
Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Athens, Greece

Master Thesis
in

Computer Science

Evaluating Actions in Sports Analytics using
Deep Learning

Dimitrios Klagkos

Committee: Professor Vana Kalogeraki (Supervisor)

Professor Androutsopoulos Ioannis

Professor Dimitrios Gunopulos

November 2020



Dimitrios Klagkos

Evaluating Actions in Sports Analytics using Deep Learning

November 2020
Supervisor: Prof. Vana Kalogeraki

Athens University of Economics and Business

School of Information Sciences and Technology
Department of Informatics
Mobile Multimedia Laboratory

Athens, Greece



Abstract

Over the recent decades, Sports Analytics has developed into an intriguing and challenging
task in the research community. Sports is a way for people to pass their time pleasantly and
relieve their stress and anxiety, often caused by their everyday routines. One important
component that all sports events have in common is the uncertainty that the sports match
provide and cause excitement and curiosity to those who observe it. From a scienti�c point
of view, the researchers want to quantify this uncertainty through models and probabilities
in order to predict and explain events. So, Sports Analytics is a �eld with many interesting
aspects to investigate such as injuries, evaluation of actions and predictions of outcomes
of a sport match. In this paper, we address the problem of the evaluation of actions of
players in a football match. We propose models based on Deep Learning, including Fully
Convolutional Neural Networks, Long Short Term Models and the combination of them
using preprocessing steps and regularization techniques to make more robust predictions
for the unseen data. Our experimental evaluation illustrates the working and bene�ts of
our approach.

iii





Περίληψη

Κατά τη διάρϰεια των δεϰαετιών το Sports Analytics υπήρξε ένα ενδιαφέρον ϰαι δύσϰολο
έργο µεταξύ των ερευνητών. Φυσιϰά, ο αϑλητισµός είναι ένας τρόπος για τους αν-
ϑρώπους να περνούν ευχάριστα το χρόνο τους ϰαι να αναϰουφίζουν το στρες ϰαι το
άγχος τους που προϰαλούνται από την ϰαϑηµερινή τους ρουτίνα. ΄Ενα σηµαντιϰό συσ-
τατιϰό, που έχουν όλοι ϰοινό είναι η αβεβαιότητα που παρέχει ένας αϑλητιϰός αγώνας
ϰαι τους προϰαλεί τον ενϑουσιασµό ϰαι την περιέργεια για όσους το παραϰολουϑούν.
Από επιστηµονιϰή άποψη, οι ερευνητές ϑέλουν να ποσοτιϰοποιήσουν αυτήν την αβεβαιότητα
µέσω µοντέλων ϰαι πιϑανοτήτων προϰειµένου να προβλέψουν ϰαι να εξηγήσουν γεγονότα.
΄Ετσι, το Sports Analytics είναι ένα πεδίο µε πολλά ενδιαφέροντα πράγµατα για έρε-
υνα όπως τραυµατισµούς, αξιολόγηση δράσεων ϰαι προβλέψεις για τα αποτελέσµατα
των έναν αϑλητιϰό αγώνα. Σε αυτό το άρϑρο, αντιµετωπίζουµε το πρόβληµα της αξι-
ολόγησης των ενεργειών των παιϰτών στο ποδόσφαιρο. Προτείνουµε µοντέλα βασισ-
µένα στη Βαϑιά Μάϑηση, όπως Πλήρως Convolutional Neural Networks, Long Short
Term Models ϰαι ο συνδυασµός τους χρησιµοποιώντας βήµατα προεπεξεργασίας ϰαι
τεχνιϰές ϰανονιϰοποίησης για να ϰάνουµε πιο ισχυρές προβλέψεις για τα ϰαινούργια
δεδοµένα.

v





Acknowledgements

I would like to thank my parents and my brother for the support they have shown me
during the whole procedure of my master in Computer Science in Athens university of
Economic and Business. In addition, i would like to express my gratitude to my supervisor
professor Vana Kalogeraki who guided during my research and supported me through her
suggestions, motivation and enthusiasm for the subject of the research. I would like to
thank all the professors who helped me to learn and use new techniques and knowledge
for the processing of data. I would also like to thank all my classmates and especially
Euthimis and Alexandros for their support and companion during our time in the master.

vii





Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5
2.1 Optical Tracking Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 On-Ball Stream Event Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 System Design 9
3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Missing and wrong values . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Imbalance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Cleaning Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Variables Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 One-Hot-Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Entity Embedding Layer . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.1 Sliding Window Method . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Target Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Problem Description and Metrics 19
4.1 Our Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Construction of the Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Classi�cation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.1 Recti�ed Linear Unit(RELU) . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.3 Tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



4.5.1 Binary Cross Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6.1 Brier Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6.4 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6.5 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6.6 Area Under the Curve(AUC) . . . . . . . . . . . . . . . . . . . . . . 26

5 Method 27
5.1 Long Short Term Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.3 Residual Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.4 Squeeze and Excitation . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Temporal Convolutional Neural Network . . . . . . . . . . . . . . . . . . . 32
5.3.1 Dilated Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Long Short Term Model- Fully Convolutional Neural Network . . . . . . . 33
5.5 Temporal Convolutional Neural Network- Long Short Term Model . . . . . 34
5.6 Regularization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6.1 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6.3 Recurrent Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8.1 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 Reduction Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.9.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 37

6 Evaluation 39

7 Conclusion 49

Bibliography 51

List of Figures 53

List of Tables 55

x



1Introduction

1.1 Research Context

One important factor that e�ects a team’s performance and the possible outcome of a
sport game is the actions that the players execute through the game. So, the evaluations of
those actions could be used to assess individual players or even teams in order to measure
the contribution of each player’s actions and how they bene�t their team. This is a very
intriguing task as it could be used to analyse and scout players or even used from media to
show which players are the best in accordance to certain metrics. However, on the other
hand, it is also a di�cult task, as with the convectional boxscore statistics such as number
of passes, shots, etc. which could be used to make metrics, can not fully catch the potential
or the contribution of an individual action.

In recent years, the groundbreaking rise of big data and the development of new algorithms
has allowed us to gather new data like tracking data which are spatio-temporal data and
which we can analyse an action at a certain time and space. This kind of data give us
the chance to use information of the players with time and space aspects with machine
learning techniques to make estimates of probabilities or expected real values depending
on the algorithm we choose to use to make those estimates and evaluate the actions.

In our work, we will use tracking data. In NBA the sportvu data is an optical tracking
dataset acquired from cameras, which have been used to evaluate actions [SPG19]. This
is of course important as it may not be used to predict a match result but it contributes
to the improvement of the plays of the team and the we can see the contribution of the
individual players in the team. However, it is di�cult to obtain this kind of data since it
may be proprietary by some company or the other way to obtain them is to use Computer
Vision algorithms for Object Detection, Object Recognition and Action Recognition. On
the other hand, there are some public tracking data that may be used for football data
analysis [Pap+19], which of course di�er from sportvu data of NBA but they can be used
the same way for another sport.

One thing we should mention is the di�erence between the optical tracking data and
the tracking that we will use. The optical tracking data like the ones of sportvu that
StatsPerform provide for NBA has the positions for each player in a certain time and the
ball’s position as well. On the other hand, the tracking data that we use, they provide us

1



only the position of the ball and the event that takes place with it. This on-ball stream
event data needs to be processed with care like the optical tracking data in order to achieve
our goal. With this type of data, there have been some attempts to utilize them with the
use of machine learning models in order to make predictions and reach conclusions.

In our thesis, our goal is to evaluate the actions of the players in a game. This kind of
problem has gained a great interest in recent years. One critical question here is how
do we evaluate an action. In the current literature, researchers have proposed di�erent
ways to evaluate actions through machine learning models and the use of pre-processing
techniques. For instance, optical tracking data has been used by Cervone et. al for
evaluating actions in a basketball game through a markov-chain approach with stochastic
processes where they try to estimate the Expected Possession Value for each action a
team makes in a possession. On the other hand, in football, e�orts have been made to
evaluate the substitutions of the players in the game and how they e�ect the performance
indicators. which are more valuable. They �rst use Random forest to �nd which variables
are important for the outcome in an o�ensive and defending manner. Then, they use
those variables as dependent variables for a regression model, in which the measure the
importance of the substitution with a dummy variable which indicates if the substitution
was o�ensive or defensive. A really interesting scienti�c problem is the evaluation of
passes which are the main event in most sports as they greatly a�ect the goal which is
to score. In [BV18] they use possession subsequences and reward passes with Expected
Goal Score and they use clustering techniques with K-Nearest-Neighbor and Dynamic
Time Warping. In football where there are many kinds of events in a game De Croos et.
al [Dec+19] use probability classi�ers in order to evaluate the actions of players through
subsequences and they reward each action if it contributed to reach a goal in the next
actions of the team or punish an action if it leaded the team in possession at that certain
time to concede a goal in the next actions, So, they then take the di�erence of the two
probabilities of two consecutive action of the team to evaluate the action that happened in
the next time step. The [SPG19] utilized an approach of estimating the Expected Point
Value of an action through subsequences in basketball with a Deep Learning method of
Stacked-Long Short Term Model and the use of the embedding layer to represent the
players in the court.

In our Thesis we will utilize the above approaches and especially [Dec+19] with the metrics
they recommend to evaluate actions. We propose Deep Learning models which have been
used in Sequential problems like Long Short Term Model [HS97] with Attention, Fully
Concolutional Neural Networks [Mat+92] and the combination of them [Kar+19] and
a modi�ed InceptionTime model the use of Embedding Layer Encoding which helps to
reduce the dimensions and avoid over�tting. For the training of our models we will use
the public wyscout data of [Pap+19], which is on-ball stream event data of Premier League
of 2017-2018 season.

2 Chapter 1 Introduction



Fig. 1.1: The evaluation of actions in a attack phase of a team

For our problem, the evaluation of the actions of the players will be based on probabilistic
metrics, inspired from [Dec+19] of scoring and conceding a goal in the next actions, given
the information we have in the current action and in the previous ones. So as we see
in �gure 1.1 we have subsequence of actions. For every action we want to estimate the
probability of scoring and conceding and see if our action has the potential to lead to a
goal in the future actions. Here, as we are in a attacking phase of the team in possession
of the ball the probability of conceding a goal for that team is 0. So, when we compute
the probabilities for the �rst 4 actions, given the information we have for every action
and the previous actions of every action, we compare the probability with the probability
of the previous action to see if it contributed more for the team. The probabilities of the
�rst actions are low as we are away from the opponent’s area, but as the team reach the
area of the opponent’s goalkeeper we see that the actions are more important and the
action before the last action has the biggest value. This indicates that the action has the
potential to lead to goal for the team in possession with higher chances of achieving form
the previous action. The last action is shot, but we do not know the probability, as we
have to compute to see if this shot can lead to a goal with high probability. That help us to
decide what action we could take, given our previous actions’ information and the current
one’s, like spatial information, type of action and the time of the action.

1.1 Research Context 3



1.2 Thesis Structure

In section 2 we review and analyze papers and thesis related to our work. In section 3 we
describe our data, our problems’ challenges and our preprocessing steps. In section 4 we
de�ne our problem and the metrics. In section 5 we describe our methods. In section 6
we evaluate our models and see the results through the metrics. In section 7 we reach a
conclusion about our work.

4 Chapter 1 Introduction



2Background and Related Work

As we have mentioned there are a few works in the literature which focus on tracking
data and speci�cally to the evaluation of actions. We will divide them depending on the
type of the data.

2.1 Optical Tracking Data

A good way to evaluate actions in sports was introduced by Cervone et al. [Cer+16]. The
actions developed a Multi-Resolution Stochastic Process by utilizing the optical tracking
data for computing the Expected Possession Value(EPV). The full model comprises three
models: a mircrotransition model, a macrotransition entry model and a macrotransition
exit model, which are utilized to describe the prediction of movements, the occurrence of
an event and the outcome of the macrotransition (shot,rebound,turnover,etc) accordingly.
These processes which describe the movement and the state of the possession at a certain
time depend on each other and so the models themselves depend on each other. The �nal
model which has all the information has a likelihood of all the models and the estimations
are made through semi-Bayesian approach with prior probabilities. The authors mention
that the likelihoods for the macrotransition models are those of Poisson Regression and
Logistic Regression, as they use log-linear hazard model for modeling the time of the
next event and the type of event given the location of the players and the ball. In the
Logistic Regression every prediction depends on what kind of Coarsed state and end state
event we have. In a Coarsed state of a Possession,a player has the ball and we have a
transition from possession state to transition state, which means that an event took place.
An end event state can be shot which ended the possession. The Authors performed a
complex model which can catch the continuous and discrete changes within a game. In
football Lucey et al. [Luc+14] proposed an Expected Goal Value (EGV) metric which is
computed with an ordinal Logistic Regression. They use as input phases of the game before
a shot (pass,corner,cross,dribbling) which are for the o�ensive part of the team but also
the strategic features such as defender proximity, interaction of surrounding players and
speed of play coupled with shot location.

Apart from conventional statistical and machine learning models, deep learning has been
used in recent years. Sicilia et al. [SPG19] proposed a new framework named Deephoops
to evaluate actions. First they try to predict the next action based on the previous actions

5



and the location of all the players in the court. Then they use empirically scoring expected
points which are the points for each terminal action per possession. The Deephoops
framework consists of a stacked Long Short Term model with input the positions of all
ten players in the court, the position of the ball and the time of an event took place. They
also use an embedding layer to represent which players are in the court. Like we said,the
goal is to predict the next action of the team in possession. Then, after they have obtained
the estimated probabilities for each terminal action, they compute the expected point for
each terminal action. For every terminal action we compute the sum of scored points for
possessions which conclude with the terminal action divided by the total number of the
possessions which conclude with the terminal action. The di�erence between two actions
in di�erent time steps gives the expected value gain for the last action of the two. They
also focus on the imbalance with a speci�c scheme and in each window they try to reduce
the imbalance of the distribution of the labels. The calibration of the predictions of the
actions is also mentioned as they want to have realistic predictions of the probabilities and
not only the discrimination of the actions.

2.2 On-Ball Stream Event Data

In Stream Event Data we have only the On-Ball Events and not the positions of the other
players, in order to predict the next action of the team and evaluate them empirically.
[BV18] proposed a way to evaluate passes. They used possession sequences and trained
an Expected Goal Score model with Extreme Gradient Boosting Model to evaluate shots
and then use them as labels that reward an possession sequence. Then, they split those
possession sequences into possession subsequences where each contain a pass in it and
the next subesequence has the pass from the previous subsequence and can have another
action like dribbling as well apart from the next pass that the new subsequence will contain.
They utilize the Dynamic Time Warping technique along with the K-Nearest-Neighbor
technique in order to form clusters of the positions of the players and generally of the
football pitch and assign the rewards to each cluster. The clusters that are away from
the opponent’s area can be used with K-Nearest-Neighbor technique and compute the
mean of the two closer clusters for our cluster in interest and then compute the reward
of the subsequence. They also used a rating metric to compare the players based on the
predictions they made. Another work evaluated substitutions that happen in a match.
[Lee20] proposed a machine learning method to evaluate substitutions. They used various
variables to predict the outcome of a match with dummy variable which indicate if the
substitution was o�ensive or defensive and the measured the importance of the variables
with a Random Forest. They found which variables were the best for the o�ensive and
which were the best for the defensive performance of the team. They use regression models
to predict the previous best found variables and evaluate through statistical hypothesis

6 Chapter 2 Background and Related Work



testing whether the dummy variable of o�ensive or defensive substitution e�ects the
variables.

The work that is most close to our approach is that of De Croos et al. [Dec+19] that
proposed metrics to evaluate actions in a football game based on probabilities of scoring
and conceding a goal. They use predictions of probabilities and that we mentioned before
and they subtract with the probabilities of the previous actions of team. This way they can
measure the contribution of the current action by making a comparison of the probabilities
of the current action and that of the previous past action of the team. They create a metric
with the sum of the subtracted probabilities of scoring and the subtracted probabilities of
conceding a goal. Those actions must be consecutive in respect to the time they occurred.
One main di�erence from our approach is that they use machine learning techniques
like Catboost, Extreme Gradient Boosting, Logistic regression, Support Vector Machine,
whereas we use deep learning models and we utilize a di�erent encoding technique. This
technique is called Embedding Layer, which can be used to see which players are in the
event on the ball. That encoding technique helps us to decrease the cardinality of the
categorical variable and use new variables which come from the weight matrix of the
neural network like we will see in the next section 3. The authors also use the ratings of
the players based on the metrics we mentioned before.

2.2 On-Ball Stream Event Data 7





3System Design

3.1 Data Description

In our approach we utilize Spatio-Temporal data. Since we can not use the whole game
in one time window we will use a subsequence of actions from a possession of a team.
This way we can catch the information of events or location of the players that happen
through a possession. In particular, in basketball games like in NBA the team that is on
the o�ensive usually do their attacks and plays in mere seconds and not all 24 seconds of
the possession, so they may have changed their attack and have made a good micro-action
like a pass or a screen. In football, on the other hand, there may be more events since there
is not a time constraint here, regarding the possession and we have a lot of more passes,
fouls and a bigger stadium. So, the small changes that happen in a possession of a a team
may determine the the course of actions that the team will make in the its next attempt

With each of the players we associate the following set of attributes. These will be utilized
to compute the player’s rating value based on the prediction of the probabilities of the
actions for each player and event.

• Playerid: The �rst variable is the unique id for each player so we can distinguish the
player that makes the action.

• Player Name: The name of the player

• Teamid: The id of the team of the player

• Minutes: The minutes that a player played in match.

The data that we will utilize for our research in the part of the construction of the model
consists of nine attributes. In other words, these variables will be the input of our mod-
els. We have four categorical variables and nine numeric variables. Of course, for the
representation of the categorical variables we will use some encoding techniques like
embedding layer and one-hot encoding depending on how many categories each variable
has. Therefore, the events of the football data which are the the inputs of the model, have
the following characteristics:

9



• Playerid: The �rst variable is the unique id we have for every player so we can
distinguish the player that make the action.

• Half Time: We have the half time which the event takes place and as we know in
football we have two Half Times of 45 minutes.

• Time: The time that the event takes place on the pitch. It is measured in minutes.

• Actions: Here we have the type of event that happens and the player involved tries
for his team’s success. In this characteristic we have 23 categories which we will
show and describe in the matrix 1 below:

• Xstart: This variable indicates one of the two cordinates which show the position of
the event that takes place when it �rst happens and it is measured in percentiles for
the team which is in the possession of the ball and the goal of 100% is the opponent’s
goalkeeper’s area.

• Ystart: This variable indicates one of the coordinates which show the position of the
event that takes place when it �rst happens and it is measured in percentiles for the
team which is in the possession of the ball and the goal of 100% is the right corner
of the opponent’s goalkeeper’s area.

• Xend: This variable indicates one of the two coordinates which show the position
of the event that takes place when the ball reach its target and it is measured in
percentiles for the team which is in the possession of the ball and the goal of 100%
is the opponent’s goalkeeper’s area.

• Yend:This variable indicates one of the coordinates which show the position of the
event that takes place when the ball reaches its target and is measured in percentiles
for the team which is in possession of the ball and the goal of 100% is the right corner
of the opponent’s goalkeeper’s area.

• Result: Whether the action of the player which tries to be in the possession of the
ball is successful or not.

• Speed of play: The distance of the end position from the start position of the action.

• Directionx: If the player gave the ball forward or moved the ball back from the start
location of the action.

• Directiony: If the ball is directed left or right from the start location of the action.

10 Chapter 3 System Design



• Distance from opponent post: The distance of the action from the opponent’s
goalkepper post.

Fig. 3.1: Barplot of the Actions.

In the above �gure we plot the distribution of these events. As the �gure demonstrates,
the most frequent event is the pass; this is expected as it is the game’s key event in terms
of the teams’ tactics to reach their opponent or maintain the ball in their possession. One
of the most important actions is the shot, as it its result which may be a goal or not is what
determines a team success at the end of the game. However, if we take into account its
frequency, we can see that it is not easy to create many chances of shooting. Apart from
that,the chances of scoring a goal are even fewer as the shots can not always hit the target
and be successful, since they may not win the goalkeeper or are inaccurate.

3.2 Challenges

3.2.1 Missing and wrong values

The data that we want to process may contain some actions that do not have the information
we need, as some actions like the Ground attacking duels and Ground defending duels
have some of-the ball actions which will confuse our model later. So, we drop those
actions and we keep the on-ball actions for the player that is attacking and the player
that is defending. The shots of the teams due to their format will not help us, as their end
locations are not right for our problem. We, change their values to have as end locations to
the target which is the opponent’s goalkeeper post if the shot is accurate or near it if it is
inaccurate. If actions contain missing values, we can drop the action or give a value based

3.2 Challenges 11



Actions
Action Description
Pass The player gives the ball to another player through many ways, long or short

passes, etc.
Ground Attacking
Duel

When the player has the possession of the ball and tries to pass through the
defenders.

Ground Defending
Duel

When the defender is playing against the attacking player and he is trying to
stop his attacking run or dribbling.

Air Duel When the player jumps and tries to gain the possession of the ball in the air.
Touch When the player touch the ball, even if it is to de�ect it.
Ground Loose Ball
Duel

When no one is the possession of the ball and the players are �ghting to gain
the possession for their team.

Ball Out Of The
Field

When the ball goes out of the pith.

Throw In When the player throws the ball in for their team.
Cross When the player tries a cross to �nd his teammates in the opponent area from

the side.
Clearance When the player tries to play safe and throw the ball away so they avoid any

kind of mistake.
Shot When the player makes a attempt to shot and score.
Foul When a player commits a foul.
Free kick When a player tries to pass or cross after the foul his team won.
Goal kick When the goalkeeper tries to pass or cross after a foul or a possession gained

after a out of �eld ball.
Acceleration When the player tries to increase his agility and speed to move the ball or pass

a player.
Corner When a player do a cross or a pass from the right or left corner.
Re�exes When the goalkeeper tries to react to short shot or something unexpected

shot.
Free kick shot When a player attempts to shot from a foul the team gained from the opposing

team.
Save attempt When the goalkeeper tries to save the shot.
Goalkeeper leaving
the line

When the goalkeeper tries to catch the ball or de�ect it.

Penalty When a player tries to shot a penalty.
Tab. 3.1: The actions of a player

12 Chapter 3 System Design



Fig. 3.2: The barplot of our goals

on the information from previous actions we can take the median or if it is a location do
interpolation.

3.2.2 Imbalance Data

When dealing with large datasets, there are many problems with data imbalances regarding
the distribution of their labels and their input variables. This may cause problems, as the
model we choose will be trained and predict the majority class in most cases, so it will
most likely over�t. For instance, if we have 20% positive labels and 80% negative labels,
then the model will learn to predict the negative ones more often. In real-life problems,
like the sports data that we consider in this work and speci�cally spatio-temporal football
data, this is something very common. As we can see in the the barplot in Figure 2 below
the relative frequency of the goals is extremely low with the 0.17% of the goals and 99.83%
of non-goals. The di�erence of course is so great that we understand that every model we
try to make, must be build with great care so it does not over�t. So, even if we have later
actions which we reward for leading to a goal the label as we will see in section 4, will still
be really low.

So, we reach the conclusion that our data set is extremely imbalanced and the probabilities
to �nd the right action which will result in a goal is very low. In Section 4 we will present
our problem and we will construct our labels later, we may increase the number of positives
as we will reward or punish the actions that happened before a goal. However, this increase
in frequency will be again low as we will have to choose an appropriate window size for
our sub-sequence of events which will be the input of our model.

3.2 Challenges 13



There are techniques which could help to limit the problem of our imbalanced data or even
eliminate this imbalance in the distribution of the labels but the nature of our data do not
allow the use of most of them. So, oversampling and undersampling[ZL05] are out of the
question, since they will cause our data distribution to be altered and the time and spatial
aspect of our data will not be the same. One of the techniques which could be utilized is
the penalized form of our loss function through the use of classi�cation weights. These
weights will give the class we want more importance. On the other hand, this depends
greatly on the window size we will choose as it is an important hyperparameter which
e�ects the model performance and the �nal predictions.

3.3 Cleaning Data

We check the data if they have some missing values in our variables and we drop some data
samples.Some actions are recorded two times as we have some actions like the duels which
may have more players who are not in the ball and that is some additional information
which may confuse our model and like we have mentioned it may not lead to good results.
Every action is on-ball event so some actions which contain more players than one or
two, can cause the model to regard actions in which players who do not have the ball, as
di�erent on-ball actions. That would be misleading.

3.4 Variables Encoding

One of the challenges of our dataset is that there are 4 categorical and 9 numeric variables.
So, we have numeric variables with nine dimensions which has a space of real values
and we denote as: XT ∈ R5. As for the 4 categorical variables we have to decide a
way to represent them, as their space is not determined before we utilize some encoding
techniques, in order to concatenate them with the numeric ones. So we can then proceed
to preprocess each of them and implement our model with all the information we need to
train it and validate it and then to evaluate it.

3.4.1 One-Hot-Encoding

One way to represent our data is to make a binary variable for each category with 0 or 1 as
values. The value 1 indicates that the category is used as the input and the value 0 that it is
not used. It is a very good strategy if we want our model to have interpretation and know
which category is used every time. However, if we have many categories, then we will
have to create many binary variables, which will cause our model to over�t and not have
a good predictive ability for unseen data. Another issue is that the categories in this form

14 Chapter 3 System Design



are independent from each other and thus we can not see any correlation between them.
Nevertheless, it is a good way to implement the model when it has a few dimensions.

3.4.2 Entity Embedding Layer

Another technique that we choose to use for encoding our categorical variables is the
Entity Embedding Layer[GB16]. Although the term Embedding Layer is frequently utilized
in the �eld of Natural Language Processing with great success, in recent years it can be
also used for categorical encoding as well. Well, it is a technique that can be implemented
through Neural Networks. We can utilize the integer transforming of each class and create
a One-Hot-Encoding multidimentional variable X ∈ 0, 1 and then use a Wight Matrix
whose each row represent one category of our categorical variable. That problem can be
notated as:

X− > WX

where W ∈ Rdx|categorical| is a Weight Matrix, d its row dimension and |categorical|
the number of categories of a categorical variable and X ∈ R|categorical|x1 the One-Hot-
Encoding Vector.

However, the dimensions of the W Matrix are the length of the categories as rows but the
columns are a hyperparameter which needs con�guration. So, we have as input each row
of the Weight Matrix for each category. This way we have succeeded to map the categories
of the categorical variable into Euclidean Space Vector with less dimensions. As a result,
we may avoid over�tting, since we will have less variables to represent each category. In
addition, we can see how the variables are correlated in this space.

3.5 Scaling

When, we have all our variables representations decided, we can then use preprocessing
techniques in our data, in order to to have a smooth training of our model and better results.
The range of values of our numeric data can cause the weights to increase tremendously
and our model would not be able to to train smoothly and make robust predictions. That
is known as the Exploding Gradient problem. One way to tackle this kind of problem
is to scale the data. We achieve that through Standardization [ACL00]. It is a technique
often used in statistics and machine learning. In this technique we subtract the mean from
the variable and divide by its standard deviation and this way we have for every numeric
variable a mean of 0 and standard deviation of 1.:

X −M
S

3.5 Scaling 15



Distribution of Goals
Set Relative Frequency
Training Set 0.17%
Validation Set 0.18%
Test Set 0.18%

Tab. 3.2: Distribution of the Sets

where M =
∑N

i=1 xi

N
and S =

√∑N
i=1 (xi−M)2

N

3.6 Splitting

Of course, before we apply the above technique we have to split the data into training,
validation, and test sets. This splitting will allow us to train our model, validate it as we
have to con�gure the hyperparamters like window size, embedding size and others that
we will see later and evaluate it in an independent test set, so we do not induce bias in
model’s predictions. The data is usually split randomly. However, in this case that would
cause the distribution of our data to be altered in a great degree. That happens as we have
Spatio-Temporal data, in other words the time and space attributes matter. So, for our
model training we take 70% of the original training data which are the �rst 266 games of
the Premier League, then the 15% as validation set which are the next 57 games and the last
15% which are the last games as test set. That way, we will not disturb our data temporal
relationship and we will predict the unseen data with real-time future games. However,
this approach creates a big question here, and that is whether the distribution of our labels
is the same across all sets. That is a very important aspect in machine learning as id the
distribution di�er greatly, as we may have misleading results for the predictions of our
unseen data, since the model will have learned to predict well on a training dataset which
is di�erent from the independent validation and test sets. So, in order to avoid this kind of
problem we will check for every set the relative frequency of the positive and negative
labels. In the table 3.2 above, we can observe that the relative frequencies are about the
same. Now, we have the data prepared we must also transform them into subsequencies o
that we can capture all the events and put them as input in the model to train.

3.6.1 Sliding Window Method

Apart from that, even in this sport it is important to see the sequence of the events like
passes to evaluate the attack in short time. Then, if we want to do that we have to de�ne a
slide temporal window, in other words a temporal window with overlapping values.

16 Chapter 3 System Design



Fig. 3.3: The data’s concatenation

Those values may di�er depending on the sport, since in basketball we can use only the
tracking data of the players and the ball to classify events and then assign expected sore
values in each event and in football we may use these events as exploratory variables and
as a target variable a binary variable which indicates if the attacking team scored or not in
this subsequence of actions. We denote as a sliding window: Xt = (xt−k, ..., xt−1, xt)T ,
where each element it has is action with dimensions xt−k, .., xt−1, xt ∈ R|features|, as
every action has the input features we mentioned in section 3.1.

Where k is the step de�ned from the window length. Every xtis the row of the input matrix
Xt,it also has a multidimensional input at time step t and columns the features for each
action. The length of the window will be computed as a hyperparameter when we train
the model and we also validate to �nd the best length in order to have better predictions.
Then, after we have done this, we can split the data into training, validation and test data
in order to �t the model and also to make good predictions with unseen data, like we have
mentioned the target may di�er but the model will be the same.

Now for every time step we can concatenate our data variables which are numeric and the
embedding representation into the �nal form of our input feature before they are used
for the training of the model. This procedure can be better explained with the �gure 3.3
above. All the procedure is described in the �gure 3.4 above.

3.6 Splitting 17



Numeric
Input

Cleaning
Data

Categorical
Input Cleaning

Data

Scaling

Label
and One-

Hot
Encoding

Spliting

Embedding
Encoding and

Scaled
Numeric

Concatenation

Fig. 3.4: The Preprocessing Steps Procedure

3.7 Target Variable

The preprocessing steps that we mentioned earlier are for our input variables before we
train a model. However, every problem, apart from input has an output. In our case,
we have the probability of scoring and conceding a goal in the next actions, given our
current action’s information along with the information of k previous actions. So, we want
those probabilities using deep learning models like Long Short Term Model, Convolutional
Neural Network and their combinations. These models are described in section 5, along
with their hyperparameters and techniques which make the models to avoid over�tting
and gain better results for unseen data predictions. When we have the results for every
model, we will evaluate them in a test set, based on the metrics we will see in the next
section 4. After that we will use the best model to compute the evaluation metric for every
action, which we will see in the next section 4.

18 Chapter 3 System Design



4Problem Description and Metrics

4.1 Our Problem

In this section we describe the objective of our approach. The goal of our work is to
evaluate the actions of the players in a football match. So, the question that arises here
is how we do that? There are cases where we could take actions as output variable and
predict an event that will happen based only on tracking data and then assign an expected
value of scoring based on the frequency of scoring after that event in the possession of
the team who haw the ball. While this approach applies well in a basketball game where
we have the positions of all the players on the court and the time of the possession of the
ball is constrained, the shots that lead the team to score points are much more than the
corresponding shots in football in which the expected goals per match may be 3 goals.
Therefore, in our football data we have only on ball events, there is not a time constraint in
the possession of a team and we have more events than basketball. So, the implementation
of this procedure seems infeasible in our case. The approach that we will follow is set
up based on the work of [Dec+19] that made a new metric of evaluations of actions for
the players in a football game based on probabilities. This way is di�erent than other
conventional approaches in which they only predicted the outcome of a shot, whether it
was a goal or not. In this case we want to reward the actions in a speci�c length of sequence
of actions like we mentioned before that can lead to score. Apart from that, we do not only
measure the chances of scoring a goal given the previous actions, but also the chances of
conceding a goal. If we have those types probabilities, we can observe each event or action
that can alter the chances of scoring or conceding a goal for each team in possession of
the ball in the next k actions given the current action in time step t. As we said earlier, we
have a subsequence Xt of events with all the attributes that represent them. We denote as
Pscore(Xt, H) the probability of a home team H scoring in the next time step at a certain
time step of the game, and as Pconcede(Xt, H) the probability of conceding a goal. The
same notation can be applied for the visitor team V as with the probability of scoring in
the future time steps Pscore(Xt, V ) and the probability of conceding Pconcede(Xt, V ).

Given that we have both probabilities we can assess a action of a player for home or
visitor team with the teamid for every action and given our input matrix from t-1 step
to a future t. So, we can compute the impact of each action compared to the previous
action by subtracting the previous past probability from the future probability of the two
consecutive events.

19



∆Pscores(xt, teamid) = Pscore(Xt, teamid)− Pscore(Xt−1, teamid)

So, if the next action has a higher chance of scoring, the metric will be positive, while if
the the chance of scoring is lower then then the metric will be negative. The same metric
can be computed for the probabilities of conceding a goal:

∆Pconcede(xt, teamid) = Pconcede(Xt, teamid)− Pconcede(Xt−1, teamid)

where xt is the last value in our time window and so the current action in time step t. In
this metric we have similar interpretation as it will be positive if the next action has a
higher probability of the team conceding a goal or it will be negative if the probability of
the next action has a lower probability of conceding a goal.

Therefore, by taking the di�erence of the two metrics we have the �nal metric which takes
into account the chances of scoring and conceding a goal of a team. We subtract the metric
of conceding a goal from the metric of scoring a goal. We denote the new metric as:

V (xt, team) = ∆Pscores(Xt, teamid)−∆Pconcede(Xt, teamid)

Now, that we have seen the way to de�ne our problem in terms of probabilities we can use
another metric like De Croos et al. [Dec+19] thought of rating each player. The aggregation
of all the probabilities of all actions and the value metric V (xt, team) for each player can
be used to de�ne a rating metric for each player:

Rating(player) = 90
m

∑
V (Xactionsi)

where Xactionsi denotes the actions that a player tried on a season and m the minutes
that the player played with his team the whole season.

We have to mention here, that the probability of home team scoring and the probability
of a visitor team conceding a goal is the same and of course the same can be said for the
other way around:

Pscore(Xt, H) = Pconcede(Xt, V )

Pscore(Xt, V ) = Pconcede(Xt, H)

20 Chapter 4 Problem Description and Metrics



In other words, we can take into consideration only two probabilities of the team in
possession whether it scored or conceded a goal.

4.2 Construction of the Labels

The labels in the majority of the existing solutions would be if the team in possession
scored a goal or not. Unfortunately, such approaches will not be able to catch the potential
of other actions likes passes, which also contribute to the shot. So, to identify how much
each action contributes to the problem we de�ned in the previous subsection 4.1, we
denote as Y1 = 1 the possibility of scoring a goal in the next 10 actions, otherwise it
is 0 and Y2 = 1 the possibility of conceding a goal in the next k actions, otherwise it
is 0. For our experiments we will use k=10, since we will compare our results with the
results of [Dec+19]. So, this way we will consider actions that happened before a shot
and contributed to the team’s e�orts to score. On the other hand, we punish actions that
leaded for the team in possession to concede a goal.

4.3 Classification Problem

The next step of our approach is to estimate those probabilities. Since, we want to estimate
a probability of rewarding or punishing actions that leaded to a goal in the next 10 time
steps, we have a double classi�cation problem.

A classi�cation problem in statistics and machine learning is the task of identifying a label
class given an input data Xt. So, we can de�ne a function P (y = 1/Xt) = f(Xt), where
Xt is our multidimensional input data, f is the classi�er we choose and y a binary variable
with y ∈ 0, 1, y = 1 is to reward or punish an action and y = 0 is that this action leads to
no goal.

There are several discrimination problems that could be used, but since we will use only
deep learning algorithms to estimate the probabilities, we will focus on the neural network
classi�er which is the base for every method we will consider in the next chapter. A neural
network is a machine learning algorithm, which consists of units named neurons and its
origin comes from the biological neural networks of the human brain. These arti�cial
neural networks act like a brain that have connections between the units. There are three
types of layers, the input layer where we have the input variables, the hidden layer where
each unit is a function and the output layer which may be a function as well. Every
connection has a weight where we can multiply the ’signal’ from the previous layer and
give it as input to the next. The network tries to learn through data, but in order to train
it, it must have a speci�c function named loss function which we want to minimize it as it

4.2 Construction of the Labels 21



is the function which show us how much father our predictions are from the real output
values. This type of error can be minimized through optimization techniques where we
want to estimate the weights and have a small loss to train a model but try not to over�t
it. The optimization technique that is used in neural networks is Back-Propagation with
Gradient Descent which we adjust the weights to reduce the local error with the help of
the gradients during learning. That procedure is happening backwards through the neural
network. Though, in recent decades because the data magnitude has increased we use to
train the model with batches of data, so it can converge quickly. There are some gradient
descent with batches optimization techniques, that tune the learning through training
and that approach we will follow for our experiments in section 6 and the algorithm is
Adam[KB14].

4.4 Activation Functions

As we said earlier, the hidden units use functions of the weight matrix multiplied by the
input of the previous and with that way we try to catch the relationship, usually non-linear
in order to approximate the true function. Now, we will see the activation functions that
we will use later.

4.4.1 Rectified Linear Unit(RELU)

Recti�ed Linear Unit(RELU) is a famous activation function for neural networks architec-
tures with good properties. It is a sparse activation, in other words, usually 50% of the data
are activated. It tackles in some extent the Vanishing Gradient Problem compared to other
functions, it is fast and e�cient in computation. Of course, it is not zero-centered and it is
unbounded and some neurons may be stacked.

f(x) = x+ = max(0, x)

where x is the input.

4.4.2 Sigmoid

The Sigmoid function is useful function which has values that range between the values of
0 and 1. So, it is used in the output layer usually when we want to predict the probability
of an outcome like in our case. However, the Sigmoid is prone to Vanishing Gradient for
very high or low values of input and it is expensive regarding the computation time.

f(x) = 1
1 + exp−x

22 Chapter 4 Problem Description and Metrics



4.4.3 Tanh

The Hyperbolic Tan is like Sigmoid regarding most properties but it has values in the range
of (-1,1) and it is zero-centered, so it is easier to model inputs that have strong positive or
negative values. On the other hand, like Sigmoid function it has the same disadvantages
of Vanishing Gradient and ine�cient computation.

f(x) = Tanh(x) = exp 2x− 1
exp 2x+ 1 = expx− exp−x

expx+ exp−x

4.5 Objective Function

The model has to be trained and the weights need to be updated based on the minimization
of the objective function through the gradients. One especially good loss for a binary
classi�cation problem is Binary Cross Entropy.

4.5.1 Binary Cross Entropy

When we have a classi�cation problem, where we have to predict probabilities and the
output is discrete variable, which takes 0 or 1 for values we use Binary Cross Entropy for
our model. The Binary Cross Entropy is also known by the name of negative log Likelihood
of the Bernouli or Binomial distribution where we have a success or failure in a problem.

L(yi, y
−
i ) = − 1

N

N∑
i=1

yi log y−i + (1− yi) log 1− y−i

The yi is the output label and y−i is the predicted probability. This loss indicates the
di�erence between our predicted probabilities and the true distribution of probabilities of
the labels.

4.6 Evaluation Metrics

4.6.1 Brier Score

In our work we chose as evaluation metric for the validation the Brier Score. This metric
measures the accuracy of our probabilistic predictions, in other words, how much our
predicted probabilities deviate from the groundtruth outcome. So, if we have a low Brier

4.5 Objective Function 23



Score for some prediction, we then have better calibrated predicted probabilities. The Brier
Score is computed as follows:

BS = 1
N

N∑
i=1

(yi − oi)2

Where yi is the true label outcome and oi is the predicted probability, which takes values
from 0 to 1 and the label ranges between 0 or 1. The Brier Score can be inadequate for
very rare events if we train directly as an objective function. If we have many samples,
however, our results can be more robust.

When we do a classi�cation problem we have to set a threshold, which will determine
which class we have every time for every sample label. If the prediction is above the
threshold, then we say that the model predicted a positive class where the yi = 1, if it is
lower than the threshold then we say that the model predicted a negative class, where
yi = 0. So, we have to de�ne what those terms positive and negative mean when we have
a right prediction or a false one for each of them.

• True Positives(TP): True Positives are the cases when the actual Positive class was
predicted correct.

• True Negatives(TN): True Negatives are the cases where the actual Negative class
was predicted correct.

• False Positive(FP): False Positives are the cases which the actual Negative class was
predicted as a Positive class.

• False Negative(FN): False Negatives are the cases which the actual Positive class was
predicted as a Negative class.

Now, from those terms we can build some metrics which can tell us the how our model’s
performance is regarding the correct prediction of each class.

Of course, we want our model to predict every label’s class correctly but it is not usually
the case.

4.6.2 Accuracy

Accuracy[Pow20] is the metric where it measures the number of correct predictions for all
the classes, de�ned as:

24 Chapter 4 Problem Description and Metrics



Accuracy = TP + TN

TP + FP + FN + TN

The problem of Accuracy is that in cases of imbalanced data it can be misleading, as the
majority class is predicted perfectly. For instance, if we have very few Positive labels
and almost every sample is a Negative label then the model will learn to predict only the
Negatives ones. So, it is not an appropriate measure for these cases.

4.6.3 Precision

Precision[Pow20] is the measure that indicates how many of the predicted Positives were
actual Positives, de�ned as:

Precision = TP

TP + FP

That measure may have problems if we have an imbalanced dataset where the Positive
labels are very few and the False Positives will dominate them if the model can not learn
well some of the Positive ones and learn all the Negative ones. However, it is still reliable
when we have used a technique to deal with the imbalanced problem, as the model will be
capable of learning the Negatives ones and some of the Positive labels. So, if we do not
apply a cost-sensitive or resampling technique to reduce the problem of imbalanced data
and then it will have a perfect score.

4.6.4 Recall

Recall[Pow20] is the proportion of the the Positives labels that we predicted correct, de�ned
as:

Recall = TP

TP + FN

The Recall is very useful as our main concern is to predict the right Positive labels, as in
our case is the action that leaded to a goal.

4.6.5 F1 Score

F1 Score[Pow20] is the harmonic mean of Recall and Precision, de�ned as:

4.6 Evaluation Metrics 25



F1Score = 2RecallxPrecision
Recall + Precision

The F1 Score can be used in cases of imbalanced data to determine if the model’s perfor-
mance is good, as it take into accounts both Recall and Precision and it weights them
equally. The threshold value can play a major role for the value of F1 Score and depending
on the objective of the problem we can adjust it accordingly, if needed.

4.6.6 Area Under the Curve(AUC)

The Area Under the Curve(AUC)[Pow20] is a metric which comes from the Receiver
Operator Characteristic curve where we have as axis the True Positive Rate, which is the
same as Recall and the False Positive Rate which measures the proportion of Negatives
labels that were misclassi�ed as Positive labels. This metric measures the performance of
the model for all thresholds and is una�ected from the imbalanced data problem. There have
been some ways as imputation to compute the integral of this curve, with the combined
performance of the True Positive Rate and False Positive Rate. This, however, sometimes
can be overoptimistic, as we may have a very skewed distribution of our labels, like in
our case. Nevertheless, we will still use it still indicates if the model was good in its
predictions.

26 Chapter 4 Problem Description and Metrics



5Method

In our approach we will utilize well known models of deep learning and apply some
techniques to enhance them. The models that we propose are Long Short Term Model
with Attention, Fully Convolutional Network [Kar+19], Temporal Convolutional Neural
Network and some combinations of them. We will compare them in accordance to the
evaluation metrics we mentioned in section 4.

5.1 Long Short Term Model

An Long Short Term Model [HS97] has the architecture of combining some gates which
are like hidden activation functions of sigmoid and tanh. So, the Lstm with those gates
can control the �ow of information and in each Lstm cell the same process takes place.
Therefore, the input gate controls the new values �ow, the forget gate controls the extent
to which the �ow of the previous information remains and the output gate is used to
compute the output vector in order to then compute the hidden units the Lstm cell, in
other words, the values that will go in the next timestamp. Now, we can see the Lstm cell
in the below equations:

ft = σg(WfXt + Ufht−1 + bf )

it = σg(WiXt + Uiht−1 + bi)

ot = σg(WoXt + Uoht−1 + bo)

cit = σh(WciXt + Uciht−1 + bci)

ct = ft ◦ ct−1 + it ◦ cit

ht = ot ◦ σh(ct)

where
ft, it, ot and ci

are the forget gate, the input gate, the output gate and the cell input gate. Of course, the
dimensions of the weight matrices and the gates depend on the input dimension and the
the dimension of hidden units.

27



The above model can be stacked, meaning that the output of every cell will be an input
variable for a next LSTM layer. Of course, the problem is that sometimes the LSTM forgets
previous information and it can be tackled with Bidirectional Long Short Term Model
[SP97], which as its name implies have two directions from the past information to the
future one and the reverse �ow. These models can be used for sequential data as well as for
sport data which are even more complicated but they can catch the non-linear relationships
between the variables. The architecture of the LSTM model we discussed above can be
seen in the next �gure 5.1.

Fig. 5.1: The structure of a LSTM layer

5.1.1 Attention

Ιn the �eld of Natural Language Processing there is a technique named Attention[Yan+16],[Pap+19].
Of course, this technique give the model the ability to emphasize some the positions or
time steps in our case which can be more useful information for the model to process.The
Attention can be really useful, as even though the LSTM can catch long relationships it
does not give some time steps the importance they have for the predictions of our model.
So, there are some scheme that are followed in the literature in the cases of Attention
on top of LSTM layers. We use �rst an simple Multilayer Perceptron layer with Tanh
activation function which is the same for every time step, to process the embeddings or
the previous hidden units of each time step. If we add more hidden layers, then in the last
one we use a simple linear combination to produce values of 1 dimension. Then we use the
probabilities of a softmax function with input the previous output values of the last layer,
to use them as weights for the initial embeddings or hidden units of the time steps.

Let ht be the hidden units of the the concatenation of embeddings of categorical variables
and the continuous variables of an action at a time step t of the sequence length M. Then
we can describe what we said above with the following equations:

28 Chapter 5 Method



Fig. 5.2: Attention with one Time distributed hidden layer

a
(1)
t = tanh(W (1)ht + b(1))

...

af−1
t = tanh(W (f−1)af−2

t + b(f−1))

a
(f)
t = W (f)ut + b(f)

at = softmax(a(f)
1 , a

(f)
2 , ..., a

(f)
M )

s =
M∑

t=1
atht

where W (1), ..,W (f−1) ∈ Rdwxdw and b(1), ..., b(f−1) ∈ Rdw, a(1)
t , ..., a

(f−1)
t ∈ Rdw,

a
(f)
t , at ∈ R and W (f) ∈ R1xdw,b(f) ∈ R, dw is the dimension of ht. An example of

attention with one layer is shown in �gure 5.2.

5.2 Convolutional Neural Network

Another model which we will use is Convolutional Neural Network[Mat+92]. Convolu-
tional Neural Networks are currently one of the most prominent model for deep learning
with image data. However, they could also be used with sequential data which have one
less dimension. A Convolutional neural network is composed of three types of layers, a
Convolutional layer, a Pooling layer and dense layer which is a simple layer like the ones
that a MultiPercepton neural network we saw in section 4.

5.2 Convolutional Neural Network 29



Fig. 5.3: Convolution of an Input and a Kernel

5.2.1 Convolutional layer

In a Convolutional layer the basic operation is the convolution between the input of
the layer and a kernel matrix or �lter which contains learnable weights. Through the
convolution of the input and a di�erent number of kernels we can obtain feature maps
which contain spatial information from the input. This happens, as each neuron a feature
map is connected to a region of neighbouring neurons in previous layer. Then, the resulted
convolution is passed through an element-wise non-linear activation function. Next, we
can see the convolution type for 1 dimension:

(X[n] ∗K[n]) =
∞∑

i=−∞
X[i]K[n− i]

where X can be an input and K a kernel.

The kernel that is applied on the whole input is weight-shared. That is important, as
with that way we have less weights to train and it is more computationally e�cient. The
convolution usually reduces the dimensions. So, we will use causal padding witch adds
zero rows before the input, since we want to maintain our dimensions to use the residual
connections we will see in subsection 5.2.3. The Convolution of an input with a kernel for
1 dimension is depicted in the �gure 5.3.

30 Chapter 5 Method



Fig. 5.4: Residual connection for a convolutional layer

5.2.2 Pooling Layer

A Pooling Layer is a layer where we try to reduce the dimensions of the previous output
of the Convolutional Layer and retain the most important information. The most popular
Pooling techniques are Max-Pooling and Average Pooling, which reduce the dimensions of
a matrix or vector by taking the max or average value in a certain region of every feature
map with a speci�ed number of dimensions of Pooling which will be applied in the matrix
vector. However, in this case we will use Global Average Pooling which will reduce a
matrix of txv to 1xv by taking the average of the rows which are time steps and indicate
each of them an action.

5.2.3 Residual Connections

Neural networks nowadays can be very deep regarding their depth. Thus, the problem of
Vanishing Gradient arises. [He+16] made an important in the neural networks architectures.
They proposed Residuals neural networks for computer vision problems, where we can
add skip connections from an input of an layer and then add it to a latter input where the
initial data has been mapped.This way we keep important information intact. In our case
where the dimensions are the same as we use padding and we will use the same number
of �lters, it can be applied.

y = F (x) + x

where F is a mapping of input x through an activation function where the input was
multiplied with a weight matrix. This procedure can be seen in �gure 5.4.

5.2 Convolutional Neural Network 31



Fig. 5.5: Squeeze and Excitation of Feature Maps

5.2.4 Squeeze and Excitation

Another technique that could be used to enhance the performance of a Convolutional neural
networks is Squeeze and Excitation. This is an attention mechanism which was found
heuristically by [HSS18]. So, the idea of this technique is �rst to reduce the dimensions of
an txd matrix to a vector 1xd with a Global Average Pooling, then pass it in a simple Fully
Connected Layer with Relu with a less number of dimension, that is left as a hyperparameter
r which divide the dimensions of the input. Then, this mapping we pass it in a hidden layer
with a Sigmoid function, where the dimensions here must be the same as they were before
we pass the input to the �rst hidden layer with relu. Now, we have 1xd dimensions we use
these probabilities as weights and multiply them with the original txd feature maps before
we use Global Average Pooling. That way we give more importance to speci�c feature
maps and we see how much each of the feature contribute a useful information for the
model’s training. The above procedure can be seen more clearly in the �gure 5.5 above.

5.3 Temporal Convolutional Neural Network

A di�erent approach than the conventional Convolutional neural network is the Temporal
Convolutional neural network. The convolution in this architecture are causal, in other
words, there is no information that is leaked from future to past. The dimension of the
sequence of the input layer is maintained through the layers. That is achieved with causal
padding which could be used in any convolution to have the same length in very sample

32 Chapter 5 Method



sequence but in our case the padding creates zeros in the border of the input from the �rst
time step. An element of a feature map occurs only from the convolution of the current
and previous time steps in the previous layer with the kernel. In this model we also use
the techniques we said in subsection 5.2.3 and subsection 5.2.4.

5.3.1 Dilated Convolution

The causal convolution can be di�cult to implement, if we want long dependencies
because it looks back with size linear in the depth of the network and �lter size. So, dilated
convolution has been introduced to face this problem. The dilated convolution is like
normal convolution but in the kernel it has zeros between the weights and the number
of zeros depend on the dilation factor. If we have dilation factor d=2, then each weight
has a zero next to it and we will have di�erent matching regarding the weights and the
elements of the input matrix or vector. So, it matches more distant element from the
previous layer to the weight in order to create an element of the feature map. If we have
d=1, then we have the normal convolution. Therefore, we take into account elements that
are far away from the current time step and when we get all the feature maps we have all
the information of the input in a temporal way. where F is a mapping of input x through
an activation function where the input was multiplied with a weight matrix.

5.4 Long Short Term Model- Fully Convolutional
Neural Network

Another approach for modeling our problem would be to use the ensemble of an Long
Short Term Model and a Fully Convolutional Neural Network, we take the two models and
we concatenate them. Of course, we use the techniques that we mentioned before as well in
the layers of the Fully Convolutional Network, as we can add residuals connections like we
said in subsection 5.2.3 [He+16], which means we can add an initial value after some hidden
layers and sum with the output. This helps avoid the vanishing gradient problem. We also
use Squeeze and Excitation as we described in subsection 5.2.4 for the conlvolutional part
of the model. Also we use the attention in the Long Short Term Model. Now, that we can
train these models simultaneously the time to train it the whole procedure will be much
more than it was individually. This model tries to take advantage the recurrent nature of
the Long Short Term Model and the feature extraction of Convolutional Neural Network
as well, in parallel manner.

5.4 Long Short Term Model- Fully Convolutional Neural Network 33



Fig. 5.6: The Architecture of the model

5.5 Temporal Convolutional Neural Network- Long
Short Term Model

The last model which we will use propose for the preprocessing of our football spatio-
temporal data is a di�erent combination of a Temporal Convolutional Neural Network
and a Long Short Term Model. This model will apply the two mentioned deep learning
models sequentially. In other words, we will use the output of the Temporal Convolutional
Neural Network as an input to Long Short Term Model. That way we utilize the bene�ts of
both models, as with Temporal Convolutional Neural Network we get a feature extraction,
which take into account the time aspect and those feature maps are new representations
which will be processed as input for the Long Short Term Model in a sequential way.
Of course, we will apply the techniques of residuals connections which we described in
subsection 5.2.3 and squeeze and excitation which we described in subsection 5.2.4 for the
Temporal Convolutional Neural Network and the attention mechanism for the Long Short
Term Model. The architecture of the model is presented in the �gure 5.6 below.

5.6 Regularization Techniques

In deep learning due to the number of parameters and the architecture of the models,
over�tting is a usual phenomenon. So, we will use some regularization techniques in order
to tackle this problem.

34 Chapter 5 Method



Fig. 5.7: TFCN-LSTM Model

5.6.1 Early Stopping

Early Stopping[Pre98] in which we keep track of the performance in the validation dataset
by a certain metric we choose. If the performance of the model in the validation dataset does
not get better in a certain number of iterations of the training phase, then the procedure
will stop and we keep the weights of the epoch(iteration through all training dataset) with
the best performance. For instance, if we choose a loss function then we will the minimum
value, if we choose accuracy we will take the maximum value.

5.6.2 Dropout

Another good regularization technique is Dropout[Sri+14]. Dropout selects some random
nodes at each iteration and deactivate them from the training process of the iteration.
It samples from a Bernouli distribution based on a Drop rate and then it multiplies the
units selected with zero values. So, we have an ensemble of di�erent neural networks and
Dropout prevents the network from becoming depended on the neurons.

5.6.3 Recurrent Dropout

Dropout in a Long Short Term Model may not work well, as Gal and Chaharmani(2016)[GG16]
found that it still leads to over�tting, since applying standard Dropout to recurrent net-

5.6 Regularization Techniques 35



works tends to limit the ability of the network to retain their memory. So, we apply Dropout
to the recurrent connections, in order to improve the performance of the model.

5.7 Hyperparameters

Another important aspect of a machine learning algorithm and especially of deep learning
neural networks is the hyperparameters. Hyperparameters are the parameters of the
network that need to be con�gured before the training phase of the model. The values of
those parameters e�ect the model’s performance in great degree. The hyperparameters
that we will use are the following:

• The size of the sliding window of our data.

• The learning rate of our optimization algorithm.

• The batch size of our model.

• The embedding size of the categorical variables.

• the drop rate of the Dropout.

• The drop rate of the Recurrent Dropout.

• The number of epochs that we will train the model.

• The dilation rate

5.8 Hyperparameter Tuning

The next step of our approach is tuning the hyperparameters in order to gain the best
result for the metric we want to optimize and get the best performance for the model. We
will use a well known technique which is named Bayesian Optimization.

5.8.1 Bayesian Optimization

Bayesian Optimization is a technique that is based on bayesian inference[SLA12]. We
can use a subjective prior probability for our metric like the objective function and since
it is a function here we will have the Gaussian Stochastic Process which will multiply

36 Chapter 5 Method



with the Likelihood which are the values of the metric we have for the �rst iterations of
this technique. Each iteration is the training and validation of the model with random
initialized hyperparameters values. Then the last iterations we use the values we found as
data and with the Gaussian Stochastic Process we get the Posterior Probability. From it
we make an utility function which we want to optimize as the number that it will occur
from the optimization will be the proposed new data point of the metric by taking into
consideration the previous values that they occurred randomly and gave a metric value.
With that way we search the hyperparameter space sequentially as the initial values are
random and then the new values that we will occur every iteration after the �rst iterations
which produce random values of the hyperparameters will take into consideration which
combination of hyperparameters gave the best result for the metric.

5.9 Reduction Technique

In section 3 we described the embedding encoding technique that we used for our categor-
ical variables. However, if we want to interpret the results of the weights for a categorical
variable we must have 2 dimensions to explain them in more detail. So, we decided to use
a reduction technique, and speci�cally the Principal Component Analysis.

5.9.1 Principal Component Analysis

The Principal Component Analysis[JC16] is a technique which is used for representation
purpose or to reduce dimension in order to tackle the problem of curse of dimensionality
for numeric input variables. It produces a linear combination of the variables to create
new variables that are uncorrelated to each other other. So, in our case we will use it to
represent the actions in 2-dimensional euclidean space. We want to see how the model can
interpret the action and relates to others actions in regards to contribution for the action
quality and if those actions are from the same type.

5.9 Reduction Technique 37





6Evaluation

For the implementation of our models for the Premier league data of the season 2017-2018
we will use the framework Tensor�ow. The dataset that we will use will be split into
training, validation and test sets, like we mentioned in section 3. The 70% will be the
training set which are the �rst 266 games and the next 15% the validation which are the
next 57 games and the next 15% will be the test set which are the last 57 games of the
season. The split was done this way, as we did not want hurt the temporal aspect of the
data. We will use the number of time steps in which a goal was scored or conceded for
the team in possession to be 10. The reason we do that is to have similar results with the
paper of [Dec+19] which is mentioned that this number is used in the literature.

Now we will focus on the metrics that we will use to evaluate our models in the training
and validating phase, in order to select the suitable hyperparameters and to avoid the
over�tting problem for each training early stopping is implemented, so we will have
di�erent number of epochs for each model. When we have the �nal form of the models
we will use them to assess their performance in the independent test set.

In the next �gure 10 we see the performance of our proposed models in accordance to the
Binary Cross Entropy, Auc and Precision. We observe that the objective function Binary
Cross Entropy is the same for all near 0.06, but as in all the metrics, each model has a
di�erent number of epochs that it i trained due to the Early Stopping. The Long Short Term
Model (LSTM) with attention does not learn well in the beginning as its curves shows, but
it gets better results after the epochs. In the Auc and the Precision metrics we see that the
models are close to each other as well. We can observe that the Precision reaches near 1
for the training and validation phase as well, so our models can predict the negative label
very well, in other words, the probability of an action which do not lead to a goal in the
next time steps or actions.

In �gure 11, where we have the other three metrics of Recall, F1 Score and Brier Score
or also mentioned Mean Squared Error in this case of binary classi�cation. The metrics
here show the same behavior as the previous three for the training and validation set alike.
However, we must mention that the value of 13.5% of recall where all the models reach is
expected, as the number of shots that leaded to a goal is about that percent of the actions
that belong to the positive labels. Well, in every model which we train the threshold is
over 0.5, so the action that has such a large probability to lead to a goal are shots. The
other actions like passes, ground attacking duel, crosses and acceleration have smaller

39



Fig. 6.1: The 3 metrics for probability of scoring and awarding the actions of team in possession

probabilities from the 0.5, as it is very di�cult for the model to distinguish the quality
of those actions, since there are many actions of this type in the game that they will not
lead to goal in the next 10 actions. The f1 score is 0.23 for all the models, as we have a
low recall and a high precision. However, in our case it is not a bad result, as for the most
actions, aside from all kinds of shots that lead to a goal, we care only for the probabilities
themselves and not the hard predictions. That is important, as we do not want our model
to be confused and assign a high probability in action that did not contributed or did not
have good potential to help the team reach a goal. That is the reason we did not use class
weights to help the model learn the positive labels better, as with that way we would alter
the distribution of our labels and the probabilities of some actions that do not help the
team would have higher probabilities than they were supposed to have. The Brier Score
very low and that is expected, since the models predict the negative labels so well. In
addition, that means we have a good calibration, as our probabilities are also close to the
empirically realistic probabilities of the actions. So, we can notice that our models need a
few epochs to train before then stop training due to over�tting. The early stopping that
we mentioned earlier is based on the Auc metric, as the others metrics show less deviation
between the models. Moreover, the Auc is computed with di�erent thresholds so even if
the the distribution of the labels is highly skewed it remains a reliable method to choose
for evaluation.

In �gure 12 we can see the results of our models for the training and validation phase, but
this time for the estimation of the probabilities of conceding a goal in the next 10 time steps
or actions. Here, we can notice that the 3 metrics give similar results for all the models as

40 Chapter 6 Evaluation



Fig. 6.2: The rest 3 metrics for probability of scoring and awarding the actions of team in possession

well. As, we expected the numbers are di�erent, we have smaller Binary Cross Entropy
loss but a lower Auc. That happens due to the models’ di�culty to identify the actions that
in the next 10 time steps leaded to concede a goal for the team in possession of the ball.
The probabilities here are smaller as the shots here do not contribute for conceding, so
we have probabilities which are lower than the threshold of the 0.5. Hence, the precision
metric here is unstable as it goes from 0 to 1, but since we do not have true positive, it is
natural to have a zero value.

In �gure 13 we can notice, what we mentioned before for the lower values of probabilities.
So, the metrics of recall and f1 score are 0. The Brier Score is smaller here again due to the
distribution of the labels, where the deviation from the true values is small, as we have
more actions that they do not lead to concede a goal in the next 10 time steps or actions.
The models have similar values for the metrics so it is good to see �rst the hyperparameters
that we used for each of the them and then we will evaluate them with the metrics in the
independent set.

In the table 6.1 we can observe the values of hyperparameters of our scoring models. The
sliding window for the data is 3 from our tuning, this con�rms the claim of [Dec+19],
who the have chosen 3 as well. The learning rate was good for values near 0.001. The
dropout rates for the convolutional layers was found high, and especially for the Temproral
Convolutional Neural Network with value of 0.7. The reccurrent dropout rate we found to
be good at the value of 0.2628 for the Long Short Term Model and for the TFCN-LSTM
we found it near 0.30. The batch size was con�gured manually, as small sizes made the

41



Fig. 6.3: The 3 metrics for probability of conceding a goal and the punishing the actions of the
players.

Fig. 6.4: The rest 3 metrics for probability of conceding a goal and the punishing the actions of the
players.

42 Chapter 6 Evaluation



Hyperparameters of the scoring models
Hyperparameter FCN TFCN LSTM LSTM-FCN TFCN-LSTM
Sliding Window 3 3 3 3 3
Learning Rate 0.001 0.001 0.001 0.001 0.0001
Dropout Rate 1 0.5 0.7 - 0.5 0.5
Dropout Rate 2 0.5 0.5 - 0.5 0.5
Recurrent Dropout - - 0.2628 - 0.30
Batch Size 1024 1024 1024 1024 1024
Embedding size Ac-
tions

4 4 4 4 4

Kernel Size 1 2 2 - 2 2
Kernel Size 2 2 3 - 2 3
Dilation Rate 1 2 - 1 2
LSTM Hidden
Units

- - 32 - 32

Number of Kernels
for All Layers

64 32 - 32 64

Tab. 6.1: The hyperparameters of the for both the Scoring Models

models to be extremely slow and there would be a chance to lose some of the positive
labels in some batches due to the imbalance problem. The Kernel sizes for the Stacked
Convolutional models with 2 layers were 2 for all the models in the �rst layer and 3 in the
second layer of Temporal Fully Convolutional Network and TFCN-LSTM. The hidden units
of the LSTM were chosen to be 32 and the number of kernel for the Convolutional models
were 64 for the FCN and the TFCN and for the rest three 32. With these combinations we
achieved our best performance like we showed in the previous �gures. However, we have
to evaluate the models now in a independent test set, to see the ability of the model to
make good predictions of probabilities for unseen data.

In table 6.2 we have similar results for the the models we use for conceding with small
changes in the hyperparameters..

We have seen the aggregated results for the models in the training and validation phase with
our 6 metrics. We will use the exact same metrics for the test set and make comparisons
which model is the best, but as we have seen in the training and validation set, we do
no expect much of di�erence between them. In this case we will also use the approach
that [Dec+19] use with their representation of the data and the use of machine learning
models of Exgboost and Catboost. For the implementation of this method we will utilize
the package of Socceraction provided by the authors which is public in the python package
manager. We can not use statistical inference here, since there is a di�erence in the sample
dataset as we have kept the air duels in contrast to their preprocessing steps. So, we have
a little di�erent data due to the drop of air duels and the transformation of touch to other
actions such as pass or dribble.

43



Hyperparameters of the conceding models
Hyperparameter FCN TFCN LSTM LSTM-FCN TFCN-LSTM
Sliding Window 3 3 3 3 3
Learning Rate 0.001 0.001 0.001 0.001 0.0001
Dropout Rate 1 0.4 0.7 - 0.5 0.5
Dropout Rate 2 0.5 0.5 - 0.5 0.5
Recurrent Dropout - - 0.23 - 0.35
Batch Size 1024 1024 1024 1024 1024
Embedding size Ac-
tions

4 4 4 4 4

Kernel Size 1 2 2 - 2 2
Kernel Size 2 2 3 - 2 3
Dilation Rate 1 2 - 1 2
LSTM Hidden
Units

- - 32 - 32

Number of Kernels
for All Layers

64 32 - 32 32

Tab. 6.2: The hyperparameters of the for Conceding Models

The proposed deep learning models seem to outperform the approach of Decroos et
al.[Dec+19] which their best models are the Xgboost and Catboost and the most notable
di�erence with one of the metrics they use is the Auc metric but even that is in a small
degree. Aside from that, we must mention that these results do not necessarily mean
that the models have always better results with a similar dataset, since the statistical
inference can not be applied, like we explained before, due to the di�erent approach for
the preprocessing of the dataset. The results are illustrated in the table 6.3, for every type
of the probabilities of scoring and conceding a goal in the next 10 actions, as we said the
di�erences between the models in regards to the evaluation metrics are small and we can
not make a certain decision which model is the best for new data or data with similar
structure �r the same problem, like a di�erent season of the Premier League or a di�erent
League.

Now, we can use the predictions, we made for the probabilities and compute the ratings for
each player for all the season, by taking into account the expected number of actions they
make in 90 minutes game. We focus on the players, that have played over 900 minutes,
since like in [Dec+19], we found that in the experiments some players have larger values
that they are supposed to have and that is explained from the minutes they play. If they
play for a few minutes, then the metric will overestimate their ability and the the expected
attempts the will make in a 90 minutes match. In �gure 14 we notice that most players
have a mediocre rating, even if they have many actions per 90 minutes game. There are,
however, players with high ratings but their expected number of actions may vary. For
instance, Continho seems to have the best rating, but De Bruyne seems to be less e�cient
in his actions but with more attempted actions per game. The players that have made

44 Chapter 6 Evaluation



Test Set
Type Metric FCN TFCN LSTM LSTM-

FCN
TFCN-
LSTM

XG-
BOOST

CAT-
BOOST

Scoring Loss 0.05 0.05 0.05 0.05 0.05 0.054 0.054
Scoring Auc 0.7745 0.7725 0.7764 0.7763 0.7761 0.7650 0.7688
Scoring Precision 0.99 1 0.99 1 1 0,99 0.99
Scoring Recall 0.1315 0.1325 0.1328 0.1325 0.1323 0.13 0.13
Scoring F1 Score 0.2321 0.2339 0.2341 0.2339 0.2336 0.2299 0.2299
Scoring Mean

Squared
Error

0.0115 0.0114 0.0115 0.0114 0.0114 0.0129 0.0127

Conceding Loss 0.035 0.035 0.035 0.035 0.035 0.45 0.40
Conceding Auc 0.7597 0.77 0.7509 0.7727 0.7741 0.77 0.7720
Conceding Precision 0 0 0 0 0 0 0
Conceding Recall 0 0 0 0 0 0 0
Conceding F1 Score 0 0 0 0 0 0 0
Conceding Mean

Squared
Error

0.005 0.005 0.005 0.005 0.005 0.005 0.005

Tab. 6.3: The evaluation metrics for the test set

many actions but also have high ratings, are those that can contribute and be a main factor
for their team’s performance.

We have the results of the models, but we would like to see the way the models interpret
the actions in the embedding space in 2 dimensions using Prinipal Component Analysis.
We will use the Temporal Fully Convolutional Network for both the embeddings of the
probabilities of scoring and conceding a goal in the next 10 actions. We observe in the
�gure 15 that the model for the probabilities of scoring in the 10 actions assigns the shot,
penalty and free kick shot near each other. These actions give the best probabilities of
scoring. The goalkeeper actions like Rel�exes and save attempt are near each other and are
in the left side of the �gure. Those actions does not contribute for scoring, so it is natural
that they are not near any other action. That indicates that the model can understand
in a degree to assign similar actions together in regards of contribution and type. The
other actions are more di�cult to understand as they are many di�erent actions near each
other with di�erent contribution for probability of scoring in the next 10 actions. We can
see of course, actions like passes and crosses, free kick crosses and acceleration are near
each other and they are similar in regard of passing to a player with di�erent way except
for acceleration which is one of the actions like the three mentioned before which can
contribute greatly to score a goal in the next 10 actions.

On the other hand, in �gure 16 we can see that the model is having a hard time to interpret
the actions in regards to conceding a goal in the next 10 actions. We can notice that re�exes

45



Fig. 6.5: The Ratings of the Players and the attempts the take by 90 minutes

Fig. 6.6: The embedding space of actions for the model of scoring

46 Chapter 6 Evaluation



Fig. 6.7: The embedding space of actions for the model of conceding

is the one in the right side of the �gure alone, ground defending duel and corner are near
each other which may indicate that those actions are punished, since if the the team that
was in possession in the next 10 actions concede a goal and made bad decisions to defend
against the other team. The most actions are near each other, but as there can be many
bad decisions for many actions that lead for to concede a goal in the next 10 actions.

It is sure interesting to explore the categorical variable in a euclidean space and see the
correlations between the actions depending on the goal we have every time.

In the �gure 17 we have taken an arbitrary attack phase of Manchester City with 4 actions
which leaded to goal against Stoke City. For every action we have the value score since it is
an attack the probability of scoring in the next 10 actions and the probability of conceding
in the next 10 actions and the name of the players. We compare the results between the
�rst epoch of the model and the epoch with the best weights in regards to early stopping.
It is evident, that the model at �rst did not learn well to assign probabilities, especially for
the shot. However, it managed to approximate the probabilities of the two previous passes
before the shot. The quality of the actions here indicates that the model gives importance
to actions besides the shot, but with less probability of course.

47



Fig. 6.8: Comparison of probabilities between �rst and best epoch

48 Chapter 6 Evaluation



7Conclusion

This thesis proposed deep learning models like Long Short term Model and Convolutional
Neural Networks and their combinations in order to process on-ball stream data and
evaluate actions in the football sports. We started with some preprocessing steps to our
dataset before we use it for the evaluation of the models. We saw how the probabilities of
scoring and conceding a goal in next near future actions can be used in order to evaluate an
action compared to a previous action. We used techniques including embedding encoding,
sliding window but also attention mechanisms to facilitate the training process of the
model along with regularization techniques. We wanted to use deep learning models in this
�eld and see how they will compare to conventional or modern machine learning models
like Xgboost and Catboost. With our experiments we observed that with a great care in
preprocessing steps and the architecture of the models, the deep learning models can be
applied to structural data. They even outperform the machine learning models,but in a
small degree and it is not certainly statistical signi�cant. The techniques that accompany
them, like embedding encoding give us the chance to explore the euclidean space of the
actions and their relation. On the other hand, we have to admit that these models have
many weights in contrast to the machine learning models. However, in the aspect of time
the Convolutional Neural Networks which have 5 seconds per epoch need the same time
with the machine learning models due to early stopping and of course the gpu which
accelerate the process for the Tensor�ow framework. Nevertheless, we think that deep
learning models with the great advancement in the �eld and the big amount of data, which
we have in our era, can be utilized and give good results in sports analytics �eld.

49





Bibliography

[ACL00] Roland Auckenthaler, Michael Carey, and Harvey Lloyd-Thomas. “Score normalization
for text-independent speaker veri�cation systems”. In: Digital Signal Processing 10.1-3
(2000), pp. 42–54.

[BV18] Lotte Bransen and Jan Van Haaren. “Measuring football players’ on-the-ball contributions
from passes during games”. In: International Workshop on Machine Learning and Data

Mining for Sports Analytics. Springer. 2018, pp. 3–15.

[Cer+16] Daniel Cervone, Alex D’Amour, Luke Bornn, and Kirk Goldsberry. “A multiresolution
stochastic process model for predicting basketball possession outcomes”. In: Journal of
the American Statistical Association 111.514 (2016), pp. 585–599.

[Dec+19] Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. “Actions speak louder
than goals: Valuing player actions in soccer”. In: Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 2019, pp. 1851–1861.

[GB16] Cheng Guo and Felix Berkhahn. “Entity embeddings of categorical variables”. In: arXiv
preprint arXiv:1604.06737 (2016).

[GG16] Yarin Gal and Zoubin Ghahramani. “A theoretically grounded application of dropout
in recurrent neural networks”. In: Advances in neural information processing systems 29
(2016), pp. 1019–1027.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for
image recognition”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016, pp. 770–778.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural compu-

tation 9.8 (1997), pp. 1735–1780.

[HSS18] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, pp. 7132–7141.

[JC16] Ian T Jolli�e and Jorge Cadima. “Principal component analysis: a review and recent de-
velopments”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences 374.2065 (2016), p. 20150202.

51



[Kar+19] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. “Multivariate
LSTM-FCNs for time series classi�cation”. In: Neural Networks 116 (2019), pp. 237–245.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[Lee20] Quint van Leeuwen. “Master Thesis: Data science and Marketing Analytics”. In: (2020).

[Luc+14] Patrick Lucey, Alina Bialkowski, Mathew Monfort, Peter Carr, and Iain Matthews. “quality
vs quantity: Improved shot prediction in soccer using strategic features from spatiotem-
poral data”. In: Proc. 8th annual mit sloan sports analytics conference. 2014, pp. 1–9.

[Mat+92] Ofer Matan, Christopher JC Burges, Yann LeCun, and John S Denker. “Multi-digit recog-
nition using a space displacement neural network”. In: Advances in neural information

processing systems. 1992, pp. 488–495.

[Pap+19] Luca Pappalardo, Paolo Cintia, Alessio Rossi, et al. “A public data set of spatio-temporal
match events in soccer competitions”. In: Scienti�c data 6.1 (2019), pp. 1–15.

[Pow20] David MW Powers. “Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation”. In: arXiv preprint arXiv:2010.16061 (2020).

[Pre98] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of the trade.
Springer, 1998, pp. 55–69.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimization of
machine learning algorithms”. In: Advances in neural information processing systems 25
(2012), pp. 2951–2959.

[SP97] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural networks”. In: IEEE
transactions on Signal Processing 45.11 (1997), pp. 2673–2681.

[SPG19] Anthony Sicilia, Konstantinos Pelechrinis, and Kirk Goldsberry. “Deephoops: Evaluating
micro-actions in basketball using deep feature representations of spatio-temporal data”.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 2019, pp. 2096–2104.

[Sri+14] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. “Dropout: a simple way to prevent neural networks from over�tting”. In: The
journal of machine learning research 15.1 (2014), pp. 1929–1958.

[Yan+16] Zichao Yang, Diyi Yang, Chris Dyer, et al. “Hierarchical attention networks for document
classi�cation”. In: Proceedings of the 2016 conference of the North American chapter of the

association for computational linguistics: human language technologies. 2016, pp. 1480–
1489.

[ZL05] Zhi-Hua Zhou and Xu-Ying Liu. “Training cost-sensitive neural networks with methods
addressing the class imbalance problem”. In: IEEE Transactions on knowledge and data

engineering 18.1 (2005), pp. 63–77.

52 Bibliography



List of Figures

1.1 The evaluation of actions in a attack phase of a team . . . . . . . . . . . . . . 3

3.1 Barplot of the Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The barplot of our goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The data’s concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 The Preprocessing Steps Procedure . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 The structure of a LSTM layer . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Attention with one Time distributed hidden layer . . . . . . . . . . . . . . . 29
5.3 Convolution of an Input and a Kernel . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Residual connection for a convolutional layer . . . . . . . . . . . . . . . . . . 31
5.5 Squeeze and Excitation of Feature Maps . . . . . . . . . . . . . . . . . . . . . 32
5.6 The Architecture of the model . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 TFCN-LSTM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 The 3 metrics for probability of scoring and awarding the actions of team in
possession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 The rest 3 metrics for probability of scoring and awarding the actions of
team in possession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 The 3 metrics for probability of conceding a goal and the punishing the
actions of the players. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 The rest 3 metrics for probability of conceding a goal and the punishing the
actions of the players. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5 The Ratings of the Players and the attempts the take by 90 minutes . . . . . 46
6.6 The embedding space of actions for the model of scoring . . . . . . . . . . . 46
6.7 The embedding space of actions for the model of conceding . . . . . . . . . . 47
6.8 Comparison of probabilities between �rst and best epoch . . . . . . . . . . . 48

53





List of Tables

3.1 The actions of a player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Distribution of the Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 The hyperparameters of the for both the Scoring Models . . . . . . . . . . . 43
6.2 The hyperparameters of the for Conceding Models . . . . . . . . . . . . . . . 44
6.3 The evaluation metrics for the test set . . . . . . . . . . . . . . . . . . . . . . 45

55




	Titlepage
	Abstract
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Research Context
	1.2 Thesis Structure

	2 Background and Related Work
	2.1 Optical Tracking Data
	2.2 On-Ball Stream Event Data

	3 System Design
	3.1 Data Description
	3.2 Challenges
	3.2.1 Missing and wrong values
	3.2.2 Imbalance Data

	3.3 Cleaning Data
	3.4 Variables Encoding
	3.4.1 One-Hot-Encoding
	3.4.2 Entity Embedding Layer

	3.5 Scaling
	3.6 Splitting
	3.6.1 Sliding Window Method

	3.7 Target Variable

	4 Problem Description and Metrics
	4.1 Our Problem
	4.2 Construction of the Labels
	4.3 Classification Problem
	4.4 Activation Functions
	4.4.1 Rectified Linear Unit(RELU)
	4.4.2 Sigmoid
	4.4.3 Tanh

	4.5 Objective Function
	4.5.1 Binary Cross Entropy

	4.6 Evaluation Metrics
	4.6.1 Brier Score
	4.6.2 Accuracy
	4.6.3 Precision
	4.6.4 Recall
	4.6.5 F1 Score
	4.6.6 Area Under the Curve(AUC)


	5 Method
	5.1 Long Short Term Model
	5.1.1 Attention

	5.2 Convolutional Neural Network
	5.2.1 Convolutional layer
	5.2.2 Pooling Layer
	5.2.3 Residual Connections
	5.2.4 Squeeze and Excitation

	5.3 Temporal Convolutional Neural Network
	5.3.1 Dilated Convolution

	5.4 Long Short Term Model- Fully Convolutional Neural Network
	5.5 Temporal Convolutional Neural Network- Long Short Term Model
	5.6 Regularization Techniques
	5.6.1 Early Stopping
	5.6.2 Dropout
	5.6.3 Recurrent Dropout

	5.7 Hyperparameters
	5.8 Hyperparameter Tuning
	5.8.1 Bayesian Optimization

	5.9 Reduction Technique
	5.9.1 Principal Component Analysis


	6 Evaluation
	7 Conclusion
	Bibliography
	List of Figures
	List of Tables

