
Department of Management Science and Technology
MSc in Business Analytics

Movie Recommendation Engine

using an interactive conversational agent
By

Spanos Nikolaos

Student ID Number: F2821826
Name of Supervisor: Louridas Panagiotis

August 2020
Athens, Greece

© Copyright by Athens University of Economics and Business &
SPANOS NIKOLAOS, 2020

All Rights Reserved

To the Faculty of Athens University of Economics and Business:

The members of the Committee appointed to examine the thesis of SPANOS NIKOLAOS

find it satisfactory and recommend that it be accepted.

Supervisor: Louridas Panagiotis, Associate Professor

Examiner 2: Diomidis Spinellis, Professor

Examiner 3: Damianos Chatziantoniou, Associate Professor

ii

DEDICATION

This dissertation/thesis is dedicated to my beloved family and Pitarokoili Olga who provided
emotional support

and to my professor Louridas Panagiotis who shared with me his knowledge and expertise.

iii

ACKNOWLEDGMENTS

I must chiefly acknowledge Louridas Panagiotis, Perakis George and Pitarokoili Olga for their

support.

iv

ABSTRACT

To improve the quality of services provided to the users, researchers, and online streaming

companies have extensively researched and deployed content-based movie recommender

systems. They improve the satisfaction and time-efficiency of users by utilizing Artificial

Intelligence (AI) applications and deep learning. Those applications are applied upon standard

business solutions to automate old-fashioned ways of human-computer interaction. Content-

based movie recommender systems’ problem lies in the lack of content provided either

by the user or related to the movie. Recommendation algorithms lacking content cannot

propose accurate recommendations for single genre movies or movies linked simultaneously

on multiple genres (e.g., action and romance movies). This thesis uses Natural Language

Processing (NLP) techniques to assemble an accurate content-based movie recommendation

engine that will exploit content from users and online movie sources. Because of their

content, movies are classified into multiple genres. For example, a movie can be at the same

time romantic and adventurous. A movie’s connection to more than one genre adds an extra

hurdle on a recommender engine since the latter should correctly identify the keywords and

the semantics that make a movie both romantic, adventurous, and documentary. Thus, the

need arises to create an accurate recommender engine that will understand and exploit user

preferences and movie content to propose multi-genre movies.

The movie recommendation engine developed in the context of this thesis comprises two

tightly-coupled components. The first component is a neural network that solves the multi-

genre text classification problem. The thesis elaborates on the development, training, and

evaluation of five neural networks for multi-label text classification. The neural networks

will be optimized to infer a set of relevant movie genres from movie content by using five

different movie features, precisely a plot summary, the actors, the movie features, the title,

and the user reviews. Then, we compare the ability of the five different neural networks to

address the text classification problem. The first neural network is a custom-made neural

network created by the authors to explicitly solve the movie genre multi-label classification

problem, whereas, the other four neural networks are pre-trained and saved model estimators

that solve similar NLP text classification tasks. For highlighting the custom-developed neural

network as the best model estimator out of the five neural networks, the document applies

a thorough selection plan that involves: (a) the hamming loss and binary cross-entropy loss

values on never-seen-before movies, (b) the learning curves of the training and the validation

samples, (c) the bias-variance tradeoff and (d) the confusion matrices and the classification

reports of the movie genre classifiers. The second component is an interactive conversational

agent that recommends movies in real-time based on the content written by the user(s) and

provided from the movie itself. The user can write anything related to the movie and like

about the movie. For example, write a short review of the movie or a compliment for the plot

and the movie’s cast. The agent ranks the movies from the most similar to the least similar,

based on the predictions of the best classifier and then calculates a movie-score based on two

elements: (1) the information provided by the user, (2) a general user opinion ranking (e.g.,

IMDB rating, sentiment rating, and viewer rating). The agent recommends the movie with

the highest movie score. Finally, we compare the functionality and recommendation engine

results with similar services of the e-market by asking the public opinion.

vi

Contents

Page

1 Introduction . 1
1.1 Summary . 1
1.2 Thesis Scope . 3
1.3 Thesis Outline . 5
1.4 Python code outline . 8

2 Data Text Analysis . 13
2.1 Introduction . 13
2.2 Data Requirements . 15
2.3 Data Collection . 19

2.3.1 IMDB Website and Grouplens dataset 19
2.3.2 Data Extraction - Web Scrapping . 21

2.4 Data Preprocessing . 24
2.4.1 Data Cleaning . 24
2.4.2 NLP Text Preprocessing . 26
2.4.3 Prepare the input for deep learning experimentation 51

3 Neural Network Development . 59
3.1 Introduction . 59
3.2 Custom Neural Network . 60

3.2.1 Development . 60
3.2.2 Compiling & Training the neural network 74
3.2.3 Select best model classifier (per optimizer) 81
3.2.4 Hamming loss model estimator vs. Binary accuracy model estimator . 112

3.3 Neural networks of pre-trained word embeddings 115
3.3.1 GloVe pre-trained word embeddings 115

vii

3.3.2 English Google News 130GB corpus | 20 dimensions & without OOV

token . 118
3.3.3 English Google News 130GB corpus | 20 dimensions & OOV token . . 120
3.3.4 English Google News 7B corpus | 50 dimensions & OOV token 122
3.3.5 Select best model classifier (out of the five neural networks) 124

4 Engineering an Interactive Conversational Agent 137
4.1 Introduction . 137
4.2 Neural Network Weights | Word Vector Embeddings 138
4.3 Assembling an Interactive Conversational Agent 144

4.3.1 What is a chatbot . 144
4.3.2 Architecture of the chatbot . 145
4.3.3 Dialogflow-Hosting the chatbot . 150

4.4 Conversational Agent-Opinion based research 153
4.4.1 Opinion-based questionnaire . 153
4.4.2 Questionnaire results . 156
4.4.3 Questionnaire conclusions . 169

5 Conclusions . 173

Appendices

A First Appendix . 179
A.1 List of Abbreviations . 179

References . 184

viii

List of Figures

2.1 Text data preprocessing framework Source: Text Preprocessing Framework [13] 27

2.2 Percentage of genres per movie . 56

2.3 Stratified shuffle split on training & test samples 56

3.1 Neural network’s structure . 73

3.2 Output 1: Training per epoch . 79

3.3 Output 2: Neural Network loss function and hamming loss, f1 score progress

per epoch . 79

3.4 Output 3: Training-Validation Hamming loss, F1 score & Loss per epoch . . . 80

3.5 Output 4: Hamming loss, Loss score performance of the neural network on

never-seen-before movies . 80

3.6 Adam optimizer Classification Report results 92

3.7 SGD optimizer Classification Report results 92

3.8 RMSprop optimizer Classification Report results 93

3.9 Underfitting Learning Curve - Part 1 . 103

3.10 Underfitting Learning Curve - Part 2 . 103

3.11 Overfitting Learning Curve . 103

ix

https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html

LIST OF FIGURES

3.12 Good fitting Learning Curve . 103

3.13 Adam optimizer Training - Hamming loss per training epoch 105

3.14 SGD optimizer Training - Hamming loss per training epoch 105

3.15 RMSprop optimizer Training - Hamming loss per training epoch 105

3.16 Adam optimizer Training - Loss per training epoch 107

3.17 SGD optimizer Training - Loss per training epoch 107

3.18 RMSprop optimizer Training - Loss per training epoch 107

3.19 Bias-Variance trade-off | Bullseye diagram Source: BiasVariance [22] 109

3.20 Performance Learning curves - Binary accuracy per training epoch 114

3.21 Optimization Learning curves - Loss per training epoch 114

3.22 Neural Network Structure | English Google News 130Gb corpus with 20 dim

& without OOV token . 118

3.23 Neural Network Structure | English Google News 130Gb corpus with 20 dim

& with OOV token . 120

3.24 Neural Network Structure | English Google News 7B corpus with 50 dim &

with OOV token . 123

3.25 Custom Keras model - Hamming loss learning curves 130

3.26 GloVe embeddings - Hamming loss learning curves 130

3.27 English Google News 20dim 130GB no OOV - Hamming loss learning curves 131

3.28 English Google News 20dim 130GB with OOV - Hamming loss learning curves131

3.29 English Google News 50dim 7B with OOV - Hamming loss learning curves . 131

x

http://scott.fortmann-roe.com/docs/BiasVariance.html

3.30 Custom Keras model - Loss learning curves 132

3.31 GloVe embeddings - Loss learning curves 132

3.32 English Google News 20dim 130GB no OOV - Loss learning curves 133

3.33 English Google News 20dim 130GB with OOV - Loss learning curves 133

3.34 English Google News 50dim 7B with OOV - Loss learning curves 133

4.1 Overview of how the weights are updated during a training epoch 138

4.2 Basic flow for intentmatching and responding to the end-user Source: Dialogflow-

Intent Overview . 151

4.3 The implementation of the chatbot on Dialogflow 152

4.4 Question 1 . 162

4.5 Question 2 . 163

4.6 Question 3 . 164

4.7 Question 4 . 165

4.8 Question 5 . 166

4.9 Question 6 . 167

4.10 Question 7 . 168

4.11 Question 8 . 168

xi

https://cloud.google.com/dialogflow/es/docs/intents-overview?fbclid=IwAR0GD2FnGW_1t9qU-H0kAGN8jnpIeOREyxWjvk_OAYakZ6vFC3OZbXxLhDA
https://cloud.google.com/dialogflow/es/docs/intents-overview?fbclid=IwAR0GD2FnGW_1t9qU-H0kAGN8jnpIeOREyxWjvk_OAYakZ6vFC3OZbXxLhDA

List of Tables

3.1 Summary table of training the custom neural network (Hamming Loss - F1

score performance metrics) . 77

3.2 XOR operations . 84

3.3 Adam Optimization function Results - Hamming loss performance metric

(best model highlighted) . 88

3.4 SGDOptimization function Results - Hamming loss performance metric (best

model highlighted) . 89

3.5 RMSprop Optimization function Results - Hamming loss performance metric

(best model highlighted) . 89

3.6 Summary table of the best model selected per optimizer (applying the first

step of the comparison plan) . 90

3.7 Adam optimizer Confusion Matrix . 94

3.8 SGD optimizer Confusion Matrix . 95

3.9 RMSprop optimizer Confusion Matrix . 95

3.10 Movie Predictions (20 random movies) | Adam optimizer 98

3.11 Movie Predictions (20 random movies) | SGD optimizer 99

xiii

3.12 Movie Predictions (20 random movies) | RMSprop optimizer 100

3.13 Summary table of training the custom neural network with binary accuracy . 113

3.14 Scoring table of the model estimator trained on binary accuracy metric 113

3.15 Trained Neural Networks on pre-trained GloVe word embeddings 116

3.16 Summary table of English Google News 20dim without OOV token 119

3.17 Trained Neural Networks on pre-trained English Google news 20dim without

OOV token . 119

3.18 Summary table of English Google News 20dim with OOV token 121

3.19 Trained Neural Networks on pre-trained English Google news corpus 20dim

with OOV token . 121

3.20 Summary table of English Google News 50dim 7B with OOV token 123

3.21 Trained Neural Networks on pre-trained English Google news 50dim 7B

corpus with OOV token . 124

3.22 Scoring table of the selected model classifiers 126

3.23 Confusion matrix - model 1 (Custom Keras model) 127

3.24 Confusion matrix - model 2 (GloVe embeddings) 127

3.25 Confusion matrix - model 3 (English Google News 20dim 130GB no OOV) . 128

3.26 Confusion matrix - model 4 (English Google News 20dim 130GB with OOV) 128

3.27 Confusion matrix - model 5 (English Google News 50dim 7B with OOV) . . 129

A.1 Abbreviations . 179

xiv

Chapter One

Introduction

1.1 Summary

The aimof this post-graduate thesis titled "MovieRecommendation engine using an interactive

conversational agent" is to give solution to a multi-genre text classification problem for movie

recommendation using techniques from the field of Natural Language Processing and deep

learning. Furthermore, the authors of the thesis will introduce a unique selection plan to

identify and evaluate a well-performed mathematical model, developed to predict multi-label

classification targets. Moreover, the thesis will document the development of an interactive

conversational agent using the trained weights of the most accurate model classifier. Based

on the output of the neural network and the user’s text input, a custom-made recommendation

algorithm will propose movies to outdo similar movie recommender engines currently in

the e-market. The thesis is composed of five chapters with each one to play an essential

role in achieving the goal mentioned in the first sentence. The first chapter describes the

main scope and the problems tackled by the thesis. The second chapter is focused on data

extraction, data cleaning, and data preparation. The concepts presented in the second chapter

constitute a differentiation factor that could substantially affect a neural network’s performance

and behavior. The goal of the second chapter is to provide a thorough presentation and

1

Introduction

description of the critical concepts to clean and prepare data coming from text and going

to train a multi-label text classification model. The third chapter presents the multi-genre

movie classification problem built to make accurate predictions of a movie’s gene sequence,

given its movie content. A movie genre sequence is an array of more than one genre linked

to a specific movie (e.g., [action, romance, comedy]). To deal with the multi-genre movie

classification problem, the authors deployed five different neural networks. The first neural

network is a custom-made model classifier build explicitly from scratch. The other four

classifiers are pre-trained and saved classifiers, either using pre-trained word embeddings

(e.g., GloVe embeddings) or using a whole pre-trained model structure saved in Tensorflow

Hub community. The selection plan to select the best model classifier among the five

options includes various metrics and methodologies from the machine learning and deep

learning field that will assess each model estimator’s predictions, and the most accurate one

will be used to build the recommendation algorithm. The fourth chapter will use the model

estimator with themost accurate predictions to create a recommendation algorithm operated to

proposemovies to the end-user via an interactive conversational agent on FacebookMessenger.

Additionally, in the fourth chapter, the authors will introduce an opinion-based questionnaire

to compare the interactive conversational agent with two similar well-established services.

The questionnaire assesses the three services on three topics. The first topic assesses the

quality of the recommendations proposed by each one of the conversational agents. The

second topic evaluates the sufficiency of their recommendations, the agents’ UI, and the

quality of the human-computer interaction with the user. Finally, the third topic evaluates the

features offered by the chatbots. The questionnaire’s goal is to estimate the quality experience

and the movie recommendations, each chatbot provides to the end-user. The fifth and final

chapter describes the conclusions and re-cups the results of the third and fourth chapters; the

chapters conducted the experimentation and the research.

2

Introduction

1.2 Thesis Scope

Before the Internet’s disruptive era, people could only purchase items available to physical

stores. Contrary to the past, today, customers can transact among an abundance of different

items and choices. They will feel more secure and confident to make new purchases when ser-

vices and applications consider their personal needs and preferences. Recommender systems

have been invented to save time and allow users to filter the content they view according to

their preferences. Recommender systems nowadays exist for commercial goods (e.g., cloth-

ing, FMCG’s, electronics), movies, music, places, and reservations. The recommendation

engine can suggest content or products that better match the needs of a particular user by

gathering relevant information.

The types of recommendation systems are many; however, the two most popular categories

are the collaborative filtering systems and content-based systems. The former fits very well

in services and applications where users interact with each other and have formed a source of

connections and relationships. The collaborative filtering system considers the preferences

of two inter-connected users and recommends to a third user a similar content only if this

user has similar preferences to one of the two connected users. The latter system provides

recommendations only when it has collected enough content and feedback from the end-user

to provide an accurate recommendation. The recommendation algorithm developed in the

thesis belongs to the second type of recommender systems.

The content-based movie recommender system is the focus of this thesis. The cause of

irrelevant recommendations in such systems is mainly the lack of content. The thesis goal is

to develop an original movie recommendation engine that will exploit movie content provided

by users and online sources. The thesis will introduce two components to accomplish this goal.

For the first component, the authors researched the fields of Natural Language Processing and

deep learning to build a unique multi-genre movie classification algorithm that will predict

3

Introduction

the movie’s multiple genres based on movie content. The second component is a competitive

movie recommender engine that will use both the first component’s predictions and the user’s

feedback to propose relevant movie recommendations that could outperform those proposed

by already well-established and functional applications of the e-market.

The reader of the thesis will get a well-explained presentation on the following topics:

• The preparation plan to transform online data of textual movie content destined to train

a multi-genre movie classification model.

• The development of five model classifiers, one custom-made and four pre-trained, to

accurately predict a movie’s genre sequence based on movie content.

• The original selection plan to assess the predictive power and the performance of

multi-genre movie classification algorithms.

• The approach to use the most accurate neural network’s trainable weights to create a

recommendation algorithm. Alternatively, the steps to move from development of a

neural network to the production of a business application.

• The development of a user-friendly conversational agent accessed by Facebook Mes-

senger.

• The opinion-based questionnaire that will evaluate the recommendations and the func-

tionality of the custom-made conversational agent to other applications currently in the

market.

Each of the topics mentioned above is both theoretically and technically justified, so the

reader can get familiar with the potential NLP applications of neural networks and witness an

end-to-end journey of developing an idea and transitioning to a productive and user-friendly

application.

4

Introduction

1.3 Thesis Outline

The two main scopes of the thesis are the development and selection of a multi-genre movie

classification model explicitly using movie content and the creation of a competitive content-

based movie recommender system. In general, text classification experiments consist of three

different categories based on the output of the target variable:

• Binary text classification: The target variable has only two different values. For

example, a sentiment analysis algorithm tries to predict whether a user review is positive

or negative. Alternatively, when a cybersecurity algorithm tries to identify if an email

sent is malware/ spam or a valid one.

• Multi-class text classification: The target variable has a broader range of values rather

than only two. For example, a user review is angry, toxic, enthusiastic, informative, or

judgemental. The target variable is assigned to only one of these values.

• Multi-label text classification: The target variable is a sequence of more than one value

that identifies the independent variables. For example, a user review is toxic and at the

same time angry based on the words written by the user.

The thesis’s target experiment belongs to the third category, which is the most trickier and, at

the same time, the most challenging category out of the three mentioned above. In the third

category, a mathematical model should correctly classify text content to more than one target

variable, or in other words, multi-output target variables. The metrics used to evaluate the

multi-label text classification algorithms are different from those used for binary classification,

like the model’s accuracy, which is one of the most common performance metrics of model

performance. Hamming loss is a more suitable metric to derive proper conclusions about the

performance of a multi-label text classification model.

The second scope of the thesis, as stated in the first sentence, is the documentation of using

5

Introduction

the output of a machine learning algorithm, trained to classify movies to their correct genre

sequence, to create an interactive conversational agent that will recommend movies similar to

those preferred by the user. More specifically, the second scope is to introduce a methodology

of exploiting the output of a trained model to create a user-friendly application. Neural

networks developed to offer many more capabilities than just correctly classifying a movie to

its correct genre sequence.

Three approaches exist to deal withmulti-label text classification problems. The first approach

is by using a pre-developed algorithm such as Support Vector Machines (SVM), Decision

Trees, Random Forest, and XGBoost. The second and third approaches include the develop-

ment of neural networks, either with custom training layers or pre-trained layers. The critical

factor in choosing between the first approach and the other two is the volume of data. Since

the movie content used for training in the current experiment derives from around 50,000

movies, the last two approaches are more suitable. After the use of the second and the third

approach, the thesis documentation compares the results achieved with the custom trained

neural network to the results achieved with the pre-trained saved neural network approach.

The authors make the comparison through a thorough and unique selection plan, which in-

corporates evaluation metrics and scores, learning curves, bias-variance tradeoff, confusion

matrices, and classification reports.

To fulfill the second scope’s purpose, the weights of the best model classifier will help create

a movie recommendation mechanism. More specifically, to identify similar movies, the word

embedding vectors of a movie are the key. The latter corresponds to a vector of numbers

used to map the content of movies. Utilizing the cosine similarity measure, the authors

could quickly identify similar movies based on their word embeddings representation. The

cosine similarity measure and the original recommendation algorithm are the two crucial and

necessary components to develop an interactive conversational agent.

6

Introduction

As already mentioned above, the multi-label text classification experiments are trickier than

the binary or multi-class classification problems. Moreover, the most typical tutorials that

exist online usually tackle binary classification problems because the new audience quickly

understands them. The thesis will address the multi-label text classification approach and

present efficient ways to estimate the performance of algorithms built to predict text data

of multi-label target variables. Additionally, it is common to create and train successfully

machine learning algorithms that can predict the results of an action; however, many of those

attempts stop in the development phase. Not few are the cases of many exceptional projects

that cannot find a commercial implementation to include their results. Thus, one additional

challenge of the thesis is to present an alternative and efficient approach of making proper use

of an algorithm’s output to create a practical and functional business application.

Since two are the thesis’s main goals, two are the approaches to tackle each challenge; two

are also the results derived and discussed upon each different challenge. The first discussion

addresses a comparison between the results achieved from a custom-made neural-network to

those results achieved by the pre-trained saved algorithms. Select the best model estimator out

of those compared and make a statement if the results of the custom-developed model built

by the authors of the thesis outperform the pre-trained saved models. The second discussion

address an opinion-based comparison between the interactive conversational agent built in

the context of the thesis with two similar recommendation agents. The end-users of the

three application agents will fill in a questionnaire, answering questions related to the quality

of the recommendations, the graphical user interface of the recommendation agent, and the

applications’ overall functionality.

7

Introduction

1.4 Python code outline

Apart from the thesis document, the project includes a well-established library of python

code displayed using the Jupyter Notebook IDE. The Python notebooks delivered along with

the thesis document, follow a specific structure, and are separated into different parts. The

separation of each part is similar to a pipeline where the output of an element is the input to

the workflow’s next element.

The accompanying python notebooks are:

1. Part 1: Concatenate data from different sources and Download URLs

• Description: This is the starting notebook that creates the raw dataset to be later

used in the rest of the notebooks.

• Input 1: Online data sources of movie data

• Input 2: Tabular dataframes containing the movie information extracted from the

subsequent parts (part 1.1-1.12).

• Output: The final tabular dataframe with the total number of movies and their

respective information column-separated.

(a) Part 1.1: Extract data - 5000 movies

(b) Part 1.2: Extract data - 10000 movies

(c) Part 1.3: Extract data - 15000 movies

(d) Part 1.4: Extract data - 20000 movies

(e) Part 1.5: Extract data - 25000 movies

(f) Part 1.6: Extract data - 30000 movies

(g) Part 1.7: Extract data - 35000 movies

8

Introduction

(h) Part 1.8: Extract data - 40000 movies

(i) Part 1.9: Extract data - 45000 movies

(j) Part 1.10: Extract data - 50000 movies

(k) Part 1.11: Extract data - 55000 movies

(l) Part 1.12: Extract data - 58098 movies

– Description: Each subsequent part make use of specific pythonic mod-

ules to extract data from online digital sources in batches of 5000 movies.

More information in the second chapter.

2. Part 2: Transforming and Cleaning the columns of the final dataset

• Description: Since the most information extracted is the raw text from online

URLs, they will inevitably contain "noise." Text’s noise includes unnecessary

punctuation, text, or any other form of character that may spoil the context reason-

ing of a sentence. Additionally, the notebook presents data needed transformations

in a manner that will benefit the use of it in deep learning alike algorithms.

• Input: The final tabular data frame with approximately 58098 movies from part

1.

• Output: The cleaned and transformed dataset to serve as input in Part 3.

3. Part 3.1: Data Tokenization

• Description: Any text data inserted into any deep learning or machine learning

algorithm should first get appropriately transformed because mathematical models

can understand numeric characters and not text characters.

• Input: The data frame of Part 2

• Output: Data in the appropriate format inserted into the algorithms.

9

Introduction

4. Part 3.2: Deep Neural Networks

• Description: The notebooks composing this part present the training and evalu-

ation of five different neural network models. The evaluation is related to each

model estimator’s ability to predict the movie genres of a movie accurately. The

first model trained is a custom neural network model, while the other four models

are already pre-trained models using either pre-trained embeddings or using the

network structure of a model stored in the TensorFlow Hub community.

• Input: Data preprocessed from part 3.1

• Output 1: The model trained.

• Output 2: The weights and the structure of the model. More information about

word embeddings and the model outputs in chapter 4.

• Output 3: Model history in tabular format.

5. Part 3.2.1: Compare the different models trained on part 3.2 for the model 1

• Description: The first model, a custom-trained neural-network, uses three differ-

ent optimization algorithms to train and update the loss function and the weights

of the model. Thus, out of the three models, one per optimizer, only one is selected

and will proceed to the next part. The criteria to select the best-performed model

include scoring metrics, classification reports, accurate prediction of the movie

genre sequence of 20 randommovies, the fitted learning curves of the performance

and optimization metrics, and the bias-variance tradeoff

• Input: Model estimators trained on part 3.2 related only to the custom made

neural network

• Output 1: The best model estimator out of the three optimizers (Adam, SGD,

RMSprop). Only one optimizer can train the best model classifier.

10

Introduction

6. Part 3.3: Model Comparisons

• Description: The notebook compares the results of the five trained model classi-

fiers, and the model estimator that meets most of the criteria is the one selected.

The selection criteria for the best-performed model include a shorter version of

the criteria presented in part 3.2.1.

• Input: The five models trained in parts 3.2-1 - 3.2-5

• Output: The model that will satisfy most of the criteria defined apriori.

7. Part 4: Load the chosen models and extract the word embeddings

• Description: In this part, it is described the process of extracting themost valuable

asset of a model trained on textual data. The so-called word embeddings, the more

effective representation of text inmathematical terms so far. Theword embeddings

will be used by the recommendation algorithm to identify the similarities between

the movies.

• Input: The best model classifier selected from part 3.3

• Output 1: The word embeddings of the best model

• Output 2: The final tabular dataframe with only the relevant movie content

utilized by the recommendation algorithm.

8. Part 5: Content-Based Movie Recommendation algorithm

• Description: The development and testing of the algorithm that will recommend

the most relevant movies based on the user preferences. The custom algorithm is

built based on some specific steps, which structure a complete approach to movie

recommendation.

• Input 1: The dataset of part 4.

11

Introduction

• Input 2: The saved word embeddings for all the movies.

• Output: The four movie recommendations to the user.

12

Chapter Two

Data Text Analysis

2.1 Introduction

Data analysis is collecting, inspecting, transforming, and modeling raw data to discover useful

information, informing conclusions, and supporting the creation of the ideal input used in

predictive or decision-making models. It is essential that at the final step of the data analysis,

the input created will not get trapped into the concept of Garbage In, Garbage Out (GIGO). A

concept in computer science which states that nonsense input data results to nonsense output.

Data analysis [42] breaks into the following stages, data requirements, data collection, data

processing, and data cleaning. The third chapter will thoroughly cover and justify the stages

mentioned above tailored around text data analysis since the data used for training NLP related

neural networks entirely consists of text data. The first stage, data requirements answer the

question "What data is the appropriate input for my text classification problem?", "The kind

of data that I need to answer my question" and "Where to find this data?". The second stage

data collection refers to the techniques used to extract, store, and maintain the data. Data

prepossessing1 is the most essential concepts, when dealing with NLP classification tasks,

1The meaning and the use of data preprocessing are adjusted to the needs of the current NLP experiment.

The reader should not take their application for granted to any tasks.

13

Data Text Analysis

because it is consist of steps that prepare the text data appropriately before proceeding to deep

learning model algorithms. Data preprocessing consists of two parts.

The first part, described as data cleaning or with the term substitution, is built upon the fact

that the raw data should be cleaned and correctly preprocessed of any noise before used as

inputs to a predictionmodel. Noise for textual data, is mainly text input that spoils themeaning

of a sentence (e.g., HTML tags of online source, symbols, punctuation Part of this stage is

also the feature engineering, creating new features out of the current ones. Data cleaning

arises from the fact that the data input could substantially affect the final result of a predictive

model. Once the data is extracted, it may include inconsistencies, noise, duplicates, errors,

or even missing values. Thus, the cleaning of numerical and categorical data is critical to

correct any of the inconsistencies mentioned earlier. The cleaning of categorical text data is

even more critical, because of the many errors found to the raw text of words.

The second part, which completes the data preprocessing phase, is described as NLP text

preprocessing. It involves techniques that will transform the cleaned textual data into a proper

form for text analytic algorithms. Algorithms that deal with tasks such as text analysis, text

classification, sentiment analysis, question answering methods, or even language translation

models, they require the data to be appropriately transformed. It is common knowledge

that computers cannot understand human language but instead numbers or, more precisely,

mathematical expressions. Data extraction, data collection and text preprocessing techniques

are the main discussion subject of this chapter. Techniques that will introduce to the reader

the proper way of collecting and preprocessing textual data, destined to train deep neural

prediction models.

14

Data Text Analysis

2.2 Data Requirements

As already have been mentioned from the first chapter, one of the problems the thesis is

trying to solve is to research and develop different deep learning classification models for the

creation of a movie recommender engine that will outperform movie recommenders currently

in the market. The second problem is to accurately predict the sequence of movie genres of

a movie based explicitly on movie content. The recommender system follows the content-

based approach instead of its counterpart, the collaborative filtering approach. Given that,

the reader can easily conclude that the features and variables would be data related to movies

and feedback written by the users in the form of reviews or numerical rating. Movie content

data such as the movies’ plot summary, the movie’s cast, the title of the movie, and the

directors of the movie are some concrete examples that can directly distinguish a movie from

other movies, and it is what a viewer would search for when looking for a movie to watch at

his/her free time. What also a viewer would search is the reviews of a movie, if they express

a positive or a negative opinion, but also the ratings the movie received from other users

who have watched it in the past. There is only one official and credible source to find all

those types of data, and this is the website of IMDB (Internet Movie Database)2. The IMDB

website is an up-to-date source of data related to movies, TV-series, and TV-shows. The data

available in IMDB can be either text (plot summary, director and cast names, reviews, etc.)

or numerical like IMDB rating, the number of users rated the movie, year of release, etc.

Both the movie recommendation algorithm and the NLP neural model deployed for the movie

text classification are using data found explicitly on the main movie content website, and the

website where all the user reviews are written. Even though the data was easily accessible,

the access to a large pool of movie content and user reviews wasn’t fictitious, since no other

structured database of movies already existed. Thus, it was for sure that the data had to be

2https://www.imdb.com/

15

https://www.imdb.com/

Data Text Analysis

extracted and collected. The next section will enlighten the reader with the techniques and

sources used in data collection.

Once the authors defined the requirements of what type of data should be collected to solve

the problem, they have to preserve the number one rule of data analytics, and that is the data

quality. To ensure that the data collected is of high quality, the authors strictly defined and

followed the rules below: The title of each rule is found on Wikipedia’s page about data

quality [43]

1. Validity: The degree to which the data conform to defined business rules or constraints.

Below there is a set of some particular rules that should be followed to ensure that the

data collected is valid.

• Data-Type Constraints - values in a particular column must be of particular data

type.

(a) Movie Title: Text Data of type "string" with the official title when the movie

was published.

(b) Genres: Text Data of type "string" of the official movie genres accompanying

the official movie publish.

(c) User Rating: Numerical data of type "float".

(d) IMDB rating: Numerical data of type "float".

(e) Actors: Text Data of type "string".

(f) Director names: Text Data of type "string".

(g) User Reviews: Text Data of type "string".

• Range Constraints - numerical data should fall within a certain range.

16

Data Text Analysis

(a) Movie Title: Any textual data3 or phrase in the range from 1 to n. With N

to symbolize a logical number of words. For example, a movie title cannot

contain 25 words.

(b) Genres: A sequence of words from 1 to 3.

(c) User Rating: In range from 0.5 to 5.

(d) IMDB rating: In range from 0 to 10.

(e) Actors: A sequence of names in the range from 1 to n. With N to symbolize

the maximum number of actors in a movie.

(f) Director names: A sequence of names in the range from 1 to n. With N to

symbolize the maximum number of directors in a movie.

(g) User Reviews: An array of N number of textual content. Where N is the

number of reviews found in the relative web page of a movie before clicking

the button Load more.

• Missing-value Constraints: No column should contain missing data. The above

six columns and any other column crafted from those six columns should not

contain any missing value. The more the information gathered for a movie, the

better the help to the model estimator in understanding the difference between

the movies of different genres. Thus, the experiment cannot tolerate missing

information.

• Unique Constraints or constraint of duplicate data: Data in some columns cannot

be present twice.

(a) Movie Title: This column is the only column that falls into this rule. The

final dataset should not contain the same movie twice. An exception is those

3Textual data is defined as any type of text such as words, human names, or symbols.

17

Data Text Analysis

movies with the same title but different cast and plot.

• Set-Membership constraints: The values of a columnmust follow a specific pattern

to be considered as valid members.

(a) Movie Title: Any kind of phrase consisting of one or more words based on

the range constraint.

(b) Genres: Any word belonging to the family of the official movie genres

(’Drama’, ’Comedy’, ’Action’, ’Romance’, ’Thriller’, ’Horror’, ’Crime’, ’Doc-

umentary’, ’Adventure’, ’Sci-Fi’, ’Mystery’, ’Children’, ’Animation’, ’Fan-

tasy’, ’War’, ’Western’, ’Musical’, ’Family’, ’Biography’, ’Music’, ’History’).

(c) User Rating: No textual data is allowed.

(d) IMDB rating: No textual data is allowed.

(e) Actors: No numerical data is allowed. Actor first and last name or nickname.

(f) Director names: No numerical data is allowed. Director first and last name

or nickname.

(g) User Reviews: Sentence of more than one word.

2. Accuracy: The degree of conformity of a measure to a standard or a true value. Access

to an external source that follows the grand truth can sometimes secure the accuracy

of the data. In the current experiment, the use of the IMDB database, an official place

of movie content, can re-assure that the data collected from that source are valid and

accurate.

3. Completeness: The degree to which all required measures are known. Based on the

scope of the experiment, the movie recommender system should understand and filter

information about the movie. This kind of information should be available for all the

movies in the dataset. Movies that are missing one or more of the above seven fields

18

Data Text Analysis

(movie title, genres, user rating, IMDB rating, cast, director(s) and user reviews) will

be omitted.

4. Consistency: The degree to which a set of measures is equivalent across systems—data

extraction from only one online source.

5. Uniformity: The data should possess the same format when shared across different

systems. Since movie content is retrieved from only one source, the IMDB database,

the uniformity is also a rule not violated.

The rules mentioned above are constructed to ensure the quality and the validity of the data.

A simple algorithm can outweigh a complex one just because it was trained on enough and

high-quality data. Quality can beat the most sophisticated algorithms [20].

2.3 Data Collection

2.3.1 IMDBWebsite and Grouplens dataset

This part will thoroughly present the steps followed in collecting, and extracting the data in

their raw format before any data transformation applied. Since the data source for collecting

movie features and information for a single movie would be the movie’s online page on

IMDB, the authors noticed that a unique code identified each different web page. This code

is composed of two letters ("tt") and a sequence of numbers with length from 1 to 7 (e.g.,

tt1234567). Thus, by collecting this unique id number per movie, the IMDB web page was

easily accessible via an HTTP protocol request. The next step is to find a list with a variety

of such unique ids for a movie, since the manual collection and storing of approximately

50,000 unique ids was out of scope. Grouplens [26] is one of the many online databases

storing movie features for research and development projects. The data downloaded from

19

Data Text Analysis

this website includes 27,000,000 ratings for 58,000 movies, last updated on 09/2018. The

movie data organized in 5 different CSV files (the information presented below is based on

the attached README.md file of the grouplens folder):

1. Genom-scores.csv: The tag genome is a data structure that contains tag relevance scores

for movies. The tag genome encodes how strongly movies exhibit particular properties

represented by tags (atmospheric, thought-provoking, and realistic). This file, although

downloaded, was not used.

2. Genom-tags.csv: The tag descriptions for the tag IDs in the genome file. Similarly, as

the previous file, this one was also not used further in our research.

3. links.csv: The file contains identifiers used to link to other sources of movie data.

• movieId is an identifier for movies used by https://movielens.org. E.g., the movie

Skyfall has the link https://movielens.org/movies/1.

• imdbId is an identifier for movies used by http://www.imdb.com. E.g., the movie

Skyfall has the link http://www.imdb.com/title/tt0114709/.

• tmdbId is an identifier for movies used by https://www.themoviedb.org. E.g., the

movie Skyfall has the link https://www.themoviedb.org/movie/862.

4. movies.csv: Movie information such as the movie id, the title, and the movie genre

is part of the file. This CSV file is also one of the most important files provided by

MovieLens and used for the thesis since it contains the respective genre and title for

each of the 58,000 movies.

5. ratings.csv: The movie rating is a 5-star scale value between 0.5 stars to 5.0 stars. A

CSV file that depicts viewers’ positive and negative popularity over a movie. The more

the number of stars, the more popular a movie is.

The authors of the thesis project used the following CSV files:

20

https://movielens.org
https://movielens.org/movies/1
http://www.imdb.com
http://www.imdb.com/title/tt0114709/
https://www.themoviedb.org
https://www.themoviedb.org/movie/862

Data Text Analysis

• links.csv

• movies.csv

• ratings.csv

Each of the three csv datasets has a different number of rows. To concatenate them, the

authors should bring them to several rows equal to the number of movies in the dataset. The

only data frame with 58,098 number of rows is the "movies.csv" containing the title and the

genre(s) of each movie. The "links.csv" can be directly concatenated with the "movies.csv"

dataset to include the online URLs related to each movie. As already noted, the URLs are a

direct root to the movie’s main web page on the IMDB website. On the contrary, to handle

the information in the "ratings.csv" the authors grouped the relative table. To achieve the

grouping, the authors calculated the average rating per movie, including in such way the

twenty-seven million ratings given for all the 58,098 movies.

The concatenated dataset has 58,098 rows and the following columns:

1. title: The movie title.

2. genres: The movie genres (1 or more).

3. rating: The average user rating (0.5-5).

4. IMDB URL: The online URL rooting to the main web page of the movie on IMDB.

5. synopsis URL: The online URL rooting to the synopsis web page of the movie.

6. reviews URL: The online URL rooting to the user reviews of the movie.

2.3.2 Data Extraction - Web Scrapping

It is essential to mention the need to create three different types of URL (IMDB, synopsis,

reviews). The imdb url contains information related to the content of a movie. The movie’s

21

Data Text Analysis

content is any text relevant to the plot summary, the cast, the plot summary, the directors, and

the IMDB rating of the movie. The synopsis url provides access to a well-established context

of summarizing each movie’s story-line with more information to take into consideration,

contrary to the short text of the plot summary. Finally, reviews url provides a very different

kind of information about a movie. Apart from references to the actors and the movie’s plot,

reviews can create a positive or a negative impact on the movie itself. IMDB rating depicts

this impact.

With the three URLs ready, the next step is to download the online HTML document linked

to each URL. Web scraping is the extraction of data found on web pages. Web scraping is

the automatic mining of data or information collected from the World Wide Web. The web

scraping involves fetching data from a web page and then extract the data from it. Fetching

is downloading a web page, which is actually what a web browser does, to store the HTML

document locally used for processing. Python language offers programming modules, such

as the library "requests", to fetch/download data from online sources. When the fetching

completes, first parse the data, and then the data extraction process can start. Parsing [45] in

computer science is the process of creating a parser, a software component that takes input text

data and builds a data structure. Some abstract syntax tree gives a structural representation

of the input while checking for correct syntax for HTML and XML documents.

The document presents the How To implementation of the data extraction and collection.

The authors extracted the information in batches of 5,000 movies. The extraction of 58,098

movies completed in batches due to computing resources restriction (lack of enough temporary

RAM). As a result, the 58,098 rows separated into 11 batches of 5,000 rows each, and one

batch of 3,098 rows. The procedure to extract an HTML document from the three URLs is

the following:

The document below mentions technical terms and python packages.

Step 1: Download the URL for each movie found in columns "imdb url", "synopsis url" and

22

Data Text Analysis

"reviews url". For the download of each URL, the python module requests4 used. The output

of this process is the HTML document of each URL. An HTML document contains all the

information needed to contrast the web pages written in programming languages like HTML5,

JavaScript or CSS.

Step 2: Save the three HTML documents per movie into serialized files with the suffix

pickle. Definition by the Hitchhiker’s Guide to Python [32]: Data serialization converts

structured data into a format to allow sharing, storing, and recovery of the data to their

original format. Moreover, serialization minimizes the data size and reduces the risk of space

and bandwidth requirements. The data serialization in python is available through the module

"pickle" or "joblib". Based on the Python documentation, the pickle module [23] implements

binary protocols for serializing and de-serializing a Python object structure. "Pickling" is

the process of converting a Python object hierarchy into a byte stream, and "unpickling" is

the inverse operation, converting a byte stream (from a binary file or bytes-like object) back

into an object hierarchy. Pickling (and unpickling) is alternatively known as "serialization",

"marshalling" or "flattening". Similar to pickle, the joblib [34] module embrace two critical

features. Transparent and fast disk-caching of output value and fast compressed persistence

of data. Each batch of 5,000 movies consumes about 2-3 GB’s of memory on a local hard

drive.

Step 3: Parse the three HTML documents per movie to begin the web-scraping. Parsing

HTML documents is easily achievable by making use of the python module Beautiful Soup.

The latter is a famous HTML parser.

Step 4: Having the data parsed; the next step is to iterate over each HTML document and

4Requests is a Python HTTP library, licensed by the ApachURLicense 2.0., aiming to make HTTP requests

simpler and more human-friendly
5Hypertext Markup Language (HTML) is the standard markup language for documents designed for display

in a web browser. Web browsers receive HTML documents from a web server or local storage and render the

documents into multimedia web pages [44]

23

Data Text Analysis

extract the desired information about each movie. The fields extracted are the plot summary,

the actors, the director(s), the IMDB rating, the plot synopsis, and the user reviews.

Step 5: Delete the movies that had at least one missing field. The final dataset should not

include any missing text information, so only those movies with information to all the six

earlier mentioned fields included.

Step 6: Create the final dataset by appending all the batches of 5,000 movies. The final

dataset has 49,393 movies, less than 58,098, due to missing movie-content information per

batch.

Having the data extracted and appended to a final dataset, the next and final step to the data

text analysis pipeline is the Data Preprocessing.

2.4 Data Preprocessing

2.4.1 Data Cleaning

Data cleaning is an important set of actions in the field of Machine Learning and Artificial

Intelligence. The process of data cleaning aims to identify incorrect, incomplete, inaccurate,

or irrelevant data and modify, replace, or delete data to achieve the goal of the experiment.

Cleaning text data is the fundamental starting point towards a great model instead of a biased

model classifier. Textual data may contain online tags, punctuation, symbols, parts of speech,

or Unicode characters that add noise to the corpus and lead to irrelevant or wrong decisions

made by the model classifier. In machine learning, irrelevant or error-prone data lead to an

incorrect model building [15].

Cleaning the collected movie data before they transformed into an input is suitable for natural

language processing experiments. Below are the cleaning steps identified as appropriate to

clean from inconsistencies the data collected from the IMDB database.

24

Data Text Analysis

• Cleaning step 1: Clean the year (i.e 2001) from each title.

Purpose: Common users will never reference a movie title by typing the release year

next to the title.

• Cleaning step 2: Change the position of words (, The), (, A), (, An) & (, Les) to the

front of the title.

Purpose: For example, the movie The Batman Begins, was written as "Batman Begins,

The" which is a mistake during the dataset creation by GroupLens.

• Cleaning step 3: Clean the column of plot summary and user reviews off punctuation

and strip any extra space from the text. This is a starting cleaning step. The next chapter

implements a thorougher plan of text cleaning.

Purpose: The importance of this step will be highlighted in the next sub-section of data

transformation. Briefly, punctuation adds nothing but noise to the textual data. Such

noise does not help at all a mathematical algorithm to understand the meaning of the

sentence. With punctuation, the same word may appear with a comma and with an

exclamation mark. While it is the same word written, an algorithm will conceive it as

two different words. This conceptual error can spoil the results of language processing

models. Cleaning punctuation in a sentence is vital.

• Cleaning step 4: Remove movies with no data in the columns: plot summary, and user

reviews.

Purpose: As already mentioned, missing values is a ground rule for data quality and a

strict rule for this experiment. Thus, movies with values such as "Add a plot" and an

empty user reviews array omitted from the dataset.

• Cleaning step 5: Remove duplicate movies found in the movie’s title column.

Purpose: As already mentioned, duplicate values in the relative column is a ground

25

Data Text Analysis

rule for data quality and a strict rule for this experiment.

In addition to data cleaning, feature engineering is a type of data analytics process that could

amplify an algorithm’s ability to make useful predictions. A more sophisticated definition

of feature engineering found online [41] says Feature engineering uses domain knowledge to

extract features from raw data. Features assembled can improve the performance of machine

learning algorithms. By joining the columns of themovie title, actors, directors, plot summary

and genres the authors created an additional column of text data. Finally, the authors created

a sentiment value related to each movie. The sentiment value depicts the positive or negative

sentiment of the user over a specific movie. The value of the rating column (provided by

Grouplens) is used to assemble the sentiment value column. The sentiment is not used for

the training of the model classifier. Instead, it will be used in the fourth chapter by the

recommendation algorithm to filter the movies recommended to the user.

Having the data cleaned and assured that they strictly follow the data quality rules mentioned

earlier in the chapter, it is time to preprocess the data accordingly to create input variables

suitable for a Natural Language Processing algorithm.

2.4.2 NLP Text Preprocessing

Introduction to Text Preprocessing

Data text preprocessing aims at making the raw data at handmore amenable to neural networks

[5]. It is a sub-field of the Natural Language Processing domain that aims to form of text into

a more digestible input so that a machine learning algorithm can perform better than random.

Text preprocessing documents the steps to transform the text data columns into a predictable

and analyzable format. A format suited to solve a language processing task. Mathematical

algorithms find it challenging to analyze raw context data, and because of that, the format

26

Data Text Analysis

of the data has to change. All inputs and targets in a neural network must be tensors of

floating-point data (or tensors of integers). Data vectorization turns the data, either text or

image, into tensors. Later the document will thoroughly explain and demonstrate how a word

sentence will turn to a sequence of tokens and from there into a sequence of tensors of float

data.

In general, many approaches exist to implement the text preprocessing phase. However, as

MatthewMayomentioned on his article6, the concept of data text preprocessing is summarized

in three main components:

• Tokenization,

• Normalization,

• Substitution

Figure 2.1 Text data preprocessing framework
Source: Text Preprocessing Framework [13]

Tokenization refers to the replacement of a sentence by its words/ tokens. For example,

the sentence "Nikos love machine learning" is replaced by a list of tokens "[Nikos, love,

6https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html

27

https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html

Data Text Analysis

machine, learning]." Those tokens should be replaced by a sequence of float numbers since

a mathematical model can only understand numbers instead of words. Python modules like

TensorFlow7 (developed by Google) include methods to tokenize a given corpus of sentences

automatically.

Normalization refers to a series of related tasks meant to put all text on the same level.

Converting text to either upper or lower case, getting rid of punctuation, converting numbers

to their word equivalents, and vice versa, and removing the stop words are some of the

techniques implemented to give a uniform shape to the text data. Based on the framework,

depicted in the image above, the normalization approach follows three steps: (1) Stemming,

(2) Lemmatization, (3) a group of text cleansing tasks. Stemming and Lemmatization are

case-sensitive approaches, and someone should implement only one of the two upon the text

data. The choice of which approach to follow depends on the experiment itself, the volume of

data, the length of sentences per feature, and the final prediction results achieved. Whereas,

the third step, a group of cleansing tasks, consist of cleaning tasks suitable to every text data,

after excluding experiments of sentiment analysis where the existence of numbers is essential

for the experiment.

Substitution is the third and final cycle of the framework. It is related to steps responsible for

removing the unnecessary parts of a text data originated from the data source. Different data

sources demand different types of cleaning. For example, when downloading an HTML or

XML document, the text would inevitably contain tags not relevant to the text. Is is critical to

remove those unnecessary tags from the text. In similar scenarios, decode JSON format data

to string format to exploit the JSON data efficiently. The Substitution step can occur either

before or after the above two steps of Tokenization and Normalization.

7TensorFlow is an end-to-end open-source platform for machine learning. It has a comprehensive, flexible

ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and

developers easily build and deploy ML-powered applications.

28

Data Text Analysis

Apart from the text preprocessing done before any machine learning model that deals with

textual data, there is another form of preprocessing that is mandatory and applies to any form

of data either textual, numerical, image, or categorical. This prepossessing boils down to

the machine learning pipeline’s essence, and it is essential for any problem. Variations and

different concepts of this preprocessing can significantly affect the predictions of an artificially

intelligent model. The basic concepts of this preprocessing path are the following:

• Split the dataset into two parts, training and test.

• When the dataset is imbalanced, apply re-balancing techniques.

Having introduced the text preprocessing and the parts that assemble this procedure, it is time

to document and present the application of those terms on the movie content of the current

experiment. After the application of the preprocessing tasks, the final number of movies is

equal to 48,9918 movies.

Normalization

In the chapter’s introduction, the documentation mentioned that three elements characterize

the Normalization procedure. Lemmatization, Stemming, and a group of supplementary

actions. Stemming and Lemmatization are text normalization (or sometimes called word

normalization) techniques in the field of Natural Language Processing used to prepare text,

words, and documents for further processing9 [28].

Lemmatization

The breakthrough question(s), being the origin of building both Lemmatization and Stemming

techniques, is briefly the following: "How can someone filter a sentence by omitting the words

that grammatically provide the same meaning? How to make a computer pay attention to a

8The initial number of 58,098 downgraded due to the cleaning that has been applied and documented
9https://www.datacamp.com/community/tutorials/stemming-lemmatization-python

29

https://www.datacamp.com/community/tutorials/stemming-lemmatization-python

Data Text Analysis

wider range of different words?" The example below presents the need to answer those two

questions.

Sentence 1: People are buying goods online, because the price of a good on the Internet is

cheaper.

are, is! be,

goods, good! goods

Based on the underlined words of the sentence above, the pair of words (are, is) and (goods,

good) hide the same effect on the sentence’s meaning. By finding the origin word format for

each pair, the authors can increase the ability of a model to better understand the sequence of

the words above and effectively focus on other words.

A definition written by Stanford Edu states that Lemmatization refers to the use of vocabulary

and morphological analysis of words, purposed to remove inflectional endings and the lemma,

the base or dictionary form of a word. In grammar, inflection is the grammatical modification

of a word to different grammatical levels, for example, tense, case, voice, viewpoint, individ-

ual, number, sexual orientation, and state of mind. An emphasis communicates at least one

syntactic class with a prefix, postfix or infix, or another inner alteration, for example, a vowel

change, for reference see here [40].

In the example above, the words (are, is) will be both replaced by their lemma, the word

(be). By grouping the different inflected forms of a word, so they get analyzed as a single

item, a mathematical model’s probability to differentiate this sentence from a similar one

exponentially increases. Besides, the ultimate goal of a predictive model that learns from the

text is to find the semantics and the different meanings among sentences. The word "be" is

such a common and frequently used word that adds no difference in the meaning of a sentence

whatsoever.

In the experiment developed the Lemmatization of the textual columns: (a) plot summary,

30

Data Text Analysis

(b) movie content, and (c) user reviews, implemented using the python module NLTK and

more specifically the method WordNetLemmatizer(). Natural Language Toolkit (NLTK) is

the number one platform for developing Python programs to operate with human language

content. It offers easy-to-use interfaces to over 40 corpora and lexical sources such as Word-

Net and a set of text processing modules for classification, tokenization, stemming, tagging,

parsing, and semantic reasoning and wrappers for industrial-strength NLP libraries [31]. Most

of the actions undertaken for preprocessing textual data use the NLTK package.

Before continuing to stemming, it is important to mention that the columns meticulously pre-

processed are the five input columns of the multi-genre model classifier. The characterization

input refers to those columns that explicitly offer the corpus of text data to accurately learn

and predict the correct genre assigned to a given movie. Those columns are the following

five: (a) actors, (b) plot summary, (c) movie features10, (d) user reviews and (e) movie

title.

Stemming

Stemming is eliminating affixes (suffixes, prefixes, infixes, circumfixes) from a word to obtain

a word stem. Stemming refers to a crude heuristic process that chops off the end of words,

and often includes removing derivational affixes11.

Sentence 2: All social interactions are forbidden but running.

forbidden! forbid,

running! run

In general, Stemming is much of a simpler approach than Lemmatization. A word stem need

not be a similar root as a word reference-based morphological root (lemma) but rather is just

an equal or smaller form of the same word. Stemming algorithms are typically rule-based. A

10The feature engineered column that includes the information found in columns (title, actors, plot summary,

director names, genres)
11Removing suffixes from a word called Suffix Stripping

31

Data Text Analysis

heuristic procedure that cuts off the finishes of words. A word is looked at and go through a

progression of conditionals that decide how to chop it down, see here [27] for reference.

Even though being a more heuristic rather than sophisticated approach like Lemmatization,

stemming is not selected as the approach of text preprocessing due to the following two reasons

(a) over-stemming, (b) under-stemming, as explained accurately in this article. Over-stemming

occurs when cutting off a high proportion of a word. Over-stemming can result in a single

letter or too nonsensical stems. Alternatively, it can result in words being resolved to the same

stems, even though they probably should not be. For example, if someone examines the words

astronomy, astronomical, astronomies, astronomer, a stemming algorithm that resolves these

four words to the stem word "astronom" has fallen into the trap of over-stemming. A better

resolution might have the words (astronomer, astronomical) and (astronomy, astronomies)

stemmed together. Under-stemming is the opposite event. It happens when several words are

the forms of one another. The proper solution would be to resolve to the same stem, although

actually, they do not. By example, the words data, datum, date stem-like,

data! dat,

datum! datu,

date! dat,

Even though the stemming algorithm performs poorly, it is clear that amachine learningmodel

will perform deficiently since the words date and data have a completely different meaning.

Selecting the Stemming over the Lemmatization, and vice versa, to preprocess data can

drastically affect a model’s classifier results. It is advisable when choosing one of the two to

check the performance of a prediction model and the data itself. Moreover, other languages

even if they seem somewhat related, have drastically different results with Stemming and

Lemmatization.

Group of additional normalization tasks

32

https://towardsdatascience.com/stemming-lemmatization-what-ba782b7c0bd8

Data Text Analysis

Additional normalization tasks represent the third component of implementing normalization

preprocessing to textual data, and it consists of actions that are optional and non-applicable

to all textual data. Thus, the experimentation is also an important step as it was with

the application of Lemmatization or Stemming. The additional preprocessing actions that

transformed the textual data of this experiment are the following:

• Convert Accented Characters to ASCII

Example: If a French user made a review for an IMDBmovie, then it’s highly probable

that words like cafe and lattewould be written like café and latté. An NLP classification

algorithm would have treated them as totally different words, even though they refer to

the same thing.

Python implementation: The unidecode module transforms words into their ASCII

form. The function unidecode() takes Unicode data to represent it in ASCII characters

(e.g., the universally displayable characters between 0x00 and 0x7F), chosen to match

what a human with a US keyboard would choose.

• Expand Contractions

Example: Contractions are shortened words, e.g., I’m and haven’t. Stretching such

words to "I am" and "have not" helps to standardize/ normalize the text.

Python implementation: A custom function that transforms several contractions into

their decontracted form.

• Remove punctuation

Example: Nikos loves training deep learning models!. Splitting this sentence to

word-level the result is ("Nikos", "love", "training", "deep", "learning", "models!") or

("Nikos", "love", "training", "deep", "learning", "models", "!"). In either case, the

exclamation mark is a part of speech and has nothing more to offer to the sentence’s

meaning. Apart from enhancing the meaning of the sentence, punctuation oppose an

33

Data Text Analysis

extra hurdle to text preprocessing and NLP model training.

Python implementation: The python module string has the method punctuation con-

nected to a dictionary of different punctuation symbols.

• Strip white spaces

Remove consecutive word brakes to avoid turning them into tokens.

• Treatment for Numbers

Example: The food on that restaurant was terrible even on my third visit Transform

the word in bold format to its numeric representation and remove it from the sentence,

since as a numeric word has nothing to offer in the meaning of the sentence. Addi-

tionally, remove dates and years from the text. Even though this might be an effective

transformation when dealing with a sentiment analysis experiment, numeric data may

not play an important role in the model’s performance to distinguish a positive from a

negative review. However, if the NLP task is to extract the number of tickets ordered in

a message to a chatbot, removing the numbers is unnecessary. Either way, the current

experiment transformed the numbers to their numeric format and then removed them

from the text along with the dates.

Python implementation: Use the Python module word2number12.

• Remove stop-words

Example: Natural Language Processing is a popular field of Artificial Intelligence.

The words highlighted as bold are stop-words. Stop-words are common words that

usually connect sentences or phrases, start or end sentences, or ensure a grammatically

correct sentence. Words like "we" and "are" probably do not help in NLP tasks such as

sentiment analysis or text classifications. Thus, remove those words to save computing

time and effort in processing large volumes of text.

12Python module to convert number words (e.g., twenty-one) to numeric digits (21). It works for positive

numbers up to the range of 999,999,999,999 (e.g., billions).

34

Data Text Analysis

Python implementation: Use the Python module text.

• Lowercase the words

Example: The text classification is one of the problems solved with NLP models. The

final standardized transformation implemented on the textual movie data is often a

default one, with the user to choose between uppercase or lowercase letters. Apply this

normalization step to handle words like "The" and "the" highlighted in the example

sentence above. A mathematical model will treat those words differently since their

written form is not the same, even though they refer to the same word. Not handling

similar issues, might lead to a decline in the model’s classification predictive power.

Python implementation: Build-in python method lower().

Concluding, in the current experiment of text classification, the textual data of column(s): (a)

actors and (e) movie title transformed based on the following steps of normalization:

• Lowercase the words

, the textual data of column(s): (b) plot summary and (c) movie content transformed based on

the following steps of normalization:

• Convert Accented Characters to ASCII

• Expand Contractions

• Remove punctuation

• Strip white spaces

• Treatment for Numbers

• Remove stop-words

• Lowercase the words

and finally, the textual data of column(s): (d) user reviews transformed based on the following

35

Data Text Analysis

steps of normalization:

• Convert Accented Characters to ASCII

• Expand Contractions

• Remove punctuation

• Strip white spaces

• Remove stop-words

• Lowercase the words

The authors did not apply the treatment of numbers for column of user reviews, because many

were the cases of incorrectly separated words written by the user. Thus, the word2number

algorithm confused those words as numbers and could not provide an appropriate numeric

replacement.

Follow the example below to view a demonstration of the normalization steps applied on the

five columns of the first movie in the dataset "Toy Story":

Column 1: Actors column for the movie Toy Story before the normalization:

[’Tom Hanks’, ’Tim Allen’, ’Don Rickles’, ’Jim Varney’, ’Wallace Shawn’, ’John Ratzen-

berger’, ’Annie Potts’, ’John Morris’, ’Erik von Detten’, ’Laurie Metcalf’, ’R. Lee Ermey’,

’Sarah Freeman’, ’Penn Jillette’, ’Jack Angel’, ’Spencer Aste’]

Actors column for the movie Toy Story after the normalization:

’tom hanks,tim allen,don rickles,jim varney,wallace shawn,john ratzenberger,annie potts,john

morris,erik von detten,lauriemetcalf,r. lee ermey,sarah freeman,penn jillette,jack angel,spencer

aste’

Column 2: Plot Summary column for the movie Toy Story before the normalization:

"A cowboy doll is profoundly threatened and jealous when a new spaceman figure supplants

36

Data Text Analysis

him as top toy in a boy’s room."

Plot Summary column for the movie Toy Story after the normalization:

"cowboy doll profoundly threaten jealous new spaceman figure supplants toy boy room"

The cleaning algorithm removed stop-words like is, and. Moreover, it replaced words like

threatened by their lemma, which is, in this case, the word threaten. Last but not least, the

algorithm removed any form of punctuation.

Column 3: Movie Features column for the movie Toy Story before the normalization:

’Toy Story Tom Hanks Tim Allen Don Rickles Jim VarneyWallace Shawn John Ratzenberger

Annie Potts John Morris Erik von Detten Laurie Metcalf R. Lee Ermey Sarah Freeman Penn

Jillette Jack Angel Spencer Aste John Lasseter A cowboy doll is profoundly threatened and

jealous when a new spaceman figure supplants him as top toy in a boy’s room. Adventure

Animation Children’

Movie Features column for the movie Toy Story after the normalization:

’toy story tom hanks tim allen don rickles jim varney wallace shawn john ratzenberger annie

potts john morris erik von detten laurie metcalf r lee ermey sarah freeman penn jillette jack

angel spencer aste john lasseter cowboy doll profoundly threaten jealous new spaceman figure

supplants toy boy room adventure animation children’

Column 4: User Reviews column for the movie Toy Story before the normalization:

"Andy’s toys live a reasonable life of fun and peace, their only worries are birthdays and

Christmases, when new toys could easily replace those already there. One such birthday

Andy’s top toy, Woody the cowboy, finds himself in direct competition with Andy’s new Buzz

Lightyear doll. When rivalries boil over Woody tries to hide Buzz down the side of the bed

but accidentally pushes him out the window, the other tops expel Woody, and he leaves with

no choice but to find Buzz and return him to the house. But with only two days before Andy

37

Data Text Analysis

moves house, time is of the essence. Given how often the same mix of animation, wit, jokes

and kids humour has been used since Toy Story (Ice Age, Monsters Inc, Bugs Life) it is easy

to forget how refreshing it was when it first came out. I have just watched it again and it is

dating a little in comparison to more recent twists on the formula. It seems each one has to

be sharper and have more references etc in the background. However it is still very funny and

deserves praise for being the first of a successful formula. The plot is simple but effective

and actually has genuine drama and excitement to it. The main story is fun but the degree of

character development is what really shores it up. The conflict between Buzz and Woody is

taken deeper than this and, when confronted by the truth of his status as a toy, Buzz’s turmoil

is very real as opposed to him being a cartoon character and nothing more. Despite the two

strong leads there is a real depth in the support cast. They may not actually have that many

lines, but they have all the funniest lines. Most of the ‘adult’ wit comes from the Potato Head,

dinosaur, the pig and slinky dog. They are funny and are very well used. In fact the majority

of this humour and plot will go right over kids heads. Looking back on it, I do feel a cynical

edge on it in so much as this film must really have helped sales of the toy companies in the

film. It’s hard not to see the marketing department standing behind this film rubbing their

hands. However the actual product is so wonderfully fun that I forgot this quickly. The voice

work is excellent and the characters match the actors. Hanks is good as Woody and Allen has

a good B-movie type voice for Buzz. Varney, Ratzenberger, Ermey (doing his usual), Rickles

and others are all really good in the support roles and, probably, come out as the favourite

characters for adults. Overall this is a classic film that will appeal to adults as much as to kids

(if not more). A good plot and a really sharp script make the already short running time fly

by. The only downside is that your kids will want you to go out and buy the damn things!"

User Reviews column for the movie Toy Story after the normalization:

"andy toy live reasonable life fun peace worry birthdays christmases new toy easily replace

birthday andy toy woody cowboy find direct competition andy new buzz lightyear doll rivalry

38

Data Text Analysis

boil woody try hide buzz bed accidentally push window top expel woody leave choice buzz

return house day andy move house time essence given mix animation wit joke kid humour use

toy story ice age monsters bugs life easy forget refresh come just watch date little comparison

recent twist formula sharper reference background funny deserves praise successful formula

plot simple effective actually genuine drama excitement main story fun degree character

development really shore conflict buzz woody take deeper confront truth status toy buzz

turmoil real opposed cartoon character despite strong lead real depth support cast actually

line funniest line adult wit come potato head dinosaur pig slinky dog funny use fact majority

humour plot right kid head looking feel cynical edge film really help sale toy company film

hard marketing department stand film rub hand actual product wonderfully fun forget quickly

voice work excellent character match actor hanks good woody allen good b movie type voice

buzz varney ratzenberger ermey do usual rickles really good support role probably come

favourite character adult overall classic film appeal adult kid good plot really sharp script

make short running time fly downside kid want buy damn thing".

Column 5: Movie Title column for the movie Toy Story before the normalization:

"Toy Story (1995)"

Movie Title column for the movie Toy Story after the normalization:

"toy story"

Tokenization & Segmentation

Tokenization is the third and final step of the NLP text preprocessing framework. Tokenization

is a word directly connected to the term data vectorization. Having the data cleaned off noises

and normalized/ standardized (referring to the first and the second element of the framework

presented in figure 2.1), the final step is to vectorize the textual data before starting to insert

the data to a mathematical model. Data vectorization, transforming a text corpus to a sequence

39

Data Text Analysis

of float or integer points called tensors, consists of the following steps:

Step 1: Tokenize the data

TensorFlow and Keras offer the text tokenization utility class to automate a text corpus’s

vectorization process, turning each text into a sequence of integer numbers with each

integer being the index of a token in a dictionary. The Tokenizer class consists of six

arguments, the definition of which plays an important role in the input data that will be

handled by the mathematical model. More specifically, the arguments are 13:

• num_words: The maximum number of words to keep, based on word frequency.

Only the most common (num_words-1) words kept. The specific argument is the

most determinant one out of the six. It specifies the actual number of words/tokens

used as part of the vocabulary built upon the corpus of each of the five columns

(actors, plot, movie features, user reviews, movie title). For example, from the

260,000 actors in all 48,991 movies, the 95% most frequent actors have been kept

to build the actor’s column corpus vocabulary. The authors dropped the rest 5%

of the actor names. It is advisable not to assign to the num_words argument, the

total length of the words in the text. Because then the tokenizer will saturate with

plenty of words. Moreover, it is also not advisable to use only one percent of the

whole text because then the algorithm will not have enough vocabulary to make

proper classifications.

• filters: Each element is a character filtered from the text. The default is all

punctuation, plus tabs and line breaks, minus the apostrophe character. Specify

this argument to the punctuation that splits the corpus of sentences (e.g. ’,’ or ’ ’).

• lower: Boolean. Whether or not to convert text to lowercase. An argument that

may be left to its default value False if the data is already standardized.

13based on the Keras documentation at https://keras.io/preprocessing/text/

40

https://keras.io/preprocessing/text/

Data Text Analysis

• split: A string symbol. Separator for word splitting (e.g. ’,’). Set this value to

space if the words in the corpus are separated by space or comma if commas

separate the data. Any type of punctuation or word suitable to split words into

individual tokens.

• char_level: If True, treat every character as a token. This argument separates a

corpus of sentences not only by word but also by character per word.

• oov_token: if given, it will be added to word_index and used to replace out-of-

vocabulary words during text_to_sequence calls. A second determinant argument

that specifies the index of the rest of the words/tokens that have been thrown

out by the num_words arguments. The 5% of the most uncommon words, even

though discarded, should have a unique token to take part in the text classification

experiment.

Implementation on the current experiment: Having explained each argument of

the tokenizer class meticulously, it is time to present their settlement on the current

experiment of movie classification. Deploy as many tokenizers as the number of textual

columns.

• num_words: Apply a word frequency table to accurately specify the number of

words per column, using the Python method CountVectorizer14 [35] of the Scikit-

learn module. CountVectorizer converts a collection of text documents into a

matrix of token counts. With CountVectorizer the authors could easily specify for

example the number of actors played in more than 2 movies, or how many movie

plots contain the word "obnoxious".

Column 1: Actors

Example: [(’christopher lee’, 153), (’john carradine’, 130), (’john wayne’, 119),

14https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

41

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

Data Text Analysis

(’clarence nash’, 115), (’gérard depardieu’, 110), (’michael caine’, 109), (’donald

sutherland’, 104), (’eric roberts’, 102), (’anthony quinn’, 100), (’robert de niro’,

99)], Christofer Lee is the actor who played in the most films of all the actors in

the dataset.

Summary numbers: 262,252 actors in total. 84,204 of them played in more than

two movies. Thus, 178,048 played in only one movie.

Argument value: 249,140 actors. The 249,140 (95.0%) most frequent actors

have been selected, the rest 13112 (5.0%) assigned to theOut-of-Vocabulary token.

Column 2: Plot Summary

Example: [(’young’, 5472), (’life’, 5469), (’man’, 4489), (’woman’, 4203), (’year’,

3646), (’love’, 3480), (’new’, 3426), (’family’, 3287), (’story’, 3247), (’world’,

2787), (’girl’, 2696), (’old’, 2604), (’friend’, 2593)], "young" is the most frequent

word in the dataset, present in the plot summaries of 5,472 movies.

Summary numbers: 43,623 words/tokens in total. 21,725 of them used in the

plot summaries of more than two movies. Thus, 21,898 are written in the plot

summary of only one movie.

Argument value: 41,442 words. The 41,442 (95.0%) most frequent words have

been selected, the rest 2,181 (5.0%) assigned to the Out-of-Vocabulary token.

Column 3: Movie Features

Example: [(’drama’, 23177), (’comedy’, 15025), (’john’, 12853), (’michael’,

9916), (’david’, 8690), (’robert’, 7731), (’action’, 7120), (’james’, 7107), (’ro-

mance’, 6908), (’young’, 6846), (’thriller’, 6462), (’richard’, 6035), (’paul’, 5752),

(’crime’, 5738)], "drama" is the most frequent word in the dataset, present in the

movie features of 23,177 movies. Drama is also the most dominant movie genre

in the dataset.

42

Data Text Analysis

Summary numbers: 169,274 words/tokens in total. 84,816 of them used in the

movie features column of more than two movies. Thus, 84,458 are written in the

movie features of only one movie.

Argument value: 160,811words. The 160,811 (95.0%)most frequentwords have

been selected, the rest 8,463 (5.0%) assigned to the Out-of-Vocabulary token.

Column 4: User Reviews

Example: [[(’film’, 128949), (’movie’, 94127), (’do’, 44028), (’like’, 42321),

(’time’, 35331), (’story’, 34224), (’character’, 32963), (’make’, 31545), (’good’,

31179), (’just’, 30482), (’watch’, 23713), (’scene’, 22601), (’play’, 22466), (’great’,

21534)], "film" is the most frequent word in the dataset, present in the movie

reviews of 128,949 movies.

Summary numbers: 126,042 words/tokens in total. 62,953 of them used in

the movie reviews of more than two movies. Thus, 63,089 written in the movie

reviews of only one movie.

Argument value: 119,740 words. The 119,740 (95.0%) most frequent words

have been selected, the rest 6,302 (5.0%) assigned to the Out-of-Vocabulary token.

Column 5: Movie Title

Example: [[(’the’, 15713), (’of’, 5243), (’of’, 44028), (’a’, 2409), (’in’, 1796),

(’and’, 1732), (’to’, 1125), (’love’, 700), (’man’, 675)], "the" is the most frequent

word in the dataset, present in the movie title of 15,713 movies.

Summary numbers: 27,749 words/tokens in total. 9,996 of them used in the

movie reviews of more than two movies. Thus, 17,753 written in the movie

reviews of only one movie.

Argument value: 27,749 words. The 27,749 (95.0%) most frequent words have

43

Data Text Analysis

been selected, the rest 1,387 (5.0%) assigned to the Out-of-Vocabulary token.

• filters: The authors specified this argument to the element that splits the sentences

into. Set to space for the columns: plot summary, movie features, movie reviews,

and movie title. Set the respective argument to comma for the actors’ column.

• lower: Specify the argument to True for each of the five columns. Even though

the text is already lowercased, to cover any uppercase incident, the argument took

the positive boolean value.

• split: For the cast column, this value is set to "," (comma without the following

space), whereas for the rest of the four columns the split argument is set to " "

(empty space).

Actor names preprocessed before splitting

"tomhanks , tim allen , don rickles , jimvarney,wallace shawn,john ratzenberger,annie

potts,john morris,erik von detten,laurie metcalf,r. lee ermey,sarah freeman,penn

jillette,jack angel,spencer aste"

??y

Actor names into tokens after splitting on (",")

[’tom hanks’, ’tim allen’, ’don rickles’, ’jim varney’, ’wallace shawn’, ’john ratzen-

berger’, ’annie potts’, ’john morris’, ’erik von detten’, ’laurie metcalf’, ’r. lee

ermey’, ’sarah freeman’, ’penn jillette’, ’jack angel’, ’spencer aste’]

Plot Summary preprocessed before splitting

"cowboy doll profoundly threaten jealous new spaceman figure supplants toy

boy room"

??y

Plot Summary word tokens after splitting on (" ") space

44

Data Text Analysis

[’cowboy’, ’doll’, ’profoundly’, ’threaten’, ’jealous’, ’new’, ’spaceman’, ’figure’,

’supplants’, ’toy’, ’boy’, ’room’]

The same split string value applied to the column of the plot summary is also

applied to the columns of movie features, user reviews, and movie titles.

• char_level: False, characters not treated as tokens.

• oov_token: Set Out-of-Vocabulary token to "<OOV>" for each of the five columns.

Apply the Tokenizer class to each of the five cleaned and prepared columns. When

calling the Tokenizer class upon the preprocessed data, the result is an object used for

the following purposes:

• Get the word index for each token

• Transform the textual data to a sequence of integers based on the word index of

both the tokens present in the vocabulary and the OOV token index.

Step 2: Get theWord Index for each token

Word index is a dictionary type object that maps words in the vocabulary to their

numeric representation, a mapping essential for sequence encoding.

Word index representation of column Actors

’sean bean’: 323, ’john ireland’: 324, ’michael lerner’: 325, ’cloris leachman’: 326,

’ciarán hinds’: 327, ’kevin corrigan’: 328, "vincent d’onofrio": 329,

with the keys to represent the actor name and the values the assigned word index.

Word index representation of column plot symmary

’<OOV>’: 20001, ’life’: 2, ’young’: 3, ’man’: 4, ’woman’: 5, ’year’: 6, ’love’: 7,

’new’: 8, ’family’: 9, ’story’: 10, ’world’: 11

The out-of-vocabulary token has also its index.

Thus, the vocabulary built for each of the five columns has a total length equal to the

45

Data Text Analysis

num_words set for each column plus one word corresponding to the OOV token.

Step 3: Transform textual data to a sequence of integers

Next, having created the corpus vocabulary with the most frequent words per column

and assigned those tokens to a unique word index, it is time to replace the actual words

with their index. For example, the word index 323 will replace every occurrence of the

actor name Sean Bean found in the dataset. Similarly, replace the word life with the

word index 2, every time found in a movie’s plot summary.

Sequence of Integers representation for column actors

Random movie one:

[2024, 3228, 451, 1615, 124, 7888, 9046, 4817, 3229, 3919, 1150, 6131, 18118,

249141, 18119]

Random movie two:

[3230, 7889, 12357, 9047, 1616, 2643, 4344, 3231, 5439, 14759, 249141]

If an actor name has a word index in the vocabulary, replace the actor’s name with the

index range from 1 to 249140. If the name is not present in the vocabulary then replace

it by the OOV token of index 249140+1 as seen in both random movies one & two.

The interesting thing, also necessary to reference at this point, and directly connects

to the rest of the steps remaining to finish the tokenization cycle, is the length of the

sequence per movie. In the example above, the two sequences have different lengths.

The first sequence has 15 integers, whereas the second sequence has only 11. The

reasonable question raised based on that difference is, how the different lengths might

cause a problem. The answer hides on the concept of how a deep learning model works

and expects the input data. Neural networks training expects to receive the data on

batches of same length dense vectors. For example, if in a random experiment, the

number of sample data was 1050, and the specified batch size was 100, then it would

take approximately 1050/100 = 10 batches to train the model. In other words, ten

46

Data Text Analysis

different samples of the data used to train the model. By default, a batch requires the

data samples per input layer to have the same length; otherwise, the training procedure

stops. Moreover, the input sequences should be of the same shape. Padding and

masking are two techniques used to resolve the different sequence length of the input

data.

Step 4: Padding and Masking the sequences

Padding is the process of balancing the sequences to the same length. TensorFlow

and Keras offer the pad_sequences method to automate the process of padding. This

method transforms an array of sequences (lists of integers) into a 2D Numpy array

of shape (num_samples, num_timesteps). Where num_samples is the total number

of samples available, whereas num_timesteps equal to a given value or the longest

sequence otherwise. The arguments of the pad_sequences method are the following:

• sequences: List of lists, where each element is a sequence. In the current ex-

periment, the sequences of integers of the columns actors, plot summary, movie

features, user reviews, and movie title.

• maxlen: Int, the maximum length of all sequences.

• dtype: Type of the output sequences. Argument not specified in the current

classification experiment.

• padding: String value equal to ’pre’ or ’post’. Pad either before or after each

sequence. Set to ’post’ for the current classification experiment.

• truncating: String value equal to ’pre’ or ’post’. Remove values from sequences

larger than maxlen, either at the beginning or at the end of the sequences.

• value: Float or String value, which represents the padding value shown when

the sequence’s length is shorter than the maxlen argument. Not specified in the

47

Data Text Analysis

current classification experiment.

Apply padding following one of the two methods:

• Method 1: Expand all sequence lengths to the length of the highest sequence in

the dataset.

• Method 2: Truncate all sequence lengths to the length of smaller sequences.

Among the two, the authors selected the first method. Based on the first method,

the authors calculated each sequence’s maximum length in the dataset and selected

for maximum length the 90% most frequent length. When proceeding with the first

approach, the main concern is the word index inserted to the sequences with a length

smaller than the maximum length. The additional integers resulted from the expansion

of the sequence are assigned to number zero.

More specifically the maxlen parameter per column is:

• Actors: Length of the sequences in the 90 percentile of the column is equal to 15

actors per sequence. Thus, sequences that include less that 15 word indexes will

be expanded to 15 integers.

Example: [2024, 3228, 451, 1615, 124, 7888, 9046, 4817, 3229, 3919, 1150,

6131, 18118, 0, 0]

The sequence above has two additional 0 integer values indicating the sequence’s

successful expansion to 15 from 13 integers.

• Plot summary: Length of the sequences in the 90 percentile of the column is equal

to 22 words per sequence. Thus, sequences that include less than 22 word indexes

will be expanded to 22 integers.

Example: [4, 216, 8, 1459, 112, 130, 209, 22, 9329, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0]

The above plot summary sequence had a length significantly less than the 90

48

Data Text Analysis

percentile of cases in the plot summary column. Thus, it should include many

more 0 integers to balance with the rest of the plot summaries in the dataset.

• Movie features: Length of the sequences in the 90 percentile of the column is

equal to 60 words per sequence. Thus, sequences that include less than 60 word

indexes will be expanded to 60 integers.

Example: [1656, 723, 780, 368, 12405, 162, 1589, 124, 1753, 136, 4508, 811,

222, 13, 11422, 573, 7655, 91, 566, 197, 5274, 222, 4, 190, 159, 732, 384, 765,

2817, 27, 424, 4, 1314, 99, 7656, 17, 667, 32, 3779, 344, 444, 640, 83, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

• User reviews: Length of the sequences in the 90 percentile of the column is equal

to 328 words per sequence. Thus, sequences that include less than 328 word

indexes will be expanded to 328 integers.

Example: [2, 5723, 184, 48, 18, 177, 1138, 11246, 8717, 7065, 5269, 8718,

13360, 9814, 323, 228, 16652, 2, 142, 178, 955, 20001, 230, 18, 76, 336, 1522,

304, 2831, 10377, 6684, 733, 475, 6084, 2, 249, 10864, 4867, 61, 2, 24, 201, 5,

2495, 842, 861, 2463, 2463, 56, 566, 13649, 621, 4650, 3609, 475, 570, 1800,

5021, 261, 621, 20001, 24, 5, 11, 503, 61, 433, 16198, 12814, 182, 44, 1882,

3738, 367, 6874, 1101, 2390, 3723, 44, 5360, 330, 115, 1565, 4839, 24, 5, 4811,

19003, 1565, 4839, 14, 1480, 20001, 95, 87, 5334, 455, 44, 2770, 56, 419, 1642,

4248, 20001, 1058, 2296, 202, 495, 595, 224, 202, 4296, 2, 595, 224, 142, 87,

4675, 4445, 5487, 18, 566, 1062, 4651, 4580, 3043, 10212, 11050, 1730, 16199,

857, 190, 27, 307, 3214, 224, 42, 1315, 1448, 4867, 29, 160, 503, 805, 4, 499,

409, 1786, 384, 236, 20001, 2679, 1382, 2875, 247, 95, 612, 1642, 4248, 0, 0, 0,

0, 0,

0, 0,

0, 0,

49

Data Text Analysis

0, 0,

0, 0,

0]

• Movie Title: Length of the sequences in the 90 percentile of the column is equal

to 6 words per sequence. Thus, sequences that include less than 6 word indexes

will be expanded to 6 integers.

Example: [2, 5723, 184, 48, 18, 0]

After the padding is applied, the final output is an appropriate 2D NumPy array of integer

sequences of shape (number of data samples, maximum_length). Those five different NumPy

arrays will be the tensor inputs received by the deep neural algorithm assembled to classify

the movies.

Actors output: A NumPy array of lists with shape (48991, 15).

Plot Summary output: A NumPy array of lists with shape (48991, 22).

Movie Features output: A NumPy array of lists with shape (48991, 60).

User Reviews output: A NumPy array of lists with shape (48991, 328).

Movie Title output: A NumPy array of lists with shape (48991, 6).

Concluding the first part of the NLPText classification chapter, the data are prepared and ready

to be inserted for training into a mathematical model. Even though the authors could train

a machine learning model on all the 48,991 movies available, this is not the usual approach.

The most common approach followed in a situation like this is to provide two different data

samples. One sample for training the machine learning model, and one more sample for

testing the machine learning model on data that the algorithm has never-seen-before. As

already mentioned in the intro paragraph of the chapter, the next part does not apply only to

NLP experiments but rather to any experiment related to machine learning & deep learning.

50

Data Text Analysis

2.4.3 Prepare the input for deep learning experimentation

Note: This part creates the primary input for the next chapter where the training and prediction

of different neural networks occur.

Data preprocessing is close to the end. Separation of input data into different sample for model

experimentation is the third and final component of the data preprocessing. Neural networks

and any kind of machine learning model is trained upon a sample dataset and then tested upon

a different sample dataset. As a result, the second part of NLP Text Preprocessing will focus

on splitting the data preprocessed to samples capable of training and testing a deep learning

model. But before proceeding to what applied in the current classification experiment; first,

start by explaining the importance of splitting the data into different samples for training and

testing a predictive model classifier.

Data separation into different samples affects machine learning models’ evaluation, a fun-

damental concept for both machine & deep learning fields. Someone could ask why not

to evaluate a neural network on the same data initially trained. Because when a third user

will use the same model to make predictions on data never addressed before would result in

severe predictions and mistakes made by the model. A situation often called overfit. Overfit

can happen when a machine-learning algorithm continues to correctly classify data that has

already learned but will hustle to classify data never seen before. A model that is overfitting

is capable of making classifications very close to the training data, which already seen, but

will be very inaccurate on new data points.

Overfitting is the main hurdle that prevents a mathematical model trained for classification

to achieve its original goal, a model that can generalize. Model generalization is the ability

of a model to perform well on data never seen before. As a result, separating the data into

different samples, one for training and one for testing the model, would potentially minimize

the chance of getting a model that overfits. Although two different samples, one for training

51

Data Text Analysis

the model and one for testing it, are enough to minimize the risk of overfitting? The answer

is no. When developing a model always involve the process of tuning its hyper-parameters.

Hyper-parameters are parameters such as the number of layers in a neural network or the batch

size of a layer for parallel data training. The hyper-parameters should not be confused with

the parameters of a neural network, such as its weights. The hyper-parameter tuning occurs

when monitoring the model’s performance on classifying data found on a third sample called

validation data.

The validation sample originates from the training sample data points and is used to optimize

the algorithm’s learning. Optimize the learning process by changing the configuration of

some parameter space. However, overfit can still exist when tuning the model’s performance

on the validation set, even though the model was never trained on it but rather evaluated. Root

to this problem is the information leaking. Whenever a hyper-parameter of the model is tuned

based on the model’s performance on the validation set, information about the validation

data leaks into the model. Executing the experiment many times and for many different

hyper-parameters, a significant amount of information about the validation dataset leaks to

the model. The information leakage will result in a model that performs extremely well on

the data sample used to optimize the model in the first place. From that event, finds origin the

need to have a third independent sample of totally new data to test the model’s performance.

The model should not have access to information about that data sample at all. If anything

about the model has been tuned based on test dataset performance, then the model’s measure

of generalization will be flawed.

In conclusion, it is essential to separate the preprocessed dataset into three parts: training

sample, validation sample, and test sample. Apart from using the validation sample for hyper-

parameter tuning and performance optimization, it is common practice to use validation data

to evaluate different models and use the never-seen-before test data to test the model’s ability

to generalize.

52

Data Text Analysis

It is important to specify the values of two critical components, before sampling the data

points into train, validation and test sets.

Component 1: Split Ratio

Specify the split ratio. The splitting ratio will determine how much of the total data allocated

for training and testing. Next, select the validation data points out of the training set. There are

different combos of split ratios, like 70% training and 30% test data, 80% - 20%, or even 50%-

50%. Typically, 50-50 is the least probable pair of values to select, and it fits situations where

there is a high volume of extremely balanced data. In the current classification experiment,

the number selected is 80% training and 20% test data points. In chapter three, from the

80% of data points, 30% is selected for validation and 70% for training. There are different

methods to select a validation dataset out of the train set. The three most common approaches

are (a) Out-of-sample validation, (b) K-fold validation, and (c) iterative k-fold validation. The

current experiment proceeds with approach (a).

Component 2: How to split the data points

The second component is the split method of the data points. This component is very critical

to the performance of a classification algorithm. One method recommends that the first N

number of data points will go for training and the rest for testing. However, this approach has

one and great throwback. Assuming the creation of a mathematical model that can identify the

number shown in an image and the moment has come to test its performance to derive correct

classifications. The independent features are values like the pixels, the width of the image,

and the height of the image. The dependent variable, or usually called the target variable, is

a single digit from 0 to 10. The dataset has one-thousand numbers ordered by digit and has

ten occurrences of each digit. Splitting the dataset into 70% training and 30% test samples,

will result to a training sample of 700 numbers from digits 0 to 7, and a test sample of 300

numbers from digits 8 to 10. This approach will lead the model to overfit; it will accurately

53

Data Text Analysis

predict digits from 0 to 7, but will never accurately predict the digits from 8 to 10. Both

training and test sets should contain all the different labels that exist in the dataset. Thus, it is

essential to shuffle the data and then perform the split, the so-called random shuffle split.

However, what is the consequences when the dataset is imbalanced and someone applies

random shuffle split. A dataset is characterized as imbalanced if the number of data points

per label differs significantly. The example above is quite the opposite of an imbalance

dataset because, as mentioned, each digit label has ten observation points. As a result, when

dealing specifically with classification experiments, either they belong to binary classification,

multi-class classification, or multi-label classification, the researcher should handle one more

component. This component canmake a significant differencewhen the dataset is imbalanced,

rather than when the data is balanced. The component addresses the number of data points per

label allocated between the train and the test set. The percentage of observations per label in

the training sample has to be equal to the percentage of observations in the test sample. More

precisely, if label A is present in the 20% of the total observations in the training sample, then

the label A should also represent the 20% of the total observations in the test sample. The

so-called stratified shuffle split was applied to address the issue of inaccurate classifications

in imbalanced datasets.

In conclusion, the two issues addressed when splitting data for classification experiments

is not only the number of data points (split ratio) allocated to each of the training and test

samples but also the percentage per label to be equally present to both the training and the

test sets (stratified shuffle split) in case of imbalanced datasets.

Having explained the concepts that can affect the data separation into train, validation and test

samples, it is time to present the application of those approaches on the data of the current

multi-label classification experiment.

(Concept 1) Split ratio selected: 80% training sample and 20% test sample.

54

Data Text Analysis

Training sample: 39,192 movies for training.

Test sample: 9,799 movies for testing.

Both the training and the test samples are containing the independent and the target variable.

Independent variables (X):Actors, Plot summary, Movie Features, User Reviews andMovie

Title.

dtype of independent variables: 2D Numpy arrays of integer numbers of shape (num-

ber_samples, maxlen).

Dependent variables (y): Movie genres.

dtype of dependent variable: 2D Array of genres of shape (number_of_samples, num-

ber_of_genres).

(Concept 2) Stratified shuffle split: The stratified shuffle split method is selected instead of

the opposite approach, random shuffle split. Because the data is imbalanced, the distribution

of the data points that belong to a specific label is not uniform. So to make sure that the

algorithm will be trained upon all the labels and will not favor the dominant ones15, the

percentage allocation of genres between the training and the test samples should be identical

to the percentage of the labels in the initial dataset. See below the results of the stratify split.

Label allocation among the movies

The figure above illustrates the percentages of movies belonging to each genre. They are total

17 distinct genres in the dataset. Needless to denote that GroupLens included movies from

twenty-eight distinct genres, although the authors removed eleven of them because they were

assigned to movies belonging to the 1% of the total dataset. The distribution shown in the

figure should be the same in the training and test samples, respectively. Oppositely, applying

random shuffle split, it would be highly probable to include none of the least popular movies

15The labels with the highest percentage of data points

55

Data Text Analysis

Figure 2.2 Percentage of genres per movie

in one of the samples.

Stratified shuffle split

Figure 2.3 Stratified shuffle split on training & test samples
(a) Training sample (b) Test sample

As presented above, both the train and the test data samples include the same percentage per

genre as the initial dataset. A goal accomplished with stratified shuffle split.

56

Data Text Analysis

Concluding the second chapter, the reader reviewed a complete workflow presentation of the

data text analysis. Firstly, the document stated the data requirements, the specific rules, the

data should follow for the classification experiment. Next, the document described the data

sources and the tools utilized to extract movie information based on the pre-defined data

requirements. The downloaded data have been cleaned and prepared for language processing

with the help of the NLP text preprocessing framework. Finally, the document explained the

importance of separating the dataset into three different data samples to help the evaluation

process of machine learning classification algorithms. Having cleaned and prepared the input

data for natural language processing algorithms, the next chapter will extensively describe the

deep learning models used to best estimate the classification pattern towards accurate genre

predictions.

57

Data Text Analysis

58

Chapter Three

Neural Network Development

3.1 Introduction

The third chapter of the thesis is dedicated to engineering and estimating the optimal deep

learning model that will identify as accurately as possible the genre(s) of a movie based on the

movie’s content information in textual format. Three subsections assemble the third chapter.

The first subsection documents the custom model developed to predict the movie genres. In

this experiment, a custom model refers to a deep neural network constructed layer by layer.

Each component of the network plays a different part in its overall structure. The structure

of a neural network is one of the essential elements of deep learning. The neural network

structure plays a crucial role in the overall ability of the network to complete the task under

development. Every neural network assembled fulfills a goal (e.g., predict the number of

tickets in the next Superbowl game, predict the name of the next president of United States

by analyzing the sentiment of tweeter messages, or classify movies by their genre). The

documentation proceeds with the training and configuration of neural networks offered by

TensorFlow and Stanford University. The latter are already built neural networks fitted on

data derived from a variety of textual sources, like Wikipedia and Google News. The second

section of the chapter presents the configuration and the use of those models. Finally, in the

59

Neural Network Development

third subsection, the models trained from the previous two sections will be compared based on

some defined metrics, rules, and reports. Among those different models, the model that will

satisfy at the highest rate, the defined rules and metrics will proceed to the next chapter, where

the development of the recommendation algorithm takes place. The weights extracted from

the best performed neural network model are essential for the recommendation algorithm’s

performance.

3.2 Custom Neural Network

3.2.1 Development

This section will present the development of a custom neural network used to predict as

accurately as possible the correct sequence of 17 different genres per movie. In general, a

movie can have up to 6 or 7 genres on the IMDB website. Although most of the movies

from the GroupLens Research dataset had at most three genres, thus the genres of all the

movies have been pruned down to three. On a high level, the model developed assigns

seventeen probabilities to all the available genres, and the three highest probabilities are the

genres classified to the movie. The model classifier with the most correct classifications will

be the one selected. However, apart from the correct classifications, a variety of additional

measures and rules will also play an important role in which model to select. Please note

that for movies assigned to an array of genres, the order of the genres inside the array is

not under consideration. For example, a prediction for the movie A, which estimates that the

movie belongs to genres ["Action", "Drama", "Thriller"], while the true sequence is ["Drama",

"Action", "Thriller], is still a correct prediction even though the order of the genres is wrong.

The current section will discuss the following subjects:

• Neural Network Structure. Since the neural network is a custom one, it is built based

60

Neural Network Development

on a skeleton that will describe the flow from the input (s) to the output(s).

• Hyper-parameter selection.

• Optimization algorithms and performance metrics selected.

• Thorough selection plan crafted to identify the best model classifier among the custom

trained neural networks.

Before starting building the neural network, the authors remind to the reader the independent

variables and the target feature of the classification experiment. The model will try to

predict the movie’s genre (target) based on textual data of five different columns (independent

variables), the actors, the plot summary, the movie content, the user reviews, and the title of

the movie. Those five variables are the so-called inputs of the neural network, whereas the

target variable is the output.

The neural’s network build follows the policies of the Keras Functional API. The Keras

functional API is the way to define complex models, such as multi-output models, directed

acyclic graphs, or models with shared layers. When creating a neural network, the following

components should be specified:

1. Define the Input(s)

2. Define additional layers and connect them

3. Define the Output(s)

4. Compile the Model based on an optimization function, an optimization metric, and a

performance metric

Keywords definition

Different types of layers initialized to assemble a complete neural network for classifying

movies to a list of different genre(s). Each layer receives an input and provides an output.

Each of those two elements has different shapes, dependent on the type of layer used. Below

61

https://keras.io/getting-started/functional-api-guide/#multi-input-and-multi-output-models

Neural Network Development

are some indicative keywords used to configure most of the neural network layers.

• batch_size (or hidden units): The number of sequences injected into the model, per

epoch, for training. A range of values assigned to this argument are derivatives of

number eight [8, 16, 32, 64, 128, 256, 512, 1024]. Argument specified in the input,

Embedding, and Pooling layers.

• number_of_samples: The total number of samples in the training dataset. For example,

39,192 sequences of vectorized movie content. Referenced in the input layer.

• sequence_length: The maximum length of a padded sequence. The padded sequences

across each independent movie content column should have the same sequence value.

For example, the actors’ column includes sequences of fixed length equal to 15. Refer-

enced in the input, and Embedding layers.

• num_timesteps: Same as the sequence_length value. Referenced in the input layer.

• steps: Same as the sequence_length value. Referenced in the Pooling layer.

• output_dim: The number of numerical weights per embedding layer. For example, a

value equal to 50 means that in the first training iteration of the neural network, the

embedding weights instantiated for a single word are 50 random floating numbers.

Referenced in the input, Embedding layers

• features: Same as the output_dim value. Referenced in the Pooling layer:

• input_dim: The number of sequences injected into the model for training per iteration.

Same as the batch_size. Referenced in the Dropout layer.

• units: Same as the batch_size. Referenced in the Dropout layer.

Define the Input(s)

Input Layer

62

Neural Network Development

Input: 2D Numpy array of shape (number_of_samples, sequence_length)

Output: 3D tensor of shape (batch_size, sequence_length, output_dim)

The first layer, one of the core layers of a neural network, is the input layer. It is the

layer that receives the information from the independent variables (called X features). A

neural network is either (a) single-input or (b) multiple-input based on the number of input

layers it utilizes. The input layer has the following arguments:

• shape: A shape tuple (integer). For instance, shape=(32,) indicates that the expected

inputwill be batches of 32-dimensional vectors. In the current classification experiment,

this is the maximum length of the sequence vector describing each textual sentence per

column. For example, the column of actors is a 2D array of integer sequences of shape

(number_of_samples, num_timesteps), where number_of_samples is equal to 39,192

and num_timesteps is equal to 15 actors per movie.

• batch_shape: A shape tuple (integer), including the batch size. For instance, batch_shape=(10,

32) indicates that the expected input will be batches of ten 32-dimensional vec-

tors. While, batch_shape=(None, 32) indicates batches of an arbitrary number of

32-dimensional vectors. Argument not specified for the current experiment.

• name: Layer’s optional name string. It should be unique in a model (do not use the

same name twice). Autogenerated, if not provided.

• dtype: Input’s data type given as string ("float32", "float64", "int32", "int64").

The input layer returns a tensor. For the current experiment, only the shape and the name

arguments specified.

The number of input layers can be vary depending on the shapes and data types of different

inputs. For example, suppose the five independent features had the same shape in the current

63

Neural Network Development

experiment. In that case, the authors could utilize a single input layer that would receive five

columns of the same shape (e.g., all five sequences of movie content would have a maximum

length of 20 integers). However, when dealing with features of various lengths, it is more

efficient to initialize as many input layers as the independent variables. The current exper-

iment follows the second approach, so the neural network is a multiple-input Keras model,

with different dimensional shape per independent feature.

Define additional layers and connect them

Embedding Layer

Input: 2D tensor of shape (batch_size, sequence_length)

Output: 3D tensor of shape (batch_size, sequence_length, output_dim)

Between the input and the output layers, which are two layers that cannot be missing from

a neural network, there is also an abundance of other layers to utilize with some of them to

be case-specific. One such case-specific layer is the Embedding layer, not selected for every

classification experiment. The Embedding layers exist because someone cannot feed a neural

network with arrays of integers, which is the output after padding the dataset’s textual feature

(refer to the second chapter). The correct approach is to turn the arrays of integers into tensors.

This transformation is a two-way approach:

• Pad the arrays so that they have the same length, turn the lists into tensors of shape

(number of samples, maximum index length) and feed that tensor to a layer capable of

handling such integer tensors, like an Embedding layer.

• Or, apply one-hot encoding to the arrays, so they turned into vectors of 0s and 1s. That

would turn an array like [2,3] to a 30,000-dimensional vector that will contain 29,998

zeros except for the word indices 2, 3, which would be ones. Then, attach a Dense layer

64

https://keras.io/layers/embeddings/

Neural Network Development

(referenced later in the document), capable of handing float data.

The second approach that of one-hot encoding has two significant drawbacks. Firstly, when

dealing with a high-dimensional dataset, one extra addition to the sample will add an extra

number to the one-hot encoded vector. For example, representing the words of a dataset

with 50,000 movies would need to construct a 50,000-dimensional vector. Such cases make

the training of any machine learning model on this representation infeasible. Secondly, the

mapping of words in one-hot encoded vectors is entirely uniform. Which means that similar

words are not placed close to each other in the vector.

The input of theEmbedding layer is a 2D tensor of integers of shape (sample, sequence_length),

with each entry being a sequence of integer indices. The sequences are fed o the Embed-

ding layer in batches, and each batch expects sequences of the same length. The arguments

specified for a functional embedding layer are the following:

• input_dim: int > 0. Size of the vocabulary, e.g., maximum integer index + 1. The size

of the vocabulary generated for each movie feature after the tokenization of the textual

data. Each input layer has its embedding layer. The size of the vocabulary is the length

of the tokenizer.word_index python method. In the current experiment, the vocabulary

index per feature column is:

– Actors’ column: 249,141 (249,140 actor names plus theOut-of-vocabulary token).

– Plot summary column: 36,908 (36,907 words plus the Out-of-vocabulary token).

– Movie features column: 143,905 (143,904 words plus the Out-of-vocabulary

token).

– Movie reviews column: 107,182 (107,181 words plus the Out-of-vocabulary to-

ken).

– Movie title column: 20,264 (20,263 words plus the Out-of-vocabulary token).

65

Neural Network Development

• output_dim: int >= 0. The dimension of the dense embedding. This argument specifies

the length of the numbers and weights, which will specify the place of a word in multidi-

mensional space. Those numbers start randomly and change after one training iteration.

In general, the higher the argument number, the more the available information for a

neural network to identify similar words. However, since this argument is considered a

hyper-parameter, it is better to test different values. The current experiment tests three

values of this argument [50, 100, 150].

• embeddings_initializer: Initializer for the embeddings matrix. Initializations define

how to initialize random weights of Keras layers. For the current experiment, the

weights are initialized randomly from a uniform distribution.

• embeddings_regularizer: Regularizers allow the application of penalties on layer pa-

rameters or layer activity during optimization. If the loss function, optimized by the

network, incorporates these penalties then this argument may not be specified.

• embeddings_constraint: Functions from the constraintsmodule allow setting constraints

(e.g., non-negativity) on network parameters during optimization—an argument not

specified in this experiment.

• mask_zero: Masking in Keras is a technique used to understand and avoid padded

values. In the previous chapter, the authors padded the data into the same length

tensors, a pre-requisite measure for an input layer. Apart from balancing the lengths

of each sentence in the relevant feature corpus, the padding technique generated extra

zeros to expand the length of those sequences with smaller lengths. Those extra zeros

represent the result of the padding, and they inform the neural network for padded data.

When applying the masking mechanism, the neural network can understand that those

zeros are a unique masked out "padding" value. Setting the argument to True, as a

consequence, the vocabulary cannot contain index 0.

66

Neural Network Development

• input_length: The last argument of the Embedding layer, is relevant to the length of

each sequence imported into the embedding layer. This value is constant for all the

sequences of the same input and Embedding layer. In the current experiment, this value

is equal to (15, Actors), (22, Plot summary), (60, Movie Features), (328, User reviews),

(6, Movie’s title).

GlobalMaxPooling1D layer

Input: 3D tensor with shape: (batch_size, steps, features)

Output: 2D tensor of shape: (batch_size, features)

Global Max Pooling is a type of layer that belongs to the general family of Pooling lay-

ers. Add pooling layers on embedded sequences in order to learn each sequence as a whole.

In a different scenario, with the absence of a pooling layer, training the model on the presence

of only one dense layer would lead to a neural network that treats each word in an input

sequence separately without considering the inner-word relationship and sentence structure

[6]. For example, a sentiment analysis model would likely treat both "this movie is a bomb"

and "this movie is the bomb" as being negative reviews [19]. The max-pooling layer’s attach-

ment will optimize the computational power of the network since it gradually minimizes the

network’s size and will also help the model focus on those information sequences that matter

the most into classifying movies to the correct list of the genre(s).

When attaching a global max-pooling layer in the neural network, someone must specify the

data_format argument; the rest are optional arguments. The authors used the default value of

the data_format argument in the current experiment.

Concatenate layer

67

https://keras.io/layers/pooling/
https://keras.io/layers/pooling/

Neural Network Development

Input: 2D tensor with shape: (batch_size, output_dim)

Output: 2D tensor of shape: (batch_size, output_dim)

The layer concatenates a list of given inputs. It receives an array of tensors, and returns

a single tensor, the concatenation of all inputs [33]. The concatenated layer includes all the

information about the movie content of a single movie. Textual information about actors, plot

summary, movie features, user reviews, and movie title, are all concatenated in a single layer

describing describe a single movie.

Dense layer

Input: nD tensor with shape: (batch_size, input_dim)

Output: nD tensor of shape: (batch_size, units)

Dense layers also called the non-linear layers of a neural network, are responsible for applying

the following mathematical formula to the input of a connected layer,

output = f „x � w + b”

, the inner product between input (x) and the weight matrix, also referred to as the kernel

(w) added to a bias factor (b), representing a biased value used to optimize the model. The

weights contain the information learned by the network from exposure to training data [7].

The f() function that describes this relationship is non-linear, represents the activation func-

tion. Non-linear functions come in handy in situations where a mathematical model should

learn more complex structures in the data. In general, the purpose of a machine learning

model is to find the optimal function that maps inputs to appropriate outputs by minimizing

the bias (error) of doing the mapping wrong. The arguments assembling a Dense layer are

the following:

68

Neural Network Development

• units: Positive integer, the dimensionality of the output space. Typically, represent the

hidden units (e.g., 8, 16, 32, 64, 128, etc). In the current experiment is the number

of batch_size units, hyper-parameter tuned using three to five different values [32, 64,

128] or [8, 16, 32, 64, 128].

• activation: Activation function to use. In the current classification experiment, the

Rectified Linear Unit (ReLU) activation function is used.

• use_bias: Boolean, whether the layer uses a bias vector. Not specified in the current

experiment.

• kernel_initializer: Initializer for the kernel weights matrix. An argument not defined

for the current classification experiment.

• bias_initializer: Initializer for the bias vector. An argument not defined for the current

classification experiment.

• kernel_regularizer: Regularization function applied to the kernel weights matrix. Reg-

ularization is a technique to reduce the probability of a model to over-fit and help

the neural network distinguish the relevant data from the noise better. Noise is data

points representing random chance. Regularization attempts to impose Occam’s razor,

which discourages the learning of complex models, to avoid the risk of overfitting. In

the current classification experiment l2_regularization is deployed with 0.01 learning

rate.

• bias_regularizer: Regularizer function applied to the bias vector. Since no bias initial-

ized, no argument specified.

• activity_regularizer: Regularizer function applied to the output of the layer (its "acti-

vation"). An argument not defined for the current classification experiment.

• kernel_constraint: Constraint function applied to the kernel weights matrix. An argu-

69

Neural Network Development

ment not defined for the current classification experiment.

• bias_constraint: Constraint function applied to the bias vector. An argument not defined

for the current classification experiment.

The rectified linear activation function is among the best choices of activation function

when developing most types of neural networks. Xavier Glorot et al. very well highlights

the advantages of this activation function in their 2012 paper Deep Sparse Rectifier Neural

Networks and presented in this article by JasonBrownleeAGentle Introduction to theRectified

Linear Unit (ReLU) [16].

• Computational simplicity: Computations are also cheaper since there is no need for

computing the exponential function in activations, with sparsity exploited.

• Representational sparsity. Sparsity is a concept described as a matrix that mainly

contains zero values. The ReLU activation function, by definition, uses the expression

max„0:0; x”

, with positive inputs always returned in a linear function and negative inputs to be

turned into zero outputs. The sparse representation is a concept that drastically accel-

erates the training time of an algorithm but also helps the algorithm to disentangle the

information received. Highly dense representations that approximate zero values, are

highly conserved by small changes of the input. [4]

• Linear Behavior: It is easier to optimize models of linear behavior [9]. In general, a

neural network is easier to optimize when its behavior is linear or close to linear [16].

Dropout layer

Input: nD tensor with shape: (batch_size, input_dim)

Output: nD tensor of shape: (batch_size, units)

70

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/

Neural Network Development

Dropout works by randomly setting a fraction rate of input units to 0 at each update dur-

ing training time, which helps prevent overfitting. The dropout rate is any decimal number

in range (0.0, 1.0). For example, if someone sets the dropout rate to 0.3, then 30 percent of

the inputs will be dropped. This layer has very effective applications in big data experiments

where the computational time and the complexity of the data set a great hurdle in training and

optimizing a machine learning model. The number of dropout layers used is often defined by

the number of the dense layers attached to the network. In the current experiment, the drop

out rate is equal to 0.1. Thus, 10% of trainable units drop per epoch.

Define the Output(s)

The target (y) of the dataset constructs the final layer of a neural network. The output neuron

of the network is a dense layer that based on the feature map of weights and inputs created

in the previously connected layers, either assigns the input sequence of the incoming batch

to the classification label(s) or predicts the value of the output based on the input (regression

problems). Specifically, in classification problems, the output can be either single or multi-

valued. The former is observed in binary or multi-class classification problems while the

latter output format is observed in multi-label classification experiments. The most important

argument to specify in the dense layer of the output neuron is the value of the targets. In the

current experiment, the number of targets is equal to seventeen different movie genres. The

experiment is a multi-label classification problem; thus, a movie input can belong to more that

one movie genre(s). The neural network is designed and optimized upon the prediction of at

most three out of the seventeen genres. Before proceeding to a more elaborate explanation of

the output layer, first document the arguments specified for the output neuron of the current

experiment. Please note that since this is a dense layer, the document presents only the

respective value of each argument. For the rest of the configurable arguments, please refer to

71

Neural Network Development

the previous reference about dense layers.

• units: The number of input data. This amount is equal to the number of unique values

the target variable includes. In the current experiment, this is equal to seventeen movie

genres. More precisely, the output of this layer is a probability of the input to belong to

a specific target variable. As a result, by specifying this value equal to seventeen, the

authors expect from the neural network to calculate seventeen different probabilities.

• activation: Recall that the activation function is either a non-linear or a linear function

that calculates the output of the neuron. Similarly, the type of activation function

used affects the probabilities assigned to the seventeen movie genres, given the set

of five different inputs (cast, plot summary, movie features, reviews, and title). In

the current experiment, the debate was among two activation functions, which, based

on bibliography and online articles on various websites, mostly used for classification

problems. Those two activation functions are the sigmoid and the softmax. The

difference between the two activation functions boils down to the fact that the probability

values calculated by the sigmoid function are not conditional probabilities. These are

contrary to the probabilities calculated by the softmax activation function, which are

conditional. Conditional probabilities are the kind of probabilities they add up to 1

when summed. Based on that, multi-class classification problems often use the softmax

activation function. As a result, the prediction algorithm assigns the dependent feature

to the target value with the highest probability. Since the experiment is a multi-label

and not a multi-class classification problem, the sigmoid activation function is selected.

Specifically, from the probabilities calculated by the sigmoid function, the three highest

of those are assigned to a particular movie. Then, the authors test whether or not the

result of the assignment is correct, and if the genres assigned are indeed the correct

genres and not a random mistake of the model, then the chances to find the best model

estimator increase.

72

Neural Network Development

Create the model

The structure of the neural network is now complete. The final step is to transform the

network’s structure into a machine learning model capable of assigning seventeen different

probabilities as accurately as possible given the movie content input infused into the model.

Keras library provides the method Model() that initializes the instance of a machine learning

model. The keywords of the model () method are the input(s) and the output(s). The input(s)

are the five movie-content textual data for which five input layers were created. The output(s)

is the output layer defined at the end of the network’s structure.

Figure 3.1 Neural network’s structure

The first horizontal layer presents the five input layers. Each input layer corresponds to a

different movie content column based on the vocabulary index and the length of the sequences.

The second horizontal layer includes the embedding layers connected to each of the five

inputs, respectively. Then, the third horizontal layer attaches the embedding layers to a

single-dimension global max-pooling layer. The concatenated layer follows, which includes

all the information received for a movie based on the movie’s content information. Then the

structure establishes a connecting link between the concatenated layer and a dense layer. This

layer utilized the ReLU activation function to create a sparse feature map and downsample

the concatenated layer’s information. Finally, the model structure imports the sparsed feature

map to an output layer that computes seventeen different probabilities, one per movie genre.

Those probabilities denote the likelihood of a movie to belong to each different movie genre.

73

Neural Network Development

Now that the neural network is built and transformed into a machine learning model, it is time

to put it into training.

3.2.2 Compiling & Training the neural network

The training phase of a machine learning model demands the prior compilation of the neural

network. The compilation is achieved by specifying the following arguments:

• Optimization function: The optimization function is responsible for computing the

gradient of the network’s parameters per iterative batch and updating the weighted

parameters a step forward or backward, helping the machine learning model converge

to a local/optimal minimum for the monitored loss function. Update each step towards

optimization concerning a learning rate, which defines the magnitude of the gradients’

improvement forward or backward.

• Loss function: Each training iteration draws a batch of training samples X and target

variables y. The network uses those inputs to estimate the corresponding predictions,

referenced as y_pred. Next, the model estimator computes the loss, a mismatch among

the actual values of the target y, and the predictions (y_pred). Concerning the loss,

use the network’s parameters to compute the gradient of the loss. The algorithm will

reduce the batch loss by updating the network’s parameters in the opposite direction of

the gradient [8]. Given the correct values of the movie genre(s) of a single movie, how

can the model estimator evaluate the predicted probabilities’ goodness (or badness)?

The answer to this question is the ground rule for specifying a loss function [24].

The document demonstrates an example of a loss function application on a multi-label

experiment. Based on the weights and the gradients calculated through the execution

of a neural network, the last layer calculates a numerical array with length equal to the

number of unique target labels. In the current experiment, the target labels are seventeen

74

https://keras.io/models/model/

Neural Network Development

movie genres. So the final array would be something like:

»1:1;�:1; :33; :41; :98; :001; 1:5;�:003;�:33; :12; :65; :2; :0001;�2:1; :09;�:2; :15…

Applying the sigmoid activation function on that array, each element will fall to the

range between 0, 1 inclusive

??y

»1; 0; :33; :41; :98; :001; 1; 0; 0; :12; :65; :2; :0001; 0; :09; 0; :15…

Then, element-wise the optimization function selected, binary crossentropy, compares

those seventeen outputs to the ground truth values (one-hot encoded),

»1; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0…

Furthermore, calculates the deviance from the truth. Then the errors are summed. The

goal is to minimize, the more, the better, the deviance from the true values of each genre

per movie.

• Metric: The metric(s) to be evaluated by the model during training and testing. For

binary and multi-class classification problems, most researchers select the binary ac-

curacy, although since this is a multi-label classification model, binary accuracy does

not fit appropriately. Alternative measure(s) of performance is the hamming loss and

the f1 score. The neural network developed uses both hamming loss and the f1 score to

optimize its performance of the validation dataset and improve its predictions. Apart

from the type of classification problem, one additional reason the authors preferred the

hamming loss over the binary accuracy, is the number of zeros in the vector of the target

variable. Recall, that a movie can have up to three genres from a pool of seventeen

movie genres. Thus a vector of a random movie would look like [0, 0, 1, 1, 1, 0, 0, 0, 0,

75

Neural Network Development

0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]. In any case, the negative values outnumber the positive values. When

someone selects the binary accuracy as a performance metric, it is highly probable that

the neural network developed will achieve great accuracy score by correctly predicting

the negative values. The document will later compare two trained model classifiers one

that used the hamming loss metric and the other that used the binary accuracy.

For optimization functions, the authors used Support Gradient Descent (SDG), Adam, and

RMSprop algorithms. The plan executed by the authors is to deploy the three optimizers during

the training phase and compare their results afterward. Select the optimizer with the lowest

loss value and the lowest hamming loss. The loss function selected is the binary_crossentropy

due to the sigmoid activation function embedded on the last dense layer. Themetric selected

is the hamming loss and f1-score.

To complete the training stage, take into consideration two more parameters. The first

parameter is the number of epochs, i.e., the number of training rounds. Each round calculates

the weights and the validation loss of the neural network and adjusts them accordingly, aiming

to find the weights framework to minimize the neural network’s loss value. During a training

epoch, the algorithm monitors the hamming loss, the f1-score, and the binary crossentropy

of the neural network on both validation, and training samples. The second and the last

parameter specified is the early stopping strategy. Early stopping is a strategy of ending the

neural network training on a training epoch earlier than the number of epochs specified, taking

into consideration the improvement in the loss function on validation samples. Suppose for

a consecutive number of training epochs; the loss function is not improving (downgrading)

below a certain threshold. The latter phenomenon is a signal that the algorithm has learned

the data very well and cannot improve anymore. This non-improvement in the validation

loss with the simultaneous improvement of the training loss, is a sign of overfitting, and the

model should immediately stop its training. The early stopping applied saves the weights of

76

Neural Network Development

the model at any training iteration spotted with a validation loss lower than the validation loss

of the previous training rounds. It is best practice to set a high value for the training epochs,

such as 100, 150, or 200 epochs, and apply early stopping at 10-20 epochs. In such a way, the

neural network will have time to learn the data and stop learning in case of no improvement

in the validation loss for 10-20 consecutive epochs. The number of epochs in the current

experiment is equal to 150, with ten early stopping rounds. Moreover, the monitored loss

can have a threshold of improvement with values less than this threshold, not considered an

improvement. This variable threshold, referred to as minimum delta, is set to 0.01, with

decimal values between 0 and 1 being good choices.

Having settled the parameters as mentioned above, the neural network training with each of

the three optimization functions is ready for initiation. Below there is a summary table of the

variables configured to successfully train and optimize the custom neural network:

Parameters Value Description

Number of input layers 5 [actors, plot summary, movie features, movie reviews, title]

Number of output targets 17 -

Input length of embedding layer (15, actors), (22, plot summary), (60, movie features, (328 movie reviews), (6, movie title)

Actor names tokenized 249140 -

Plot words tokenized 36908 -

Movie features words tokenized 143905 -

Movie reviews words tokenized 107182 -

Movie title words tokenized 20264 -

Activation function of output layer sigmoid -

Loss function binary crossentropy -

Metric [Hamming loss, f1 score] F1 score with micro average, and None average

Optimization function(s) [Adam, SGD, RMSprop] -

Batch size (hyper parameter) [32, 64, 128] -

Embedding dimension size (hyper parameter) [50, 100, 150] -

Learning rate (hyper parameter) [0.001, 0.01, 0,1] -

Decay steps multiplier (hyper parameter) [10, 20] Every how many epochs the value of the learning rate is decreased

Validation split ratio 70% training, 30% validation dataset -

Number of models trained 108

54 models with Adam optimizer,

27 models with SGD optimizer.

27 models with RMSprop optimizer

Train-test split ratio 80% training, 20% test dataset

Epochs 150 -

Early stopping rounds 10 -

Minimum delta 0.009 If the validation loss drops below 0.009 units, it is not considered an improvement

Table 3.1 Summary table of training the custom neural network (Hamming Loss -
F1 score performance metrics)

77

Neural Network Development

The training phase of the neural network estimator generates four outputs related to the

performance of the model estimator:

Output 1

Train the neural network for 150 epochs with ten epochs of early stopping. When the

model detects an improvement in the selected validation loss function, at the same

moment, the algorithm saves the weights of that model.

Output 2

Create & Save a pandas DataFrame object with the training_loss, train-

ing_hamming_loss, training_f1_score_micro, training_f1_score_none, val-

idation_loss, validation_hamming_loss, validation_f1_score_micro, valida-

tion_f1_score_none and epoch. Later the authors will use this DataFrame for com-

paring and selecting the best estimator among each different neural model.

Output 3

Present three different figures. The first figure demonstrates the progress of the training

hamming_loss and the validation hamming_loss learning curves through each epoch.

The second figure portrays the progress of the training and validation losses learning

curves per epoch. And the final figure presents the training and validation learning

curves of the f1-score, which is the second performance metric monitored by the model

classifier. All three figures are valuable measures for comparing different models and

identifying an estimator’s overfitting or underfitting behavior.

Output 4

Finally, during the training phase, the algorithm calculates the model’s testing ham-

ming_loss, f1 score and loss values advised as measures of the neural network’s

performance over never-seen-before movies.

78

Neural Network Development

Figure 3.2 Output 1: Training per epoch

Figure 3.3 Output 2: Neural Network loss function and hamming loss, f1 score
progress per epoch

79

Neural Network Development

Figure 3.4Output 3: Training-Validation Hamming loss, F1 score & Loss per epoch

Figure 3.5 Output 4: Hamming loss, Loss score performance of the neural network
on never-seen-before movies

The four figures above are generated for all the 108 different neural network estimators trained

using the custom developed neural network.

80

Neural Network Development

3.2.3 Select best model classifier (per optimizer)

After the 108model estimators’ training, select the one that demonstrated the best performance

and evaluation scores among the validation and the test dataset. That is the main goal of this

subsection of chapter 3. Then, in the next section of the chapter, the authors use the model

estimator selected to compare it with the estimators calculated from the pre-trained algorithms.

The metrics employed to select the neural network that will stand out from the rest of the

trained estimators are the following:

• Hamming loss & Zero-one loss: Select the model estimator having the lowest of both

values. Hamming loss and zero-one loss are loss functions, thus the lower their value,

the better the performance indicator of the model. Recall that hamming loss also used

as the performance metric while training the model estimators.

• F1-score: Select the estimator with the highest F1 score

• Area Under the Curve (ROC-AUC) score: Select the estimator with the highest ROC

score.

• Hamming loss - Loss on never-seen-before data: Select the estimator with the lowest

testing hamming loss and the lowest loss (error) predictions.

• Classification report & Confusion matrix: Select the best model estimator that

illustrates a complete capability of predicting all the seventeen genres. Discard the

neural network models that cannot observe all of the seventeen movie genres.

• Predicted vs. Actual Genres: Compare model predictions with the actual genres.

• Training and validation learning curves: Select the estimator that demonstrated the

best progress of validation and training hamming loss & binary crossentropy through

the training of 150 epochs.

• Bias-Variance trade-off: Select the least biased model estimator with the lowest

81

Neural Network Development

variance of predictions.

The authors combined the measures of comparison mentioned above to construct a compact

and accurate plan of selecting the best model estimator.

Selection Plan

Support Gradient Descent optimizer (SGD):Out of the twenty-seven trainedmodels,

select the one with the lowest hamming & zero-one losses.

Adam optimizer: Out of the fifty-four trained models, select the one with the lowest

hamming & zero-one losses.

RMSprop optimizer: Out of the twenty-seven trained models, select the one with the

lowest hamming & zero-one losses.

From the first cleaning task, the authors end up with three model estimators, the best ones per

optimizer. From this point forward, the comparison techniques will focus on distinguishing

the best estimator out of those three models.

Next, the document will present a series of five comparison techniques to select the estimator

that outperforms the other two classifier estimators.

Comparison 1 Classification Report and Confusion matrix comparison. From this

comparison, it is essential to identify the model that can identify movies from all the

seventeen different movie genres. Moreover, the model that correctly predicts most

movies from each genre is another important outcome when examining the confusion

matrix of a classifier.

82

Neural Network Development

Comparison 2 Hamming loss and Loss values on test data. Evaluate estimator’s

ability to predict data the three classifiers never seen before. Use unbiased movie

content sample not used in training the classifiers, to evaluate the generalization and

the predictive power of each of the three estimators.

Comparison 3 Select randomly twenty different movies from the test movie dataset,

and for each of the twenty movies, use the classifiers to predict their movie genres.

Assign to the movie the three genres with the highest probability predicted by the

classifier. Compare the predicted genres to the actual genres of those twenty different

movies; select the classifier with the least deviance from the true values.

Comparison 4Compare the training and validation learning curves of the optimization

and performancemetrics. Those figures will point any sign of overfitting or underfitting

existing on any of those three classifiers. The goal is to select the model estimator with

good fit learning curves.

Comparison 5Calculate the bias-variance trade-off and select themodel estimator with

the lowest bias and variance overall. The documentation includes the fifth comparison

into the scoring table along with additional scoring metrics per model estimator (e.g.,

F1-score, ROC-AUC score, Hamming Loss, and Zero-one loss).

Before moving forward to implementing the above selection plan, the document will first

describe the decision metrics referenced above. Those decision metrics are the hamming loss,

the zero-one loss, the f1-score and the area under the curve score.

Hamming loss

Hamming loss [36] is the fraction of the of incorrectly predicted labels. Calculate the hamming

83

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.hamming_loss.html

Neural Network Development

loss using the following mathematical formula:

1
jN j � jL j

jN jÕ

i=1

jL jÕ

j=1
xor„yi; j; zi; j” (3.1)

N is the total number of sample observations,

L is the total number of different target labels,

yi; j is the target,

zi; j is the prediction

xor is the exclusive or operation.

XOR operation is bound to the following set of rules:

Table 3.2 XOR operations

Target Operation Prediction Result

0 ^ 0 0

1 ^ 1 0

0 ^ 1 1

1 ^ 0 1

An application of the hamming loss formula in a multi-label experiment is demonstrated

below,

Example 1

Actual values: [[0 1], [1 1]]

Predicted values: [[0 1], [1 1]]

Actual XOR Predicted (element-wise): [[0 0 0 0]]

Hamming loss:
0 + 0 + 0 + 0

4 � 1
= 0(totally accurate model classifier) (3.2)

84

Neural Network Development

Example 2

Another dummy example,

Actual values: [[0 1], [1 1]]

Predicted values: [[0 0], [0 1]]

Actual XOR Predicted (element-wise): [[0 1 1 0]]

Hamming loss:
0 + 1 + 1 + 0

4 � 1
= 0:5(non-accurate model classifier) (3.3)

Kindly note that the XOR operation applied by the hamming loss makes the latter non-

differentiable. Someone cannot use non-differentiable functions in training neural networks.

On each batch of training data the neural network computes how much the loss function

will improve or degrade if the networks moves a particular trainable weight by a very small

amount delta. This is also referenced as the concept of backpropagation and how it works on

the gradients of a fitting neural network. Hamming loss is by definition non differentiable due

to the XOR operation, so for small movements of trainable weights no change in the loss is

experienced. This is the main reason why the hamming loss was not used as a loss function

but rather as a performance metric, offered by the Tensorflow Addons library authored by

Google.

Zero-one loss

The number of misclassifications over the total number of predicted values. The zero-one loss

is either presented as a fraction, either as an integer number. The zero-one loss [39] considers

the entire set of labels for a given sample incorrect if it does not entirely match the true set of

labels. hamming loss is more forgiving in that, since it penalizes only the individual labels.

The calculation formula to compute the zero-one loss is similar to the one used for computing

the hamming loss. However, as already mentioned, in multi-label classification experiments,

the zero-one loss is more strict in calculating the miss-classification since the entire array of

85

https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/HammingLoss
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.zero_one_loss.html#sklearn.metrics.zero_one_loss

Neural Network Development

predicted values should exactly match the array of the true values. Hamming loss is illustrated

as fraction and zero-one loss as an integer number.

F1-score

Interpret f1 score as a weighted average of the precision and recall, with best scores going

closer to 1. There is an equal contribution of precision and recall to the f1 score. The

mathematical formula is as follows:

2 �
„precision � recall”
„precision + recall”

(3.4)

, with precision to be:
tp

„tp + f p”
(3.5)

, where tp is the number of true positives and fp the number of false positives. The precision

[37] is intuitively the ability of the classifier not to label as positive a true negative sample.

For example, precision is used for classification experiments in cyber security engines, where

the identification of all the malware components of a program are of great importance to the

estimator’s credibility. On the other hand, calculate recall as:

tp
„tp + f n”

(3.6)

, where tp is the number of true positives and fn the number of false negatives. The recall

[38] is intuitively the ability of the classifier to find all the positive samples. For example,

recall is the most famous metric used in medical experiments where the fault of classifying

a patient affected by pneumonia as healthy will probably have crucial negative effect on his

health. Consider f1-score as a more balanced measure than precision and recall alone. Due

to the trade-off between precision and recall, which often confuses readers about the results

of the estimator trained, f1-score encapsulates information from both the precision and recall,

making it a desirable option for measuring classification performance.

Confusion Matrix

86

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html?highlight=recall#sklearn.metrics.recall_score

Neural Network Development

Actual Classes

P N

Predicted Classes
P TP FP

N FN TN

Area Under the Curve score (ROC-AUC)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from pre-

diction scores. A commonly used measure of estimator performance for classification exper-

iments. Prefer Values closer to 1.0.

The selectedmetrics, which will measure the prediction quality of amulti-label classifier, have

been described. It is high time to reveal the best model estimator by applying the selection

plan.

Both f1 score and ROC-AUC score have been calculated by computing themicro and sample

average values. For the first average value, the f1 score is calculated globally by counting

the total true positives, false negatives and false positives for each of the precision and recall

values accordingly. The micro average value is an ideal option when class imbalance is

present in the dataset. For example, for a set of data with four different sample rows, the

relative micro average precision and recall values are calculated as:

precision =
tp1 + tp2 + tp3 + tp4

„tp1 + tp2 + tp3 + tp4 + f p1 + f p2 + f p3 + f p4”
(3.7)

recall =
tp1 + tp2 + tp3 + tp4

„tp1 + tp2 + tp3 + tp4 + f n1 + f n2 + f n3 + f n4”
(3.8)

On the other hand, the sample average of the f1-score is the calculated precision and recall

for each data instance and then calculating their average. The same logic is also applicable to

the computation of the ROC-AUC score.

87

Neural Network Development

Selection plan Step 1: Select the model estimator with the lowest Hamming & Zero-one

loss (per optimizer)

For the selection of the best model estimator per optimization function, take into consideration

the following three tables,

Tag Name Embedding Dimension tag Batch tag Learning Rate tag Decay Multiplier tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

multi_input_keras_model-1 50 32 0.001 10 0.023078 0.048498 0.004844 752.0 0.977308 0.978130 0.985796 0.989194 0.000591 0.095053

multi_input_keras_model-2 50 32 0.001 20 0.023070 0.048480 0.005481 849.0 0.974329 0.976750 0.984157 0.988494 0.000581 0.095063

multi_input_keras_model-3 50 32 0.010 10 0.033005 0.048722 0.005013 780.0 0.976594 0.977431 0.986738 0.989707 0.000061 0.095582

multi_input_keras_model-4 50 32 0.010 20 0.041583 0.048774 0.007708 1177.0 0.963479 0.963689 0.973318 0.978954 0.002520 0.093133

multi_input_keras_model-5 50 32 0.100 10 0.300758 0.054840 0.075212 7938.0 0.460306 0.389196 0.649620 0.667465 0.070047 0.031203

multi_input_keras_model-6 50 32 0.100 20 0.253460 0.060170 0.080098 8191.0 0.404516 0.340919 0.626885 0.645490 0.075358 0.026641

multi_input_keras_model-7 100 32 0.001 10 0.019068 0.058487 0.003620 566.0 0.983106 0.983534 0.990600 0.992834 -0.000024 0.095667

multi_input_keras_model-8 100 32 0.001 20 0.022374 0.057243 0.004070 635.0 0.980984 0.981173 0.988942 0.991414 0.000160 0.095483

multi_input_keras_model-9 100 32 0.010 10 0.041931 0.056338 0.006609 1031.0 0.968731 0.969315 0.976843 0.981891 0.002266 0.093385

multi_input_keras_model-10 100 32 0.010 20 0.037357 0.055571 0.004610 729.0 0.978491 0.979166 0.988171 0.990820 -0.000085 0.095728

multi_input_keras_model-11 100 32 0.100 10 0.292896 0.060655 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-12 100 32 0.100 20 0.292848 0.064891 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-13 150 32 0.001 10 0.023669 0.063635 0.004334 671.0 0.979770 0.980480 0.988696 0.991451 -0.000009 0.095653

multi_input_keras_model-14 150 32 0.001 20 0.020337 0.062574 0.003932 617.0 0.981635 0.981700 0.989439 0.991604 0.000109 0.095535

multi_input_keras_model-15 150 32 0.010 10 0.040651 0.061666 0.005283 825.0 0.975345 0.976595 0.986241 0.989431 -0.000019 0.095662

multi_input_keras_model-16 150 32 0.010 20 0.053480 0.060882 0.006375 939.0 0.970441 0.973368 0.986295 0.989602 -0.001128 0.096774

multi_input_keras_model-17 150 32 0.100 10 0.292648 0.063859 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-18 150 32 0.100 20 0.293460 0.066505 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-19 50 64 0.001 10 0.047707 0.065594 0.012738 1891.0 0.938949 0.941866 0.955237 0.965982 0.004449 0.091226

multi_input_keras_model-20 50 64 0.001 20 0.019794 0.064743 0.003998 629.0 0.981329 0.981824 0.989328 0.991867 0.000085 0.095559

multi_input_keras_model-21 50 64 0.010 10 0.042325 0.063992 0.006627 1018.0 0.968592 0.967960 0.976044 0.980890 0.002559 0.093095

multi_input_keras_model-22 50 64 0.010 20 0.037438 0.063322 0.005007 790.0 0.976628 0.977970 0.986864 0.989895 0.000019 0.095625

multi_input_keras_model-23 50 64 0.100 10 0.264272 0.063575 0.057131 5873.0 0.642554 0.611862 0.738925 0.779439 0.048670 0.049934

multi_input_keras_model-24 50 64 0.100 20 0.253114 0.064055 0.070097 6815.0 0.537050 0.512018 0.687747 0.728382 0.057256 0.042334

multi_input_keras_model-25 100 64 0.001 10 0.020341 0.063436 0.003998 630.0 0.981327 0.982393 0.989278 0.992043 0.000104 0.095540

multi_input_keras_model-26 100 64 0.001 20 0.022036 0.062867 0.004244 669.0 0.980167 0.980441 0.988401 0.990787 0.000194 0.095450

multi_input_keras_model-27 100 64 0.010 10 0.045093 0.062360 0.005379 834.0 0.974971 0.977354 0.987297 0.990863 -0.000518 0.096162

multi_input_keras_model-28 100 64 0.010 20 0.045117 0.061886 0.007246 1104.0 0.965617 0.964281 0.973873 0.978833 0.002774 0.092881

multi_input_keras_model-29 100 64 0.100 10 0.260276 0.062521 0.080206 7099.0 0.517740 0.527918 0.691925 0.733276 0.042248 0.055692

multi_input_keras_model-30 100 64 0.100 20 0.249638 0.063351 0.081119 8198.0 0.391224 0.330034 0.621629 0.641671 0.076754 0.025448

multi_input_keras_model-31 150 64 0.001 10 0.021180 0.062874 0.003914 613.0 0.981737 0.982012 0.989917 0.992242 -0.000057 0.095700

multi_input_keras_model-32 150 64 0.001 20 0.019501 0.062426 0.003626 561.0 0.983137 0.983898 0.992125 0.994212 -0.000612 0.096256

multi_input_keras_model-33 150 64 0.010 10 0.034596 0.062015 0.004712 731.0 0.977983 0.979514 0.987276 0.990530 0.000156 0.095488

multi_input_keras_model-34 150 64 0.010 20 0.039516 0.061627 0.004388 679.0 0.979634 0.980213 0.991057 0.993080 -0.000964 0.096609

multi_input_keras_model-35 150 64 0.100 10 0.292620 0.063052 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-36 150 64 0.100 20 0.292751 0.064398 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-37 50 128 0.001 10 0.026874 0.048510 0.005649 899.0 0.973353 0.974396 0.980611 0.985185 0.001779 0.093870

multi_input_keras_model-38 50 128 0.001 20 0.030346 0.048594 0.005895 874.0 0.972315 0.973377 0.981903 0.986269 0.001032 0.094614

multi_input_keras_model-39 50 128 0.010 10 0.037972 0.048694 0.005709 881.0 0.973334 0.974483 0.984770 0.988513 0.000118 0.095526

multi_input_keras_model-40 50 128 0.010 20 0.038123 0.048763 0.004892 756.0 0.977409 0.978931 0.992008 0.993702 -0.001824 0.097473

multi_input_keras_model-41 50 128 0.100 10 0.143329 0.049872 0.028382 3537.0 0.855501 0.849887 0.889218 0.907749 0.014635 0.081326

multi_input_keras_model-42 50 128 0.100 20 0.177307 0.050339 0.026143 3438.0 0.869011 0.867428 0.901569 0.919845 0.011944 0.083915

multi_input_keras_model-43 100 128 0.001 10 0.024191 0.050081 0.004280 674.0 0.980023 0.979751 0.988849 0.990923 -0.000014 0.095658

multi_input_keras_model-44 100 128 0.001 20 0.022159 0.049872 0.003986 622.0 0.981373 0.982116 0.989088 0.991761 0.000189 0.095455

multi_input_keras_model-45 100 128 0.010 10 0.037417 0.049742 0.005397 833.0 0.974579 0.976048 0.981911 0.986511 0.001531 0.094116

multi_input_keras_model-46 100 128 0.010 20 0.036798 0.049688 0.005709 886.0 0.973272 0.974680 0.983758 0.987926 0.000506 0.095138

multi_input_keras_model-47 100 128 0.100 10 0.197232 0.051040 0.050599 4935.0 0.730384 0.730660 0.813182 0.843249 0.022284 0.074065

multi_input_keras_model-48 100 128 0.100 20 0.235121 0.051644 0.044746 5040.0 0.760260 0.765235 0.826372 0.860927 0.023202 0.073203

multi_input_keras_model-49 150 128 0.001 10 0.022547 0.051398 0.004088 648.0 0.980870 0.980871 0.988217 0.990744 0.000420 0.095223

multi_input_keras_model-50 150 128 0.001 20 0.026666 0.051197 0.004316 677.0 0.979907 0.980200 0.989889 0.992031 -0.000447 0.096091

multi_input_keras_model-51 150 128 0.010 10 0.046663 0.051049 0.006051 912.0 0.972006 0.975033 0.988129 0.991183 -0.001502 0.097149

multi_input_keras_model-52 150 128 0.010 20 0.043143 0.050940 0.004436 692.0 0.979395 0.980513 0.990587 0.992581 -0.000833 0.096477

multi_input_keras_model-53 150 128 0.100 10 0.244658 0.052108 0.067954 7113.0 0.544540 0.512066 0.688799 0.724885 0.059563 0.040310

multi_input_keras_model-54 150 128 0.100 20 0.259525 0.053504 0.062353 6763.0 0.593289 0.533769 0.711884 0.738040 0.055296 0.044059

Table 3.3 Adam Optimization function Results - Hamming loss performance metric
(best model highlighted)

88

Neural Network Development

Tag Name Embedding Dimension tag Batch tag Learning Rate tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

multi_input_keras_model-1 50 32 0.001 0.298052 0.111494 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-2 50 32 0.010 0.212665 0.094722 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-3 50 32 0.100 0.071430 0.080362 0.020092 2764.0 0.900733 0.895532 0.923180 0.937286 0.009577 0.086206

multi_input_keras_model-4 100 32 0.001 0.295311 0.088145 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-5 100 32 0.010 0.208087 0.086056 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-6 100 32 0.100 0.050056 0.079954 0.011694 1810.0 0.943595 0.942425 0.955230 0.963869 0.005530 0.090162

multi_input_keras_model-7 150 32 0.001 0.297274 0.084460 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-8 150 32 0.010 0.192245 0.082664 0.056050 6595.0 0.646928 0.594574 0.739530 0.763374 0.049756 0.048966

multi_input_keras_model-9 150 32 0.100 0.066832 0.079098 0.015272 2225.0 0.926244 0.922085 0.945336 0.954278 0.005745 0.089951

multi_input_keras_model-10 50 64 0.001 0.302150 0.082337 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-11 50 64 0.010 0.215684 0.081422 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-12 50 64 0.100 0.070405 0.078802 0.021953 3023.0 0.891410 0.886439 0.917823 0.931043 0.009777 0.086012

multi_input_keras_model-13 100 64 0.001 0.307609 0.081317 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-14 100 64 0.010 0.214271 0.081092 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-15 100 64 0.100 0.046036 0.078987 0.009035 1363.0 0.957116 0.950964 0.969073 0.972617 0.002822 0.092834

multi_input_keras_model-16 150 64 0.001 0.309067 0.081019 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-17 150 64 0.010 0.212941 0.080838 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-18 150 64 0.100 0.054171 0.079086 0.016100 2473.0 0.921940 0.914813 0.941518 0.948758 0.006401 0.089306

multi_input_keras_model-19 50 128 0.001 0.374475 0.080792 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-20 50 128 0.010 0.230063 0.080664 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-21 50 128 0.100 0.151229 0.079565 0.044368 5523.0 0.740603 0.733548 0.795316 0.831316 0.037670 0.059840

multi_input_keras_model-22 100 128 0.001 0.388864 0.081016 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-23 100 128 0.010 0.230780 0.081268 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-24 100 128 0.100 0.084637 0.080011 0.021857 2973.0 0.889409 0.879536 0.908778 0.925100 0.013593 0.082326

multi_input_keras_model-25 150 128 0.001 0.394759 0.081270 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-26 150 128 0.010 0.224955 0.081151 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-27 150 128 0.100 0.085071 0.080093 0.020494 2879.0 0.896558 0.884273 0.913338 0.928266 0.013180 0.082724

Table 3.4 SGD Optimization function Results - Hamming loss performance metric
(best model highlighted)

Tag Name Embedding Dimension tag Batch tag Learning Rate tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

multi_input_keras_model-1 50 32 0.001 0.022421 0.048931 0.005853 893.0 0.972581 0.973750 0.983111 0.987126 0.000610 0.095034

multi_input_keras_model-2 50 32 0.010 0.065825 0.049177 0.015152 2192.0 0.926324 0.929936 0.942764 0.956719 0.006893 0.088825

multi_input_keras_model-3 50 32 0.100 0.313867 0.061737 0.086858 7310.0 0.476576 0.503470 0.673774 0.706148 0.042613 0.055363

multi_input_keras_model-4 100 32 0.001 0.035106 0.058622 0.008836 1295.0 0.958170 0.954860 0.970763 0.975454 0.002367 0.093286

multi_input_keras_model-5 100 32 0.010 0.082441 0.057299 0.024204 3417.0 0.880193 0.857991 0.911655 0.918797 0.009892 0.085900

multi_input_keras_model-6 100 32 0.100 0.375009 0.062219 0.079990 8191.0 0.404948 0.341038 0.626995 0.645586 0.075451 0.026562

multi_input_keras_model-7 150 32 0.001 0.028530 0.060338 0.006969 1109.0 0.967182 0.967235 0.977948 0.982866 0.001474 0.094173

multi_input_keras_model-8 150 32 0.010 0.065675 0.059075 0.017793 2509.0 0.912916 0.913544 0.933123 0.946800 0.007989 0.087753

multi_input_keras_model-9 150 32 0.100 0.470339 0.064899 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

multi_input_keras_model-10 50 64 0.001 0.025903 0.063285 0.006357 981.0 0.970486 0.972354 0.985763 0.988929 -0.000908 0.096553

multi_input_keras_model-11 50 64 0.010 0.053238 0.061999 0.012720 1901.0 0.938759 0.940597 0.953348 0.964406 0.005212 0.090474

multi_input_keras_model-12 50 64 0.100 0.334415 0.063298 0.062852 6904.0 0.585740 0.529925 0.707315 0.734320 0.056939 0.042613

multi_input_keras_model-13 100 64 0.001 0.047492 0.062266 0.013195 1848.0 0.936675 0.934273 0.953453 0.963095 0.004682 0.090996

multi_input_keras_model-14 100 64 0.010 0.084050 0.061564 0.024798 3162.0 0.872974 0.864597 0.896132 0.916732 0.015661 0.080344

multi_input_keras_model-15 100 64 0.100 0.483976 0.063250 0.086858 7310.0 0.476576 0.503470 0.673774 0.706148 0.042613 0.055363

multi_input_keras_model-16 150 64 0.001 0.020697 0.062347 0.004064 637.0 0.981206 0.982287 0.993508 0.994967 -0.001572 0.097220

multi_input_keras_model-17 150 64 0.010 0.083864 0.061801 0.027158 3486.0 0.863017 0.842786 0.896192 0.910368 0.013067 0.082832

multi_input_keras_model-18 150 64 0.100 0.625151 0.064240 0.098708 9599.0 0.248457 0.103317 0.571733 0.555944 0.078880 0.023635

multi_input_keras_model-19 50 128 0.001 0.056008 0.063453 0.016028 2465.0 0.922048 0.921728 0.940400 0.951443 0.006922 0.088796

multi_input_keras_model-20 50 128 0.010 0.046476 0.062759 0.011796 1738.0 0.943900 0.946271 0.961017 0.970684 0.003149 0.092510

multi_input_keras_model-21 50 128 0.100 0.483272 0.063905 0.079990 8191.0 0.404948 0.341038 0.626995 0.645586 0.075451 0.026562

multi_input_keras_model-22 100 128 0.001 0.046239 0.063255 0.013213 1869.0 0.936525 0.933138 0.952974 0.961332 0.004852 0.090828

multi_input_keras_model-23 100 128 0.010 0.128141 0.063174 0.041589 4655.0 0.766624 0.725195 0.817290 0.843002 0.030907 0.066034

multi_input_keras_model-24 100 128 0.100 0.699202 0.063795 0.077337 6973.0 0.536099 0.563166 0.700239 0.735321 0.041862 0.056041

multi_input_keras_model-25 150 128 0.001 0.030810 0.063205 0.006489 1030.0 0.969505 0.963067 0.980091 0.981384 0.001131 0.094514

multi_input_keras_model-26 150 128 0.010 0.099915 0.062740 0.033059 3988.0 0.828084 0.809225 0.868525 0.890400 0.018203 0.077922

multi_input_keras_model-27 150 128 0.100 0.932345 0.063632 0.079990 8191.0 0.404948 0.341038 0.626995 0.645586 0.075451 0.026562

Table 3.5 RMSprop Optimization function Results - Hamming loss performance
metric

(best model highlighted)

89

Neural Network Development

Finally, the table below summarizes the results presented above , including the best model

neural network per optimization function:

Tag Name Embedding Dimension tag Batch tag Learning Rate tag Decay Multiplier tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

Adam model 7 100 32 0.001 10 0.019068 0.058487 0.003620 566.0 0.983106 0.983534 0.990600 0.992834 -0.000024 0.095667

SGD model 15 100 64 0.100 - 0.046036 0.078987 0.009035 1363.0 0.957116 0.950964 0.969073 0.972617 0.002822 0.092834

RMSprop model 16 150 64 0.001 - 0.020697 0.062347 0.004064 637.0 0.981206 0.982287 0.993508 0.994967 -0.001572 0.097220

Table 3.6 Summary table of the best model selected per optimizer
(applying the first step of the comparison plan)

Based on all the four tables presented above, the model trained with Adam optimizer is the

clear winner of the first comparison step. The three models selected per optimizer excelled

among the other models of the same optimizer function. Adam’s model estimator achieved

the lowest hamming loss on the test dataset, with the RMSprop model estimator reaching very

close. The model estimator of the SGD optimizer had the worse hamming loss and zero-one

loss values among the three neural networks. Since the Adam optimizer and the RMSprop

optimizer, both generated model estimators with very close score metrics, it is essential to

proceed to the next five comparisons steps of the selection plan and decide whether or not

Adam optimizer will remain the best estimator.

Selection plan Step 2: Classification Report - Confusion Matrix of the best estimators

(per optimizer)

The first step of the selection plan is now complete. The model estimator optimized by Adam

optimizer is the best one of the three models. The next step of the plan compares the relative

classification reports and confusion matrices of the three best model classifiers. When using

the tools of classification report and confusion matrices, two are the selection criteria for

identifying the best of the three model estimators:

90

Neural Network Development

• Classification report:

1. The higher the metrics for each of the evaluation metrics of the classification

report, the better the model estimator.

2. The model estimator that can identify movies from all the seventeen different

genres is a model classifier capable of understanding the semantics of each movie

genre and classify the movies correctly.

• Confusion Matrix: Select the classifier with the most straight diagonal line. The

diagonal line of a confusion matrix matches the predicted and the actual movie genres

to each other.

91

Neural Network Development

Figure 3.6 Adam optimizer Classification Report results

Figure 3.7 SGD optimizer Classification Report results

92

Neural Network Development

Figure 3.8 RMSprop optimizer Classification Report results

Based on the three classification reports, those that belong to the Adam Optimization function

and the RMSprop optimization function seem to be closer to each other with more accurate

results than the classification report of the model selected by the SGD optimization function.

SGD is out of the competition. Looking closer between the first and the third classification

reports, for the same number of movies per genre, Adam’s optimizer model performed slightly

better in F1-score values from its counterpart, the best model of the RMSprop optimizer. For

example, this is noticeable for the War movies (index 15) with Adam optimizer hitting a

score of 0.72 or 72%, and RMSprop 0.70 or 70%, with two points of difference. The reader

should also expect to see the difference in the relative confusion matrices of the models

selected by Adam and RMSprop optimizers. The latter optimizer will not predict as many

movies from the war genre as the former optimizer, due to their difference in precision, recall,

and f1-score for the genre mentioned above. However, there are cases where the RMSprop

optimizer outperformed Adam optimizer. One such case is the sci-fi genre (index 13). The

model estimator of the RMSprop optimizer classified correctly more movies than the model

93

Neural Network Development

estimator of the Adam optimizer, by 1% difference. The 1% difference means that the Adam

optimizer classified incorrectly four movies of the sci-fi genre, while the RMSprop optimizer

correctly classified all the 487 sci-fi movies. It is clear that for slight, although significant

differences, the best model trained with the Adam optimizer is better in classifying the movies

in the current dataset. However, it is also vital to compare the confusion matrices related to

the generated classification reports to drive the conclusion of the better-performed classifier.

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 1342 0 0 1 4 1 1 4 0 1 0 0 1 0 0 0 2

Adventure 1 377 10 3 14 1 9 2 0 1 2 0 1 0 1 0 0

Animation 0 1 258 0 0 1 0 0 1 0 0 0 0 0 0 0 0

Children 0 5 1 212 6 0 0 0 2 2 0 0 0 0 0 0 0

Comedy 3 1 0 0 2365 0 0 0 0 0 0 0 0 0 0 0 0

Crime 5 0 0 0 0 517 0 28 1 1 0 3 0 0 6 0 0

Documentary 3 0 1 1 3 0 768 2 0 1 0 0 0 0 0 0 0

Drama 0 3 0 1 7 8 11 2676 0 0 0 0 0 0 0 0 0

Fantasy 0 1 0 0 0 0 0 0 43 2 0 1 0 0 0 0 0

Horror 0 0 0 2 0 0 2 1 1 585 0 0 0 0 0 0 0

Musical 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0

Mystery 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0

Romance 0 0 0 0 2 0 0 1 0 0 1 0 55 0 0 0 0

Sci-Fi 0 2 0 0 0 0 1 0 1 0 0 0 0 60 0 0 0

Thriller 2 0 0 0 0 1 1 0 0 0 0 2 1 0 147 0 0

War 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 12 0

Western 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 90

Table 3.7 Adam optimizer Confusion Matrix

94

Neural Network Development

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 1350 0 0 0 3 0 1 3 0 0 0 0 0 0 0 0 0

Adventure 2 405 0 1 10 2 0 2 0 0 0 0 0 0 0 0 0

Animation 5 7 177 0 42 2 5 17 3 2 0 0 0 0 1 0 0

Children 3 13 47 159 1 0 0 2 0 2 0 0 0 0 1 0 0

Comedy 8 34 0 1 2326 0 0 0 0 0 0 0 0 0 0 0 0

Crime 2 0 0 0 0 554 0 2 0 3 0 0 0 0 0 0 0

Documentary 0 6 0 2 3 7 756 3 0 2 0 0 0 0 0 0 0

Drama 9 11 0 9 7 28 9 2633 0 0 0 0 0 0 0 0 0

Fantasy 0 1 3 0 0 0 0 0 40 2 0 0 1 0 0 0 0

Horror 8 0 0 0 0 4 0 1 1 577 0 0 0 0 0 0 0

Musical 17 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0

Mystery 0 0 0 0 0 2 0 0 0 0 0 68 0 0 0 0 0

Romance 1 0 0 0 2 0 0 1 0 0 0 0 55 0 0 0 0

Sci-Fi 0 3 0 0 0 0 1 0 1 0 0 0 0 59 0 0 0

Thriller 2 0 0 0 0 4 1 0 0 0 0 1 1 0 145 0 0

War 14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Western 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.8 SGD optimizer Confusion Matrix

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 1347 0 0 1 3 0 4 1 0 0 0 0 1 0 0 0 0

Adventure 1 419 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Animation 5 7 247 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Children 0 13 1 206 0 0 1 2 1 3 0 0 0 0 1 0 0

Comedy 9 28 0 1 2331 0 0 0 0 0 0 0 0 0 0 0 0

Crime 2 4 0 0 0 554 0 0 0 1 0 0 0 0 0 0 0

Documentary 0 7 1 0 3 7 757 3 0 1 0 0 0 0 0 0 0

Drama 9 11 0 8 7 28 10 2633 0 0 0 0 0 0 0 0 0

Fantasy 0 1 0 0 0 0 0 0 44 2 0 0 0 0 0 0 0

Horror 4 0 0 0 0 0 2 1 1 583 0 0 0 0 0 0 0

Musical 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0

Mystery 0 0 0 0 0 2 0 0 0 0 0 68 0 0 0 0 0

Romance 1 0 0 0 2 0 0 1 0 0 1 0 54 0 0 0 0

Sci-Fi 0 3 0 0 0 0 1 0 1 0 0 0 0 59 0 0 0

Thriller 2 0 0 0 0 4 1 0 0 0 0 1 1 0 145 0 0

War 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 13 1

Western 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92

Table 3.9 RMSprop optimizer Confusion Matrix

From the three confusion matrices illustrated above, it is clear that the one belonging to the

model optimized by the SGD optimizer classifies most of the movies incorrectly. Specifically,

it assigns most movie texts per batch to either Action, Comedy, or Drama movie genres, the

95

Neural Network Development

most data populated movie genres. Moreover, the model estimator of the SGD optimizer

failed to identify movies from the Musical, War, and Western genres. The algorithm trained

on movies coming mostly from the three dominant genres fails to identify particular details

of the movies belonging to the rest of the genres. However, this is not the case for the best

models optimized by the Adam and the RMSprop optimizers. From the first confusion matrix,

the model estimator can identify most of the movies’ correct genre, apart from very few cases

in action, comedy, and drama movies, the most dominant movie genres. The best model of

the counterpart optimizer also seems to follow accurate results, however, with some more

miss-classified movies, especially in the adventure genre. The Adam optimizer presented the

best results in both the classification report and the confusion matrix. Thus, the best model

trained on 100 word-embedding dimensional space, 32 batch-size, 0.001 learning rate, ten

decay steps multiplier, and optimized by the Adam algorithm is selected.

The third step in the selection plan involves comparisons between the test hamming loss and

score (loss1) between the three selected models. Briefly, to summarize, the two previous steps

of the selection plan, chose the model trained by the Adam optimizer. As already mentioned,

the trained neural network with the most votes will proceed to the next section of comparisons

between custom trained and pre-trained neural networks. The answer to the third step lies in

the initial scoring table of the first step, referenced on page 90. The model estimator trained

with the Adam optimizer achieved the lowest test hamming loss and test loss on never-seen-

before data. All the three models had very close metric results on movies the neural networks

never seen before. However, the Adam optimizer model stood out.

1binary crossentropy

96

Neural Network Development

Selection plan Step 3: Dataframe of the movie title, the predicted genre(s) and the actual

movie genre(s)

The next step of the selection plan is the random selection of 20 different movies and based on

their content data, like actors, plot summary, and reviews select the model that could predict

most accurately the genres of those movies.

97

Neural Network Development

Movie Title Predicted Genre tags (top 3) Real Genre tags

1 Devoured [Drama, Horror, Thriller] [Drama, Horror, Thriller]

2 Re Loca [Comedy] [Comedy]

3 Hero Wanted [Action, Crime, Drama] [Action, Crime, Drama]

4 Love and Lies [Children, Romance] [Children, Romance]

5 Oliver Twist [Children, Crime, Drama] [Children, Crime, Drama]

6 Hamlet [Drama] [Drama]

7 To Stay Alive - A Method [Documentary] [Documentary]

8 My Best Girl [Comedy, Romance] [Comedy, Romance]

9 Baby’s Day Out [Comedy] [Comedy]

10 John Lennon - Plastic Ono Band [Documentary] [Documentary]

11 Social Lion [Animation] [Animation]

12 Love from a Stranger [Drama, Mystery, Thriller] [Drama, Mystery, Thriller]

13 Secrets of the Tribe [Documentary] [Documentary]

14 The House That Screamed [Horror, Thriller] [Horror, Thriller]

15 Bailey’s Billion$ [Children, Comedy] [Children, Comedy]

16 Tomorrow We Move [Comedy] [Comedy]

17 Belly 2: Millionaire Boyz Club [Drama] [Drama]

18 A Wedding [Drama] [Drama]

19 Martian Child [Comedy, Drama] [Comedy, Drama]

20 The Psycho Legacy [Documentary] [Documentary]

Table 3.10Movie Predictions (20 random movies) | Adam optimizer

98

Neural Network Development

Movie Title Predicted Genre tags (top 3) Real Genre tags

1 Devoured [Drama, Horror, Thriller] [Drama, Horror, Thriller]

2 Re Loca [Comedy] [Comedy]

3 Hero Wanted [Action, Crime, Drama] [Action, Crime, Drama]

4 Love and Lies [Children, Romance] [Children, Romance]

5 Oliver Twist [Children, Crime, Drama] [Children, Crime, Drama]

6 Hamlet [Drama] [Drama]

7 To Stay Alive - A Method [Documentary] [Documentary]

8 My Best Girl [Comedy, Romance] [Comedy, Romance]

9 Baby’s Day Out [Comedy] [Comedy]

10 John Lennon - Plastic Ono Band [Documentary] [Documentary]

11 Social Lion [Animation] [Animation]

12 Love from a Stranger [Drama, Mystery, Thriller] [Drama, Mystery, Thriller]

13 Secrets of the Tribe [Documentary] [Documentary]

14 The House That Screamed [Horror, Thriller] [Horror, Thriller]

15 Bailey’s Billion$ [Children, Comedy] [Children, Comedy]

16 Tomorrow We Move [Comedy] [Comedy]

17 Belly 2: Millionaire Boyz Club [Drama] [Drama]

18 A Wedding [Drama] [Drama]

19 Martian Child [Comedy, Drama] [Comedy, Drama]

20 The Psycho Legacy [Documentary] [Documentary]

Table 3.11Movie Predictions (20 random movies) | SGD optimizer

99

Neural Network Development

Movie Title Predicted Genre tags (top 3) Real Genre tags

1 Devoured [Drama, Horror, Thriller] [Drama, Horror, Thriller]

2 Re Loca [Comedy] [Comedy]

3 Hero Wanted [Action, Crime, Drama] [Action, Crime, Drama]

4 Love and Lies [Children, Romance] [Children, Romance]

5 Oliver Twist [Children, Crime, Drama] [Children, Crime, Drama]

6 Hamlet [Drama] [Drama]

7 To Stay Alive - A Method [Documentary] [Documentary]

8 My Best Girl [Comedy, Romance] [Comedy, Romance]

9 Baby’s Day Out [Comedy] [Comedy]

10 John Lennon - Plastic Ono Band [Documentary] [Documentary]

11 Social Lion [Animation] [Animation]

12 Love from a Stranger [Drama, Mystery, Thriller] [Drama, Mystery, Thriller]

13 Secrets of the Tribe [Documentary] [Documentary]

14 The House That Screamed [Horror, Thriller] [Horror, Thriller]

15 Bailey’s Billion$ [Children, Comedy] [Children, Comedy]

16 Tomorrow We Move [Comedy] [Comedy]

17 Belly 2: Millionaire Boyz Club [Drama] [Drama]

18 A Wedding [Drama] [Drama]

19 Martian Child [Comedy, Drama] [Comedy, Drama]

20 The Psycho Legacy [Horror] [Documentary]

Table 3.12 Movie Predictions (20 random movies) | RMSprop optimizer

The three tables above illustrate the three best classification models’ predictions, one per

optimization function, on data that each neural network has never seen before. The more

accurate the results, the closer a model is to generalization. The latter describes a model’s

100

Neural Network Development

ability to make correct and accurate predictions based on data not used in its training. From

the results of the above three tables, there is no clear winner. That is because all the

three classification model estimators had very few misclassified movies as revealed by their

respective zero-one loss. More precisely, the first model correctly classified 9233 movies, the

second model 8,436, and the third model 9,162 movies out of the total 9,799 movies of the

test sample. Thus, it is highly probable the 20 random movies to fall into those ranges of

correctly classified movies by each estimator. There is no clear winner out of this comparison

step. However, considering the zero-one loss value of each model estimator, Adam had the

most movies correctly classified.

Selection plan Step 4: Learning Curves

The pre-final step, the fourth comparison presented by the selection plan, is to inspect the train

and validation learning curves per training epoch and try to identify overfitting or underfitting

classifiers and the goodness of fit per model estimator. The overfitting is a case scenario

where the training error is continuously dropping, while the validation error is increasing.

Underfitting is the opposite case; the model estimator is over-simplified and cannot recognize

any particular pattern on the training dataset. One such scenario would be allocating all

movies to the Action, Drama, or Comedy genre since those are the most movie-populated

genres. A model that is under-fitted will have high training and testing errors while an overfit

model will have deficient training error but high testing error. A learning curve is a kind

of plot that demonstrates the time in the x-axis and the learning improvement on the y-axis.

The reader may refer to the very well explained article of Jason Brownlee [18]. Learning

curves (LCs) are useful tools for monitoring the performance of workers exposed to a new

task. Learning curves provide a mathematical representation of the learning process that

takes place as task repetition occurs. [2] Two are the different learning curves used to

evaluate the performance of a machine learning model estimator and to drive the conclusion

101

Neural Network Development

of its overall goodness of fit. The first learning curve is the one graphed with the training

dataset, training learning curve. The learning curve related to the training dataset can reveal

how well the model estimator learned the dataset and its different semantics. On the other

hand, validation learning curve is plotted based on the validation sample and can provide

a reasonable estimation of how well the model estimator can generalize. Those two learning

curves are plotted together in graphs that either measure the progress of the optimization

metric (e.g., binary crossentropy), either on graphs that measure the performance metric (e.g.,

hamming loss) of the model estimator. The pre-final step of the selection plan, portrays both

performance and optimization learning curves. Below the document presents some examples

of underfitting, overfitting, and good-fitting curves.

102

Neural Network Development

Figure 3.9 Underfitting Learning Curve - Part 1

Figure 3.10 Underfitting Learning Curve - Part 2

Figure 3.11 Overfitting Learning Curve

Figure 3.12 Good fitting Learning Curve

Underfitting: Underfitting occurs when the model is not able to obtain a sufficiently low error

value on the training set [10]. Based on the plots above, two are the different occasions of

an underfitting estimator; either the model estimator did not train for enough epochs, while

103

Neural Network Development

its loss could further improve. Either on cases were due to lots of noisy data, the model did

not manage to learn the training data whatsoever; creating an important generalization gap

between the training and the validation learning curves. Moreover, underfitting is a sign that

the model classifier is oversimplified. A learning curve plot shows underfitting when: (1) The

training loss remains flat regardless of training and there is a great generalization gap between

the two learning curves (figure 3.9). (2) A continuous decrease in the training and validation

losses until the end of training (figure 3.10) [18].

Overfitting: The overfitting occurs when the validation error is increasing while the training

error, the error on the training dataset, keeps improving (decreasing per training epoch). This

continuous decrease is a sign that the model estimator is more complicated than it should,

and it gained too much flexibility with losing its ability to generalize. Use the learning

curve of the validation dataset to identify overfitting model estimators. Another sign of the

overfitting model is when training the model classifier for a considerable number of epochs.

The inflection point in validation loss may be the point at which training could be halted as

the learning curve of the validation sample after that point shows the dynamics of overfitting.

[18].

Good fit: A right fit learning curve is the desired outcome for every model estimator. The

model algorithms that have a well-fitted curve upon the training data are capable of gener-

alizing, making good predictions on never-seen-before data, and can decrease the loss at a

satisfying point without invoking overfit or underfit. The training dataset will almost always

have lower loss compared to the validation dataset. The difference in the loss will generate a

gap between the two learning curves. This gap is the so-called "generalization gap.". A plot

of learning curves shows a good fit if: (1) The plot of training loss decreases to a point of

stability. (2) The plot of validation loss decreases to a point of stability and has a small gap

with the training loss [18]

104

Neural Network Development

Below the document presents the learning performance curves for each of the three model

estimators.

Figure 3.13 Adam optimizer Training - Hamming loss per training epoch

Figure 3.14 SGD optimizer Training - Hamming loss per training epoch

Figure 3.15 RMSprop optimizer Training - Hamming loss per training epoch

The above three plots present the hamming loss, which is the selected performancemetric, and

the relative learning curves of the Training & the Validation data. The relative learning curves

of the first and the third models have the least number of spikes compared to the second graph

of learning curves. The lack of spikes indicates a smoother training of the model estimator.

105

Neural Network Development

Moreover, it is crystal clear that Adam optimizer and the RMSprop optimizer learned the

training data faster. The number of epochs in the x-axis can verify this accusation. The first

and third models’ training stopped at thirty epochs, while the training of the second model

stopped after approximately forty epochs.

The second group of learning curves are those which monitor the lifetime progress (improve-

ment) of the optimization metric, based on which the model parameters are updated. Those

type of metrics are typically loss metrics. Recall that for the optimization of the model weights

the binary_crossentropy loss was used.

106

Neural Network Development

Figure 3.16 Adam optimizer Training - Loss per training epoch

Figure 3.17 SGD optimizer Training - Loss per training epoch

Figure 3.18 RMSprop optimizer Training - Loss per training epoch

Based on the three figures above, the model estimator of Adam optimizer has the best good

fitted learning curves above all three model estimators. The reader can also observe that the

training phase for the SGD and the RMSprop optimizers was longer than the training phase

of the Adam optimizer model. Fortunately, the three figures present no significant gaps of

generalization error. The first figure is an excellent example of right fitting learning curves.

107

Neural Network Development

The second and the third figures present right fitting learning curves, but with a more unstable

start on the first 4 to 10 epochs. Needless to say, that none of the three figures present signs of

over-fitted or under-fitted model estimators. The first figure seems to have found the ideal spot

where both the training and the validation loss are low. Based on the thorough analysis of the

pre-final step of the selection plan, the model estimator of the Adam optimization algorithm

presented the most well-fitted learning curves (both in performance and optimizationmetrics).

Selection plan Step 5: Bias-Variance trade-off

The final step of the selection plan compares the three model estimators, one chosen per

optimization algorithm, based on the respective bias and variance.

Bias: The difference between the predictions of the neural network and the actual values of

the target variable. A high biased model cannot correctly identify any special pattern or noise

in the training data and leads to an oversimplified model estimator. Under-fitting machine

learningmodels demonstrate high bias. Models unable to determine themathematical function

that fits the training data. The closer the bias is to 0, the more unbiased the model is.

Bias = „E»E»Ŷ … � Y …2”
| {z }

SSE

� E»„X � m”2…
| {z }

Variance

(3.9)

Variance: A measure of spread among the true and the predicted values. The higher the

spread, the more uncertain the model is about the predictions made. High variance hurdles

the model’s ability to generalize on never-seen-before data because, with a high spread, all

the never-seen data points will fall into the same target category. Even though the model will

perform extremely well on the training data, the results will differ on first-seen data points.

Model estimators with high variance are over bound to overfit.

Variance = E»„X � m”2… (3.10)

108

Neural Network Development

The bias and the variance are two values commonly used together to describe a model

estimator. The framework under which those two values interact is called the bias-variance

trade-off. The below figure is regularly referenced in the bibliography and describes exactly

their relationship.

Figure 3.19 Bias-Variance trade-off | Bullseye diagram
Source: BiasVariance [22]

Based on the bulls-eye graph, a model of low variance and low bias reaches the ideal state.

All the other three cases describe model estimators that either have been overfitting during

the training phase (high variance - low variance), either have been underfitting (high bias -

low variance). There is also the high bias and high variance case, which describes model

109

http://scott.fortmann-roe.com/docs/BiasVariance.html

Neural Network Development

estimators that are non-representative to the data. Use the testing dataset to calculate the

values of the variance and bias. Someone can potentially limit phenomena like overfitting

and underfitting during the training phase. For the first phenomenon, the solution is either use

cross-validation scheme with a hold-out dataset, validation dataset. Additionally, reduce

the model’s complexity up to a point where both training and validation learning curves are

satisfyingly low. Whereas potential solutions to resolve or prevent underfitting could be the

replacement of the model algorithm with another one. For example, if the dataset’s distri-

bution is polynomial, then an algorithm that tries to fit linear function on data would seriously

underperform over machine learning algorithms that are robust in polynomial estimations.

Moreover, if the model replacement is time-consuming, then the increase of the current

model’s complexity could substantially improve the prediction results.

The reader can review the values of the bias and variance per model estimator in the table

already presented on page 90. The bias of all three models is very close to zero, and the bias

for the first and third models is negative. Additionally, the variance is very close to 0.01,

another good sign of well-fitted models. Out of the three model estimators, the first model

stands out with the lowest bias and variance among all the others.

The results of the table indicate that all three model estimators are unbiased, biased very close

to zero, and their spread of the prediction values is not high whatsoever. Thus, all three model

estimators achieved a sufficiently good fit upon the training and the test data. In conclusion,

the document presents a summary of the outcome of each step executed in the selection plan.

Step 1: Among the 108 different models trained, select the three models, one per optimizer,

with the lowest hamming loss & zero-one loss values. The outcome was three different model

estimators, one per optimization algorithm.

• Adam optimizer: 7th model, with word embeddings dimension 100, batch size value

equal to 32, learning rate equal to 0.001 and 10 decay steps multiplier.

110

Neural Network Development

• SGD optimizer: 15th model, with 100-word embeddings dimension, 64 hidden units

on the dense layer(s), and 0.1 learning rate.

• RMSprop optimizer: 16th model, with 150-word embeddings dimension, 64 hidden

units on the dense layer(s), and 0.001 learning rate.

Step 2: Execute a round of five different comparisons. Each round highlights one model.

The first round compared the classification reports and the relative confusion matrices per

neural network. From the second step, the model trained with Adam optimizer stood out from

the other two.

Step 3: The second comparison round compares the hamming loss and loss values on content

about movies never seen before by the three classification model estimators. From the third

step of the execution plan, the first model classifier, optimized with Adam stood out from the

other two. With the model estimator from the RMSprop optimization function reaching very

close to the results of the first model estimator.

Step 4: The third comparison round, representing the fourth step in the execution plan

sequence, brings the comparison down to the actual predictions on movies never-seen-before

by the model estimators. Twenty random movies compared. The results were outstanding

and very accurate for all three classification models.

Step 5: The fourth comparison round, representing the fifth step in the execution plan se-

quence, compared the learning curves, one for the training dataset, and the other for the

validation dataset, for the performance and optimization metrics accordingly. The graphs pre-

sented well-fitted and smooth learning curves, with the model estimator of Adam’s optimizer

being the one with the least spikes. The gap of the generalization error between the training

and the validation learning curves determines the goodness of fit. In contrast, the smoothness

is determined by the steady improvement of the optimization metric through each training

epoch. The graphs of the second model estimator, especially the performance learning graph,

111

Neural Network Development

presented lots of spikes (non-smoothness) but rather a small generalization error gap. The

outcome of the pre-final step in the execution plan proposed that the first model estimator

had the best-fitted learning curves, without implying that the other two model estimators were

under-fitted or over-fitted. The examination of the learning curves is a tool for judging the

performance of a model estimator.

Step 6: The final step of the execution plan, and the fifth comparison round selected the

best model estimator by comparing the bias-variance trade-off of each model estimator.

Even though the first and the third model estimators had very close results, the first model

estimator trained with Adam optimizer had the lowest bias and variance values overall. Based

on the conclusion and facts written above, the neural network which optimized the binary

crossentropy loss using the Adam algorithm is selected to proceed in the next chapter.

3.2.4 Hamming loss model estimator vs. Binary accuracy model esti-

mator

During the documentation of the model compilation strategy, referenced on page 74, the

authors chose the hamming loss as the performance metric after explaining the reason why

binary accuracy is not appropriate for the current classification experiment. However, the

authors trained a model estimator after setting the binary accuracy as the performance metrics.

The goal is to compare those two model estimators, the one trained with hamming loss and

the other trained with binary accuracy.

The two summary tables have many differences, review the first table on page 77. Specifically,

the inputs were four and not five, movie title was absent from the training, and the words

tokenized per independent variable were 20,000 tokens. Additionally, the early stopping

patience was much higher, equal to 75 epochs, a value that allowed the Adam optimizer train

for a high number of epochs, approximately 80 epochs of training. Last but not least, the

112

Neural Network Development

Parameters Value Description

Number of input layers 4 [actors, plot summary, movie features, movie reviews]

Number of output targets 17 -

Input length of embedding layer (17, actors), (20, plot summary), (58, movie features, (255 movie reviews)

Actor names tokenized 20000 -

Plot words tokenized 20000 -

Movie features words tokenized 20000 -

Movie reviews words tokenized 20000 -

Activation function of output layer sigmoid -

Loss function binary crossentropy -

Metric binary accuracy

Optimization function(s) [Adam, SGD, RMSprop] -

Batch size (hyper parameter) [16, 32, 64, 128] -

Embedding dimension size (hyper parameter) [50, 100, 200, 300] -

Learning rate 0.01 -

Decay steps multiplier 1000 Every how many epochs the value of the learning rate is decreased

Validation split ratio 80% training, 20% validation dataset -

Number of models trained 48

16 models with Adam optimizer,

16 models with SGD optimizer.

16 models with RMSprop optimizer

Train-test split ratio 80% training, 20% test dataset

Epochs 150 -

Early stopping rounds 75 -

Minimum delta 0.01 If the validation loss drops below 0.009 units, it is not considered an improvement

Table 3.13 Summary table of training the custom neural network with binary
accuracy

hyper-parameters of the neural network were two instead of four, tuned on the hamming loss

performance metric model. Below the document presents the scoring table and the learning

curves of the model trained with the binary accuracy performance metric.

Tag Name Embedding tag Batch tag Keras Model Test Loss Test Accuracy Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

model sixteen adam 300 128 multi_input_model_300dim_128batchsize 0.036827 0.996062 0.003938 623.0 0.981737 0.981821 0.990968 0.992668 -0.00047 0.096426

Table 3.14 Scoring table of the model estimator trained on binary accuracy metric

113

Neural Network Development

Figure 3.20 Performance Learning curves - Binary accuracy per training epoch

Figure 3.21 Optimization Learning curves - Loss per training epoch

The table and the two figures above present a well-fitted model estimator with high accuracy

and low binary crossentropy loss value. The zero-one loss is very close to the model estimator

of the hamming loss performance metric, 623.0 against 566.0. The model classifier of the

hamming loss performance metric predicted correctly 57 more movies. Moreover, it is crystal

clear that the second model estimator’s learning curves have more spikes and less smoothness

than the learning curves of the first model estimator, as presented in pages 105, 107. A fact

that indicates how well fitted is the model estimator trained on the hamming loss performance

metric. The lack of smoothness and the spikes of the learning curves, along with the relative

numbers of the score metrics accomplished with the second model estimator, indicate that the

imbalance of negative and positive values of the target variable y has affected the performance

of the binary accuracy metric. The authors cannot ignore that even with the binary accuracy

metric, the model classifier can still make correct predictions. However, someone should

always check for imbalance issues among the labels of the target variable and not use the

114

Neural Network Development

binary accuracy if extreme imbalance is observed. A model classifier, trying to correctly

classify an imbalanced target variable and measure the classification performance with binary

accuracy, is very susceptible to learn and correctly predict only the dominant values of the

target feature y.

3.3 Neural networks of pre-trained word embeddings

This section of the third chapter documents the training of different neural networks of

either pre-trained word embeddings, or saved network structures and selects the best model

estimator for each pre-trained classifier. The next subsection compares the model estimators

of those neural networks with the model estimator selected from the previous chapter. The

selection is made by following a shortened version of the selection plan mentioned above.

The assembling of the conversational agent that will take place in the next section will exploit

the word embeddings of the best model classifier chosen at the end of this chapter.

3.3.1 GloVe pre-trained word embeddings

GloVe embeddings stand for Global Vectors of Word Representation. Perform the training

on aggregated global word-word co-occurrence statistics from a corpus, and the resulting

representations showcase interesting linear substructures of the word vector space [3]. The

pre-trained word vectors used in the current experiment, contain 42 billion tokens, 1.9 million

words in the vocabulary, and 300-dimensional vectors. The neural network assembled with

the pre-trained GloVe embeddings has the same structure with the neural network trained

on custom word-embeddings—five separate Embedding layers of 300 dimensions each. The

GloVe embeddings neural network’s training process is the same as the training process

already documented in section Compiling & Training the neural network.The execution of

115

Neural Network Development

the GloVe embeddings training process yielded eighteen different neural network model

estimators.

Tag Name Batch tag Learning Rate tag Decay Multiplier tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

glove_embeddings-1 32 0.001 10 0.195429 0.065127 0.060756 6356.0 0.649513 0.639765 0.757214 0.792683 0.035471 0.061845

glove_embeddings-2 32 0.001 20 0.207555 0.066411 0.065031 6633.0 0.612678 0.599929 0.734847 0.771462 0.040704 0.057086

glove_embeddings-3 32 0.010 10 0.296977 0.081439 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-4 32 0.010 20 0.293504 0.088953 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-5 32 0.100 10 0.292655 0.093461 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-6 32 0.100 20 0.292095 0.096466 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-7 64 0.001 10 0.193746 0.091701 0.058992 6169.0 0.649549 0.638848 0.751520 0.789985 0.040285 0.057466

glove_embeddings-8 64 0.001 20 0.190848 0.087977 0.057641 6178.0 0.669535 0.660289 0.767565 0.802285 0.034453 0.062776

glove_embeddings-9 64 0.010 10 0.296258 0.090590 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-10 64 0.010 20 0.294165 0.092680 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-11 128 0.001 10 0.209676 0.068224 0.065421 6722.0 0.594960 0.567999 0.720721 0.754117 0.046983 0.051440

glove_embeddings-12 128 0.001 20 0.207239 0.066868 0.063968 6590.0 0.608379 0.584024 0.728266 0.763978 0.045171 0.053063

glove_embeddings-13 128 0.010 10 0.293262 0.081739 0.102249 8346.0 0.325025 0.308569 0.603853 0.620729 0.057181 0.042400

glove_embeddings-14 128 0.010 20 0.291706 0.088962 0.107130 9797.0 0.000896 0.000561 0.500191 0.500195 0.106987 0.000108

glove_embeddings-15 128 0.100 10 0.299538 0.093468 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-16 128 0.100 20 0.296394 0.096472 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-17 64 0.100 10 0.292272 0.098618 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

glove_embeddings-18 64 0.100 20 0.292156 0.100228 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

Table 3.15 Trained Neural Networks on pre-trained GloVe word embeddings

The seventh and the eighth trained models accomplished the best results compared to the

others. The two models managed to achieve the lowest hamming loss and zero-one loss on

test data. Even though the seventh model correctly classified nine more movies than the

eighth model, the latter had better performance on the rest of the score metrics of f1-score,

ROC-AUC score and bias. As a result the eighth model is a better model classifier and is the

one selected among the eighteen total trained models.

From now on, the document will present a set of saved models hosted in Tensorflow Hub.

The latter is an online cloud community with available pre-trained neural networks of various

authors. It supports an alternative way for text representation, such as to convert sentences

into embeddings vectors using pre-trained text embeddings as the first layer. The differences,

and at the same time, the advantages of using such models for making predictions, against a

neural network with custom word embeddings are the following:

• The first layer that stores the neural network takes care of the text preprocessing, by

116

Neural Network Development

mapping a corpus of sentences to an embedding vector.

• The benefit of transfer learning.

Transfer learning - Definition 1:

The classic supervised machine learning paradigm is based on learning in isolation, a single

predictive model for a task using a single dataset. This approach requires a large number

of training examples and performs best for well-defined and narrow tasks. Transfer learning

refers to a set of methods that extend this approach by leveraging data from additional domains

or tasks to train a model with better generalization properties. [14]

Transfer learning - Definition 2:

Pre-training allows a model to capture and learn a variety of linguistic phenomena, such as

long-term dependencies and negation, from a large-scale corpus. Then this knowledge is used

(transferred) to initialize and then train another model to perform well on a specific NLP task,

such as sentiment classification [21]

Those two are the reasons that make pre-trained saved models so commonly used and an

excellent opportunity to compare the performance of custom neural networks with the perfor-

mance of pre-trained models. Please note that the results presented from now on bound to the

specific experiment and dataset. Someone should not use the results and conclusions derived

from this documentation to drive general decision-making. Besides, the thesis presents the

results of only four out of many more pre-trained neural networks found on the Tensorflow

Hub. Thus, the results apply only to the current experiment and study.

117

Neural Network Development

3.3.2 English Google News 130GB corpus | 20 dimensions & without

OOV token

This is the first neural network, which represents a saved model stored in Tensorflow hub

and the second pre-trained model estimator after the neural network developed on GloVe

embeddings, with both models to contribute in the comparison with the custom estimator’s

performance. In those kind of models, the first layer is a TensorFlow Hub layer. This layer

uses a pre-trained Saved Model to map a sentence into an embedding vector. The model [12],

which is trained on English Google News corpus, splits the sentence into tokens, embeds each

token and then combines the embedding. The resulting dimensions are: (num_examples,

embedding_dimension). The embedding dimension of the vector space has a fix value equal

to 20. The neural network structure of the second model estimator,

Figure 3.22 Neural Network Structure | English Google News 130Gb corpus with
20 dim & without OOV token

118

https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1

Neural Network Development

Parameters Value Description

Loss function binary crossentropy

Metric [hamming loss, f1 score]

Optimization function(s) Adam

Batch size (hyper parameter) [32, 64, 128]

Embedding dimension size 20

Learning rate (hyper parameter) [0.001, 0.01, 0,1]

Decay steps multiplier (hyper parameter) [10, 20]

Number of models trained 18

Table 3.16 Summary table of English Google News 20dim without OOV token

Tag Name Batch tag Learning Rate tag Decay Multiplier tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

English_Google_News_130GB_20dim_without_OOV-1 32 0.001 10 0.244004 0.095754 0.093869 8009.0 0.387289 0.359360 0.629284 0.656543 0.055407 0.043961

English_Google_News_130GB_20dim_without_OOV-2 32 0.001 20 0.240941 0.094614 0.092542 7911.0 0.418571 0.390544 0.644995 0.671417 0.049339 0.049337

English_Google_News_130GB_20dim_without_OOV-3 32 0.010 10 0.248332 0.094409 0.092434 7761.0 0.443231 0.427533 0.659358 0.687790 0.042536 0.055432

English_Google_News_130GB_20dim_without_OOV-4 32 0.010 20 0.251306 0.094406 0.094205 7846.0 0.450852 0.433057 0.666084 0.693607 0.037187 0.060279

English_Google_News_130GB_20dim_without_OOV-5 32 0.100 10 0.286514 0.097091 0.102706 9011.0 0.214931 0.167367 0.560222 0.575266 0.079457 0.023144

English_Google_News_130GB_20dim_without_OOV-6 32 0.100 20 0.282675 0.098707 0.105119 9281.0 0.145847 0.105837 0.537985 0.549373 0.088260 0.015696

English_Google_News_130GB_20dim_without_OOV-7 64 0.001 10 0.254082 0.098690 0.095856 8053.0 0.372278 0.347672 0.623067 0.649612 0.055921 0.043509

English_Google_News_130GB_20dim_without_OOV-8 64 0.001 20 0.250829 0.098499 0.095034 7856.0 0.410281 0.392241 0.642564 0.670968 0.047348 0.051114

English_Google_News_130GB_20dim_without_OOV-9 64 0.010 10 0.265364 0.098485 0.096270 7952.0 0.401225 0.380535 0.638567 0.667143 0.047720 0.050781

English_Google_News_130GB_20dim_without_OOV-10 64 0.010 20 0.261058 0.098401 0.095934 7909.0 0.417538 0.406960 0.647510 0.674964 0.043826 0.054271

English_Google_News_130GB_20dim_without_OOV-11 64 0.100 10 0.285952 0.098879 0.098882 8408.0 0.313781 0.273496 0.597478 0.619243 0.064952 0.035611

English_Google_News_130GB_20dim_without_OOV-12 64 0.100 20 0.278998 0.099263 0.099548 8526.0 0.271621 0.236779 0.580485 0.601343 0.072980 0.028679

English_Google_News_130GB_20dim_without_OOV-13 128 0.001 10 0.264633 0.099265 0.097345 8007.0 0.407743 0.386479 0.643119 0.669649 0.044163 0.053968

English_Google_News_130GB_20dim_without_OOV-14 128 0.001 20 0.265379 0.099254 0.097105 8009.0 0.410324 0.391520 0.644388 0.671035 0.043856 0.054244

English_Google_News_130GB_20dim_without_OOV-15 128 0.010 10 0.281693 0.099206 0.098227 8058.0 0.421168 0.403613 0.651774 0.680234 0.038962 0.058665

English_Google_News_130GB_20dim_without_OOV-16 128 0.010 20 0.278330 0.099231 0.099128 8060.0 0.404013 0.380169 0.642491 0.667984 0.042237 0.055702

English_Google_News_130GB_20dim_without_OOV-17 128 0.100 10 0.301855 0.099447 0.100514 8260.0 0.375829 0.347333 0.628004 0.652266 0.047462 0.051012

English_Google_News_130GB_20dim_without_OOV-18 128 0.100 20 0.300186 0.099504 0.099170 8169.0 0.382245 0.351336 0.630483 0.655725 0.047966 0.050562

Table 3.17 Trained Neural Networks on pre-trained English Google news 20dim
without OOV token

The third model trained presented the best performance compared to all the other eighteen

models. Thus, it is the one selected to continue in the next chapter. The overall insight gained

by reviewing the table is that all the trained neural networks ill-performed, misclassifying

most movies. Additionally, all the models have high testing losses, with values indicating the

119

Neural Network Development

models’ inability to classify 1 in 4 movies correctly.

3.3.3 English Google News 130GB corpus | 20 dimensions & OOV token

The only difference to the above pre-trained saved model is the conversion of 2,5% vocabulary

to OOV buckets. The Out-Of-Vocabulary tokens are useful in situations where there is a gap

between the vocabulary size of the corpus and the vocabulary size of the saved model. The

vocabulary size of the current saved model is 20,000 tokens. So there is a very high chance

that 20,000 tokens from the English Google News corpus do not contain many case-specific

words related to movie content. The saved model used can be found here [12].

Figure 3.23 Neural Network Structure | English Google News 130Gb corpus with
20 dim & with OOV token

120

https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim-with-oov/1

Neural Network Development

Parameters Value Description

Loss function binary crossentropy

Metric [hamming loss, f1 score]

Optimization function(s) Adam

Batch size (hyper parameter) [8, 16, 32, 64, 128]

Embedding dimension size 20

Learning rate (hyper parameter) [0.001, 0.01, 0,1]

Decay steps multiplier (hyper parameter) [10, 20]

Number of models trained 30

Table 3.18 Summary table of English Google News 20dim with OOV token

Tag Name Batch tag Learning Rate tag Decay Multiplier tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

model_english_google_news_130GB_20dim_with_oov-1 8 0.001 10 0.241678 0.095646 0.095256 8114.0 0.359179 0.330955 0.616301 0.642992 0.060141 0.039804

model_english_google_news_130GB_20dim_with_oov-2 8 0.001 20 0.246518 0.095760 0.095082 8114.0 0.366617 0.337048 0.619777 0.645735 0.058604 0.041151

model_english_google_news_130GB_20dim_with_oov-3 8 0.010 10 0.249060 0.096049 0.095238 8013.0 0.386575 0.363092 0.629923 0.655536 0.053301 0.045821

model_english_google_news_130GB_20dim_with_oov-4 8 0.010 20 0.253008 0.096109 0.095304 8107.0 0.379844 0.351454 0.626508 0.654513 0.054919 0.044392

model_english_google_news_130GB_20dim_with_oov-5 8 0.100 10 0.295467 0.099186 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

model_english_google_news_130GB_20dim_with_oov-6 8 0.100 20 0.294864 0.101238 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

model_english_google_news_130GB_20dim_with_oov-7 16 0.001 10 0.248089 0.100614 0.094595 8005.0 0.394529 0.370111 0.633612 0.660212 0.052303 0.046704

model_english_google_news_130GB_20dim_with_oov-8 16 0.001 20 0.244693 0.099933 0.093995 7910.0 0.400077 0.379538 0.636093 0.663331 0.051852 0.047105

model_english_google_news_130GB_20dim_with_oov-9 16 0.010 10 0.259078 0.099609 0.095766 7836.0 0.431245 0.425091 0.655495 0.685294 0.040239 0.057508

model_english_google_news_130GB_20dim_with_oov-10 16 0.010 20 0.260606 0.099279 0.095760 7831.0 0.439966 0.430694 0.660874 0.689186 0.037721 0.059792

model_english_google_news_130GB_20dim_with_oov-11 16 0.100 10 0.297577 0.100389 0.104194 9291.0 0.119872 0.093309 0.530784 0.538612 0.093690 0.011141

model_english_google_news_130GB_20dim_with_oov-12 16 0.100 20 0.293139 0.101315 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

model_english_google_news_130GB_20dim_with_oov-13 32 0.001 10 0.255035 0.101144 0.096979 8052.0 0.392692 0.368949 0.634472 0.660689 0.048814 0.049805

model_english_google_news_130GB_20dim_with_oov-14 32 0.001 20 0.248896 0.100824 0.094998 7829.0 0.429956 0.414838 0.653952 0.681687 0.041920 0.055988

model_english_google_news_130GB_20dim_with_oov-15 32 0.010 10 0.261797 0.100585 0.095868 7927.0 0.408299 0.386278 0.642171 0.669472 0.046481 0.051889

model_english_google_news_130GB_20dim_with_oov-16 32 0.010 20 0.270825 0.100415 0.096450 7878.0 0.398262 0.387066 0.637086 0.664222 0.048212 0.050342

model_english_google_news_130GB_20dim_with_oov-17 32 0.100 10 0.282603 0.100908 0.101559 8782.0 0.226075 0.191506 0.564045 0.582313 0.079007 0.023527

model_english_google_news_130GB_20dim_with_oov-18 32 0.100 20 0.292240 0.101349 0.101373 8706.0 0.225758 0.196074 0.563928 0.581392 0.079336 0.023247

model_english_google_news_130GB_20dim_with_oov-19 64 0.001 10 0.257157 0.101117 0.095142 7907.0 0.419599 0.400248 0.647978 0.675308 0.044595 0.053580

model_english_google_news_130GB_20dim_with_oov-20 64 0.001 20 0.262654 0.100953 0.095310 7905.0 0.410413 0.393142 0.642878 0.670915 0.046845 0.051563

model_english_google_news_130GB_20dim_with_oov-21 64 0.010 10 0.266375 0.100772 0.096865 7914.0 0.438201 0.421239 0.660921 0.687624 0.036356 0.061037

model_english_google_news_130GB_20dim_with_oov-22 64 0.010 20 0.273109 0.100668 0.098329 7992.0 0.421855 0.398967 0.652284 0.677744 0.038598 0.058996

model_english_google_news_130GB_20dim_with_oov-23 64 0.100 10 0.292396 0.100782 0.098275 8428.0 0.311362 0.273926 0.596215 0.621295 0.066434 0.034325

model_english_google_news_130GB_20dim_with_oov-24 64 0.100 20 0.291094 0.100839 0.099578 8357.0 0.315451 0.283354 0.598469 0.620313 0.063496 0.036877

model_english_google_news_130GB_20dim_with_oov-25 128 0.001 10 0.265040 0.100745 0.096829 7962.0 0.415791 0.396643 0.647305 0.673679 0.042807 0.055188

model_english_google_news_130GB_20dim_with_oov-26 128 0.001 20 0.266817 0.100657 0.096679 7955.0 0.421287 0.404050 0.650397 0.677542 0.041522 0.056347

model_english_google_news_130GB_20dim_with_oov-27 128 0.010 10 0.276336 0.100599 0.098419 8018.0 0.425039 0.404483 0.654305 0.679934 0.037543 0.059955

model_english_google_news_130GB_20dim_with_oov-28 128 0.010 20 0.277498 0.100538 0.097681 7932.0 0.416816 0.402146 0.648677 0.675203 0.041095 0.056733

model_english_google_news_130GB_20dim_with_oov-29 128 0.100 10 0.292564 0.100577 0.100851 8188.0 0.391348 0.362819 0.636693 0.660524 0.042854 0.055146

model_english_google_news_130GB_20dim_with_oov-30 128 0.100 20 0.303202 0.100598 0.100809 8232.0 0.350443 0.323633 0.615238 0.638629 0.053363 0.045767

Table 3.19 Trained Neural Networks on pre-trained English Google news corpus
20dim with OOV token

The eighth and the fourteenth model classifiers demonstrated the best performance out of the

121

Neural Network Development

thirty total models. However, the overall score metrics monitored do not achieve favorable

results. For example, the ROC-AUC score cannot climb above the 0.65 units in the majority

of the models.ROC-AUC score values around 0.5 and 0.65 units indicate a poor-fitted model

classifier. Additionally, test loss follows the same pattern with the previous pre-trained model

estimator. Nonetheless, the table’s overall results do not present a promising chance to choose

one of those models instead of the custom-trained neural network of the previous chapter. Out

of the two best performed models, the eighth is the one to continue in the next chapter, as the

one having the lowest hamming loss value.

3.3.4 English Google News 7B corpus | 50 dimensions & OOV token

The fourth and the last saved pre-trained model that will be compared to the custom model

estimator created on the previous section, is a token based text embedding model trained

on English Google News of 7 billion tokens. Each word in the corpus is embedded to 50-

dimensional word vector space. The use of a higher dimensional word representation space

will substantially increase both the trainable parameters of the neural network and also the

information learned from a 50-vector space of a token would be more helpful in distinguishing

and better learning the patterns between different movie genres. This saved model also makes

use of Out-Of-Vocabulary token, so as to help the neural network to derive the semantics of

the text, if the latter contains tokens that do not overlap with the tokens in the vocabulary of

the saved model estimator. The saved model used can be found here [1].

122

https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1

Neural Network Development

Figure 3.24 Neural Network Structure | English Google News 7B corpus with 50
dim & with OOV token

Parameters Value Description

Loss function binary crossentropy

Metric [hamming loss, f1 score]

Optimization function(s) Adam

Batch size (hyper parameter) [16, 32, 64, 128]

Embedding dimension size 50

Learning rate (hyper parameter) [0.001, 0.01, 0,1]

Decay steps multiplier (hyper parameter) [10, 20]

Number of models trained 24

Table 3.20 Summary table of English Google News 50dim 7B with OOV token

123

Neural Network Development

Tag Name Batch tag Learning Rate tag Decay Multiplier tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

model_english_google_news_7B_50dim-1 16 0.001 10 0.250967 0.096559 0.095646 8318.0 0.365042 0.321783 0.619362 0.642709 0.058067 0.041622

model_english_google_news_7B_50dim-2 16 0.001 20 0.257931 0.096757 0.095646 8356.0 0.354390 0.311635 0.614258 0.637092 0.060664 0.039347

model_english_google_news_7B_50dim-3 16 0.010 10 0.255495 0.096382 0.094013 7838.0 0.415525 0.399308 0.644615 0.672656 0.047648 0.050846

model_english_google_news_7B_50dim-4 16 0.010 20 0.273763 0.096555 0.098077 7970.0 0.432235 0.408075 0.658417 0.682393 0.036047 0.061318

model_english_google_news_7B_50dim-5 16 0.100 10 0.293484 0.099543 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

model_english_google_news_7B_50dim-6 16 0.100 20 0.294172 0.101535 0.107118 9799.0 0.000000 0.000000 0.500000 0.500000 0.107118 0.000000

model_english_google_news_7B_50dim-7 32 0.001 10 0.256035 0.100958 0.095190 7938.0 0.394702 0.375106 0.634167 0.661738 0.051261 0.047629

model_english_google_news_7B_50dim-8 32 0.001 20 0.256646 0.100489 0.094980 7965.0 0.401226 0.381866 0.637515 0.664745 0.049883 0.048853

model_english_google_news_7B_50dim-9 32 0.010 10 0.276216 0.100067 0.095550 7834.0 0.417365 0.406632 0.647059 0.676170 0.044524 0.053643

model_english_google_news_7B_50dim-10 32 0.010 20 0.273565 0.099578 0.093491 7756.0 0.433879 0.421547 0.654796 0.682846 0.043395 0.054658

model_english_google_news_7B_50dim-11 32 0.100 10 0.291494 0.100665 0.106758 9347.0 0.124113 0.093292 0.531272 0.537959 0.089623 0.014549

model_english_google_news_7B_50dim-12 32 0.100 20 0.295328 0.101417 0.105929 9621.0 0.047295 0.034527 0.511466 0.514259 0.102209 0.004053

model_english_google_news_7B_50dim-13 64 0.001 10 0.271966 0.101122 0.095604 7975.0 0.409580 0.386424 0.642664 0.671436 0.046576 0.051804

model_english_google_news_7B_50dim-14 64 0.001 20 0.274506 0.100904 0.096757 7972.0 0.409813 0.388370 0.643794 0.672825 0.044577 0.053595

model_english_google_news_7B_50dim-15 64 0.010 10 0.288847 0.100621 0.094668 7861.0 0.416401 0.400442 0.645704 0.675563 0.046290 0.052060

model_english_google_news_7B_50dim-16 64 0.010 20 0.296013 0.100544 0.098948 8067.0 0.420897 0.391273 0.652283 0.677774 0.037842 0.059682

model_english_google_news_7B_50dim-17 64 0.100 10 0.320761 0.100848 0.098972 8560.0 0.262624 0.228125 0.576961 0.598745 0.075677 0.026369

model_english_google_news_7B_50dim-18 64 0.100 20 0.327471 0.101128 0.100749 8677.0 0.265996 0.220941 0.578555 0.601937 0.072336 0.029233

model_english_google_news_7B_50dim-19 128 0.001 10 0.308700 0.101070 0.098690 8045.0 0.397670 0.377055 0.638544 0.666659 0.044672 0.053510

model_english_google_news_7B_50dim-20 128 0.001 20 0.305446 0.101015 0.098173 7995.0 0.407163 0.389346 0.643494 0.672288 0.042948 0.055061

model_english_google_news_7B_50dim-21 128 0.010 10 0.341578 0.101031 0.099764 8197.0 0.391847 0.362370 0.636142 0.663572 0.044477 0.053686

model_english_google_news_7B_50dim-22 128 0.010 20 0.336297 0.101070 0.101691 8086.0 0.408850 0.395240 0.647491 0.671682 0.036734 0.060692

model_english_google_news_7B_50dim-23 128 0.100 10 0.364466 0.101333 0.101157 8394.0 0.317967 0.282349 0.600199 0.623944 0.060488 0.039501

model_english_google_news_7B_50dim-24 128 0.1 20 0.41063 0.107598 0.103126 8434.0 0.34807 0.3072 0.615322 0.640013 0.050325 0.04846

Table 3.21 Trained Neural Networks on pre-trained English Google news 50dim
7B corpus with OOV token

The tenthmodel trained achieved the lowest hamming loss value among the twenty-fourmodels

trained. The section is now complete. Each pre-trained neural network has a comparison

candidate, demonstrating the lowest hamming loss and zero-one loss value upon the test data.

The chapter to come compares the five model classifiers to select the one best classifier.

The weights of the classifier selected are the main component of developing an accurate

recommendation algorithm.

3.3.5 Select best model classifier (out of the five neural networks)

In the final section of the chapter takes place the selection of the best model classifier out of

the five neural networks trained on the previous subsections. The model estimator selected

will continue on the next chapter. The chapter that will thoroughly present the development

and the intuition behind the interactive conversational agent. For the moment, the focus is

on the selection plan that will help to decide the best model estimator among those trained

124

Neural Network Development

and saved. The selection plan represents a shorter version of the selection plan executed on

chapter 3.2.3.

The selection plan followed in this chapter includes the following three comparisons:

Comparison 1 Create the scoring dataframes per model estimator and compare the

values of Hamming loss, Zero-one loss, Test Hamming loss, Test Binary Crossentropy

(loss), ROC-AUC, variance and bias-variance tradeoff.

Similar to the previously used scoring dataframe the model scoring metrics illustrated are:

• Test Loss: The binary crossentropy of the model estimator on the data never-seen before

by the neural network. The lower the loss the closer the movie genres predictions to the

actual movie genres of a movie. An indication of the model’s potential to generalize.

• Test Hamming loss: The classifier’s ability to correctly predict the movie genre(s) of

new content. The lower the hamming loss, the lower the misclassifications of the model

estimator.

• Hamming Loss: The fraction of wrong labels to the total number of labels.

• Zero-one Loss: The number of misclassifications. The best performance is 0, because

this will indicate that all the movies have been allocated to the correct genre sequence.

• F1_score: The f1 score value as described in section 3.2.3

• ROC_score: The AUC score as referenced in section 3.2.3

• Variance: The variance value of the model predictions. A closer to zero variance indi-

cates both minimum spread of model predictions on new testing data and secondly the

model estimator is good at picking out hidden patterns between the trainable parameters.

• Bias: The bias of a model estimator stands for the assumption made by the neural

network to approximate the target function. The more biased a neural network is, the

125

Neural Network Development

more sensitive is to drive conclusions based on noisy data and patterns that do not

help distinguish the difference between the movie genres. In general, the high bias

reduces the flexibility of a model, but amplifies its ability to learn fast. However, it

affects negatively the predictive performance on more complex problems, because such

problems fail to understand the simplifying assumptions of the model bias [17] (the

reader may refer to this link)

The model estimator that will present the best performance on those various metrics will be

the one selected for chapter four.

Comparison 2 Compare the confusion matrices for each model estimator. The con-

fusion matrix will point to the model classifier that allocated correctly the Predicted

Genres to the True target values. Confusion matrix is an appropriate tool for a scientist

to evaluate the classifier’s performance. The proper use of a confusion matrix has been

documented here.

Comparison 3Evaluate the goodness of fit of the target function estimated by each clas-

sifier accordingly on training and validation data, from checking both the performance

and the optimization learning curves.

Comparison 1: Scoring results per model classifier
Tag Name Embedding Dimension tag Batch tag Learning Rate tag Decay Multiplier tag Test Loss Test Hamming Loss Hamming Loss Zero_one Loss F1_score F1_score_samples ROC_score ROC_score_samples Bias Variance

multi_input_keras_model-7 100.0 32 0.001 10 0.019068 0.058487 0.003620 566.0 0.983106 0.983534 0.990600 0.992834 -0.000024 0.095667

glove_embeddings-8 NaN 64 0.001 20 0.190848 0.087977 0.057641 6178.0 0.669535 0.660289 0.767565 0.802285 0.034453 0.062776

English_Google_News_130GB_20dim_without_OOV-3 NaN 32 0.010 10 0.248332 0.094409 0.092434 7761.0 0.443231 0.427533 0.659358 0.687790 0.042536 0.055432

model_english_google_news_130GB_20dim_with_oov-8 NaN 16 0.001 20 0.244693 0.099933 0.093995 7910.0 0.400077 0.379538 0.636093 0.663331 0.051852 0.047105

model_english_google_news_7B_50dim-10 NaN 32 0.010 20 0.273565 0.099578 0.093491 7756.0 0.433879 0.421547 0.654796 0.682846 0.043395 0.054658

Table 3.22 Scoring table of the selected model classifiers

From the table presented above, it is clear that the custom trained neural network by far surpass

the model classifiers of pre-trained word embedding models. The difference is not only seen

in the relative hamming loss and zero-one loss but also by the other relevant metrics, which

describe the quality of the classification predictions and learning. More specifically, the first

126

 https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/#:~:text=Bias

Neural Network Development

model has by far the lowest testing loss and the highest f1-score and ROC-AUC score with

at least 0.25 units of difference from the other model classifiers. Last but not least, the first

model is the least biased classifier and the one with the lowest spread between the true and

the predicted values.

Comparison 2: Confusion matrices

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 1342 0 0 1 4 1 1 4 0 1 0 0 1 0 0 0 2

Adventure 1 377 10 3 14 1 9 2 0 1 2 0 1 0 1 0 0

Animation 0 1 258 0 0 1 0 0 1 0 0 0 0 0 0 0 0

Children 0 5 1 212 6 0 0 0 2 2 0 0 0 0 0 0 0

Comedy 3 1 0 0 2365 0 0 0 0 0 0 0 0 0 0 0 0

Crime 5 0 0 0 0 517 0 28 1 1 0 3 0 0 6 0 0

Documentary 3 0 1 1 3 0 768 2 0 1 0 0 0 0 0 0 0

Drama 0 3 0 1 7 8 11 2676 0 0 0 0 0 0 0 0 0

Fantasy 0 1 0 0 0 0 0 0 43 2 0 1 0 0 0 0 0

Horror 0 0 0 2 0 0 2 1 1 585 0 0 0 0 0 0 0

Musical 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0

Mystery 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0

Romance 0 0 0 0 2 0 0 1 0 0 1 0 55 0 0 0 0

Sci-Fi 0 2 0 0 0 0 1 0 1 0 0 0 0 60 0 0 0

Thriller 2 0 0 0 0 1 1 0 0 0 0 2 1 0 147 0 0

War 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 12 0

Western 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 90

Table 3.23 Confusion matrix - model 1 (Custom Keras model)

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 643 28 3 0 198 42 1 335 0 81 0 0 0 7 19 0 0

Adventure 151 51 12 3 90 0 3 97 0 13 0 0 0 1 1 0 0

Animation 84 17 67 3 65 0 5 14 0 6 0 0 0 0 0 0 0

Children 42 4 8 8 105 0 0 57 0 3 0 0 0 1 0 0 0

Comedy 102 1 5 1 2061 0 1 176 0 20 0 0 0 1 1 0 0

Crime 88 0 1 0 6 87 2 334 0 28 0 0 0 0 15 0 0

Documentary 254 0 0 0 7 0 456 54 0 7 0 0 0 1 0 0 0

Drama 60 1 0 0 27 16 2 2551 0 43 0 0 0 1 5 0 0

Fantasy 17 2 1 0 1 0 0 3 0 23 0 0 0 0 0 0 0

Horror 21 0 0 0 1 2 0 70 0 496 0 0 0 0 1 0 0

Musical 12 0 0 0 4 0 1 7 0 0 0 0 0 0 0 0 0

Mystery 36 0 0 0 1 5 0 9 0 14 0 0 0 0 5 0 0

Romance 16 0 0 0 19 0 0 21 0 0 0 0 0 0 3 0 0

Sci-Fi 35 0 2 0 1 0 1 0 0 14 0 0 0 8 3 0 0

Thriller 52 0 0 0 0 12 0 30 0 43 0 0 0 0 17 0 0

War 9 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0

Western 84 0 0 0 3 0 2 3 0 0 0 0 0 0 0 0 0

Table 3.24 Confusion matrix - model 2 (GloVe embeddings)

127

Neural Network Development

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 582 16 0 0 106 99 9 443 0 56 0 0 0 39 7 0 0

Adventure 163 28 2 1 47 2 4 149 0 18 0 0 0 8 0 0 0

Animation 103 10 4 1 71 0 4 48 0 10 0 0 0 8 2 0 0

Children 55 6 2 1 73 1 1 80 0 6 0 0 0 3 0 0 0

Comedy 370 2 1 1 981 28 35 886 0 49 0 0 0 13 3 0 0

Crime 103 0 0 0 48 118 1 255 0 19 0 0 0 6 11 0 0

Documentary 133 0 0 0 36 1 374 223 0 5 0 0 0 7 0 0 0

Drama 327 1 0 0 344 29 37 1892 0 59 0 0 0 11 6 0 0

Fantasy 14 1 0 1 4 0 3 16 0 5 0 0 0 3 0 0 0

Horror 158 0 0 0 28 2 4 169 0 207 0 0 0 15 8 0 0

Musical 3 0 0 0 11 0 2 8 0 0 0 0 0 0 0 0 0

Mystery 16 0 0 0 11 7 0 26 0 4 0 0 0 1 5 0 0

Romance 6 0 0 0 10 1 1 40 0 1 0 0 0 0 0 0 0

Sci-Fi 30 0 0 0 2 0 1 10 0 6 0 0 0 13 2 0 0

Thriller 27 0 0 0 19 15 1 75 0 13 0 0 0 1 3 0 0

War 2 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0

Western 44 0 0 0 7 2 0 39 0 0 0 0 0 0 0 0 0

Table 3.25 Confusion matrix - model 3 (English Google News 20dim 130GB no
OOV)

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 740 31 4 0 111 66 14 319 0 50 0 0 0 13 9 0 0

Adventure 224 15 1 2 61 1 8 98 0 9 0 0 0 3 0 0 0

Animation 118 5 9 1 71 2 7 39 0 9 0 0 0 0 0 0 0

Children 75 5 3 0 79 1 1 61 0 3 0 0 0 0 0 0 0

Comedy 572 1 0 2 901 34 50 748 0 52 0 0 0 6 3 0 0

Crime 139 0 0 0 41 87 7 244 0 34 0 0 0 0 9 0 0

Documentary 205 0 0 0 35 0 362 168 0 8 0 0 0 1 0 0 0

Drama 574 1 1 0 316 19 58 1664 0 65 0 0 0 2 6 0 0

Fantasy 22 1 0 0 5 1 2 9 0 7 0 0 0 0 0 0 0

Horror 209 0 0 0 23 3 5 130 0 207 0 0 0 7 7 0 0

Musical 4 0 0 0 10 0 1 9 0 0 0 0 0 0 0 0 0

Mystery 21 0 0 0 5 9 0 25 0 7 0 0 0 0 3 0 0

Romance 13 0 0 0 12 0 0 33 0 1 0 0 0 0 0 0 0

Sci-Fi 33 1 0 0 2 1 1 7 0 10 0 0 0 7 2 0 0

Thriller 43 0 0 0 14 12 1 64 0 16 0 0 0 0 4 0 0

War 4 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0

Western 56 1 0 0 6 1 0 28 0 0 0 0 0 0 0 0 0

Table 3.26 Confusion matrix - model 4 (English Google News 20dim 130GB with
OOV)

128

Neural Network Development

Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Romance Sci-Fi Thriller War Western

Action 613 13 2 1 133 125 30 358 0 63 0 0 0 6 12 0 1

Adventure 170 4 6 10 65 1 9 147 0 10 0 0 0 0 0 0 0

Animation 87 5 15 11 69 2 10 53 0 9 0 0 0 0 0 0 0

Children 57 2 2 10 72 0 5 76 0 4 0 0 0 0 0 0 0

Comedy 367 0 1 8 1019 35 61 818 0 52 0 0 0 3 5 0 0

Crime 143 0 0 0 68 114 3 190 0 36 0 0 0 0 7 0 0

Documentary 123 0 0 1 39 1 399 209 0 7 0 0 0 0 0 0 0

Drama 385 0 0 1 398 38 69 1734 0 69 0 0 0 1 10 0 1

Fantasy 14 0 0 1 6 0 3 15 0 8 0 0 0 0 0 0 0

Horror 170 0 0 0 50 3 4 108 0 245 0 0 0 6 5 0 0

Musical 6 0 0 0 10 0 1 7 0 0 0 0 0 0 0 0 0

Mystery 20 0 0 0 9 6 1 21 0 8 0 0 0 0 5 0 0

Romance 6 0 0 0 19 3 1 29 0 1 0 0 0 0 0 0 0

Sci-Fi 30 1 0 0 2 0 3 11 0 11 0 0 0 4 2 0 0

Thriller 42 0 0 1 22 13 2 56 0 13 0 0 0 0 5 0 0

War 4 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0

Western 34 0 0 0 14 3 0 33 0 0 0 0 0 0 0 0 8

Table 3.27 Confusion matrix - model 5 (English Google News 50dim 7B with
OOV)

129

Neural Network Development

The classification matrix of the first model stands out compared to the other four matrices.

The second matrix, which belongs to the GloVe embeddings model presents more promising

results than the third, the fourth, and the fifth matrix. However, the second model classified

most of the movies into the comedy and the drama genre, the two most populated movie

genres in the dataset. The high numbers of misclassified movies on wrong genres indicate

under-fitting, a behavior observed in all the four model classifiers but the first one. Under-

fitting classifiers cannot correctly spot the semantics and the tokens that separate the target

values. As a result, they classify movies to only the genre they better learned. Overall, from

the second comparison, the first model is also the winner of the duel.

Comparison 3: Performance & Optimization Learning curves

Performance learning curves (training and validation) monitoring the hamming loss metric

Figure 3.25 Custom Keras model - Hamming loss learning curves

Figure 3.26 GloVe embeddings - Hamming loss learning curves

130

Neural Network Development

Figure 3.27 English Google News 20dim 130GB no OOV - Hamming loss learning
curves

Figure 3.28EnglishGoogle News 20dim 130GBwithOOV -Hamming loss learning
curves

Figure 3.29 English Google News 50dim 7B with OOV - Hamming loss learning
curves

The bottom three plots validate the under-fitting behavior of the three model estimators trained

on the English Google News models. The training dataset learning curve keeps decreasing

without reaching a point of stability even after twenty training epochswith theAdamoptimizer.

131

Neural Network Development

On the contrary, the first two performance learning curves exhibit more stable and smooth

learning. The first learning curve, of the custom trained neural network, reaches a sufficiently

low point of stability very early, at around the fifth training epoch. The second pair of learning

curves, of the GloVe embeddings model, present a stable training curve and a spiky (non-

smooth) validation curve. That phenomenon indicates that the validation dataset was probably

not sufficient for the training—the so-called unrepresented validation dataset. A solution to

this would be an increase in the validation split ratio, selecting more data for performance

validation—for example, 60% training and 40% validation data instead of 70-30%. Last but

not least, the significant gap between the validation and training learning curves observed in

the last three models represents the under-fit generalization error.

Optimization learning curves (training and validation) monitoring the loss function

Figure 3.30 Custom Keras model - Loss learning curves

Figure 3.31 GloVe embeddings - Loss learning curves

132

Neural Network Development

Figure 3.32 English Google News 20dim 130GB no OOV - Loss learning curves

Figure 3.33 English Google News 20dim 130GB with OOV - Loss learning curves

Figure 3.34 English Google News 50dim 7B with OOV - Loss learning curves

The optimization learning curves aremore appropriate to identify over-fitting and under-fitting

classifiers. The last three models present the same pattern with the relative performance

learning curves. While the first and the second models present well-fitted optimization

learning curves. The first model classifier also achieved the smoothest learning curve with a

deficient generalization error. Based on all the three comparisons of the selection plan, the

133

Neural Network Development

custom-trained neural network, with custom-trained word embedding vectors, demonstrated

the best performance. For this reason, it is the one selected for the next chapter for building

the recommendation algorithm.

Concluding, in the third chapter of the thesis, the documentation addressed many different

issues. Initially, the document presented the structure of the neural network, developed to

tackle the classification problem under review. Four are the main components to assemble

a functional neural network, (1) define the input layer(s), (2) define the hidden layer(s), (3)

define the output layer and (4) compile the model by specifying the optimization function, the

optimization metric, and the performance metric. The documentation thoroughly explained

the intuition behind the configuration of its of the four mentioned components. Moreover,

the document presented the configurations made during the classifier’s training phase and

the useful outputs produced during the model training that can assist the decision-making

of a good fitting or a bad fitting classifier, referenced in page 78. After the completion of

the training phase, the document assembled a five-step selection plan, presented on page

82 to compare and to identify the classifier that outperformed all the others. Up to this

point, the authors trained only one classifier; a custom-made neural network built upon the

movie dataset. In the last section, four additional model classifiers trained using saved neural

networks with pre-trained word embeddings. The five in total classifiers compared to each

other using a shorter version of the initial selection plan. The comparison phase selected the

custom neural network as the best model classifier out of all model estimators trained. The

model selected has the following hyper-parameters and optimization function:

• Embeddings dimension: 100

• Batch size: 32

• Learning rate: 0.001

• Decay steps multiplier: 10

134

Neural Network Development

• Optimizer: Adam

135

Neural Network Development

136

Chapter Four

Engineering an Interactive

Conversational Agent

4.1 Introduction

The last chapter of the thesis documentation gives a thorough description of how a researcher

can exploit the output(s) of a text-classification neural network. The document will refer

both to the output(s) of a neural network, and to one of the many options of utilizing those

output(s). Three significant sections compose the final chapter. The first section presents

which is the output of a neural network and how to extract it. The second section illustrates

the intuition behind creating a functional conversational agent that combines the information

given by a third-party user, the movie content, and the weights of the best neural network to

recommend movies similar to what the user has requested. The final section demonstrates a

survey conducted to compare the conversational agent created by the research team of this

thesis against similar conversational agent applications. The survey will evaluate different

aspects of the application and the quality of recommendations proposed.

137

Engineering an Interactive Conversational Agent

4.2 Neural Network Weights | Word Vector Embeddings

The most valuable asset of a neural network that makes it easily portable and reproducible

is its weights. Even though the weights initialization is random at first, at the end of each

training epoch and based on the optimization metric and the optimizer selected, those weights

are updating towards to achieve a generalized prediction algorithm. The better the model

estimator’s predictions between the true target values and the validation target values, the

more probable to find the weights of a mathematical algorithm that can generalize and predict

new movie content.

Figure 4.1 Overview of how the weights are updated during a training epoch

The goal is to estimate the weights that would accurately predict the actual values of the target

label and best fit a line across the actual target values. Also, note that the model is a multi-

output neural network, with each output to represent a movie genre. At each training iteration

(epoch) the weights generated from the embedding layers, and the weights estimated by each

hidden layer are updated continuously to minimize as much as possible the loss function and

138

Engineering an Interactive Conversational Agent

improve the model’s performance.

In a text classification neural network, such as the one used in this scientific experiment,

the essential weights belong to each embedding layer. The embedding layer produces a

vector of numbers that map similar words together in an n-dimensional space. The number

of dimensions serves as a hyper-parameter of the neural network, so different dimensions

produce different classification results. The more the dimensions the more the information

used by the neural network to map correctly the words. However, it is not suggested to use

a very high number of dimensions, because this would probably drive the model estimator

towards overfit and to learn very well only the semantics of the trained content.

The output of this section is essential for the recommendation algorithm, the authors will built

in the next section. To properly extract the output three steps should be followed.

1. Extract the embedding layer weights belonging to each trainable feature. The trainable

features with movie content are five. The actors, the plot summary, the movie content,

the movie reviews and the movie title. All of those five features are assigned to one em-

bedding layer of which the weights are very important and useful for the conversational

agent.

2. Having extracted the weights of each embedding layer, first map each word/token of

the five trainable columns to their corresponding vector array and then replace the

word from each textual feature to the corresponding embedding vector. So, initially

create a map dictionary that will assign each word of a column’s vocabulary to a 100-

dimensional array, and then use that dictionary to replace for example theword adventure

or the actor name Tobey Maguire with that 100-dimensional array or 16-dimensional

array respectively. Recall, that for the actors column, the authors used 16-dimensional

embedding vectors, while for the rest of the four columns 100-dimensional vectors.

As a result, instead of a sequence of words/tokens, the output will be a sequence of

100-dimensional and 16-dimensional arrays.

139

Engineering an Interactive Conversational Agent

3. The third and the final step is to concatenate the number of different 100 dimensional

vectors into one vector that will contain the information from the whole sentence of

words. Continuing the example of actor names. Replace the 15 actor names of 16-

dimensional vectors each, by one vector with sixteen float numbers. Those sixteen

float numbers, they may represent an average of the fifteen vector arrays, a minimum

array, a maximum array or even their concatenation. Basically, summarize (shrink) the

information from fifteen actor names to one vector pointing to the specific movie and

its sequence of genres.

Before moving on, it’s important to demonstrate the above steps with a simple example, using

dummy numbers.

Weights of the embedding layer

Layer Weights

=

2666666666664

�0:42056742 �0:3540595 �0:25417486 �0:50596726 �0:29918054

�0:23971583 �0:39325562 �0:35581827 �0:3175518 �0:2992685

�0:26149312 �0:3268542 �0:34264958 �0:50005287 �0:41450888

: : : „m = 60”

3777777777775

= shape„5 � 60”= 300-dimensional vector

(4.1)

140

Engineering an Interactive Conversational Agent

Assign (Map) each array of weights to the relative actor name

Tobey Maguire

=

2666666666664

�0:42056742 �0:3540595 �0:25417486 �0:50596726 �0:29918054

�0:23971583 �0:39325562 �0:35581827 �0:3175518 �0:2992685

�0:26149312 �0:3268542 �0:34264958 �0:50005287 �0:41450888

: : : „m = 60”

3777777777775

= shape„5 � 60”

(4.2)

Daniel Craig

=

2666666666664

�0:30834767 �0:26681098 �0:2173222 �0:11151562 �0:27951762

�0:1721798 �0:25406063 �0:38693774 �0:19798501 �0:257399

�0:05970115 �0:2399106 �0:21202469 �0:28024384 �0:2577843…

: : : „m = 60”

3777777777775

= shape„5 � 60”

(4.3)

Replace the sequence of tokens per trainable column by the relative array of embeddings, using

as map the output of the previous step.

For example the column actors, which has the following structure:

[’tom hanks’, ’tim allen’, ’don rickles’, ’jim varney’, ’wallace shawn’, ’john ratzenberger’, ’annie potts’,

’john morris’, ’erik von detten’, ’laurie metcalf’, ’r. lee ermey’, ’sarah freeman’, ’penn jillette’, ’jack

angel’, ’spencer aste’]

??y

26666666666664

»�0:3083 �0:2668 �0:2173 �0:1115 �0:2795 : : : xi = 300…

»�0:1722 �0:2541 �0:3869 �0:1980 �0:2574 : : : xi = 300 …

»�0:2399 �0:2120 �0:2802 �0:2578 �0:2574 : : : xi = 300…
::: „m = 15”

37777777777775

141

Engineering an Interactive Conversational Agent

Please note that numbers presented are fictitious.

The first array corresponds to TomHanks, the second array to TimAllen, the third array to Don Rickles

and so on.

Result of the example: Replace each actor name with their corresponding array of 300 float numbers.

Use the array to map a token, in this example an actor name, in 300-dimensional space and accurately

locate the actor names played in similar movie genres. Implement the mapping in the same way to any

token from the other four content columns, the plot summary, the movie features, the movie reviews,

and the movie title. Also, note that any token, either this is a word or an actor name, not mapped in

the relevant dictionary, gets the value of the Out-of-Vocabulary token. Recall that the total number of

actors in 48991 is equal to approximately 260,000 names. However, only 240,000 of those tokenized.

The rest assigned to the OOV token. The use of an OOV token is significant because it allows mapping

not so frequent words to an N-dimensional vector instead of dropping them.

Before starting the creation of the conversational agent, the final step is to aggregate the information

included in each of the five movie content columns. More specifically, the result of the previous

step was to replace tokens by numerical arrays in each of the five columns. So, the first row of the

actors’ column now has fifteen numerical arrays instead of fifteen actor names, and the plot summary

of the same movie now has twelve numerical arrays instead of twelve words. The final goal is to

aggregate the information per row and per column to get numerical arrays of shape (100,1) for the

plot summary, movie features, movie reviews, movie title or (16,1) for the actor names. To aggregate

the information the metrics applied are: the minimum, the maximum, and the average. The example

below demonstrates how those three aggregations will be applied.

142

Engineering an Interactive Conversational Agent

2666666666664

»1; 2; 3…

»4; 5; 6…

»7; 8; 9…

»10; 11; 12…

3777777777775

! »5:5; 6:5; 7:5…; »1; 2; 3…; »10; 11; 12…

shape„4 � 3” shape„3; ” shape„3; ” shape„3; ”

Replace tokens by arrays Average Minimum Maximum

Aggregating each sequence of arrays by the average, the minimum, and the maximum measures,

creates additional information that the conversational agent can exploit to find closely similar movies.

A researcher can use either one of those aggregation measures, either create each own or use more

than three aggregation measures to generate more information about one movie. Next, concatenate

those three aggregation arrays into one array of shape (9,). Below is the final array of the aggregated

information.

[5.5, 6.5, 7.5, 1., 2., 3., 10., 11., 12.]

Note that the numbers presented in the earlier examples are dummy and do not match the real numbers

generated from the experiments. They have been used only to demonstrate the intuition of extracting

and exploiting the output of a neural network.

Applying the transformations presented in the examples above, the authors end up with a unique

1248-dimensional array that describes a movie. The array has the following structure:

• Actors column: 16-dimensional vector * 3 aggregation measures = 48 float numbers

• Plot summary column: 100-dimensional vector * 3 aggregation measures = 300 float numbers

• Movie features column: 100-dimensional vector * 3 aggregation measures = 300 float numbers

• Movie reviews column: 100-dimensional vector * 3 aggregation measures = 300 float numbers

• Movie title column: 100-dimensional vector * 3 aggregation measures = 300 float numbers

overall total = 1248 float numbers to represent a single movie with the above movie content

143

Engineering an Interactive Conversational Agent

The next part presents the conversational agent’s architecture, the host environment, and the proper

usage and functionality of the recommendation engine.

4.3 Assembling an Interactive Conversational Agent

The word embeddings generated from the previous chapter will be the main component used by the

chatbot to propose similar movies to the one preferred by the user. The chapter will thoroughly describe

the chatbot’s intuition, the chatbot’s architecture, the chatbot’s technique to find similarities among

movies, and which platform hosts the chatbot.

4.3.1 What is a chatbot

Chatbots are a kind of software application that tries to simulate online conversations via text or

speech. Chatbots are programmed to behave correctly as a human would during a professional or

day-to-day conversation with other human beings. Recall throughout the whole thesis documentation

the reference of the word interactive conversational agent. The chatbot responses are changing based

on the input it receives from the other side of the conversation. A chatbot is programmed to receive

an input of information, understand, digest, and decipher the message and give back the appropriate

response. A chatbot is often programmed to trigger a specific response when a keyword links to a

specific course of action. Typical cases of chatbots that understand and respond to text information are

those used as support agents on many websites. Apart from chatbots that understand a text, chatbots

that can understand speech and response back in audio also exist. An example of those conversational

agents is Siri used by Apple in many of its iPhone devices or Alexa developed by Amazon.

Conversational agents are part of the Artificial Intelligence domain, and they received an outburst of

attention with the arrival of Natural Language Processing algorithms becoming a top trend nowadays.

Chatbots can receive information from various APIs, combining both the input of a human and the input

of another algorithm to identify an action and respond to the appropriate result. In this experiment,

the chatbot crafted can understand and respond to textual messages and signals.

144

Engineering an Interactive Conversational Agent

4.3.2 Architecture of the chatbot

The chatbot in the current application serves as a conversational agent that receives from a human

being three inputs of movie related content, uses those inputs to calculate the most similar movies,

and responds four movie recommendations. The chatbot does no inner calculation or computation but

rather receives the results of the recommendations from a third API, generated from a recommendation

algorithm program running in Python.

Before describing the chatbot’s actions and decisions, the document will first present the movie

recommendation algorithm.

Step 1: The algorithm receives at first two textual inputs. So it demands two inputs in the form of plain

written text. The first input is related to the genre of the movie; the user would like to watch.

For example, the user would like to watch an Action movie. The second input in written format

is a movie title related explicitly to the movie genre given as first input. For example an action

movie is the movie Skyfall.

Step 2: Filter the rows of the initial dataset of 48,900 movies, and isolate only the movies that belong to

the selected genre saved from step 1. Thus, import into the algorithmonly the actionmovies (e.g.,

the 12,000 action movies). Now the algorithm will work with those 12,000 movies. This action

can enormously minimize the processing time to come. Moreover, the movie recommendations

should only include Action movies, so this step is a safe-lock that the recommendations will

include action movies and not drama movies, for example.

Step 3: The algorithm receives the third and the final written input. This input describes the reasons why

the user selected the action movie Skyfall. In this step, the user can write textual information

about the movie’s plot, the cast, a quick review of the movie, or anything that made him/her

like the movie. The more the information the user writes, the more accurate the four movie

recommendations. For example, the user can write James Bond is the best secret agent, and

Daniel Craig played very well the 007 MI6 agent.

Step 4: If the movie title written by the user, belongs to a movie from the 12,000 action movies list,

145

Engineering an Interactive Conversational Agent

then the movie features column is located for that movie. Recall that the movie features column

contains text information about the plot, the cast, the director(s), the title, and themovie genre(s).

Then the algorithm splits the sentence into separate words, and the algorithm concatenates those

words with the words given in the third input. The output is a bag of words assembled by the

movie features and the user’s input. This bag of words list must contain as many words as

possible. In the previous step, the documentation mentioned that more the written text from the

user, the better. Continue to step 6.

Step 5: Else if the movie is not in the movies’ list of the selected genre, either because the movie does

not belong to the movie genre selected, or the dataset does not have any information about the

selected movie title whatsoever. Then the bag of words is composed only of the words written by

the user as the third input since no additional information about movie content exists. Continue

to step 8.

Step 6: (only if the movie exists in the dataset): Collect the word embeddings of the movie selected by

the user. Recall that the first section documented the creation of the word embedding vectors

per movie. In this step, the algorithm imports all the word embedding vectors of all the movies

of the selected genre (e.g., of all the action movies) and next isolates the word embedding vector

of the index that links to the selected movie title (e.g. of the movie Skyfall). Specifically, the

1248-dimensional vectors for the movie Skyfall and all the other action movies are imported.

Step 7: (only if the movie exists in the dataset): Calculate the cosine distance between the word

embeddings of the selected movie with all the other movies of the same genre. Based on

the current example, calculate the cosine distance between the embeddings (1248-dimensional

vector) of the movie Skyfallwith all the other action movies. Below, the documentation presents

a thorough explanation of the cosine similarity and an example of this technique. The output

of the cosine similarity is a table with two columns. The first column is about the movie title,

and the second column is about the similarity of the movies. The cosine similarity takes values

between (0,1), with values closer to 1 indicating strong similarity, while values closer to 0 to

indicate distant similarity or dissimilarity. From the 12,000 cosine distances select the highest

146

Engineering an Interactive Conversational Agent

16 most similar movies to the one selected by the user. For the example, select the 16 most

similar movies to the movie Skyfall.

Step 8: Isolate the columns of the movie features and the movie reviews of the most similar movie titles.

Create a second bag of words list with the unique words from those two columns. This bag of

words list is different from the bag of words created in step 4. Based on the second bag of words

list, the algorithm creates a new column under the name unique words. The algorithm calculates

how many words from the bag of words of Step 4 are found in the column of the unique words

for each of the 16 most similar movies. So, per similar movie the algorithm returns a number

which indicates how many words are found in the intersection of the two bag of words lists. The

higher the number of common words, the closer the movie to the movie selected from the user

because this indicates that they share common content. For example, movies related to James

Bond, MI6, secret agents, and 007 should have many similar words to the movie title Skyfall.

In the opposite scenario, in which the movie title is not part of the dataset, only the third input

written from the user is utilized by the algorithm to calculate the number of unique words.

Step 9: Create the movie score. Movie-score is a metric that measures the overall similarity of the 16

movies with the movie selected by the user. It is a metric that combines information from four

columns related to each movie. The algorithm orders the 16 movies based on that score, and

recommends the top 4 movies to the user. The movie score combines information from the

following columns:

• imdb_rating_range: This is a value assigned to movies based on their IMDB rating value

given by the viewers of the movie. The IMDB rating takes values between the range [0,

10), and it is a valuable metric to measure the positive or negative opinion of the viewers.

The algorithm applies the following transformation on the IMDB rating:

– For IMDB values between [8, 10) -> assign the value 0.2

– For IMDB values between [6, 8) -> assign the value 0.4

– For IMDB values between [4, 6) -> assign the value 0.6

147

Engineering an Interactive Conversational Agent

– For IMDB values between [2, 4) -> assign the value 0.8

– For IMDB values between [0, 2) -> assign the value 1.0

The algorithm gives higher movie scores on movies with less IMDB rating because,

in the opposite scenario, the movies with a very high IMDB rating would always get

recommended. The algorithm should not spoil the recommendation results based only on

a good review of the movie.

• number_of_words: The number of words value calculated on Step 8.

• sentiment_value: The sentiment value takes the value 1 if the movie has a rating greater

than 2.5 else takes the value 0. The rating, as already documented in the second chapter,

is a different value than the movie’s IMDB rating. It is also a measure of the positive and

the negative influence of viewers’ opinions over the movie; however, it takes values on a

5-star scale. Likewise, the higher the rating value, the better.

• rating: The actual 5-star scale rating value monitored by the Grouplens movie dataset.

The movie score is calculated with the following formula:

movie_score = (imdb_rating_range*1.0) + (number_of_words*0.5) + (sentiment_value*0.5) +

(rating *1.0)

Step 10: Propose the four movies with the highest movie score. The recommendation includes the movie

title, the IMDB rating and the URL of the movie.

Above is the overall architecture of the recommendation algorithm. The architecture is programmed in

Python, and it runs on a local-host server. The interactive conversation agent receives the result of the

recommendation algorithm through the ngrok [29] application. Ngrok gives access to a public HTTPS

URL for a program running locally on a development machine. It allows the exposure of a web server

running on a local machine to the internet, just by specifying the web server’s listening port. Ngrok

enables access to any program output through that HTTP(s) URL from anywhere. Those URLs are

also easily accessible by third-party applications like chatbots.

148

https://ngrok.com/product

Engineering an Interactive Conversational Agent

Before moving on with the rest of the conversational agent functionality, it is essential to reference the

cosine similarity used by the recommendation algorithm to find similar movies to the one selected

by the user. Cosine similarity is a measure that estimates how similar a pair of written documents

are despite their size. The invention of the cosine similarity replaced the old-fashioned method of

counting the common words between two written texts. When implementing the latter approach while

the text’s size was gradually increasing, it was almost probable that the common words between the text

would increase even though the text would refer to totally different topics. Mathematically, the cosine

similarity measures the cosine of the angle between two vectors projected in a multi-dimensional

space [30]. Each word (token) in the written text represents one dimension, and the cosine similarity

metric represents the angle of the written text based on its tokens. The smaller the angle between

two documents, the higher the similarity. In this experiment, the multi-dimensional vectors are word

embeddings belonging to each separate movie. Recall that in the previous section of this chapter, the

authors created one multi-dimensional vector per movie (1248 float numbers), so the recommendation

algorithm uses it. With the cosine similarity and the word embeddings, the algorithm programmed

can successfully identify the similar movies.

The cosine distance formula:

cos„x; y” =
x � y
kxkkyk

=
˝n

i=1 xiyi
p˝n

i=1 „xi”2
p˝n

i=1 „yi”2
(4.4)

, where x, y are two multi-dimensional vectors of word embeddings and kxk the Euclidean norm of a

vector.

An example of calculating the cosine similarity between two vectors.

x : »1; 1; 0…

y : »1; 0; 1…

Euclidean norm of x„kxk” =
p

12 + 12 + 02 =
p

2

Euclidean norm of y„kyk” =
p

12 + 02 + 12 =
p

2

x � y = x1y1 + x2y2 + x3y3 = 1 � 1 + 1 � 0 + 0 � 1 = 1

cos„x; y” = 1p
2�
p

2
= 1

2 = 0:5 this represents the similarity between the two vectors

The angle of the similarity is calculated as: � = cos�1 �0:5 = 60�

149

Engineering an Interactive Conversational Agent

Everything about the architecture of the recommendation algorithm documented and described. The

next component to document is the hosting environment of the interactive conversational agent, the

Dialogflow.

4.3.3 Dialogflow-Hosting the chatbot

Based on the Dialogflow’s documentation page, the latter is defined as

A natural language understanding platform that makes it easy to design and integrate a conversational

user interface into a mobile app, web application, device, bot, or interactive voice response system.

Using Dialogflow, the product manager can provide new and engaging ways to interact with the

product. Dialogflow can analyze multiple input types from customers, including text or audio inputs

(like from a phone or voice recording). It can also respond to customers in a couple of ways, either

through text or with synthetic speech.

For a conversation round to start between the chatbot and the user, an intent is matched to a keyword

written or said by the user. Based on the relative documentation, the intent is the triggering point of

the user’s intention to get a response. For example, when the user will give as input the movie genre,

the movie title, and the reason (s)he liked the movie title written, an intent is triggered to return the

recommendation algorithm results. The components of an intent are the following:

• Context: Used to store parameters shared between intents. Additionally, context can indicate

the arrival of upcoming or the completion of previous intent. Intent(s) are executed sequentially

or in any order specified in the context.

• Event: A free way of triggering an intent without the obligation to match a specific keyword.

• Training phases: The written keywords that, when given by the user, trigger a specific intent.

It is important to give as many training phases as possible to keep up with shorter versions of

the same word (e.g., thanks, thank you, thnx -> same meaning but different written format).

• Action and parameters: When an intent is triggered, all the specified actions of that intent will

150

Engineering an Interactive Conversational Agent

initiate. A so-called parameter value can store the result of an action, and that value is used by

third-party programs or by the chatbot to generate pre-defined responses.

• Responses: Defined text, speech, or visual responses returned to the end-user as an output of an

action. These may provide the end-user with answers, ask the end-user for more information,

or terminate the conversation [25].

• Fulfillment: Enable communication between the chatbot and third party HTTP protocol to

collect data and information.

Figure 4.2 Basic flow for intent matching and responding to the end-user
Source: Dialogflow-Intent Overview

Apart from the component of intents also the fulfilment component is utilized. This component is

configured separately from the intents component. The Fulfilment attribute connects Dialogflow with

a third-party application, like the recommendation algorithm, through an HTTP(s) URL issued by

ngrok. The third-party application receives a POST request from Dialogflow with a response written

by the user. For example, when the application asks the user to provide a movie genre, this written

information is passed to a parameter and then to the recommendation algorithm that uses the movie

genre to filter out from the dataset the movies of different genre.

151

https://cloud.google.com/dialogflow/es/docs/intents-overview?fbclid=IwAR0GD2FnGW_1t9qU-H0kAGN8jnpIeOREyxWjvk_OAYakZ6vFC3OZbXxLhDA

Engineering an Interactive Conversational Agent

Figure 4.3 The implementation of the chatbot on Dialogflow

Each orthogonal shape represents a different intent and, thus, different actions. While the rhombus

shape indicate if/else statements that trigger different actions.

Even though the Dialogflow is a service that hosts the chatbot, it does not support the appropriate

user-friendly Graphical User Interface (GUI) for an end-user to interact with the chatbot. Dialogflow

provides GUI interactions with various online services such as the Google Assistant and Facebook

Messenger. The latter is utilized in this case, since speech interactions often use the former. The

Facebook Messenger service of the conversational agent is fully functional, and users can access it

under the name Kelly MovieBot.

With everything settled and documented, it is time to test and compare the recommendation algorithm

and the chatbot with other similar chatbot services hosted in the Facebook Messenger environment.

The authors conduct a small research and ask the public’s opinion about the recommendation algorithm

developed in the context of this thesis and derive insights about other similar conversational agents.

152

https://www.facebook.com/kellymoviebot/?modal=admin_todo_tour

Engineering an Interactive Conversational Agent

4.4 Conversational Agent-Opinion based research

In the last section of the chapter, the authors run question-based research asking the public’s opinion to

evaluate the functionality and recommendations proposed among three conversational agents, chatbots,

hosted on Facebook Messenger. The questionnaire successfully gathered 25 unbiased responses. The

section organizes the research into three sub-sections. The first sub-section presents the relevant

questions. The second section presents the results and critical insights. Finally, the last section refers

to the conclusions made from the comparison.

4.4.1 Opinion-based questionnaire

The questions answered by the users, evaluate the chatbot application around three different topics:

1. The relevance of the recommendations proposed by each of the three chatbots.

2. The evaluation of the chatbot application from the perspective of the human-computer interaction

and the graphical user interface.

3. The features of the chatbot, created by the authors, that satisfied the most users; and the features

of the other two chatbots, the users preferred to experience in a feature version ofKellyMovieBot.

The reader can find the questionnaire and the chatbots under comparison in the following links:

• Questionnaire

• Chatbots: Kelly MovieBot, And Chill, Movie Bot

For the first topic, the authors selected three movies of three different genres. The first movie is the

action movie Skyfall, the second movie is the romantic movie Titanic, and the third movie is the

thriller movie Psycho. The questionnaire asks the users to rate the relevance of the recommendations

proposed from each chatbot.

153

https://forms.gle/ztz9V9QzJPzdzH1u7
https://www.facebook.com/kellymoviebot/?modal=admin_todo_tour
https://www.facebook.com/textandchill/
https://www.facebook.com/MovieBotMessenger/

Engineering an Interactive Conversational Agent

Question 1: Evaluate the recommendations of the action movie "Skyfall."

Question 2: Evaluate the recommendations of the romance movie "Titanic."

Question 3: Evaluate the recommendations of the thriller movie "Psycho."

Rating:

1. Irrelevant recommendation results

2. Partially irrelevant recommendation results

3. Neutral satisfaction with the results

4. Somewhat relevant movie recommendation results

5. Relevant movie recommendation results

For the second topic, the questionnaire asked the users to evaluate the interactive conversational agents

based on the variety of recommendations propose, evaluate the Graphical User Interface (GUI) of the

chatbot, and finally rate the level of human-computer interaction between the chatbot and the user.

Specifically, the questions and their relative ranking scale provided as follows:

Question 4: How do you evaluate the number of recommendations proposed by the chatbot?

Rating:

1. Too many options than expected, I cannot choose

2. More than expected but I can decide

3. Few

4. Very Few

5. The ideal number of options to choose from

154

Engineering an Interactive Conversational Agent

Question 5: Do you find sufficient the Graphical User Interface (GUI) representation of the recom-

mendations? Assess the recommendation(s) based on their representation (e.g., Images, URLs, videos,

and interactive buttons)

Rating:

1. Strongly Disagree

2. Disagree

3. Neutral

4. Agree

5. Strongly Agree

Question 6: During your conversation with the chatbot, do you get the feeling that you interact with a

robot or a human agent?

Rating:

1. I get a strong feeling that I interact with a robot and not a human agent

2. I get a slight feeling that I interact with a robot and not a human agent

3. The conversation did not give me the feeling that I interact with a robot

4. I get a slight feeling that I interact with a human agent and not a robot

5. I get a strong feeling that I interact with a human agent and not a robot

The third and final topic provides two questions relevant to the features offered by the three chatbots.

The first question is about the features the users are fond of about Kelly MovieBot, the authors’ custom-

created conversational agent. While the second question, draw insights about the features of the other

two chatbots the users liked the most, and Kelly MovieBot should adopt.

Question 7: Which feature(s) did you like the most in Kelly MovieBot?

155

Engineering an Interactive Conversational Agent

Rating:

1. Re-run the whole conversation with only one response

2. The proposal of not so popular movies, but the promotion of both high and low IMDB rating

movies

3. The proposal of 2 more movies if the user has already seen the first two movies

4. The friendly responses and clear instructions

5. Other

Question 8: Which feature(s) the other two chatbots had and would like to see on Kelly MovieBot?

Rating:

1. (And Chill + Movie Bot) Less Recommendations

2. (And Chill) Image per response

3. (And Chill) YouTube trailer link per recommendation

4. (Movie Bot) Propose movies based on favorite Actor or Oscar Winning Movies

5. (Movie Bot) Additional rating information apart from IMDB rating (e.g. Rotten Tomatoes)

6. Other

4.4.2 Questionnaire results

The document presents the questionnaire results in a organize format with the following structure.

• Line 1: Question

• Line 2: Kelly MovieBot (1st application)

156

Engineering an Interactive Conversational Agent

• Line 3: And Chill (2nd application)

• Line 4: MovieBot (3rd application)

• Line 5: Comments

The first and the fifth lines describe the question asked to the application users and discuss the

opinion results found. The remaining columns will color-highlight the most voted answer the three

conversational agents received for the relevant question. The coloring applied is the following:

• Rank /Choice 1:

• Rank /Choice 2:

• Rank /Choice 3:

• Rank /Choice 4:

• Rank /Choice 5:

Question 1: Evaluate the recommendations of the action movie "Skyfall"

Rating

Kelly MovieBot

And Chill

Movie Bot

Comments: The majority of the users (16/25) gave the five(5) number rate to the recommendations

provided by Kelly MovieBot. On the contrary, most users rated the recommendations of the And

Chill and the Movie Bot applications with the fourth rank, 13/25, 10/25, respectively. The outcome is

positive for the recommendation algorithm running on Kelly MovieBot. Check the figure relative to

Question 1 for reference to the question results.

Question 2: Evaluate the recommendations of the romance movie "Titanic"

Rating

157

Engineering an Interactive Conversational Agent

Kelly MovieBot

And Chill

Movie Bot

Comments: The majority of the users (17/25) gave the five(5) number rate to the recommendations

provided by Kelly MovieBot. On the contrary, most users rated the recommendations of the And Chill

and the Movie Bot applications with the fourth rank and the third rank, respectively. Specifically,

eleven users awarded the fourth rank to And Chill, and another eleven users awarded the third rank to

the recommendations of the Movie Bot agent. The outcome is very positive of the recommendation

algorithm running on Kelly MovieBot. Check the figure relative to Question 2 for reference to the

question results.

Question 3: Evaluate the recommendations of the thriller movie "Psycho"

Rating

Kelly MovieBot

And Chill

Movie Bot

Comments: Again the majority of the users awarded the highest of the ranks to the recommendations

given by Kelly MovieBot. Individually, 13/25 (almost 52%) of the sample favor the movies proposed

by Kelly MovieBot. On the contrary, And Chill received the fourth rank (10/25) in the majority of the

votes. Movie Bot is coming last in the quality of recommendations, with respondents awarding the

third and fourth ranks (9/25 in both ranks). Check the figure relative to Question 3 for reference to the

question results.

Question 4: How do you evaluate the number of recommendations proposed by the chatbot?

Rating

158

Engineering an Interactive Conversational Agent

Kelly MovieBot

And Chill

Movie Bot

Comments: Kelly MovieBot received the fifth rank in the majority of the votes, which is equal to

thirteen of the respondents. The upvote indicates that the four recommendations provided by Kelly

Movie Bot are the sufficient number of options to choose a proposed movie. Moreover, AndChill and

Movie Bot both awarded with the third rank, indicating the dissatisfaction of the users with the low

number of recommendations proposed. Check the figure relative to Question 4 for reference to the

question results.

Question 5:Do you find sufficient the Graphical User Interface (GUI) representation of the recommen-

dations? Assess the recommendation(s) based on their representation (e.g., Images, URLs, interactive

messages, etc.)

Rating

Kelly MovieBot

And Chill

Movie Bot

Comments: Kelly Movie Bot received ten votes on the fourth and the fifth rank equally. The result

indicates that the use of images and the interactive buttons had a positive effect on the user experience.

The results were also satisfactory for the And Chill and Movie Bot applications. However, even though

Movie Bot received 10/25 responses in the fourth ranks, 12 out of 25 votes were distributed across the

first, the second, and the third ranks. The downvote is a sign that the application uses too many or too

few images and interactive buttons, making it difficult or confusing for users to navigate. Check the

figure relative to Question 5 for reference to the question results.

Question 6: During your conversation with the chatbot, do you get the feeling that you interact with a

robot or a human agent?

Rating

159

Engineering an Interactive Conversational Agent

Kelly MovieBot

And Chill

Movie Bot

Comments: The question represents what most companies, developing similar applications, try to

achieve. They want their users to get the feeling that they interact with a human agent and not a

computer. They want the customers to perceive the interaction as a normal conversation flow. Kelly

MovieBot accomplished this in the majority of the votes. Specifically, the chatbot received 20 votes

on the fourth and the fifth rank. Furthermore, And Chill received fifteen votes in the first, second, and

third ranks, indicating that the users had a feeling of interacting with a computer. The same pattern

observed for Movie Bot application, with eighteen votes on the first three ranks. Check the figure

relative to Questionnaire results for reference to the question results.

Question 7: Which feature(s) did you like the most in Kelly MovieBot?

Rating

Kelly MovieBot

And Chill N/A

Movie Bot N/A

Comments: The public opinion highly voted (13/25) the feature Rerun the whole conversation with

only one response as the top feature of the Kelly MovieBot. With that feature, the user can rerun the

movie recommendation engine without first ending the conversation and then start again. The other

features received an equal number of nine votes, indicating the neutral response of the public opinion

over the elements of Kelly MovieBot. Check the figure relative to Questionnaire results for reference

to the question results.

Question 8:Which feature(s) the other two chatbots had and you would like to see on KellyMovieBot?

Rating

160

Engineering an Interactive Conversational Agent

Kelly MovieBot

And Chill N/A

Movie Bot N/A

Comments: The majority of the users (12/25) voted the third feature, YouTube trailer link per

recommendation, as an ideal good to have feature for the Kelly MovieBot. Next in preferences with

nine and seven votes, respectively, are the features Additional rating information apart from IMDB

rating (e.g., rotten tomatoes) and the propose of movies based on favorite Actor or Oscar-winning

Movies. Those highlighted functionalities present opportunities to develop further and improve the

human-computer interaction and the conversation flow between Kelly MovieBot and the user. Check

the figure relative to Questionnaire results for reference to the question results.

161

Engineering an Interactive Conversational Agent

Figure 4.4 Question 1

162

Engineering an Interactive Conversational Agent

Figure 4.5 Question 2

163

Engineering an Interactive Conversational Agent

Figure 4.6 Question 3

164

Engineering an Interactive Conversational Agent

Figure 4.7 Question 4

165

Engineering an Interactive Conversational Agent

Figure 4.8 Question 5

166

Engineering an Interactive Conversational Agent

Figure 4.9 Question 6

167

Engineering an Interactive Conversational Agent

Figure 4.10 Question 7

Figure 4.11 Question 8

168

Engineering an Interactive Conversational Agent

4.4.3 Questionnaire conclusions

Take into consideration that the conclusions and results derived from a sample of twenty-five user

responses.

Observing both the questionnaire results and the figures presented above, the authors derived the

following conclusions. Initially, concerning the first topic monitored by the questionnaire, the rec-

ommendations proposed from Kelly MovieBot and And Chill are most relevant and highly voted by

the users. On the first topic, Kelly MovieBot and And Chill received mostly the fifth and the fourth

rank, indicating the overall user satisfaction over their recommendations. The applications proposed,

in most cases, represent what the users would like to watch. Similarly, the users had the same opinion

about the recommendations proposed by MovieBot. Although, the movie Titanic raised an exception.

Most users highly voted the third rank from the available ranking scale, a neutral public opinion about

the recommendations proposed by the third chatbot for the movie Titanic.

The second topic contains questions which monitor the general functionality and UI of the three

applications. The first question evaluated if the number of recommendations proposed by each chatbot

had a positive or negative effect on the user. The goal was to identify if too many recommendations

confuse the user’s judgment or too few recommendations force the user to select a movie already

watched before. Kelly MovieBot, which proposed four movie recommendations to the user, received

the fifth rank in half of the answers. The mechanism applied by Kelly MovieBot is to propose two

movies, and then if the user has watched the movies already can select among the second pair of

movies. In that manner, the recommendation algorithm executed by the first chatbot is two times more

likely to propose a movie never seen before by the user than chatbots that propose only two movies or

even a single movie. And Chill and MovieBot had fewer recommendation results based on the public

opinion. The difference in the number of recommendations has not always bad effect on the reputation

of the application. However, when an application provides options to the user, it is more likely to find

movies the user has never watched before. The negative effect of recommending one or two movies

is the recommendation of the same movie multiple times. Based on the second question of this topic,

the public opinion expressed a positive reaction over the UI of the first two chatbots and a negative

169

Engineering an Interactive Conversational Agent

reaction over the UI of the third chatbot. The negative opinion expressed indicates a non-so flexible and

confusing user-journey over the application, from initiating the conversation up to recommendation

proposal. The graphical user interface is a critical aspect of an application because it is what the users

view and interact with. It is proved that public opinion prefers simple and interactive backgrounds.

For the third and final question of this topic, the users questioned the human-computer interaction with

the three applications. Kelly MovieBot stood out, since over half of the users awarded the chatbot with

the highest rank on this question. The users get the feeling of interacting with a human agent rather

than a strictly programmed computer application that follows specific steps. The same opinion also

stands for the second application And Chill. On the contrary, the public vote for the third application

was somewhere in the middle. About half of the users had a neutral opinion; however, six out of the

total users voted that they completely experienced a straightforward application with no flexibility and

strictly programmed steps.

With the third and final topic, the authors wanted to know which features of Kelly MovieBot made

the difference in highlighting a useful application, and which features part of the functionality of the

other two chatbots would be a good-to-have asset to equip Kelly MovieBot. On the essence of this

topic, the authors wanted to extract insights about future versions of Kelly MovieBot to make the

application more attractive to the users. Thus, the third topic is not comparison-driven but rather

application improvement-driven. The feature of re-running the conversation using a single interactive

button was the most highly voted functionality ofKelly MovieBot. The motive behind this functionality

was to allow selecting another movie without ending the whole conversation and start over again by

typing the same starting phrase. The starting phrase is a specific sequence of words that trigger the

conversation with the chatbot. In most cases, this phrase is specific, and if the user does not write

it correctly, the conversation will not start properly. Thus, allowing restarting the conversation with

only one button is a necessary function for most applications. Finally, the display of the YouTube link

per recommendation and additional rating information (e.g., the rotten tomatoes rating) were the two

highest voted functionalities adopted by And Chill and MovieBot respectively. Adding the previous

two functionalities in Kelly MovieBot will boost the reputation of the application and increase the

170

Engineering an Interactive Conversational Agent

positive user’s opinion.

Overall Kelly MovieBot gathered positive opinions from the twenty-five users. The application’s

functionality as an interactive conversational agent managed to surpass the functionality, recommen-

dations, and UI of two already functional and usable chatbots of the Facebook e-market. And Chill had

a similar effect, with Kelly MovieBot, on the public user opinion since it is an already well-established

application with many online users. Thus, the second chatbot was the main rival of the first chatbot.

MovieBot came third in user votes, enhancing the positive public opinion for Kelly MovieBot. Those

facts indicate that the predictions of the neural network, the recommendation algorithm, and the chatbot

structure have succeeded in creating a movie recommendation agent capable of proposing similar and

even better recommendations than already available chatbots.

171

Engineering an Interactive Conversational Agent

172

Chapter Five

Conclusions

In the final chapter, the documentation will refresh to the reader the conclusions derived from the

third and the fourth chapter of the thesis. Those two chapters explicitly document the research and the

experimentation part conducted by the authors of the thesis.

The third chapter of the documentation thoroughly presented the experimentation with Natural Lan-

guage techniques and deep learning to solve the multi-genre classification problem. One of the

concepts discussed across the thesis introduction. Apart from the final model classifiers presented

and the comparisons made, the authors conducted much experimentation related to the structure of

the neural networks; experimentation that it was never reported in the document. Based explicitly

on that experimentation and testing on different neural networks to solve the problem of multi-genre

classification and build a model estimator to associate movies to their genre sequence correctly, the

authors derived the following conclusions:

• Reducing batch size can produce a better model. Even though the document mentions that a

larger batch size means more information learned during the neural network training, setting

the batch size too high can reverse the results. It has been observed in practice that when using

a larger batch, there is a degradation in the quality of the model, as measured by its ability to

generalize, as referenced by this excellent paper [11]. Recall that lack of generalization cause

the model classifier to overfit. Learning very accurately, the training data due to a fast converge

173

Conclusions

into a local minimum, but it is difficult for the model estimator to predict the test target values

correctly. Thus, the authors suggest testing both the performance of the model and the time

taken to train it since the batch size value affects both.

• Removing or adding a dense layer(s) can improve or deteriorate the results. Initially, the structure

of the custom-created neural network included two dense layers with the same configuration.

Although, when the authors removed the second dense layer, the training and validation results

improved. Keep in mind that dense layers add complexity to the model, which can sometimes

have negative results on the classifier’s overall performance.

• Removing regularization affected the results of the current experiment. This fact bounds to the

specific experimentation and training of the model classifier. A researcher should test high, low,

and none values for the regularization before approving the final state of the model’s structure.

• Learning rate is one of the most important parameters, and it is the number one choice for

tuning. If someone can only afford to tune one model parameter, due to a lack of resources,

the learning rate is the default choice. In the initial model experimentation, the neural networks

used the default learning rate values of the relative optimization functions (e.g., Adam, SGD,

RMSprop). When the learning rate is static and does not dynamically change after a specific

number of epochs, it can lead to conservative model classifiers that cannot learn at their optimum

potential. Two are the best practices to followwhen deciding the value of the learning rate. First,

tune the parameter by choosing a wide range of three and more choices with the optimizer’s

default value always among the available options. In such a way, the model classifier will train

on various learning rate values, and the researcher can monitor the performance of the model

better. Secondly, set a high value of the learning rate and decrease it every N number of training

epochs (e.g., every ten epochs decrease the learning rate by half).

• Drop out rate should also be used with caution, especially when the dataset trained is relatively

small. High values of drop-out rate with a small dataset can create under-fitted model classifiers

since a high percentage of the trainable parameters dropped. On the contrary, low values of

174

Conclusions

drop-out rate on relatively big datasets can increase the neural network’s training time and

quickly consume most of the memory available for training the neural network.

• Embeddings dimension is also playing an important role in the training of neural networks

dedicated to solve text classification problems. It is critical to tune the specific parameter of the

embeddings layer because it can substantially improve or deteriorate the classifier performance.

The thesis documented one such phenomenon, observed between the custom-made neural

network and the neural network trained on the GloVe embeddings. Using a smaller value of the

embedding size vectors, specifically, 100-dimensions, produced a better model classifier than

the one trained with the GloVe pre-trained embeddings and 300-dimensions on the embedding

layer.

The pointsmentioned abovewere observed during the testing and the experimentationwith the structure

of the custom-made model classifier.

Moreover, the authors concluded based not only on the relative documentation but also on the ex-

periments results that hamming loss is the most appropriate choice to measure the model estimator’s

performance and evaluate the model predictions on never-seen-before data. Hamming loss is the

default option to evaluate multi-label classification models, compared to the commonly used metric

of classification performance, the binary accuracy. Using three different optimization algorithms to

optimize the loss metric of the model estimator, the authors made the following conclusions:

• Adam optimizer is a fast learner. Observing Adam’s learning curves on the training and

validation data, Adam optimizer converged very quickly at the lowest value of the training and

validation loss. Adam optimizer also demonstrated the smoothest and most stable learning

curves compared to the other two optimization algorithms.

• RMSprop optimizer had an almost identical performance with the Adam optimizer; however,

it took to the optimizer a slightly higher number of epochs to learn the dataset’s semantics and

correctly predict the target values.

175

Conclusions

• SGD optimizer demonstrated the worst results of the three optimizers when trained and tested

on the specific movie dataset.

Finally, to solve the multi-genre text classification problem, five neural networks deployed. The first

neural network was a custom-made sequential neural network. The second neural network used the pre-

trained GloVe embeddings, while the other three neural networks were pre-trained and saved models

hosted on the Tensorflow Hub community. The custom-made neural network outperformed the other

four model classifiers by achieving the lowest test hamming loss value, the lowest bias and variance

tradeoff, the smoothest and most stable learning curves, and finally, the most accurate predictions on

each of the seventeen target movie genres. The best model selected has the following hyper-parameters:

• Embeddings dimension: 100

• Batch size: 32

• Learning rate: 0.001

• Decay steps multiplier: 10

• Optimizer: Adam

In the fourth chapter of the thesis documentation, the authors presented

1. The architecture of a custom recommendation algorithm

2. The creation of the environment to host the recommendation algorithm

3. An opinion-based comparison between the custom-created conversational agent and two already

functional and usable chatbots of the Facebook e-market

For the recommendation algorithm’s architecture, the authors extracted the weights of the best model

classifier and created for each movie a 1248-dimensional vector. The multi-dimensional vector, the

user feedback, and the movie content are used by the recommendation algorithm to propose four

recommendations movies. The authors chose Dialogflow and the environment of a chatbot to host the

176

Conclusions

recommendation algorithm and to develop a more user-friendly movie recommendation application.

Finally, the opinion-based research conducted by the authors compared Kelly MovieBot with And Chill

andMovieBot. The questionnaire gathered twenty-five responses in total and featured Kelly MovieBot,

the chatbot assembled by the authors, the top voted application for most of the questions. Closest in

preference was the And Chill chatbot, a very well-established application, whileMovieBot satisfied the

least the public opinion. Embracing Kelly MovieBot with positive ratings, clearly puts the latter on a

strong competitive position against interactive conversational agents currently in the market.

177

APPENDIX

Appendix A

First Appendix

A.1 List of Abbreviations

Table A.1 Abbreviations

Abbreviation Explanation

NLP Natural Language Processing

AI Artificial intelligence

IMDB Internet Movie Database

OOV Out-of-Vocabulary

TF Hub Tensorflow Hub

e-market Electronic (online) market

FMCG Fast Moving Consumer Goods

SVM Support Vector Machines

IDE Integrated Development Environment

URL Uniform Resource Locator

API Application Program Interface

HTTPS Hypertext Transfer Protocol Secure

TV-series Television series

TV-shows Television shows

(To be continued)

179

First Appendix

Abbreviation Explanation

Sci-fi Science-fiction

GloVe Global Vectors for Word Representation

2D 2 dimensions

3D 3 dimensions

ROC-AUC
Receiver Operating Characteristic -

Area Under the Curve

SGD Support Gradient Descent

RMSprop Root Mean Square propagation

TP True Positive

TN True Negatives

FP False Positives

FN False Negatives

GUI Graphical User Interface

UI User Interface

180

References

[1] Yoshua Bengio et al. “ANeural Probabilistic LanguageModel”. In: Journal of Machine
Learning Research 3 (2003), pp. 1137–1155.

[2] Michel Jose Anzanello and Flavio Sanson Fogliatto. Learning curve models and ap-
plications: Literature review and research directions. https://www.sciencedirect.com/
science/article/abs/pii/S016981411100062X. ELSEVIER, 2011, pp. 573–583.

[3] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vec-
tors for Word Representation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
url: https://www.aclweb.org/anthology/D14-1162.

[4] Yoshua Bengio Xavier Glorot Antoine Bordes.Deep Sparse Rectifier Neural Networks.
Research Gate, 2014, pp. 317–318.

[5] François Chollet. Deep Learning with Python. Shelter Island, NY 11964: Manning
Publications Co., 2015.

[6] François Chollet. Deep Learning with Python. Shelter Island, NY 11964: Manning
Publications Co., 2015, p. 187.

[7] François Chollet. Deep Learning with Python. Shelter Island, NY 11964: Manning
Publications Co., 2015, p. 46.

[8] François Chollet. Deep Learning with Python. Shelter Island, NY 11964: Manning
Publications Co., 2015, p. 49.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016, p. 194.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016, p. 111.

181

https://www.sciencedirect.com/science/article/abs/pii/S016981411100062X
https://www.sciencedirect.com/science/article/abs/pii/S016981411100062X
http://dx.doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org

REFERENCES

[11] Nitish ShirishKeskar et al.OnLarge-Batch Training forDeepLearning:Generalization
Gap and Sharp Minima. 2016. arXiv: 1609.04836 [cs.LG].

[12] Noam Shazeer et al. Swivel: Improving Embeddings by Noticing What’s Missing. 2016.
arXiv: 1602.02215 [cs.CL].

[13] Matthew Mayo. A General Approach to Preprocessing Text Data. 2017. url: https:
//www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html.

[14] Sebastian Ruder et al. “Transfer Learning in Natural Language Processing”. In: Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Tutorials. Minneapolis, Minnesota: Association for Com-
putational Linguistics, June 2019, pp. 15–18. doi: 10 . 18653 / v1 /N19 - 5004. url:
https://www.aclweb.org/anthology/N19-5004.

[15] Awan-Ur-Rahman. What is Data Cleaning? How to Process Data for Analytics and
Machine Learning Modeling? url: https : / / towardsdatascience.com/what- is- data-
cleaning - how- to - process - data - for - analytics - and - machine - learning - modeling -
c2afcf4fbf45.

[16] Jason Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU). url:
https://machinelearningmastery.com/rectified- linear- activation- function- for-deep-
learning-neural-networks/.

[17] Jason Brownlee.Gentle Introduction to the Bias-Variance Trade-Off inMachine Learn-
ing. url: https : / /machinelearningmastery. com / gentle - introduction - to - the - bias -
variance-trade-off-in-machine-learning/#:~:text=Bias.

[18] Jason Brownlee. How to use Learning Curves to Diagnose Machine Learning Model
Performance. url: https://machinelearningmastery.com/learning-curves-for-diagnosing-
machine-learning-model-performance/.

[19] Chris. Classifying IMDB sentiment with Keras and Embeddings, Dropout & Conv1D.
url: https : / /www.machinecurve . com/ index .php / 2020 / 03 / 03 / classifying - imdb-
sentiment-with-keras-and-embeddings-dropout-conv1d/.

[20] Omar Elgabry. The Ultimate Guide to Data Cleaning. url: https://towardsdatascience.
com/the-ultimate-guide-to-data-cleaning-3969843991d4.

[21] Elvis. A Light Introduction to Transfer Learning for NLP. url: https://medium.com/
dair-ai/a-light-introduction-to-transfer-learning-for-nlp-3e2cb56b48c8.

[22] Scott Fortmann-Roe. Understanding the Bias-Variance Tradeoff. url: http : / / scott .
fortmann-roe.com/docs/BiasVariance.html.

182

http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1602.02215
https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html
https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html
http://dx.doi.org/10.18653/v1/N19-5004
https://www.aclweb.org/anthology/N19-5004
https://towardsdatascience.com/what-is-data-cleaning-how-to-process-data-for-analytics-and-machine-learning-modeling-c2afcf4fbf45
https://towardsdatascience.com/what-is-data-cleaning-how-to-process-data-for-analytics-and-machine-learning-modeling-c2afcf4fbf45
https://towardsdatascience.com/what-is-data-cleaning-how-to-process-data-for-analytics-and-machine-learning-modeling-c2afcf4fbf45
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/#:~:text=Bias
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/#:~:text=Bias
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://www.machinecurve.com/index.php/2020/03/03/classifying-imdb-sentiment-with-keras-and-embeddings-dropout-conv1d/
https://www.machinecurve.com/index.php/2020/03/03/classifying-imdb-sentiment-with-keras-and-embeddings-dropout-conv1d/
https://towardsdatascience.com/the-ultimate-guide-to-data-cleaning-3969843991d4
https://towardsdatascience.com/the-ultimate-guide-to-data-cleaning-3969843991d4
https://medium.com/dair-ai/a-light-introduction-to-transfer-learning-for-nlp-3e2cb56b48c8
https://medium.com/dair-ai/a-light-introduction-to-transfer-learning-for-nlp-3e2cb56b48c8
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

REFERENCES

[23] Python Software Foundation. pickle - Python object serialization. url: https://docs.
python.org/3/library/pickle.html.

[24] Daniel Godoy. Understanding binary cross-entropy / log loss: a visual explanation.
url: https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-
visual-explanation-a3ac6025181a.

[25] Google. Intents. url: https://cloud.google.com/dialogflow/docs/intents-overview.

[26] Grouplens. Movielens Dataset of IMDB movies. url: https://grouplens.org/datasets/
movielens/.

[27] Hunter Heidenreich. Stemming? Lemmatization? What?. Taking a high-level dive into
what stemming and lemmatization do for natural language processing tasks and how
they do it. url: https : / / towardsdatascience . com / stemming - lemmatization - what -
ba782b7c0bd8.

[28] Hafsa Jabeen. Stemming and Lemmatization in Python. url: https://www.datacamp.
com/community/tutorials/stemming-lemmatization-python.

[29] ngrok. ngrok. url: https://ngrok.com/product.

[30] Selva Prabhakaran.Cosine Similarity – Understanding the math and how it works. url:
https://www.machinelearningplus.com/nlp/cosine-similarity/.

[31] NLTK Project. NLTK. url: https://www.nltk.org/.

[32] Kenneth Reitz & Real Python. Data Serialization. url: https://docs.python-guide.org/
scenarios/serialization/.

[33] RStudio. Layer that concatenates a list of inputs. url: https://tensorflow.rstudio.com/
reference/keras/layer_concatenate/.

[34] scikit-learn. Model persistence. url: https://scikit-learn.org/stable/modules/model_
persistence.html.

[35] scikit-learn. sklearn.feature_extraction.text.CountVectorizer. url: https://scikit-learn.
org/stable/modules/generated/sklearn.feature%5C_extraction.text.CountVectorizer.
html.

[36] scikit-learn. sklearn.metrics.hamming_loss. url: https : / / scikit - learn . org / stable /
modules/generated/sklearn.metrics.hamming%5C_loss.html.

[37] scikit-learn. sklearn.metrics.precision_score. url: https : / / scikit - learn . org / stable /
modules/generated/sklearn.metrics.precision%5C_score.html.

183

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://cloud.google.com/dialogflow/docs/intents-overview
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://towardsdatascience.com/stemming-lemmatization-what-ba782b7c0bd8
https://towardsdatascience.com/stemming-lemmatization-what-ba782b7c0bd8
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://ngrok.com/product
https://www.machinelearningplus.com/nlp/cosine-similarity/
https://www.nltk.org/
https://docs.python-guide.org/scenarios/serialization/
https://docs.python-guide.org/scenarios/serialization/
https://tensorflow.rstudio.com/reference/keras/layer_concatenate/
https://tensorflow.rstudio.com/reference/keras/layer_concatenate/
https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%5C_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%5C_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%5C_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.hamming%5C_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.hamming%5C_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision%5C_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision%5C_score.html

REFERENCES

[38] scikit-learn. sklearn.metrics.recall_score. url: https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.recall%5C_score.html?highlight=recall#sklearn.metrics.
recall%5C_score.

[39] scikit-learn. sklearn.metrics.zero_one_loss. url: https : / / scikit - learn . org / stable /
modules/generated/sklearn.metrics.zero%5C_one%5C_loss.html#sklearn.metrics.
zero%5C_one%5C_loss.

[40] Shivangi Singhal. Processing Text data in Natural Language Processing. url: http:
//datascience.sharerecipe.net/2019/06/14/processing-text-data-in-natural-language-
processing/.

[41] Sivakar Siva. The Data Science Life-Cycle. url: https : / / towardsdatascience . com/
stoend-to-end-data-science-life-cycle-6387523b5afc.

[42] Wikipedia. Data Analysis. url: https://en.wikipedia.org/wiki/Data-analysis.

[43] Wikipedia. Data cleansing. url: https://en.wikipedia.org/wiki/Data_cleansing#Data_
quality.

[44] Wikipedia. HTML. url: https://en.wikipedia.org/wiki/HTML.

[45] Wikipedia. Parsing. url: https://en.wikipedia.org/wiki/Parsing.

184

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall%5C_score.html?highlight=recall#sklearn.metrics.recall%5C_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall%5C_score.html?highlight=recall#sklearn.metrics.recall%5C_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall%5C_score.html?highlight=recall#sklearn.metrics.recall%5C_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.zero%5C_one%5C_loss.html#sklearn.metrics.zero%5C_one%5C_loss
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.zero%5C_one%5C_loss.html#sklearn.metrics.zero%5C_one%5C_loss
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.zero%5C_one%5C_loss.html#sklearn.metrics.zero%5C_one%5C_loss
http://datascience.sharerecipe.net/2019/06/14/processing-text-data-in-natural-language-processing/
http://datascience.sharerecipe.net/2019/06/14/processing-text-data-in-natural-language-processing/
http://datascience.sharerecipe.net/2019/06/14/processing-text-data-in-natural-language-processing/
https://towardsdatascience.com/stoend-to-end-data-science-life-cycle-6387523b5afc
https://towardsdatascience.com/stoend-to-end-data-science-life-cycle-6387523b5afc
https://en.wikipedia.org/wiki/Data-analysis
https://en.wikipedia.org/wiki/Data_cleansing##Data_quality
https://en.wikipedia.org/wiki/Data_cleansing##Data_quality
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Parsing

	Title Page
	Copyright
	Graduate Committee Approval
	Dedication Page
	Acknowledgments

