBLP-Scholar and Beer Advocate-

RateBeer), along with some thoughts on the experimental results. 

5.1 Inserting agnosticism on schema alignment 

A. Attribute Similarity Approach 

Let two tables A and B, each one of them being related to its own attribute schema: A has m-

attributes and B has j-attributes (m, j ∈ R). It is crucial to realize that m and j are not necessarily 

equal, but they could be. Let us also consider the sets of their entity tuples set[A], set[B]. Of course, 

for an entity ta that is included in table A stands that: ta ∈ set[A], while for an entity tb of table B 

stands that: tb ∈ set[B]. Furthermore, we consider the respective attributes of each table: 

[A1,A2,….,Am] = the set of attributes of Table A, while [B1,B2,….,Bj] = the set of attributes of 

Table B. Finally, let us consider for simplicilty that the two tables have only the first two attributes 

aligned to each other, while the remaining m-2 attributes of A and j-2 attributes of B present no 

alignment with one another. Our goal is to concatenate the context of all misaligned attributes to a 

single attribute (Merged Attribute) using simple string concatenation for each table separately. 

A visual example-description of the above procedure is provided below (Tables 5.1 and 5.2): 

The reader should keep in mind that we are coloring aligned attributes with the same color (blue 

or red), while the misaligned attributes are colored in black. After the merging procedure, the 

merged attributes are colored in purple. 
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                                        TABLE A 

Entities Attribute 

A1 

Attribute 

A2 

…… Attribute 

Am-1 

Attribute 

Am 

ta1 ta1[A1] ta1[A2]  ta1[Am-1] ta1[Am] 

ta2 ta2[A1] ta2[A2]  ta2[Am-1] ta2[Am] 

ta3 ta3[A1] ta3[A2]  ta3[Am-1] ta3[Am] 

…… …… …… …… …… …… 

Table 5. 1: Pair of tables example for the Attribute Similarity Approach (1) 

It is important to note that the attribute values of both tables A and B are subject to all the pre-

processing steps, as explained in 4.3. This implies that a single attribute value tai[Ak] = attribute 

value of Ak for the entity tai ∈ set[A] is converted to text, cleaned and pre-processed. 

Keeping that in mind, the next step is this: For each entity tai of Table A and tbi of Table B, we 

concatenate the context of the misaligned attributes to a single ‘Merged’ attribute using 

simple string concatenation. So, the new tables A’ and B’ look like this: 

                                     TABLE A’ 

Entities Attribute A1 Attribute A2 Merged 

Attribute A 

ta1 ta1[A1] ta1[A2] ta1[Merged] 

ta2 ta2[A1] ta2[A2] ta2[Merged] 

ta3 ta3[A1] ta3[A2] ta3[Merged] 

Table 5. 2:Pair of tables example for the Attribute Similarity Approach (2) 

Now, keeping in mind that there is already information on the alignment of A1 → B1 and A2 → B2, 

we also assume the alignment: Merged Attribute A → Merged Attribute B     

Here comes the exciting part: What are we left with after the aforementioned procedure? 

Technically, we are left with two tables A’ and B’ that are perfectly attribute-aligned!  

In the case where we are also equipped with training, validation and test sets in the same format 

as described in sub-section 2.3 ( A training dataset (S) with n-rows ,that contains pairs of ID’s of 

tuples t1,t2 ∈ set[T] as well as a binary indicator of whether such a pair consists a match (1) or not 

(0) ), one could directly proceed with implementing all the steps 1-5 exactly as described in 2.3. 

                                        TABLE B 

Entities Attribute 

B1 

Attribute 

B2 

…… Attribute 

Bj-1 

Attribute 

Bj 

tb1 tb1[B1] tb1[B2]  tb1[Bj-1] tb1[Bj] 

tb2 tb2[B1] tb2[B2]  tb2[Bj-1] tb2[Bj] 

tb3 tb3[B1] tb3[B2]  tb3[Bj-1] tb3[Bj] 

…… …… …… …… …… …… 

                                   TABLE B’ 

Entities Attribute B1 Attribute B2 Merged 

Attribute B 

tb1 tb1[B1] tb1[B2] tb1[Merged] 

tb2 tb2[B1] tb2[B2] tb2[Merged] 

tb3 tb3[B1] tb3[B2] tb3[Merged] 
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That is, after constructing the new tables A’ and B’, we are mimicking the DeepER framework: 

Given two candidate tuples (ta’,tb’) where ta’ ∈ set[A’] and tb’ ∈ set[B’], we perform a mapping to 

their similarity vector and train a classifier C, exactly as described in Algorithm 2.2. 

For each candidate pair of tuples (ta’,tb’), the similarity vector is a 3-dimensional vector: the first 

two dimensions refer to the similarity of the aligned attribute values [A1,B1] and [A2,B2], while the 

last dimension refers to the similarity of the Merged attributes [Merged Attribute A, Merged 

Attribute B] (denoted from now on as [ Merged[A], Merged[B] ] for simplicity). This mapping is 

formally given by the following mathematical formula: 

The above example is assuming that only two pairs of attributes of the original schemas are 

aligned. Generalizing for more or less originally aligned attributes is trivial: Assuming k-originally 

aligned attributes between A and B, we construct two new tables A’ and B’ of k+1 attributes each 

and repeat the procedure as explained above. The similarity vector for a tuple-pair candidate will 

be a (k+1)-dimensional vector, fed to a classifier C (in our case, C will be a Neural Network 

classifier) using a training set, validated and tested upon a validation and test set respectively. It is 

also worth mentioning that the special case k=0 implies total agnosticism for the two schemas.. 

B. Concatenated Strings Approach 

Let us consider again two tables A and B, each one related to its own attribute schema: A has m-

attributes and B has j-attributes (m, j ∈ R). Furthermore, we consider the respective attributes of 

each table: [A1,A2,….,Am] = the set of attributes of Table A, while [B1,B2,….,Bj] = the set of 

attributes of Table B. However, this time we make no assumptions about the alignment of any 

attributes between table A and B. Let us also consider the sets of their entity tuples set[A], set[B]. 

Of course, for an entity ta that is included in table A stands that: ta ∈ set[A], while for an entity tb 

of table B stands that: tb ∈ set[B]. 

The aforementioned tables should look like this (Table 5.3) 

 

(ta’,tb’) → Sim[(ta’,tb’)]= [Sim( ta’[A1], tb’[B1] ), Sim( ta’[A2], tb’[B2] ), Sim( ta’[Merged[A]], 

tb’[Merged[B]] )]     
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                                        TABLE A 

Entities Attribute 

A1 

Attribute 

A2 

…… Attribute 

Am-1 

Attribute 

Am 

ta1 ta1[A1] ta1[A2]  ta1[Am-1] ta1[Am] 

ta2 ta2[A1] ta2[A2]  ta2[Am-1] ta2[Am] 

ta3 ta3[A1] ta3[A2]  ta3[Am-1] ta3[Am] 

…… …… …… …… …… …… 

Table 5. 3: Pair of tables example for the Concatenated Strings Approach (1) 

Each attribute value of tai[Ak] of A is subject to text converting, as explained in 4.3. The same 

stands for every attribute value tbi[Bk] of B. 

Let us now consider a single entity tai ∈ set[A]. This entity can be represented by its attribute 

values: tai = [ tai[A1] , tai[A2] , ……, tai[Am] ]. Since each and every one of tai[Ak]: k ≤ m, is indeed 

in textual format, we can concatenate all these attribute values into a single string ( simple string 

concatenation ). 

 

The new concatenated string is now considered as the new representation of the tuple entity tai. 

Let us also perform the same mapping to an entity tbi ∈ set[B]: 

           

Applying the above mappings to all entities tai of A and tbi of B, we have indirectly constructed 

two new tables A’ and B’, each one consisting of a single ‘concatenated’ column (Table 5.4). 

To make it clear, we could think the tables A’ and B’ as column tables. This single column of each 

one of the new tables embraces the totality of the information that was originally available in tables 

A and B, respectively.   

This move enables us to ignore the dataset schemas. The problem of matching entities with many 

attribute values is now transformed to the problem of matching text columns 

                                        TABLE B 

Entities Attribute 

B1 

Attribute 

B2 

…… Attribute 

Bj-1 

Attribute 

Bj 

tb1 tb1[B1] tb1[B2]  tb1[Bj-1] tb1[Bj] 

tb2 tb2[B1] tb2[B2]  tb2[Bj-1] tb2[Bj] 

tb3 tb3[B1] tb3[B2]  tb3[Bj-1] tb3[Bj] 

…… …… …… …… …… …… 

tai = [ tai[A1] , tai[A2] , ……, tai[Am] ] → [ tai[A1] + tai[A2] + ……+ tai[Am] ]     

 

tbi = [ tbi[B1] , tbi[B2] , ……, tbi[Bj] ] → [ tbi[B1] + tbi[B2] + ……+ tbi[Bj] ]      
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                         TABLE A’ 

Entities Concatenated Attribute A 

( Concat[A] ) 

ta1 ta1[A1] + ta1[A2] + ……+ 

ta1[Am] 

ta2 ta2[A1] + ta2[A2] + ……+ 

ta2[Am] 

ta3 ta3[A1] + ta3[A2] + ……+ 

ta3[Am] 

…… ………………………. 

Table 5. 4: Pair of tables example for the Concatenated Strings Approach (2) 

Let us now consider a training set (S) consisting of pairs of candidate tuples (in the same format 

as described in 2.3: Step 1).  

For a candidate pair (tai,tbk) included in (S), we can directly concatenate tai[Concat[A]] and 

tbk[Concat[B]]*. Now, the candidate pair (tai,tbk) is represented by a single text: 

 

  

The final step is to map the new string to its related word vector: We apply Algorithm 2.1 and map 

Concat[A+B] to its vector representation ( using Spacy, that is a 300-d numerical vector ). 

By repeating this procedure for all candidate pairs included in S, we are left with a training set of 

candidate tuple-pairs, where each pair is represented by its word vector. Since S also includes a 

matching indicator (1 for match and 0 for no match), we can use the tuple-pair concatenated vectors 

along with their match indicator to directly train a Neural Network Classifier. 

If one is also equipped with a validation and a test set (which is indeed the case for DBLP-Scholar 

and Beer Advocate-RateBeer datasets), it is easy to validate and test the trained classifier. 

The approach is completely schema agnostic and does not include any similarity measurements. 

 

                         TABLE B’ 

Entities Concatenated Attribute B 

( Concat[B] ) 

tb1 tb1[B1] + tb1[B2] + ……+ 

tb1[Bj] 

tb2 tb2[B1] + tb2[B2] + ……+ 

tb2[Bj] 

tb3 tb3[B1] + tb3[B2] + ……+ 

tb3[Bj] 

…… ……………………… 

(tai,tbk) → tai[Concat[A]] + tbk[Concat[B]] = Concat[A+B] = Concatenated String of  

tai[Concat[A]] and tbk[Concat[B]]   
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5.2 Attribute Similarity Approach: 4/4 Aligned Attributes 

The experimental results for the case of total attribute alignment, both for DBLP-Scholar and 

Beer Advocate-RateBeer dataset groups, are presented in this sub-section. Aligned attributes are 

similarly colored. The assumed ‘not-aligned’ columns are merged into a single ‘merged’ 

column. The id column was only used to match Table A and Table B entities according to the 

corresponding id pairs of Train, Valid and Test tables.  

A. DBLP-Scholar Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, title, authors, venue, year] 

Table B → [id, title, authors, venue, year] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 4 neurons (compatible to the 4-dim similarity vectors fed to the network), 

followed by 3 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of 

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch 

characterization). A visual presentation of the network’s architecture (Figure 5.1) as well as its 

hyperparameter configurations are provided below:  

 

 

 

 

4-d Similarity Vectors for each entity-pair 

    Similarity Metric : Cosine Similarity 
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 Figure 5. 1: Visual Representation of the trained Dense Model (4/4 Attribute Alignment DBLP-Scholar) 
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• Training, Tuning and Learning Curves 

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included 

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table 

5.5. After each epoch, the Network used its current weights to predict on the Validation set. Based 

on its accuracy, the values of the loss function directed the optimization procedure (typical Back 

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure 

5.2), depicting both Accuracy and Cross-Entropy Loss values during training. 

 

                   

 

Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. The reader should keep in 

mind that Validation Set was used to tune the Network during training, so the results are only 

indicative. They cannot be trusted to infer the classifier’s ability to generalize on unseen data. The 

results are provided below: A Classification Report Matrix is given in Table 5.6 providing all 

the necessary insight on the results. Table 5.7 is a Confusion Matrix and it depicts the entity-pairs 

assignment to classes of Non-Match (0) or Match (1): 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.0001 

No of Epochs 748 

Batch Size 17223 

Figure 5. 2: Learning Curves during Training  Table 5.5: Network Hyper-Parameter Values 
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Class Precision Recall F1-

Score 

Support 

 0  0.95 0.97 0.96 4672 

1  0.87 0.78 0.82 1070 

Macro 

Avg 

0.91 0.88 0.89 5742 

 Weighted 

Avg 

0.94 0.94 0.94 5742 

Total 

Accuracy 

0.94 

 

                                                                                                                                         

 

• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test 

data. Table 5.8 is a Classification Report Matrix on Test set. At the same time, the correspondent 

Confusion Matrix is given in Table 5.9. Finally, the AUC curve of the NN-Model is given in 

Figure 5.3: 

 

 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4551 121 

Actual Class 1 237 833 

Class Precision Recall F1-

Score 

Support 

 0  0.95 0.97 0.96 4672 

1  0.87 0.77 0.82 1070 

Macro 

Avg 

0.91 0.87 0.89 5742 

 Weighted 

Avg 

0.94 0.94 0.94 5742 

Total 

Accuracy 

0.94 F1 Score 0.82 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4553 119 

Actual Class 1 244 826 

Table 5. 6: Classification Report on Validation Set)                          Table 5. 7: Confusion Matrix on Validation Set  

Table 5. 8: Classification Report on Test Set  Table 5. 9: Confusion Matrix on Test Set  
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Figure 5.3: ROC Curve and Area Under Curve (AUC 

computation) using predictions on Test Set. The graph 

refers to the case of total alignment between Table A 

and Table B attributes  

 

 

 

B. Beer Advocate-RateBeer Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, Beer Name, Brew Factory Name, Style, ABV] 

Table B → [id, Beer Name, Brew Factory Name, Style, ABV] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 4 neurons (compatible to the 4-dim similarity vectors fed to the network), 

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2 

neurons (compatible with match-mismatch characterization). A visual presentation of the 

network’s architecture (Figure 5.4) as well as its hyperparameter configurations are provided 

below:  

 

Figure 5. 4: Visual Representation of the trained Dense Model (4/4 Attribute Alignment Beer Advocate-RateBeer) 
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• Training, Tuning and Learning Curves 

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included 

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table 

5.10. After each epoch, the Network used its current weights to predict on the Validation set. Based 

on its accuracy, the values of the loss function directed the optimization procedure (typical Back 

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure 

5.5), depicting both Accuracy and Cross-Entropy Loss values during training. 

 

               

 

 

• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.11, providing all the necessary insight on the results. Table 5.12 is a 

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match 

(1): 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.0001 

No of Epochs 4.892 

Batch Size 268 

Dropout Rate 0.3 

Figure 5.5: Learning Curves during Training  
Table 5.10 :Network Hyper-Parameter Values  
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Class Precision Recall F1-

Score 

Support 

 0  0.94 0.97 0.96 77 

1  0.82 0.64 0.72 14 

Macro 

Avg 

0.88 0.81 0.84 91 

 Weighted 

Avg 

0.92 0.92 0.92 91 

Total 

Accuracy 

0.92 

 

 

 

 

• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data  

Table 5.13 is a Classification Report Matrix on Test set. At the same time, the correspondent 

Confusion Matrix is given in Table 5.14. Finally, the AUC curve of the NN-Model is given in 

Figure 5.6: 

 

 

   

Table 5. 13: Classification Report on Test Set                                      Table 5. 14: Confusion Matrix on Test Set 

 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 75 2 

Actual Class 1 5 9 

Class Precision Recall F1-

Score 

Support 

 0  0.95 0.96 0.95 77 

1  0.77 0.71 0.74 14 

Macro 

Avg 

0.86 0.84 0.85 91 

 Weighted 

Avg 

0.92 0.92 0.92 91 

Total 

Accuracy 

0.92 F1-Score 0.74 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 74 3 

Actual Class 1 4 10 

Table 5. 11: Classification Report on Validation Set  Table 5. 12: Confusion Matrix on Validation Set  
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5.3 Attribute Similarity Approach: 2/4 Aligned Attributes 

 The experimental results for the case of 2/4 attribute alignment, both for DBLP-Scholar and 

Beer Advocate-RateBeer dataset groups, are presented in this sub-section. Aligned attributes are 

similarly colored. The assumed ‘not-aligned’ columns are merged into a single ‘merged’ 

column. The id column was only used to match Table A and Table B entities according to the 

corresponding id pairs of Train, Valid and Test tables. 

A. DBLP-Scholar Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, title, authors, merged(venue+year)] 

Table B → [id, title, authors, merged(venue+year)] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 3 neurons (compatible to the 3-dim similarity vectors fed to the network), 

followed by 4 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of 

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch 

Figure 5.6: ROC Curve and Area Under 

Curve (AUC computation) using 

predictions on Test Set. The graph refers 

to the case of total alignment between 

Table A and Table B attributes 

3-d Similarity Vectors for each entity-pair 

    Similarity Metric : Cosine Similarity 
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characterization). A visual presentation of the network’s architecture (Figure 5.7) as well as its 

hyperparameter configurations is provided below:  

 

Figure 5. 7: Visual Representation of the trained Dense Model (2/4 Attribute Alignment DBLP-Scholar) 

 

• Training, Tuning and Learning Curves 

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are 

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values 

in Table 5.15. After each epoch, the Network used its current weights to predict on the Validation 

set. Based on its accuracy, the values of the loss function directed the optimization procedure 

(typical Back Propagation). Based on this, we provide the reader with the following Learning 

Curves (Figure 5.8), depicting both Accuracy and Cross-Entropy Loss values during training. 

 

             Figure 5.8: Learning Curves during Training                                        Table 5. 15  Network Hyper-Parameter Values  
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• Predicting on Validation Set  

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.16. Table 5.17 is a Confusion Matrix and it depicts the entity-pairs 

assignment to classes of Non-Match (0) or Match (1): 

Class Precision Recall F1-

Score 

Support 

 0  0.95 0.97 0.96 4672 

1  0.86 0.77 0.82 1070 

Macro 

Avg 

0.91 0.87 0.89 5742 

 Weighted 

Avg 

0.93 0.93 0.93 5742 

Total 

Accuracy 

0.93 

Table 5. 16: Classification Report on Validation Set                        Table 5. 17: Confusion Matrix on Validation Set 

• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test 

data. Table 5.18 is a Classification Report Matrix on Test set predictions. At the same time, the 

correspondent Confusion Matrix is given in Table 5.19. Finally, the AUC curve of the NN-Model 

is given in Figure 5.9 

 

 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4539 133 

Actual Class 1 241 829 

Class Precision Recall F1-

Score 

Support 

 0  0.95 0.98 0.96 4672 

1  0.88 0.76 0.82 1070 

Macro 

Avg 

0.91 0.87 0.89 5742 

 Weighted 

Avg 

0.93 0.94 0.93 5742 

Total 

Accuracy 

0.94 F1-Score 0.81 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4558 114 

Actual Class 1 255 815 

Table 5. 18: Classification Report on Test Set                                      Table 5. 19: Confusion Matrix on Test Set 
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Figure 5.9 : ROC Curve and Area Under Curve (AUC 

computation) using predictions on Test Set. The graph 

refers to the case of 2 out of 4 matching attributes 

between Table A and Table B (2/4 attribute alignment)  

 

 

 

B. Beer Advocate-RateBeer Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, Beer Name, Brew Factory Name, merged(Style+ABV)] 

Table B → [id, Beer Name, Brew Factory Name, merged(Style+ABV)] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 3 neurons (compatible to the 3-dim similarity vectors fed to the network), 

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2 

neurons (compatible with match-mismatch characterization). A visual presentation of the 

network’s architecture (Figure 5.10) as well as its hyperparameter configurations are provided 

below: 

 

Figure 5. 10: Visual Representation of the trained Dense Model (2/4 Attribute Alignment Beer Advocate-RateBeer) 
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• Training, Tuning and Learning Curves 

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included 

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table 

5.20. After each epoch, the Network used its current weights to predict on the Validation set. Based 

on its accuracy, the values of the loss function directed the optimization procedure (typical Back 

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure 

5.11), depicting both Accuracy and Cross-Entropy Loss values during training. 

 

      Figure 5.11: Learning Curves during Training                          Table 5. 20: Network Hyper-Parameter Values 

 

• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.21, providing all the necessary insight on the results. Table 5.22 is a 

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match 

(1): 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.0001 

No of Epochs 4.221 

Batch Size 268 

Dropout Rate 0.3 
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Class Precision Recall F1-

Score 

Support 

 0  0.93 0.99 0.96 77 

1  0.89 0.57 0.70 14 

Macro 

Avg 

0.91 0.78 0.83 91 

 Weighted 

Avg 

0.92 0.92 0.92 91 

Total 

Accuracy 

0.92 

 

Table 5.21: Classification Report on Validation Set                             Table 5. 22: Confusion Matrix on Validation Set 

 

• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data  

Table 5.23 is a Classification Report Matrix on Test set. At the same time, the correspondent 

Confusion Matrix is given in Table 5.24. Finally, the AUC curve of the NN-Model is given in 

Figure 5.12: 

 

   

Table 5. 23: Classification Report on Test Set                                      Table 5. 24: Confusion Matrix on Test Set 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 76 1 

Actual Class 1 6 8 

Class Precision Recall F1-

Score 

Support 

 0  0.94 0.96 0.95 77 

1  0.75 0.64 0.69 14 

Macro 

Avg 

0.84 0.80 0.82 91 

 Weighted 

Avg 

0.91 0.91 0.91 91 

Total 

Accuracy 

0.91 F1-Score 0.69 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 74 3 

Actual Class 1 5 9 
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5.4 Attribute Similarity Approach: 1/4 Aligned Attributes 

 The experimental results for the case of 1/4 attribute alignment, both for DBLP-Scholar and 

Beer Advocate-RateBeer dataset groups, are presented in this sub-section. Aligned attributes are 

similarly colored. The assumed ‘not-aligned’ columns are merged into a single ‘merged’ 

column. The id column was only used to match Table A and Table B entities according to the 

corresponding id pairs of Train, Valid and Test tables. 

A. DBLP-Scholar Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, title, merged(authors+venue+year)] 

Table B → [id, title, merged(authors+venue+year)] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 2 neurons (compatible to the 2-dim similarity vectors fed to the network), 

followed by 4 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of 

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch 

Figure 5.12: ROC Curve and Area Under 

Curve (AUC computation) using 

predictions on Test Set. The graph refers 

to the case of 2 out of 4 matching 

attributes between Table A and Table B 

(2/4 attribute alignment) 

2-d Similarity Vectors for each entity-pair 

    Similarity Metric : Cosine Similarity 
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characterization). A visual presentation of the network’s architecture (Figure 5.13) as well as its 

hyperparameter configurations is provided below:  

 

 

Figure 5. 33: Visual Representation of the trained Dense Model (1/4 Attribute Alignment DBLP-Scholar) 

 

• Training, Tuning and Learning Curves 

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are 

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values 

in Table 5.25. After each epoch, the Network used its current weights to predict on the Validation 

set. Based on its accuracy, the values of the loss function directed the optimization procedure 

(typical Back Propagation). Based on this, we provide the reader with the following Learning 

Curves (Figure 5.14), depicting both Accuracy and Cross-Entropy Loss values during training. 

                    

Figure 5.14: Learning Curves during Training                                Table 5. 25: Network Hyper-Parameter Value 
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• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.26. Table 5.27 is a Confusion Matrix and it depicts the entity-pairs 

assignment to classes of Non-Match (0) or Match (1): 

Class Precision Recall F1-

Score 

Support 

 0  0.94 0.96 0.95 4672 

1  0.79 0.73 0.75 1070 

Macro 

Avg 

0.86 0.84 0.85 5742 

 Weighted 

Avg 

0.91 0.91 0.91 5742 

Total 

Accuracy 

0.91 

Table 5.26: Classification Report on Validation Set                           Table 5.27: Confusion Matrix on Validation Set 

 

• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test 

data. Table 5.28 is a Classification Report Matrix on Test set predictions. At the same time, the 

correspondent Confusion Matrix is given in Table 5.29. Finally, the AUC curve of the NN-Model 

is given in Figure 5.15 

 

Table 5.28: Classification Report on Test Set                                      Table 5.29: Confusion Matrix on Test Set 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4462 210 

Actual Class 1 294 776 

Class Precision Recall F1-

Score 

Support 

 0  0.93 0.95 0.94 4672 

1  0.78 0.70 0.74 1070 

Macro 

Avg 

0.85 0.83 0.84 5742 

 Weighted 

Avg 

0.90 0.91 0.90 5742 

Total 

Accuracy 

0.91 F1-Score 0.73 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4458 214 

Actual Class 1 323 747 
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Figure 5.15: ROC Curve and Area Under Curve (AUC 

computation) using predictions on Test Set. The graph 

refers to the case of 1 out of 4 matching attributes 

between Table A and Table B (1/4 attribute alignment)  

 

 

B. Beer Advocate-RateBeer Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, Beer Name, merged(Brew Factory Name+Style+ABV)] 

Table B → [id, Beer Name, merged(Brew Factory Name+Style+ABV)] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 2 neurons (compatible to the 2-dim similarity vectors fed to the network), 

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2 

neurons (compatible with match-mismatch characterization). A visual presentation of the 

network’s architecture (Figure 5.16) as well as its hyperparameter configurations are provided 

below:  

   

Figure 5. 46: Visual Representation of the trained Dense Model (1/4 Attribute Alignment Beer Advocate-RateBeer) 

 

2-d Similarity Vectors 

for each entity-pair 

Similarity Metric : 

Cosine Similarity 

 

Input Layer 

2 neurons

Relu activation

Hidden Layer 

10 Neurons

Relu Activation

Dropout Rate

0.3

Output Layer

2 Neurons

Softmax Activation



70 
 

 

• Training, Tuning and Learning Curves 

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included 

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table 

5.30. After each epoch, the Network used its current weights to predict on the Validation set. Based 

on its accuracy, the values of the loss function directed the optimization procedure (typical Back 

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure 

5.17), depicting both Accuracy and Cross-Entropy Loss values during training. 

 

         Figure 5.17: Learning Curves during Training                          Table 5.30: Network Hyper-Parameter Values 

 

• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.31, providing all the necessary insight on the results. Table 5.32 is a 

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match 

(1): 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.001 

No of Epochs 18.330 

Batch Size 268 

Dropout Rate 0.3 
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Class Precision Recall F1-

Score 

Support 

 0  0.93 0.97 0.95 77 

1  0.80 0.57 0.67 14 

Macro 

Avg 

0.86 0.77 0.81 91 

 Weighted 

Avg 

0.91 0.91 0.91 91 

Total 

Accuracy 

0.91 

 

Table 5.31: Classification Report on Validation Set                           Table 5.32: Confusion Matrix on Validation Set 

 

• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data  

Table 5.33 is a Classification Report Matrix on Test set. At the same time, the correspondent 

Confusion Matrix is given in Table 5.34. Finally, the AUC curve of the NN-Model is given in 

Figure 5.18: 

 

 

   

Table 5.33: Classification Report on Test Set                                          Table 5.34: Confusion Matrix on Test Set 

 

 

N total = 91 Predicted Class 
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Predicted Class 
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Actuall Class 0 75 2 

Actual Class 1 6 8 

Class Precision Recall F1-

Score 

Support 

 0  0.93 0.97 0.95 77 

1  0.80 0.57 0.67 14 

Macro 

Avg 

0.86 0.77 0.81 91 

 Weighted 

Avg 

0.91 0.91 0.91 91 

Total 

Accuracy 

0.91 F1-Score 0.66 

N total = 91 Predicted Class 
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Predicted Class 
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Actuall Class 0 75 2 

Actual Class 1 6 8 
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5.5 Attribute Similarity Approach: No Aligned Attributes 

 The experimental results for the case of no attribute alignment, both for DBLP-Scholar and Beer 

Advocate-RateBeer dataset groups, are presented in this sub-section. The assumed ‘not-aligned’ 

columns are merged into a single ‘merged’ column. The id column was only used to match 

Table A and Table B entities according to the corresponding id pairs of Train, Valid and Test 

tables. 

A. DBLP-Scholar Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, merged(title+authors+venue+year)] 

Table B → [id, merged(title+authors+venue+year)] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 1 neuron (compatible to the 1-dim similarity vectors fed to the network), 

followed by 4 hidden layers of 250 neurons, 4 hidden layers of 512 neurons , 1 hidden layer of 

1000 neurons as well as an output layer of 2 neurons (compatible with match-mismatch 

Figure 5.18: ROC Curve and Area Under 

Curve (AUC computation) using 

predictions on Test Set. The graph refers 

to the case of 1 out of 4 matching 

attributes between Table A and Table B 

(1/4 attribute alignment) 

1-d Similarity Vectors for each entity-pair 

    Similarity Metric : Cosine Similarity 
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characterization). A visual presentation of the network’s architecture (Figure 5.19) as well as its 

hyperparameter configurations is provided below:  

 

 

 

Figure 5. 19: Visual Representation of the trained Dense Model (0/4 Attribute Alignment DBLP-Scholar) 

 

• Training, Tuning and Learning Curves 

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are 

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values 

in Table 5.35. After each epoch, the Network used its current weights to predict on the Validation 

set. Based on its accuracy, the values of the loss function directed the optimization procedure 

(typical Back Propagation). Based on this, we provide the reader with the following Learning 

Curves (Figure 5.20), depicting both Accuracy and Cross-Entropy Loss values during training. 

 

Figure 5.20: Learning Curves during Training                                 Table 5.35: Network Hyper-Parameter Value 

 

 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.0001 

No of Epochs 550 

Batch Size 17223 
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• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.36. Table 5.37 is a Confusion Matrix and it depicts the entity-pairs 

assignment to classes of Non-Match (0) or Match (1): 

Class Precision Recall F1-

Score 

Support 

 0  0.90 0.98 0.94 4672 

1  0.87 0.51 0.64 1070 

Macro 

Avg 

0.88 0.75 0.79 5742 

 Weighted 

Avg 

0.89 0.89 0.88 5742 

Total 

Accuracy 

0.89 

Table 5.36: Classification Report on Validation Set                            Table 5.37: Confusion Matrix on Validation Set 

 

• Predicting on Test Set 

 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test 

data. Table 5.38 is a Classification Report Matrix on Test set predictions. At the same time, the 

correspondent Confusion Matrix is given in Table 5.39. Finally, the AUC curve of the NN-Model 

is given in Figure 5.21. 

 

Table 5.38: Classification Report on Test Set                                      Table 5.39: Confusion Matrix on Test Set 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4592 80 

Actual Class 1 524 546 

Class Precision Recall F1-

Score 

Support 

 0  0.90 0.99 0.94 4672 

1  0.89 0.51 0.65 1070 

Macro 

Avg 

0.90 0.75 0.79 5742 

 Weighted 

Avg 

0.90 0.90 0.89 5742 

Total 

Accuracy 

0.90 F1-Score 0.65 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4606 66 

Actual Class 1 523 547 
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Figure 5.21: ROC Curve and Area Under Curve (AUC 

computation) using predictions on Test Set. The graph 

refers to the case of no matching attributes between 

Table A and Table B  

 

 

 

B. Beer Advocate-RateBeer Dataset 

• Table Schemas and Attribute Alignement 

Table A → [id, merged(Beer Name+ Brew Factory Name+Style+ABV)] 

Table B → [id, merged(Beer Name+Brew Factory Name+Style+ABV)] 

Train = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Valid = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

Test = [id_Table_A, id_Table_B, match_indicator (0 or 1)] 

• Neural Network Architecture 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 1 neuron (compatible to the 1-dim similarity vectors fed to the network), 

followed by one hidden layer of 10 neurons plus 0.3 Dropout as well as an output layer of 2 

neurons (compatible with match-mismatch characterization). A visual presentation of the 

network’s architecture (Figure 5.22) as well as its hyperparameter configurations are provided 

below:  

Figure 5. 22: Visual Representation of the trained Dense Model (0/4 Attribute Alignment Beer Advocate-RateBeer) 

 

1-d Similarity Vectors 

for each entity-pair 

Similarity Metric : 

Cosine Similarity 
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• Training, Tuning and Learning Curves 

The architecture itself and its hyperparameters were tuned using entity pairs whose ids are included 

in the Valid table (Validation Set). We present the resulting tuned hyperparameter values in Table 

5.40. After each epoch, the Network used its current weights to predict on the Validation set. Based 

on its accuracy, the values of the loss function directed the optimization procedure (typical Back 

Propagation). Based on this, we provide the reader with the following Learning Curves (Figure 

5.23), depicting both Accuracy and Cross-Entropy Loss values during training. 

 

Figure 5.23: Learning Curves during Training                                 Table 5.40: Network Hyper-Parameter Values 

 

• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.41, providing all the necessary insight on the results. Table 5.42 is a 

Confusion Matrix and it depicts the entity-pairs assignment to classes of Non-Match (0) or Match 

(1): 

 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.0001 

No of Epochs 19.200 

Batch Size 268 

Dropout Rate 0.3 
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Class Precision Recall F1-

Score 

Support 

 0  0.92 0.99 0.95 77 

1  0.88 0.50 0.64 14 

Macro 

Avg 

0.90 0.74 0.79 91 

 Weighted 

Avg 

0.91 0.91 0.90 91 

Total 

Accuracy 

0.91 

 

Table 5.41: Classification Report on Validation Set                           Table 5.42: Confusion Matrix on Validation Set 

 

• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test data  

Table 5.43 is a Classification Report Matrix on Test set. At the same time, the correspondent 

Confusion Matrix is given in Table 5.44. Finally, the AUC curve of the NN-Model is given in 

Figure 5.24: 

 

 

   

Table 5.43: Classification Report on Test Set                                          Table 5.44: Confusion Matrix on Test Set 

 

 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 76 1 

Actual Class 1 7 7 

Class Precision Recall F1-

Score 

Support 

 0  0.95 0.96 0.95 77 

1  0.77 0.71 0.74 14 

Macro 

Avg 

0.86 0.84 0.85 91 

 Weighted 

Avg 

0.92 0.92 0.92 91 

Total 

Accuracy 

0.92 F1-Score 0.74 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 74 3 

Actual Class 1 4 10 
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5.6 Concatenated Strings Approach 

The modeling results of the Concatenated Strings approach, as described in 5.1 are presented 

here. Before depicting the classification results, it would be convenient for the reader to consider 

the following: 

a) Data Augmentation was applied to all matching entity-pairs included in the Training Set of 

the Beer Advocate-RateBeer Dataset. The experimentations showed that the best results were 

achieved when the actual matching pairs included in the training set were augmented x5. To be 

more accurate, instead of only 40 matching pairs from the total 268 training points, a new training 

set was created using the original 228 non-matching training entity pairs and 200 matching pairs ( 

augmented by the original 40). As a result, a total amount of 468 training data points were used to 

train the classifier. 

b) Instead of a Simple Dense Network, a CNN Neural Network Architecture was applied for the 

Beer Advocate-RateBeer Dataset. 

A. DBLP-Scholar Dataset 

• Table Schemas and String Concatenation 

The original schemas of Tables A and B are, of course, the same as before: 

Table A → [id, title, authors, venue, year)]   Table B → [id, title, authors, venue, year)] 

 

 

Figure 5.24: ROC Curve and Area Under 

Curve (AUC computation) using 

predictions on Test Set. The graph refers 

to the case of no matching attributes 

between Table A and Table B  
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For a candidate entity pair (ta,tb), we concatenate the merged text of all the attributes of ta with 

the merged text of all the attributes of tb. The resulting concatenated single text represents the 

candidate pair and it is mapped to a 300-dimensional vector by applying Algorithm 2.1 to it. 

The procedure is explained in depth in 5.1: String Concatenation Approach. The Train, Valid 

and Test tables are of the same schema as before. 

• Neural Network Architecture 

 

A simple Dense neural network classifier was trained using the entity pairs of tables A and B 

whose id pairs are included in the Train table (Training Set). The network’s architecture consists 

of an input layer of 300 neurons (compatible to the 300-dim vectors fed to the network in this 

approach), followed by 1 hidden layer of 256 neurons, 1 hidden layers of 512 neurons , 1 hidden 

layer of 1024 neurons as well as an output layer of 2 neurons (compatible with match-mismatch 

characterization). Between each hidden layer, Dropout was used to reduce overfitting. A visual 

presentation of the network’s architecture (Figure 5.25) as well as its hyperparameter 

configurations is provided below: 

 

Figure 5. 25: Visual Representation of the trained Dense Model (Concatenated Strings DBLP-Scholar) 

 

• Training, Tuning and Learning Curves 

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are 

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values 

in Table 5.45. After each epoch, the Network used its current weights to predict on the Validation 

set. Based on its accuracy, the values of the loss function directed the optimization procedure 

(typical Back Propagation). Based on this, we provide the reader with the following Learning 

Curves (Figure 5.26), depicting both Accuracy and Cross-Entropy Loss values during training. 
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     Figure 5.26: Learning Curves during Training                          Table 5.45: Network Hyper-Parameter Value 

 

• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.46. Table 5.47 is a Confusion Matrix and it depicts the entity-pairs 

assignment to classes of Non-Match (0) or Match (1): 

Class Precision Recall F1-

Score 

Support 

 0  0.94 0.93 0.94 4672 

1  0.72 0.73 0.72 1070 

Macro 

Avg 

0.83 0.83 0.83 5742 

 Weighted 

Avg 

0.90 0.90 0.90 5742 

Total 

Accuracy 

0.90 

 

Table 5.46: Classification Report on Validation Set                           Table 5.47: Confusion Matrix on Validation Set 

 

 

 

 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.0001 

No of Epochs 545 

Batch Size 17223 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4366 306 

Actual Class 1 293 777 
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• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test 

data. Table 5.48 is a Classification Report Matrix on Test set predictions. At the same time, the 

correspondent Confusion Matrix is given in Table 5.49. Finally, the AUC curve of the NN-Model 

is given in Figure 5.27: 

 

Table 5.48: Classification Report on Test Set                                      Table 5.49: Confusion Matrix on Test Set 

  

Figure 5.27: ROC Curve and Area Under Curve (AUC 

computation) using predictions on Test Set for the 

Conatenated Strings approach. 

 

 

 

 

B. BeerAdvocate-RateBeer Dataset 

• Table Schemas and String Concatenation 

The original schemas of Tables A and B are the same as before: 

Table A → [id, Beer Name, Brew Factory Name, Style, ABV] 

Table B → [id, Beer Name, Brew Factory Name, Style, ABV] 

Class Precision Recall F1-

Score 

Support 

 0  0.93 0.93 0.93 4672 

1  0.71 0.71 0.71 1070 

Macro 

Avg 

0.82 0.82 0.82 5742 

 Weighted 

Avg 

0.89 0.89 0.89 5742 

Total 

Accuracy 

0.89 F1-Score 0.70 

N total = 5742 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 4357 315 

Actual Class 1 312 758 
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For a candidate entity pair (ta,tb), we concatenate the merged text of all the attributes of ta with 

the merged text of all the attributes of tb. The resulting concatenated single text represents the 

candidate pair and it is mapped to a 300-dimensional vector by applying Algorithm 2.2.2 to it.  

Neural Network Architecture 

A 1-dim Convolutional Neural Network (CNN)-based classifier was trained using the entity 

pairs of tables A and B whose id pairs are included in the Train table (Training Set). The 

network’s architecture consists of an input layer of 300 neurons (compatible to the 300-dim 

vectors fed to the network in this approach), followed by a Convolutional layer with two filters, 

each equipped with a 12-dim sized kernel. After the Convolutional layer, we enhance the model 

with a MaxPooling Layer of 4-dim pool size. Between the MaxPooling and the Convolutional 

layers, we applied Dropout of rate equal to 0.4 in order to reduce overfitting. Finally, a 

Flattening Layer was stacked to the output of the MaxPooling Layer, which in turn leads to the 

output layer of 2 neurons (compatible with match-mismatch characterization). A visual 

presentation of the network’s architecture (Figure 5.28) as well as its hyperparameter 

configurations is provided below: 

 

Figure 5. 28: Visual Representation of the trained Dense Model (Concatenated Strings Beer Advocate-RateBeer) 

 

• Training, Tuning and Learning Curves 

The architecture itself along with its hyperparameters was tuned using entity pairs whose ids are 

included in the Valid table (Validation Set). We present the resulting tuned hyperparameter values 

in Table 5.50. After each epoch, the Network used its current weights to predict on the Validation 

set. Based on its accuracy, the values of the loss function directed the optimization procedure 

(typical Back Propagation). Based on this, we provide the reader with the following Learning 

Curves (Figure 5.29), depicting both Accuracy and Cross-Entropy Loss values during training. 
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     Figure 5.29: Learning Curves during Training                          Table 5.50: Network Hyper-Parameter Value 

 

• Predicting on Validation Set 

After training, we used the classifier to predict on the Validation Set. A Classification  Report 

Matrix is given in Table 5.51. Table 5.52 is a Confusion Matrix and it depicts the entity-pairs 

assignment to classes of Non-Match (0) or Match (1): 

Class Precision Recall F1-

Score 

Support 

 0  0.95 0.75 0.84 77 

1  0.37 0.79 0.50 14 

Macro 

Avg 

0.66 0.77 0.67 91 

 Weighted 

Avg 

0.86 0.76 0.79 91 

Total 

Accuracy 

0.76 

 

Table 5.51: Classification Report on Validation Set                           Table 5.52: Confusion Matrix on Validation Set 

 

 

 

 

 

Hyper-Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.01 

No of Epochs 1944 

Batch Size 468 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 58 19 

Actual Class 1 3 11 
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• Predicting on Test Set 

The classifier’s generalization ability, and therefore its prediction power, was tested with Test 

data. Table 5.53 is a Classification Report Matrix on Test set predictions. At the same time, the 

correspondent Confusion Matrix is given in Table 5.54. Finally, the AUC curve of the NN-Model 

is given in Figure 5.30: 

 

Table 5.53: Classification Report on Test Set                                      Table 5.54: Confusion Matrix on Test Set 

  

Figure 5.30: ROC Curve and Area Under Curve (AUC 

computation) using predictions on Test Set for the 

Conatenated Strings approach. 

 

 

 

 

 

 

 

Class Precision Recall F1-

Score 

Support 

 0  0.94 0.79 0.86 77 

1  0.38 0.71 0.50 14 

Macro 

Avg 

0.66 0.75 0.68 91 

 Weighted 

Avg 

0.85 0.78 0.80 91 

Total 

Accuracy 

0.78 F1-Score 0.5 

N total = 91 Predicted Class 

0 

Predicted Class 

1 

Actuall Class 0 61 16 

Actual Class 1 4 10 
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6. Applying LSH to the Deep Learning Framework 

In the previous section, we experimented with the cases of partial or complete attribute 

misalignment between the two Tables whose entities we are trying to match. We have managed to 

show that the ER task can be solved efficiently in cases of partial or complete schema agnosticism, 

with the case of total alignment being, however, the most efficient in terms of classification 

performance. 

We will not go into any further detail here (the modeling results are discussed in detail in section 

7). However, it is important for us to remind the reader the duality of this thesis’ purpose. 

1. Test the ability of a Deep Learning framework in cases of partial or complete schema 

agnosticism. That is exactly what section 5 is all about. 

2. Test whether the process of matching id pairs between two given tables can be done in a 

distributed and more efficient way than checking on all possible pair combinations between the 

two tables. Towards this goal, we introduced the concepts of Locality Sensitive Hashing and LSH 

Forest, as well as the idea of implementing these techniques in the form of a document 

recommendation engine in order to significantly lower the amount of computations of the 

framework. 

In this section, we will provide the reader with the established our established workflow: In sub-

section 6.1, an in-depth exposure of how an LSH Recommendation Engine was combined with a 

pre-trained Deep Learning network to predict on DBLP-Scholar and Beer Advocate-RateBeer 

dataset will be given. In the same sub-section (6.1), we will also provide the reader with insight 

on how we worked in order to obtain some metrics on our framework’s actual ability to solve the 

ER task. After that, we will provide our experimental results on both datasets. 

6.1 Creating ‘recommended-candidate pairs’ with LSH forest and predicting with a 

Neural Network 

Let us consider the case of having a dataset group similar to those that we are experimenting with 

(DBLP-Scholar, BeerAdvocate-RateBeer). To be more specific, we suppose that we have two 

Tables A and B along with a Training, a Validation and a Test set. 
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Table A and Table B include entities and along with their attribute values and a unique id identifier 

in the following form: 

tA = [id, Attribute_Value_1, Attribute_Value_2,……,Attribute_Value_k], tA ∈ set[A] and k ∈ R. 

tB =[id,Attribute_Value_1,Attribute_Value_2,…..,Attribute_Value_j],  tB ∈ set[B] and j ∈ R. 

On the other hand, the Training, Validation and Test sets consist of entities that include ids of 

entities ta ∈ set[A], ids of entities tb ∈ set[B] along with a matching indicator (match (1) or no-

match (0)). 

To make it more clear, an entity e that is included in any of the above sets (Training, Validation or 

Test) looks more or less like this: 

e = [id_tableA,id_tableB, matching_indicator (0 or 1)] 

In other words, this is exactly the same dataset group format that we have for DBLP-Scholar and 

Beer Advocate-RateBeer datasets that we used in section 5. The reader should be able by now to 

understand that it is trivial to train, validate and test a classifier C using the above dataset group. 

What is not trivial is this: Even though C is trained, validated and tested using the respective 

Training, Validation and Test sets, it is not able to solely achieve the ultimate goal of the ER task: 

‘’ Given two Tables A and B, find the matching entity pairs between them’’ 

That is because the Training, Validation and Test sets only consist of some portion of possible 

candidate pairs between the two tables. In other words, there are many more entity-pairs that we 

need to check. As a matter of fact, we have already stated that the obvious and most complete way 

to do that is to check for all possible combinations after training C (exactly as described in 

Algorithm 2.2). It is, however, inefficient.  

An alternative way to check for matching pairs between the two tables is the LSH Forest in the 

form of document recommendation, as we have already stated. Now, it is time to show the reader 

how this can be achieved. 
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Solving ER with LSH Forest: Explanation 

Let the aforementioned dataset group: Tables A and B, a Training Set, a Validation Set and a Test 

Set. We can then train, validate and test a Classifier C under the procedure that is indicated by 

Algorithm 2.2 (steps 1 to 7). The reader should feel comfortable on understanding this procedure 

by now. After this, we are left with a trained Classifier C that, given an input candidate pair, 

predicts whether the pair consists a matching pair or not. 

The next move is this: We can go on and concatenate each entity’s attributes separately for Tables 

A and B in a manner similar to what was described in the Concatenated Strings approach 

(Concatenated Strings Approach: sub-section 5.1). After doing so, we are left with two new tables 

A’ and B’. For completeness, we depict the two tables: 

                         TABLE A’ 

Entities Concatenated Attribute A 

( Concat[A] ) 

ta1 ta1[A1] + ta1[A2] + ……+ 

ta1[Am] 

ta2 ta2[A1] + ta2[A2] + ……+ 

ta2[Am] 

ta3 ta3[A1] + ta3[A2] + ……+ 

ta3[Am] 

…… ………………………. 

Table 6. 1: Pair of tables example for the Concatenated Strings Approach (Re-exlained) 

In other words, for each entity tai ∈ set[A] and for each entity tbi ∈ set[B], we apply the following 

mapping: 

 

 

 

 

                         TABLE B’ 

Entities Concatenated Attribute B 

( Concat[B] ) 

tb1 tb1[B1] + tb1[B2] + ……+ 

tb1[Bj] 

tb2 tb2[B1] + tb2[B2] + ……+ 

tb2[Bj] 

tb3 tb3[B1] + tb3[B2] + ……+ 

tb3[Bj] 

…… ……………………… 

tai = [ tai[A1] , tai[A2] , ……, tai[Am] ] → [ tai[A1] + tai[A2] + ……+ tai[Am] ]     

 

tbi = [ tbi[B1] , tbi[B2] , ……, tbi[Bj] ] → [ tbi[B1] + tbi[B2] + ……+ tbi[Bj] ]      
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Each entity tai of Table A is mapped to a text document entity of the new table A’. The same 

stands for all entities tbi of B. It is crucial to mention that each attribute value tai[Ak] of A is subject 

to text converting, as explained in 4.3. The same stands for every attribute value tbi[Bk] of B. 

Now, we need to use C in order to come up with all the matching pairs between Tables A’ and B’. 

However, we do not want to test for every combination of entity pairs. Here comes the tricky part: 

The fact that each entity tai of Table A is mapped to a text document entity of the new table A’ and 

each entity tbi of Table B is mapped to a text document entity of the new table B’ enables us to use 

Algorithm 3.2 : Considering a document entity tai ∈ set[A’] as a text query and set[B’] as a set of 

text documents, we can use LSH Forest exactly as described in Algorithm 3.2 in order to retrieve 

the n-nearest tbi ∈ set[B’] with respect to tai ∈ set[A’] for this particular entity tai, with ‘n’ being a 

pre-defined user parameter. 

 

Let us consider the above n-nearest retrieved entities tb(retrieved_i) ∈ set[B’] for a text query 

tai. They form a new text set that directly relates this particular tai with its nearest neighbors on 

set[B’]. We denote this set as Retn[tai], for which it stands that: 

 Our approach is this: Given an entity tai ∈ set[A’] and its related set Retn[tai], we use 

Classifier C to predict only for those tbi ∈ set[B’]∩ Retn[tai]. In other words, for the entity tai, 

we use C to predict only on its n-nearest documents, as given by Algorithm 3.2. 

Retn[tai] = { [tb(retrieved_1), tb(retrieved_2),.., tb(retrieved_n)]: tb(retrieved_k) ∈ set[B’] 

∀ k, n=pre-defined parameter that indicates the number of retrieved documents} 
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It is straightforward to realize that, by repeating the above procedure for every entity tai ∈ set[A’], 

we solve the problem of ER without testing for all pair combinations. All in all, Algorithm 6.1 

summarizes our approach for solving the ER task: 

 

  

. 

 

 

 

Let us suppose that Table A has m-rows and Table B has j-rows , as well as a pre-defined number 

of recommendations n for every row-entity of Table A, with n<<j: 

Complexity of predicting matching pairs amongst all combinations = O(m*j) 

Complexity of predicting matching pairs using 6.1 = O(m*n) + O(LSH Forest Recommendation 

Procedure) 

Of course, taking into account that LSH is an extremely efficient algorithmic procedure and the 

fact that n<<j, we can safely conclude that: 

Algorithm 6.1 

 

1: Input: Table A, Table B, training set S 

2: Output: Prediction of matching pairs between A and B 

 

3: // Training 

4: for each pair of tuples (ta; tb) in S, where ta∈set[A] and 

tb∈set[B], do: 

5: Train a classifier C using either Attribute Similarity 

Approach or Concatenated Strings Approach and true labels. 

 

6: // Predicting 

7: for each entity ta of A, use LSH Forest Recommendation and 

compute Retn[ta] on set[B].    

8: For each entity ta of A and its related set Retn[ta], use C to 

predict for match or no-match ∀ tb ∈ Retn[tb] 

 

Algorithm 6. 1: Combining DL with LSH 

 Using any of the approaches of section 5 and 

combining it with LSH Forest technique to 

tackle the ER problem. All in all, the algorithm 

provides an efficient Deep Learning Approach 

to solving the ER problem. 

Complexity of predicting matching pairs amongst all combinations >> Algorithm 6.1 
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Practical Implemenation in DBLP-Scholar and Beer Advocate-RateBeer: Explanation of the 

Framework’s workflow and Testing Explanation 

Both DBLP-Scholar and Beer Advocate-RateBeer datasets are of the same format as described 

above. It is straightforward to use Algorithm 6.1 on both of them. Before we provide the results, 

the reader should keep in mind some aspects: 

1. We are free to choose any of the classifiers of section 5.1 as C. However, since we have already 

made experimentations on the differences between models that assume different number of aligned 

attributes, we will only choose one of those models to feed on 6.1. We chose the model that 

exhibited the best performance, which is the one that assumes complete attribute alignment. After 

all, what we care about here is to test whether LSH Recommendation Forest has the ability to 

predict matching pairs. 

2. We can either proceed on applying 6.1 using tai and Retn[tai] ∀ tai ∈ set[A]  or tbi and Retn[tbi] ∀ 

tbi ∈ set[B]. For each dataset case, we will only experiment with the latter case: For every entity in 

Table B, we will get recommendations for this entity from Table A and predict using our trained 

classifier. 

3. Evaluating the performance of the framework is difficult: Even if we apply 6.1 and get a set 

of matching pair of ids, we cannot automatically evaluate whether all of the predicted pairs are 

indeed true matches. That is because, we only have true labels for a limited number of pairs: Those 

included in the Training, Testing and Validation Sets. However, we can overcome this evaluation 

problem and come up with a metric that shows whether or not our framework detects matching 

pairs efficiently in the following way: We consider all the true matching pairs included in our 

Test Set along with the pair of id’s included in the set. How many of those matching pairs? were 

really detected by the framework (True Positives)? How many of them were not detected (False 

Negatives)? This evaluation metric actually enables us to answer the following question: 

Given a set of known (true) matches amongst two tables A and B, how many of them is our 

framework able to detect and how many of them remained undetected? What is the ratio r 

= 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒓𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 ? 

For completeness, we repeat the above metric evaluation on both Test and Validation sets. 
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4. It is straightforward to realize that the number of recommendations ‘n’ makes a difference. The 

higher the n, the more chances there are to detect a matching pair. For this reason, we will repeat 

the procedure for n=2,5,10,15 and compare the results. We will try to see how the choice of n 

affects the results. 

6.2 Evaluating the Deep Learning framework with LSF Forest Recommendation: 

Results 

We proceed on presenting the experimental results for DBLP-Scholar and Beer Advocate-

Advocate RateBeer dataset. For each dataset, we apply Algorithm 6.1 (considering the case of 

complete attribute alignment as C = trained classifier)  and evaluate on both Testing and Validation 

Set true positives as described in sub-section 6.1: We count the number of  true matches included 

in Validation / Test sets that are detected by the framework (True Positives), as well as the number 

of true matches included in the Validation/Test sets that the framework was unable to detect (False 

Negatives). We repeat the procedure for a various number of recommendations: n=2,5,10,15 and 

we present the results. 

Results For DBLP-Scholar Dataset 

In Table 6.2, we provide our experimental results on the Validation Set: the number of Total 

True Matches included in the Validation Set, the number of True Positive and False Negative 

Predictions, along with the ratio  r = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒓𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 . What is more, Figure 6.1 depicts the 

differentiation of the ratio r for different number of recommendations (n): 

                                                        Validation Set (DBLP-Scholar) 

Recommendations Total Number 

of True 

Matches 

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

n=2 1070 625 445 1.404 

n=5 1070 666 404 1.648 

n=10 1070 684 386 1.772 

n=15 1070 694 376 1.845 

 

 
Table 6. 2: Framework Results on Validation Set( DBLP-Scholar Dataset) 
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Similar info regarding the Test Set is also provided in Table 6.3 and Figure 6.2: 

 

                                                         Test Set ( DBLP-Scholar ) 

Recommendations Total Number 

of True 

Matches 

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

n=2 1070 633 437 1.448 

n=5 1070 679 391 1.736 

n=10 1070 697 373 1.868 

n=15 1070 706 364 1.939 

   Figure 6. 1: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Validation Set (DBLP-Scholar Dataset) 

Table 6. 3: Framework Results on Test Set (DBLP-Scholar Dataset) 
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Results For Beer Advocate-RateBeer Dataset 

In Table 6.4, we provide our experimental results on the Validation Set: the number of Total 

True Matches included in the Validation Set, the number of True Positive and False Negative 

Predictions, along with the ratio r = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
. What is more, Figure 6.3 depicts the 

differentiation of the ratio r for different number of recommendations (n): 

                                              Validation Set (Beer Advocate-RateBeer) 

Recommendations Total Number 

of True 

Matches 

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

n=2 14 7 7 1.000 

n=5 14 7 7 1.000 

n=10 14 7 7 1.000 

n=15 14 7 7 1.000 

 

    Figure 6. 2: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Test Set (DBLP-Scholar Dataset) 

Table 6. 4: Framework Results on Validation Set ( BeerAdvocate-RateBeer Dataset) 



94 
 

 

Similar info regarding the Test Set is also provided in Table 6.5 and Figure 6.4: 

 

                                                   Test Set (Beer Advocate-RateBeer) 

Recommendations Total Number 

of True 

Matches 

True Positives False Negatives r=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

n=2 14 7 7 1.000 

n=5 14 9 5 1.800 

n=10 14 9 5 1.800 

n=15 14 9 5 1.800 

 

 

 

Figure 6. 3: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Validation Set (Beer Advocate-RateBeer) 

Table 6. 5: Framework Results on Test Set ( BeerAdvocate-RateBeer Dataset) 
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    Figure 6. 4: r=f(n) r=
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 , n=No of recommendations on Test Set (Beer Advocate-RateBeer) 
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7. Reviewing the Results: Conclusions and Future Work 

In this section, we comment on the results for both section 5 (Deep Learning Approach on Entity 

Resolution) and section 6 (Applying LSH to the Deep Learning Framework).  

7.1 Deep Learning Classification on Entity Resolution: Review and Thoughts 

This sub-section is all about reviewing the Deep Learning Classification results (sub-Sections 5.2 

to 5.6) and commenting on them. It is crucial to remind the reader about our main goal here: We 

need to test the ability of a Deep Learning based classifier to deal with the Entity Resolution task 

for two tables A and B in schema agnostic cases (partial or total agnosticism). In order to do so, 

the core Test Set classification  metrics will be examined for each and every one of the above 

frameworks. The results for DBPL-Scholar datasets are provided in Table 7.1, while the respective 

results for Beer Advocate-RateBeer dataset are provided in Table 7.2: 

1) Modeling Accuracy 

2) F1-Score 

3) Average Weighted Recall 

4) AUC 

 

 

It can be seen from the above Table that the best model is the one that assumes total attribute 

alignment between Table A and Table B. In fact, as the number of misaligned attribute increases, 

the classification performance of the respective Deep Learning framework drops steadily. 

However, the important thing is this: The decrease in the classification performance is minor! 

                      DBLP-Scholar Dataset 

 Similarity 

Approach:  

4/4 Allignment 

Similarity 

Approach:  

2/4 Allignment 

Similarity 

Approach:  

1/4 Allignment 

Similarity 

Approach:  

0/4 Allignment 

Concatenated 

Strings 

Approach 

Accuracy 0.94 0.94 0.91 0.90 0.89 

F1-Score 0.82 0.82 0.75 0.65 0.70 

Avg Recall 0.94 0.94 0.91 0.90 0.89 

AUC 0.97 0.96 0.93 0.88 0.92 

Table 7.1: Concentrated 

classification results for 

all of the experimental 

methods on DBLP-

Scholar dataset 
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Taking into account that the last two models (Attribute Similarity approach with 0/4 attribute 

alignment and Concatenated Strings approach) make no assumptions about the schemas of the 

two tables, we should be very pleased with the results: We showed that the difference between 

Ebrahem’s DeepER framework and a completely Schema Agnostic framework is actually small, 

at least in this case! In other words, one could say that we ‘paid’ a little bit of prediction power in 

order to ‘buy’ the luxury of making no assumptions about the tables’ schemas. 

 

 

For the Beer Advocate-RateBeer dataset, the results were a bit unexpected. For example, there is 

a clear drop in the classification performance between the 4/4 and 3/4 alignment assumptions. It 

can also be seen that there is a big difference in the classification performance between the 

Similarity approach (for any number of assumed attribute alignment) and the Concatenated Strings 

approach. However, the fact that the case of 0/4 attribute alignment, which is a case of complete 

agnosticism regarding the dataset’s schema, provided the exact same results with the case of 4/4 

attribute alignment (even though the cases of 2/4 and 3/4 attribute alignment presented slightly 

weaker classification power) is surprising. What is more, the Concatenated Strings approach 

exhibited the highest F1-Score between all models, even if its overall performance was the 

weakest. Looking back at the results of the Concatenated Strings approach at sub-section 5.6, 

this can be explained: The CNN-Model was able to capture the highest number of matching pairs 

compared to all other approaches. However, it also provided a substantial number  of False 

Positives. 

                                             Beer Advocate-RateBeer 

 Similarity 

Approach:  

4/4 Allignment 

Similarity 

Approach:  

2/4 Allignment 

Similarity 

Approach:  

1/4 Allignment 

Similarity 

Approach:  

0/4 Allignment 

Concatenated 

Strings 

Approach 

Accuracy 0.92 0.91 0.91 0.92 0.76 

F1-Score 0.74 0.69 0.66 0.74 0.75 

Avg Recall 0.92 0.91 0.91 0.92 0.76 

AUC 0.92 0.88 0.95 0.91 0.84 

Table 7.2 

Concentrated 

classification results 

for all of the 

experimental methods 

on Beer Advocate-

RateBeer dataset 
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Taking into account the results for both DBLP-Scholar and Beer Advocate – RateBeer datasets, 

we can conclude the following: 

1. The case of complete attribute alignment between Tables A and B is the one that achieves 

the highest classification performance. That is to be expected, of course, since this framework 

makes the most assumptions about the schemas of the Tables in question. 

2. There is some tradeoff between classification performance and schema agnosticism: The more 

agnosticism is inserted regarding the tables’ schemas, the lower the performance of the Neural 

Network is. However, this tradeoff is acceptable in both dataset cases. In other words, the 

difference in the classification performance between the cases where we assume complete attribute 

alignment and the cases where we assume partial or complete agnosticism about the dataset 

schemas is quite low. The Entity Resolution task can be solved efficiently in cases where we 

do not make any assumptions about the tables’ attribute alignment. 

3. Unfortunately, the Neural Network architecture that addresses the Entity Resolution Task 

is dataset specific: We did not manage to come up with a single Deep Learning model that 

manages to provide good results for both datasets. In fact, for the case of Beer Advocate-RateBeer 

dataset, we had to call forth a CNN model to enable the Concatenated Strings approach.  

4. For the two different cases of complete schema agnosticism (Similarity Approach: 0/4 

Alignment and Concatenated Strings approach), there is no clear answer to what method 

works better. For DBLP- Scholar, the Concatenated Strings approach was able to distinguish the 

matching id pairs better. However, for the Beer Advocate-RateBeer dataset, the Similarity 

Approach model performed better. 

7.2 Reducing the Search Space with LSH and Predicting: Review and Thoughts 

In this section, we comment on the results as they are exposed in Section 6. Let us remind the 

reader about our original purpose regarding the application of LSH Forest Recommendation on 

top of a Deep Learning Classifier for the Entity Resolution Task: 

Our initial goal in Section 6 was to combine a Deep Learning framework with the distributional 

characteristics of LSH and test its ability to efficiently deal with the Entity Resolution Problem. 
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It is important to state that, in essence, the framework consisted of two parts: First, the LSH 

part of Algorithm 6.1, where the framework provides recommendation documents as answers to 

an entity-query from one table to another. Secondly, the classifier’s prediction part, where a pre-

trained Deep Learning classifier is used to predict whether the aforementioned entity-query and its 

recommended document neighbors consist a match or not. 

Keeping this in mind, it is straightforward to realize that there are two obstacles that the 

Framework needs to overcome in order to be able to detect matching entity pairs: 

A. The LSH algorithmic part needs to accurately provide the true matching entity-documents as 

recommendations to a specific query. In simpler words, our Deep Learning classifier would have 

never been able to detect a True Positive matching pair, and therefore predict on it, if the 

recommendation LSH part did not manage to provide the True matching pairs correctly. 

B. If a True matching pair indeed manages to pass from the previous LSH Recommendation stage, 

the classifier has to be able to accurately classify the pair as a ‘matching pair’ in order to obtain a 

final True Positive. 

In order to test the ability of the framework, we decided to check on the framework’s 

capability of detecting the actual matching entities of the Validation and Test sets, for which 

we have True Labels in the first place. In order to do so, we checked the number of the two 

sets’ known true matching entities that the framework was able to detect. Finally, we 

computed the ratio r = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
. It is important to understand that this single number depicts 

the ability of both parts (LSH  and Classification) to detect matching entities. We conducted the 

above procedure for both DBLP-Scholar and Beer Advocate-RateBeer Datasets.  

For both datasets, the results seem encouraging: In any case, it stood that r≥1. That means that 

the framework was able to detect the true matching pairs more often than not. What is more, 

for the majority of dataset instances, r increases when (n) increases, as expected. This was not 

the case, however, when predicting on the Validation Set of Beer Advocate-RateBeer dataset. For 

this particular case, it stood that: r=f(n)=1, ∀ n∈{2,5,10,15}.  
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To be more informative, it can be observed from the respective Tables and Figures of Section 6 

that for the DBLP-Scholar dataset, in both Validation and Test sets, r=f(n) is an ascending 

function for which it stands that r>1 ∀ n∈{2,5,10,15}. This means that the number of matching 

pairs that the framework managed to capture was always higher than the number of undetected 

matches. It can also be seen from the graphs that the relationship r=f(n) appears to exhibit a 

particular pattern. 

 For Beer Advocate-RateBeer dataset, it can be observed that, for the Validation Set, the number 

of True Positive predictions is equal to the number of False Negatives ∀ n∈{2,5,10,15}. This is 

not, however, the case for the experimentations on the Test Set, for which we observe a similar 

upward trend of r as the number of recommendations (n) increases (possibly still indicating the 

same pattern as for the DBLP-Scholar Dataset). 

All in all, we could say that the framework is able to accurately detect most of the True 

Matches that exist in the vast majority of the experimental sets (for pairs included in Train 

and Test Sets respectively). However, by no means it presents perfect results.  

7.3 Future Work 

Our experimentations on a Distributed Deep Learning Framework on the Entity Resolution 

problem have a lot of space for improvement and further investigation. Firstly, we provide the 

reader with some of the main problems that we faced during our experimentations and, in 

exchange, possible improvements: 

1. Beer Advocate-RateBeer dataset exhibited unexpected results on some occasions. Firs of all, 

the case of 0/4 Alignment Similarity Approach exhibited the same results with 4/4 Alignment 

Similarity Approach, even though 2/4 and 1/4 approaches performed worse. This might be 

indicative of the fact that the classification results are dependent on the combination of merging 

attributes. As a result, further studies should be conducted by assuming different 

combinations of merged-misaligned attributes. 

2. For the same reason, it is crucial to experiment upon more datasets. Beer Advocate-RateBeer 

dataset might have some specific peculiarities that make it hard for the framework to perform well. 
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3. Experimentations should be made with RNN-based word embeddings. Even though Spacy 

is indeed an exceptional tool, the particularities of each dataset might be an obstacle on the 

mapping procedure of a word to a vector. This could be solved with Recurrent Neural Networks 

LSTM or GRU cells. In this case, the word vectors should be able to capture these particularities 

because of the fact that they focus on mapping words to vectors based on a vocabulary that is 

dataset specific. 

4. The relationship r=f(n) should be furtherly investigated. Unexpectedly, a pattern seems to 

have emerged for this relationship during the experimentations. Being able to extract such a 

mathematical relationship will enable us to choose the appropriate number of recommendations 

for the desired classification performance. 
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