
School of Information Sciences and Technology
Department of Informatics

Athens, Greece

MSc in Information Systems

Master Thesis

Vulnerability Detection Techniques

Angelos David
F3311803

Athens, February 2020

Angelos David

Vulnerability Detection Techniques

February 2020

Supervisor: Dr. Theodoros Ntouskas

Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Athens, Greece

Abstract

The focus of this Master’s thesis project is automated penetration testing.
A penetration test is a practice used by security professionals to assess the
security of a system. This process consists of attacking the system in order
to reveal flaws. In order to perform one, some tests need to be done using
several tools. But these tools are the same most of the times making it
repetitive and tiring. Automating the process of penetration testing brings
some advantages, the main advantage is reduced costs in terms of time and
human resources needed to perform the test.
The goal of this thesis is to investigate these repetitive steps and create a
tool that automates everything that can be done safely without the risk of
damaging the system.
The outcome of this thesis project reveals that this tool is able to provide
the same results as a standard initial penetration procedure, avoiding all the
costly tasks.

iii

Περίληψη

Αυτή η διπλωματική εργασία θα επικεντρωθεί στην αυτοματοποίηση της διαδι-

κασίας της δοκιμής διείσδυσης (penetration testing). Η δοκιμή διείσδυσης είναι
η πρακτική που χρησιμοποιείται από τους ειδικούς της ασφάλειας για να αξιο-

λογήσουν την ασφάλεια ενός συστήματος. Αυτή η διαδικασία αποτελείται από

την δοκιμαστική εισβολή στο πληροφοριακό σύστημα με σκοπό να αναδειχθο-

ύν κενά ασφαλείας. Προκειμένου να πραγματοποιήσουμε μια δοκιμή, κάποιοι

έλεγχοι πρέπει να πραγματοποιηθούν χρησιμοποιώντας διάφορα εργαλεία. Αλ-

λά αυτά τα εργαλεία είναι τα ίδια στις περισσότερες δοκιμές, καθιστώντας τες

επαναλαμβανόμενες και κουραστικές. Η αυτοματοποίηση της διαδικασίας φέρει

κάποια πλεονεκτήματα, με κύριο τη μείωση του κόστους σε όρους χρόνου και

ανθρώπινου δυναμικού που απαιτούνται για αυτή.

Ο στόχος της διπλωματικής αυτής είναι η διερεύνηση αυτών των επαναλαμβα-

νόμενων βημάτων και τη δημιουργία ενός εργαλείου που αυτοματοποιεί τα κομ-

μάτια τα οποία μπορούν να γίνουν με ασφάλεια, χωρίς τον κίνδυνο να βλάψουν

το πληροφοριακό σύστημα.

Το αποτέλεσμα της διπλωματικής εργασίας αποκαλύπτει ότι αυτό το εργαλείο

μπορεί να παρέχει τα ίδια αποτελέσματα με μια τυπική διαδικασία ελέγχου διείσ-

δυσης, αποφεύγοντας έτσι τις κοστοβόρες ενέργειες.

iv

Contents

Abstract iv

List of Figures vii

List of Acronyms viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Goals of Thesis . 2
1.3 Thesis Structure . 2

2 Background 4
2.1 Basic Concepts . 4
2.2 Why perform a penetration testing 6
2.3 The Penetration Testing Process 7

2.3.1 Planning . 7
2.3.2 Preparation . 7
2.3.3 Attack . 7
2.3.4 Reporting . 11

2.4 Related Work . 11

3 System Design 13
3.1 Approach . 13
3.2 Analysis . 14

3.2.1 Tools . 14
3.2.2 The programming language 15
3.2.3 The phases . 16

3.3 Architecture . 22
3.4 Comparison with other tools 24

4 Implementation 25

5 Results 43

v

6 Evaluation and Future Work 48
6.1 Technical Problems . 48
6.2 Future Work . 49

7 Conclusion 51

Bibliography 52

vi

List of Figures

4.1 Scan page . 35
4.2 Scan page with selected tools 35
4.3 Nmap output . 39
4.4 Auto scan output . 40
4.5 Auto scan output with expanded Nmap output 40
4.6 Auto scan output with expanded Wordpress output 41

5.1 OSINT gathering result . 44
5.2 Nmap port scan result . 44
5.3 Nmap vulnerability scan result 45
5.4 Website scan result . 45
5.5 Wordpress scan result . 46
5.6 Wordpress credentials bruteforce result 46
5.7 Website URIs bruteforce result 47

vii

List of Acronyms

API Application Programming Interface

CMS Content Management System

CRLF Carriage Return Line Feed

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DNS Domain Name System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JSON JavaScript Object Notation

NVD National Vulnerability Database

OSINT Open-source Intelligence

OSVDB Open Source Vulnerability DataBase

OWASP Open Web Application Security Project

PCI DSS Payment Card Industry Data Security Standard

SAMM Software Assurance Maturity Model

SDL Security Development Lifecycle

viii

URI Uniform Resource Identifier

VM Virtual Machine

XML Extensible Markup Language

XSS Cross Site Scripting

ix

1Introduction

A penetration test is a practice used by security professionals to assess the
security of a system. Many checks need to be conducted using several meth-
ods to assess it. The aim of these tests is to find whether the target system is
vulnerable to an attack in a certain scenario and can be exploited in order to
gain control of it. There are various types of penetration testing, depending
on what assets need to be tested (e.g. a network, a single machine, a web
application). This thesis focuses on network-based penetration testing, which
is one of the most common types of security testing. The main reason for
choosing network-based penetration testing is that this testing involves sev-
eral repetitive tasks that can be performed remotely via a network connection,
so automating them is desirable.

The aim of automating the penetration testing is to minimize the costs in
terms of time and the people needed to carry out the test. Automation
drawbacks include restricted pivoting, stability issues, generation of false
positives and less intelligent analysis of potentially sensitive data.

1.1 Problem Statement
There are many tools that can help a security professional do his/her job.
These tools help by automating certain actions needed to obtain information
about or exploit the target system. Nevertheless, such methods are not
adequate to perform a successful penetration test. A high level of knowledge
and a high imagination are required in order to succeed. However, the
methods that people use are always the same in these first steps, and they
have a natural order to be used in. This fact makes the implementation of
these methods very tiring, as it is the least creative part of the process. Some
tools need to be used first, in order to gather the results and format them to
be used as input for the next layer of tools. This could take a lot of time from
the tester, who could be doing other more creative things.

Doing a penetration test must be more about focusing on the creative parts of
it rather than having to do the first boring and repetitive steps and that is why
the program that will be developed in this project aims at fixing it. Through
automating most of the techniques that need to be used in the penetration

1

MSc in Information Systems Angelos David
testing process, a security expert may focus solely on thinking out of the box
and being innovative about the device s/he is investigating. All the tools
that need to be launched and all the interaction between them should be
automatic. Accomplishing this will make the penetration test faster, more
reliable and cheaper as a well-defined set of rules is being followed.

1.2 Goals of Thesis
The main objective of this thesis is to analyze in detail how penetration
testing is conducted and to develop and implement a tool that automates the
initial steps in the testing process, by eliminating most of the repetitive steps
that a penetration test needs to go through.

This tool should be ideal for use in production environments, should automate
everything that can be done safely and without the risk of interruption of
service (although it may produce some traffic for some periods of time), and
should recognize techniques that the human tester might use.

To develop this system, a lot of research is needed in order to understand
which steps can be automated and which tools can be used in each step. Then,
with the process of penetration testing in mind, a system will be designed and
developed that gathers the tools, executes them and integrates their results.
For security professionals to benefit from this system, the results should be
clear and easy to understand.

After the consumer has implemented countermeasures, the steps that led
to the discovery of a flaw should be possible to reproduce in order to verify
that the problem has actually been solved. This would allow the customer
to easily evaluate the effectiveness of the solutions without the need for a
professional security tester, therefore this professional would only be required
for the penetration test itself.

1.3 Thesis Structure
This thesis will be structured in 7 different chapters. First of all, this introduc-
tion. Following the introduction, the importance of the penetration testing
will be discussed, the process of a penetration testing will be defined and
detailed and some solutions to the same problem will be analyzed. After, the

1.2 Goals of Thesis 2

MSc in Information Systems Angelos David

system will be discussed, starting with its analysis and design and ending
with its implementation. After the system has been described, a test case will
be reproduced and its results will be displayed in order to demonstrate how
the system works. Finally, some evaluation and future work will be specified
and some conclusions will be made.

1.3 Thesis Structure 3

2Background

In this chapter an overview of the key elements needed to fully understand
the rest of this thesis is provided. Basic concepts of security testing and
the main motivations behind the decision of performing a penetration test
will be presented. The integration of security testing in the secure software
development lifecycle will be covered. Afterward, the standard penetration
testing process will be described. Understanding this part is essential for the
development of a tool to automate the process.

2.1 Basic Concepts
Security testing validates software system requirements related to security
properties of assets that include confidentiality, integrity, availability. These
security properties can be defined as follows[1]:

• Confidentiality is the assurance that information is not disclosed to
unauthorized individuals, processes, or devices.

• Integrity is provided when data is unchanged from its source and has
not been accidentally or maliciously modified, altered, or destroyed.

• Availability guarantees timely, reliable access to data and information
services for authorized users.

Security requirements can be defined as positive requirements, specifically
defining the expected security functionality of a security mechanism, or as
negative requirements, stating what the program should not be doing. For
example, for the security property authorization as positive requirements
could be “User accounts are disabled after three unsuccessful login attempts.”,
while a negative requirement could be formulated as “The application should
not be compromised or misused for unauthorized financial transactions by a
malicious user.”.

An asset is a data item, or a system component that has to be protected.
In the context of security, an asset has assigned one or multiple security
properties.

4

MSc in Information Systems Angelos David

A fault is a textual representation of what goes wrong in a behavioral descrip-
tion. Since faults can occur in dead code - code that is never executed -, and
because faults can be obscured by further faults, a fault does not necessarily
lead to an error. On the other hand, a fault often results in an error. A fault
is not necessarily related to security properties but is generally the cause of
errors and failures.

A vulnerability is a particular type of fault. If the fault is related to security
properties, it is called a vulnerability. A vulnerability is always related to one
or more assets and their corresponding security properties. An exploitation of
a vulnerability attacks an asset by violating the security property associated
to it. Since vulnerabilities are always associated with the protection of an
asset, the security relevant fault is typically correlated with a mechanism that
protects the asset. A vulnerability either means that the responsible security
mechanism is completely missing, or the security mechanism is in place but
is implemented in a faulty way.

An exploit is a concrete malicious input that makes use of the vulnerability
in the system under test and violates an asset’s property. Vulnerabilities can
often be exploited in different ways. One concrete exploit selects a specific
asset and a specific property, and makes use of the vulnerability to violate
the property for the selected asset.

A threat is the potential cause of an unwanted incident that harms or reduces
the value of an asset. For instance, a threat may be a hacker, power outages,
or malicious insiders. An attack is defined by the steps a malicious or inad-
vertently incorrectly behaving entity performs to the end of turning a threat
into an actual corruption of an asset’s properties. This is usually done by
exploiting a vulnerability.

Security aspects can be considered on the network, operating system and
application level. Each level has its own security threats and corresponding
security requirements to deal with them. Typical threats on the network
level are distributed denial-of-service or network intrusion. On the operating
system level, all types of malware cause threats. Finally, on the application
level threats typical threats are related to access control or are application
type specific like Cross-Site Scripting in case of web applications. All levels of
security can be subject to tests.

Security testing simulates attacks and employs kinds of penetration testing
that aims to compromise a system’s security by playing the role of a hacker

2.1 Basic Concepts 5

MSc in Information Systems Angelos David

attempting to attack the system and exploit its vulnerabilities. By identifying
risks in the system and creating tests driven by those risks, security vulner-
ability testing can focus on parts of a system implementation in which an
attack is likely to succeed.

2.2 Why perform a penetration testing
There are several reasons why an organization should hire a security pro-
fessional to perform a penetration test. The main reason is that security
breaches can be extremely costly. A successful attack can result in direct
financial losses, damage to the reputation of the organization, trigger fines,
etc. It is possible to identify security vulnerabilities with a proper penetration
test and then take countermeasures before a real attack occurs.

Another reason for conducting penetration testing is that it will pressure the
system operator to keep the system up-to-date on the latest vulnerabilities.
New bugs and security issues are being discovered all the time. So, an
organization, in order to maintain an updated level of security, may use
periodic penetration testing.

The result of the penetration test helps an organization prioritize its risks.
A specific security breach causes a certain damage to the organization. De-
pending on the severity of the identified issues, a mitigation strategy can be
properly prepared with a greater focus on more critical issues.

Since a penetration test simulates a real attack, it is a good chance to evaluate
the preparation of the organization’s technical staff in such situations. For
example, if the testers are able to compromise the system without anyone
noticing, it is a clear indication that more effort should be put into security
awareness and handling of incidents.

Penetration tests may also be required for compliance with industry standards
and regulations. A regularly conducted penetration test is needed in order to
achieve compliance. Common compliance frameworks include ISO 27001[2],
NIST[3], FISMA[4], HIPAA[5], Sarbanes-Oxley[6] or the Payment Card
Industry Data Security Standard (PCI DSS)[7], which requires annual as well
as ongoing penetration testing (in case of system changes). By conducting
regular penetration tests of the environment, the organization demonstrates

2.2 Why perform a penetration testing 6

MSc in Information Systems Angelos David

information security due diligence and can avoid hefty fines resulting from
non-compliance.

2.3 The Penetration Testing Process
The aim of a penetration test is to asses the exposure level of the system being
tested, and to determine whether there are ways to break into the system. In
addition to the actual testing phase, a few operations need to be performed
in order to conduct a valuable and legitimate test, which will be described
in this section. The process of a professional penetration test can be divided
into four main phases: planning, preparation, attack and reporting.

2.3.1 Planning
The planning phase involves an initial discussion with the customer (owner
of the system being tested) aimed at establishing an agreement with the
penetration tester(s). In this phase, the two parties define the scope of the
test, the people responsible for the different tasks, the actions permitted to
the testers and the identifying test timelines. A team is established, and
contact information (for emergency) is exchanged. Management consent and
written permission are needed before moving to the next stage.

2.3.2 Preparation
Before starting the actual penetration testing, a preparation takes place
according to the agreement established during the planning phase. If more
than one penetration tester is involved in the testing, then the work is
organized and divided within the team. The appropriate tools are selected
and configured accordingly, based on the tasks which need to be executed.
This phase requires the testers to take into account the integrity and stability
of the system under test. This is a critical aspect when deciding what actions
will be taken during the test.

2.3.3 Attack
This phase involves the actual testing and closely resembles the steps taken
by an attacker who is not authorized to access the system, and whose goals

2.3 The Penetration Testing Process 7

MSc in Information Systems Angelos David

are of a malicious nature. Every action taken during the test phase must be
logged so that it will be possible to analyze the history in case unexpected
situations arise. Communication with the customer is also critical in specific
situations where the systems owner’s approval is required by the penetration
tester before taking any action. The attack process involves several different
steps, as described in the sections below. Some of these steps are repeated
over time as new pieces of information are gathered allowing the tester to
fill in earlier gaps or to explore new areas of the system being tested.

Target identification

Target identification consists of gathering information about the system under
test such as available domains, IP addresses, internal resources, security
policy, etc. The importance of the target identification phase depends on
the amount of information available to the penetration testing team at the
beginning of the test. It is necessary to identify the target, particularly in the
context of an external penetration test, i.e. when the tester has no initial
access to internal resources. Useful information can be found using a variety
of techniques, such as exploring a website gathering information from search
engines or doing social engineering.

Port scanning

Port scanning is the first part of the process of penetration testing involving
an active interaction with the system under test. This consists of scanning
the network to find out which hosts are available, which ports are open, and
which services are running. Normally a tool is used to perform this task like
Nmap[8].

Enumeration

Once the penetration tester has developed an overview of the hosts and
services that are part of the system being tested, it’s time to identify those
that are most likely to be vulnerable. Enumeration consists of collecting
information on the services in the system in addition to the port scan results.
Examples of such information include the application version in use, well-
known bugs, password lockout policy for a particular service, etc. Such

2.3 The Penetration Testing Process 8

MSc in Information Systems Angelos David

knowledge helps the tester to assess the weakest point(s). In this step, the
tester’s expertise is of great help, while tools can also be used to assist the
tester.

Penetration

Penetration is the act of exploiting a weakness that has been identified in
the system under test. An exploit is the means by which a penetration tester
(or an attacker) takes advantage of a flaw within the system, resulting in a
behavior that the developers never intended. The goal of the exploitation is
to gain access to a certain resource, for example by obtaining a remote shell
used to control a machine over the network. Examples of common exploits
are buffer overflows, SQL injections, configuration errors, etc.

Since exploits are likely to cause temporary or permanent damage to the
system under test, it is the penetration tester’s responsibility to determine
whether it is acceptable to use a certain exploit. Maintaining good commu-
nication with the customer usually helps the tester to make these decisions.
As described in chapter 2.3.1 the tester is not normally permitted to perform
actions that are potentially dangerous to the stability and integrity of the
system being tested.

In contrast to what happens in a penetration test, stability issues rarely affect
the penetration phase of the hacking process. Generally, a hacker is not
concerned with the possibility of service interruption due to the adoption
of aggressive exploits, unless the use of such exploits would increase the
probability of detection.

Escalation

When a vulnerability is successfully exploited, the access gained to a resource
is often limited. For instance, the penetration tester could gain access to a low-
privileged user account, but higher privileges are needed to perform certain
operations. The escalation phase consists of further exploiting a resource to
increase the influence of the tester on the compromised machine.

2.3 The Penetration Testing Process 9

MSc in Information Systems Angelos David

Getting Interactive

The fact that a host in the system under test is compromised does not nec-
essarily mean that it can be easily controlled. An interaction mechanism
is needed for the penetration tester to perform operations on the compro-
mised machine in the same way as an administrator would. Occasionally,
exploits provide the tester with an interactive interface directly (e.g. a shell
to remotely control the resource), but when this is not possible an addi-
tional phase to gain interactive access (graphical or command line based) is
needed.

Pillage

Pillaging takes place when (limited) access is gained to the system being
tested, and consists of collecting information about the resource and being
compromised and potentially other network entities (e.g. routers or hosts).
The goal of this phase is to expand the penetration tester’s influence on the
system and possibly identify additional vulnerabilities without the need to
exploit them. For example, the tester might extract credentials from local
databases, read the users’ passwords in their hashed form, analyze firewall
configurations, etc.

Cleanup

A professional penetration tester must not leave anything on the system
that was installed during the test. Every altered configuration must also be
restored to its original state. The purpose of the cleanup phase is to avoid
introducing additional vulnerabilities in the system under test. The goal of
this phase is different from that of a hacker. A hacker is concerned with
removing all traces of his/her presence in the target system to avoid being
detected and identified. However, a hacker might be interested in leaving a
backdoor, i.e. a mechanism to later regain the same access level without the
need for exploiting the system again.

2.3 The Penetration Testing Process 10

MSc in Information Systems Angelos David

2.3.4 Reporting
The final phase of a penetration test is the report of the test results. The report
includes a summary of the vulnerabilities that were found during the test how
the vulnerabilities could be exploited and recommendations on how to fix
them. From the customer’s point of view, merely having a list of the identified
issues does not provide much value. Therefore, organizing a meeting is
often preferred where the content of the report can be discussed and the
penetration testers can explain clearly to the customer what really happened
during the penetration test. Moreover, the severity of the vulnerabilities
that were discovered can be discussed and defined with the customer. The
severity indicates a vulnerability’s level of danger and is “calculated” on two
factors: the likelihood that a vulnerability will be exploited, and the impact
that a possible exploitation could have on the company. The penetration
tester knows only the technical extent, but the consumer should estimate the
impact for their company that a specific security breach would have.

2.4 Related Work
In this chapter, two existing solutions similar to the project under develop-
ment will be studied. These two solutions are both security frameworks
which aim to automatically scan web servers. These two frameworks are
Golismero[9] and OWASP OWTF[10].

Golismero

Golismero is a free software framework for security testing. It is oriented
towards web security and contains many well-known security tools such as
XSSer, theHarverster, SQLMap, DNSrecon, and many more. It uses the tools
to test a web site and then reads the results of the tools to obtain results and
feedback for the rest of the tools. Once it has finished, it merges the results
and displays them.

It has integration with known vulnerability standards such as CVE, CWE and
OWASP, and allows plug-ins to be built to incorporate new tools into the
system.

2.4 Related Work 11

MSc in Information Systems Angelos David

The framework is platform independent and has no native library dependen-
cies. This is accomplished by writing it in pure Python.

This framework is aimed at the first stages of the penetration testing process.
It does not try to exploit the vulnerabilities it founds. Instead, it generates
reports containing all the information it has found, in multiple formats. These
formats include a static HTML page and PDF creation.

The framework is used through the command line and the authors claim it
has a better performance than the rest of current security frameworks.

OWSAP OWTF

The Offensive (Web) Testing Framework is, as its name says, a testing frame-
work that focuses on uniting great security tools together to make pen testing
more efficient.

The framework is OWASP Testing Guide-oriented, meaning that it classifies its
findings as closely as possible to the testing guide provided by OWASP[11]. It
also reports its findings on the fly in an HTML page, meaning that as soon as a
tool finishes, the results are updated on the database and can be explored.

It is written in Python and works in any Linux system. However, it needs the
tools to be installed in order to run them. It is easy to control and easy to run,
using a command line tool for it, and it provides some examples of its usage
with several examples. It stores the information obtained on a database and
extracts data from it in a parsable format as well.

This system, thanks to having OWASP behind it, has a great community of
developers that are constantly upgrading it.

2.4 Related Work 12

3System Design

This chapter describes the various phases that took place during the design
of the automated penetration testing tool. At the beginning of this part, a
few important issues had to be considered (these are described in section
3.1) that determined the objective of the tool that will be created. In section
3.2 an analysis will be provided about the tools selected, the technologies
used and the different phases of this tool. In section 3.3, the architecture of
the tool will be explained. In section 3.4, a brief comparison of the tool with
similar existing tools will be presented.

3.1 Approach
The main objective of this project is to automate the process of penetration
testing process in order to help security experts with their work. This main
objective creates some key points that also need to be noted. These key
points will be addressed in this section.

• The tool should cover as many parts of a penetration testing process as
possible.

• The system should be configurable by the security expert using it, in
order to suit its preferences.

• The system should be able to easily integrate new tools.

• The results the system has found should be presented in an easily
understandable way.

Therefore, these main points are the objectives this program needs to cover
in order to be able to really help in the penetration testing process. The first
key point is really important, since the more parts of a test this system covers
the more useful it will be. A tool that only runs the Nmap[8] tool won’t be of
any use to a penetration tester, since s/he can run Nmap directly instead. The
goal is to cover most of the parts of a penetration test, beginning with the
information gathering phase and using the information obtained to progress
through the different steps and to create a report simple to understand. Since
the process is linear, this tool will also be linear, starting with the information

13

MSc in Information Systems Angelos David

gathering step and once enough information is collected, it will be used to
start the vulnerability assessment phase, and so on.

3.2 Analysis
The main question that needed to be answered at the beginning of the design
phase was what tools should be selected. Each tool had its advantages and
disadvantages that will be described in this section. Another thing that should
be considered is what technologies are more suitable to be used in order to
create a tool like this. In the end, the different phases of a penetration test
will be related to the tool under construction.

3.2.1 Tools
The most important part of this system will be the tools it uses. This will be
the main strength, since it will gather more information as it integrates more
tools. While choosing tools to add to the program, there are some aspects to
consider. First of all, since the aim of this tool is to be as automatic as possible,
the tools should be as automatic as possible, so they should not require
constant user interaction. This is an important aspect, as it discards some of
the tools that were considered to be used. There exist several frameworks and
complex tools that use graphical interfaces to interact continuously with the
user. This type of tools or frameworks is not recommended for this program
even though they are generally more advanced and powerful. This is because
the interaction with the user should be minimal.

Such minimal user interaction can be easily achieved with command-line
tools or external tools that can be launched via the command-line and need
no interaction. This does not mean that the tools need to be simple ones. For
example, Nmap is a command-line tool and is a powerful tool, capable of
scanning a whole network and discovering all of its machines and services
that reside on those machines’ open ports. Another example would be
theHarvester[12], a command-line tool that uses search engines to discover
usernames, email addresses and virtual hosts related to a target.

Another interesting aspect regarding the tools to be used is the ability to
analyze their results. The tools included in the program should be ideally in
an easy-to-parse output format. Usually, this kind of tools has XML and JSON
output reporting, which are some of the easiest ways to parse the results.

3.2 Analysis 14

MSc in Information Systems Angelos David

There exist parsing libraries in almost all current programming languages.
Parsing the tools will be one of the system’s key points, as it is the part where
a tool’s output is collected and parsed. When you want to add a new tool to
the program, you need to build and add a parser for this tool.

There are tools made by security companies in the market currently that
require high fees to use them. All the tools used in this tool will be free.
However, due to it being expandable, proprietary tools could be added by
the users afterward.

With all these considerations in mind, the tools chosen for this system are
a subset of the optimal selection of tools that this system would need to be
complete. Since the development time of this project will be not that long,
the focus of the tools used will be on the information gathering step of a
penetration test. Focusing on the information gathering step will allow the
system to settle an attack surface. This attack surface has to be as complete
as possible in order to establish a good starting point for the next steps. The
information gathering step can find things like machines and ports, but it
can also find usernames, email addresses and services residing on the ports
found. It is really important to have this wide range of information on the
system because it gives the security expert lots of possible entry points.

3.2.2 The programming language
After the research done in the first stages of this project, it is clear that the
system that will be build has no specific programming language constraints.
Any programming language that could launch command-line tools, parse the
results of those tools and then display information in any way could work.
However, it would be better if the tool is in the form of a website, so the
user will be able to use it from anywhere, without having to carry always the
appropriate equipment in order to perform a scan. So the tool will consist
of a back-end doing all the scanning using the tools and the analysis of the
results and a front end which will give the opportunity to the user to choose
the tools to be used and showing the results in a nice way.

After taking all these into consideration a server written in Node.js and a
front-end written in Angular seems like a good idea. An analysis of the
language has to be done before selecting it, to check if it suits all the needs
of the system. First of all, Node.js is lightweight and efficient, and taking in
mind that the tools that will be used may need a lot of power to perform

3.2 Analysis 15

MSc in Information Systems Angelos David

a scan, it would be better to have as much free computational power it’s
possible. Also having the ability to use JavaScript on both front-end and
back-end adds an advantage for development. Moreover, the Node.js package
ecosystem, npm, is the largest ecosystem of open source libraries in the world,
so a lot of packages that will make the development easier can be found.
After some research, interesting libraries can be found that are really useful
for the project. Last but not least, Node.js uses an asynchronous architecture,
which JavaScript can handle well. This is very important when executing the
tools, because it is impossible to know how long each tool will take and an
asynchronous style is needed.

One of these packages is Express which is a minimal and flexible Node.js web
application framework that provides a robust set of features to develop web
and mobile applications. This package makes it really simple to code and
deploy an API that is able to manage and respond to HTTP requests. An-
other good point towards Node.js is that it has a module called ‘child process’.
This module lets the user launch bash commands in a controlled way. It
also retrieves the output of the command and presents it as a String. The
functionality provided by this module is clearly useful for the system under
construction. Last but not least packages that parse different types of re-
sources into JSON make the reading job faster, easier and more consistent.

After all the research done, the conclusion is that JavaScript is a really good
candidate to code the system with. Also, the modules found are only a small
flavor of the whole lot of modules that JavaScript has. This will be really
useful by easing the process of building the system, but many more could
be used. All this research has made it clear that the system will be coded in
JavaScript.

3.2.3 The phases
In this section, an analysis of the different phases of a penetration test will be
related to the system under construction. The tools to be used will be listed
here, as well as some explanations on the problems found during each phase
analysis.

3.2 Analysis 16

MSc in Information Systems Angelos David

Information Gathering

At this stage of a penetration test, there are lots and lots of tools that could be
used. There are lots of areas that need to be covered, and lots of information
to be found about a target. An important part of this stage is that no prior
knowledge is required for the target. This means that all the tools that will
be launched in this stage will only need the target’s IP address or name to
function.
In this phase, lots of information will be discovered and stored. It will be the
stage with more tools in our system and those tools will try to cover most
aspects of the target.

First of all, Nmap[8] is one of the most important penetration testing tools.
Clearly, due to its high usefulness, this tool had to be used. Nmap is able
to discover interesting things such as the operating system of the machine
and the opened ports that this machine has. In addition to discovering the
ports, it also reveals the service that is listening at each port. All of these
things make it an effective tool to use as all the knowledge that it collects
is really useful and establishes the attack vector for the next phases. In this
system, Nmap will be used to discover the operating system of the machine,
its active ports, the versions and other information of the services running in
each port.

Another area that needs to be analyzed is the enumeration of the URIs of a
server. In order to find different URIs of the web server Gobuster[13] will
be used. With the use of a wordlist[14], this tool brute forces the web page
and returns all the URIs that exists. This will give a better understanding
of the contents of the server that is being tested. This tool can also be used
to discover subdomains, but for this project, Gobuster will only be used to
discover the URIs, this is so because another tool will be added that covers
the other aspect of Gobuster.

Another aspect that this phase has to cover is the identification of the web
technologies used on a website. These technologies include content man-
agement systems (CMS), blogging platforms, statistic/analytics packages,
JavaScript libraries, web servers, and embedded devices.

Search engines can provide lots of information about a target. The informa-
tion collected from search engines can usually be used in social engineering
attacks. This information can range from subdomains of the target to the

3.2 Analysis 17

MSc in Information Systems Angelos David

software used to produce the publications the target has made available. In
this project, two tools will be used to gather information from search engines.
The first one is Sublist3r[15]. This tool enumerates subdomains using many
search engines such as Google, Yahoo, Bing, Baidu and Ask. It also enumer-
ates subdomains using Netcraft, Virustotal, ThreatCrowd, DNSdumpster and
ReverseDNS.
The second tool that will be used is called theHarvester[12]. This tool uses
search engines to directly search for everything related to the target. It finds
subdomain paths that have been crawled by the GoogleBot crawler, and it can
also find email addresses from people working on or related in any way with
the target.

Vulnerability Assessment

This penetration testing step also has lots of tools available. Since there are
many different vulnerability types, there have to be tools to cover them. Most
of these tools, however, require some kind of prior knowledge about the
target. For example, the tester needs to know that the target has a Wordpress
web server to launch a Wordpress vulnerability scanner. Another example
would be SQL Injection scanning. This type of scanning needs a vulnerable
link in order to launch all the known attacks. These tools will only check if
the link provided is vulnerable to a series of known attacks. This fact makes
it really difficult to launch this type of tools automatically.

However, there exist general scanners that, for example, scan a web server
in order to find interesting things and known vulnerabilities that globally
affect the target. One of such tools is Wapiti[16]. This tool will be one of the
tools used in this phase of penetration test. It works like a fuzzer, scanning
the pages of the deployed web application, extracting links and forms and
attacking the scripts, sending payloads and looking for error messages, special
strings or abnormal behaviors. It supports a variety of attacks, including
SQL injection, Cross Site Scripting, local file inclusion and remote file inclusion,
CRLF injection and others. When finished it presents all its findings with the
appropriate link to the web server and some information about the things it
discovered.

Another such tool is Nikto[17]. It scans web servers to find potentially
dangerous files or CGIs, checks out of date server versions and scans server
configuration items such as multiple index files or HTTP server options.

3.2 Analysis 18

MSc in Information Systems Angelos David

Nikto, like Wapiti, when finished scanning a web server, it presents the
vulnerabilities it has found with a description and a link to the vulnerability
on the web server, amongst others.

Nmap will also be used in this phase too. Nmap has a feature that scripts
can be imported and executed through it in order to automate a wide variety
of networking tasks. Some scripts that will be used are for well known vul-
nerabilities, like the POODLE attack[18], the Heartbleed attack[19] and the
DROWN attack[20]. Also, another script that will be used is nmap-vulners[21].
Some of the information that Nmap gathered from the information gather-
ing phase, like services running on ports and their versions, will be crossed
checked with the National Vulnerability Database (NVD). This will show
some well-known vulnerabilities for the system being tested according to the
services that are running on it providing their ids inside the Common Vulner-
ability and Exposures (CVE). This id can be used to find more information
about a particular vulnerability, for example on the MITRE website.

However, there is more than one way of classifying vulnerabilities and differ-
ent entities have different databases. The most common is the CVE mentioned
above, but another one is the Open Source Vulnerability Database (OSVDB).
Since there is more than one system, it happens that different tools offer
different information. In our case Nmap uses CVE, but Nikto provides OSVDB
ids. The desirable case would be to be able to convert OSVDB ids to CVE
ids to use the same classification throughout the tool, but doing this is more
difficult than it seems.

There exist web servers that provide user interfaces to get the conversion from
OSVDB to CVE, but there is no way to automate this conversion massively.
There exists an API that allows queries to get the conversion, but it only
accepts two queries per day, and this would be useless in this system.

In order to use more tools in this step, another scanning tool will be used. The
tool is called WPScan[22] and it is used to scan Wordpress websites. It scans
for outdated plugins and themes and can obtain default users. It crawls the
website to find usernames used and the use this data to perform a bruteforce
scan to find the credentials. For this scan, a wordlist[23] must be provided.
Another feature provided by WPScan is the ability to use its vulnerability
database[24]. When using it WPScan is able to retrieve vulnerability data
in real time, providing information like which versions of the plugins are
vulnerable to the exploit, in which version was it fixed and the CVE id to

3.2 Analysis 19

MSc in Information Systems Angelos David

search for extra information. One restriction though is that this feature is
not free. But 50 requests can be done per day free, which are sufficient to
showcase this tool.

The last tool that will be used in this step is Joomscan[25]. This tool en-
ables scanning of Joomla installations, while leaving a minimal footprint
with its lightweight and modular architecture. It can enumerate the compo-
nents and detect known vulnerabilities, firewall, misconfigurations and admin
level shortcomings that can be exploited by adversaries to compromise the
system.

Exploitation

The number one tool for exploitation is Metasploit[26]. It provides the whole
environment for detecting targets and exploiting them. However, our system
aims to be automatic and the automatic use of Metasploit isn’t that simple. As
it has been stated previously, there is not a clear standard on vulnerabilities.
Because of that, there does not exist a clear relation between a concrete
vulnerability and an exploit. When gathering information about known vul-
nerabilities, sometimes the database providing the information provides some
known exploits for exploiting it, but this is not common practice. Due to that,
intelligent automatic exploitation of a target is extremely hard. One possible
solution might be to launch all known exploits on target independently, but
that would be extremely time consuming and potentially dangerous to cause
some problems at the system being tested. However, there exists a module
for Metasploit called db_autopwn[27].

db_autopwn is a module that feeds from the Nmap output and launches all
the exploits it knows. It can be configured to launch exploits related to
port numbers or directly launch all exploits. If an exploit is successful, the
module opens a session on the target, meaning that the tester has access to
it. This could seem like the perfect solution for this project, but there are
some problems. This module is a deprecated one. It was deprecated because
it was unstable, it crashed some systems, and it did not fit the tool’s scope.
The developers of Metasploit do not encourage the usage of this module, but
it’s the only automatic exploitation option currently available. Intelligent
exploitation is the one advised by the framework’s developers, and this makes
a lot of sense, since launching countless exploits to a target without even

3.2 Analysis 20

MSc in Information Systems Angelos David

knowing if any of them will work is not a smart move. Taking all this in mind,
it was decided to leave this module out of the tool.

Post exploitation

Once a pen tester has access to a system, s/he still has a bit of work to do.
The access point sometimes isn’t that interesting and the tester has to move
from one machine to another before s/he discovers interesting things. This
process can also be done with Metasploit. The framework provides modules
to jump from machine to machine in a semi interactive way, using console
commands.

This process in itself would be really difficult to automate, since it is really
environment dependent, and could be different every time. On top of that,
the system should be previously aware of the network inside the target,
or have some methods of discovering it once it’s inside. Moreover, the
system should be intelligent enough to know which machines could contain
sensitive information inside the network. All these things are really complex
to automate and would require Artificial Intelligence. This is obviously out of
the scope of this project.

Therefore, having in mind that it would be really difficult to do, and also
noting that the system is probably unable to exploit the target in the first
place, this step will not be implemented on the system. It makes no sense to
cover this part if intelligent exploitation is not possible.

Reporting

This is the stage where a report of all the findings is generated by the tool.
One of the objectives of this system was to provide easy-to-understand reports,
and a good way to do it is to provide an interactive way to show the results.
Since Angular makes it easier to code websites, the reporting system will be
done through a web page that will interactively present all the findings of the
system. This system makes it easier to find details and is much more concise
than a report of 200 pages. The information will be provided depending on
what tools were chosen to be executed, and the tester will be able to select
which information s/he wants to see.

3.2 Analysis 21

MSc in Information Systems Angelos David

All this information gathered by the system is also stored in output files from
each tool. This fact gives the possibility of outputting a PDF report of all
the findings, but it will not be a priority of this project. The web interface
is believed to be much more intuitive and easy to understand the way of
showing the results.

3.3 Architecture
Tools Integration

The only thing all the tools the system uses have in common is that they
are all command-line tools. This could lead to a problem in the sense that
for each tool that needs to be used, a custom class should be created. Each
tool would have its way of launching it, with different options, and different
output styles. This could mean lots of work if someone would want to expand
the number of tools in the system. Instead of doing that, a simpler solution
will be taken. In this solution, there will be a generic class that will be able
to call any command-line tool with root privileges. This module is called
child_process and it will spawn a child with the execution command it will be
provided. It also calls the tools with root privileges because certain tools need
these privileges to be used. So, it will receive a command as a parameter, it
will execute it and it will return the result.

This tool integration has two different parts. The class that launches the tools
that the user has chosen to be executed, which will be called custom and
the class which will determine which tools will be executed automatically
based on the information gathered in the previous steps, which will be called
auto.

For each tool a different class will be created, which will contain the different
options that can be used for this tool (execute the same tool with different
parameters) and its parser, that would parse the output returned from the
previous class. A different parser for each tool cannot be avoided to be
created, cause every tool has a different output format, so different strategies
have to be used.
One of the most common and simple parsing types is the JSON file. This will
make it really easy to obtain the information in later stages. So, when a tool
finishes its execution, its parser function processes the output and creates a

3.3 Architecture 22

MSc in Information Systems Angelos David

JSON object. This object will have the tool name as key.
With this system, calling any tool is really simple, and the only thing that has
to worry the user when adding a new class for a new tool is to contain the
command to be executed and its own parsing function.

The next step in the design of the system is the step where the scans are
launched. In order to do that, the system receives an array with the tools
that the user selected to run and then use its class to launch them. The part
of the system that chooses which tools are going to run is called handler.

The execution time of these scans can be really long, so it would be a good
idea to show at which stage is the tool at every moment. Therefore, it seems
right, each time a tool is executed or finished, an appropriate message to be
emitted.

Web interface

A big part of this tool is the web interface, which will show the results of the
system, by interactively showing the outputs of the tools. It will start with a
screen with all the tools shown and separated by category. Each tool would
have a checkbox, and the user can create a scenario of a scan and choose
here the tools suited for his/her needs. Also, an input will exist, where the
user will be able to specify the target. Under the target input, the user will be
able to specify a proxy where all the traffic will pass through. Under all these,
an interactive MITRE matrix[28] will be shown and whenever a user chooses
a tool the categories in the matrix that this scan falls will be highlighted.
When the tools are chosen and the target is specified there will be a button
to start the scan. Also, the user has the choice to select, from the navbar,
whichever tool is needed, or choose the custom scan.

When the scan is started a loading screen will be shown which will be
updated in live time displaying the tool that is currently running. When the
scan finishes, two blocks are shown. The first one is the summary of the
scan, containing the phases/tools that were executed and the second, is the
important one, which shows the output of the scan with all the important
information found. If any known vulnerabilities exist, a link will be provided
with information about it. The output depends highly on the type of the scan
the user selected. If the user executes only one tool, the output will be this

3.3 Architecture 23

MSc in Information Systems Angelos David

tool result. If the user selects more tools or automated scan, then a good
amount of information will be displayed.

3.4 Comparison with other tools
The goal of this section is to analyze the differences between similar automa-
tion penetration tools (summarized in section 2.4) and the process followed
by the tool described above.

The main difference between these approaches is that this tool uses the
scanners specified and created for each occasion. In other words, the exist-
ing automated penetration approaches would scan a website for common
vulnerabilities in a general way, like SQLi and XSS vulnerabilities scan and
misplaced or misconfigured files scan, without taking into consideration any
variables of the specific website.
On the other hand, the tool would execute the same scans for SQLi and XSS
vulnerabilities and misconfigurations, just like the other tools, but it would
also identify the technologies running on the website. This enables it to
launch the appropriate tools, specially created to test each technology, and
provide more accurate scans. For example, if WordPress CMS is detected
on the website, then a scan using the wpscan tool would run, which will
be able to provide even more specific vulnerabilities about the theme, the
components and the plugins used, something that the other tools could not
detect.

Moreover, a lot of the existing tools can only be launched via terminal, like
Golismero (see 2.4), while some, like the tool described in this thesis and
OWASP OWTF (see 2.4), provide a web interface making it easier to configure
and manage a scan. Also, with a web interface provided it is easy to configure
the tools on a remote server, with the software and hardware needed and
make the scans remotely, without having to carry always a machine capable
to perform this type of scans.

Golismero OWASP OWTF Tool
Add more tools with plugins X X X

Interactive Report X X X
Web Interface X X

Use of situational tools X
Tab. 3.1: Comparison Table

3.4 Comparison with other tools 24

4Implementation

In this section, the details of the implementation of the system will be listed,
along with any implementation decisions and assumptions made.

Tools integration

As it has been said in the design section, a generic class that will be able to
execute all the tools has to be created. This class is called execCommand and
it is stored in the file command.js. This class uses node package child_process
that has some simple functions that run the command line tool.

const { exec } = requ i r e (’ ch i ld_proces s ’) ;

exec (command , { cwd : cwd } , (err , s tdout , s t d e r r) => {

i f (e r r) {
console . e r ro r (" Exec e r ro r : " , e r r) ;
r e j e c t ("Command f a i l e d : " + command) ;
re turn ;

}
i f (s t d e r r) {

console . log ("Command s t d e r r : " + s t d e r r) ;
r e j e c t (s t d e r r) ;
re turn ;

}
i f (s tdout) { // the command f i n i s h e d s u c c e s s f u l l y

r e s o l v e (s tdout) ;
}

}) ;

The function exec spawns a shell. The command that will be executed is given
as the first parameter. The function then has to wait until the process finishes.
If the command runs but produces an error, then this error is stored in the
stderr variable. If the command is executed successfully then the output is
stored in the stdout variable. If any other error is produced it is stored in
the err variable. Once the process has finished, the output is returned to the

25

MSc in Information Systems Angelos David

function that called the exec.
The timeout established for the exec function has to be long enough to wait
for slow processes. For example, the tool named theHarvester spends a lot of
time running its normal execution (around fifteen minutes), and the default
timeout for the spawn function would be not enough.

The other main part of our program is the tool classes. Each tool has each
own class which contains the available commands (different type of scans)
for this tool and the parsers. Not all classes will be explained here, since most
of them have the same logic. Some examples will be described.

One of the examples is Nmap. Since the Nmap class is quite long, it will be
explained in parts. First of all, the command class, that was analyzed earlier
should be imported, in order to use it.

const command = requ i r e (’ . . / U t i l s /command ’) ;

As stated before, each tool can have more than one type of scans. So when a
tool is called it must determine which command to run.

func t ion nmapTool (ur l , type) {
switch (type) {

case " d e f a u l t " :
nmapTool_default (u r l)

. then (commandOutput => r e s o l v e (commandOutput
))

. ca tch (e r r => r e j e c t (e r r)) ;
break ;

case " vuln " :
nmapTool_vuln (u r l)

. then (commandOutput => r e s o l v e (commandOutput
))

. ca tch (e r r => r e j e c t (e r r)) ;
break ;

case " hear tb leed " :
nmapTool_heartbleed (u r l)

. then (commandOutput => r e s o l v e (commandOutput
))

. ca tch (e r r => r e j e c t (e r r)) ;
case " poodle " :

26

MSc in Information Systems Angelos David

nmapTool_poodle (u r l)
. then (commandOutput => r e s o l v e (commandOutput

))
. ca tch (e r r => r e j e c t (e r r)) ;

case " drown " :
nmapTool_drown(u r l)

. then (commandOutput => r e s o l v e (commandOutput
))

. ca tch (e r r => r e j e c t (e r r)) ;
}

}

As seen in the code, the function receives as parameters the target to be
scanned (the variable url) and the type of the scan. The right scan is then
called. The default scan function will be explained further.

Each scan function has two parts. The first one is the part where the com-
mand is executed and the second one is the parsing of the output.

func t ion nmapTool_default (u r l) {
defau l tScan (u r l)

. then ((commandOutput) => {
i f (commandOutput !== ’ success ’) {

r e j e c t (commandOutput) ;
}
toJson (f i l e)

. then ((j son) => {
ge t In fo (json , type)

. then ((nmapInfo) => {
r e s o l v e (nmapInfo) ;

})
. catch ((e r r) => {

r e j e c t (e r r) ;
}) ;

})
. ca tch ((e r r) => {

r e j e c t (e r r) ;
}) ;

})
. ca tch ((e r r) => {

r e j e c t (e r r) ;

27

MSc in Information Systems Angelos David

}) ;
}

The default scan is called with the target as parameter. Then if there is an
error while the tool is being executed, the error message is returned. If the
command was executed successfully the output is sent to the parser.

The first part of the function will be explained here. This Nmap scan tries to
identify the operating system of the machine and the versions of the services
running on each port. As referred, the parameter of the target is given. Then
the output will be stored to a file, in order to read it and process it in the
next steps.

const defau l tScan = (u r l) => {
command . execCommand(con f i g .NMAP + ’ −oX outputs /

nmapOutput_default . xml −O −sV ’ + url , ’nmap ’)
. then ((commandOutput) => {

r e s o l v e (commandOutput) ;
})
. ca tch ((e r r) => {

r e j e c t (e r r) ;
}) ;

} ;

As it can be seen in the code above, the execCommand is being called and as
parameters there is the command that will be executed and the name of the
tool. In the command the config is something that has not been explained.
The config is a file that contains all the paths of the executables of each
tool, and some other paths like wordlists that some tools use. So, in this
example the config.NMAP is the path of the Nmap executable file. When the
command finishes its execution the result is stored in the file that was given
as parameter to the command.

Now for the second part, the output, that was stored to a file, is sent to the
parser for process.

func t ion ge t In fo (json , type) {
const por t s = json . host . po r t s ;
const address = json . host . address . addr ;
const name = json . host . hostnames [0] . name ;

28

MSc in Information Systems Angelos David

const os = json . host . os . osmatch [0] . product . os fami ly
+ ’ ’ + j son . host . os . osmatch [0] . product . osgen ;

const openPorts = [] ;
const vulns = {} ;
por t s . forEach (element => {

i f (element . s t a t e . s t a t e === " open ") {
openPorts . push (element . por t . po r t i d) ;
i f (typeof (JSON . s t r i n g i f y (element . s c r i p t))

!== ’ undefined ’) {
const s c r i p t S t r i n g = jsonEscape (JSON .

s t r i n g i f y (element . s c r i p t)) ;
const s c r i p t O b j = JSON . parse (

s c r i p t S t r i n g) ;
vulns [element . por t . po r t i d] = parseVulns (

s c r i p t O b j . vu lner s) ;
}

}
}) ;
r e s o l v e ({ ’ ports ’ : ports , ’ openPorts ’ : openPorts , ’

v u l n e r a b i l i t i e s ’ : vulns , ’ address ’ : address , ’
name ’ : name , ’ os ’ : os }) ;

}

The parser looks for all the ports found by Nmap in the host. Also, important
information is stored, like the address and the name of the host and its
operating system. After that, for each port, it finds its number, the service
that is listening to that port and its state. Once it has all this information, a
JSON object is being created and sent back as an answer.

Not all tools provide a file output or the output that they provide is not
in a parsable format. In this case, the parsing function has to play with
strings, delimiters, string split() function and includes() function provided by
JavaScript. A simple example is the Joomscan tool, which does not provide a
file output. A part of the parsing function is the following one.

var array = f s . readF i leSync (f i l e) . t o S t r i n g () . s p l i t (" \ n ") ;
var j son = new Object () ;
var key = " Joomla Scan " ;
j son [key] = [] ;

f o r (var i = 0; i < array . length ; i++) {

29

MSc in Information Systems Angelos David

i f (ar ray [i] . i n c ludes (’ F i reWal l Detector ’)) {
key = " F i r e w a l l Detec tor " ;
i++;
j son [key] = [] ;
while (! ar ray [i] . i n c ludes (’ Detec t ing Joomla Version

’)) {
i f (ar ray [i] != ’ ’) {

i f (ar ray [i] . s t a r t s Wi t h (’[++] ’)) {
j son [key] . push (array [i] . s p l i t (’[++] ’)

[1]) ;
} e l s e {

j son [key] . push (array [i]) ;
}

}
i++;

}
i −−;

} e l s e i f (ar ray [i] . i n c ludes (’ Detec t ing Joomla Version ’)
) {

key = " Joomla Vers ion " ;
i++;
i f (ar ray [i] . s t a r t s Wi t h (’[++] ’)) {

j son [key] = array [i] . s p l i t (’[++] ’) [1] ;
} e l s e {

j son [key] = array [i] ;
}
while (! ar ray [i] . i n c ludes (’ Core Joomla V u l n e r a b i l i t y

’)) {
i++;

}
i −−;

} e l s e i f (ar ray [i] . i n c ludes (’ Core Joomla V u l n e r a b i l i t y
’)) {

. . .
}

}

This type of output requires some creative string manipulation in order to
obtain the part that is useful. The usage of the includes() function is a must,
and playing with String delimiters also helps in obtaining the interesting
parts. If a future user wants to add a new tool, a new parsing function has to

30

MSc in Information Systems Angelos David

be created, that correctly parses the output of the desired tool and transforms
it in information.

Before explaining the handler class, where the system calls the appropriate
tools based on the user’s choices, there is a preparation preceding. This is
the handler function, where the request from the frontend is being received.
There, the system checks if there are any problems with the target provided
by the user, if it is valid, if it is provided with the wrong way, if it redirects,
etc. and it will try to fix it. Here is the part that checks for redirects.

command . execCommand (’ c u r l −v −L ’ + u r l + ’ 2>&1 | egrep "̂ <
(Locat ion :) " | t a i l −1; echo " " ; ’ , ’ r e d i r e c t ’)
. then ((commandOutput) => {

i f (commandOutput . inc ludes (’ Locat ion : ’)) {
const r e d i r e c t U r l = commandOutput . s p l i t (’

Locat ion : ’) [1] ;
r e s o l v e ({ ’ r e d i r e c t ’ : true , ’ r e d i r e c t U r l ’ :

r e d i r e c t U r l }) ;
console . log (’ Redi rec ted to : ’ + r e d i r e c t U r l) ;

} e l s e {
r e s o l v e ({ ’ r e d i r e c t ’ : f a l s e })
console . log (’No r e d i r e c t i o n ’) ;

}
})
. catch ((e r r) => {

r e j e c t (e r r) ;
}) ;

And here is the part checking if the URL has the appropriate format.

const c l eanUr l = (u r l) => {
l e t c l eanUr l = u r l ;
c l eanUr l = c leanUr l . r ep lace (/[^\x20−\x7E]/g , ’ ’) ; //

remove non ASCII chars
c leanUr l = c leanUr l . r ep lace (/(^\w+:|^)\/\// , ’ ’) ; //

remove pro toco l in f r o n t of the u r l
c l eanUr l = c leanUr l . endsWith (’ / ’) ? c leanUr l . s l i c e (0 ,

−1) : c l eanUr l // remove the s l a s h at the end of the
u r l

re turn c leanUr l

31

MSc in Information Systems Angelos David

}

Also, this function is responsible to wait for all the tools to finish executing,
receive the scan output and return it to the frontend.

Then, in order to launch the tools, the handler needs to be called. There, the
tool classes are imported in order to be called. As it can be seen, it receives
the type of the scan and then launches the appropriate function.

switch (t o o l) {
case "nmap " :

nmap . nmapTool (ur l , ’ common ’)
. then ((nmapInfo) => {

r e s o l v e (nmapInfo) ;
})
. catch ((e r r) => r e j e c t (e r r)) ;

break ;
case " whois " :

whois . whoisTool (ur l , type)
. then ((whoisInfo) => r e s o l v e (whoisInfo))
. catch ((e r r) => r e j e c t (e r r)) ;

break ;
case " xs s " :

wap i t i . wapi t iTool (ur l , ’ xss ’)
. then ((wap i t i I n fo) => r e s o l v e (wap i t i I n f o))
. catch ((e r r) => r e j e c t (e r r)) ;

break ;
case " wpscan " :

wordpress . wordpressTool (ur l , type , proxy)
. then ((wordpress Info) => r e s o l v e (wordpress Info))
. catch ((e r r) => r e j e c t (e r r)) ;

break ;

. . .

case " auto " :
pen te s t . autoScanTool (ur l , proxy)

. then ((autoScanInfo) => r e s o l v e (autoScanInfo))

. catch ((e r r) => r e j e c t (e r r)) ;
break ;

case " custom " :

32

MSc in Information Systems Angelos David

custom . customScanTool (ur l , t oo l sSe l e c t ed , proxy)
. then ((autoScanInfo) => r e s o l v e (autoScanInfo))
. catch ((e r r) => r e j e c t (e r r)) ;

break ;
}

If a single tool is selected, like Nmap, a function like the one that was
explained earlier is called. Here, it is more interesting to see the custom and
the auto scan functions. If the custom scan is selected, then the function will
get as a parameter a list containing the tools that the user selected to run.
The appropriate tools will be executed in parallel in order to make the scan as
fast as possible, and then all the outputs will be parsed by each tool’s parser
and will be saved in an object, assigning the tool name as the key for each
one.
If the automatic scan has been chosen, then the program will follow a certain
procedure. The information gathering tools will be executed first. The
open ports will be discovered and the services running in each port will be
enumerated. After this information is found, common vulnerabilities will be
searched for each one of the services. If the system has a web application
running, more scans will automatically start. The technologies running on
the system will be enumerated, like the version of web servers, libraries,
CMS, etc. and if there is CMS like Joomla or WordPress the appropriate
scans will be initialized. All the plugins, components and information about
the sites will be gathered and the tool will try to find vulnerabilities for
each one of the findings. If in the findings, a login page exists, then the
tool will crawl the website to find usernames in order to try and bruteforce
their credentials. In the meantime, the website is being crawled for other
vulnerabilities, like SQLi, XSS, security misconfiguration and others. After all
the scans are completed , all the outputs will be parsed by each tool’s parser
and will be saved in an object, assigning the tool name as the key for each
one, as mentioned in the custom scan.

Web interface

The web interface is the visible part of the system. As it has been said
before, the web interface will not only show the results, but it will give the
opportunity to the user to make a scan that suits his/her needs. In order to

33

MSc in Information Systems Angelos David

do that an API has been created with JavaScript. The API will be detailed
now, as well as the results of the scans.

First of all, the node app has to be created. This app will be used to specify
the routes and the type of requests that the API will accept.

const express = requ i r e (’ express ’) ;
const app = express () ;

app . use ((req , res , next) => {
res . setHeader (" Access−Control−Allow−Orig in " , " * ") ;
r e s . setHeader (" Access−Control−Allow−Headers " , " Origin , X

−Request−With , Content−Type , Accept ") ;
r e s . setHeader (" Access−Control−Allow−Methods " , "GET , POST

, PATCH, DELETE , OPTIONS ") ;
next () ;

}) ;

app . post (" / api / scan / : t o o l " , (req , res , next) => {
. . .

}) ;

This shows how the server works. The setHeader functions declare what
types of headers are permitted, like what methods the server accepts. Then
there is an API function listening for scan requests. The POST method is
the method allowed when asking for this service. The method post is the
one that separates the behavior depending on the method used to access it.
If the method is GET, then this function will do nothing. If the method is
POST, it means that the scan form has been filled and that a new scan has to
start. Also, the path variable is the route needed to follow in order to get this
function. At the end of the path the :tool is noticed. This is not a static path,
but a dynamic path, where the tool is a variable that changes depending on
what tools have been chosen.

When a user opens the web app, the first thing s/he sees is the scan page.
The screen has an input where the target will be specified, as well as an input
to specify a proxy and then a list with all the tools that the user can select to
run, categorized. Under the checklist, there is the MITRE matrix[28].

34

MSc in Information Systems Angelos David

Fig. 4.1: Scan page

When the user selects a tool, the cells, that a scan with this tool will be
covered, are highlighted. Every cell is also clickable, and the user can learn
more information by clicking one.

Fig. 4.2: Scan page with selected tools

If the user just sets a target and clicks the Scan button, then the auto scan
will begin.

35

MSc in Information Systems Angelos David

There is also the choice to select each tool separately from the dropdown
menus on the navbar on top of the screen. After the user has selected the
tools that s/he wants and presses the Scan button, then a loading screen
appears, informing about the stage of the scan. This is achieved by the use of
a socket, where the backend emits information every time a tool is started or
finished, and the frontend is always listening for messages.

getMessage () {
re turn Observable . c r ea t e ((observer) => {

t h i s . socke t . on (’ progress ’ , (message) => {
observer . next (message) ;

}) ;
}) ;

}

In order to have a more organized code, the frontend is separated into com-
ponents. To avoid having a huge HTML file reading and showing the result
of the scan, each tool has its own component with HTML file and is loaded
only when it is necessary.

<app−joomla−output * ng I f ="mode==’joomscan ’" >
</app−joomla−output>
<app−wp−output * ng I f ="mode==’wpscan ’" >
</app−wp−output>
<app−nmap−output * ng I f ="mode==’nmap’" >
</app−nmap−output>
<app−s u b l i s t 3 r −output * ng I f ="mode==’ s u b l i s t 3 r ’" >
</app−s u b l i s t 3 r −output>
<app−gobuster−output * ng I f ="mode==’gobuster ’" >
</app−gobuster−output>
<app−whois−output * ng I f ="mode==’whois ’" >
</app−whois−output>
<app−whatweb−output * ng I f ="mode==’whatweb ’" >
</app−whatweb−output>
<app−wapit i−output * ng I f ="mode==’wapit i ’ || mode==’ s q l i ’ ||

mode==’xss ’" >
</app−wapit i−output>

As shown each component is being called only if it was selected.

36

MSc in Information Systems Angelos David

Let’s take a better look at the Nmap output HTML file (in the above code it is
the app-nmap-output component).

<t a b l e c l a s s =" t a b l e tab le −s t r i p e d tab le −dark">
<thead c l a s s ="thead−dark">

<tr>
<th>General Info </th>

</tr>
</thead>
<tbody>

<tr>
<td>Name: {{ outputObj [’ name ’] }}</td>

</tr>
<tr>

<td>Address : {{ outputObj [’ address ’] }}</td>
</tr>
<tr>

<td>Os : {{ outputObj [’ os ’] }}</td>
</tr>

</tbody>
</tab le>
<tabse t>

<tab heading=" Por t s " * ng I f ="outputObj [’ ports ’]" >
<t a b l e c l a s s =" t a b l e tab le −s t r i p e d tab le −dark " * ng I f

="outputObj [’ ports ’] . l ength > 0">
<thead c l a s s ="thead−dark">

<tr>
<th>Port </th>
<th>State </th>
<th>Serv ice </th>
<th>Product </th>
<th>Version </th>

</tr>
</thead>
<tbody>

<t r *ngFor=" l e t por t of outputObj [’ ports ’]" >
<td >{{port . por t . po r t i d }}</td>
<td >{{port . s t a t e . s t a t e }}</td>
<td >{{port . s e r v i c e . name}}</td>
<td >{{port . s e r v i c e . product}}</td>

37

MSc in Information Systems Angelos David

<td >{{port . s e r v i c e . ve r s ion }} <span * ng I f
="por t . s e r v i c e . ve r s ion ">({{ port .
s e r v i c e . e x t r a i n f o }})</td>

</tr>
</tbody>

</tab le>
</tab>
<tab heading=" V u l n e r a b i l i t i e s " * ng I f ="

v u l n e r a b i l i t i e s P o r t s . length > 0">
<t a b s e t type=" p i l l s ">

<tab heading="Port {{ por t }} " id ="{{ por t }} " *
ngFor=" l e t por t of v u l n e r a b i l i t i e s P o r t s ">
<div *ngFor=" l e t key of

v u l n e r a b i l i t i e s P o r t s S e r v i c e s [por t] |
keyvalue">
<t a b l e c l a s s =" t a b l e tab le −s t r i p e d tab le −

dark " * ng I f ="outputObj [’
v u l n e r a b i l i t i e s ’] [por t][key . key]">
<thead c l a s s ="thead−dark">

<tr>
<th>CVE</th>
<th>URL</th>

</tr>
</thead>

<tbody>
<t r *ngFor=" l e t vuln of

outputObj [’ v u l n e r a b i l i t i e s ’] [
por t][key . key]">
<td >{{vuln . cve}}</td>
<td> <a hre f ="{{ vuln . u r l

}}">{{ vuln . u r l }}</td>
</tr>

</tbody>
</tab le>

</div>
</tab>

</tabse t>
</tab>

</tabse t>

38

MSc in Information Systems Angelos David

The outputObj variable is the object that contains the scan result returned
from the server. Then, depending on the result, the appropriate HTML el-
ements are created. One interesting thing that can be seen is the usage of
if conditions and for loops inside the HTML code. Angular provides these
built-in functions to execute code inside the HTML files which makes fron-
tend coding easier. In this case, the if conditions are used to check if the
output contains some information. If the information exists, then the HTML
components will be created, otherwise it will be omitted. The loop condi-
tion makes it easy to create the same HTML element, using a few lines of code.

<t r *ngFor=" l e t por t of outputObj [’ ports ’]" >

This line of code iterates over the list of ports and all the characteristics of the
port are listed in a table layout. If a port has been scanned for vulnerabilities
and some vulnerabilities have been found, all the necessary information
is being displayed in a table layout. For each vulnerability, the CVE id is
provided, as well as a link with more information about this vulnerability.

Fig. 4.3: Nmap output

Each tool has an HTML file output like the one described above. Let’s take
a look at an auto scan to see how the results from more than one tool are
displayed.

On the top of the page there is a card with the scan summary. There, all
the scans run will be displayed and a check on the right side will indicate

39

MSc in Information Systems Angelos David

that this scan was successful. Below this card, the result will be displayed.
It is categorized by scan in order to have a better image of the scan and not
being chaotic. Each category has a dropdown button, so only the information
necessary for the user will be displayed, hiding the other information. Also,
in order to make it easier and clearer to read, each scan will be categorized
in tabs and the user can choose from there what information to show.

Fig. 4.4: Auto scan output

Fig. 4.5: Auto scan output with expanded Nmap output

40

MSc in Information Systems Angelos David

Fig. 4.6: Auto scan output with expanded Wordpress output

Deployment

The system built in this project has a lot of dependencies. Deploying it is
not as simple as getting and running the source code. Apart from the direct
dependencies of the code, all the tools that have to be used need to be
installed on the host system. This is a lot of work since not all tools are easy
to install.

In order to solve this problem, an alternative is being provided. This al-
ternative consists of a virtual machine having the system installed on it
beforehand.

The virtual machine chosen to install the tool is a Debian based. This choice
is due to the fact that the tools are made for Debian Linux based systems, so
there will be no problem with installing and running them. Also a Debian
machine comes without any extra packages that would bloat our machine.

Using this setup, the user can mount the Debian OS with the system installed
on a virtual machine, and have access to it through a browser.

The creation process of the Debian system is the following. First of all, a clean
Debian distribution is downloaded from the official source[29] and install it
on a virtual machine. The next step is placing the source code of the system
on the virtual machine. Afterward, the code dependencies should be installed.

41

MSc in Information Systems Angelos David

Most of them are Node.js libraries, which makes them easy to install. Once
all the code dependencies are installed, the next step is installing all the tools
that the system has to use. If a user wants to add new tools, s/he would
have to install them first. A simple solution to this problem would be to use
a distribution, such as Kali Linux[30], that already has all these resources
preinstalled on them.

It can be challenging to install the tools in the operating system, as most
are not in official repositories. This involves downloading the tool’s source
code from one of the known sources, and then manually resolving each tool’s
dependencies. Once all the tools on the virtual machine are installed the
system is almost ready to run. Last step is to run the web server and then it
will be accessible via a web browser locally.

42

5Results

This chapter presents the results of this thesis project. This test aims to
demonstrate that the system can discover and list vulnerabilities. As it is
not legal to test this tool on real machines a virtual machine with known
vulnerabilities has been chosen, to make sure that are some vulnerabilities to
find.

The virtual machine that was chosen for the test is the HA: Wordy[31] from
vulnhub.com. It is intended for trying penetration testing tools in a safe and
legal environment. This virtual machine contains a Linux system hosting a
web page with several vulnerabilities and it is a good choice to test the tool
created.

First of all, a virtual machine has to be set up. Once it is set up, the system can
start analyzing it. Once the testing ends, the results can be analyzed. Firstly,
the OSINT gathering scan, which searches for hosts and user emails, should
be empty cause we used a virtual machine. However, since theHarvester
searches the internet in order to find this type of information, it could happen
that the tool finds hosts and emails that have the same name as the target.
These email addresses are not valid ones for our target, but garbage found
on the internet. If the email addresses were real, they could be used by
an adversary to perform a Social Engineering attack. Usually, This king of
information leakage is disregarded as important, since at first sight does not
seem that dangerous. However, one of the easiest and most common ways to
attack a system is through its weakest link, the user behind it, and a Social
Engineering attack aims at attacking this link. So, this is an important thing
to have in mind when performing a test, and it should be included in the
report.
Also, the Subdomains scan should not produce any output, as we are using a
virtual machine. Indeed, the output is empty.

43

MSc in Information Systems Angelos David

Fig. 5.1: OSINT gathering result

Then, the important results on this test case are in the other sections. Here,
the system correctly identifies general information about the machine and a
list of open ports can be explored.

Fig. 5.2: Nmap port scan result

Together with the open ports, it can be seen that the system has obtained
some known vulnerabilities. The virtual machine has a lot of known vulnera-
bilities.

44

MSc in Information Systems Angelos David

Fig. 5.3: Nmap vulnerability scan result

The website scanner also found interesting information about the machine.
The more important one is that the CMS is Wordpress.

Fig. 5.4: Website scan result

As a result, the Wordpress scan should be able to find more stuff. Indeed, it
enumerated the website components, identified interesting findings, found
information about the theme and also found the users and its passwords.

45

MSc in Information Systems Angelos David

Fig. 5.5: Wordpress scan result

Fig. 5.6: Wordpress credentials bruteforce result

Since the webpage is really simple and does not have any inputs the XSS and
the SQLi scans were not able to find anything. The last one is the bruteforcing
of URIs that managed to find some, which might be interesting.

46

MSc in Information Systems Angelos David

Fig. 5.7: Website URIs bruteforce result

47

6Evaluation and Future
Work

Once the project has been completed, the system has been built and tested,
now is the time to make some conclusions about the work done, and some
possible future work. First, the problems faced during the project will be
explained, and how they were solved. Thereafter, some possible future work
lines will be defined to enhance the work already done, and the knowledge
gained from doing this project will also be defined.

6.1 Technical Problems
There were several problems detected when building the system described
in this project. The first problem that was detected while researching on au-
tomating tools was that it was a really difficult task to intelligently automate
the post-exploitation phases of the penetration testing process. There are
no APIs available to help solve this problem and at the moment no other
security framework is doing so. There were projects launching lots and lots
of different exploits, hoping one of them would succeed, but there was not
enough time in the lifespan of the project to accomplish this.

This problem was a major one, as it reduced the system’s effectiveness. Since
no other framework studied achieved this, it was determined that instead the
system would focus itself on the first stages of the penetration testing process.
Another major problem found during the analysis and design phases of the
project was the amount of security tools available. There are lots and lots
of tools out there, and to build a complete framework, most of them should
be used. At least all aspects of each phase should be covered, but this is a
really rough job. Performing a penetration test is not an exact science, and
although there are really good guides, it is still heavily reliant on the tester’s
knowledge and creativity. Furthermore, as new vulnerabilities are found
every day and new technologies are developed, the tools that aim to protect
and defend these technologies must be constantly updated. So obviously, if
a new technology is developed, a new security tool has to be created that
tests this technology. This means that it is impossible to create the definitive
scanning system, it must be continuously updated. Due to the amount of

48

MSc in Information Systems Angelos David

security tools available and the fact that a complete framework should be
constantly updated, a few tools were selected to represent each stage of the
penetration testing process. This may give the impression that the program
has few tools but it’s a time-consuming task to find a new tool, learn how the
tool works properly, and then create a parsing function for that tool.

Finally, a problem was also the fact that there is no clear standard for vul-
nerabilities. Because different tools use different enumeration systems and
establishing a relationship between them is actually complex, it was almost
impossible to classify vulnerabilities in a correct and simple way. This prob-
lem has been solved in this project by using the CVE system as it is being
used by most tools used by the system.

6.2 Future Work
The development of this project has finished, but the system is not as perfect
as it could be. There are some improvements that could be done, that would
make the system even more interesting. Some of them will be listed now.

Firstly, the most important thing that this project needs and deserves is to
expand the tool collection. The tools chosen for this project are a representa-
tive and sufficient collection for showing purposes. Further features should
be added in order to make the system valuable to a security expert.

Since adding new resources is an easy process it should not be very hard. The
most important aspect of this improvement is the fact that a security expert
with experience in penetration testing would really make it easier than a
standard developer with no prior knowledge of penetration testing.

Another interesting improvement that could be easily implemented is the
following one. Starting from the virtual machine where this tool was created,
a cloud-based service could be offered. This would involve updating the user
system and adding extra layers of security. This updated product could be
offered as a service to companies. This service could be useful for system
administrators, because they could have an easy way to test if their system
had some security problems. In addition, the system could be automatically
activated at fixed time intervals and then receive a notification if an audit
results vary from the previous one.

6.2 Future Work 49

MSc in Information Systems Angelos David

The cloud-based system would need to have some issues under consideration,
like the availability of the service and the efficiency of the system, which are
facts that were not considered on this project.

Other functionality that could be included in the near future would be the
ability of the user to see which tools were executed and where, and whether
they discovered anything different or crashed. This would simply mean
building a logging system that was available from the user’s perspective.

6.2 Future Work 50

7Conclusion

In this project, a lot of research about penetration testing has been done.
This research has enabled the construction of a system that assists in the first
steps of performing penetration tests.

The program that has been developed is a functional one, it does what it was
supposed to do, with the only downside being to have fewer tools than the
ones it desired. During the development of this project, several problems
were discovered, some of them were solved, and some were not, but a lot
was learned from them.

Personally, I have learned a lot of things while making this project. Besides
the fact that I used and learned to program in Node.js and Angular, two
technologies that are widely used, there were more important things. Learn-
ing how the process of the penetration testing works was one of the most
interesting things. Lots of tools were discovered, and a lot of practice using
some of them was gained. Besides from the penetration testing process, I
learned that it is not something easy to automate and even when this is
accomplished, a security expert is needed, because most of the vulnerabilities
present in web servers or networks need the perspicacity that only a human
being can have.

51

Bibliography

[1]Committee on National Security Systems. 4009 - National Information Assurance

(IA) Glossary. URL: https://www.dni.gov/files/NCSC/documents/nittf/

CNSSI - 4009 _ National _ Information _ Assurance . pdf (visited on Jan. 28,

2020) (cit. on p. 4).

[2]ISO/IEC 27001:2013. URL: https://www.iso.org/obp/ui/#iso:std:iso-

iec:27001:ed-2:v1:en (visited on Feb. 21, 2020) (cit. on p. 6).

[3]Framework for Improving Critical Infrastructure Cybersecurity - National Institute

of Standards and Technology (version 1.1). URL: https://nvlpubs.nist.gov/

nistpubs/CSWP/NIST.CSWP.04162018.pdf (visited on Feb. 21, 2020) (cit. on

p. 6).

[4]S.2521 - Federal Information Security Modernization Act of 2014. URL: https:

//www.congress.gov/bill/113th-congress/senate-bill/2521 (visited on

Feb. 21, 2020) (cit. on p. 6).

[5]Health Insurance Portability and Accountability Act. URL: https://www.hhs.gov/

hipaa/for-professionals/privacy/index.html (visited on Feb. 21, 2020)

(cit. on p. 6).

[6]SARBANES-OXLEY ACT OF 2002. URL: https://legcounsel.house.gov/Comps/

Sarbanes-oxley%20Act%20Of%202002.pdf (visited on Feb. 21, 2020) (cit. on

p. 6).

52

https://www.dni.gov/files/NCSC/documents/nittf/CNSSI-4009_National_Information_Assurance.pdf
https://www.dni.gov/files/NCSC/documents/nittf/CNSSI-4009_National_Information_Assurance.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://www.congress.gov/bill/113th-congress/senate-bill/2521
https://www.congress.gov/bill/113th-congress/senate-bill/2521
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://legcounsel.house.gov/Comps/Sarbanes-oxley%20Act%20Of%202002.pdf
https://legcounsel.house.gov/Comps/Sarbanes-oxley%20Act%20Of%202002.pdf

MSc in Information Systems Angelos David

[7]PCI DSS Quick Reference Guide Understanding the Payment Card Industry Data Se-

curity Standard (version 3.2.1). URL: https://www.pcisecuritystandards.

org / documents / PCI _ DSS - QRG - v3 _ 2 _ 1 . pdf ? agreement = true & time =

1582124712479 (visited on Feb. 19, 2020) (cit. on p. 6).

[8]Nmap (verion 7.60). URL: https://nmap.org/ (visited on Jan. 28, 2020) (cit. on

pp. 8, 13, 17).

[9]Golismero Project (version 2.0). URL: http://www.golismero.com/ (visited on

Jan. 28, 2020) (cit. on p. 11).

[10]Offensive Web Testing Framework (OWTF) (version 2.1a). URL: https://owtf.

github.io/ (visited on Jan. 28, 2020) (cit. on p. 11).

[11]OWASP Testing Guide (version 4.0). URL: https://www.owasp.org/images/1/

19/OTGv4.pdf (visited on Jan. 28, 2020) (cit. on p. 12).

[12]theHarvester - Subdomain and emails harvesting (verion 3.1.1dev3). URL: https:

//github.com/laramies/theharvester (visited on Jan. 28, 2020) (cit. on

pp. 14, 18).

[13]Gobuster - Directory/File, DNS and VHost busting tool (verion 3.0.1). URL: https:

//github.com/OJ/gobuster (visited on Jan. 28, 2020) (cit. on p. 17).

[14]Gobuster Common Wordlist (version 2.3). URL: https://github.com/aboul3la/

Sublist3r (visited on Jan. 28, 2020) (cit. on p. 17).

[15]Sublis3r - Fast subdomains enumeration tool for penetration testers (version 1.0).

URL: https : / / github . com / daviddias / node - dirbuster / blob / master /

lists/directory-list-2.3-medium.txt (visited on Jan. 28, 2020) (cit. on

p. 18).

[16]Wapiti - The Web-Application Vulnerability Scanner (version 3.0.0). URL: https:

//github.com/inc775/wapiti-3.0.0 (visited on Jan. 28, 2020) (cit. on p. 18).

[17]Nikto web server scanner (version 2). URL: https://cirt.net/Nikto2 (visited

on Jan. 28, 2020) (cit. on p. 18).

Bibliography 53

https://www.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf?agreement=true&time=1582124712479
https://www.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf?agreement=true&time=1582124712479
https://www.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf?agreement=true&time=1582124712479
https://nmap.org/
http://www.golismero.com/
https://owtf.github.io/
https://owtf.github.io/
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.owasp.org/images/1/19/OTGv4.pdf
https://github.com/laramies/theharvester
https://github.com/laramies/theharvester
https://github.com/OJ/gobuster
https://github.com/OJ/gobuster
https://github.com/aboul3la/Sublist3r
https://github.com/aboul3la/Sublist3r
https://github.com/daviddias/node-dirbuster/blob/master/lists/directory-list-2.3-medium.txt
https://github.com/daviddias/node-dirbuster/blob/master/lists/directory-list-2.3-medium.txt
https://github.com/inc775/wapiti-3.0.0
https://github.com/inc775/wapiti-3.0.0
https://cirt.net/Nikto2

MSc in Information Systems Angelos David

[18]Nmap POODLE script. URL: https://nmap.org/nsedoc/scripts/ssl-poodle.

html (visited on Jan. 28, 2020) (cit. on p. 19).

[19]Nmap Heartbleed script. URL: https : / / nmap . org / nsedoc / scripts / ssl -

heartbleed.html (visited on Jan. 28, 2020) (cit. on p. 19).

[20]Nmap DROWN script. URL: https : / / nmap . org / nsedoc / scripts / sslv2 -

drown.html (visited on Jan. 28, 2020) (cit. on p. 19).

[21]Nmp NSE script based on Vulners.com API. URL: https://github.com/vulnersCom/

nmap-vulners (visited on Jan. 28, 2020) (cit. on p. 19).

[22]WordPress Vulnerability Scanner (version 3.7.4). URL: https://wpscan.org

(visited on Jan. 28, 2020) (cit. on p. 19).

[23]Common Passwords Wordlist. URL: https://github.com/brannondorsey/

naive-hashcat/releases/download/data/rockyou.txt (visited on Jan. 28,

2020) (cit. on p. 19).

[24]WPScan Vulnerability Database. URL: https :/ / wpvulndb. com/ (visited on

Jan. 28, 2020) (cit. on p. 19).

[25]OWASP Joomla Vulnerability Scanner Project (version 0.0.7). URL: https://wiki.

owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_

Project (visited on Jan. 28, 2020) (cit. on p. 20).

[26]Metasploit Framework (version 4.17.0). URL: https://www.metasploit.com/

(visited on Jan. 28, 2020) (cit. on p. 20).

[27]db_autopwn plugin of metasploit. URL: https://github.com/hahwul/metasploit-

autopwn (visited on Jan. 28, 2020) (cit. on p. 20).

[28]MITRE PRE-ATT&CK Matrix. URL: https://attack.mitre.org/matrices/pre/

(visited on Jan. 28, 2020) (cit. on pp. 23, 34).

[29]Debian Downloads (vesrion 10.x). URL: https://www.debian.org/distrib/

(visited on Feb. 24, 2020) (cit. on p. 41).

Bibliography 54

https://nmap.org/nsedoc/scripts/ssl-poodle.html
https://nmap.org/nsedoc/scripts/ssl-poodle.html
https://nmap.org/nsedoc/scripts/ssl-heartbleed.html
https://nmap.org/nsedoc/scripts/ssl-heartbleed.html
https://nmap.org/nsedoc/scripts/sslv2-drown.html
https://nmap.org/nsedoc/scripts/sslv2-drown.html
https://github.com/vulnersCom/nmap-vulners
https://github.com/vulnersCom/nmap-vulners
https://wpscan.org
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://wpvulndb.com/
https://wiki.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_Project
https://wiki.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_Project
https://wiki.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_Scanner_Project
https://www.metasploit.com/
https://github.com/hahwul/metasploit-autopwn
https://github.com/hahwul/metasploit-autopwn
https://attack.mitre.org/matrices/pre/
https://www.debian.org/distrib/

MSc in Information Systems Angelos David

[30]Kali Linux Downloads (version 2020.1). URL: https://www.kali.org/downloads/

(visited on Feb. 24, 2020) (cit. on p. 42).

[31]HA: Wordy VM (version 13 Sep 2019). URL: https://www.vulnhub.com/entry/

ha-wordy,363/ (visited on Jan. 28, 2020) (cit. on p. 43).

Bibliography 55

https://www.kali.org/downloads/
https://www.vulnhub.com/entry/ha-wordy,363/
https://www.vulnhub.com/entry/ha-wordy,363/

	Titlepage
	Abstract
	Abstract
	List of Figures
	List of Acronyms
	Acronym
	1 Introduction
	1.1 Problem Statement
	1.2 Goals of Thesis
	1.3 Thesis Structure

	2 Background
	2.1 Basic Concepts
	2.2 Why perform a penetration testing
	2.3 The Penetration Testing Process
	2.3.1 Planning
	2.3.2 Preparation
	2.3.3 Attack
	2.3.4 Reporting

	2.4 Related Work

	3 System Design
	3.1 Approach
	3.2 Analysis
	3.2.1 Tools
	3.2.2 The programming language
	3.2.3 The phases

	3.3 Architecture
	3.4 Comparison with other tools

	4 Implementation
	5 Results
	6 Evaluation and Future Work
	6.1 Technical Problems
	6.2 Future Work

	7 Conclusion
	Bibliography

