

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ

ΠΛΗΡΟΦΟΡΙΑΣ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ

A review of Convex Analysis and Optimization with applications to Stochastic

Approximation and Statistical Learning

Dimitrios Tziotis

ΕΡΓΑΣΙΑ

Που υποβλήθηκε στο Τμήμα Στατιστικής

του Οικονομικού Πανεπιστημίου Αθηνών

ως μέρος των απαιτήσεων για την απόκτηση

Διπλώματος Μεταπτυχιακών Σπουδών

στη Στατιστική

ΑΘΗΝΑ

Ιούλιος, 2020

1

Contents

Introduction ... 2

Part I

1. Convex Analysis .. 3

1.1.Affine sets .. 3

1.2.Convex sets .. 4

1.3.Convex functions .. 8

1.4.Relative interior .. 19

1.5.Separation of convex sets ... 24

1.6.Characterization of convex functions ... 38

Part II

2. Convex Optimization .. 48

2.1.Generic optimization problem .. 48

2.2.Convex optimization problem .. 50

2.3.Parametric statistical estimation ... 65

2.4.Statistical learning .. 70

2.5.Deterministic algorithms for unconstrained minimization ... 75

Part III

3. Stochastic Optimization ... 82

3.1.Generic stochastic optimization ... 82

3.2.Stochastic approximation ... 84

3.3.Application: Estimating neural network weights using stochastic gradient descent .. 110

References .. 118

2

Introduction

Convex optimization is the subfield of mathematical optimization that makes use of convex

analysis to formulate and solve optimization problems. There are many different classes of

convex optimization problems, but they all share an important quality: They have a unique

global optimum which can be determined deterministically and in efficient time. Once an

optimization problem is formulated as a convex problem, it can be automatically deemed

solvable. Convex optimization is a key concept in statistical estimation where the challenge

lies in using a density function as the objective function to be maximized with computational

efficiency. Through maximum a posteriori (MAP) and maximum likelihood estimation (MLE)

and, the challenge arises in both Bayesian and frequentist settings.

A non-convex problem is considered unsolvable when there exists no efficient-time exact

algorithm, i.e. one which is guaranteed to converge to the global optimum in (worse case)

polynomial time. In a Learning application, where the objective function is not a probability

density but a non-convex loss function, stochastic optimization can be used to approximate the

problem’s global optimum in efficient time. In that latter scenario, the combination of statistical

simulation and convex analysis gives rise to the field of stochastic approximation, which

allows any non-convex problem to be approached as a noisy convex problem. Stochastic

approximation algorithms are mostly gradient-based and are directly derived from the

deterministic methods used in convex optimization.

The goal of this work is to trace the path of convex optimization into theoretical statistics. This

is achieved first by developing the theory needed to optimize convex density functions

(estimation), then by building upon that theory and mixing it with statistical simulation in order

to optimize noisy loss functions (learning). The first part of this work deals with the theoretical

background of convex analysis. The second part focuses on convex optimization problems,

their applications, and the deterministic algorithms that solve them. In the third part, we

introduce stochastic approximation and its associated algorithms, along with a working

application of stochastic gradient descent on a neural network model.

3

Part I

Convex Analysis

1. Convex analysis

In this chapter, I provide the theoretical foundations that lead up to the definition of a convex

optimization problem. The chapter treats convex sets, convex functions, and separation

theorems, paving the way for their application to extremum problems.

1.1. Affine sets

Let 𝐑 be the real number system, with 𝐑𝑛 being the vector space of real n-tuples 𝑥 =

(𝜉1, … , 𝜉𝑛). By default, everything takes place in 𝐑𝑛. We express the inner product of two

vectors 𝑥 and 𝑥∗ in 𝐑𝑛 by:

⟨𝑥, 𝑥∗⟩ = 𝜉1𝜉1
∗ + ⋯ + 𝜉𝑛𝜉𝑛

∗ .

We use the symbol 𝐴 to denote a real matrix 𝑚 × 𝑛 and the corresponding linear transformation

𝑥 → 𝐴𝑥 from 𝐑𝑛 to 𝐑𝑚. Consequently, we use 𝐴∗ to denote the transpose matrix and the

associated adjoint linear transformation from 𝐑𝑚 to 𝐑𝑛. This leads to the identity:

⟨𝐴𝑥, 𝑦∗⟩ = ⟨𝑥, 𝐴∗𝑦∗⟩.

The notation * has no operational significance for vectors and, by default, all vectors are

column vectors (for matrix multiplication).

We use symbol ‖ to denote the end of a proof.

4

Suppose that 𝑥 and 𝑦 are different points in 𝐑𝑛, then if we have a set of points of the form:

(1 − 𝜆)𝑥 + 𝜆𝑦 = 𝑥 + 𝜆(𝑦 − 𝑥), 𝜆 ∈ 𝐑,

we call it the line through 𝑥 and 𝑦.

We call a subset 𝑀 of 𝐑𝑛 an affine set if:

(1 − 𝜆)𝑥 + 𝜆𝑦 ∈ 𝑀 for every 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑀 and 𝜆 ∈ 𝐑.

Extreme examples of affine sets are the empty set ∅ and the space 𝐑𝑛 itself, as well as the case

where 𝑀 is composed by a solitary point. An affine set must contain two different points and

the entire line through those points, like an endless uncurved structure, such as a line or a plane

in space. The geometry of affine sets is derived from the theorems of linear algebra about

subspaces of 𝐑𝑛.

(Sources: [1])

1.2. Convex sets

We say that a subset of 𝐶 in 𝐑𝑛 is convex if:

(1 − 𝜆)𝑥 + 𝜆𝑦 ∈ 𝐶,

whenever 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 and 0 < 𝜆 < 1.

Under the above definition, all affine sets are convex (including ∅ and 𝐑𝑛). Convex sets are

more general than affine sets as they can only comprise any two distinct points 𝑥 and 𝑦 and a

segment of the line passing through them, i.e.:

{(1 − 𝜆)𝑥 + 𝜆𝑦 | 0 ≤ 𝜆 ≤ 1}.

5

This is the closed line segment between 𝑥 and 𝑦.

If we have a non-zero 𝑏 ∈ 𝐑𝑛 and a 𝛽 ∈ 𝐑, then the sets:

{𝑥 | ⟨𝑥, 𝑏⟩ ≤ 𝛽}, {𝑥 | ⟨𝑥, 𝑏⟩ ≥ 𝛽},

are called closed half-spaces, whereas the sets:

{𝑥 | ⟨𝑥, 𝑏⟩ < 𝛽}, {𝑥 | ⟨𝑥, 𝑏⟩ > 𝛽},

are called open half-spaces. All of the above four sets are non-empty and convex, but we would

be getting the exact same sets if 𝑏 and 𝛽 were to be replaced by 𝜆𝛽, for 𝜆 ≠ 0. As it seems,

these half-spaces depend solely on the hyperplane 𝐻 = {𝑥 | ⟨𝑥, 𝑏⟩ = 𝛽} (Theorem 1.3).

Theorem 2.1.

The intersection of an arbitrary collection of convex sets is convex.

Proof:

Obvious. ‖

Corollary 2.1.1.

Let 𝑏𝑖 ∈ 𝐑𝑛 and 𝛽𝑖 ∈ 𝐑𝑛 for 𝑖 ∈ 𝐼, where 𝐼 is an arbitrary index set. Then the set:

𝐶 = {𝑥 ∈ 𝐑𝑛 | ⟨𝑥, 𝑏𝑖⟩ ≤ 𝛽𝑖, ∀𝑖 ∈ 𝐼}

is convex.

Proof:

Let 𝐶𝑖 = {𝑥 | ⟨𝑥, 𝑏𝑖⟩ ≤ 𝛽𝑖}, then 𝐶𝑖 is a closed half-space or 𝐑𝑛 or ∅ and 𝐶 =∩𝑖∈𝐼 𝐶𝑖. ‖

It is to note that Corollary 2.1.1 is valid for any system of simultaneous linear inequalities and

equations in 𝑛 variables, such that the set 𝐶 of solutions is a convex set in 𝐑𝑛.

6

A polyhedral convex set is one that can be expressed as the intersection of finitely many closed

half spaces of 𝐑𝑛. Due to its lack of curvature, a polyhedral convex set is better behaved than

a general convex set and its theory is applicable to the study of finite systems of simultaneous

linear equations and weak linear inequalities.

Any vector sum:

𝜆1𝑥1 + ⋯ + 𝜆𝑚𝑥𝑚

can be called a convex combination of 𝑥1, … , 𝑥𝑚 if the coefficients 𝜆𝑖 are non-negative and

𝜆1 + ⋯ + 𝜆𝑚 = 1. Convex combinations in applied mathematics, 𝜆1, … , 𝜆𝑚, can be often

interpreted as probabilities or proportions – e.g.:

If 𝑚 particles with masses 𝛼1, … , 𝛼𝑚 are located at points 𝑥1, … , 𝑥𝑚 of 𝐑3, the center of gravity

of the system is the point 𝜆1𝑥1 + ⋯ + 𝜆𝑚𝑥𝑚, where 𝜆𝑖 = 𝛼𝑖/(𝛼1 + ⋯ + 𝛼𝑚). Here, we have

a convex combination where 𝜆𝑖 is the proportion of the total weight at 𝑥𝑖.

Theorem 2.2.

A subset of 𝐑𝑛 is said to be convex iff it contains all possible convex combinations of its

elements.

Proof:

A set 𝐶 is convex, by definition, iff 𝜆1𝑥1 + 𝜆2𝑥2 ∈ 𝐶 whenever 𝑥1 ∈ 𝐶, 𝑥2 ∈ 𝐶, 𝜆1 ≥ 0, 𝜆2 ≥

0, and 𝜆1 + 𝜆2 = 1, i.e. the convexity of 𝐶 implies that 𝐶 is closed under taking convex

combinations with 𝑚 = 2. It can be shown that 𝐶 is also closed under taking convex

combinations with 𝑚 > 2, by taking any 𝑚 > 2 and making the induction hypothesis that 𝐶 is

closed under taking all convex combinations of any number of vectors fewer than 𝑚. For a

given convex combination 𝑥 = 𝜆1𝑥1 + ⋯ + 𝜆𝑚𝑥𝑚 of elements of 𝐶, we must obtain at least

one scalar 𝜆𝑖 that is different than 1 (since 𝜆1 + ⋯ + 𝜆𝑚 = 𝑚 ≠ 1). Let’s call this scalar 𝜆1

and suppose that:

𝑦 = 𝜆2
′ 𝑥2 + ⋯ + 𝜆𝑚

′ 𝑥𝑚, 𝜆𝑖
′ = 𝜆𝑖/(1 − 𝜆1).

7

Then 𝜆𝑖 ≥ 0 for 𝑖 = 2, … , 𝑚, and:

𝜆2
′ + ⋯ + 𝜆𝑚

′ = (𝜆2 + ⋯ + 𝜆𝑚)/(𝜆2 + ⋯ + 𝜆𝑚) = 1.

Therefore, 𝑦 is a convex combination of 𝑚 − 1 elements of 𝐶 and, by induction, 𝑦 ∈ 𝐶. Since

𝑥 = (1 − 𝜆1)𝑦 + 𝜆1𝑥1, it follows that 𝑥 ∈ 𝐶. ‖

Let the intersection of all convex sets that contain a given subset 𝑆 of 𝐑𝑛 to be called the convex

hull of 𝑆 and denoted by 𝑐𝑜𝑛𝑣 𝑆. By Theorem 2.1, 𝑐𝑜𝑛𝑣 𝑆 is a convex set; the unique smallest

one containing 𝑆.

Theorem 2.3.

For any 𝑆 ⊂ 𝐑𝑛, 𝑐𝑜𝑛𝑣 𝑆 consists of all the convex combinations of the elements of 𝑆.

Proof:

All elements of 𝑆 belong to 𝑐𝑜𝑛𝑣 𝑆, so all convex combinations between them belong to

𝑐𝑜𝑛𝑣 𝑆 (Theorem 2.2). If we have two convex combinations 𝑥 = 𝜆1𝑥1 + ⋯ + 𝜆𝑚𝑥𝑚 and 𝑦 =

𝜇1𝑦1 + ⋯ + 𝜇𝑟𝑦𝑟 where 𝑥𝑖 ∈ 𝑆 and 𝑦𝑖 ∈ 𝑆, then the vector:

(1 − 𝜆)𝑥 + 𝜆𝑦 =

(1 − 𝜆)𝜆1𝑥1 + ⋯ + (1 − 𝜆)𝜆𝑚𝑥𝑚 + 𝜆1𝜇1𝑦1 + ⋯ + 𝜆𝑟𝜇𝑟𝑦𝑟,

where 0 ≤ 𝜆 ≤ 1, will be another convex combination of elements of 𝑆. Therefore, the set of

convex combinations of elements of 𝑆 will be also a convex set and, by containing 𝑆, it must

coincide with the smallest convex set 𝑐𝑜𝑛𝑣 𝑆. ‖

Theorem 2.3 should be enough to consider the convex combinations that involve 𝑛 + 1 or

fewer elements at a time; an important refinement that leads to Caratheodory’s Theorem.

Corollary 2.3.1.

The convex hull of a finite subset {𝑏0, … , 𝑏𝑚} of 𝐑𝑛 consists of all vectors of the form:

𝜆0𝛽0 + ⋯ + 𝜆𝑚𝛽𝑚, with 𝜆0 ≥ 0, … , 𝜆𝑚 ≥ 0, 𝜆0 + ⋯ + 𝜆𝑚 = 1.

8

Proof:

Every convex combination of elements in {𝑏0, … , 𝑏𝑚} can be expressed as a convex

combination of 𝑏0, … , 𝑏𝑚 if we include the unnecessary vectors 𝑏𝑖 with zero coefficients. ‖

(Sources: [1])

1.3. Convex functions

We say that a function f: 𝐑n → 𝐑 is convex if its domain is a convex set and for all 𝑥, 𝑦 in its

domain, and all λ ∈ [0,1], we have:

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦 ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).

If we take any two points 𝑥, 𝑦, then evaluate 𝑓 at any convex combination of these two points,

the evaluation of 𝑓 should not be larger than the convex combination of 𝑓(𝑥) and 𝑓(𝑦).

Geometrically, the line segment connecting (𝑥, 𝑓(𝑥)) to (𝑦, 𝑓(𝑦)) must sit above the graph of

𝑓. In order to assess convexity, it suffices to check the above definition by setting 𝜆 to any

fixed value 𝜆 ∈ (0,1). Consequently, we say that 𝑓 is concave if −𝑓 is convex.

(Sources: [3], [4])

1.3.1. Strict and strong convexity

A function 𝑓: 𝐑𝒏 → 𝐑 is strictly convex if:

 ∀𝑥, 𝑦, 𝑥 ≠ 𝑦 , ∀𝜆 ∈ (0,1), 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).

It is strongly convex if ∃𝑎 > 0 such that 𝑓(𝑥) − 𝑎‖𝑥‖2 is convex.

Lemma 1:

Strong convexity ⇒ Strict convexity ⇒ Convexity.

9

(The converse of these implication is not true.)

Proof:

It is obvious that strict convexity implies convexity, but we shall prove that strong convexity

implies strict convexity. We can see that strong convexity of 𝑓 implies:

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) − 𝑎‖𝜆𝑥 + (1 − 𝜆)𝑦‖2 ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) − 𝜆𝑎‖𝑥‖2 − (1 − 𝜆)𝑎‖𝑦‖2

However:

𝜆𝑎‖𝑥‖2 + (1 − 𝜆)𝑎‖𝑦‖2 − 𝑎‖𝜆𝑥 + (1 − 𝜆)𝑦‖2 > 0, ∀𝑥, 𝑦, 𝑥 ≠ 𝑦, ∀𝜆 ∈ (0,1)

since ‖𝑥‖2 is strictly convex. The converse statements are not true because 𝑓(𝑥) = 𝑥 is convex

but not strictly convex while 𝑓(𝑥) = 𝑥4 is strictly convex but not strongly convex.

(Sources: [3], [4])

1.3.2. Multivariate convex functions

Affine functions:

𝑓(𝑥) = 𝑎𝑇𝑥 + 𝑏, for any 𝑎 ∈ 𝐑𝑛, 𝑏 ∈ 𝐑.

Affine functions are convex, though not strictly convex. They are also concave:

∀𝜆 ∈ [0, 1], 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) =

= 𝑎𝑇(𝜆𝑥 + (1 − 𝜆)𝑦) + 𝑏 =

= 𝜆𝑎𝑇𝑥 + (1 − 𝜆)𝑎𝑇𝑦 + 𝜆𝑏 + (1 − 𝜆)𝑏 =

= 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).

Affine functions are the only functions that are both convex and concave.

10

Quadratic functions:

𝑓(𝑥) = 𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥 + 𝑑.

Quadratic functions are convex iff 𝑄 ≽ 0, strictly convex iff 𝑄 ≻ 0, concave iff 𝑄 ≼ 0, and

strictly concave iff 𝑄 ≺ 0. This can be proven via the second order characterization of

convexity.

Any norm:

A norm is any function 𝑓 that satisfies:

• 𝑓(𝛼𝑥) = |𝛼|𝑓(𝑥), ∀𝛼 ∈ 𝐑

• 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦)

• 𝑓(𝑥) ≥ 0, ∀𝑥, 𝑓(𝑥) = 0 𝑥 = 0

Proof:

∀𝜆 ∈ [0,1], 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝑓(𝜆𝑥) + 𝑓((1 − 𝜆)𝑦) = 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).

The above inequality follows from triangle inequality and the equality follows from the

homogeneity property.

An affine, a quadratic, and a 1-norm function. [3]

11

Convexity along all lines:

Theorem 1:

A function 𝑓: 𝐑𝑛 → 𝐑 is convex iff the function 𝑔: 𝐑 → 𝐑 given by 𝑔(𝑡) = 𝑓(𝑥 + 𝑡𝑦) is convex (as a

univariate function) for all 𝑥 in domain of 𝑓 and all 𝑦 ∈ 𝐑𝑛, where the domain of 𝑔 is all 𝑡 for which

𝑥 + 𝑡𝑦 is in the domain of 𝑓.

Proof:

Obvious from the definition.

The theorem may simplify various basic proofs in convex analysis but it will not make

verifications of convexity much easier since the condition that it sets must hold for all lines

among infinitely many. Many algorithms for convex optimization iteratively minimize the

function over lines and the above statement ensures that every subproblem is also a convex

optimization problem.

(Sources: [3], [4])

1.3.3. Properties of convex functions

Let 𝑓 be a function whose domain is a subset 𝑆 of 𝐑𝑛 and whose values are real or ±∞. Then

the set:

{(𝑥, 𝜇)|𝑥 ∈ 𝑆, 𝜇 ∈ 𝑆, 𝜇 ∈ 𝐑, 𝜇 ≥ 𝑓(𝑥)},

will be called the epigraph of 𝑓 and denoted by 𝑒𝑝𝑖 𝑓. Function 𝑓 is said to be a convex function

on 𝑆 if 𝑒𝑝𝑖 𝑓 is convex as a subset of 𝐑𝑛+1. Consequently, a concave function on 𝑆 is a function

whose negative is convex and an affine function on 𝑆 is finite, convex, and concave.

We say that the effective domain of a convex function 𝑓 on 𝑆, denoted by 𝑑𝑜𝑚 𝑓, is the

projection on 𝐑𝑛 of the epigraph of 𝑓:

𝑑𝑜𝑚 𝑓 = {𝑥|∃𝜇, (𝑥, 𝜇) ∈ 𝑒𝑝𝑖 𝑓} = {𝑥|𝑓(𝑥) < +∞}.

12

The effective domain is the image of the convex set 𝑒𝑝𝑖 𝑓 under a linear transformation and is,

therefore, a convex set in 𝐑𝑛 whose dimension is called the dimension of 𝑓. The convexity of

𝑓 is equivalent to convexity of the restriction of 𝑓 to 𝑑𝑜𝑚 𝑓.

For a number of reasons, we cannot consider the class of all convex functions having a certain

fixed 𝐶 as their common effective domain and we prefer to focus on functions which are

nowhere +∞, i.e. where 𝑆 would always coincide with 𝑑𝑜𝑚 𝑓 (and would vary with 𝑓).

Alternatively, we could focus on functions given on all of 𝐑𝑛, since a convex function 𝑓 on 𝑆

can always be extended to a convex function on all of 𝐑𝑛 by setting 𝑓(𝑥) = +∞ for 𝑥 ∉ 𝑆.

The latter approach allows us to sidestep all technical details on effective domains.

We call a convex function proper if its epigraph is non-empty and contains no vertical lines,

i.e. if 𝑓(𝑥) < +∞ for at least one 𝑥 and 𝑓(𝑥) > −∞ for every 𝑥. Therefore, 𝑓 is proper iff the

convex set 𝐶 = 𝑑𝑜𝑚 𝑓 is non-empty and the restriction of 𝑓 to 𝐶 is finite. A proper convex

function on 𝐑𝑛 is a function that can be obtained by taking a finite convex function 𝑓 on a non-

empty convex set 𝐶 and then extend it to all of 𝐑𝑛 by setting 𝑓(𝑥) = +∞ for 𝑥 ∉ 𝐶.

A convex function that isn’t proper, is called improper. Convex analysis focuses on proper

convex functions, though improper functions may often arise from proper functions in practical

situations.

Convex functions possess an important interpolation property. By the definition of a convex

function, 𝑓 is convex on 𝑆 iff:

(1 − 𝜆)(𝑥, 𝜇) + 𝜆(𝑦, 𝜈) = ((1 − 𝜆)𝑥 + 𝜆𝑦, (1 − 𝜆)𝜇 + 𝜆𝜈),

belongs to 𝑒𝑝𝑖 𝑓 whenever (𝑥, 𝜇) and (𝑦, 𝜈) belong to 𝑒𝑝𝑖 𝑓 and 0 ≤ 𝜆 ≤ 1.

We can, therefore, have (1 − 𝜆)𝑥 + 𝜆𝑦 ∈ 𝑆 and:

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≤ (1 − 𝜆)𝜇 + 𝜆𝜈,

whenever 𝑠 ∈ 𝑆, 𝑦 ∈ 𝑆, 𝑓(𝑥) ≤ 𝜇 ∈ 𝐑, 𝑓(𝑦) ≤ 𝜈 ∈ 𝐑 and 0 ≤ 𝜆 ≤ 1. This is a condition that

can be expressed in different ways.

13

Theorem 4.1:

Let 𝑓 be a function from 𝐶 to (−∞, +∞), where 𝐶 is a convex set (for example 𝐶 = 𝑅𝑛). Then

𝑓 is convex on 𝐶 iff:

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≤ (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦), 0 < 𝜆 < 1,

For every 𝑥 and 𝑦 in 𝐶.

Theorem 4.2:

Let 𝑓 be a function from 𝐑𝑛 to [−∞, +∞]. Then 𝑓 is convex iff:

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≤ (1 − 𝜆)𝛼 + 𝜆𝛽, 0 < 𝜆 < 1,

whenever 𝑓(𝑥) < 𝛼 and 𝑓(𝑦) < 𝛽.

We can deduce this variant by applying Theorem 2.2 to epigraphs.

Theorem 4.3. (Jensen’s Inequality):

Let 𝑓 be a function from 𝐑𝑛 to (−∞, +∞]. We assess that 𝑓 is convex iff:

𝑓(𝜆1𝑥1 + ⋯ + 𝜆𝑚𝑥𝑚) ≤ 𝜆1𝑓(𝑥1) + ⋯ + 𝜆𝑚𝑓(𝑥𝑚),

whenever 𝜆1 ≥ 0, … , 𝜆𝑚 ≥ 0, 𝜆1 + ⋯ + 𝜆𝑚 = 1.

Proof:

Concave functions satisfy the opposite inequalities under similar hypotheses, while affine

functions satisfy the inequalities as equations. Therefore, affine functions on 𝐑𝑛 are the affine

transformations from 𝐑𝑛 to 𝐑.

The inequality in Theorem 4.1 can be perceived as the definition of the convexity of a function

𝑓 from a convex set 𝐶 to (−∞, +∞], however, this may cause difficulties when 𝑓 takes both

+∞ and −∞ among its values and the expression ∞ − ∞ can potentially arise. On the other

14

hand, the condition in Theorem 4.2 could be used as the definition of convexity in the general

case. It should be noted that the initial definition is preferable because puts focus on geometry,

which is fundamental to the theory of convex functions.

Theorem 4.4:

Let 𝑓 be a twice continuously differentiable real-valued function on an open interval (𝛼, 𝛽).

Then 𝑓 will be convex iff its second derivative 𝑓′′ is non-negative throughout (𝛼, 𝛽).

Proof:

Suppose that 𝑓′′ is non-negative on (𝛼, 𝛽) and 𝑓′ is non-decreasing on (𝛼, 𝛽). Then, for 𝑎 <

𝑥 < 𝑦 < 𝛽, 0 < 𝜆 < 1 and 𝑧 = (1 − 𝜆)𝑥 + 𝜆𝑦, we have:

𝑓(𝑧) − 𝑓(𝑥) = ∫ 𝑓′(𝑡)𝑑𝑡 ≤ 𝑓′(𝑧)(𝑧 − 𝑥)
𝑧

𝑥

𝑓(𝑦) − 𝑓(𝑧) = ∫ 𝑓′(𝑡)𝑑𝑡 ≤ 𝑓′(𝑧)(𝑦 − 𝑧)
𝑦

𝑧

Given that 𝑧 − 𝑥 = 𝜆(𝑦 − 𝑥) and 𝑦 − 𝑧 = (1 − 𝜆)𝑓′(𝑧)(𝑦 − 𝑥), we have:

𝑓(𝑧) ≤ 𝑓(𝑥) + 𝜆𝑓′(𝑧)(𝑦 − 𝑥),

𝑓(𝑧) ≤ 𝑓(𝑦) − (1 − 𝜆)𝑓′(𝑧)(𝑦 − 𝑥).

If we multiply the two inequalities by (1 − 𝜆) and 𝜆 respectively and add them together, we

get:

(1 − 𝜆)𝑓(𝑧) + 𝜆𝑓(𝑧) ≤ (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦).

The left side is just 𝑓(𝑧) = 𝑓((1 − 𝜆)𝑥 + 𝜆𝑦), which proves the convexity of 𝑓 on (𝛼, 𝛽) by

Theorem 4.1. As for the converse assertion of the theorem: If 𝑓′′ weren’t non-negative on

(𝛼, 𝛽), then 𝑓𝑛 would be negative on a certain subinterval (𝛼′, 𝛽′) by continuity. Consequently,

on (𝛼′, 𝛽′) we would have:

𝑓(𝑧) − 𝑓(𝑥) > 𝑓′(𝑧)(𝑧 − 𝑥),

15

𝑓(𝑦) − 𝑓(𝑧) > 𝑓′(𝑧)(𝑦 − 𝑧).

and therefore:

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) > (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦).

Thus 𝑓 would not be convex on (𝛼, 𝛽).

In the multidimensional scenario (by Theorem 4.1), every function of the form:

𝑓(𝑥) = ⟨𝑥, 𝑎⟩ + 𝛼, 𝑎 ∈ 𝐑𝑛, 𝛼 ∈ 𝐑

is convex on 𝐑𝑛 and affine, thus, every affine function on 𝐑𝑛 takes the above form. A quadratic

function:

𝑓(𝑥) =
1

2
⟨𝑥, 𝑄𝑥⟩ + ⟨𝑥, 𝑎⟩ + 𝛼,

where 𝑄 is a symmetric 𝑛 × 𝑚 matrix, will be convex on 𝐑𝑛 iff 𝑄 is positive semi-definite,

i.e.:

⟨𝑧, 𝑄𝑧⟩ ≥ 0 for every 𝑧 ∈ 𝐑𝑛.

This is a direct conclusion via the multidimensional version of Theorem 4.4., described below.

Theorem 4.5.

Let 𝑓 be a twice continuously differentiable real-valued function on an open convex set 𝐶 in

𝐑𝑛. Then 𝑓 will be convex on 𝐶 iff its Hessian matrix:

𝑄𝑥 = (𝑞𝑖𝑗(𝑥)),

𝑞𝑖𝑗(𝑥) =
𝜕2𝑓

𝜕𝜉𝑖𝜕𝜉𝑗
 (𝜉1, … , 𝜉𝑛),

is positive semi-definite for every 𝑥 ∈ 𝐶.

16

Proof:

The convexity of 𝑓 on 𝐶 is equivalent to the convexity of the restriction of 𝑓 to each line

segment in 𝐶, which is the similar to the convexity of the function 𝑔(𝜆) = 𝑓(𝑦 + 𝜆𝑧) on the

open real interval {𝜆|𝑦 + 𝜆𝑧 ∈ 𝐶} for each 𝑦 ∈ 𝐶 and 𝑧 ∈ 𝐑𝑛. It can be trivially shown that:

𝑔′′(𝜆) = ⟨𝑧, 𝑄𝑥𝑧⟩, 𝑥 = 𝑦 + 𝜆𝑧.

Therefore, by Theorem 4.4, we have that 𝑔 is convex for every 𝑦 ∈ 𝐶 and 𝑧 ∈ 𝐑𝑛 iff ⟨𝑧, 𝑄𝑥𝑧⟩ ≥

0 for every 𝑧 ∈ 𝐑𝑛, whose convexity may be verified by Theorem 4.5. This gives rise to the

negative of the geometric mean:

𝑓(𝑥) = 𝑓(𝜉1, … , 𝜉𝑛) = −(𝜉1𝜉2 … 𝜉𝑛)
1

𝑛 if 𝜉1 ≥ 0, … , 𝜉𝑛 ≥ 0,

 = +∞ otherwise.

By direct computation it can be shown that:

⟨𝑧, 𝑄𝑥𝑧⟩ = 𝑛−2𝑓(𝑥)[(∑ (
𝜁𝑗

𝜉𝑗
))2

𝑛

𝑗=1

− 𝑛 ∑ (
𝜁𝑗

𝜉𝑗
)

2𝑛

𝑗=1

]

for 𝑧 = (𝜁1, … , 𝜁𝑛), 𝑥 = (𝜉1, … , 𝜉𝑛), 𝜉1 > 0, … , 𝜉𝑛 > 0.

This quantity is non-negative because 𝑓(𝑥) < 0 and:

(𝛼1 + ⋯ + 𝛼𝑛)2 ≤ 𝑛(𝛼1
2 + ⋯ + 𝛼𝑛

2)

(also 2𝛼𝑗𝛼𝑘 ≤ 𝛼𝑗
2 + 𝛼𝑘

2) for any real numbers 𝛼𝑗.

One of the most fundamental convex functions on 𝐑𝑛 is the Euclidean norm:

|𝑥| = ⟨𝑥, 𝑥⟩
1

2 = (𝜉1
2 + ⋯ + 𝜉𝑛

2)
1

2

17

which is the absolute value function when 𝑛 = 1. The convexity of the Euclidean norm follows

from the standard laws:

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, |𝜆𝑥| = 𝜆|𝑥| for 𝜆 ≥ 0.

We can examine a number of correspondences between convex sets and convex functions. The

simplest such correspondence associates each set 𝐶 in 𝐑𝑛 with the indicator function 𝛿(. |𝐶)

of 𝐶, where:

𝛿(𝑥|𝐶) = 0 if 𝑥 ∈ 𝐶,

 = +∞ if 𝑥 ∉ 𝐶.

Here, the epigraph of the indicator function is a “half-cylinder with cross-section 𝐶” and 𝐶 is

obviously a convex set iff 𝛿(. |𝐶) is a convex function on 𝐑𝑛. Indicator functions play an

important role in convex analysis, in a similar way that characteristic functions of sets do in

other branches of analysis.

We define the support function 𝛿∗(. |𝐶) of a convex set 𝐶 in 𝐑𝑛 by:

 𝛿∗(𝑥|𝐶) = sup {⟨𝑥, 𝑦⟩|𝑦 ∈ 𝐶}.

The gauge 𝛾(. |𝐶) is defined by:

𝛾(𝑥|𝐶) = inf {𝜆 ≥ 0|𝑥 ∈ 𝜆𝐶}, 𝐶 ≠ ∅.

We define the Euclidean distance function 𝑑(. , 𝐶) by:

𝑑(𝑥, 𝐶) = inf {|𝑥 − 𝑦|│𝑦 ∈ 𝐶}.

The convexity of these functions can be directly verified on 𝐑𝑛 or shown to follow from general

principles. A noteworthy assessment is that convex functions give rise to convex sets.

18

Theorem 4.6.

For any convex function 𝑓 and any 𝛼 ∈ [−∞, +∞], the level sets {𝑥|𝑓(𝑥) < 𝛼} and {𝑥|𝑓(𝑥) ≤

𝛼} are convex.

Proof:

In the scenario of strict inequality, the result is immediate from Theorem 4.2, by setting 𝛽 = 𝛼.

The convexity of {𝑥|𝑓(𝑥) ≤ 𝛼} follows from the fact that it is the intersection of the convex

sets {𝑥|𝑓(𝑥) < 𝜇} for 𝜇 > 𝛼. A geometric view of this convexity comes by observing that

{𝑥|𝑓(𝑥) ≤ 𝛼} is the projection on 𝐑𝑛 of the intersection of 𝑒𝑝𝑖 𝑓 and the horizontal hyperplane

{(𝑥, 𝜇)|𝜇 = 𝛼} in 𝐑𝑛+1, so that {𝑥|𝑓(𝑥) ≤ 𝛼} can be seen as a horizontal cross-section of

𝑒𝑝𝑖 𝑓.

Corollary 4.6.1.

Let 𝑓𝑖 be a convex function on 𝐑𝑛 and 𝛼𝑖 be a real number for each 𝑖 ∈ 𝐼, where 𝐼 is an arbitrary

index set. Then, the set:

𝐶 = {𝑥|𝑓𝑖(𝑥) ≤ 𝛼𝑖 , ∀𝑖 ∈ 𝐼

is a convex set.

Proof:

Like Corollary 2.1.1.

By taking 𝑓 to be a quadratic convex function in Theorem 4.6, we conclude that the set of

points satisfying a quadratic inequality:

1

2
⟨𝑥, 𝑄𝑥⟩ + ⟨𝑥, 𝛼⟩ + 𝛼 ≤ 0

is convex when 𝑄 is positive semi-definite (Theorem 4.5). Convex sets of this form include all

“solid” ellipsoids and paraboloids, specifically spherical balls like {𝑥|⟨𝑥, 𝑥⟩ ≤ 1}.

Theorem 4.6 and Corollary 4.6.1 play an important role to the theory of systems of nonlinear

inequalities. Convexity takes part in the analysis of other aspects of the theory of inequalities

due to the fact that various classical inequalities can be regarded as special cases of Theorem

19

4.3. For example, if 𝑓 on 𝐑 is negative of the logarithm, then for a convex combination of

positive numbers 𝑥1, … , 𝑥𝑚 we have (by Theorem 4.3):

− log(𝜆1𝑥1 + ⋯ + 𝜆𝑚𝑥𝑚) ≤ −𝜆1𝑙𝑜𝑔 𝑥1 − ⋯ − 𝜆𝑚𝑙𝑜𝑔 𝑥𝑚

Multiplying the above by −1 and taking the exponential of both sides, we get:

𝜆1𝑥1 + ⋯ + 𝜆𝑚𝑥𝑚 ≥ 𝑥1
𝜆1 … 𝑥𝑚

𝜆𝑚 .

Specifically, for 𝜆1 = ⋯ = 𝜆𝑚 =
1

𝑚
,

(𝑥1 + ⋯ + 𝑥𝑚) / 𝑚 ≥ (𝑥1 … 𝑥𝑚)
1

𝑚.

This is known as the inequality between the arithmetic mean and geometric mean of a family

of positive numbers.

We can use operations which preserve convexity to obtain new convex functions from already

known convex functions. Some of these operations, such as pointwise addition of functions,

come from ordinary analysis, while others, such as taking the convex hull of a collection of

functions, are come from geometry. If we express the constructed function as a constrained

infimum, then the function becomes is directly applicable to the theory of extremum problem

– known as convex optimization. For this latter scenario, one has to use these operations to

prove that a given function with a complicated formula is a convex function.

(Sources: [1])

1.4. Relative interior

Let 𝑋 be a normed vector space and 𝐸 be a convex subset of 𝑋. We denote by 𝑎𝑓𝑓ℎ𝑢𝑙𝑙(𝐸) the

intersection of affine spaces containing 𝐸, and by 𝑎𝑓𝑓ℎ𝑢𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐸) its closure; the latter being the

smallest closed affine space containing 𝐸. The relative interior of 𝐸, denoted by 𝑟𝑖𝑛𝑡(𝐸), is

the interior of 𝐸 viewed as a subset of 𝑎𝑓𝑓ℎ𝑢𝑙𝑙(𝐸).

20

Proposition 1.19:

Let 𝐴 and 𝐵 be two nonempty subsets of 𝑋, with empty intersection. If 𝐴 − 𝐵 is convex and has

a nonempty relative interior, then there exists a hyperplane 𝐻𝑥∗,𝑎 separating 𝐴 and 𝐵, and such

that:

⟨𝑥∗, 𝑎⟩ < ⟨𝑥∗, 𝑎〉, whenever (𝑎, 𝑏) ∈ 𝐴 × 𝐵 and 𝑎 − 𝑏 ∈ 𝑟𝑖𝑛𝑡(𝐴 − 𝐵).

Proof:

Set 𝐸 ≔ 𝐵 − 𝐴 and 𝑌 ≔ 𝑎𝑓𝑓ℎ𝑢𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐸). By theorem 1.12, there exists a 𝑦∗ in 𝑌∗ separating 0

and 𝐸, with strict inequality for 𝑟𝑖𝑛𝑡(𝐸). By theorem 1.7, there exists an 𝑥∗ ∈ 𝑋∗ whose

restriction to 𝑌 is 𝑦∗, and the conclusion holds with 𝑥∗.

Remark:

By the previous preposition, when 𝐵 = {𝑏} is a singleton, noting that 𝑟𝑖𝑛𝑡(𝐴 − 𝑏) =

𝑟𝑖𝑛𝑡(𝐴) − 𝑏, we obtain that when 𝐴 is convex, if 𝑏 ∉ 𝑟𝑖𝑛𝑡(𝐴) then there exists an 𝑥∗ ∈ 𝑋 such

that:

⟨𝑥∗, 𝑎⟩ < ⟨𝑥∗, 𝑏〉, whenever 𝑎 ∈ 𝑟𝑖𝑛𝑡(𝐴).

Since any convex subset of a finite-dimensional subspace has a nonempty relative interior, we

deduce the following:

Corollary 1.21:

Let 𝐴 and 𝐵 be two convex and nonempty subsets of a Euclidean space, with empty

intersection. Then there exists a hyperplane 𝐻𝑥∗,𝑎 separating 𝐴 and 𝐵, such that the conclusion

of Proposition 1.19 holds.

(Sources: [2])

21

1.4.1. Relative interiors of convex sets

Recall that the Euclidean distance between two points 𝑥 and 𝑦 in 𝐑𝑛 is defined as:

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = ⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩
1

2

The function 𝑑 is called the Euclidean metric and is convex as a function on 𝐑2𝑛. (since 𝑑 is

obtained by combining the Euclidean norm 𝑓(𝑧) = |𝑧| with the linear transformation (𝑥, 𝑦) →

𝑥 − 𝑦 from 𝐑2𝑛 to 𝐑𝑛.)

The topological concepts of closed set, open set, closure, and interior in 𝐑𝑛 are usually

introduced in terms of convergence of vectors with respect to the Euclidean metric, however,

such convergence is equivalent to the convergence of a sequence of vectors in 𝐑𝑛 component

by component. It should be noted that the topological properties of convex sets in 𝐑𝑛 are

notably simpler than those of arbitrary sets.

Convex functions play an important role in the theory of open and closed convex sets. Any

continuous real-valued function 𝑓 on 𝐑𝑛 may produce a family of open level sets {𝑥 | 𝑓(𝑥) <

𝛼} and closed level sets {𝑥 | 𝑓(𝑥) ≤ 𝛼}, and these sets will be convex if 𝑓 is convex.

Let us denote by 𝐵 the Euclidean unit ball in 𝐑𝑛:

𝐵 = {𝑥 | |𝑥| ≤ 1} = {𝑥 | 𝑑(𝑥, 0) ≤ 1}.

The Euclidean unit ball 𝐵 is a closed convex set, i.e. a level set of the Euclidean norm, which

is continuous and convex. For any 𝑎 ∈ 𝐑𝑛, the Euclidean ball with radius 𝜖 > 0 and enter 𝑎 is

expressed by:

{𝑥|𝑑(𝑥, 𝑎) ≤ 𝜖} = {𝑎 + 𝑦| |𝑦| ≤ 𝜖} = 𝑎 + 𝜖𝐵.

For any set 𝐶 in 𝐑𝑛, the set of points 𝑥 whose distance from 𝐶 does not exceed 𝜖 is:

{𝑥|∃𝑦 ∈ 𝐶, 𝑑(𝑥, 𝑦) ≤ 𝜖} =∪ {𝑦 + 𝜖𝐵|𝑦 ∈ 𝐶} = 𝐶 + 𝜖𝐵.

22

The closure 𝑐𝑙 𝐶 and interior 𝑖𝑛𝑡 𝐶 of 𝐶 are given by the formulas:

𝑐𝑙 𝐶 = ∩ {𝐶 + 𝜖𝐵│𝜖 > 0},

𝑖𝑛𝑡 𝐶 = {𝑥│∃𝜖 > 0, 𝑥 + 𝜖𝐵 ⊂ 𝐶}.

In convex sets, the concept of interior is being absorbed into the more convenient concept of

relative interior. The relative interior of a convex set 𝐶 in 𝐑𝑛, denoted by 𝑟𝑖 𝐶, is defined as

the resulting interior when 𝐶 is a subset of its affine hull 𝑎𝑓𝑓 𝐶. Therefore, 𝑟𝑖 𝐶 comprises all

points 𝑥 ∈ 𝑎𝑓𝑓 𝐶 that have an 𝜖 > 0, such that 𝑦 ∈ 𝐶 whenever 𝑦 ∈ 𝑎𝑓𝑓 𝐶 and 𝑑(𝑥, 𝑦) ≤ 𝜖,

i.e.:

𝑟𝑖 𝐶 = {𝑥 ∈ 𝑎𝑓𝑓𝐶 │ ∃𝜖 > 0, (𝑥 + 𝜖𝐵) ∩ (𝑎𝑓𝑓 𝐶) ⊂ 𝐶}.

and:

𝑟𝑖 𝐶 ⊂ 𝐶 ⊂ 𝑐𝑙 𝐶.

The set difference (𝑐𝑙 𝐶) \ (𝑟𝑖 𝐶) is called the relative boundary of 𝐶, where 𝐶 is said to be

relatively open if 𝑟𝑖 𝐶 = 𝐶. For a 𝑛-dimensional convex set, we have by definition:

𝑎𝑓𝑓 𝐶 = 𝐑𝑛,

therefore:

𝑟𝑖 𝐶 = 𝑖𝑛𝑡 𝐶.

By definition an affine set is open, but it is also closed at the same time. This is reflected by

the fact that an affine set is an intersection of hyperplanes, where every hyperplane 𝐻 can be

expressed as a level set of a continuous function:

𝐻 = {𝑥 = (𝜉1, … , 𝜉𝑛) │ 𝛽1𝜉1 + ⋯ + 𝛽𝑛𝜉𝑛 = 𝛽}.

where see that:

23

𝑐𝑙 𝐶 ⊂ (𝑎𝑓𝑓 𝐶) = 𝑎𝑓𝑓 𝐶

for any 𝐶. Therefore, any line passing through two different points of 𝑐𝑙 𝐶 lies entirely in

𝑎𝑓𝑓 𝐶.

We see that closures and relative interiors are preserved under translations as well as under any

one-to-one affine transformation of 𝐑𝑛 onto itself. Transformations of this type will preserve

affine hulls and will be continuous in both directions. This results from the fact that the

components of the image of a vector 𝑥, under an affine transformation, are either linear or

affine functions of the components 𝜉𝑖 of 𝑥.

A fundamental property of closures and relative interiors of convex sets follows.

Theorem 6.1.

Let 𝐶 be a convex set in 𝐑𝑛. Let 𝑥 ∈ 𝑟𝑖 𝐶 and 𝑦 ∈ 𝑐𝑙 𝐶. Then, (1 − 𝜆)𝑥 + 𝜆𝑦 belongs to 𝑟𝑖 𝐶

(and to 𝐶) for 0 ≤ 𝜆 < 1.

Proof:

We can focus on the case where 𝐶 is 𝑛-dimensional, so that 𝑟𝑖 𝐶 = 𝑖𝑛𝑡 𝐶. Let 𝜆 ∈ [0,1); we

must prove that (1 − 𝜆)𝑥 + 𝜆𝑦 + 𝜖𝐵 is contained in 𝐶 for some 𝜖 > 0. Since 𝑦 ∈ 𝑐𝑙 𝐶, we have

𝑦 ∈ 𝐶 + 𝜖𝐵, for every 𝜖 > 0. Therefore, for every 𝜖 > 0:

(1 − 𝜆)𝑥 + 𝜆𝑦 + 𝜖𝐵 ⊂ (1 − 𝜆)𝑥 + 𝜆(𝐶 + 𝜖𝐵) + 𝜖𝐵

= (1 − 𝜆)[𝑥 + 𝜖(1 + 𝜆)(1 − 𝜆)−1𝐵] + 𝜆𝐶.

If 𝜖 is sufficiently small, the above set is contained within (1 − 𝜆)𝐶 + 𝜆𝐶 = 𝐶, as 𝑥 ∈ 𝑖𝑛𝑡 𝐶

by hypothesis.

(Sources: [1])

24

1.5. Separation of convex sets

From the Hahn-Banach theorem, valid in a vector space setting, we can derive results of

separation of convex sets in normed vector spaces.

The Hahn-Banach Theorem:

Let 𝑋 be a vector space. We say that 𝑝: 𝑋 → 𝐑 is positively homogeneous and subadditive if it

satisfies the following conditions:

(i) 𝑝(𝑎𝑥) = 𝑎𝑝(𝑥), for all 𝑥 ∈ 𝑋 and 𝑎 > 0

(ii) 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦), for all 𝑥 and 𝑦 in 𝑋.

We see that, for 𝑥 = 0 in (i), we obtain that 𝑝(0) = 0, and so we could as well take 𝑎 = 0 in

(i). If 𝛽 ∈ (0,1), combining the above relations, we obtain:

𝑝(𝛽𝑥 + (1 − 𝛽)𝑦) ≤ 𝛽𝑝(𝑥) + (1 − 𝛽)𝑝(𝑦)

i.e., 𝑝 is convex. It derives conversely that a positively homogeneous (finite-valued) convex

function is subadditive.

The analytical form of the Hahn-Banach theorem, a nontrivial consequence of Zorn’s lemma,

is as follows.

Theorem 1.7:

Let 𝑝 satisfy (1.13), 𝑋1 be a vector subspace of 𝑋, and 𝜆 be a linear form defined on 𝑋1 that is

dominated by 𝑝 in the sense that:

𝜆(𝑥) ≤ 𝑝(𝑥), for all 𝑥 ∈ 𝑋1.

Then there exists a linear form 𝜇 on 𝑋, dominated by 𝑝, whose restriction to 𝑋1 coincides with

𝜆.

25

We say that a real vector space 𝑋 is a normed space when endowed with a mapping 𝑋 → 𝐑,

𝑥 ↦ ‖𝑥‖, satisfying the three axioms:

‖𝑥‖ ≥ 0, with equality iff 𝑥 = 0,

‖𝑎𝑥‖ = |𝑎|‖𝑥‖, for all 𝑎 ∈ 𝐑, 𝑥 ∈ 𝑋,

‖𝑥 + 𝑥′‖ ≤ ‖𝑥‖ + ‖𝑥′‖, (triangle inequality).

Then (𝑥, 𝑦) ↦ ‖𝑥 − 𝑦‖ is a metric over 𝑋. We denote the norm of Euclidean spaces, i.e., finite-

dimensional spaces endowed with the norm (∑ 𝑥𝑖
2)𝑖

1/2
, by |𝑥|.

A sequence 𝑥𝑘 in a normed vector space 𝑋 is said to be a Cauchy sequence if ‖𝑥𝑝 − 𝑥𝑞‖ ↦ 0

when 𝑝, 𝑞 ↑ ∞. We say that 𝑋 is a Banach space if every Cauchy sequence has a (necessarily

unique) limit.

The topological dual 𝑋∗ of the normed vector space 𝑋 is the set of continuous linear forms

(maps 𝑋 ↦ 𝐑) on 𝑋. In the sequel, by dual space we will mean the topological dual. We denote

the duality product between 𝑥∗ ∈ 𝑋 and 𝑥 ∈ 𝑋 by ⟨𝑥∗, 𝑥⟩𝑋 or simply ⟨𝑥∗, 𝑥⟩. Note that a linear

form, say ℓ over 𝑋, is continuous iff it is continuous at 0, which holds iff

sup{ℓ(𝑥); ‖𝑥‖ ≤ 1} < ∞. So we may endow 𝑋∗ with the norm:

‖𝑥∗‖∗ ≔ sup {⟨𝑥∗, 𝑥⟩; ‖𝑥‖ ≤ 1}.

It is easily check that 𝑋∗ is a Banach space. The dual of 𝐑𝑛 (space of vertical vectors) is denoted

by 𝐑𝑛∗ (space of horizontal vectors).

In the sequel we may denote the dual norm by ‖𝑥∗‖. If 𝑋 and 𝑌 are Banach spaces, we denote

by 𝐿(𝑋, 𝑌) the Banach space of linear continuous mappings 𝑋 ↦ 𝑌, endowed with the norm

‖𝐴‖ ≔ sup {‖𝐴𝑥‖; ‖𝑥‖ ≤ 1}. We denote by 𝐵𝑋 (resp. �̅�𝑋) the open (resp. closed) unit ball of

𝑋. If 𝑥1
∗ is a continuous linear form on a linear subspace 𝑋1 of 𝑋, its norm is defined

accordingly:

‖𝑥1
∗‖1,∗ = sup {⟨𝑥∗, 𝑥⟩; 𝑥 ∈ 𝑋1, ‖𝑥‖ ≤ 1}.

Here are some other corollaries of the Hahn-Banach theorem.

26

Corollary 1.8:

Let 𝑥1
∗ be a continuous linear form on a linear subspace 𝑋1 of the normed space 𝑋. Then there

exists an 𝑥∗ ∈ 𝑋∗ whose restriction to 𝑋1 coincides with 𝑥1
∗, and such that:

‖𝑥∗‖∗ = ‖𝑥1
∗‖1,∗.

Proof:

Apply theorem 1.7 with 𝑝(𝑥) ≔ ‖𝑥1
∗‖1,∗‖𝑥‖. Since ⟨𝑥∗, ±𝑥⟩ ≤ 𝑝(𝑥), we have that ‖𝑥‖ ≤ 1

implies ⟨𝑥∗, ±𝑥⟩ ≤ ‖𝑥1
∗‖1,∗. The result follows.

Corollary 1.9:

Let 𝑥0 belong to the normed vector space 𝑋. Then there exists an 𝑥∗ ∈ 𝑋∗ such that ‖𝑥∗‖ = 1

and ⟨𝑥∗, 𝑥0⟩ = ‖𝑥0‖.

Proof:

Apply Corollary 1.8 with 𝑋1 = 𝐑𝑥0 and 𝑥1
∗(𝑡𝑥0) = 𝑡‖𝑥0‖, for 𝑡 ∈ 𝐑. The orthogonal of 𝐸 ⊂

𝑋 is the closest subspace of 𝑋∗ defined by:

𝐸⊥ ≔ {𝑥∗ ∈ 𝑋∗; ⟨𝑥∗, 𝑥⟩ = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸}.

Lemma 1.10:

Let 𝐸 be a subspace of 𝑋. Then 𝐸⊥ = {0} iff 𝐸 is dense.

Proof:

(a) If 𝐸 is dense, given 𝑥 ∈ 𝑋, there exists a sequence 𝑥𝑘 in 𝐸, 𝑥𝑘 → 𝑥 and hence, for all

𝑥∗ ∈ 𝐸⊥, ⟨𝑥∗, 𝑥⟩ = lim
𝑘

⟨𝑥∗, 𝑥𝑘⟩ = 0, proving that 𝑥∗ = 0.

(b) If 𝐸 is not dense, let 𝑥0 ∉ �̅� (closure of 𝐸). We may assume that ‖𝑥0‖ = 1 and that

𝐵(𝑥0, 𝜖) ∩ 𝐸 = ∅ for some 𝜖 > 0. Let 𝐸0 ≔ 𝐸 (𝐑𝑥0) denote the space spanned by

𝐸0 and 𝑥0. Consider the linear form 𝜆 on 𝐸0 defined by:

𝜆(𝜖 + 𝛼𝑥0) = 𝛼, foa all 𝜖 ∈ 𝐸 and 𝛼 ∈ 𝐑.

27

Since any 𝑥 ∈ 𝐸0 has a unique decomposition as 𝑥 = 𝜖 + 𝛼𝑥0 with 𝑒 ∈ 𝐸 and 𝛼 ∈ 𝐑, the linear

form is well-defined. Let such an 𝑥 satisfy 𝛼 ≠ 0. Since 𝑒′ ≔ −𝑒/𝛼 does not belong to

𝐵(𝑥0, 𝜖), we have that ‖𝑥‖ = |𝛼|‖𝑥0 − 𝑒′‖ ≥ 𝜖|𝛼|, and hence, 𝜆(𝑥) = 𝑎 ≤
‖𝑥‖

𝜖
. If 𝑎 = 0 we

still have 𝜆(𝑥) ≤
‖𝑥‖

𝜖
. By Corollary 1.8, 𝜆 has an extension to a continuous form on 𝑋, which

is a nonzero element of 𝐸⊥.

Bidual space, Reflexivity.

Given 𝑥 ∈ 𝑋, the mapping ℓ𝑥: 𝑋∗ → 𝐑, 𝑥∗ ↦ ⟨𝑥∗, 𝑥⟩ is by [1.17] linear continuous. Since

|⟨𝑥∗, 𝑥⟩| ≤ ‖𝑥∗‖‖𝑥‖, its norm ‖ℓ𝑥‖ (in the bidual space 𝑋∗∗) is not greater than ‖𝑥‖, and as a

consequence of Corollary 1.9, is equal to ‖𝑥‖: the mapping 𝑥 ↦ ℓ𝑥 is isometric. This allows

us to identify 𝑋 with a closed subspace of 𝑋∗∗. We say that 𝑋 is reflexive if 𝑋 = 𝑋∗∗. The

Hilbert spaces are reflexive.

(Sources: [2])

1.5.1. Separating hyperplanes

Let 𝑋 be a normed vector space. A topological hyperplane of 𝑋 is a set of the form:

𝐻𝑥∗,𝛼 ≔ {𝑥 ∈ 𝑋; ⟨𝑥∗, 𝑥⟩ = 𝛼, for some (𝑥∗, 𝛼) ∈ 𝑋∗ × 𝐑, 𝑥∗ ≠ 0}.

Then, a closed half-space of 𝑋 will be a set of the form:

{𝑥 ∈ 𝑋; ⟨𝑥∗, 𝑥⟩ ≤ 𝛼}, where 𝑥∗ ≠ 0.

Definition 1.11

Let 𝐴 and 𝐵 be two subsets of 𝑋. We say that the hyperplane 𝐻𝑥∗,𝛼 separates 𝐴 and 𝐵 if:

⟨𝑥∗, 𝑎⟩ ≤ 𝛼 ≤ ⟨𝑥∗, 𝑏⟩, ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐵. [1.24]

We speak of a strict separation if:

⟨𝑥∗, 𝑎⟩ < ⟨𝑥∗, 𝑏⟩, ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐵. [1.25]

28

We speak of a strong separation if, for some 𝜖 > 0:

⟨𝑥∗, 𝑎⟩ + 𝜖 ≤ 𝛼 ≤ ⟨𝑥∗, 𝑏⟩ − 𝜖, ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐵. [1.26]

We say that 𝑥∗ ∈ 𝑋 separates 𝐴 and 𝐵 if [1.24] holds for some 𝛼, strictly separates 𝐴 and 𝐵 if

[1.25] holds, and strongly separates 𝐴 and 𝐵 if [1.26] holds for some 𝜖 > 0 and 𝛼. If 𝐴 is the

singleton {𝑎}, then we say that 𝑥∗ separates 𝑎 and 𝐵, etc.

Given two subsets 𝐴 and 𝐵 of a vector space 𝑋, we define their Minkowski sum and difference

as:

𝐴 + 𝐵 = {𝑎 + 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵},

𝐴 − 𝐵 = {𝑎 − 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

The first geometric form of the Hahn-Banach theorem is as follows:

Theorem 1.12

Let 𝐴 and 𝐵 be two nonempty subsets of the normed vector space X, with empty intersection.

If 𝐴 − 𝐵 is convex and has a nonempty interior, then there exists a hyperplane 𝐻𝑥∗,𝑎 separating

A and B, such that:

⟨𝑥∗, 𝑎⟩ + ⟨𝑥∗, 𝑏⟩, 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 (𝑎, 𝑏) ∈ 𝐴 × 𝐵 𝑎𝑛𝑑 𝑎 − 𝑏 ∈ 𝑖𝑛𝑡(𝐴 − 𝐵).

Note that 𝐴 − 𝐵 has a nonempty interior whenever either 𝐴 or 𝐵 has a nonempty interior. The

proof needs the following concept.

Definition 1.13

Let 𝐶 be a convex subset of 𝑋 whose interior contains 0. The gauge function of 𝐶 is:

𝑔𝐶(𝑥) ≔ inf {𝛽 > 0; 𝛽−1𝑥 ∈ 𝐶}.

Example 1.14: If 𝐶 is the closed unit ball of 𝑋, then 𝑔𝑐(𝑥) = ‖𝑥‖ for all 𝑥 ∈ 𝑋.

29

A gauge function is obviously positively homogeneous and finite. If 𝐵(0, 𝜖) ⊂ 𝐶 for some 𝜖 >

0, then:

𝑔𝐶(𝑥) ≤ ‖𝑥‖/ 𝜖, for all 𝑥 ∈ 𝑋,

So it is bounded over bounded sets. In addition, for any 𝛽 > 𝑔𝐶(𝑥) and 𝛾 > 0, since 𝑥 ∈ 𝛽𝐶

and 𝐵(0, 𝛾𝜖) ⊂ 𝛾𝐶, we get 𝑥 + 𝐵(0, 𝛾𝜖) ⊂ (𝛽 + 𝛾)𝐶, so that 𝑔𝐶(𝑦) ≤ 𝑔𝐶(𝑥) + 𝛾, for all 𝑦 ∈

𝐵(𝑥, 𝛾𝜖). We have proved that:

If 𝐵(0, 𝜖) ⊂ 𝐶, then 𝑔𝐶 is Lipschitz with constant 1/𝜖.

It easily follows that:

{𝑥 ∈ 𝑋; 𝑔𝐶(𝑥) < 1} = 𝑖𝑛𝑡(𝐶) ⊂ 𝐶̅ = {𝑥 ∈ 𝑋; 𝑔𝐶(𝑥) ≤ 1}.

Lemma 1.15:

A gauge is subadditive and convex.

Proof:

Let 𝑥 and 𝑦 belong to 𝑋. For all 𝑏𝑥 > 𝑔𝐶(𝑥) and 𝑏𝑦 > 𝑔𝐶(𝑦), we have that (𝛽𝑥)−1𝑥 ∈ 𝐶 and

(𝛽𝑦)
−1

𝑦 ∈ 𝐶, so that:

𝑥 + 𝑦

𝛽𝑥 + 𝛽𝑦
=

𝛽𝑥

𝛽𝑥 + 𝛽𝑦

(𝛽𝑥)−1𝑥 +
𝛽𝑦

𝛽𝑥 + 𝛽𝑦
(𝛽𝑦)

−1
𝑦 ∈ 𝐶

Therefore 𝑔𝐶(𝑥 + 𝑦) ≤ 𝛽𝑥 + 𝛽𝑦. Since this holds for any 𝛽𝑥 > 𝑔𝐶(𝑥) and 𝛽𝑦 > 𝑔𝐶(𝑦), we

obtain that 𝑔𝐶 is sugadditive. Since 𝑔𝐶 is positively homogeneous, it easily follows that 𝑔𝐶 is

convex.

Proof of Theorem 1.12:

Let 𝑥0 ∈ 𝑖𝑛𝑡(𝐵 − 𝐴); since 𝐴 ∩ 𝐵 = ∅, 𝑥0 ≠ 0. Set:

𝐶 ≔ {𝑎 − 𝑏 + 𝑥0, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴}.

30

We easily check that 0 ∈ 𝑖𝑛𝑡(𝐶). Obviously, 𝑥∗ separates 𝐴 𝑎𝑛𝑑 𝐵 iff it separates 𝐶 and {𝑥0}.

Let 𝜆 be the linear form defined on 𝑋1 ≔ 𝐑𝑥0 by 𝜆(𝑡𝑥0) = 𝑡, for 𝑡 ∈ 𝐑. Since 𝐴 ∩ 𝐵 = ∅, 𝑥0 ∉

𝐶, and hence, 𝑔𝐶(𝑥0) ≥ 1. It easily follows that 𝜆 is dominated by 𝑔𝐶 on 𝑋1. By theorem 1.7,

there exists a (possibly not continuous) linear form 𝑥∗ on 𝑋, dominated by 𝑔𝐶, whose restriction

to 𝑋1 coincides with 𝜆. Since 0 ∈ 𝑖𝑛𝑡(𝐶) we have that (1.30) holds for some 𝜖 > 0, and hence,

being dominated by 𝑔𝐶, 𝑥∗ is continuous. It follows that ⟨𝑥∗, 𝑥⟩ ≤ 1, for all 𝑥 ∈ 𝐶, or

equivalently:

⟨𝑥∗, 𝑎⟩ − ⟨𝑥∗, 𝑏⟩ + ⟨𝑥∗, 𝑥0⟩ ≤ 1, for all (𝑎, 𝑏) ∈ 𝐴 × 𝐵,

Whereas ⟨𝑥∗, 𝑥0⟩ = 1. Therefore 𝑥∗ separates 𝐴 and 𝐵. In addition, if 𝑎 − 𝑏 ∈ 𝑖𝑛𝑡(𝐴 − 𝐵), say

𝐵(𝑎 − 𝑏, 𝜖) ⊂ 𝐴 − 𝐵 for some 𝜖 > 0, then ⟨𝑥∗, 𝑎 − 𝑏 + 𝜖⟩ ≤ 0 whenever ‖𝑒‖ ≤ 𝜖;

maximizing over 𝑒 ∈ 𝐵(0, 𝜖) we obtain that ⟨𝑥∗, 𝑎 − 𝑏⟩ ≤ −𝜖‖𝑥∗‖. Relation (1.28) follows.

Corollary 1.16

Let 𝐸 be a closed convex subset of the normed space 𝑋. Then there exists a hyperplane that

strongly separates any 𝑥0 ∉ 𝐸 and 𝐸.

Proof:

For 𝜖 > 0 small enough, the open convex set 𝐴 ≔ 𝐵(𝑥0, 𝜖) has empty intersection with 𝐸. By

Theorem 1.12, there exists an 𝑥∗ ≠ 0 separating 𝐴 and 𝐸, that is:

⟨𝑥∗, 𝑥0⟩ + 𝜖‖𝑥∗‖∗ = sup{⟨𝑥∗, 𝑎⟩; 𝑎 ∈ 𝐴} ≤ inf {⟨𝑥∗, 𝑏⟩; 𝑏 ∈ 𝐸}.

The conclusion follows.

Remark 1.17: Corollary 1.16 can be reformulated as follows: any closed convex subset of a

normed space is the intersection of half spaces in which it is contained. The following example

shows that, even in a Hilbert space, one cannot in general separate two convex sets with empty

intersection.

31

Example 1.18: Let 𝑋 = ℓ2 be the space of the real sequences whose sum of squares of

coefficients is summable. Let 𝐶 be the subset of 𝑋 of sequences with finitely many nonzero

coefficients, the last one being positive. The 𝐶 is a convex cone that does not contain 0. Let 𝑥∗

separate 0 and 𝐶. We can identify the Hilbert space 𝑋 with its dual, and therefore 𝑥∗ with an

element of 𝑋. Since each element 𝑒𝑖 of the natural basis belongs to the cone 𝐶, we must have

𝑥𝑖
∗ ≥ 0 for all I, and 𝑥𝑗

∗ > 0 for some 𝑗. For any 𝜖 > 0 small enough, 𝑥 ≔ −𝜖𝑗 + 𝜖𝑒𝑗−1 belongs

to 𝐶, but ⟨𝑥∗, 𝑥⟩ = −𝑥𝑗
∗ + 𝜖𝑥𝑗+1

∗ < 0. This shows that one cannot separate the convex sets. So,

0 and 𝐶 cannot be separated.

(Sources: [2])

1.5.2. Separation theorems

The concept of separation has a special place in convexity theory and its applications. This has

to do with the fact that a hyperplane in 𝐑𝑛 divides 𝐑𝑛 evenly in two, such that the complement

of the hyperplane is the union of two disjoint open convex sets, which are the open half-spaces

associated with the hyperplane.

Suppose that 𝐶1 and 𝐶2 are two non-empty sets in 𝐑𝑛. A hyperplane 𝐻 separates 𝐶1 and 𝐶2 if

𝐶1 is contained in one of the closed half-spaces associated with 𝐻 and 𝐶2 lies in the opposite

closed half-space. To separate 𝐶1 and 𝐶2 properly, it must hold that 𝐶1 and 𝐶2 are not both

contained in 𝐻. To separate 𝐶1 and 𝐶2 strongly, there must exists some 𝜖 > 0 such that 𝐶1 +

𝜖𝐵 is contained in one of the open half-spaces associated with 𝐻 and 𝐶2 + 𝜖𝐵 is contained in

the opposite open half-space, in which 𝐵 is the unit Euclidean ball {𝑥│|𝑥| ≤ 1}.

A different type of separation is strict separation, in which 𝐶1 and 𝐶2 must belong to opposing

open half-spaces. However, proper separation and strong separation are likely the most useful

as they correspond directly to extrema of linear functions.

Theorem 11.1.

Let 𝐶1 and 𝐶2 be non-empty sets in 𝐑𝑛. There exists a hyperplane separating 𝐶1 and 𝐶2

properly, iff there exists a vector 𝑏 such that:

32

(a) inf {⟨𝑥, 𝑏⟩ │ 𝑥 ∈ 𝐶1} ≥ sup {⟨𝑥, 𝑏⟩│𝑥 ∈ 𝐶2},

(b) sup{⟨𝑥, 𝑏⟩ │ 𝑥 ∈ 𝐶1} ≥ inf {⟨𝑥, 𝑏⟩│𝑥 ∈ 𝐶2}.

There exists a hyperplane separating 𝐶1 and 𝐶2 strongly, iff there exists a vector such that:

(𝑐) inf {⟨𝑥, 𝑏⟩ │ 𝑥 ∈ 𝐶1} > sup {⟨𝑥, 𝑏⟩│𝑥 ∈ 𝐶2}.

Proof:

Suppose that 𝑏 satisfies condition (𝑎) and (𝑏), and choose any 𝛽 between the infimum over 𝐶1

and the supremum over 𝐶2. We have 𝑏 ≠ 0 and 𝛽 ∈ 𝑅, so that 𝐻 = {𝑥 │ ⟨𝑥, 𝑏⟩ = 𝛽} is a

hyperplane.

The half-space {𝑥 │ ⟨𝑥, 𝑏⟩ ≥ 𝛽} contains 𝐶1, while {𝑥 │ ⟨𝑥, 𝑏⟩ ≤ 𝛽} contains 𝐶2, while

condition (b) implies that not both 𝐶1 and 𝐶2 are contained in 𝐻. Therefore, 𝐻 separates 𝐶1 and

𝐶2 properly.

In addition, when 𝐶1 and 𝐶2 are separated properly, then the separating hyperplane and

associated closed half-spaces containing 𝐶1 and 𝐶2 can be expressed in the above manner for

some 𝑏 and 𝛽. Then, we have ⟨𝑥, 𝑏⟩ ≥ 𝛽 for every 𝑥 ∈ 𝐶1 and ⟨𝑥, 𝑏⟩ ≤ 𝛽 for every 𝑥 ∈ 𝐶2,

with strict inequality for at least one 𝑥 ∈ 𝐶1 or 𝑥 ∈ 𝐶2 and, therefore, 𝑏 satisfies both conditions

(a) and (b).

If 𝑏 satisfies the stronger condition (c), we can choose 𝛽 ∈ 𝐑 and 𝛿 > 0 such that ⟨𝑥, 𝑏⟩ ≥ 𝛽 +

𝛿 for every 𝑥 ∈ 𝐶1, and ⟨𝑥, 𝑏⟩ ≤ 𝛽 − 𝛿 for every 𝑥 ∈ 𝐶1, and ⟨𝑥, 𝑏⟩ ≤ 𝛽 − 𝛿 for every 𝑥 ∈ 𝐶2.

As the unit ball 𝐵 is bounded, 𝜖 > 0 can be chosen so small that │⟨𝑦, 𝑏⟩│ < 𝛿 for every 𝑦 in

𝜖𝐵. Then:

𝐶1 + 𝜖𝐵 ⊂ {𝑥 │ ⟨𝑥, 𝑏⟩ > 𝛽},

𝐶2 + 𝜖𝐵 ⊂ {𝑥 │ ⟨𝑥, 𝑏⟩ < 𝛽},

So that condition (c) holds. ‖

33

Whether two sets can be separated is an existence question and many applications of separation

theory are found in the proofs of various existence theorems. Having vector 𝑏 with certain

properties, we can construct a pair of convex sets 𝐶1 and 𝐶2 so that those vectors 𝑏 correspond

to the hyperplanes separating 𝐶1 and 𝐶2. We can subsequently invoke a theorem saying that 𝐶1

and 𝐶2 can be in fact separated.

The existence of separating hyperplanes in 𝐑𝑛 does not involve the axiom of choice and the

fundamental construction is given in the proof of the theorem below.

Theorem 11.2.

Suppose that 𝐶 is a non-empty open convex set in 𝐑𝑛, and let 𝑀 be a non-empty affine set in

𝐑𝑛 that does not meet 𝐶. Then, there exists a hyperplane 𝐻 that contains 𝑀, such that one of

the open half-spaces associated with 𝐻 contains 𝐶.

Proof:

If 𝑀 is a hyperplane, then one of the associated open half-spaces must contain 𝐶, otherwise 𝑀

should meet 𝐶, contradicting the initial hypothesis. Assuming that 𝑀 is found inside a

hyperplane, we can show how to construct an affine set 𝑀′ of one higher dimension than 𝑀

that does not meet 𝐶. This construction yields a hyperplane 𝐻 with the desired properties after

𝑛 steps (or less), proving thus the theorem. The main separation theorem is presented below.

Theorem 11.3.

Let 𝐶1 and 𝐶2 be two non-empty convex sets in 𝐑𝑛. For a hyperplane separating 𝐶1 and 𝐶2

properly to exist, it should hold that 𝑟𝑖 𝐶1 and 𝑟𝑖 𝐶2 have no point in common.

Proof:

Let 𝐶 be a convex set and 𝐶 = 𝐶1 − 𝐶2. The relative interior of 𝐶 is 𝑟𝑖 𝐶1 − 𝑟𝑖 𝐶2 by corollary

6.6.2, therefore, 0 ∈ 𝑟𝑖 𝐶 iff 𝑟𝑖 𝐶1 and 𝑟𝑖 𝐶2 have no point in common. If 0 ∈ 𝑟𝑖 𝐶, there exists

a hyperplane containing 𝑀 = {0} such 𝑟𝑖 𝐶 is contained in one of the associated open half-

spaces. Then, the closure of that half-space will contain 𝐶, given that 𝐶 ⊂ 𝑐𝑙(𝑟𝑖 𝐶). Therefore,

if 0 ∉ 𝑟𝑖 𝐶, there exists a vector 𝑏 such that:

34

0 ≤ inf
α∈C

⟨𝑥, 𝑏⟩ = inf
𝛼1∈𝐶1

⟨𝑥1, 𝑏⟩ − sup
𝛼2∈𝐶2

⟨𝑥2, 𝑏⟩,

and

0 ≤ sup
α∈C

⟨𝑥, 𝑏⟩ = sup
𝛼1∈𝐶1

⟨𝑥1, 𝑏⟩ − inf
𝛼2∈𝐶2

⟨𝑥2, 𝑏⟩.

In this manner, 𝐶1 and 𝐶2 can be separated properly (according to Theorem 11.1). The above

conditions also imply that 0 ∉ 𝑟𝑖 𝐶, as they assert the existence of a half-space 𝐷 =

{𝑥 │ ⟨𝑥, 𝑏⟩ ≥ 0} that contains 𝐶, whose interior 𝑟𝑖 𝐷 = {𝑥 │ ⟨𝑥, 𝑏⟩ > 0} meets 𝐶. Hence,

𝑟𝑖 𝐶 ⊂ 𝑟𝑖 𝐷 (Corollary 6.5.2). ‖

Proper separation allows that (exclusively) one of the sets can be contained in the separating

hyperplane. This is a required provision, as shown by the sets:

𝐶1 = {(𝜉1, 𝜉2) │ 𝜉1 > 0, 𝜉2 ≥ 𝜉1
−−1}

𝐶2 = {(𝜉1, 0) │ 𝜉1 ≥ 0}

These convex sets are disjoint in 𝐑2 and the only separating hyperplane is the 𝜉1-axis, which

contains 𝐶2. It follows that not every pair of disjoint closed convex sets can be separated

strongly.

Theorem 11.4.

Suppose that 𝐶1 and 𝐶2 are non-empty convex sets in 𝐑𝑛. For a hyperplane that separates 𝐶1

and 𝐶2 strongly to exist, it is required that:

inf{|𝑥1 − 𝑥1| | 𝑥1 ∈ 𝐶1, 𝑥2 ∈ 𝐶2} > 0,

i.e. that 0 ∈ 𝑐𝑙(𝐶1 − 𝐶2).

Proof:

If we assume that 𝐶1 and 𝐶2 can be separated strongly, then for some 𝜖 > 0, 𝐶1 + 𝜖𝐵 will not

meet 𝐶2 + 𝜖𝐵, but if the latter holds, then the convex sets 𝐶1 + 𝜖𝐵 and 𝐶2 + 𝜖𝐵 can be

separated properly, according to the preceding theorem. Given that 𝜖𝐵 = 𝜖′𝐵 + 𝜖′𝐵 for 𝜖′ =

𝜖/2, then the sets (𝐶1 + 𝜖′𝐵) + 𝜖′𝐵 and (𝐶2 + 𝜖′𝐵) + 𝜖′𝐵 belong to opposite closed half-

35

spaces, so that 𝐶1 + 𝜖′𝐵 and 𝐶2 + 𝜖′𝐵 are in opposite open half-spaces. Therefore, 𝐶1 and 𝐶2

can be separated strongly iff, for some 𝜖 > 0, the origin does not belong to the set:

(𝐶1 + 𝜖𝐵) − (𝐶2 + 𝜖𝐵) = 𝐶1 − 𝐶2 − 2𝜖𝐵

which implies that:

2𝜖𝐵 ∩ (𝐶1 − 𝐶2) = ∅

for some 𝜖 > 0, i.e. 0 ∉ 𝑐𝑙(𝐶1 − 𝐶2). ‖

Corollary 11.4.1.

Let 𝐶1 and 𝐶2 be non-empty disjoint closed convex sets in 𝐑𝑛 having no common directions of

recession. Then there exists a hyperplane separating 𝐶1 and 𝐶2 strongly.

Proof:

We have 0 ∉ (𝐶1 − 𝐶2) since 𝐶1 and 𝐶2 are disjoint. But 𝑐𝑙 (𝐶1 − 𝐶2) = 𝐶1 − 𝐶2 under the

recession condition by Corollary 9.1.2. ‖

Corallary 11.4.2.

Suppose that 𝐶1 and 𝐶2 are two non-empty convex sets in 𝐑𝑛, whose closures are disjoint. If

either of those sets is bounded, then there exists a hyperplane separating 𝐶1 and 𝐶2 strongly.

Proof:

By applying the first corollary to 𝑐𝑙 𝐶1 and 𝑐𝑙 𝐶2, we see that one of them has no directions of

recession at all. ‖

The set of solutions 𝑥 to a system of weak linear inequalities ⟨𝑥, 𝑏𝑖⟩ ≤ 𝛽𝑖, 𝑖 ∈ 𝐼 is a closed

convex set (because it is an intersection of closed half-spaces); albeit it can be shown that every

closed convex set in 𝐑𝑛 can be represented as a solution set of this sort.

Theorem 11.5.

A closed convex set 𝐶 is the intersection of the closed half-spaces that contain it.

36

Proof:

Suppose that ∅ ≠ 𝐶 ≠ 𝐑𝑛 and, given any 𝑎 ∉ 𝐶, the sets 𝐶1 = {𝑎} and 𝐶2 = 𝐶 satisfy the

condition in Theorem 11.4. There exists, therefore, a hyperplane separating {𝑎} and 𝐶 strongly.

One of the closed half-spaces associated with this hyperplane will contain 𝐶 but will not contain

𝑎. Therefore, the intersection of the closed half-spaces containing 𝐶 will contain no points

other than those in 𝐶. ‖

Corollary 11.5.1.

Let 𝑆 be any subset of 𝐑𝑛. Then 𝑐𝑙 (𝑐𝑜𝑛𝑣 𝑆) is the intersection of all the close half-spaces

containing 𝑆.

Proof:

A closed half-space contains 𝐶 = 𝑐𝑙 (𝑐𝑜𝑛𝑣 𝑆) iff it contains 𝑆. ‖

Corollary 11.5.2.

Suppose that 𝐶 is a convex subset of 𝐑𝑛 (other than 𝐑𝑛 itself), then, there exists a closed half-

space containing C; i.e. there exists some 𝑏 ∈ 𝐑𝑛 such that the linear function ⟨ . , 𝑏⟩ is bounded

above on 𝐶.

Proof:

It is implied by the hypothesis that 𝑐𝑙 𝐶 ∉ 𝐑𝑛 (for otherwise 𝐑𝑛 = 𝑟𝑖 (𝑐𝑙 𝐶) ⊂ 𝐶). According

to the theorem, a point belongs to 𝑐𝑙 𝐶, thus the collection of closed half-spaces containing 𝑐𝑙 𝐶

cannot be empty. ‖

The geometric concept of tangency is an important tool in analysis as tangent lines to curves

and tangent planes to surfaces are defined (classically) in terms of differentiation. In convex

analysis, the opposite concept is exploited, i.e. how can a generalized tangency be defined

geometrically in terms of separation. This is a notion used to develop a generalized theory of

differentiation. The concept of generalized tangency is expressed by supporting hyperplanes

and half-spaces.

37

Let 𝐶 be a convex set in 𝐑𝑛. We say that a supporting half-space to 𝐶 is a closed half-space

which contains 𝐶 and has a point of 𝐶 in its boundary. In addition, a supporting hyperplane to

𝐶, is a hyperplane which is the boundary of a supporting half-space to 𝐶. We can say that the

supporting hyperplanes to 𝐶 are the hyperplanes which can be represented in the form:

𝐻 = {𝑥 | ⟨𝑥, 𝑏⟩ = 𝛽}, 𝑏 ≠ 0,

where ⟨𝑥, 𝑏⟩ ≤ 𝛽 for every 𝑥 ∈ 𝐶 and ⟨𝑥, 𝑏⟩ = 𝛽 for at least one 𝑥 ∈ 𝐶.

Therefore, we see that a supporting hyperplane to 𝐶 is associated with a linear function which

achieves its maximum on 𝐶. The supporting hyperplanes that pass through a given point 𝑎 ∈

𝐶, correspond to vectors 𝑏 normal to C at 𝑎 (as defined earlier). If 𝐶 is not n-dimensional, so

that 𝑎𝑓𝑓 𝐶 ≠ 𝐑𝑛, we can extend 𝑎𝑓𝑓 𝐶 to a hyperplane that contains all of 𝐶.

Theorem 11.6.

Let 𝐶 be a convex set and 𝐷 be a non-empty convex subset of 𝐶. For the existence of a non-

trivial supporting hyperplane to 𝐶 containing 𝐷, it is required that 𝐷 be disjoint from 𝑟𝑖 𝐶.

Proof:

Given that 𝐷 ⊂ 𝐶, the non-trivial supporting hyperplanes to 𝐶 which contain 𝐷 are the same

as the hyperplanes which separate 𝐷 and 𝐶 properly. By a preceded theorem (11.3), such a

hyperplane exists iff 𝑟𝑖 𝐷 is disjoint from 𝑟𝑖 𝐶, and this condition is equivalent to 𝐷 being

disjoint from 𝑟𝑖 𝐶.

Corollary 11.6.1.

A convex set has a non-zero normal at each one of its boundary points.

Corallary 11.6.2.

Let 𝐶 be a convex set; then any 𝑥 ∈ 𝐶 is a relative boundary of 𝐶 iff there exists a linear function

ℎ, which is not constant on 𝐶, such that ℎ achieves its maximum over 𝐶 at 𝑥.

38

1.6. Characterization of convex functions

Theorem 2:

Let 𝑓: 𝐑𝑛 → 𝐑 be a twice differentiable function over an open domain., where the following conditions

are equivalent:

(i) 𝑓 is convex.

(ii) 𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑦 − 𝑥), for all 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓), i.e. the first order Taylor

expansion at any point is a global under estimator of the function.

(iii) ∇2𝑓(𝑥) ≽ 0, for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓), i.e. 𝑓 has a nonnegative curvature everywhere and in a

single dimension it holds: 𝑓′′(𝑥) ≥ 0, ∀𝑥 ∈ 𝑑𝑜𝑚(𝑓).

Proof:

We can prove that (i) (ii) and (ii) (iii).

First, we prove that (i) (ii). If 𝑓 is convex, by definition, we have:

𝑓(𝜆𝑦 + (1 − 𝜆)𝑥) ≤ 𝜆𝑓(𝑦) + (1 − 𝜆)𝑓(𝑥), ∀𝜆 ∈ [0,1], 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓).

This can also be expressed as:

𝑓(𝑥 + 𝜆(𝑦 − 𝑥)) ≤ 𝑓(𝑥) + 𝜆(𝑓(𝑦) − 𝑓(𝑥))

 𝑓(𝑦) − 𝑓(𝑥) ≥
𝑓(𝑥+𝜆(𝑦−𝑥))−𝑓(𝑥)

𝜆
, ∀𝜆 ∈ (0,1]

As 𝜆 0, we have:

𝑓(𝑦) − 𝑓(𝑥) ≥ ∇𝑓𝑇(𝑥)(𝑦 − 𝑥). [1]

Then we prove that (ii) (i). Suppose that [1] holds for all 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓), take any 𝑥, 𝑦 ∈

𝑑𝑜𝑚(𝑓), and let:

𝑧 = 𝜆𝑥 + (1 − 𝜆)𝑦.

Then, we have:

39

𝑓(𝑥) ≥ 𝑓(𝑧) + ∇𝑓𝑇(𝑥)(𝑥 − 𝑧) [2]

𝑓(𝑦) ≥ 𝑓(𝑧) + ∇𝑓𝑇(𝑧)(𝑦 − 𝑧) [3]

If we multiply [2] by 𝜆 and [3] by (1 − 𝜆), then add them together, we get:

𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) ≥ 𝑓(𝑧) + ∇𝑓𝑇(𝑧)(𝜆𝑥 + (1 − 𝜆)𝑦 − 𝑧)

= 𝑓(𝑧)

= 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦).

Proving (ii) (iii):

We prove both premises in dimension 1 and generalize.

Proving (ii) (iii) for 𝑛 = 1:

Let 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓), 𝑦 > 𝑥. We have:

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓′(𝑥)(𝑦 − 𝑥) [4]

and:

𝑓(𝑥) ≥ 𝑓(𝑦) + 𝑓′(𝑦)(𝑥 − 𝑦) [5]

⇒ 𝑓′(𝑥)(𝑦 − 𝑥) ≤ 𝑓(𝑦) − 𝑓(𝑥) ≤ 𝑓′(𝑦)(𝑦 − 𝑥)

Using [4] and [5], dividing LHS and RHS by (𝑦 − 𝑥)2, we get:

𝑓′(𝑦)−𝑓′(𝑥)

𝑦−𝑥
≥ 0, ∀𝑥, 𝑦, 𝑥 ≠ 𝑦.

By letting 𝑦 → 𝑥, we get:

𝑓′′(𝑥) ≥ 0, ∀𝑥 ∈ 𝑑𝑜𝑚(𝑓).

Finally, we prove that (iii) (ii) for 𝑛 = 1:

Let 𝑓′′(𝑥) ≥ 0, ∀𝑥 ∈ 𝑑𝑜𝑚(𝑓). Using the mean value version of Taylor’s theorem, we have:

40

𝑓(𝑦) = 𝑓(𝑥) + 𝑓′(𝑥)(𝑦 − 𝑥) +
1

2
𝑓′′(𝑧)(𝑦 − 𝑥)2, for some 𝑧 ∈ [𝑥, 𝑦].

 𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓′(𝑥)(𝑦 − 𝑥).

In order to prove (ii)(iii) in general dimension, we use the principle that convexity is

equivalent to convexity along all lines, meaning that:

𝑓: 𝐑𝑛 → 𝐑 is convex if 𝑔(𝛼) = 𝑓(𝑥0 + 𝛼𝜐) is convex ∀𝑥0 ∈ 𝑑𝑜𝑚(𝑓) and ∀𝜐 ∈ 𝐑𝑛.

We have proved that this holds iff:

𝑔′′(𝛼) = 𝜐𝑇∇2𝑓(𝑥0 + 𝛼𝜐)𝜐 ≥ 0,

∀𝑥0 ∈ 𝑑𝑜𝑚(𝑓), ∀𝜐 ∈ 𝐑𝑛 and ∀𝛼 s.t. 𝑥0 + 𝛼𝜐 ∈ 𝑑𝑜𝑚(𝑓).

Therefore, 𝑓 is convex iff ∇2𝑓(𝑥) ≽ 0 for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓).

Corollary 1:

Suppose we have an unconstrained optimization problem:

min 𝑓(𝑥)

such that 𝑥 ∈ 𝐑𝑛,

where f is convex and differentiable. Then, any point x̅ which satisfies ∇f(x̅) = 0 is a global

minimum.

Proof:

Using the first order characterization of convexity, we have:

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓𝑇(𝑥)(𝑦 − 𝑥), ∀𝑥, 𝑦.

which becomes:

𝑓(𝑦) ≥ 𝑓(�̅�) + ∇𝑓𝑇(�̅�)(𝑦 − 𝑥), ∀𝑦.

41

since ∇𝑓(�̅�) = 0.

Hence, we have:

𝑓(𝑦) ≥ 𝑓(�̅�), ∀𝑦.

It should be noted that ∇𝑓(𝑥) = 0 is always a necessary condition for local optimality in an

unconstrained problem. For convex problems, the theory states that ∇𝑓(𝑥) = 0 is necessary

and sufficient in order to have local and global optimality. On the other hand, in the absence

of convexity, condition ∇𝑓(𝑥) = 0 is not sufficient for local optimality (for example: 𝑓(𝑥) =

𝑥3 and �̅� = 0). A necessary condition for unconstrained local optimality for a point 𝑥 in the

non-convex scenario is ∇2𝑓(𝑥) ≽ 0, but in the convex scenario this condition automatically

holds.

(Sources: [1])

1.6.1. Characterization of strict convexity

We have previously stated that a function 𝑓: 𝐑𝑛 → 𝐑 is strictly convex if:

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).

∀𝑥, 𝑦, 𝑥 ≠ 𝑦, for all 𝜆 ∈ (0,1).

If 𝑓 is strictly convex, then 𝑓 is also convex; albeit the converse does not true (i.e. 𝑓(𝑥) =

𝑥, 𝑥 ∈ 𝐑).

Second order sufficient condition:

If ∇2𝑓(𝑥) ≻ 0, for all 𝑥 ∈ Ω, then 𝑓 is strictly convex on Ω. Again, the converse is not true.

First order characterization:

A function 𝑓 is strictly convex on Ω ⊆ 𝐑𝑛 iff:

42

𝑓(𝑦) > 𝑓(𝑥) + ∇𝑓𝑇(𝑥)(𝑦 − 𝑥), ∀𝑥, 𝑦 ∈ Ω, 𝑥 ≠ 𝑦.

There are similar characterizations for strongly convex functions, e.g. 𝑓 is strongly convex iff

∃𝑚 > 0, such that:

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑇𝑓(𝑥)(𝑦 − 𝑥) + 𝑚‖𝑦 − 𝑥‖2, ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓),

or iff there exists 𝑚 > 0 such that:

∇𝑓(𝑥) ≽ 𝑚𝐼, for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓).

It should be noted that the main use of strict convexity is to ensure uniqueness of the optimal

solution, in other words, that a local optimum corresponds to a global optimum.

(Sources: [3], [4])

1.6.2. Strict convexity and uniqueness of optimal solutions

Theorem 3:

Consider the following optimization problem:

min 𝑓(𝑥)

such that 𝑥 ∈ Ω,

where function 𝑓: 𝐑𝑛 → 𝐑 is strictly convex on Ω (Ω being a convex set). Then, the optimal

solution will be a unique solution.

Proof:

If there were two optimal solutions 𝑥, 𝑦 ∈ 𝐑𝑛, then it would hold that 𝑥, 𝑦 ∈ Ω and:

𝑓(𝑥) = 𝑓(𝑦) ≤ 𝑓(𝑧), for all 𝑧 ∈ Ω.

43

Considering that 𝑧 =
𝑥+𝑦

2
 and, by convexity of Ω, we have 𝑧 ∈ Ω.

Then, by strict convexity, we have:

𝑓(𝑧) = 𝑓 (
𝑥+𝑦

2
)

<
1

2
𝑓(𝑥) +

1

2
𝑓(𝑦)

=
1

2
𝑓(𝑥) +

1

2
𝑓(𝑥) = 𝑓(𝑥).

However, the above contradicts (6).

(Sources: [3], [4])

1.6.3. Optimality conditions for convex optimization

Theorem 4:

Consider the following optimization problem:

min 𝑓(𝑥)

such that 𝑥 ∈ Ω,

where function 𝑓: 𝐑𝑛 → 𝐑 is convex and differentiable, and Ω is a convex set. We say that a

point 𝑥 is optimal iff 𝑥 ∈ Ω and:

∇𝑓(𝑥)𝑇(𝑦 − 𝑥) ≥ 0, ∀𝑦 ∈ Ω.

The above condition implies that, if we move from 𝑥 towards any feasible 𝑦, there will be a

local increase of 𝑓. In addition, vector −∇𝑓(𝑥) is the supporting hyperplane of the feasible set

Ω at x. The necessity of this condition holds independent of the convexity of 𝑓, though

convexity is used in order to establish sufficiency. If it holds that Ω = 𝐑𝑛, then the condition

is reduced to our first order unconstrained optimality condition ∇𝑓(𝑥) = 0. Finally, if 𝑥 is in

44

the interior of Ω and is optimal, then it must hold that ∇𝑓(𝑥) = 0 (e.g. by taking 𝑦 = 𝑥 −

𝛼∇𝑓(𝑥), for small 𝛼).

Proof:

To prove sufficiency, suppose that 𝑥 ∈ Ω satisfies:

∇𝑓(𝑥)𝑇(𝑦 − 𝑥) ≥ 0, ∀𝑦 ∈ Ω. [8]

By the first order characterization of convexity defined previously, we have:

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓𝑇(𝑥)(𝑦 − 𝑥), ∀𝑦 ∈ Ω. [9]

Consequently, adding together [8] and [9] gives:

𝑓(𝑦) ≥ 𝑓(𝑥), ∀𝑦 ∈ Ω

which implies that 𝑥 is optimal.

To prove necessity, suppose that 𝑥 is optimal but for some 𝑦 ∈ Ω we have:

∇𝑓𝑇(𝑥)(𝑦 − 𝑥) < 0.

Given that 𝑔(𝛼) ≔ 𝑓(𝑥 + (𝛼(𝑦 − 𝑥)) and, since Ω is convex, we have:

∀𝛼 ∈ [0,1], 𝑥 + 𝑎(𝑦 − 𝑥) ∈ Ω.

Consequently, we have:

𝑔′(𝛼) = (𝑦 − 𝑥)𝑇∇𝑓(𝑥 + 𝛼(𝑦 − 𝑥))

⇒ 𝑔′(0) = (𝑦 − 𝑥)𝑇∇𝑓(𝑥) < 0,

from which we derive:

45

∃𝛿 > 0, 𝑠. 𝑡. 𝑔(𝛼) < 𝑔(0), ∀𝛼 ∈ (0, 𝛿)

⇒ 𝑓(𝑥 + 𝛼(𝑦 − 𝑥)) < 𝑓(𝑥), ∀𝛼 ∈ (0, 𝛿).

However, this contradicts the optimality of 𝑥. Below we have a special case of this theorem.

Theorem 5:

Consider the optimization problem:

min 𝑓(𝑥) [10]

such that ∀𝑥 = 𝑏,

where 𝑓 is a convex function and 𝐴 ∈ 𝐑𝑚×𝑛.

Then, a point 𝑥 ∈ 𝐑𝑛 is optimal to [10] iff it is feasible and ∃𝜇 ∈ 𝐑𝑚 such that:

∇𝑓(𝑥) = 𝐴𝑇𝜇.

Proof:

By the optimality condition of convexity, a feasible 𝑥 is optimal iff:

∇𝑓𝑇(𝑥)(𝑦 − 𝑥) ≥ 0, ∀𝑦 𝑠. 𝑡. 𝐴𝑦 = 𝑏.

So any 𝑦 with 𝐴𝑦 = 𝑏 can be expressed as 𝑦 = 𝑥 + 𝜐, where 𝜐 is a point in the nullspace of 𝐴

(i.e. 𝐴𝜐 = 0). Therefore, a feasible 𝑥 will be optimal iff:

∇𝑓𝑇(𝑥)𝜐 ≥ 0, ∀𝜐 𝑠. 𝑡. 𝐴𝜐 = 0

for any 𝜐. Since 𝐴𝜐 = 0 implies 𝐴(−𝜐) = 0, we see that ∇𝑓𝑇(𝑥)𝜐 ≤ 0. Thus, the optimality

condition reads:

∇𝑓𝑇(𝑥)𝜐 = 0, ∀𝜐 𝑠. 𝑡. 𝐴𝜐 = 0.

46

The above condition implies that ∇𝑓(𝑥) is in the orthogonal complement of the nullspace of 𝐴,

which we know from linear algebra that it is equal to the row space of 𝐴 (or the column space

of 𝐴𝑇). Hence, we have:

∃𝜇 ∈ 𝐑𝑚 𝑠. 𝑡. ∇𝑓(𝑥) = 𝐴𝑇𝜇.

(Sources: [3], [4])

1.6.4. Strong convexity and implications

We say that a function is strongly convex on 𝑆 when there exists an 𝑚 > 0, such that:

∇2𝑓(𝑥) ≽ 𝑚𝐼, ∀𝑥 ∈ 𝑆.

Strong convexity has several interesting consequences. For 𝑥, 𝑦 ∈ 𝑆 we have:

𝑓(𝑦) = 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑦 − 𝑥) +
1

2
(𝑦 − 𝑥)𝑇∇2𝑓(𝑧)(𝑦 − 𝑥)

For some 𝑧 on the line segment [𝑥, 𝑦]. By the strong convexity assumption, the last term on the

righthand side is at least (
𝑚

2
) ‖𝑦 − 𝑥‖2

2, so we can have the inequality:

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑦 − 𝑥) +
𝑚

2
‖𝑦 − 𝑥‖2

2, ∀𝑥, 𝑦 ∈ 𝑆. [9.8]

When 𝑚 = 0, we recover the basic inequality characterizing convexity; for 𝑚 > 0 we obtain

a better lower bound on 𝑓(𝑦) than follows from convexity alone.

We will first show that the inequality [9.8] can be used to bound 𝑓(𝑥) − 𝑝∗, which is the

suboptimality of the point 𝑥, in terms of ‖∇f(x)‖2. The righthand side of [9.8] is a convex

quadratic function of 𝑦 (for fixed 𝑥). Setting the gradient with respect to 𝑦 equal to zero, we

find that �̃� = 𝑥 − (1/𝑚)∇𝑓(𝑥) minimizes the righthand side. Therefore we have:

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑦 − 𝑥) +
𝑚

2
‖𝑦 − 𝑥‖2

2

47

≥ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(�̃� − 𝑥) +
𝑚

2
‖�̃� − 𝑥‖2

2

= 𝑓(𝑥) −
1

2𝑚
‖∇𝑓(𝑥)‖2

2.

Since this holds for any 𝑦 ∈ 𝑆, we have:

𝑝∗ ≥ 𝑓(𝑥) −
1

2𝑚
‖∇𝑓(𝑥)‖2

2. [9.9]

This inequality shows that if the gradient is small at a point, then the point is nearly optimal.

The inequality [9.9] can also be interpreted as a condition for suboptimality which generalizes

the optimality condition [9.2]:

‖∇𝑓(𝑥)‖2 ≤ (2𝑚𝜖)
1

2 𝑓(𝑥) − 𝑝∗ ≤ 𝜖.

We can also derive a bound on ‖𝑥 − 𝑥∗‖2, the distance between 𝑥 and any optimal point 𝑥∗,

in terms of ‖∇𝑓(𝑥)‖2:

‖𝑥 − 𝑥∗‖2 ≤
2

𝑚
‖∇𝑓(𝑥)‖2.

To see this, we apply [9.8] with 𝑦 = 𝑥∗ to obtain:

𝑝∗ = 𝑓(𝑥∗) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑥∗ − 𝑥) +
𝑚

2
‖𝑥∗ − 𝑥‖2

2

≥ 𝑓(𝑥) − ‖∇𝑓(𝑥)‖2‖𝑥∗ − 𝑥‖2 +
𝑚

2
‖𝑥∗ − 𝑥‖2

2,

Where we use the Cauchy-Schwartz inequality in the second inequality. Since 𝑝∗ ≤ 𝑓(𝑥), we

must have:

−‖∇𝑓(𝑥)‖2 ‖𝑥∗ − 𝑥‖2 +
𝑚

2
‖𝑥∗ − 𝑥‖2

2 ≤ 0,

From which [9.11] follows. One consequence of [9.22] is that the optimal point 𝑥∗ is unique.

(Sources: [5], [6])

48

Part II

Convex Optimization

2. Convex optimization

In this chapter, I lay down the formal definition of convex optimization and describe different

classes of convex problems, as well as some of the deterministic algorithms used widely to

solve these problems. I additionally describe some popular applications of convex optimization

in statistical estimation and learning theory.

2.1. Generic optimization problem

A mathematical optimization problem has the form:

minimize 𝑓0(𝑥)

subject to 𝑓𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1, … , 𝑚

where vector 𝑥 = (𝑥1, … , 𝑥𝑛) is the optimization variable (or decision variable),

function 𝑓0: R𝑛 → R is the objective function,

functions 𝑓𝑖: R𝑛 → R, 𝑖 = 1, … , 𝑚 are the inequality constraints functions,

and constants 𝑏𝑖, … , 𝑏𝑚 are the bounds (or limits) for the constraints.

A vector denoted 𝑥∗ is the optimal solution to an optimization problem, if it has the smallest

objective value (output of the objective function) between all vectors that satisfy the problem

constraints, i.e. for any 𝑧, where 𝑓1(𝑧) ≤ 𝑏1, … , 𝑓𝑚(𝑧) ≤ 𝑏𝑚, we have:

𝑓0(𝑧) ≥ 𝑓0(𝑥∗), ∀𝑧

49

Optimization problems can be divided into different families or classes, depending on the

structure of the objective function and the associated problem constraints. An important

classification of optimization problems has to do with linearity:

• Linear problem (or linear program): An optimization problem where the objective

function and the constraint functions are linear, i.e. satisfy:

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦)

for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼, 𝛽 ∈ R .

• Nonlinear problem (or nonlinear program): An optimization problem where the

objective function and the constraint functions are nonlinear.

A more general classification of optimization problems has to do with convexity. A convex

optimization problem is one in which the objective and constraint functions are convex, i.e. the

satisfy the inequality:

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦)

for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼, 𝛽 ∈ R , with 𝛼 + 𝑏 = 1, 𝛼 ≥ 0, 𝛽 ≥ 0. Since inequality replaces the

more restrictive equality, we can consider linear programming to be a subclass of convex

optimization.

In learning theory and data fitting, we select a model from a family of models that best fits the

observed data and potentially some prior beliefs. The optimization variables are the parameters

of the model while the optimization constraints are the equivalent of prior information or limits

on the parameters. The objective function represents the error between the actual/observed

values and the values predicted by the model.

(Sources: [5], [6])

50

2.2. Convex optimization problem

A mathematical optimization problem has the form:

minimize 𝑓0(𝑥)

subject to 𝑓𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1, … , 𝑚

where functions 𝑓0, … , 𝑓𝑚: 𝐑𝑛 → 𝐑 are convex, meaning that they satisfy the condition:

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦)

for all 𝑥, 𝑦 ∈ 𝐑𝑛 and all 𝛼, 𝛽 ∈ 𝐑 with 𝛼 + 𝛽 = 1, 𝛼 ≥ 0, 𝛽 ≥ 0.

The least-squares and linear programming problems are two sub-classes of convex

optimization problems which come with mature solution methods, whereas methods for

solving general convex optimization problems are mostly iterative and not analytical. Mature

algorithms for solving general convex optimization problems in very large datasets is a

growing technology, however, many of the existing iterative methods are very fast and

efficient, e.g. interior-point methods can solve a problem with hundreds of variables and

thousands of constraints within a few seconds.

If an optimization problem can be formulated as a convex problem, it can be solved efficiently.

On the other hand, the process of recognizing convex optimization problems, or non-convex

problems that can be formulated as convex problems, can be a difficult task. Still, once this

task is done, any solution method applied to a convex optimization problem guarantees finding

the unique optimal solution in computationally efficient (worst-case polynomial) time.

Different classes of optimization problems, such as non-linear optimization (non-linear

objective and constraints), local optimization (searching for local optima), and global

optimization (exact solution exponential-time search) all fail in producing solutions which are

both efficient and accurate. This is what makes convex optimization extremely useful in

industrial applications.

We can therefore reformulate a convex optimization problem as:

51

minimize 𝑓0(𝑥)

subject to 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

 ℎ𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑝

The problem can be described as “finding the value of 𝑥 that minimizes 𝑓0(𝑥) among all

possible values of 𝑥, which satisfy the given conditions (constraints). We call 𝑥 ∈ 𝐑𝑛 the

optimization variable and function 𝑓0 the objective function (or cost function). Our constraints

are divided into the inequality constraints 𝑓𝑖(𝑥) ≤ 0 and equality constraints ℎ𝑖(𝑥) ≤ 0, with

𝑓𝑖 and ℎ𝑖 being the inequality and equality constraint functions, respectively. In the case of the

absence of all constraints, we are in the scenario of an unconstrained optimization problem.

The set of points for which the objective function and the constraints functions are defined, is

the domain of the optimization problem. A feasible point 𝑥 or a feasible solution, is a value

that satisfies all problem constraints. A problem is called feasible when it has at least one

feasible solution, infeasible otherwise. All feasible solutions to a problem are called the feasible

set. The optimal value 𝑝∗ to the problem can be defined has:

𝑝∗ = inf {𝑓0(𝑥)|𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚, ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝}.

Now consider the following problem formulation:

minimize 𝑓0(𝑥)

subject to 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

 𝑎𝑖
𝑇(𝑥) = 𝑏𝑖 , 𝑖 = 1, … , 𝑝

We refer to the precedent problem formulation as an optimization problem in standard form,

in which we adapt the convention that the righthand side of the inequality and equality

constraints are zero. When in standard form, it requires that the objective function and the

inequality constraint functions are convex, and that the equality constraint functions are affine.

The feasible set of a convex optimization problem is also convex, therefore we optimize a

convex objective function over a convex set.

52

With a slight change in notation, we can also treat a concave maximization problem as a convex

minimization problem:

maximize 𝑓0(𝑥)

subject to 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

 𝑎𝑖
𝑇𝑥 = 𝑏𝑖 , 𝑖 = 1, … , 𝑝

where the objective function 𝑓0 is concave and the inequality constraints 𝑓1, … , 𝑓𝑚 are convex.

Equality constraints and slack variables:

Equality constraints can be introduced into a convex optimization problem on the condition

that they are linear, so that the resulting problem will remain convex. The introduction of slack

variables gives us the new constraints 𝑓𝑖(𝑥) + 𝑠𝑖 = 0 and, since equality constraints must be

affine in a convex problem, 𝑓𝑖 must be affine as well.

(Sources: [5], [6])

2.2.1. Local and global optima

As already seen, the critical advantage of convex optimization is that a local optimum is also

the global optimum. Suppose that 𝑥 is a local optimum for a convex optimization problem. We

should, therefore, have:

𝑓0(𝑥) = inf{𝑓0(𝑧)| 𝑧 feasible, ‖𝑧 − 𝑥‖2 ≤ 𝑅},

for some 𝑅 > 0. Suppose also that 𝑥 is not a global optimum, such that there is a feasible 𝑦

such that 𝑓0(𝑦) < 𝑓0(𝑥), which implies that ‖𝑦 − 𝑥‖2 > 𝑅. Now consider the point 𝑧 such that:

𝑧 = (1 − 𝜃)𝑥 + 𝜃𝑦, 𝜃 =
𝑅

2‖𝑦−𝑥‖2
 .

53

Then, we shall have ‖𝑧 − 𝑥‖2 =
𝑅

2
< 𝑅, which implies that 𝑧 is feasible. By convexity of 𝑓0

we have:

𝑓0(𝑧) ≤ (1 − 𝜃)𝑓0(𝑥) + 𝜃𝑓0(𝑦) < 𝑓0(𝑥),

which contradicts the initial premise on 𝑓0(𝑥). Therefore, there exists no feasible 𝑦, for which

𝑓0(𝑦) < 𝑓0(𝑥), i.e. 𝑥 is a global optimum.

2.2.2. Optimality criterion for a differentiable objective function

Let 𝑓0 be the differentiable objective function of a convex optimization problem. Then, for all

𝑥, 𝑦 ∈ 𝑑𝑜𝑚 𝑓0, we have:

𝑓0(𝑦) ≥ 𝑓0(𝑥) + ∇𝑓0(𝑥)𝑇(𝑦 − 𝑥).

Now, suppose that 𝑋 is the feasible set:

𝑋 = {𝑥|𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚, ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝}.

Then, for all 𝑥 ∈ 𝑋, 𝑥 is optimal iff:

∇𝑓0(𝑥)𝑇(𝑦 − 𝑥) ≥ 0 for all 𝑦 ∈ 𝑋.

Geometrically, this optimality criterion implies that −∇𝑓0(𝑥) is a supporting hyperplane to the

feasible set 𝑋 at point 𝑥 (shown in figure blow), given that ∇𝑓0(𝑥) ≠ 0.

54

Geometric representation of optimality condition, where the feasible set 𝑋 is shown as shaded lines. Level

curves of 𝑓0 are shown as dashed lines and point 𝑥 is optimal. [5]

Proof:

Suppose that 𝑥 ∈ 𝑋 satisfies the precedent optimality condition. If 𝑦 ∈ 𝑋, then 𝑓0(𝑦) ≥ 𝑓0(𝑥),

and 𝑥 is an optimal point for the convex optimization problem in standard form. Conversely,

if 𝑥 is an optimal point but the optimality condition does not hold, i.e. there exist 𝑦 ∈ 𝑋 for

which:

∇𝑓0(𝑥)𝑇(𝑦 − 𝑥) < 0

Now, suppose that the point 𝑧(𝑡) = 𝑡𝑦 + (1 − 𝑡)𝑥, with parameter 𝑡 ∈ [0,1]. Then 𝑧(𝑡) is

feasible, since the feasible set is convex and 𝑧(𝑡) is on the line segment between 𝑥 and 𝑦. Then,

for a small and positive 𝑡, we have:

𝑓0(𝑧(𝑡)) < 𝑓0(𝑥),

which proves that 𝑥 is not optimal. This can be shown by:

𝑑

𝑑𝑡
𝑓0(𝑧(𝑡))│𝑡=0 = ∇𝑓0(𝑥)𝑇(𝑦 − 𝑥) < 0,

which implies that, for a small positive 𝑡, is holds that 𝑓0(𝑧(𝑡)) < 𝑓0(𝑥).

(Sources: [5], [6])

55

2.2.3. Unconstrained problems

In an unconstrained problem, it holds that 𝑚 = 𝑝 = 0, and the optimality condition becomes

the necessary and sufficient condition:

∇𝑓0(𝑥) = 0

which must hold in order for 𝑥 to be optimal.

Proof:

Suppose that 𝑥 is optimal, i.e. 𝑥 ∈ 𝑑𝑜𝑚 𝑓0 and for all feasible 𝑦 it holds that:

∇𝑓0(𝑥)𝑇(𝑦 − 𝑥) ≥ 0.

Given that 𝑓0 is differentiable, its domain is open, therefore all 𝑦 sufficiently close to 𝑥 will be

feasible. Let 𝑦 = 𝑥 − 𝑡∇𝑓0(𝑥), 𝑡 ∈ 𝑅, with 𝑡 small and positive such that 𝑦 is feasible and:

∇𝑓0(𝑥)𝑇(𝑦 − 𝑥) = −𝑡‖∇𝑓0(𝑥)‖2
2 ≥ 0,

from which we derive that ∇𝑓0(𝑥) = 0.

Depending on whether or not there are optimal points for ∇𝑓0(𝑥) = 0, we say that the problem

is unbound below or that the optimal value is finite but not attained.

2.2.4. Epigraph problem form

A convex problem can be formulated in epigraph form as such:

minimize 𝑡

subject to 𝑓0(𝑥) − 𝑡 ≤ 0,

 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

 𝑎𝑖
𝑇(𝑥) = 𝑏𝑖 , 𝑖 = 1, … , 𝑝

56

The objective function is linear (therefore convex), and the new constraint function 𝑓0(𝑥) − 𝑡

is convex in (𝑥, 𝑡), which implies that the epigraph form problem is also convex.

The linear objective function is said to be “universal” for convex problems due to the fact that

any convex problem can be transformed into a problem with linear objective. The epigraph

form can simplify a convex problem and its algorithmic solution by assuming that the objective

function is linear.

(Sources: [5], [6])

2.2.5. Linear optimization problems

Linear optimization (or linear programming) is another important class of optimization

problems where the objective function and its constraints are all affine. The general linear

program (LP) has the form:

minimize 𝑐𝑇𝑥 + 𝑑

subject to 𝐺𝑥 ≤ ℎ

 𝐴𝑥 = 𝑏

where 𝐺 ∈ 𝐑𝑚×𝑛 and 𝐴 ∈ 𝐑𝑝×𝑛. The constant 𝑑 is sometimes omitted as it does not affect the

feasible set. We can also refer to maximization problem with affine objective and constraints

as a LP, since by minimizing −𝑐𝑇𝑥 − 𝑑 we also maximize an affine objective 𝑐𝑇𝑥 + 𝑑. In a

geometric interpretation, the feasible set of a LP is polyhedron 𝒫 and the objective to be

minimized is the affine function 𝑐𝑇𝑥 + 𝑑 over 𝒫.

57

Geometric interpretation of a LP. The shaded polyhedron is the feasible set 𝒫, the linear objective 𝑐𝑇𝑥 and its

level curves are hyperplanes (dashed lines) orthogonal to 𝑐. The optimal point 𝑥∗ is the point in 𝒫 that goes as

far as possible in the direction −𝑐. [5]

(Sources: [5])

Example in Linear optimization: Chebysev inequalities

Let 𝑝 ∈ 𝐑𝑛 be a vector describing the probability distribution of a discrete random variable 𝑥

on a set {𝑢1, … , 𝑢𝑛} ⊆ 𝐑 with 𝑛 elements. So for vector 𝑝, we have:

𝑝𝑖 = 𝑝𝑟𝑜𝑏(𝑥 = 𝑢𝑖),

hence, it holds that 𝑝 satisfies 𝑝 ≽ 0 and 1𝑇𝑝 = 1. Conversely, the two latter premises imply

that 𝑝 defines a probability distribution for 𝑥. We can assume that 𝑢𝑖 are known and fixed,

while the distribution 𝑝 is unknown. If 𝑓 is a function of 𝑥, its expected value:

𝐸[𝑓] = ∑ 𝑝𝑖𝑓(𝑢𝑖)
𝑛
𝑖

will be a linear function of 𝑝. Even though 𝑝 is unknown, we have the prior knowledge that

upper and lower bounds on expected values of some functions of 𝑥 and probabilities of some

subsets of 𝐑, which can be expressed as linear inequality constraints on 𝑝:

58

𝛼𝑖 ≤ 𝛼𝑖
𝑇𝑝 ≤ 𝛽𝑖, 𝑖 = 1, … , 𝑚.

The problem consists of Chebyshef inequalities consists of assigning lower and upper bounds

on 𝐸[𝑓0(𝑥)] = 𝑎0
𝑇𝑝, where 𝑓0 is some function of 𝑥. Finding the lower bound comes down to

solving the following LP:

minimize 𝑎0
𝑇𝑝

subject to 𝑝 ≽ 0, 1𝑇𝑝 = 1

 𝑎𝑖 ≤ 𝑎𝑖
𝑇𝑝 ≤ 𝛽𝑖, 𝑖 = 1, … , 𝑚

The optimal value of this linear program yields the lowest possible value of 𝐸[𝑓0(𝑋)], for any

probability distribution that satisfies the conditions of prior knowledge. Equivalently, finding

the optimal upper bound consists of maximizing 𝑎0
𝑇𝑝, subject to the same constraints.

(Sources: [5])

2.2.6. Quadratic optimization

A convex optimization problem is called a quadratic problem (QP) if its objective function is

quadratic and its constraints are affine. A quadratic problem is expressed in the following form:

minimize (
1

2
) 𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 + 𝑟

subject to 𝐺𝑥 ≼ ℎ

 𝐴𝑥 = 𝑏

where 𝑃 ∈ 𝐒𝑖
𝑛, 𝐺 ∈ 𝐑𝑚×𝑛, and 𝐴 ∈ 𝐑𝑝×𝑛. In a quadratic program, we minimize a convex

quadratic function over a polyhedron (as illustrated).

59

Quadratic program: A Geometric illustration where the feasible set 𝒫 is shown as a shaded

polyhedron and the quadratic objective function as dashed contour lines. [5]

When the constraint functions are all also convex, we have the following problem formulation:

minimize (
1

2
) 𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 + 𝑟0

subject to (
1

2
) 𝑥𝑇𝑃𝑖𝑥 + 𝑞𝑖

𝑇𝑥 + 𝑟𝑖 ≤ 0, 𝑖 = 1, … 𝑚

 𝐴𝑥 = 𝑏

where 𝑃𝑖 ∈ 𝐒+
𝑛 , 𝑖 = 0, 1, … , 𝑚. Here, the problem is called a quadratically constrained

quadratic program (QCQP), and the minimization of a convex quadratic function takes place

over a feasible region that is geometrically the intersection of ellipsoids.

Linear programs can be seen as a special case of quadratic programs when, in the quadratic

objective function, it holds that 𝑃 = 0.

(Sources: [5], [6])

60

Example in Quadratic optimization: Least-squares and regression

The least-squares problem is an unconstrainted optimization problem where the objective

function is a sum of squares of terms of the form 𝑎𝑖
𝑇𝑥 − 𝑏𝑖.

More specifically, it consists of minimizing the convex quadratic function:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝐴𝑥 − 𝑏‖2
2 = 𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏 .

It is an unconstrained quadratic program with a long history of applications in parameter

learning, where it is commonly known as regression analysis or least-squares approximation.

This problem is simple enough to have the analytical solution 𝑥 = 𝐴𝜏𝑏, where 𝐴𝜏 is the pseudo-

inverse of 𝐴.

When linear inequality constraints are added to the least squares problem, the problem is

transformed into constrained least-squares or constrained regression, and there is no longer

an analytical solution. Let us consider regression with upper and lower bounds on the variables:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝐴𝑥 − 𝑏‖2
2

s.t: 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, … , 𝑛,

which is a quadratic programming problem.

The least-squares problem is fundamental in regression analysis and related methods involving

statistical learning, parameter estimation, and data fitting. Its statistical interpretation is the

Maximum Likelihood Estimation of the observed data (vector 𝑥), given linear measurements

that have been corrupted by Gaussian noise. The interpretation of least-squares as an

optimization problem requires that the objective function is quadratic and positive semidefinite.

Two well-known variations of this problem are described below.

Weighted least-squares with the optimization criterion:

∑ 𝑤𝑖(𝑎𝑖
𝑇𝑥 − 𝑏𝑖

2)

𝑘

𝑖

61

where 𝑤1, … , 𝑤𝑘 are positive and set according to the relative importance of individual

predictors. Its statistical interpretation is that the Gaussian errors have unequal variances.

Another common variation is least squares with regularization, a version of the optimization

problem where extra cost terms are added to the objective function.

Simplest case of regularized least-squares with the a positive multiple of the sum of squares

of all independent variables added to the objective function:

∑ 𝑤𝑖(𝑎𝑖
𝑇𝑥 − 𝑏𝑖

2)

𝑘

𝑖

+ 𝜌 ∑ 𝑥𝑖
2

𝑛

𝑖=1

where 𝜌 > 0, which is manually set in order to control the balance between the original

optimization term and the regularization term. The purpose of the extra terms is to penalize

large values of 𝑥, which may derive a sensible solution when the minimization of the first term

fails to do so. Regularization is used in statistical estimation when the observed data is given a

prior distribution or when the size of data causes maximum likelihood estimation to overfit.

The exact solution of the least-squares problem comes down to solving the set of linear

equations:

(𝐴𝑇𝐴)𝑥 = 𝐴𝑇𝑏,

from which we obtain the following analytical solution:

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏.

The time complexity of the least-squares solution is 𝑂(𝑛2𝑘), where 𝑘 is a known constant.

(Sources: [5], [6])

62

2.2.7. Vector optimization

The standard form of a convex problem can be extended to include vector valued objective and

constraint functions. We call this scenario a vector optimization problem and denote it as:

minimize (with respect to K) 𝑓0(𝑥0)

subject to 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

 ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝

where 𝑥 ∈ 𝐑𝑛 is the optimization variable, 𝐾 ⊆ 𝐑𝑄 is a proper cone, 𝑓0: 𝐑𝑛 → 𝐑𝑞 is the

objective function, 𝑓𝑖: 𝐑𝑛 → 𝐑 are the inequality constraint functions, and ℎ𝑖: 𝐑𝑛 → 𝐑 are the

equality constraint functions. The difference from the standard (scalar) convex optimization

problem is that, in the case of vector optimization, the objective function takes values in 𝐑𝑞,

therefore multiple objective values are being compared via a proper cone 𝐾. The vector

optimization problem is a convex problem if the objective 𝑓0 and its associated equality and

inequality constraints are all 𝐾-convex.

Optimal points and values in vector optimization

Suppose that we have the following objective values of feasible points:

𝒪 = {𝑓0(𝑥)|∃𝑥 ∈ 𝒟, 𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑚, ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝} ⊆ 𝐑𝑞,

which we call the set of achievable objective values. If there exists a feasible set 𝑥 such that

𝑓0(𝑥) ≼𝐾 𝑓0(𝑦), for all feasible 𝑦, then the set 𝒪 has a minimum value and we say that 𝑥 is

optimal, with 𝑓0(𝑥) being the problem’s unique optimal value. Therefore, if 𝑥∗ is an optimal

point, then the objective 𝑓0(𝑥∗) can be compared to the objective of any other feasible point.

In this case, a point 𝑥∗ is optimal iff it is feasible and it holds that:

𝒪 ⊆ 𝑓0(𝑥∗) + 𝐾

63

The set 𝐾 can be interpreted as the set of values that are worse than or equal to 𝑓0(𝑥∗) and, as

illustrated below, the precedent condition implies that every achievable value falls in the set 𝒪.

The set of achievable values 𝒪 is depicted shaded while the point 𝑓0(𝑥∗) is the optimal value as yielded by the

optimal point 𝑥∗and the objective function 𝑓0. [5]

It should be noted that the majority of vector optimization problems do not possess an optimal

point and an optimal value.

(Sources: [5])

Example in Vector optimization: Regularized least-squares

Suppose that we are given 𝐴 ∈ 𝐑𝑚×𝑛 and 𝑏 ∈ 𝐑𝑚, and that we want to find 𝑥 ∈ 𝐑n while

taking into account two quadratic objectives:

• 𝐹1(𝑥) = ‖𝐴𝑥 − 𝑏‖2
2 = 𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏 is the measure of misfit between 𝐴𝑥 and

𝑏,

• 𝐹2(𝑥) = ‖𝑥‖2
2 = 𝑥𝑇𝑥 is a measure of the size of 𝑥.

64

The goal is to find 𝑥 that gives a good fit (small 𝐹1) and is, at the time, not large (small 𝐹2). We

formulate this problem as a vector optimization problem with respect to the cone 𝐑+
2 , i.e. an

unconstrained bi-criterion problem:

min 𝑓0(𝑥) = (𝐹1(𝑥), 𝐹2(𝑥)).

The optimal trade-off curve of regularized least-squares is shown darker at the lower left part of the boundary.

The shaded set represents the set of achievable values.

We scalarize the problem by taking 𝜆1 > 0 and 𝜆2 > 0 and then by minimizing the scalar

weighted sum objective:

𝜆𝑇𝑓0(𝑥) = 𝜆1𝐹1(𝑥) + 𝜆2𝐹2(𝑥)

= 𝑥𝑇(𝜆1𝐴𝑇𝐴 + 𝜆2𝐼)𝑥 − 2𝜆1𝑏𝑇𝐴𝑥 + 𝜆1𝑏𝑇𝑏,

which yields:

𝑥(𝜇) = (𝜆1𝐴𝑇𝐴 + 𝜆2𝐼)1𝜆1𝐴𝑇𝑏 = (𝐴𝑇𝐴 + 𝜇𝐼)−1𝐴𝑇𝑏,

65

where 𝜇 = 𝜆2/𝜆1. For any 𝜇 > 0, this point will be the Pareto optimal for the bi-criterion

problem. The value of 𝜇 = 𝜆1/𝜆2 can then be interpreted as the relative weight of 𝐹1 in

comparison to 𝐹2.

This is a method to produce all Pareto optimal points those two associated to the extremes 𝜇 →

∞ and 𝜇 → 0. The former extreme will yield the Pareto optimal solutions 𝑥 = 0, via

scalarization with 𝜆 = (0,1), and the latter extreme will yield the Pareto optimal solution 𝐴𝒯𝑏,

with 𝐴𝒯 being the pseudo-inverse of 𝐴. The Pareto optimal solution is the limit of the optimal

solution of the scalarized problem as 𝜇 → 0, i.e. 𝜆 → (1,0).

(Sources: [5])

2.3. Parametric statistical estimation

2.3.1. Maximum Likelihood Estimation (MLE)

Suppose that we have a family of probability distributions on 𝐑𝑚, which are indexed by a

vector 𝑥 ∈ 𝐑𝑚 with densities given by function 𝑝𝑥(.). If 𝑝𝑥 is a function of 𝑥, for any fixed

𝑦 ∈ 𝐑, then the function 𝑝𝑥 becomes a likelihood function. Due to properties of the logarithmic

function, it is usually easier to work with the logarithm of 𝑝𝑥, which is denoted by 𝑙 and called

the log-likelihood function:

𝑙(𝑥) = log(𝑝𝑥(𝑦)).

Any constraints on the values of the parameter 𝑥 represent the prior knowledge on 𝑥, which is

the domain of the likelihood function. To account for these constraints, we can simply assign

𝑝𝑥(𝑦) = 0 whenever the constraints on 𝑥 are violated.

Suppose we were to estimate the value of parameter 𝑥, based on an observed sample 𝑦 draw

from the distribution. The maximum likelihood estimation will estimate 𝑥 by solving the

following problem:

�̂�𝑀𝐿𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑝𝑥(𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑙(𝑥),

66

i.e. the optimal value of 𝑥 is the one that maximizes the likelihood function for the observed

values of 𝑦. The prior information on 𝑥, represented as 𝑥 ∈ 𝐶 ⊆ 𝐑𝑛, is the constraint 𝑥 ∈ 𝐶

that can be added explicitly or implicitly by setting 𝑝𝑥(𝑦) = 0 if 𝑥 ∉ 𝐶.

We can formally express the optimization problem of finding the maximum likelihood estimate

for the parameter vector 𝑥 as:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑙(𝑥) = log(𝑝𝑥(𝑦))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝐶

where 𝑥 ∈ 𝐶 is expresses the prior information on vector 𝑥. In this formulation, vector 𝑥 (the

parameter of the probability density) is the optimization variable and vector 𝑦 (observed data)

an optimization parameter.

The maximum likelihood estimation problem is a convex problem when the log-likelihood

function is concave for every observed value in 𝑦 and the set 𝐶 is described by linear equality

and convex inequality constraints. These convexity conditions are met in many estimation

problems, for which we can use convex optimization via MLE to obtain “optimal” point

estimates.

(Sources: [5], [6])

MLE estimation of linear measurements with IID noise

Suppose we have the following linear model:

𝑦𝑖 = 𝑎𝑖
𝑇𝑥 + 𝑣𝑖 , 𝑖 = 1, … , 𝑚

where 𝑥 ∈ 𝐑𝑛 is the parameter vector to be estimated, 𝑦𝑖 ∈ 𝐑 is the observed data, and 𝑣𝑖 are

the IID measurements errors (noise) with density 𝑝 on R. The likelihood function can be

expressed as:

67

𝑝𝑥(𝑦) = ∏ 𝑝(𝑦𝑖 − 𝑎𝑖
𝑇𝑥)

𝑚

𝑖=1

and the log-likelihood as:

𝑙(𝑥) = log(𝑝𝑥(𝑦)) = ∑ log (𝑝(𝑦𝑖 − 𝑎𝑖
𝑇𝑥)

𝑚

𝑖=1

.

Then any optimal point of the following problem:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ log (𝑝(𝑦𝑖 − 𝑎𝑖
𝑇𝑥))

𝑚

𝑖=1

will be the ML estimate. The problem is convex if the density function 𝑝 is log-concave and is

in the form of a penalty approximation problem with penalty −log (𝑝).

2.3.2. Maximum a Posteriori estimation (MAP)

In a Bayesian setting, the posterior distribution of a parameter 𝑥 can be derived analytically via

Bayes rule or approximated via stochastic simulation (Markov Chain Monte Carlo):

𝑝(𝑥|𝑦) =
𝑝(𝑥)𝑝(𝑦; 𝑥)

𝑝(𝑦)

where random variable 𝑥 is the vector to be estimated and random variable 𝑦 is the observed

data. The main philosophical difference with classical estimation (MLE) is that 𝑥 is seen as a

random variable rather than a fixed parameter and will therefore be estimated as a distribution

rather than a single value. This distribution, denoted 𝑝(𝑥|𝑦), is called the posterior distribution.

However, sometimes all we need is a single value for 𝑥, while the posterior 𝑝(𝑥|𝑦) does not

automatically give us a point estimate �̂�. In the scenario of a non-symmetric posterior where

the mode cannot be computed analytically, an emerging optimization problem has to do with

finding the point �̂� where the posterior becomes maximum:

68

�̂�|𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 𝑝(𝑥|𝑦)

In that respect, maximum a posteriori can be viewed as the Bayesian equivalent of maximum

likelihood estimation with a prior probability density on the parameter 𝑥. The prior density of

𝑥 is expressed as:

𝑝𝑥(𝑥) = ∫ 𝑝(𝑥, 𝑦)𝑑𝑦

The above density is the prior distribution of the values of 𝑥 before observing 𝑦. The prior

density of 𝑦 is given by:

𝑝𝑦(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝑑𝑥,

which is the prior information about the observed data.

The conditional (predictive) density of 𝑦 given 𝑥 is expressed as:

𝑝𝑦|𝑥(𝑦; 𝑥) =
𝑝(𝑥, 𝑦)

𝑝𝑥(𝑦)

In MAP estimation, the conditional density 𝑝𝑦|𝑥 is the parameter-dependent equivalent of

MLE’s marginal density 𝑝𝑥.

The conditional (posterior) density of 𝑥 given 𝑦 is expressed as:

𝑝𝑥|𝑦(𝑥; 𝑦) =
𝑝(𝑥, 𝑦)

𝑝𝑦(𝑦)
= 𝑝𝑦|𝑥(𝑥; 𝑦)

𝑝𝑥(𝑥)

𝑝𝑦(𝑦)

The substitution of the observed data 𝑦 into 𝑝𝑥|𝑦, gives us the posterior distribution of 𝑥.

Therefore, the MAP estimate of 𝑥 given 𝑦 is given by:

�̂�𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 𝑝𝑥|𝑦(𝑥; 𝑦)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 𝑝𝑦|𝑥(𝑥; 𝑦)𝑝𝑥(𝑥)

69

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 𝑝(𝑥, 𝑦)

which leads to the optimization problem described at the beginning of this section. By taking

as the estimate of 𝑥 the value that maximizes the conditional distribution of 𝑥|𝑦. The only

difference between the calculation of MAP and MLE is the prior density 𝑝𝑥(𝑥). In MLE, the

optimization is applied directly on the likelihood function, whereas in MAP it is applied on the

product of the likelihood function and the prior density. When the prior density if uniform then

the 𝑝𝑥(𝑥) becomes a constant and the MAP estimation overlaps with MLE. Taking the

logarithm of 𝑝(𝑥, 𝑦) we can express the MAP estimate as:

�̂�𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 (log (𝑝𝑦|𝑥(𝑥, 𝑦)) + log(𝑝𝑥(𝑥)))

The first term in the above expression is the log-likelihood function and the second is the

logarithm of the prior density that penalizes less probable values of 𝑥 (when 𝑝𝑥(𝑥) small).

Without considering the philosophical debate between frequentist and Bayesian statistics, the

only mathematical difference between MAP and MLE estimates is the prior density term in the

optimization problem. Consequently, for any MLE problem with a concave log-likelihood, the

addition of a convex prior density will preserve convexity in the resulting MAP problem.

(Sources: [5], [6])

MAP estimation of linear measurements with IID noise in a Bayesian setting

Let 𝑥 ∈ 𝐑𝑛 and 𝑦 ∈ 𝐑𝑛 are linked by the following relation:

𝑦𝑖 = 𝑎𝑖
𝑇𝑥 + 𝑣𝑖 , 𝑖 = 1, … , 𝑚

where 𝑣𝑖 is a vector of independent and identically distributed random variables (IID) with

distribution 𝑝𝑣 on 𝐑, with 𝑥 having a prior distribution 𝑝𝑥 on 𝐑𝑛. The joint distribution of 𝑥

and 𝑦 is:

70

𝑝(𝑥, 𝑦) = 𝑝𝑥(𝑥) ∏ 𝑝𝑣(𝑦𝑖 − 𝑎𝑖
𝑇𝑥)

m

i

The MAP estimate is the solution of the following optimization problem:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 log(𝑝𝑥(𝑥)) + ∑ log 𝑝𝑣(𝑦𝑖 − 𝑎𝑖
𝑇𝑥)

𝑚

𝑖

The above problem is convex if the density functions for 𝑝𝑥 and 𝑝𝑣 are log-concave. By

removing the term log(𝑝𝑥(𝑥)), we have the objective function of the MLE scenario.

To demonstrate this application, suppose that:

𝑥~𝑁𝑜𝑟𝑚𝑎𝑙(�̅�, Σ)

𝑣𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−𝑎, 𝑎)

Then the MAP estimate is reduced to the following quadratic problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑥 − �̅�)𝑇Σ−1(𝑥 − �̅�)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝐴𝑥 − 𝑦‖∞ ≤ 𝑎

with optimization variable 𝑥.

(Sources: [5])

2.4. Statistical learning

2.4.1. Classification

In statistical classification, we have two sets of points in 𝐑𝑛, {𝑥1, … , 𝑥𝑁} and {𝑦1, … , 𝑦𝑀}. We

therefore wish to find a function 𝑓: 𝐑𝑛 → 𝐑 that is positive on one set and negative on the other:

𝑓(𝑥𝑖) > 0, 𝑖 = 1, … , 𝑁

71

𝑓(𝑦𝑖) < 0, 𝑖 = 1, … , 𝑀

When these inequalities are satisfied, we say that 𝑓 classifies, separates, or discriminates the

two sets. Accordingly, we speak of a weak separation holds when the weak versions of the

inequalities are satisfied.

We speak of linear discrimination, when the two sets of points can be separated by a straight

line. Thus, we seek an affine function 𝑓(𝑥) = 𝑎𝑇𝑥 − 𝑏 that classifies the points:

𝑎𝑇𝑥𝑖 − 𝑏 > 0, 𝑖 = 1, … , 𝑁

𝑎𝑇𝑦𝑖 − 𝑏 < 0, 𝑖 = 1, … , 𝑀

In the geometrical interpretation, we seek a hyperplane that separates the points from two sets.

We already know that the strict inequalities are homogenous in 𝑎 and 𝑏, they are feasible iff

the set of nonstrict linear inequalities is also feasible:

𝑎𝑇𝑥𝑖 − 𝑏 ≥ +1, 𝑖 = 1, … , 𝑁

𝑎𝑇𝑦𝑖 − 𝑏 ≤ −1, 𝑖 = 1, … , 𝑀

The open and filled circles represent points 𝑥1, … , 𝑥𝑁 and 𝑦1 , … , 𝑦𝑀, respectively, separated by the affine

function 𝑓. [5]

(Sources: [5], [7])

72

2.4.2. Robust linear discrimination

The robust linear discrimination problem is a linear discrimination where we seek to optimize

some measure of robustness. For example, this measure could be the output of a function that

gives the maximum gap between the sets of points of two (or more) classes. Generally, an

affine classifying function 𝑓(𝑥) = 𝑎𝑇𝑥 − 𝑏 is equivalent to a set of linear inequalities in

variables 𝑎 and 𝑏 that define 𝑓. The polyhedron of affine functions that linearly discriminates

the two sets will be optimizing the measure of robustness. To find the maximum gap between

values at the points 𝑥𝑖 and 𝑦𝑖, we should first normalize or scale 𝑎 and 𝑏 by a positive constant

and solve the emerging convex optimization problem:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑎𝑇𝑥𝑖 − 𝑏 ≥ 𝑡, 𝑖 = 1, … , 𝑁

𝑎𝑇𝑦𝑖 − 𝑏 ≤ −𝑡, 𝑖 = 1, … , 𝑀

‖𝑎‖2 ≤ 1

The optimal solution 𝑡∗ of the above problem is positive if and only if the two sets of points

(classes) are linearly separable. When this holds, the inequality ‖𝑎‖2 ≤ 1 is always tight at the

optimum, such that ‖𝑎∗‖2 = 1.

The linear discrimination problem with the affine function that must yield the largest separation gap between

the two sets of points (classes) [5]

(Sources: [5], [7])

73

2.4.3. Approximate linear discrimination via support vector classification

In the scenario where it is not possible to linearly separate the two classes (sets of points), one

can seek an affine function that approximates separation. For example, one such objective

would be to minimize the number of misclassified points. The exact solution to this problem

would be through hard combinatorial optimization, though a heuristic for approximate linear

discrimination can be obtained by support vector classifiers. We can relax the constraints of a

feasibility problem by introducing nonnegative variables 𝑢1, … , 𝑢𝑁 and 𝑣1, … , 𝑣𝑀 thus forming

the inequalities:

𝑎𝑇𝑥𝑖 − 𝑏 ≥ 1 − 𝑢𝑖 , 𝑖 = 1, … , 𝑁

𝑎𝑇𝑦𝑖 − 𝑏 ≤ −(1 − 𝑣𝑖), 𝑖 = 1, … , 𝑀

The values of 𝑢𝑖 and 𝑣𝑖 can be interpreted as the degree that the constraints 𝑎𝑇𝑥𝑖 − 𝑏 ≥ 1 and

𝑎𝑇𝑦𝑖 − 𝑏 ≤ −1 are being violated. Therefore, we are interested in finding 𝑎, 𝑏 and sparse

nonnegative 𝑢 and 𝑣 which satisfy those inequalities. For this purpose, we may use a heuristic

approach which minimizes the sum of the variables 𝑢𝑖 and 𝑣𝑖 by solving the following linear

problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 1𝑇𝑢 + 1𝑇𝑣

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑎𝑇𝑥𝑖 − 𝑏 ≥ 1 − 𝑢𝑖 , 𝑖 = 1, … , 𝑁

𝑎𝑇𝑦𝑖 − 𝑏 ≤ −(1 − 𝑣𝑖), 𝑖 = 1, … , 𝑀

𝑢 ≽ 0, 𝑣 ≼ 0

74

Approximate solution to the linear discrimination problem via linear programming. The two sets of points are

not linearly separable and one of the points gets inevitably misclassified. [5]

In the above example, the affine function 𝑎𝑇𝑧 − 𝑏 misclassifies 1 out of 100 points and when

0 < 𝑢𝑖 < 1 it holds that points 𝑥𝑖 and 𝑦𝑖 might be correctly classified but violate their

corresponding inequality constraints. Therefore, the objective function of that linear problem

can be seen as a relaxation of the number of points that violate their constraints or a relaxation

of the number of misclassified points plus the number of correctly classified points which lie

in the slab defined by:

−1 < 𝑎𝑇𝑧 − 𝑏 < 1

Thus, there is a tradeoff between misclassified points and the width of the slab {𝑧 | − 1 <

𝑎𝑇𝑧 − 𝑏 < 1}, which is obtained by
2

‖𝑎‖2
. Consequently, the support vector classifier for the

sets {𝑥1, … , 𝑥𝑁} and {𝑦1, … , 𝑦𝑁} is defined by the solution of the following linear problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑎‖2 + 𝛾(1𝑇𝑢 + 1𝑇𝑣)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑎𝑇𝑥𝑖 − 𝑏 ≥ 1 − 𝑢𝑖 , 𝑖 = 1, … , 𝑁

 𝑎𝑇𝑦𝑖 − 𝑏 ≤ −(1 − 𝑣𝑖), 𝑖 = 1, … , 𝑀

 𝑢 ≽ 0, 𝑣 ≽ 0

75

where 𝛾 is a positive value expressing the relative weight of misclassified points. The problem

in question is illustrated below.

Approximate solution to the linear discrimination problem via the support vector classifier (shown as the solid

line) with three points being misclassified. [5]

The first term of the objective function is proportional to the width of the slab while the second

term is a convex relaxation for the number of misclassified points.

(Sources: [5], [7])

2.5. Deterministic algorithms for unconstrained minimization

Suppose we are in the scenario of an arbitrary unconstrained optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)

Let the objective function 𝑓: 𝐑𝑛 → 𝐑 be convex and twice differentiable. The problem is

solvable, i.e. it has a unique optimal solution, represented by the optimal point 𝑥∗. For

convenience, let 𝑝∗ = 𝑓(𝑥∗). Given that 𝑓 is differentiable and convex, 𝑥∗ will exist under the

necessary and sufficient condition:

76

∇𝑓(𝑥∗) = 0

The solution to the unconstrained problem is therefore reduced to finding the point where the

above optimality condition is satisfied. In some problem instances the solution may be derived

analytically but most of the time the problem is solved by an iterative numerical method that

computes a minimizing sequence of points 𝑥(0), 𝑥(1), … ∈ 𝑑𝑜𝑚(𝑓) with 𝑓(𝑥(𝑘)) → 𝑝∗ as 𝑘 →

∞. The algorithm converges when 𝑓(𝑥(𝑘)) − 𝑝∗ ≤ 𝜖, with 𝜖 > 0 being a tolerance parameter.

A starting point for this search must lie in 𝑑𝑜𝑚 𝑓, while the sublevel set 𝑆 =

{𝑥 ∈ 𝑑𝑜𝑚 𝑓 | 𝑓(𝑥) ≤ 𝑓(𝑥(0))} must be closed (which is satisfied for all 𝑥(0) ∈ 𝑑𝑜𝑚 𝑓, if 𝑓 is

closed).

(Sources: [5], [6])

2.5.1. Gradient descent method

Basic descent

A descent-type of algorithm is one that produces a minimizing sequence 𝑥(𝑘), 𝑘 = 1, . ., where:

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑡(𝑘)Δ𝑥(𝑘)

with 𝑡(𝑘) > 0. Here, Δ𝑥 is a vector in 𝐑𝑛 which is called the step or search direction, 𝑘 =

0, 1, … is the number of iterations, 𝑡(𝑘) ≥ 0 is the step size at iteration 𝑘. It is often convenient

to omit superscripts and focus on a single iteration of the algorithm, by replacing:

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑡(𝑘)Δ𝑥(𝑥)

with the lighter notation:

𝑥+ = 𝑥 + 𝑡Δ𝑥

77

Generally, for any descent method it holds that:

𝑓(𝑥(𝑘+1)) < 𝑓(𝑥(𝑘))

except in the case of 𝑥∗. Therefore, for all 𝑘 we have 𝑥(𝑘) ∈ 𝑆 (the initial subset level) and

𝑥(𝑘) ∈ 𝑑𝑜𝑚 𝑓. By convexity, we have that:

∇𝑓(𝑥(𝑘))
𝑇

(𝑦 − 𝑥(𝑘)) ≥ 0

implies:

𝑓(𝑦) ≥ 𝑓(𝑥(𝑘))

Therefore, the search direction in a descent algorithm much satisfy:

∇𝑓(𝑥(𝑘))
𝑇

Δ𝑥(𝑘) < 0.

In other words, the search direction must make an acute angle with the negative gradient in

order to be called a descent direction. The algorithm of the general descent method alternates

between two steps:

• Determine descent direction Δ𝑥

• Select step size 𝑡

The pseudocode for the general descent algorithm is provided below:

Algorithm: General descent method

78

By selecting step size 𝑡 during line search, we determine where the next iteration will be along

the line {𝑥 + 𝑡Δ𝑥 | 𝑡 ∈ 𝑅+}. Different variants of the basic descent may have the stopping

criterion checked after the descent direction Δ𝑥 has been computed. A typical form of the

stopping criterion is:

‖∇𝑓(𝑥)‖2 ≤ 𝜂

for small positive values of 𝜂.

During exact line search, we use the line search method and choose 𝑡 to minimize 𝑓 along the

ray {𝑥 + 𝑡Δ𝑥 | 𝑡 ≥ 0}:

𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠≥0 𝑓(𝑥 + 𝑠Δ𝑥)

Exact line search is useful when the cost of minimization is lower than the cost of computing

the search direction.

An inexact alternative to exact line search is backtracking line search, where the step length is

chosen to approximately minimize 𝑓 along the ray {𝑥 + 𝑡Δ𝑥 | ≥ 0}. Exact line search depends

on constants 𝛼 and 𝛽, with 0 < 𝛼 < 0.5 and 0 < 𝛽 < 1.

Algorithm: Backtracking line search

Therefore, the search starts with a unit step size and reduces it by a factor of 𝛽 until the stopping

condition 𝑓(𝑥 + 𝑡∇𝑥) ≤ 𝑓(𝑥) + 𝑎𝑡∇𝑓(𝑥)𝑇Δ𝑥 is met, hence the name ‘backtracking’.

79

Backtracking line search where the linear extrapolation of 𝑓 is depicted by the lower dashed line. [5]

(Sources: [5])

Gradient descent

The variant of descent method that uses the negative gradient Δ𝑥 = −∇𝑓(𝑥) as its search

direction, is called gradient descent.

Algorithm: Gradient descent method

We normally use the standard stopping criterion of the form ‖∇𝑓(𝑥)‖2 ≤ 𝜂, with small and

positive 𝜂.

A simple convergence analysis for the gradient method following. Let 𝑓 be strongly convex on

𝑆 and Δ𝑥 = −∇𝑓(𝑥). There are positive constants 𝑚 and 𝑀 such that 𝑚𝐼 ≼ ∇2𝑓(𝑥) ≼

𝑀𝐼, ∀𝑥 ∈ 𝑆. The function 𝑓: 𝐑 → 𝐑 is defined by 𝑓(𝑡) = 𝑓(𝑥 − 𝑡∇𝑓(𝑥)), so 𝑓 is a function of

80

step length 𝑡 in the direction of the negative gradient. By considering only 𝑡 for which 𝑥 −

𝑡∇𝑓(𝑥) ∈ 𝑆 and 𝑦 = 𝑥 − 𝑡∇𝑓(𝑥), we have a quadratic upper bound on 𝑓:

𝑓(𝑡) ≤ 𝑓(𝑥) − 𝑡‖∇𝑓(𝑥)‖2
2 +

𝑀𝑡2

2
‖∇𝑓(𝑥)‖2

2.

Iterations of the gradient descent algorithm using exact line search. [5]

(Sources: [5])

2.5.2. Newton’s method

The Newton’s method is essentially a basic descent method that uses the Newton step as search

direction, however, the stopping criterion is checked right after the search direction is

computed (before the update).

Algorithm: Newton’s method

81

As before, the objective function 𝑓 is assumed to be twice continuously differentiable and

strongly convex with constant 𝑚, such that ∇2𝑓(𝑥) ≤ 𝑀𝐼, ∀𝑥 ∈ 𝑆. Suppose that the Hessian of

𝑓 is Lipschitz continuous on 𝑆 with constant 𝐿:

‖∇2𝑓(𝑥) − ∇2𝑓(𝑦)‖2 ≤ 𝐿‖𝑥 − 𝑦‖2, ∀𝑥, 𝑦 ∈ 𝑆.

The Lipschitz constant 𝐿 is important to the performance of Newton’s method. It serves as a

bound on the third derivative of 𝑓 and measures how well 𝑓 can be approximated by a quadratic

model. The coefficient 𝐿 can be taken as zero for a quadratic function, though any small value

of 𝐿 should make a quadratic function vary slowly.

Iterations of Newton’s method using backtracking line search.

(Sources: [5])

82

Part III

Stochastic Optimization

3. Stochastic optimization

Stochastic optimization (also known as randomized optimization) involves optimization

methods that have randomness as a core ingredient [12]. This element of randomness may exist

as part of the objective function in the form of random variables (noisy, convex problem), or

as part of a stochastic Neighborhood function (such as the learning rate function) in the search

algorithm (deterministic non-convex problem). Stochastic convex optimization, specifically,

refers to the scenario of the noisy objective function.

3.1. Generic stochastic optimization

Stochastic optimization is a major branch of computational statistics. It plays an important role

to the design and operation of modern systems as it provides methods of dealing with inherent

noise, high nonlinearity, and high dimensionality. Stochastic optimization algorithms are

generally applicable to optimization scenarios of the following categories:

• Global optimization: Problems where multiple local optima and complicated

constraints are present, often involving a mix of continuous and discrete variables [12].

In this scenario, randomization can be used to escape local optima and approximate

convexity in nonconvex functions.

• Noisy optimization: Problems where the gradient is noisy, i.e. the underlying objective

function contains random variables and only estimates of the function’s value at a given

point are available. In this noisy scenario, the objective function in considered unknown

and can be obtained by approximating the expected value of its random variables via

83

Monte Carlo simulation. The gradient of the noisy objective function can be estimated

via numerical differentiation. [12]

• Sequential learning: Scenarios of statistical machine learning problems where an

objective function (Likelihood or Loss) has to be optimized in a sequential manner.

Examples of such learning problems would be the sequential estimation of the

parameters of a Gaussian distribution via maximum likelihood and the on-line training

of the weights of an artificial neural network using backpropagation. Sequential

methods allow data points to be processed one at a time before being discarded and are

particularly useful in on-line applications where data inputs are naturally sampled

sequentially, or applications with very large data-sets where batch processing of all data

at once is infeasible. [7]

Comparison between deterministic and stochastic optimization

Algorithms for stochastic optimization apply when: [13]

• There is random noise in the measurements of loss function 𝐿(𝜽), i.e. 𝐿(𝜽) is a noisy

objective function

• A random choice (via Monte Carlo) determines the direction of the search at every step

of the algorithm

Algorithms for deterministic optimization apply when:

• There is perfect information available in the measurements of loss function 𝐿(𝜽) and

its derivatives (if it is differentiable).

• This perfect information adjusts the direction of the search deterministically at every

step of the algorithm.

Types of stochastic optimization algorithms

We can consider stochastic optimization methods for both noisy and deterministic objective

problems. In the former case, randomness is found in the regression function, and in the latter

84

case, in the neighborhood function. The scenario of optimizing a regression function is usually

that of a convex problem while the deterministic objective function is that of non-convex

problems. The latter assumption is made because in the convex deterministic objective

problem, we are guaranteed to reach the global optimum by means of a deterministic search

(there is no use for a stochastic component).

In that sense, we can divide stochastic optimization algorithms into two groups:

• Noisy objective optimization, which can be gradient-based or gradient-free, solving a

convex optimization problem with a noisy objective function.

• Deterministic objective optimization, which are essentially gradient-free, solving a non-

convex optimization problem with a deterministic objective function and a randomized

neighborhood function.

We refer to gradient-based algorithms as stochastic gradient methods when they integrate the

element of randomness to introduce the strengths of convex optimization into stochastic

optimization. This work focuses mainly on Convex Gradient-based methods, where convex

optimization is a central topic, though some Simulation-based non-convex methods are also

presented in chapter “Monte Carlo optimization”.

3.2. Stochastic Approximation

Stochastic approximation is the area of numerical analysis that makes up the cornerstone of

stochastic gradient-based methods and stochastic optimization as a whole. It was introduced

by Robbins and Monro (1951) as a root-finding method for the scenario of a noisy optimization,

where only noisy measurements of the gradient are available. [13] If we treat the function of

the root-finding problem as a gradient of some objective function, the Robbins-Monro

algorithm can be viewed as a minimization procedure. Motivated by this idea, Kiefer and

Wolfowitz (1952) rephrased the algorithm as an optimization procedure which uses central-

difference approximations of the gradient to update the optimum point estimator. [10]

85

Stochastic approximation is a widely researched field with numerous applications in

optimization and root-finding problems (often in the guise of stochastic gradient descent). [10].

Since the original paper of Robbins and Monro in 1951, there has been a steady increase on

the applicability of stochastic approximation, which peaked in recent years with the advent of

artificial intelligence and deep learning neural networks. Nowadays applications include fields

such as queueing networks, wireless communications, manufacturing systems, repeated games,

and computational learning. [14]

The basic stochastic approximation algorithm of Robbins-Monro can be simply described as a

stochastic difference equation with a small step size, where the main performance concern is

the rate of convergence. [13]

A common problem in the applicability of the basic algorithm has to do with the amount of

noise in the observations, which may require the use of variance reduction methods that will

make the algorithm both more effective and complex. For a variation of the basic algorithm

that is robust and resistant to large noise, one may have to incorporate constraints for vector-

valued iterates to be confined to a given bounded set, though this gives rise to the question of

whether the averaging of the iterate sequence will yield improved estimates. A wide range of

techniques has been developed for dealing with diverse random processes, a common one being

a Lagrangian method for the constrained minimization of a convex function, where only noise-

corrupted observations on the function and its constraints are available. [13]

3.2.1. Generic Stochastic Approximation procedure

The method can be formulated as a standard optimization problem. Suppose we have a

minimization on 𝒳 ⊆ 𝐑𝑛 of the form:

min
x∈𝒳

𝑆(𝑥),

Where 𝑆 is an unknown function of the form 𝐸[�̂�(𝑥, 𝜉)], with 𝜉 is a random vector and �̂� a

known function. In a typical scenario, 𝑆(𝑥) is the expected performance measure from a Monte

86

Carlo simulation. This is a problem of noisy optimization because, even though 𝑆(𝑥) cannot be

directly observed, its noisy realization �̂�(𝑥, 𝜉) is observed.

We can’t apply classical (deterministic) optimization methods because the gradient ∇𝑆 is

unknown. The method of stochastic approximation mimics the simple gradient descent by

replacing a deterministic gradient with a random subgradient approximation. We assume that

∇Ŝ(𝑥) is an estimate of the gradient of 𝑆 which is available at any point 𝑥 ∈ 𝒳. There are

several ways of obtaining ∇Ŝ(𝑥):

• Finite difference method,

• Infinitesimal perturbation analysis,

• Score function method,

• Method of weak derivatives,

all of which involve replacing S by ℓ and x by θ.

Similar to the gradient descent methods, stochastic approximation starts with some initial value

𝑥1 ∈ 𝒳 and produces a sequence of iterates by applying the following update rule:

𝑥𝑡+1 = Π𝒳[𝑥𝑡 − 𝛽𝑡∇Ŝ(𝑥𝑡)],

where 𝛽1, 𝛽2, … is a sequence of strictly positive step sizes and Π𝒳 is a projection operator that

takes a point in 𝐑𝑛 and returns a closest (Euclidean distance) point in 𝒳. The role of operator

Π𝒳 is to ensure that further iterates are feasible, that is:

𝑦 ∈ 𝐑𝑛, Π𝒳(𝑦) ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑧∈𝒳‖𝑧 − 𝑦‖.

It follows that, if 𝒳 = 𝐑𝑛, then Π𝒳(𝑦) = 𝑦. The generic stochastic approximation algorithm

known as the Robbins-Monro procedure is as follows:

87

Algorithm: Stochastic Approximation

1. Initialize 𝑥1 ∈ 𝒳

Set 𝑡 = 1.

2. Obtain an estimated gradient ∇Ŝ(𝑥𝑡) of S at xt.

3. Determine a step size 𝛽𝑡.

4. Set xt+1 = Π𝒳[𝑥𝑡 − 𝛽𝑡∇Ŝ(𝑥𝑡)].

5. If a convergence criterion is met, stop;

Else, set t = t + 1 and go to step 2.

There are numerous theorems on the convergence of stochastic approximation algorithms [see

citation 14]. For an arbitrary deterministic positive sequence β1, 𝛽2, … such that:

∑ 𝛽𝑡 = ∞

∞

𝑡=1

, ∑ 𝛽𝑡
2 < ∞

∞

𝑡=1

,

The random sequence 𝑥1, 𝑥2, … converges in the mean square sense to the optimal value

(minimizer) 𝑥∗ of 𝑆(𝑥) under specific regularity conditions [see citation [15], section 5.9).

One of the simplest convergence theorems is as follows [citation [25]]:

Theorem 12.1.1

(Convergence of Robbins-Monro Stochastic Approximation)

Let us assume that the following conditions are satisfied:

1. The feasible set 𝒳 ⊂ 𝐑𝑛 is convex, nonempty, closed, and bounded.

2. Π𝒳 is the Euclidean projection operator.

88

3. The objective function 𝑆 is well defined, finite valued, continuous, differentiable, and

strictly convex in 𝒳 with parameter 𝛽 > 0. That is, there exists a 𝛽 > 0 such that:

(𝑦 − 𝑥)𝑇(∇𝑆(𝑦) − ∇𝑆(𝑥)) ≥ 𝛽‖𝑦 − 𝑥‖2, ∀𝑥, 𝑦 ∈ 𝒳.

4. The error in the stochastic gradient vector ∇Ŝ(𝑥) possesses a bounded second moment.

That is, for some K > 0,

𝐸 [‖∇Ŝ(𝑥𝑡)‖
2

] ≤ 𝐾2 < ∞, ∀𝑥 ∈ 𝒳.

Then, if βt = 𝑐/𝑡 for 𝑐 > 1/(2𝛽) ,

𝐸[‖𝑥𝑡 − 𝑥∗‖2] ≤
𝑄(𝑐)

𝑡
, 𝑡 = 1, 2, …,

 where:

𝑄(𝑐) = max{𝑐2𝐾2(2𝑐𝛽 − 1)−1, ‖𝑥1 − 𝑥∗‖2},

with minimal Q attained by choosing c = 1/β. In other words, the expected error in terms of

Euclidean distance of the iterates is of order O(t−1/2).

Furthermore, if x∗ is an interior point of 𝒳 and if there is some constant L > 0 such that ∇S(x)

is uniformly Lipschitz continuous in 𝒳, i.e:

‖∇𝑆(𝑦) − ∇𝑆(𝑥)‖ ≤ 𝐿‖𝑦 − 𝑥‖, ∀𝑥, 𝑦 ∈ 𝒳,

then we have:

𝐸[│𝑆(𝑥𝑡) − 𝑆(𝑥∗)│ ≤
𝐿𝑄(𝑐)

2𝑡
, 𝑡 = 1,2, …

89

We can conclude that the expected error (in terms of Euclidean distance) of the objective

function values is of order 𝒪(t−1).

An advantage of the Stochastic Approximation procedure is that it becomes particularly easy

to implement when the projection operator Π𝒳 is easily computed. For example, using box-

constraints, where 𝒳 = [𝑎1, 𝑏1] × … × [𝑎𝑛, 𝑏𝑛], any component 𝑥𝑘 of 𝐱 is projected to 𝑎𝑘 if

𝑥𝑘 < 𝑎𝑘 and to 𝑏𝑘 if 𝑥𝑘 < 𝑏𝑘, otherwise it remains unchanged.

A disadvantage of Stochastic Approximation is the difficulty in choosing step size

𝛽1, 𝛽2, … , 𝛽𝑛, since small step sizes may lead to slow convergence while large step sizes can

cause a “zigzagging” behavior of the iterates (failure to converge). As theorem 12.1.1 suggests,

the rule 𝛽𝑡 = 𝑐/𝑡, for some constant 𝑐, can be a common choice. Step size hyperparameter 𝑐

can then be adaptively tuned with every problem at hand.

If 𝛽𝑡 / 𝛽𝑡+1 = 1 + ℴ(𝛽𝑡), as in e.g. 𝛽𝑡 = 1/𝑡𝛾 with 𝛾 ∈ (0, 1), then the averaged iterate

sequence defined by �̅�𝑡 =
1

𝑡
∑ 𝑥𝑘

𝑡
𝑘=1 has been observed to yield better results than {𝑥𝑡}. This

rule is called Polyak averaging or iterate averaging and will cause the algorithm to take larger

step sizes than the 1/𝑡 case, reducing convergence time.

When ∇Ŝ(𝑥𝑡) is an unbiased estimator of ∇S(𝑥𝑡), then the generic stochastic approximation

method of algorithm 12.1 is referred to as the Robbins-Monro algorithm. When we use finite

differences to estimate ∇Ŝ(𝑥𝑡), then the generic method is referred to as the Kiefer-Wolfowitz

algorithm. In high dimensions, the random directions procedure can also be used instead of

the finite differences in order to reduce the number of function evaluations per gradient

estimate to two. The Kiefer-Wolfowitz algorithm is also known as Finite Difference Stochastic

Approximation (FDSA).

(Sources: [12], [14])

90

3.2.2. Robbins-Monro procedure

The original paper in Stochastic Approximation was by Robbins and Monro in 1951. The

motivation behind the work of Robbins and Monro was the sequential estimation of the location

of the root of a function when that function is unknown and only noise-corrupted observations

can be made and corrected at very small steps. Starting with an observation at the initial

estimator of the root, then use that observation to make small correction in the last estimate,

then draw a new observation using the last estimator, and repeat this process until convergence.

Keeping a small step size is crucial to convergence, as it guarantees that the noise is averaged.

[14]

Due to the small step size, the behavior of the algorithm can be approximated by a mean flow.

This is equivalent to the solution of an ordinary differential equation (ODE) referred to as mean

ODE, where the right-hand side of the equation is the mean value of the driving term and its

limit points are the same as those of the stochastic approximation process. [14] The Robbins-

Monro procedure is the starting point to an enormous literature on general recursive stochastic

algorithms with a large number of actual applications.

Algorithm: Robbins-Monro

Let 𝑔(.) be a real-valued function of a real variable 𝜃, whose root has to be found. If 𝑔 were

known and continuously differentiable, then Newton’s method could be used to generate a

sequence of estimators 𝜃𝑛 of the root �̅�, defined recursively by:

𝜃𝑛+1 = 𝜃𝑛 − [𝑔𝜃(𝜃𝑛)]−1𝑔(𝜃𝑛) [1.1]

where 𝑔𝜃 is the derivative of 𝑔 with respect to 𝜃. Suppose that 𝑔(𝜃) < 0, ∀𝜃 > �̅� and 𝑔(𝜃) >

0, ∀𝜃 < �̅�, and that 𝑔𝜃(𝜃) is strictly negative and bounded in a neighborhood of 𝜃. Then 𝜃𝑛

converges to 𝜃 if 𝜃0 is in a very small neighborhood of 𝜃. If there exists step size 𝜖 which is

sufficiently small and greater than zero, the learning rule of [1.1] becomes:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑔(𝜃𝑛) . [1.2]

91

The updated learning rule of [1.2] does not require differentiability and is guaranteed to

converge if 𝜃0 − 𝜃 is sufficiently small.

Let us now assume that 𝑔 is unknown and only noise-corrupted observations of 𝑔(𝜃) can be

collected for certain values of 𝜃. Newton’s method cannot be used due to the observational

noise, but we can use learning rule [1.2] if we replace 𝑔(𝜃𝑛) with an estimate of its true value

that we obtain by averaging a multitude of observations. The procedure of taking and averaging

an excessive number of observations to estimate 𝑔(𝜃𝑛) was deemed inefficient since we only

need a direction (slope) and not an estimated value for 𝑔(𝜃𝑛). Therefore, Robbins and Monro

[203], proposed the following algorithm:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑌𝑛 , [1.3]

where 𝜖𝑛 is an appropriate sequence which satisfies:

𝜖𝑛 > 0, 𝜖𝑛 → 0, ∑ 𝜖𝑛𝑛 = ∞, [1.4]

and 𝑌𝑛 is a “noisy” estimate of 𝑔(𝜃𝑛). It is noteworthy that:

(a) the condition ∑ 𝜖𝑛
2

𝑛 < ∞ is used but can be weakened.

(b) Decreasing the step size would imply that the rate of change in 𝜃𝑛slows down as 𝑛 →

∞.

(c) The value of sequence{𝜖𝑛} is crucial to the efficiency of the algorithm as the decreasing

step sizes provide implicit averaging of the observations.

The form of training rule [1.3] is motivated by the form of the recursive linear least squares

estimator of the mean value of a random variable, which hints how a decreasing step size leads

to an averaging of the observations. Let {𝜉𝑛} be a sequence of real-valued, mutually

independent, i.i.d. random variables finite variance and unknown mean �̅�. Given the

observations 𝜉𝑖, 1 ≤ 𝑖 ≤ 𝑛, the linear least squares estimate of �̅� is 𝜃𝑛 = ∑
𝜉𝑖

𝑛

𝑛
𝑖=1 , which can be

written in the recursive form:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛[𝜉𝑛+1 − 𝜃𝑛], [1.5]

92

where 𝜃0 = 0 and 𝜖𝑛 =
1

𝑛+1
.

Therefore, from the use of decreasing step sizes 𝜖𝑛 derives an estimator equivalent to averaging

the observations, with [1.5] being a special case of [1.3]. In the “recursive filter” form of [1.5],

shows that the estimator changes only by 𝜖𝑛[𝜉𝑛+1 − 𝜃𝑛], where 𝜖𝑛 is the “reliability” and

[𝜉𝑛+1 − 𝜃𝑛] is the “estimation error”. (The use of recursive stochastic algorithms in

communications and control theory predates the work of Robbins and Monro).

In the generic Robbins-Monro procedure, 𝑌𝑛 is a “noise-corrupted” observation of a vector-

valued function �̅�(.), whose root we are seeking. The error 𝑌𝑛 − �̅�(𝜃𝑛) can be a complicated

function of 𝜃𝑛 or of past values of 𝜃𝑖. In most applications, observed values take the form 𝑌𝑛 =

𝑔(𝜃𝑛, 𝜉𝑛) + 𝛿𝑀𝑛, where 𝜉𝑛 is a correlated stochastic process, for 𝛿𝑀𝑖 holds that

𝐸[𝛿𝑀𝑛|𝑌𝑖 , 𝛿𝑀𝑖 , 𝑖 < 𝑛] = 0, and 𝑌𝑛 is an estimator of �̅�(𝜃) such that �̅�(𝜃) = 𝐸𝑔(𝜃, 𝜉𝑛).

Despite the numerous forms the observed values can take, the main mathematical interest lies

in the asymptotic properties of the sequence 𝜃𝑛 and its dependence on algorithm complexity

and randomness.

(Sources: [14], [15])

Example 1 in Robbins-Monro: Finding the zeros of an unknown

Let 𝜃 be a parameter that is a point in 𝐑𝑟 and 𝐺(. , 𝜃) be an unknown distribution function of a

real-valued random variable, where:

𝑚(𝜃) = ∫ 𝑦𝐺(𝑑𝑦, 𝜃)

is the mean value under 𝜃. When the desired level �̅� is given, the problem consists of finding

a value �̅� such that 𝑚(�̅�) = �̅�. Distribution function 𝐺(. , 𝜃) is unknown and we, therefore,

require a nonparametric sampling method to approximate it via the Robbins-Monro procedure.

Suppose that 𝑚(.) is nondecreasing and has a unique root 𝑚(𝜃) = �̅�. Let 𝜃𝑛 be the 𝑛𝑡ℎ

estimator of �̅� and 𝑌𝑛 be the observation at time 𝑛 for parameter value 𝜃𝑛. Then 𝜃𝑛 can be

defined recursively as:

93

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛[�̅� − 𝑌𝑛] ⇔

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛[�̅� − 𝑚(𝜃𝑛)] + 𝜖𝑛[𝑚(𝜃𝑛) − 𝑌𝑛]. [1.7]

Suppose that:

𝐸[𝑌𝑛 − 𝑚(𝜃𝑛)|𝑌𝑖, 𝜃𝑖 , 𝑖 < 𝑛, 𝜃𝑛] = 0 [1.8]

If the noise terms 𝑌𝑛 − 𝑚(𝜃𝑛) ≡ 𝛿𝑀𝑛 have bounded variances 𝜎2(𝜃𝑛), then the above

expression (1.8) implies that 𝛿𝑀𝑛 terms are martingale differences, i.e. 𝐸[𝛿𝑀𝑛|𝛿𝑀𝑖 , 𝑖 < 𝑛] =

0, with probability equal to one. The martingale difference noise sequence can be thought of

as the simplest type of noise and comes with probability one convergence results.

Martingale difference property:

The martingale difference property often arises under the following conditions: Suppose that

the distribution of 𝑌𝑛 is conditioned on {𝜃0, 𝑌𝑖 , 𝑖 < 𝑛}, depends only on 𝜃𝑛, i.e. the value of

used to observe 𝑌𝑛 (it is equivalent to say that the successive observations are independent).

The noise terms 𝛿𝑀𝑛, however, are not mutually independent since 𝜃𝑛 depends on the

observations {𝑌𝑖, 𝑖 < 𝑛}, but do not have the martingale difference property, which would

guarantee good convergence results.

It is possible to show that the noise terms of [1.7] “average to zero” and do not affect the

algorithm’s asymptotic behavior. For small Δ > 0, we define 𝑚𝑛
Δ by:

∑ 𝜖𝑖

𝑛+𝑚𝑛
Δ−1

𝑖= 𝑛

= Δ.

We then have:

𝜃𝑛+𝑚𝑛
Δ − 𝜃𝑛 = Δ[�̅� − 𝑚(𝜃𝑛)] + error,

Where:

94

error = ∑ 𝜖𝑖

𝑛+𝑚𝑛
Δ−1

𝑖= 𝑛

𝛿𝑀𝑖. [1.9]

From equation [1.8] we conclude that {𝛿𝑀𝑛} is a sequence of zero mean orthogonal random

variables, i.e:

𝐸𝛿𝑀𝑖𝛿𝑀𝑗 = 0, ∀𝑖 ≠ 𝑗

with variance of the error being:

𝐸 [∑ 𝜖𝑖

𝑛+𝑚𝑛
Δ−1

𝑖= 𝑛

𝛿𝑀𝑖]

2

= ∑ 𝐸𝜖𝑖
2

𝑛+𝑚𝑛
Δ−1

𝑖= 𝑛

𝛿𝑀𝑖
2 = ∑ 𝑂(𝜖𝑖

2)

𝑛+𝑚𝑛
Δ−1

𝑖= 𝑛

= 𝑂(Δ)𝜖𝑛.

Along with [1.9], these bounds tell us that the mean change in the value of the parameter is

more important than the noise (for small Δ and large 𝑛, over iterate intervals [𝑛, 𝑛 + 𝑚𝑛
Δ]).

Consequently, the difference equation [1.9] implies that asymptotic behavior of the algorithm

can be approximated by the asymptotic behavior of the solution to the ODE:

𝜃 = �̅�(𝜃) = �̅� − 𝑚(𝜃). [1.9𝑏]

Such ODEs have been shown to play a crucial role in convergence theory. If �̅� is an

asymptotically stable point of [1.9b], then 𝜃𝑛 → �̅� with 𝑃[{𝜃𝑛 → �̅�}] = 1 (probability one).

Since 𝜖𝑛 → 0, we have that 𝑚𝑛
Δ → ∞ as 𝑛 → ∞. The statement that “the noise locally averages

to zero” implies that the noise effects go towards zero as 𝑛 goes towards infinity and Δ goes

towards zero. The above description can be thought of as a heuristic summary of the associated

convergence theorems. The most important element is the intuition of “time scale separation”

between sequences {𝜃𝑛 → �̅�} and {𝑌𝑖 − 𝑚(𝜃𝑖), 𝑖 ≤ 𝑛}, for a large 𝑛, and the role of the ODE

becomes magnified when the noise sequence is strongly correlated.

(Sources: [14])

95

Example 2 in Robbins-Monro: Minimization by Recursive Monte Carlo

This section describes a function minimization problem, similar to the ones encountered in

learning applications. In this example of parametric optimization of dynamical systems, the

Robbins-Monro procedure uses the noise-corrupted observations of the derivatives for

sequential Monte Carlo minimization. The 𝜃-derivatives of the mean are unknown, but one

could observe values of the 𝜃-derivative by sampling [𝑦𝑛 − 𝜃′𝜙𝑛]2/2 with the desired values

of 𝜃, then using these estimated derivatives in the iterative algorithm in the place of the exact

derivatives.

Let 𝜃 be a 𝐑𝑟-valued parameter of a dynamical system in 𝐑𝑘. The evolution of the system can

be described by the equation:

�̅�𝑚+1(𝜃) = 𝑏(�̅�𝑚(𝜃), 𝜃, 𝜒𝑚), 𝑚 = 0, 1, … , �̅�0(𝜃) = 𝑋0, [1.20]

where 𝜒𝑚 are random variables, function 𝑏(.) is known and continuously differentiable in

(𝑥, 𝜃), and �̅�𝑖
𝑚(𝜃), 𝑖 ≤ 𝑘 are the components of �̅�𝑚(𝜃). Given a real-valued function 𝐹(.), we

want to minimize 𝑓(𝜃) = 𝐸[𝐹(�̅�𝑁(𝜃), 𝜃)] over 𝜃, for a given value of 𝑁, therefore the system

is studied over the finite horizon [0, 𝑁]. The combined dynamics of a tracking and intercept

problem can be represented by equation [1.20], in which 𝜃 parametrizes the tracker controller,

and the objective function yields the probability of getting within striking distance before

terminal time 𝑁 (the probability has to be maximized).

Let �̅� = {𝜒𝑚, 𝑚 = 0, … , 𝑁 − 1} and suppose that the distribution of �̅� is known. We assume

that function 𝐹(.) is known and continuously differentiable in (𝑥, 𝜃), so that noisy/sampled

values of the system state (cost and pathwise 𝜃-derivatives) can be simulated via Monte Carlo.

A deterministic algorithm requires good estimates of 𝐸[𝐹(�̅�𝑁(𝜃), 𝜃)] at selected values of 𝜃,

but this is not feasible when the problem becomes complicated. In this scenario, a standard

Monte Carlo simulation would yield values of 𝜃 far from the optimal point. However, a

recursive Monte Carlo method is a viable alternative.

Recursive Monte Carlo requires simulations of the system on time interval [0, 𝑁], under

varying parameter values. Let �̅�𝑗
𝑚(𝜃) =

𝜕

𝜕𝜃𝑗 �̅�𝑚, with components �̅�𝑗,𝑖
𝑚(𝜃) =

𝜕

𝜕𝜃𝑗 �̅�𝑖
𝑚, 𝑗 ≤ 𝑟,

where 𝜃𝑗 is the 𝑗th component of vector 𝜃. Then �̅�𝑖
0(𝜃) = 0, ∀𝑖, and for 𝑚 ≥ 0 we have:

96

�̅�𝑖
𝑚+1(𝜃) = 𝑏𝑥

′ (�̅�𝑚(𝜃), 𝜃, 𝜒𝑚)�̅�𝑖
𝑚(𝜃) + 𝑏𝜃𝑖(�̅�𝑚(𝜃), 𝜃, 𝜒𝑚).

If the operations of differentiation and expectation are assumed to be interchangeable, let

�̅�(𝜃) = (�̅�𝑖(𝜃), 𝑖 ≤ 𝑟) be defined by:

𝜕𝐸[𝐹(�̅�𝑁(𝜃), 𝜃)]

𝜕𝜃
= 𝐸 [

𝜕𝐹(�̅�𝑁(𝜃), 𝜃)

𝜕𝜃
] =

= 𝐸[𝐹𝑥
′(�̅�𝑁(𝜃), 𝜃)�̅�𝑖

𝑁(𝜃) + 𝐹𝜃𝑖(�̅�𝑁(𝜃), 𝜃)] =

= −�̅�𝑖(𝜃).

Now, assuming that 𝜃0 is given, let 𝜃𝑛 = (𝜃𝑛,1, … , 𝜃𝑛,𝑟) be the 𝑛th estimator of the minimizing

value of 𝜃.

We may define the system in the 𝑛th simulation by:

𝑋𝑛
𝑚+1 = 𝑏(𝑋𝑛

𝑚, 𝜃𝑛, 𝜒𝑛
𝑚), 𝑋𝑛

0 = 𝑋0, 𝑚 = 0,1, … 𝑁 − 1,

where 𝜒𝑛 = {𝜒𝑛
𝑚, 𝑚 < 𝑁} is a random sequence with the same distribution as �̅�, et every 𝑛.

Let 𝑈𝑛,𝑖
𝑚 =

𝜕

𝜕𝜃𝑛,𝑖
 𝑋𝑛

𝑚, where 𝜃𝑛,𝑖 is the 𝑖th component of 𝜃𝑛. Let us additionally define:

𝑌𝑛,𝑖 = −𝐹𝑥
′(𝑋𝑛

𝑁 , 𝜃𝑛)𝑈𝑛,𝑖
𝑁 − 𝐹𝜃𝑖(𝑋𝑛

𝑁 , 𝜃𝑛)

 with 𝑌𝑛 = (𝑌𝑛,𝑖, 𝑖 = 1, … , 𝑟). Then, for this problem, a Robbins-Monro recursive Mote Carlo

procedure can be expressed as:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛𝑌𝑛 = 𝜃𝑛 + 𝜖𝑛�̅�(𝜃𝑛) + 𝜖𝑛[𝑌𝑛 − �̅�(𝜃𝑛)].

In general, the noise terms [𝑌𝑛 − �̅�(𝜃𝑛)] are martingale differences, if {𝑥𝑛} are assumed to be

mutually independent. However, when variance reduction is applied, correlated values of {𝑥𝑛}

97

can be used, as long as the noise terms “locally average to zero”. The mean ODE, �̇� = �̅�(𝜃),

characterizes the asymptotic behavior.

In the scenario where actual data is observed on a physical system rather than simulated from

a hypothesized data generating process, the exact form of the dynamical equations governing

the system will be unknown. In the case of actual having observations, the calculated pathwise

derivatives will not be accurate but, even in that scenario, the optimization procedure will likely

work well since the approximation theorems will still hold true.

(Sources: [14])

3.2.3. Kiefer-Wolfowitz procedure

In all previous examples of stochastic approximation with Robbins-Monro, we were concerned

with the minimization of a function of unknown form (noisy), a problem typically met in

“Learning”. As seen in previous chapters on deterministic convex optimization, numerical

methods such as the Newton-Raphson algorithm are commonly used for the recursive

computation of the minimum of a smooth known function. However, when dealing with an

unknown or noisy objective function, i.e. one with noise-corrupted observations at parameter

values obtained via Monte Carlo simulation, then one could use a stochastic recursive method,

equivalent to Newton-Raphson, where the gradient is estimated via numerical differentiation

(such as pathwise of finite derivatives) using the noisy measurements at small step sizes.

With Robbins-Monro, we would explicitly differentiate the sample error functions at the

current parameter value and use these derivates as the noisy estimates of the derivates of mean

performance of interest at those parameter values. However, when pathwise differentiation is

not possible, the gradient estimate can be obtained via a finite difference or random directions

method. The variant of stochastic approximation for the minimization of a noisy function via

numerical differentiation is called the Kiefer-Wolfowitz procedure. Depending on whether

random directions or finite differences are used, the variations of the algorithm are abbreviated

as Random Direction Stochastic Approximation (RDSA) or Finite Difference Stochastic

Approximation (FDSA). The most popular approach for random direction is random selection

from a Bernoulli distribution, in which case RDSA goes also by the name Simultaneous

Perturbation Stochastic Approximation (SPSA). [14]

98

Finite Difference Stochastic Approximation (FDSA)

Let 𝐸[𝐹(𝜃, 𝜒)] = 𝑓(𝜃) be a function that we wish to minimize over the 𝐑𝑟-valued parameter

𝜃, where 𝜒 is a random vector, 𝑓(.) is continuously differentiable, and the forms of 𝐹 and 𝑓

are not completely known. Suppose we are in the scenario of stochastic approximation with a

finite difference method. Let 𝑐𝑛 → 0 be a finite difference interval, 𝑒𝑖 be unit vector in the 𝑖th

coordinate direction. Let 𝜃𝑛 be the 𝑛th estimate of the minimum and suppose that, for 𝑖, 𝑛 and

random vectors 𝜒𝑛,𝑖
+ , 𝜒𝑛,𝑖

− , we observe the finite difference estimate:

𝑌𝑛,𝑖 = −
[𝐹(𝜃𝑛 + 𝑐𝑛𝑒𝑖, 𝜒𝑛,𝑖

+) − 𝐹(𝜃𝑛 − 𝑐𝑛𝑒𝑖, �̅�𝑛,𝑖)]

2𝑐𝑛
. [2.1]

We now define 𝑌𝑛 = (𝑌𝑛,1, … , 𝑌𝑛,𝑟), and we update 𝜃𝑛 by:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛𝑌𝑛. [2.2]

When equation [2.2] uses an estimator of finite differences 𝑌𝑛 as defined by [2.1], then the

stochastic approximation variant is called the Kiefer-Wolfowitz algorithm.

Let:

𝜓𝑛,𝑖 = [𝑓(𝜃𝑛 + 𝑐𝑛𝑒𝑖) − 𝐹(𝜃𝑛 + 𝑐𝑛𝑒𝑖, 𝜒𝑛,𝑖
+)] − [𝑓(𝜃𝑛 − 𝑐𝑛𝑒𝑖) − 𝐹(𝜃𝑛 − 𝑐𝑛𝑒𝑖, 𝜒𝑛,𝑖

+)]

And express:

[𝐹(𝜃𝑛 + 𝑐𝑛𝑒𝑖, 𝜒𝑛,𝑖
+) − 𝐹(𝜃𝑛 − 𝑐𝑛𝑒𝑖, �̅�𝑛,𝑖)]

2𝑐𝑛
≡ 𝛾𝑛,𝑖 = 𝑓𝜃𝑖(𝜃𝑛) − 𝛽𝑛,𝑖, [2.3]

Where −𝛽𝑛,𝑖 is the bias of the finite difference estimate of 𝑓𝜃(𝜃𝑛), using central differences.

By setting 𝜓𝑛 = (𝜓𝑛,1, … , 𝜓𝑛,𝑟) and 𝛽𝑛 = (𝛽𝑛,1, … , 𝛽𝑛,𝑟), we can rewrite equation [2.2] as:

99

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛𝑓𝜃(𝜃𝑛) + 𝜖𝑛

𝜓𝑛

2𝑐𝑛
+ 𝜖𝑛𝛽𝑛. [2.4]

In order to converge to a local minimum, we would need 𝛽𝑛 → 0, with the bias being

proportional to the finite difference interval 𝑐𝑛 → 0. For convergence, we would also need the

noise terms 𝜖𝑛𝜓𝑛/2𝑐𝑛 to average locally to zero. Then, the ODE which characterizes the

asymptotic behavior of the algorithm becomes:

�̇� = −𝑓𝜃(𝜃).

With the effective noise being of the order of 1/2𝑐𝑛, a disadvantage of Kiefer-Wolfowitz in

comparison to the Robbins-Monro procedure is the need of using a variance reduction method

in order to improve the estimates of the derivatives. When 𝑐𝑛 is restricted from going to zero,

a small bias can make up for smaller noise effects.

Variance reduction:

Driving noise is an essential part of a system where the objective is the minimization of an

average value and Monte Carlo simulation is involved. Suppose that 𝐹(𝑥, 𝜒) is continuously

differentiable for each value of 𝜒 and it holds that:

𝐹(𝜃𝑛 − 𝑒𝑖𝑐𝑛, 𝜒𝑛,𝑖
−) − 𝐹(𝜃𝑛 + 𝑒𝑖𝑐𝑛, 𝜒𝑛,𝑖

+)

2𝑐𝑛
+ 𝑓𝜃𝑖(𝜃𝑛)

=
1

2𝑐𝑛
[𝐹(𝜃𝑛, 𝜒𝑛,𝑖

−) − 𝐹(𝜃𝑛, 𝜒𝑛,𝑖
+)]

− [
1

2
(𝐹𝜃𝑖(𝜃𝑛, 𝜒𝑛,𝑖

+) + 𝐹𝜃𝑖(𝜃𝑛, 𝜒𝑛,𝑖
−)) − 𝑓𝜃𝑖(𝜃𝑛)] + 𝛽𝑛,𝑖 ≡ �̃�𝑛,𝑖 + 𝛽𝑛,𝑖,

Where 𝛽𝑛,𝑖 is the bias of the finite difference estimate. The algorithm then becomes:

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛𝑓𝜃(𝜃𝑛) + 𝜖𝑛�̃�𝑛 + 𝜖𝑛𝛽𝑛.

100

It is preferable to use 𝜒𝑛,𝑖
+ = 𝜒𝑛,𝑖

− as it removes the 1/𝑐𝑛 factor in effective noise, i.e. �̃�𝑛,𝑖 is not

inversely proportional to 𝑐𝑛. This can be advantageous even without differentiability. Let 𝜃𝑛 =

𝜃, 𝐸[𝐹(𝜃 ± 𝑐𝑛𝑒𝑖, 𝜒𝑛,𝑖
±) = 𝑓(𝜃 ± 𝑐𝑛𝑒𝑖), and �̃�(𝜃, 𝜒) = 𝐹(𝜃, 𝜒) − 𝑓(𝜃). Then, the variance of

the effective noise is:

𝐸[�̃�(𝜃 + 𝑐𝑛𝑒𝑖𝜒𝑛,𝑖
+)]

2
+ 𝐸[�̃�(𝜃 − 𝑐𝑛𝑒𝑖𝜒𝑛,𝑖

−)]
2

− 2𝐸[�̃�(𝜃 + 𝑐𝑛𝑒𝑖𝜒𝑛,𝑖
+)]

2
[�̃�(𝜃 − 𝑐𝑛𝑒𝑖𝜒𝑛,𝑖

−)]
2

,

all divided by 4𝑐𝑛
2, suggesting that the largest correlation becomes between 𝜒𝑛,𝑖

± , the smaller

the noise variance we get for small 𝑐𝑛. If we suppose that {(𝜒𝑛
+, 𝜒𝑛

−), 𝑛 = 0,1, … } is a sequence

of independent random variables, the 𝜓𝑛 and �̅�𝑛 are martingale differences for each 𝑛. If the

noise terms 𝜓𝑛 and �̅�𝑛 are complicated functions of 𝜃𝑛, the dependence on 𝜃𝑛 is omitted in

proofs of convergence unless 𝜒𝑛
± are correlated in 𝑛.

Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA refers to the classical Kiefer-Wolfowitz procedure with Random directions. The classical

algorithm uses either 2𝑟 or 𝑟 + 1 observations for two-sided and one-sided differences,

respectively. The symmetric two-sided difference is usually preferred due to its better

convergence rate and finite difference bias. When the sequential form of the algorithm is used

with one component of 𝜃 being updated at a time, then 2𝑟 steps are required for a full derivative

estimate. Sometimes the derivative can be estimated directly (without finite differences), but

in the opposite case and when dimension 𝑟 is large, the classical Kiefer-Wolfowitz procedure

becomes applicable. An alternative method would be to use a finite difference estimate to

update only one out of two directions that is selected randomly at every iteration (so that every

step gets only two observations).

Let {𝑑𝑛} be a sequence of random direction vectors, where values 𝑑𝑛𝑑𝑛
′ average locally to the

identity matrix in 𝐑𝑛, with difference intervals 0 < 𝑐𝑛 → 0. Then the algorithm becomes:

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛𝑑𝑛

[𝑌𝑛
+ − 𝑌𝑛

−]

2𝑐𝑛
, [2.9]

101

where 𝑌𝑛
± are observed at parameter values 𝜃𝑛 ± 𝑐𝑛𝑑𝑛. If the difference interval is a constant,

the method is still applicable with the advantage of reducing noise effects and yielding a more

robust algorithm, with a small bias. Given some suitable function 𝐹(.) on random variables

𝜒𝑛
±, the observations 𝑌𝑛

± can can be written in the form:

𝑌𝑛,𝑖
± = 𝐹(𝜃𝑛 ± 𝑒𝑖𝑐𝑛, 𝜒𝑛

±) = 𝑓(𝜃𝑛 ± 𝑐𝑛𝑑𝑛) + 𝜓𝑛
±, [2.10]

where 𝜓𝑛
± is the effective observation noise. If 𝑓(.) is continuously differentiable in 𝐑𝑛, then

[2.9] becomes:

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛𝑑𝑛𝑑𝑛
′ 𝑓𝜃(𝜃𝑛) + 𝜖𝑛𝛽𝑛 + 𝜖𝑛

𝑑𝑛[𝜓𝑛
− − 𝜓𝑛

+]

2𝑐𝑛
,

where 𝛽𝑛 is the bias in the symmetric finite difference estimator of the derivative of 𝑓 at 𝜃𝑛, in

the direction 𝑑𝑛, and with difference interval 𝑐𝑛𝑑𝑛. Centering 𝑑𝑛𝑑𝑛
′ about the identity matrix

gives:

𝜃𝑛+1 = 𝜃𝑛 − 𝜖𝑛[𝑓𝜃(𝜃𝑛) − 𝛽𝑛] + 𝜖𝑛

𝑑𝑛[𝜓𝑛
− − 𝜓𝑛

+]

2𝑐𝑛
+ 𝜖𝑛𝜓𝑛

𝑑 , [2.12]

where 𝜓𝑛
𝑑 = [𝐼 − 𝑑𝑛𝑑𝑛

′]𝑓𝜃(𝜃𝑛) is the random direction noise. Then the mean ODE which

characterizes the asymptotic behavior of the algorithm is the same as that for the Kiefer-

Wolfowitz procedure, i.e. the gradient descent form:

�̇� = −𝑓𝜃(𝜃).

If 𝜒𝑛
+ = 𝜒𝑛

− then the term in [2.12] that is proportional to 1/𝑐𝑛 can be replaced by 𝜖𝑛𝑑𝑛𝜓𝑛 in

order to go back to a form of the Robbins-Monro procedure.

(Sources: [14], [16])

102

3.2.4. Stochastic Approximation in Learning problems

Training an Animal Learning model

The purported learning behavior of an animal trying to maximize its reward per unit time can

be modeled as a single-agent learning problem that can be solved by stochastic approximation.

This specific problem description is taken from Kushner and Lin (2003).

Problem:

A lizard has a fixed home location and can hunt in an arbitrary finite region. For the sake of

simplicity, the lizard’s hunting region can be thought of as a circle. Insects and other food

sources of varying value in calories (weight) may appear randomly inside the hunting region.

If a food source appears when the lizard is at its home location, the lizard has to decide whether

to hunt or not, given the implicit objective of maximizing long-term return per unit time. The

purpose of the application is to observe whether the lizard’s learning behavior is consistent

with the optimization of a “return for effort” principle.

The sequence of intervals between actions (decision times) for the lizard have to be defined.

At time zero 𝑡0, The lizard is at its home base and the process commences; at time 𝑡1, the first

insect appears. If the lizard decides to hunt, 𝑟1 is the time to pursue the insect and return to

home base, while 𝑟2 is the time between the return and the arrival of the next insect. If the lizard

decides to stay home and not hunt, then 𝑟2 is the time until the arrival of the next insect. If we

were to generalize this notation, 𝑟𝑛 can indicate any of the following time intervals:

• time between the successive arrivals of two insects, if the first insect was not pursued,

• time between the return of the lizard to home base from the last pursuit and the arrival

of the next insect,

• time of duration of a pursuit, right after the lizard decides to “pursue”.

Let 𝑤𝑛 be the “weight” (value in calories) of the 𝑛th insect and 𝐽𝑛 be the indicator function of

the insect being caught, 𝐼𝑛 be the indicator function of the event of pursuit at the 𝑛th insect

arrival, and 𝑇𝑛 be the time taken to complete the action of the (𝑛 − 1)st decision. The pair

(𝑤𝑛, 𝑟𝑛) is the information received by the lizard when an insect arrives.

103

Define weight function:

𝑊𝑛 = ∑ 𝑤𝑖𝐼𝑖𝐽𝑖

𝑛−1

𝑖=1

and let 𝜃𝑛 = 𝑇𝑛/𝑊𝑛 be the inverse of the sample consumption rate per unit time. Suppose that

random variables (𝑤𝑛, 𝑟𝑛, 𝑟𝑛, 𝐽𝑛) for 𝑛 ≥ 1 are i.i.d. with bounded second moments and 𝑤𝑛 >

0, 𝑟𝑛 > 0. Let 𝑝(.) be a continuous function such that 𝐸[𝐽𝑛|𝑟𝑛, 𝑤𝑛] = 𝑝(𝑟𝑛, 𝑤𝑛) > 0, that the

lizard has knowledge of.

Learning algorithm:

Let �̅� = lim inf𝑛 𝐸𝑇𝑛/𝑊𝑛, where the infinimum comprises all (𝑛) realizable strategies. The

learning algorithm produces a sequence of estimates 𝜃𝑛, such that 𝜃𝑛 → �̅�, where threshold �̅�

yields the optimal long-term decision rule:

Pursue only if 𝑟𝑛 ≤ �̅�𝑤𝑛𝑝(𝑟𝑛, 𝑤𝑛).

Therefore, the optimal strategy consists of pursuing an instinct only if the ratio of the required

pursuit time over the expected gain is not greater than threshold �̅�. The learning algorithm

approximates the optimal strategy asymptotically. We can extend the animal model by

supposing that the estimates of 𝑝(𝑟𝑛, 𝑤𝑛) and 𝑟𝑛 are prone to error/noise, in which case we can

introduce additional random variables to account for noise.

Let 𝑛 ≥ 1 and 𝜃1 be an arbitrary real number. If the lizard does not decide to pursue at the 𝑛th

opportunity, we have:

𝜃𝑛+1 =
𝑇𝑛 + 𝑡𝑛

𝑊𝑛+1
=

𝑇𝑛 + 𝑡𝑛

𝑊𝑛
. [1.1𝑎]

If the lizard pursues and successfully catches the insect, then:

𝜃𝑛+1 =
𝑇𝑛 + 𝑡𝑛 + 𝑟𝑛

𝑊𝑛+1
=

𝑇𝑛 + 𝑡𝑛 + 𝑟𝑛

𝑊𝑛 + 𝑤𝑛
. [1.1𝑏]

104

If the lizard pursues the insect but fails to capture it, we have:

𝜃𝑛+1 =
𝑇𝑛 + 𝑡𝑛 + 𝑟𝑛

𝑊𝑛
. [1.1𝑐]

Therefore, whenever the lizard pursues, we have:

𝜃𝑛+1 =
𝑇𝑛 + 𝑡𝑛 + 𝑟𝑛

𝑊𝑛 + 𝑤𝑛
𝐽𝑛 +

𝑇𝑛 + 𝑡𝑛 + 𝑟𝑛

𝑊𝑛

(1 − 𝐽𝑛). [1.1𝑑]

The lizard chooses the action that yields the minimal conditional expectations of the right-hand

sides of (1.1a) and (1.1d) given (𝑟𝑛, 𝑤𝑛, 𝜃𝑛).

Suppose that 𝜖𝑛 = 1/𝑊𝑛, and that 𝜖𝑛 decreases every time the lizard pursues and catches an

insect. Then, depending on the decision “pursue” or “not pursue“, either (1.2a) or (1.2b) will

hold:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛𝑡𝑛,

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛(𝑡𝑛 + 𝑟𝑛) − 𝜖𝑛𝜃𝑛𝑤𝑛𝐽𝑛 + 𝑂(𝜖𝑛
2)𝐽𝑛.

We have that 𝜖𝑛 → 0 with probability one, while we can prove that 𝑂(𝜖𝑛
2) in (1.2b) is

asymptotically insignificant in relation to the other terms and will therefore be ignored. So if

the insect is pursued, we now have:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛(𝑡𝑛 + 𝑟𝑛) − 𝜖𝑛𝜃𝑛𝑤𝑛𝑝(𝑟𝑛, 𝑤𝑛) + 𝜖𝑛𝜃𝑛𝑤𝑛(𝑝(𝑟𝑛, 𝑤𝑛) − 𝐽𝑛).

With 𝐾𝑛 = 𝐼{𝑟𝑛−𝜃𝑛𝑤𝑛𝑝(𝑟𝑛,𝑤𝑛)<0} we have:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛𝑡𝑛 + 𝜖𝑛 min{𝑟𝑛 − 𝜃𝑛𝑤𝑛𝑝(𝑟𝑛, 𝑤𝑛), 0} + 𝜖𝑛𝜃𝑛𝑤𝑛(𝑝(𝑟𝑛, 𝑤𝑛) − 𝐽𝑛)𝐾𝑛.

We can see that step sizes decrease randomly. For a fixed nonrandom 𝜃, we define the mean

value:

�̅�(𝜃) = 𝐸[𝑡𝑛] + 𝐸[min{𝑟𝑛 − 𝜃𝑤𝑛𝑝(𝑟𝑛, 𝑤𝑛), 0}],

105

where the noise term 𝜉𝑛 is defined as:

𝜉𝑛 = 𝑡𝑛 + min{𝑟𝑛 − 𝜃𝑛𝑤𝑛𝑝(𝑟𝑛, 𝑤𝑛), 0} − �̅�(𝜃𝑛) + 𝜃𝑛𝑤𝑛(𝑝(𝑟𝑛, 𝑤𝑛) − 𝐽𝑛)𝐾𝑛.

Function �̅�(.) is Lipschitz continuous, positive for 𝜃 = 0, proportional to −𝜃 for as 𝜃 grows

larger, and there exists a unique root 𝜃 = �̅�, for which �̅�(𝜃) = 0. We can rewrite the learning

rule as:

𝜃𝑛+1 = 𝜃𝑛 + 𝜖𝑛�̅�(𝜃𝑛) + 𝜖𝑛𝜉𝑛.

The asymptotic behavior of the learning algorithm is determined by the mean ODE �̇� = �̅�(𝜃).

The final form of the algorithm and the value of 𝜖𝑛 are consequences of the representation of

the definition: 𝜖𝑛 = 1/𝑊𝑛. This representation brings the learning algorithm into the form of

stochastic approximation.

(Sources: [14])

Training a Neural network model

A neural network is a type of generalized linear model in which the output 𝑦𝑛 is a nonlinear

function of all inputs. In its simplest form, the linear perceptron is a binomial GLM with a logit

link function that becomes a binary logistic regression model when solved for 𝑦𝑛.

The GLM form of the binomial logit model is the following:

Stochastic component:

𝑦𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 = 1, 𝜋𝑖), 𝑖 = 1 … 𝑁

where 𝑁 is the number of binomial observations, and 𝐸[𝑦𝑖] = 𝑁𝜋𝑖 = 𝜋𝑖.

106

Deterministic component:

𝜋𝑖 = ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑀
𝑗 ,

where 𝑀 is the number of independent variables.

Link function:

𝑔(.) = 𝑙𝑜𝑔𝑖𝑡(.)

𝑔(𝜋𝑖) = ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑀
𝑗

In the binomial logit GLM we would have:

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑀
𝑗

𝑙𝑜𝑔 (
𝜋𝑖

1−𝜋𝑖
) = ∑ 𝛽𝑖𝑗𝑥𝑖𝑗

𝑀
𝑗

𝑙𝑜𝑔(𝑂𝑑𝑑𝑠𝑦𝑖|𝑥𝑖.) = ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑀
𝑗

In the linear perceptron case we have:

𝜋𝑖 = 𝑔−1(∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑀
𝑗)

𝜋𝑖 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑀
𝑗)

107

By developing the logistic function and substituting <𝜋𝑖, 𝛽𝑖𝑗, 𝑥𝑖𝑗>, by <𝑦𝑛, 𝛼𝑛, 𝜙𝑛>, we get

the linear perceptron model:

𝑦𝑛 =
1

1 + 𝑒− ∑ 𝛼𝑛𝜙𝑛

𝑛

If we set link function 𝑔−1(.) to the activation function 𝑝(.), to which we can add non-linearity

structure “on demand” by setting 𝑝1(𝑝2(𝑝 … (.)))), then we can easily a highly flexible GLM

that is traditionally called a multi-layer perceptron.

In previous decisions problems, we came across a sequence of patterns where the 𝑛th pattern

was denoted by 𝑦𝑛. In this setting, patterns are unobservable but we can observe a random 𝜙𝑛

that is correlated with 𝑦𝑛, at time 𝑛. We are searching for an affine function of the observables

(affine decision rule) that minimizes the mean squared error between observed and actual

values. The statistics of (𝑦𝑛, 𝜙𝑛) are unknown but, during a search procedure that is called

training phase, many samples of those pairs become available while a recursive linear least

squares procedure is used to converge sequentially to the optimal weights (parameters) of the

affine decision function. During the training phase, a sequence of inputs {𝜙𝑛} is sequentially

fed into the training rule until the algorithm converges to the optimal value of 𝜃, i.e. the one

that best matches the sequence of correct decisions 𝑦𝑛. A neural network works in the same

way, only that output 𝑣𝑛 can be a general nonlinear function of the inputs. Even at very high

dimensions, this process can be optimized efficiently via the random directions Kiefer-

Wolfowitz algorithm.

The simple neural network of this example has three layers of neurons: the input layer, the

hidden layer, and the output layer (sometimes the inputs are not counted as a separate layer).

The output layer consists of only one neuron, with or without an activation (link) function. The

hidden layer (which can be more than just one) is what adds non-linearity to the regression

function and makes the neural network a universal function approximator. Suppose that the

hidden layer has 𝐾 neurons and the output layer has a single neuron. A hidden neuron’s input

at time 𝑛 is a linear combination of the observable random variables at that point in time, while

a hidden neuron’s output is a nonlinear function of its input. Similarly, in the output layer, the

108

neuron’s input is a linear combination of the outputs of the hidden layer, and the network output

is a nonlinear function of that neuron’s input. The sigmoid (inverse logit) function is a common

choice for the network’s activation function, though any suitable nonlinear transformation can

be used insofar as any continuous vector-valued map between input and output can be

approximated by appropriate choices of the number of neurons and hidden layers.

Graphical representation of neural network model with one hidden layer (round nodes) and the logistic

activation function (rectangular nodes).

The estimation of weights or “training” of the network can be described by its input, output,

and the relationship between them. Assuming fixed weights at time 𝑛, the network is associated

to a sequence of 𝑀-dimensional vectors: input vector 𝜙𝑛 = (𝜙𝑛,1, … , 𝜙𝑛,𝑀), observable

network output vector 𝑣𝑛, actual/desired output vector 𝑦𝑛. Thus, for a well-trained network

with weights 𝑎𝑖𝑗, 𝑣𝑛 becomes a good approximation to 𝑦𝑛. Then, at time 𝑛, the input to neuron

𝑗 in the hidden layer becomes:

𝑢1𝑗(𝛼, 𝜙𝑛) = ∑ 𝛼𝑖𝑗𝜙𝑛,𝑖

𝑀

𝑖=1

, 𝑗 = 1, … , 𝐾.

109

Let 𝑝1(𝑢1𝑗(𝛼, 𝜙𝑛)) be the output of this hidden layer neuron, where 𝑝1(.) is a real-valued

antisymmetric nondecreasing and continuously differentiable function of a real variable (that

we call the activation function). Let 𝑝1̇(.) be the derivative of 𝑝1(.), and 𝛽𝑖 be the weights of

the output layer neuron. The input to neuron of the output layer is the linear combination of the

output of all neurons in the hidden layer:

𝑢2(𝛼, 𝛽, 𝜙𝑛) = ∑ 𝛽𝑗𝑝1(𝑢1𝑗(𝛼, 𝜙𝑛)

𝑀

𝑖=1

).

The neuron in the output layer is:

𝑢(𝛼, 𝛽, 𝜙𝑛) = 𝑝2(𝑢2(𝛼, 𝛽, 𝜙𝑛))

Where activation function 𝑝2 has the same properties as 𝑝1 and the derivative of 𝑝2 is denoted

by 𝑝2̇. The training phase of the network (estimation of weights) consists of an optimization

problem where the errors between desired and actual output are minimized. Suppose that the

set of pairs for desired output {(𝜙𝑛, 𝑦𝑛), 𝑛 = 1, … } and the actual outputs {𝑣𝑛} are given, and

that the input-output pairs are mutually independent. Let 𝜃 = (𝛼, 𝛽) be the vector of weights

to be estimated and let 𝜃𝑛 be the value at the 𝑛th training session, with 𝑣𝑛 = 𝑢(𝜃𝑛, 𝜙𝑛). The

weighs will be update sequentially such that the mean squared error 𝐸[𝑦 − 𝑢(𝜃, 𝜙)]2 is

minimized. This error function is derived by defining sample mean square error 𝑒(𝜃, 𝜙, 𝑦) =

1

2
[𝑦 − 𝑢(𝜃, 𝜙)]2 and sample error 𝑒𝑛 = [𝑦𝑛 − 𝑣𝑛].

The form of the adaptive algorithm is the following:

𝜃𝑛+1,𝑖 = 𝜃𝑛,𝑖 − 𝑒𝑛

𝜕𝑒(𝜃𝑛, 𝜙𝑛, 𝑦𝑛)

𝜕𝜃𝑖
= 𝜃𝑛,𝑖 + 𝜖𝑛𝑒𝑛

𝜕𝑢(𝜃𝑛, 𝜙𝑛)

𝜕𝜃𝑖
, 𝑖 = 1, … , 𝑟.

Using the formula:

𝑣 = 𝑢(𝛼, 𝛽, 𝜙) = 𝑝2(𝑢2(𝛼, 𝛽, 𝜙)) = 𝑝2(∑ 𝛽𝑗𝑝1 (𝑢1𝑗(𝛼, 𝜙)))𝐾
𝑗=1 ,

110

with the above derivatives computed via repeated differentiation:

𝜕𝑢(𝜃, 𝜙)

𝜕𝛽𝑖
= 𝑝2(𝑢2(𝛼, 𝛽, 𝜙))𝑝1 (𝑢1𝑗(𝛼, 𝜙)),

𝜕𝑢(𝜃, 𝜙)

𝜕𝛼𝑖𝑗
= 𝑝2(𝑢2(𝛼, 𝛽, 𝜙))𝛽𝑗𝑝1 (𝑢1𝑗(𝛼, 𝜙)) 𝜙𝑖,

with 𝜙𝑖 being the 𝑖th element of input vector 𝜙. The asymptotic behavior of the algorithm is

characterized by the following ODE:

�̇�𝑖 = 𝑔−𝑖(𝜃) = −
𝐸𝜕𝑒(𝜃, 𝜙, 𝑦)

𝜕𝜃𝑖
, 𝑖 = 1, … , 𝑟.

With above gradient method, 𝜃𝑛 converges to a stationary point of this ODE. Though

approximated as a convex problem, the underlying objective function is in fact a non-convex

function with multiple local minima and different training sessions will yield different weight

estimates. In a well-tuned model, the variance of those estimates should be relatively small.

Training time is directly proportional to the number of weights in the network, while neural

network research has led to the development of specialized stochastic approximation

algorithms.

(Sources: [14])

3.3. Application: Estimating neural network weights with stochastic gradient descent

The estimation of the weights of a single-layer neural network is a special case of the well-

studied backpropagation algorithm and the core of all neural network training procedures. A

linear neural network is one which contains no hidden layers and is also known as a linear

perceptron. When the activation function is the logistic function, the optimization of the linear

perceptron is the equivalent of a non-parametric logistic regression, i.e. the estimation of the

parameters of a logistic model without using the binomial likelihood nor making any

probabilistic assumption whatsoever. This task can be achieved by minimizing the mean

111

squared error of the logistic functions via stochastic gradient descent. An analytical training

rule can be obtained by applying gradient descent on the error loss of the network, which leads

to the estimation network weights via online learning rather than batch learning. The derivation

is provided below.

3.3.1. Perceptron training rule

Let 𝑔 be the differentiable link function associated to the deterministic component of a

generalized linear model with coefficients 𝑤𝑗𝑖. In neural network terminology, let the activation

function 𝑔(𝑥) be associated to neuron 𝑗 and weight 𝑖, with 𝑖th input 𝑥𝑖, predicted output �̂�𝑗,

actual output 𝑦𝑗, learning rate 𝛼, and weighted sum of inputs ℎ𝑗 .

The output of the network with a single neuron (linear perceptron) can be expressed as:

𝜖 = ∑
1

2
(𝑦𝑗 − �̂�𝑗)

2

𝑗

To move through the weight space of the neuron in proportion to the gradient of the error

function we compute the partial derivative of the error with respect to each weight:

𝜕𝜖

𝜕𝑤𝑖𝑗

We can develop the above by plugging in the error function and simplify it (for the case of a

single neuron) by omitting the summation:

𝜕𝜖

𝜕𝑤𝑖𝑗
=

𝜕 (
1
2 (𝑦𝑗 − �̂�𝑗))

𝜕𝑤𝑖𝑗

We can further develop using the chain rule:

112

=

𝜕 (
1
2 (𝑦𝑗 − �̂�𝑗))

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑤𝑗𝑖

And we again use chain rule to solve the left-hand side:

= −(𝑦𝑗 − �̂�𝑗)
𝜕𝑦𝑗

𝜕𝑤𝑗𝑖

We solve similarly the right-hand side but by differentiating w.r.t. the total input:

= −(𝑦𝑗 − �̂�𝑗)
𝜕𝑦𝑗

𝜕ℎ𝑗𝑖

𝜕ℎ𝑗

𝜕𝑤𝑗𝑖

Then we substitute the output of the 𝑗th neuron with the activation function applied on the

neuron’s input ℎ𝑗 and rewrite the derivative of 𝑦𝑗 w.r.t. ℎ𝑗 as the first derivative of 𝑔:

= −(𝑦𝑗 − �̂�𝑗)𝑔′(ℎ𝑗)
𝜕ℎ𝑗

𝜕𝑤𝑗𝑖

We express ℎ𝑗 as the sum of all 𝑘 weights times the corresponding inputs 𝑥𝑘:

= −(𝑦𝑗 − �̂�𝑗)𝑔′(ℎ𝑗)
𝜕(∑ 𝑥𝑘𝑤𝑗𝑘𝑘)

𝜕𝑤𝑗𝑖

Since we only care about the 𝑖th weight, we can simplify the above expression by omitting the

summation:

𝜕𝑥𝑖𝑤𝑗𝑖

𝜕𝑤𝑗𝑖
= 𝑥𝑖

which leads to the final equation of the gradient:

113

𝜕𝜖

𝜕𝑤𝑗𝑖
= −(𝑦𝑗 − �̂�𝑗)𝑔′(ℎ𝑗)𝑥𝑖

Therefore, the change of each weight should be proportional to the gradient. A proportionality

constant 𝛼 can be applied to let us move the weight to the negative direction of the gradient

(removing minus sign) and minimize the error, driving thus the perceptron training rule:

Δ𝑤𝑗𝑖 = 𝛼(𝑦𝑗 − �̂�𝑗)𝑔′(ℎ𝑗)𝑥𝑖

The implementation of the linear perceptron and the multi-layer perceptron in MATLAB code

are provided in the next section.

3.3.2. Source code

Linear perceptron

% Function that learns a linear model over a training dataset.

% x: training set (to build model from)

% z: training set’s output vector (known classes)

% b: bias (usually 0)

% r: learning rate (varies but usually 0.5)

% T: Threshod for classification decision (where applicable)

% MAXIT: % maximum number of iterations before forced convergence

function w = LinearPerceptronTrain(x, z, b, r, T, MAXIT)

% Samples to classify on the rows, variables on the columns (4x2)

n = size(x,1); % number of inputs

m = size(x,2); % number of features (variables)

w = zeros(1,m); % initial weight vector

% Parameters:

error_count = -1;

114

c = 1; % iteration counter

% Start training:

while error_count~=0 && c<=MAXIT

% while error value is not zero and max interations haven’t been reached

 error_count = 0;

 for i=1:n

 s = x(I,:) * w’ + b; % (i) calculate output y

 if s > T

 y = 1;

 else

 y = 0;

 end

 error = z(i)-y; % (ii) calculate error

 d = x(I,:)*r*error; % error correction value

 w = w + d; % (iii) update weight

 if error ~= 0

 error_count = error_count + 1; % error counter

 end

 end

 if c==1 || mod(c,200)==0 % print out algorithm’s progress

 fprintf(‘Iteration count: %d/%d Error value: %f\n’, c, MAXIT, error);

 end

 c = c + 1;

end

if c>=MAXIT

 fprintf(‘Perceptron terminated because the maximal number of %d iterations was reached.\n’,

MAXIT);

else

 fprintf(‘Perceptron converged.\n’);

 end

end

115

Multi-layer perceptron

%% Network training phase:

function [w_ih, w_ih_bias, w_ho, w_ho_bias, out_train, errors_vec] = MLPRegressionTrain(x_train,

y_train, bias, r, MAXIT, length_il, length_hl, length_ol)

%% Network initialisation:

% Input layer:

x_in = zeros(length_il,1); %outgoing x

% Hidden layer:

rand('state',sum(100*clock));

w_ih = -1 +2.*rand(length_il, length_hl); % weights between input and hidden layers

w_ih_bias = -1 +2.*rand(1, length_hl); % weights between input and hidden layer bias nodes

x_hidd = zeros(length_hl, 1); % outgoing x

%x_hidd = [-1; x_hidd];

delta_hidd = zeros(length_hl, 1); % error per hidden node

%Output layer:

rand('state',sum(100*clock));

w_ho = -1 +2.*rand(length_hl, length_ol); % weights between hidden and output layers

w_ho_bias = -1 +2.*rand(1, length_ol); % weights between hidden and output layers bias nodes

x_out = zeros(length_ol, 1); % ougoing x

delta_out = zeros(length_ol, 1); % error per output node

out_train = zeros(size(y_train)); % predicted value

errors_vec = zeros(MAXIT, length_ol); % keep record of error evolution

allout = zeros(MAXIT,1); % keep record of all output values of iteration c

%% Training phase:

c = 1; % iteration counter

while(c <= MAXIT) % do until convergence

116

 % Iterate through all inputs:

 for i=1:size(x_train,1) % for all training inputs

 % (i) Calculate/update net/x values of all neurons/nodes:

 % Input layer x: Load training inputs

 x_in = x_train(i,:)';

 % Hidden layer x:

 for j=1:length_hl % for all nodes

 x_hidd(j) = sum(w_ih(:,j).*x_in) + w_ih_bias(j)*bias; % H = sum(w*x) + bias*w_bias

 x_hidd(j) = 1/(1+exp(-x_hidd(j))); % sigmoid(x) (activation function)

 end

 % Output layer x:

 for j=1:length_ol

 x_out(j) = sum(w_ho(:,j).*x_hidd) + w_ho_bias(j)*bias;

 x_out(j) = 1/(1+exp(-x_out(j)));

 end

 % (ii) Back-propagate the network to calculate error/delta for all hidden nodes:

 % Output layer:

 for j=1:length_ol

 errors_vec(c,j) = y_train(i)-x_out(j);

 delta_out(j) = x_out(j)*(1-x_out(j))*errors_vec(c,j);

 end

 % Hidden layer:

 for j=1:length_hl

 delta_hidd(j) = x_hidd(j)*(1-x_hidd(j))*sum(w_ho(j,:).*delta_out');

 end

 %(iii) Weight update: wi = wi + xi * (r*delta_i)

 % Hidden layer x:

 for j=1:length_il

 for k=1:length_hl

 w_ih(j,k) = w_ih(j,k) + x_in(j)*(r*delta_hidd(k));

117

 end

 end

 for j=1:length_hl

 w_ih_bias(j) = w_ih_bias(j) + bias*r*delta_hidd(j); % bias node on hidden layer

 end

 % Output layer x:

 for j=1:length_hl

 w_ho(j,:) = w_ho(j,:) + x_hidd(j).*(r*delta_out');

 end

 for j=1:length_ol

 w_ho_bias(j) = w_ho_bias(j) + bias*r*delta_out'; % bias node on output layer

 end

 % Print progress:

 fprintf('Iteration: %d, Predicted value: %.4f, Real value: %.4f\n', c, x_out, y_train(i));

 allout(c) = x_out;

 out_train(i) = x_out;

 end

 c = c+1;

 end

end

118

References

1. R. T. Rockafellar, Convex Analysis (1970)

2. J. F. Bonnans, Convex and Stochastic Optimization (2019)

3. A. A. Ahmadi, Lecture Notes on Convex and Conic Optimization (2020)

4. A. Ben-Tal and A. Nemirovski, Lecture Notes on Modern Convex Optimization

5. S. P. Boyd and L. Vandenberghe, Convex Optimization (2004)

6. D. Bertsekas, Convex Analysis and Optimization (2003)

7. C. Bishop, Pattern Recognition and Machine Learning (2006)

8. S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective (2015)

9. R. T. Rockafellar, The Convex Analysis of Random Variables (2013)

10. V. Kanade, Lectures Notes on advanced Machine Learning

11. A. N. Giannakopoulos, Lectures Notes on Stochastic Processes II

12. D. P. Kroese, T. Taimre, Z. I. Botev, Handbook of Monte Carlo Methods (2011)

13. J. E. Gentle, W. K. Härdle, Y. Mori, Handbook of Computational Statistics: Concepts

and Methods (2012)

14. H. Kushner and G. C. Lin, Stochastic Approximation and Recursive Algorithms and

Applications (2003)

15. H. Robbins and S. Monro, A Stochastic Approximation Algorithm (1951)

16. J. Kiefer and J. Wolfowitz, Stochastic Estimation of the Maximisation of a Regression

Function (1952)

17. J. C. Spall, Introduction to Stochastic Search and Optimization (2003)

119

