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Abstract

In cellular networks, whenever a mobile phone or a sensor needs to connect to the wireless
channel, the Random Access Channel Procedure (RACH) takes place. The first step in
the RACH, to establish a connection with the Base Station, involves a random access
process. As the number of devices is increasing, the number of collisions in the first step
of RACH increases. In the Next Generation Internet, a large number of IoT sensors will
be connected to the cellular network, leading to RACH’s possible congestion. In this
Thesis we developed a Simulator to investigate the performance of the RACH procedure,
under different parameters, loads, data rates, and traffic mixes. Moreover, we examine two
scenarios, where we seek to reduce the data flow rate at the application level, without

requiring changes to the low layers.






[Teptindm

To ntpwTo Pripa ovvSeong evog nvntob 1 evog asdntpa 6to oTodpd Paong evog dux-
TOOL HLVNTHG emKOLVOViaG elvar To TpwTdroAro RACH, to omoio mepthapfdvet puo topdpeTpo,
1 omoia emAEyeTaL TV ATTO VO GOVOAO TIHOV. AV dVO KIVNTEG CLOKEDEG ETMIAEEOLY
v o Toyaia T To dedopéva ov 6TéEAVOUY Jo GLYHPOLGTOUV. XTO PEAAOV TTOAD
peyaAog apldpdg cuonedwv tov Atadwtov twv Ilpaypdrwv (Internet of Things), pali pe
ta EEvmva nvnté TNAéPeva, Jo cuvdéovtol 6To 1810 AGVPRATO SiKTVO, PE ATOTEAECHA
val LITAPXEL EMLTAEOV eTTLBAPULVOT). EHOTOG AVTHG TNG EPYRTING elval va HeAETHOEL TWG
ennpedleToL TO ACVPUATO HAVAAL, OTOV HETAPAAAOVTOL O PLIPOG TWV CLOHEVOV, 1) TLEP-
1600G OV TUPAYOLV TLG HETPT|OELG TOVG, Kot AN, #addG o va eEeTdoel Tdaveég ADGELG
710V SOV Ge emimedo ePappHOYNG, XWPLG vor aA el #&TL 6T YapunAdTepa emimedor. ZTnv
apxn, eEnyodpe mwg Aettovpyel 1 RACH Sadicacio kol otn cuvéyela avapépoupe dvo
mava oevapua, ta omoia facilovtal oe 1déeg mov éxouvv mpotadel otnv PifAtoypapio.
To mtp®TO oevdpLo e@appdlel pio Aoynr) tapopoLa e T Aoynr] Tov adyopidpov tov TCP
yio EAeyx0 GUHPOPN OGS KoL TO JevTEPO YWPLLEL TIG CLOHEVEG O OPADES e TNV KAde o
vou €xeL EVay opYNYO TTOL aVOAOUPEVEL TNV AITOGTOAT] TWV HETPTCEWV TOVG GTO CTAUHO
Bé&ong. H diepedvnon tng atddoong éyLve oe TPOoopoLOTH Tov tpwtoxdéAilov RACH mov

vAomoudnxe 6Ta TAALCL TNG EPYATLaG.
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Introduction

This thesis aims to analyze the Random Access Channel procedure (RACH) of LTE, deter-
mine an issue that may show up in the Next Generation Internet, and more specifically,
in a Massive IoT environment and examine some possible solutions to overcome this

problem.

1.1 Motivation and Problem Statement

In a few years, the number of sensors connected to the internet will be much larger than
today. These sensors devices (IoT) will connect to the internet through the wireless channel.
Smart traffic lights, temperature sensors, and more, have to send their data now and then
to the respective server. As the sensors will share the same wireless network channel with
mobile phones, they will use the same protocols, like LTE. A possible issue is located in the
LTE’s RACH procedure, a random access protocol to control the channel access requests
that the end-devices generate. If we increase the number of requests, we respectively
increase the probability of collision. So, as we mentioned before,the number of IoT devices
is rising, creating a Massive IoT environment, which will probably cause an overload issue

in the existing mobile network.

In the RACH procedure, while the end-devices are increasing, the probability of a collision
increases respectively, as we will see later. Thus, it is essential to overcome this issue not
by reducing the number of end-devices, but by decreasing the amount of data they need to
send. Specifically, we examine how we can reduce a sensor’s data flow in the application
level without evolving the low layers. Moreover, we simulate the possible solutions, and
we compare them. The comparison is implemented in a simulator that we have built from
scratch, and it aims to emerge metrics crucial for the performance evaluation of a network,

such as the number of collisions and the delay.

1.2 Thesis Structure

Chapter 2

In chapter 2, we present the theoretical approach, which is necessary to understand the



2

source of the problem we aim to overcome. Specifically, we explain what the RACH
procedure is, how it works, and why it is essential in the wireless networks, even at 5G.
Also, we present some other related work briefly and introduce the technical characteristics

of the simulator.

Chapter 3

Firstly, In chapter 3, we explain how the sensors send their data, at which rate and we denote
the basic scenarios that we are going to implement. Then, we present the architecture of
the simulator and we describe how we implement the RACH procedure and the scenarios

that we denote in the beginning of chapter 3.

Chapter 4

In chapter 4, we present the experimental results. In particular, we explain what parameters
we chose to tune and why, we demonstrate the results for every scenario that we denote

in chapter 3 and we compare them.

Chapter 5

In chapter 5, we restate the possible weakness of the RACH procedure, we explain how

we can overcome this, and we summarize the results from our experiments.

Chapter 1 Introduction



Background and Related Work

2.1 Background

2.1.1 Description of RACH procedure

The RACH procedure, as [Erion] describes, is a protocol of LTE for the communication
of mobiles with the cell towers. Specifically, the main purpose of RACH is to control
the channel access requests that end-devices generate. We will use the User Equipment
(UE) annotation to describe the end-devices (cell phones etc.) and eNodeB to describe the
antenna.

The RACH is initiated for many reasons, like when:

« a cell phone wants to establish a connection with the eNodeB
« an end-device changes to a new eNodeB
« aradio-link failure occurs

« a cell phone wants to synchronize with the eNodeB

In the RACH procedure, the time is divided into slots, but these are further divided in
the frequency domain. For that reason, the Random Access (RA) slots are created in the
time-frequency domain. Every UE is allowed to transmit in an RA slot with a specific
signature, which is called "preamble". In each LTE cell there are 64 different preambles.
Also, the RACH can be either contention-free or contention-based. The first one is used
to manage delayed-constrained access requests with high success requirements, which is
now examined in this research, and the second one is what will be analyzed below. The

flow of the procedure is the following:

+ Message 1:
In the first step, when a UE wants to connect to the eNodeB, it chooses randomly one
of the 64 preambles and transmits it in the first available RA slot. It is possible for
two or more UE to choose (randomly) the same preamble, occurring to a collision.
« Message 2:
After a successful preamble transmission, the eNodeB sends back to the UE a message,
which includes 3 things. The first is a Timing Alignment, which is a parameter for

the synchronization. The second one is the UpLink resources that the UE must use



to communicate in the next steps and the third one is a backoff indicator, which
helps to reduce the collision probability.

« Message 3:
In the third step, when the UE receives the proper message from the eNodeB, it
sends a connection request. It is possible for different UEs to transmit in the same
preamble, causing a collision.

« Message 4:
In the last step, if the eNodeB successfully detects the connection request, it responds
to the UE with a content-resolution message that contains a mobile id. In the case

that UE doesn’t receive this message, it will start the procedure from the beginning.

In figure 2.1 we illustrate the above procedure.

UE eNodeB

| Message 2
Ammmemm" (BATA,UpLink Resources)

---------------- Message 3
(connection request)

.| Message 4 | ___cemmmm=m""
e (connection setup)

Fig. 2.1: RACH procedure.

Chapter 2 Background and Related Work



2.1.2 Weakness of RACH

In figure 2.2, we illustrate the weakness of RACH. Because the number of available pream-
bles is fixed, as the number of UEs is increasing the probability of two different UEs to

choose the same preamble is increasing respectively, as we see in figure 2.2.

preamble 1 preamble 1
preamble 1 preamble 1
preamble 1 preamble 1
preamble 4 UE preamble 4

preamble 47 preamble 47

preamble 64 preamble 64

UE
(a) Small number of UEs (b) High number of UEs

Fig. 2.2: This figure shows that as the number of UEs is increasing, the number of available
preambles is remain the same, leading to collisions.

2.1.3 Technical Characteristics of the Simulator

The first step to the construction of the simulator was to choose the appropriate framework
to implement the RACH procedure. We chose Java, due to its object oriented architecture.
Especially, we built five classes, four of them are representing the objects that take place
in the procedure (eNodeB, User Equipment, Measurement, Gateway) and in the fifth one,

we implement the main flow. Also, we use the following libraries to create charts:

« Simple Java Plot [Yur]
o JFreeChart [Gila]

and we use WPS office to store our experimental results and create more complicated

charts.

The basic system parameters that are the same for all the experiments are:

« the time of RA slot is 10 Milliseconds

« the simulation time is 120 second per experiment (or 12.000 slots)

2.1 Background
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Later, we will describe in more detail how we implemented every object and the main

flow.

2.2 Related Work

There are a few researches that aim to analyze the performance of RACH procedure,
and all of them are focusing on bringing out the weakness that we state in the previous
subsection, the overload issue when high number of UEs are simultaneously attempting to
connect to the eNodeB. In researches [AK16], [WCT13] and [WCT12] analytical models
are proposed based on existing schemes and specific solutions. In [YEZ15] they present a
detailed simulation of the RACH based on the 3GPP release 9 standards. In [PP14], they
examine in various scenarios two different methods of allocating preambles (Disjoint and

Joint allocation) based on the origin of the call request, M2M or H2H.

In [Bir+15],the authors present the functionality of the RACH procedure and they highlight
the overload issue,called "the threat of PRACH overload" and they detail one by one some
schemes to alleviate the overload problem. They separate those schemes in two categories.
The first is isolating the Human-to-Human (H2H) from the Machine-to-Machine (M2M)
communication, while in the second one this separation does not take place, in contrast

they allow to the devices to access the same resources but with different probabilities.

There is another research [AKT16], where they are trying to propose a new model for the
RACH procedure. They denote that all the previous works that have been done, do not
take consideration all the constraints leading to miscalculations. Thus, they build a custom

C++ simulator to evaluate their proposed model and compare with the existing models.

One more research that is worth mentioning is [Xie+19].The researchers do not investigate
the RACH procedure, but the flow control in the application level at the RPC applications.
Specifically, in RPC applications the server has a threshold, that determines the number of
access requests that it can process. The researchers proposed an interesting algorithm to
set the threshold, based on the status of the server (congested or not). Influenced by this
approach, we create a similar scheme (case 1 as we will see later), where we set a threshold,

based on the delay of the packets that are sent.

Finally, in [Pol+16] the researchers are extending the NS3 network simulator in order to im-
prove the existing simulation of the RACH procedure building the LENA+ module[Gilb].

Taking into consideration all the related work, we decide to build a custom RACH simulator

to test our scenarios in the application level. We choose to build our simulator from scratch,

Chapter 2 Background and Related Work



because the technical characteristics of the scenarios that we are trying to investigate are

not easily applicable in the existing simulators.

2.2 Related Work






System Design and
Implementation

3.1 Design

In this section, we denote the data traffic, and we lay out some Cases, which we will
simulate later. Specially we specify the traffic that different sensors can produce, and we
build two different architectures to investigate the performance of the network under each

architecture.

3.1.1 Traffic Modeling

It is crucial to consider the kind of traffic that sensors generate because it affects the
efficiency of the network. To simulate as much better the different Cases, we need to

include the proper traffic load in our system. The traffic can be either:

« periodic: temperature or traffic camera sensors, which send data in a specific period
(for example every 5 seconds) ,

« random: traffic sensors, smart cars, or sensors that need to send their data if a
measurement is above a threshold and the most important because we are in the

wireless channel, are the smartphones.

Thus, we will have two different kinds of sensors. The first one will produce periodic data,
and the second one will produce data in a random period. The number of sensors at each

kind will be a parameter of the system that we will examine in the simulations.

3.1.2 Case1-AIMD

We will first denote the most classic Case: one eNodeB and N-number of UEs that want to
connect. This Case’s flow begins with some of the UEs that want to send their message to
the network. They need to select one of the 64 available preambles and send the Message 1
to the eNodeB, under the selected specific preamble. If no collision occurs, we can assume

that the sensor will later send his message after the RACH procedure. As we discussed,
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while the number of UEs increases, the possibility of having a collision is increasing,

respectively.

An interest approach is proposed in [vsi19]. In this research, they are trying to reduce the
data flow in IoT under an AIMD (additive increase and multiplicative decrease) scheme.
Specifically, they implement an algorithm, similar to the AIMD of TCP’s congestion
window, where they adjust the sensors’ sending period time, based on some strategies.
Moreover, they define a new strategy layer, with four different schemes (data accuracy,
response time, energy, and privacy protection). Depending on the application requirements,
they change the period between consecutive measurement requests, resulting in a reduced

data flow.

In our Case, we can illustrate this approach as follows. We first need to have a metric
to determine when to apply the increase of the sending period. This metric can be the
segment of time between the moment the sensor gives the data to the low layer to be
sent, and the moment the data are actually sent. Precisely, we can denote as tgq,; the
time the data generated from the sensor and ?,.,,4 when the data are sent to the wireless
channel. Also we define as 4.4, the difference between .4 and ts4,¢. This fraction of

time includes the following actions:

« the transportation of the data to the lower layers

« the implementation of the RACH procedure

The second action includes the delay that is caused by a wireless overload network. If a
collision occurs, then the second action (the RACH procedure) will take more time. The
cause is that after the stage of selecting a preamble, it is possible a collision to occur
between two different UEs that choose the same one in an overloaded network. When this
happens, the RACH will wait a short amount of time, and then it will be initiated again.
This extra time is the delay that is caused by the congested wireless channel. Thus, the
tdelay = tsend — tstart, it Will be longer and can determine if the channel is overloaded, as

we see in the figure 3.1.

Now that we have the metric, we can set one more parameter, the threshold, that if the
metric we define later is above it, we will double the sending period. The value of the
threshold will be defined in the next chapter. It is essential to mention that, in order to
double the sending period in a sensor, the application that this sensor belongs must be
tolerant of this increase of the period. Indeed, many applications can achieve this, like
temperature monitoring apps, apps that monitor the concentration of heavy metals or the
wind’s speed, and more. Another approach is that even if the application cannot be tolerant
in doubling the sending period, we can still double it. Let us assume the following scenario,

in a heavy metal monitoring app, the sensors send every 10 seconds their measurements.

Chapter 3 System Design and Implementation



Normal Wireless Network

ttart === is the time that the lime
sensor send the data
to the low layer

ts al Tin t
tsend s is the time that the ot it Tsend

sensor send the data

to wireless channel .
(end of RACH) Overload Wireless Network

time

tinit * is the time that the
- RACH is initiated. If a
collision occur then,
the RACH will be

the ! totart i 1 tinit_2 toend
initiated again

Fig. 3.1: In the figure above, we see that the time between ¢4¢4,+ and t4cpq is longer in an overloaded
network. Also, ¢;y;¢, is when the RACH is initiated for the first time and ¢;,,;;, is when
start again, because a collision occurs in the first.

Due to the congestion, one sensor doubles his period, so when 10 seconds pass through
the last sending, the application will expect a measurement from the sensor. However,
because he will have increased his period, no measurement will be received. In this Case,
the application could create the expected measurement based on the last measurements to

maintain proper functioning. So the increase in the sending period is a feasible solution.

The final step is to define when the sending period returns to normal. We will use the same
metric and the same threshold again. After each sending of measurement, we will compare
the delay (Zgeciqy) With the threshold, and only when the delay is under the threshold will

we set the period to normal.

3.1.3 Case 2 - Gateways

In many IoT environments, a device is used as an intermediate to connect some sensors to

the internet. This device is called gateway, and it is beneficial for many reasons like:

« in some IoT environments, a sensor may not be able to connect to the network due
to the low range of his transmitting signal
« we want to execute specific procedures to the data before we push them to the

internet

We can use this existing architecture of gateways in order to achieve the smallest collision

probability. Specifically, under the gateways’ scope, we can cluster the sensors in small

3.1 Design

11
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groups (N-number of UE per cluster) to create small teams with one leader (the gateway)
per team. In this architecture, the team members send their data to the leader, and he is
responsible for forwarding them to the eNodeB, as we observe in figure 3.2. The number
of UEs at each team is a system parameter that we tune later in the simulations. Thus, we
may overcome collisions because we reduce the number of requests from the UEs to the

wireless channel.

Fig. 3.2: This figure shows the basic architecture of Case 2. There are 2 sensors at each cluster.
Sensor Leaders are the gateways.

Moreover, those leaders can be either classic gateways devices installed in the IoT network
infrastructure, either regular IoT devices (sensors). The difference between them is that a
classic gateway only forwards the data that is receiving to the eNodeB, while a regular IoT
device it should forward the data from the team members and, at the same time, should

handle his own data.

So, in the first example, we have the advantage that the gateway does not generate data;
thus, it can forward the receiving data directly, resulting in higher efficiency, but there
is an extra cost of purchase and installation of those gateways. In the second Case, we
do not have additional costs because the gateways are the current sensors, but a notable
drawback is that the leader has to forward the team’s data and, at the same time, to control
his data, leading to a possible efficiency problem. A tactful compromise is to substitute the
sensors that will be leaders with better devices, lessening the cost from the first Case and

the overload from the second one.

After the description of the architecture, we have to determine how the gateway will

operate. The gateway will wait a short amount of time to collect data from the UEs and

Chapter 3 System Design and Implementation



operate as a regular device. We define as fp.,ioq the period that a gateway gathers the
team members’ data. Precisely, let us assume that there is a cluster of N UEs that can be
connected to the team leader (the gateway), under a wireless protocol (WiFi) and send
their measurements to him. The gateway gathers those data for #,,;,q time and then
initiates the necessary procedures to send them to the network, like the RACH. While
the gateway waits to establish a connection with eNodeB, the data that are going to send
are stored to a buffer, and a new period (fperioq) begins. This is a repeating pattern that it
can relieve a wireless overload channel because instead of having N different UEs trying
to connect with the eNodeB, we have one gateway to take over the jobs that include the
communication with the eNodeB, as we can see in the figure 3.3. The variable ?,,;oq it

will be tuned in the simulations.

time _
-

toeriod .

tperit:.d tperiod

Fig. 3.3: Between t; and ¢t the gateway will gather all the data that the sensor will send. At ¢5 the
gateway will initiate all the necessary procedures to establish connection with eNodeB
and it will start listening for new data from the sensors until ¢3. At ¢3 it will again establish
a connection with eNodeB to send the data that receive in the time between t5 and t3

A challenging issue that is out of this thesis’s scope is to create the clusters dynamically.
There are different kinds of applications with different requirements that need higher
availability. For instance, some apps may be vital to have their measurements (from the
respective sensors) available under a specific time, like traffic control apps. For others, it
may not be so important, like temperature monitoring apps. Therefore, sensors that belong
to different applications create different criteria for how long the #,¢,;0q of the gateway
can be. If in the same cluster is a sensor of traffic control and a sensor of monitoring
temperature app , the first will require short #,,.;,¢ to maintain his availability. In contrast,
the second one can support longer ¢,¢,ioq. Thus, an interesting approach is to form the

clusters based on the application’s strategy that the sensors belong.

Additionally to the above approach, an impressive strategy is to fluctuate the number of

cluster members depending on the ?,,;0q. In a gateway with short ¢,c,;04, Wwe may have

3.1 Design
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many team members, because the collected data are sent frequently, instead of a gateway
with a long ?,,¢,404 that it is better to be a few members in the team because the data are
sent more sparsely in time. More specifically, the more connected devices to a gateway,
the more data is gathered, so it will be more efficient to have a smaller #,¢,;oq to forward

the data faster in order the gateway be able to receive the new incoming data.

3.2 Implementation

In this section we explain how we implement the simulator to reproduce the RACH

procedure, the AIMD and the Gateway scenarios.

3.2.1 Architecture

As we described in the introduction, we build five objects:

+ Main

« eNodeB

« UE

+ Measurement

+ Gateway

In figure 3.4 we illustrate the objects with their basic attributes and their relation.

UE Measurement
+ preamble: int + status: enum
+id: int Creates b +id: int
+ isCongested: boolean + parent: UE
+ period: int +t_start: Long
+ isRandom: boolean +t_send: Long
+ ms_to_send: ArrayList<Measurement>

connects

belongs
Gateway
+id: int
+ children: ArrayList<UE> eNodeB
+ gather_period: int + ue_assigned: int[64]
+ ms_to_send: ArrayList<Measurement>

Fig. 3.4: This figure shows the architecture of the simulator.

14 Chapter 3 System Design and Implementation



UE Class

In this class, we implement the behavior of the UE. The important variables are shown
in figure 3.4. "Preamble" is an integer, where we store the value of the preamble (1-64)
that the UE will select in the initiation of RACH procedure. The variable "id" is a serial
number to identify the UEs, "isCongested" is a Boolean variable, which is used in Case 1
(AIMD) as we will see in next sections. In addition, "period"” is an integer which defines the
period of the UE (in seconds), "isRandom" is a Boolean variable which is true if the UE is
random and false if it is periodic, and finally "ms_to_send" is an ArrayList which stores the
measurements of the UE that have not been sent yet. We designate that a random UE is
generating measurements in random time. Later we will see how exactly we implement
this.

The two basic methods of the UE class are those that generate the measurements. Specifi-
cally, we create one method for the periodic UEs (periodic_traf fic_generator(period))
and another for the random UEs(random_traf fic_generator()). In both methods, in
order to simulate the behavior of a real device (sensor or mobile phone), we use a Java
Class, ScheduledExecutorService, which offers methods to run a piece of code periodically.
This methods create an executor (in Java terms), which runs periodically. Specifically, for

each method :

« periodic_traf fic_generator(period): We create a Measurement object and we
connect it to the UE that generates it (the connection is implemented as follows:
We have created a List in the UE, that we store the Measurement objects that have
not been sent yet. So, we add the Measurement object that was created in this List).
Also, in Case 1, we check if the variable "isCongested” is true and if it is we change
the period of the UE accordingly, as we will see later. This functionality is repeated
based on the UE period.

« random_traf fic_generator(): First, we define the probability of a (random) UE
to generate a measurement, which is 0.0025. In order to achieve this, every time that
the executor is running, we use the Java Random Class to generate a random value
between 0-399, then only if this value is 399, we create a Measurement object and
we connect it to the UE. Next, we have set the period of this executor to be 10 ms,

thus the probability of a random UE generating a measurement in 1 second is 0.25.

Finally, in both methods, because we simulate real-world processes, we add randomness
characteristics, so that the simulation will be more precise to them. Specifically, we slightly
modify the period of each periodic UE. This modification is implemented with the Java
Random Class as follows: we generate a random value between [-250,250] and we add it to

the period (in Milliseconds) of the UE. Another random characteristic is the modification

3.2 Implementation

15
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of the time that a UE (random and periodic) starts. This can be implemented by setting
an initial delay in the Executor. We set this initial delay (in Milliseconds) to be a random
value between [95-135].

eNodeB Class

The eNodeB class basically simulates the cell tower. We have created an array, "ue_assigned",
that keeps the UE that have chosen different preambles, so that no collision occurs at

Message 1.

Measurement Class

In this class, we implement the Measurement. A Measurement can be data, produced by a
sensor, or a cell phone attempt that connects to the eNodeB. Thus, we define a Measurement
to be something that initiates the RACH procedure, resulting in the transmission of Message

1 (as we see in chapter 2).

The important variables are shown in figure 3.4. "Status” is an enum variable (values:
"PENDING", "COMPLETED"), which shows the state of a Measurement. "PENDING" if it
is not sent and "COMPLETED" if it has been sent.

We restate that a Measurement is sent if it has transmitted the Message 1, which means

that no collision has occured, as we in figure 3.1.

The variable "id" is a serial number to identify the Measurement, "parent” stores the UE
that generates this Measurement. In addition, "t_start" is a Long variable which defines the
time (in UNIX time) that the Measurement was generated and "t_send" is a Long variable
which defines the time (in UNIX time) that the Measurement was sent. If the "t_send" is

null, it means that the Measurements has not been sent.

Gateway Class

This Class implements the functionality of the gateway. The variable "id" is a serial number
that identifies the Gateway, "children" is a List where we store the UEs that are assigned
to the Gateway and "gather_period" is the time period that the gateway is gathering
Measurements from the assigned UEs. Lastly, ms_to_send, is an ArrayList which stores the

measurements of the UEs that have not been sent yet.

The important method of this class is the method start(), which is starting the Gateway.
As in the previously mentioned methods of the UE, (periodic_traffic_generator(period) and
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random_traffic_generator()), the start() method uses an Executor with a period equal to
gathering period. This Executor includes the piece of code that implements the gathering

of Measurements that the child UEs have generated.

3.2.2 Implementation of RACH

The only class that we did not analyze is the Main. In this class we have implemented
the RACH procedure. To be more precise, we have not implemented the whole RACH
procedure, but only the part that is related to the efficiency of it. This part includes
the procedures until the Message 1 (as we see in chapter 2). The reason is, that the
collisions, that lead to the decrease of the RACH efficiency are occurring right after the

the transmission of Message 1, thus we simulate up until to this point.

We implement this part of RACH as follows: we use the ScheduledExecutorService Class
(as in the UE and Gateway Class) to create an Executor with period of 10 ms. In the body
of the Executor we call the slot() method (algorithm 1). So, every 10 ms the algorithm 1
is running. We choose 10 ms because in the RACH procedure the slot has a period of 10

ms.

Algorithm 1 slot

1: procedure sLoT(UEs)

2 UE < check_UE(UEs) > returns the UEs that has measurements to send
3 forue € UEdo

4 ue.preamble < random(1,64)

5: if check_collision(preamble) then > returns true if no collision occurs
6 ue.send_measurements()

7 else

8 number_of collisions++

In line 2, we choose the UEs that have Measurements to send ( which means that we
take the measurements that have the ¢_send value to null). Then, we iterate these UEs
and assign to them a random preamble. In line 5, we check if another UE has chosen the
same preamble, leading to a collision. If no collisions have occured, in line 6, we send the
measurements of this UE by calling the send_measurements() method, which changes
the t_send variable of each Measurement to the current time in UNIX format. Thus, we
calculate the delay for each measurement that has been sent, by subtracting the ¢_start

from the t_send.

3.2 Implementation
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3.2.3 Implementation of Case 1 - AIMD

We implement Case 1 as follows: first, we create the Boolean variable "isCongested", that
defines if the network is congested (True) or not (False). If it is congested, we modify the
method of the UE periodic_traf fic_generator(period), by doubling the period of this

specific UE. "isCongested" changes in the slot() procedure, as we see in algorithm 2.

Algorithm 2 Casel
1: procedure sLoT(UEs)
2: UE <« check_UE(UEs) > returns the UEs that has measurements to send
3: forue € UEdo

4: ue.preamble <— random(1,64)
5: if check_collision(preamble) then > returns true if no collision occurs
6: measurements < ue.send_measurements()
7: for ms € measurements do
8: if ms.delay() > threshold then > threshold is system parameter
9: ue.isCongested <— True

10: else

11: ue.isCongested < False

12: else

13: number_of collisions++

In lines 7-11, we iterate the measurements that have been sent in this slot and we check
the delay that they have (line 8). If this delay is above the threshold, which is a system
parameter, we set the "isCongested” to True, which means that this UE will generate a
measurement in double time of the period, with s purpose of reducing the amount of
requests of the connection (Message 1) to the eNodeB. Also, we check if the delay is under
the threshold that we have set, and if it is we the "isCongested" to False, in order to reset
the period of the UE back to normal.

3.2.4 Implementation of Case 2 - Gateways

To implement Case 2 we create the Gateway Class as we described later. Then, in the
initiation of the simulator, we separate the total UEs into teams. Each team has a size equal
to the value of the system variable "number_in_each_team", which defines the number of
child’s of the gateways. Then, we follow the same procedure similarly as in the Normal

scenario(algorithm 1), as we see in algorithm 3.

It is important to explain extensively how the start() method works. In algorithm4 we

show the basic logic.
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Algorithm 3 Case2

1: procedure sLoT_CASE_2(Gateways)

2 GT < check_gt(Gateways) > returns Gateways that has measurements to send
3 forgt € GT do

4 gt.preamble < random(1,64)

5: if check_collision(preamble) then > returns true if no collision occurs
6 gt.send_measurements()

7 else

8 number_of collisions++

Algorithm 4 Executor in start

1: repeat
2: for ue € children do
3: for ms € ue.measurements do

4: measurements_gt.add(ms)

5. until

The method start() is running inside a Gateway object. This objects has children, as we
define later, which are the UEs that are assigned to this gateway. Thus, in method start()
we iterate the children (line 2) and for every child we take the measurements that they
generate and have not been sent to the eNodeB successfully yet (line 3). Then, we add
those measurements to the gateway’s measurements, that need to be sent(line 4). This
method is running with a period equal to the "gather_period", which means that each

gateway gathers the measurements of the respective UEs every "gather_period" time.

3.2 Implementation
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Evaluation

4.1 Experimental setup

In this section, we will describe the setup of our Experiments. We run the simulator
for each of the scenarios that we describe in chapter 3. Specially we tune the following

parameters:

« the total number of User Equipment

« the percentage of random and periodic User Equipment

« the threshold (Case 1)

+ the number of UEs that are assign to one Gateway (Case 2)

« the gathering period of the Gateways (Case 2)

Then, we measure the average delay, the standard deviation of the delays, the number of
collisions, and the total attempts of requests (an UE, before send one or more measurement,
sends the Message 1 to the eNodeB) , in order to investigate how each scenario behaves

and to compare them.

In more detail, after the end of the simulation, we have gathered all the measurements and
their delay. The delay is calculated as follows. We take the time that the measurement is
sent, and we subtract the time that the measurement is generated. Moreover, the number
of total attempts refers to the times that a sensor is sending the Message 1 (preamble
selection), while the number of collisions refers to the times that the sensor did not get a

response from eNodeB, after sending the Message 1. So we can calculate the collision rate(

collisions

m), which shows the percentage of collisions in the total attempts.
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Fig. 4.1: Experimental Setup - no collision

In figure 4.1 we illustrate how we measure the delay. In the first step, the periodic UE
generates a measurement and initiates the RACH procedure in order to get up-Link
Resources and send the measurement to the network. This initiation, starts in step 2,
where the periodic UE, choose a preamble and send it to the wireless channel. If collision
does not occur, the eNodeB will respond with the Message 2 (in step 3) and then the UE
will send the Measurement under the Up-Link resources that the eNodeB has assign to it.
The delay that we measure is the time difference between step 1 and step 4. As we see in
figure 4.2 if collision occurs in step 2, then the UE will have to send again the Message 1,

resulting to a higher delay ( time difference between step 1 and step 5).
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Fig. 4.2: Experimental Setup - collision
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In figure 4.3 we show the difference between the periodic and the random UE. We observe
that a random UE generates measurements in non periodic time, it produces in slot 1
then in slot 4 and finally in slot 27. In contrast, a periodic UE generates measurements in
periodic time, as we see, it first produces in slot 5, then in slot 10 and so forth. Moreover,

the system parameter "percentage of random and periodic UE", is referring to the number
of each kind of UE.
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Fig. 4.3: This figure shows the difference between periodic and random UE. The first one, is

requesting in random time, while the second one is requesting in periodic time (every 5
slots).

In figure 4.4 we show what happens when a collision occurs. The UEs that were involved
in this collision are sending again a request, in the next slot. This extra time of the new

requests leads to a higher delay.
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Fig. 4.4: This figure shows what happens when a collision occurs. The involved UEs are requesting
again to the next available slot.
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4.2 System evaluation

In this section we present the performance evaluation of the proposed system. First, we
quote the results that we get for each Case and then we analyze them, in order to emerge

the effect of each strategy in the network.

4.2.1 Results

Next, we present the experimental results for each scenario.

4.2.2 Normal Case

First, in the Normal Case scenario, we run our simulator with tuning parameter the
percentage of random and periodic UEs, in order to see how the average delay and the
collision rate is fluctuating. In figure 4.5, we present the results while the number of UEs

is 700 and we change the percentage of the Periodic UEs.

Average Delay for 700 UEs Collision Rate for 700 UEs
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Fig. 4.5: Sub-figure (a) presents the average delay while the percentage of periodic UEs is increased,
Sub-figure (b) presents the collision rate while the percentage of periodic UEs is increased,
Sub-figure (c) presents the number of measurements that generated while the percentage
of periodic UEs is increased.
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We observe that, as we increase the percentage of periodic UEs, by increasing the number
of periodic UEs and decreasing the number of random UEs, the average delay and the
collision rate are decreasing. This is due to the probability of a random UE to generate
a measurement in a given moment. As we see in chapter 3, the probability of a random
UE to generate a measurement in 1 second is 0.25, while, in the beginning of chapter 4,
we state that the period of the UE is at least 10 seconds. Thus, a random UE will generate,
on average, more measurements in a specific time period, than a periodic UE. This is the
reason why the average delay and the collision rate are decreasing. In 4.5(c) we evaluate
this by noticing that the number of measurements that were generated, are decreasing as
we increase the percentage of periodic UEs, which means that we increase the number of

periodic UEs and decrease the number of random UEs.

Next, we calculate the average delay and the collision rate for only random UEs, while we

increase the number of UEs.
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Fig. 4.6: Sub-figure (a) presents the average delay while we increase the number of UEs and
sub-figure (b) presents the collision rate while we increase the number of UEs.

In figure 4.6, we observe that as we increase the number of UEs, the average delay and
the collision rate is increasing respectively. This is expected because as we increase the
number of UEs, we increase the number of measurements that are generated, leading to a
higher number of requests to the channel. This can cause more collisions, resulting in a

higher delay.

In experiments mentioned above, we compute that the standard deviation is approximately
7.1, thus, instead of calculating the confidence intervals, we calculate how the measure-
ments are distributed based on their delay. In figure 4.7, we present the results. We see
that as we increase the number of UEs, the number of measurements whose delay is above

8 milliseconds, is increasing respectively.

4.2 System evaluation
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Fig. 4.7: These figures present the distribution of the measurements, based on their delay, as we
increase the number of the UEs(Percentage of Periodic UEs 0).

Following, we run the same experiments, but for the percentage of periodic UEs set to 50%,

which means that we have the same number of periodic and random UEs.

Average Delay for 50% periodic UEs Collsion Rate for 50% periodic UEs
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Fig. 4.8: Sub-figure (a) presents the average delay while the number of UEs is increased and sub-

figure (b) presents the collision rate while the number of UEs is increased (Percentage of
periodic UEs 0.5).

In figure 4.8, we see, that the average delay and the collision rate is increasing as we

increase the number of UEs, but the average delay, when the number of UEs is between
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100 and 1200 remains somewhat steady. This is, probably, due to the tolerance that the

system may have, up to a specific number of UEs.
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Fig. 4.9: These figures present the distribution of the measurements, based on their delay, as we
increase the number of the UEs (Percentage of Periodic UEs 0.5).

Again, in figure 4.9, we present the distribution of the measurements, based on their delay.
It follows the same pattern with figure 4.7, but the number of the measurements that are
above 8 milliseconds is smaller. This is due to the smaller number of measurements that
were generated in this experiment. For example, in the experiment of figure 4.7(b), 20097

was generated, while in the experiment of figure 4.9(b), 17736 was generated.

Finally, we run the same experiments, but for the percentage of periodic UEs set to 80%. In

figure 4.10 we present the results.
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Fig. 4.10: Sub-figure (a) presents the average delay while we increase the number of UEs and sub-
figure (b) presents the collision rate while we increase the number of UEs (Percentage of
periodic UEs 0.8).

We observe that in figure 4.10(a) the average delay has a upward trend, but up to the value
of 3000 UEs it is approximately 3.5-4.2 milliseconds, which means that the system, with

these parameters, has a tolerance up to 3000 UEs.

In figure 4.11, we present how the standard deviation and the Top Delay of all measure-
ments are fluctuated. Up to 3000 UEs the standard deviation remains 7 and for value greater
or equal to 3000 UEs, it is increasing exponentially. This shows that the system set with
these parameters can operate normally,up until 3000 UEs. Also in 4.11(b), we observe
that the Top Delay is increasing as we increase the number of UEs. Actually, up to 1200
UEs the Top Delay is increasing slowly and steadily, and when we pass this number, it is

increasing with an exponential rate.
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Fig. 4.11: Sub-figure (a) presents Standard Deviation of average delays while the number of UEs
is increased and sub-figure (b) presents the Top Delay of all measurements for each
experiment (Percentage of periodic UEs 0.8).
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423 Case1-AIMD

In Case 1, we first tune the system parameter "threshold", in order to figure out the optimal

value. We run 20 different experiments, that we have divided into four groups:

« Group A: Periodic Percentage 0.5, variable number of UEs and no threshold (Normal
Case)

+ Group B : Periodic Percentage 0.5, variable number of UEs and threshold 10 ms

+ Group C : Periodic Percentage 0.5, variable number of UEs and threshold 15 ms

« Group D : Periodic Percentage 0.5, variable number of UEs and threshold 20 ms

Figure 4.12 shows the average delay of the above experiments.

Average Delay

300 700

1200 2000 2500

Average Delay (ms)
= e S ¥ "2 = A I N A « RV =]

UE number

B No threshold ™ Group B (10ms) M Group C (15ms) M Group D (20ms)

Fig. 4.12: This figure shows the average delay for the different group of experiment while we
increase the UEs.

We observe that the average delay has an upward trend as the number of UEs increased,
which is normal because if the number of UEs is increasing, then the probability of o

collision is increasing.

In order to figure out if the Case 1 is improving the RACH performance, we create the
figure 4.13, where we illustrate the difference of average delay of group B,C and D from
group A. In other words, we plot how much the average delay has decreased when we

apply Case 1.

4.2 System evaluation
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Fig. 4.13: This figure shows the difference of average delay of group B,C and D from group A.

We notice that in the value of 700 UEs,Group B (with threshold 10ms) does not perform
better from the Normal Case. This can be a result of a simulation error or if no collisions
have occured in this experiment, so the delay has never exceeded the threshold. Generally,
we observe that up to a number of 1200 UEs we have a standard improvement of 0.2 ms in
the average delay. Then as we increase the number of UEs up to a number of 2000, the
scenario ameliorates the performance of RACH in average delay by 0.4-0.8 ms. In addition,
as we keep increasing the number of UEs the scenario still performs better, but is not the

optimal. We conclude, that threshold of 15ms is the best, based on the average delay.
Next, we will present similar results, but for the collision rate.
Figure 4.14 shows the collision rate of the experiment group A through D.
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Fig. 4.14: This figure shows the collision rate for the different group of experiment while we
increase the UEs.
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We observe that the collision rate has an upward trend as the number of UEs is increased,
which is normal because if the number of UEs is increasing, then the probability of o

collision is increasing.

In figure 4.15, we present the difference of the collision rate between the experiments of

group B to D, from the experiments of group A (Normal Case).
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Fig. 4.15: This figure shows the collision rate for the different group of experiment while we
increase the UEs.

First, we notice that the difference between the collision rate is in the range between -0.002
to 0.007. This is a small number since, in scenario 1, we seek to reduce the collisions and
the average delay by increasing the UEs’ period. Thus, it is reasonable not to have a big
difference in the collision rate because we reduce the collision, but we also decrease the
total measurements. Nevertheless, this is acceptable, as we assume in chapter 3, because

some applications have tolerance in the decrease of the rate that receives data.

However, in figure 4.14 we see that as we increase the number of UEs more than 1000,
the Group C and B are improving the RACH performance. Especially, group C (15 ms),

displays the best and more stable performance from the other groups.

In figure 4.16, we present the Variability of the delay in the experiments (Group A-D),
which is the fraction of the average delay and the standard deviation of the average delay.
We observe that the variability is approximately the same for all the experiments. So we
conclude that the scenario 1, with a threshold of 15ms ameliorates the RACH procedure,

even more by increasing the number of UEs above 1200.

4.2 System evaluation
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Fig. 4.16: This figure shows the variability for the different group of experiment while we increase
the UEs.

4.2.4 Case 2 - Gateways

First, in Case 2 we run our simulator with tuning parameters the number of UEs and
the gathering period, in order to see how the average delay and the collision rate are
fluctuating. In figure 4.17, we present the results, while we change the gathering period of

the gateways to 5,10,15 and 20 ms.
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Fig. 4.17: Sub-figure (a) presents the average delays of different gathering periods, while we
increase the number of UEs and sub-figure (b) presents the collision rate of different
gathering periods, while we increase the number of UEs (Percentage of periodic UEs
0.5).

We observe that as we increase the gathering period, the average delay is increasing respec-
tively. The reason is that the gathering period is the actual period that the measurements
are sending. When a measurement is produced, the device is first sending it to the gateway,

and the gateway will send it to the network, after the gathering period time has passed.
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Thus, in a higher gathering time, the measurements will be sent to the network more

sparse than in a lower gathering time.

Moreover, we notice that the collision rate is similar, between the gathering periods, which
means that this Case, has a tolerance in the increasing number of UEs. This is reasonable,
because the gateways are those that are requesting in the wireless channel. So, if the
number of UE that each team can host is 3, for example, and the total UEs are 1200, then

only @ = 400 devices (gateways) will interact with the wireless channel.

Next, we tune the number of UEs in each team. Figure 4.18 presents how the average

delay is varying, while we change the number of UEs in each team.
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Fig. 4.18: This figure shows the fluctuation of the average delay as the number of UEs in each
team. is increased. The total number of UE is 1200 and the gathering period is 10 ms.

As the number of UEs in each team is increasing, the average delay has an downward
trend. Indeed, for 20 UEs in each team and more, the average delay remains the same. This
result, shows that the system in the Case 2, is tolerant in the total number of UEs, but at

the same time the average delay is much higher from the other Cases.

In figure 4.19, we choose 20 UEs per team to observe the tolerance of the system to a
large number of total UEs. Indeed, the average delay is not increasing dramatically as we

increase the total number of UEs to 5000.

4.2 System evaluation
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Fig. 4.19: This figure shows the fluctuation of the average delay as the number of total UEs in each
team is increased. The number of UEs in each team is 20 and the gathering period is 10.

Finally, we compare the Case 2 with the Normal Case. In figure 4.20, we present the results.
Although the average delay of Case 2, is much higher from Normal Case, the tolerance of

Case 2 in a big number of UEs makes it a good strategy for a Massive [oT environment.
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Fig. 4.20: This figure shows the average delay of Normal Case and Case 2.

Chapter 4 Evaluation



Conclusions

As the number of devices increases, the RACH procedure encounters an overload issue, as
described in chapter 2. To investigate this issue, we have built a Simulator, which reproduces
the RACH procedure at the exact moment that a sensor generates a measurement until it is
sent to the network. Furthermore, we use the basic idea of the AIMD algorithm applied by
the TCP, to reduce the sensors’ flow without evolving the lower layers. Also, we examine
how we can reduce the flow using gateways. Both of these scenarios were implemented in

the simulator.

The results revealed that as the number of devices is increasing, the delay is increasing
respectively. The idea of the AIMD algorithm performs a little better than the normal
RACH, while the gateways architecture almost triples the delay. Nevertheless, we figure
out that if the number of UEs is increasing dramatically (5000 and more), the gateway

architecture can keep the performance stable.
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