

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΜΣ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Διπλωματική Εργασία

Μεταπτυχιακού Διπλώματος Ειδίκευσης

«Simulation of the RACH Procedure to Investigate Flow

Control Mechanisms in the Application Layer»

ΓΙΩΡΓΟΣ ΠΑΝΤΕΛΗΣ

f3321910

Επιβλέπων: ΒΑΣΙΛΕΙΟΣ Α. ΣΥΡΗΣ

ΑΘΗΝΑ, ΝΟΕΜΒΡΙΟΣ 2020

Simulation of the RACH Procedure to Investigate Flow

Control Mechanisms in the Application Layer

George Pantelis

November 2020

Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Athens, Greece

Master Thesis
in

Computer Science

Simulation of the RACH Procedure to
Investigate Flow Control Mechanisms in the

Application Layer

George Pantelis

Committee: Associate Professor Vasilios A. Siris (Supervi-

sor)

Professor George C. Polyzos

Professor George Xylomenos

November 2020

George Pantelis

Simulation of the RACH Procedure to Investigate Flow Control Mechanisms in the Application Layer

November 2020

Supervisor: Prof. Vasilios A. Siris

Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Mobile Multimedia Laboratory

Athens, Greece

Abstract

In cellular networks, whenever a mobile phone or a sensor needs to connect to the wireless

channel, the Random Access Channel Procedure (RACH) takes place. The �rst step in

the RACH, to establish a connection with the Base Station, involves a random access

process. As the number of devices is increasing, the number of collisions in the �rst step

of RACH increases. In the Next Generation Internet, a large number of IoT sensors will

be connected to the cellular network, leading to RACH’s possible congestion. In this

Thesis we developed a Simulator to investigate the performance of the RACH procedure,

under di�erent parameters, loads, data rates, and tra�c mixes. Moreover, we examine two

scenarios, where we seek to reduce the data �ow rate at the application level, without

requiring changes to the low layers.

v

Περίληψη

Το πρώτο βήµα σύνδεσης ενός ϰινητού ή ενός αισϑητήρα στο σταϑµό βάσης ενός διϰ-

τύου ϰινητής επιϰοινωνίας είναι το πρωτόϰολλοRACH, το οποίο περιλαµβάνει µια παράµετρο,

η οποία επιλέγεται τυχαία απο ένα σύνολο τιµών. Αν δυο ϰινητές συσϰεύες επιλέξουν

την ίδια τυχαία τιµή τα δεδοµένα που στέλνουν ϑα συγϰρουστούν. Στο µέλλον πολύ

µεγάλος αριϑµός συσϰεύων του ∆ιαδιϰτύου των Πραγµάτων (Internet of Things), µαζί µε

τα έξυπνα ϰινητά τηλέφωνα, ϑα συνδέονται στο ίδιο ασύρµατο δίϰτυο, µε αποτέλεσµα

να υπάρχει επιπλέον επιβάρυνση. Σϰοπός αυτής της εργασίας είναι να µελετήσει πως

επηρεάζεται το ασύρµατο ϰανάλι, όταν µεταβάλλονται ο αριϑµός των συσϰευών, η περ-

ιόδος που παράγουν τις µετρήσεις τους, ϰαι άλλα, ϰαϑώς ϰαι να εξετάσει πιϑανές λύσεις

που δρούν σε επίπεδο εφαρµογής, χωρίς να αλλάζει ϰάτι στα χαµηλότερα επίπεδα. Στην

αρχή, εξηγούµε πως λειτουργεί η RACH διαδιϰασία ϰαι στη συνέχεια αναφέρουµε δυο

πιϑανά σενάρια, τα οποία βασίζονται σε ιδέες που έχουν προταϑεί στην βιβλιογραφία.

Το πρώτο σενάριο εφαρµόζει µια λογιϰή παρόµοια µε τη λογιϰή του αλγορίϑµου του TCP

για έλεγχο συµφόρησης ϰαι το δευτερο χωρίζει τις συσϰεύες σε οµάδες µε την ϰάϑε µια

να έχει έναν αρχηγό που αναλαµβάνει την αποστολή των µετρήσεων τους στο σταϑµό

βάσης. Η διερεύνηση της απόδοσης έγινε σε προσοµοιωτή του πρωτοϰόλλου RACH που

υλοποιήϑηϰε στα πλαίσια της εργασίας.

vii

Acknowledgement

I feel obligated to thank everyone who made this thesis achievable and supported me during

my post-graduate studies. To begin with, I would like to give thanks to my supervisor,

Associate Professor Vasilio A. Siri, whose valuable and concentrated assistance along with

our excellent cooperation and communication, led to the completion of this thesis. To

continue, I would especially thank Professor George C. Polyzos and Professor George

Xylomenos for taking part in my thesis committee and for their time. Last but not least, I

would like to recognize the help and the inconsistent support of my family and friends

through this challenging period, as well as all of my university colleagues, who tolerated

with me until the end.

ix

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation and Problem Statement . 1

1.2 Thesis Structure . 1

2 Background and Related Work 3
2.1 Background . 3

2.1.1 Description of RACH procedure . 3

2.1.2 Weakness of RACH . 5

2.1.3 Technical Characteristics of the Simulator 5

2.2 Related Work . 6

3 System Design and Implementation 9
3.1 Design . 9

3.1.1 Tra�c Modeling . 9

3.1.2 Case 1 - AIMD . 9

3.1.3 Case 2 - Gateways . 11

3.2 Implementation . 14

3.2.1 Architecture . 14

3.2.2 Implementation of RACH . 17

3.2.3 Implementation of Case 1 - AIMD 18

3.2.4 Implementation of Case 2 - Gateways 18

4 Evaluation 21
4.1 Experimental setup . 21

4.2 System evaluation . 24

4.2.1 Results . 24

4.2.2 Normal Case . 24

4.2.3 Case 1 - AIMD . 29

4.2.4 Case 2 - Gateways . 32

5 Conclusions 35

xi

Bibliography 37

List of Acronyms 39

List of Figures 41

xii

1Introduction

This thesis aims to analyze the Random Access Channel procedure (RACH) of LTE, deter-

mine an issue that may show up in the Next Generation Internet, and more speci�cally,

in a Massive IoT environment and examine some possible solutions to overcome this

problem.

1.1 Motivation and Problem Statement

In a few years, the number of sensors connected to the internet will be much larger than

today. These sensors devices (IoT) will connect to the internet through the wireless channel.

Smart tra�c lights, temperature sensors, and more, have to send their data now and then

to the respective server. As the sensors will share the same wireless network channel with

mobile phones, they will use the same protocols, like LTE. A possible issue is located in the

LTE’s RACH procedure, a random access protocol to control the channel access requests

that the end-devices generate. If we increase the number of requests, we respectively

increase the probability of collision. So, as we mentioned before,the number of IoT devices

is rising, creating a Massive IoT environment, which will probably cause an overload issue

in the existing mobile network.

In the RACH procedure, while the end-devices are increasing, the probability of a collision

increases respectively, as we will see later. Thus, it is essential to overcome this issue not

by reducing the number of end-devices, but by decreasing the amount of data they need to

send. Speci�cally, we examine how we can reduce a sensor’s data �ow in the application

level without evolving the low layers. Moreover, we simulate the possible solutions, and

we compare them. The comparison is implemented in a simulator that we have built from

scratch, and it aims to emerge metrics crucial for the performance evaluation of a network,

such as the number of collisions and the delay.

1.2 Thesis Structure

Chapter 2

In chapter 2, we present the theoretical approach, which is necessary to understand the

1

source of the problem we aim to overcome. Speci�cally, we explain what the RACH

procedure is, how it works, and why it is essential in the wireless networks, even at 5G.

Also, we present some other related work brie�y and introduce the technical characteristics

of the simulator.

Chapter 3

Firstly, In chapter 3, we explain how the sensors send their data, at which rate and we denote

the basic scenarios that we are going to implement. Then, we present the architecture of

the simulator and we describe how we implement the RACH procedure and the scenarios

that we denote in the beginning of chapter 3.

Chapter 4

In chapter 4, we present the experimental results. In particular, we explain what parameters

we chose to tune and why, we demonstrate the results for every scenario that we denote

in chapter 3 and we compare them.

Chapter 5

In chapter 5, we restate the possible weakness of the RACH procedure, we explain how

we can overcome this, and we summarize the results from our experiments.

2 Chapter 1 Introduction

2Background and Related Work

2.1 Background

2.1.1 Description of RACH procedure

The RACH procedure, as [Erion] describes, is a protocol of LTE for the communication

of mobiles with the cell towers. Speci�cally, the main purpose of RACH is to control

the channel access requests that end-devices generate. We will use the User Equipment

(UE) annotation to describe the end-devices (cell phones etc.) and eNodeB to describe the

antenna.

The RACH is initiated for many reasons, like when:

• a cell phone wants to establish a connection with the eNodeB

• an end-device changes to a new eNodeB

• a radio-link failure occurs

• a cell phone wants to synchronize with the eNodeB

In the RACH procedure, the time is divided into slots, but these are further divided in

the frequency domain. For that reason, the Random Access (RA) slots are created in the

time-frequency domain. Every UE is allowed to transmit in an RA slot with a speci�c

signature, which is called "preamble". In each LTE cell there are 64 di�erent preambles.

Also, the RACH can be either contention-free or contention-based. The �rst one is used

to manage delayed-constrained access requests with high success requirements, which is

now examined in this research, and the second one is what will be analyzed below. The

�ow of the procedure is the following:

• Message 1:

In the �rst step, when a UE wants to connect to the eNodeB, it chooses randomly one

of the 64 preambles and transmits it in the �rst available RA slot. It is possible for

two or more UE to choose (randomly) the same preamble, occurring to a collision.

• Message 2:

After a successful preamble transmission, the eNodeB sends back to the UE a message,

which includes 3 things. The �rst is a Timing Alignment, which is a parameter for

the synchronization. The second one is the UpLink resources that the UE must use

3

to communicate in the next steps and the third one is a backo� indicator, which

helps to reduce the collision probability.

• Message 3:

In the third step, when the UE receives the proper message from the eNodeB, it

sends a connection request. It is possible for di�erent UEs to transmit in the same

preamble, causing a collision.

• Message 4:

In the last step, if the eNodeB successfully detects the connection request, it responds

to the UE with a content-resolution message that contains a mobile id. In the case

that UE doesn’t receive this message, it will start the procedure from the beginning.

In �gure 2.1 we illustrate the above procedure.

Fig. 2.1: RACH procedure.

4 Chapter 2 Background and Related Work

2.1.2 Weakness of RACH

In �gure 2.2, we illustrate the weakness of RACH. Because the number of available pream-

bles is �xed, as the number of UEs is increasing the probability of two di�erent UEs to

choose the same preamble is increasing respectively, as we see in �gure 2.2.

(a) Small number of UEs (b) High number of UEs

Fig. 2.2: This �gure shows that as the number of UEs is increasing, the number of available

preambles is remain the same, leading to collisions.

2.1.3 Technical Characteristics of the Simulator

The �rst step to the construction of the simulator was to choose the appropriate framework

to implement the RACH procedure. We chose Java, due to its object oriented architecture.

Especially, we built �ve classes, four of them are representing the objects that take place

in the procedure (eNodeB, User Equipment, Measurement, Gateway) and in the �fth one,

we implement the main �ow. Also, we use the following libraries to create charts:

• Simple Java Plot [Υur]

• JFreeChart [Gila]

and we use WPS o�ce to store our experimental results and create more complicated

charts.

The basic system parameters that are the same for all the experiments are:

• the time of RA slot is 10 Milliseconds

• the simulation time is 120 second per experiment (or 12.000 slots)

2.1 Background 5

Later, we will describe in more detail how we implemented every object and the main

�ow.

2.2 Related Work

There are a few researches that aim to analyze the performance of RACH procedure,

and all of them are focusing on bringing out the weakness that we state in the previous

subsection, the overload issue when high number of UEs are simultaneously attempting to

connect to the eNodeB. In researches [AK16], [WCT13] and [WCT12] analytical models

are proposed based on existing schemes and speci�c solutions. In [YEZ15] they present a

detailed simulation of the RACH based on the 3GPP release 9 standards. In [PP14], they

examine in various scenarios two di�erent methods of allocating preambles (Disjoint and

Joint allocation) based on the origin of the call request, M2M or H2H.

In [Bir+15],the authors present the functionality of the RACH procedure and they highlight

the overload issue,called "the threat of PRACH overload" and they detail one by one some

schemes to alleviate the overload problem. They separate those schemes in two categories.

The �rst is isolating the Human-to-Human (H2H) from the Machine-to-Machine (M2M)

communication, while in the second one this separation does not take place, in contrast

they allow to the devices to access the same resources but with di�erent probabilities.

There is another research [AKT16], where they are trying to propose a new model for the

RACH procedure. They denote that all the previous works that have been done, do not

take consideration all the constraints leading to miscalculations. Thus, they build a custom

C++ simulator to evaluate their proposed model and compare with the existing models.

One more research that is worth mentioning is [Xie+19].The researchers do not investigate

the RACH procedure, but the �ow control in the application level at the RPC applications.

Speci�cally, in RPC applications the server has a threshold, that determines the number of

access requests that it can process. The researchers proposed an interesting algorithm to

set the threshold, based on the status of the server (congested or not). In�uenced by this

approach, we create a similar scheme (case 1 as we will see later), where we set a threshold,

based on the delay of the packets that are sent.

Finally, in [Pol+16] the researchers are extending the NS3 network simulator in order to im-

prove the existing simulation of the RACH procedure building the LENA+ module[Gilb].

Taking into consideration all the related work, we decide to build a custom RACH simulator

to test our scenarios in the application level. We choose to build our simulator from scratch,

6 Chapter 2 Background and Related Work

because the technical characteristics of the scenarios that we are trying to investigate are

not easily applicable in the existing simulators.

2.2 Related Work 7

3System Design and
Implementation

3.1 Design

In this section, we denote the data tra�c, and we lay out some Cases, which we will

simulate later. Specially we specify the tra�c that di�erent sensors can produce, and we

build two di�erent architectures to investigate the performance of the network under each

architecture.

3.1.1 Traffic Modeling

It is crucial to consider the kind of tra�c that sensors generate because it a�ects the

e�ciency of the network. To simulate as much better the di�erent Cases, we need to

include the proper tra�c load in our system. The tra�c can be either:

• periodic: temperature or tra�c camera sensors, which send data in a speci�c period

(for example every 5 seconds) ,

• random: tra�c sensors, smart cars, or sensors that need to send their data if a

measurement is above a threshold and the most important because we are in the

wireless channel, are the smartphones.

Thus, we will have two di�erent kinds of sensors. The �rst one will produce periodic data,

and the second one will produce data in a random period. The number of sensors at each

kind will be a parameter of the system that we will examine in the simulations.

3.1.2 Case 1 - AIMD

We will �rst denote the most classic Case: one eNodeB and N-number of UEs that want to

connect. This Case’s �ow begins with some of the UEs that want to send their message to

the network. Τhey need to select one of the 64 available preambles and send the Message 1

to the eNodeB, under the selected speci�c preamble. If no collision occurs, we can assume

that the sensor will later send his message after the RACH procedure. As we discussed,

9

while the number of UEs increases, the possibility of having a collision is increasing,

respectively.

An interest approach is proposed in [vsi19]. In this research, they are trying to reduce the

data �ow in IoT under an AIMD (additive increase and multiplicative decrease) scheme.

Speci�cally, they implement an algorithm, similar to the AIMD of TCP’s congestion

window, where they adjust the sensors’ sending period time, based on some strategies.

Moreover, they de�ne a new strategy layer, with four di�erent schemes (data accuracy,

response time, energy, and privacy protection). Depending on the application requirements,

they change the period between consecutive measurement requests, resulting in a reduced

data �ow.

In our Case, we can illustrate this approach as follows. We �rst need to have a metric

to determine when to apply the increase of the sending period. This metric can be the

segment of time between the moment the sensor gives the data to the low layer to be

sent, and the moment the data are actually sent. Precisely, we can denote as tstart the

time the data generated from the sensor and tsend when the data are sent to the wireless

channel.Also we de�ne as tdelay the di�erence between tsend and tstart. This fraction of

time includes the following actions:

• the transportation of the data to the lower layers

• the implementation of the RACH procedure

Τhe second action includes the delay that is caused by a wireless overload network. If a

collision occurs, then the second action (the RACH procedure) will take more time. The

cause is that after the stage of selecting a preamble, it is possible a collision to occur

between two di�erent UEs that choose the same one in an overloaded network. When this

happens, the RACH will wait a short amount of time, and then it will be initiated again.

This extra time is the delay that is caused by the congested wireless channel. Thus, the

tdelay = tsend − tstart, it will be longer and can determine if the channel is overloaded, as

we see in the �gure 3.1.

Now that we have the metric, we can set one more parameter, the threshold, that if the

metric we de�ne later is above it, we will double the sending period. The value of the

threshold will be de�ned in the next chapter. It is essential to mention that, in order to

double the sending period in a sensor, the application that this sensor belongs must be

tolerant of this increase of the period. Indeed, many applications can achieve this, like

temperature monitoring apps, apps that monitor the concentration of heavy metals or the

wind’s speed, and more. Another approach is that even if the application cannot be tolerant

in doubling the sending period, we can still double it. Let us assume the following scenario,

in a heavy metal monitoring app, the sensors send every 10 seconds their measurements.

10 Chapter 3 System Design and Implementation

Fig. 3.1: In the �gure above, we see that the time between tstart and tsend is longer in an overloaded

network. Also, tinit1 is when the RACH is initiated for the �rst time and tinit2 is when

start again, because a collision occurs in the �rst.

Due to the congestion, one sensor doubles his period, so when 10 seconds pass through

the last sending, the application will expect a measurement from the sensor. However,

because he will have increased his period, no measurement will be received. In this Case,

the application could create the expected measurement based on the last measurements to

maintain proper functioning. So the increase in the sending period is a feasible solution.

The �nal step is to de�ne when the sending period returns to normal. We will use the same

metric and the same threshold again. After each sending of measurement, we will compare

the delay (tdelay) with the threshold, and only when the delay is under the threshold will

we set the period to normal.

3.1.3 Case 2 - Gateways

In many IoT environments, a device is used as an intermediate to connect some sensors to

the internet. This device is called gateway, and it is bene�cial for many reasons like:

• in some IoT environments, a sensor may not be able to connect to the network due

to the low range of his transmitting signal

• we want to execute speci�c procedures to the data before we push them to the

internet

We can use this existing architecture of gateways in order to achieve the smallest collision

probability. Speci�cally, under the gateways’ scope, we can cluster the sensors in small

3.1 Design 11

groups (N-number of UE per cluster) to create small teams with one leader (the gateway)

per team. In this architecture, the team members send their data to the leader, and he is

responsible for forwarding them to the eNodeB, as we observe in �gure 3.2. The number

of UEs at each team is a system parameter that we tune later in the simulations. Thus, we

may overcome collisions because we reduce the number of requests from the UEs to the

wireless channel.

eNode

Sensor

Sensor

Sensor Leader

data

data

Sensor

Sensor

Sensor Leader

data

data

Sensor

Sensor

Sensor Leader

data

data
Cluster 1

Cluster 3

Cluster 2

Fig. 3.2: This �gure shows the basic architecture of Case 2. There are 2 sensors at each cluster.

Sensor Leaders are the gateways.

Moreover, those leaders can be either classic gateways devices installed in the IoT network

infrastructure, either regular IoT devices (sensors). The di�erence between them is that a

classic gateway only forwards the data that is receiving to the eNodeB, while a regular IoT

device it should forward the data from the team members and, at the same time, should

handle his own data.

So, in the �rst example, we have the advantage that the gateway does not generate data;

thus, it can forward the receiving data directly, resulting in higher e�ciency, but there

is an extra cost of purchase and installation of those gateways. In the second Case, we

do not have additional costs because the gateways are the current sensors, but a notable

drawback is that the leader has to forward the team’s data and, at the same time, to control

his data, leading to a possible e�ciency problem. A tactful compromise is to substitute the

sensors that will be leaders with better devices, lessening the cost from the �rst Case and

the overload from the second one.

After the description of the architecture, we have to determine how the gateway will

operate. The gateway will wait a short amount of time to collect data from the UEs and

12 Chapter 3 System Design and Implementation

operate as a regular device. We de�ne as tperiod the period that a gateway gathers the

team members’ data. Precisely, let us assume that there is a cluster of N UEs that can be

connected to the team leader (the gateway), under a wireless protocol (WiFi) and send

their measurements to him. The gateway gathers those data for tperiod time and then

initiates the necessary procedures to send them to the network, like the RACH. While

the gateway waits to establish a connection with eNodeB, the data that are going to send

are stored to a bu�er, and a new period (tperiod) begins. This is a repeating pattern that it

can relieve a wireless overload channel because instead of having N di�erent UEs trying

to connect with the eNodeB, we have one gateway to take over the jobs that include the

communication with the eNodeB, as we can see in the �gure 3.3. The variable tperiod it

will be tuned in the simulations.

Fig. 3.3: Between t1 and t2 the gateway will gather all the data that the sensor will send. At t2 the

gateway will initiate all the necessary procedures to establish connection with eNodeB

and it will start listening for new data from the sensors until t3. At t3 it will again establish

a connection with eNodeB to send the data that receive in the time between t2 and t3

A challenging issue that is out of this thesis’s scope is to create the clusters dynamically.

There are di�erent kinds of applications with di�erent requirements that need higher

availability. For instance, some apps may be vital to have their measurements (from the

respective sensors) available under a speci�c time, like tra�c control apps. For others, it

may not be so important, like temperature monitoring apps. Therefore, sensors that belong

to di�erent applications create di�erent criteria for how long the tperiod of the gateway

can be. If in the same cluster is a sensor of tra�c control and a sensor of monitoring

temperature app , the �rst will require short tperiod to maintain his availability. In contrast,

the second one can support longer tperiod. Thus, an interesting approach is to form the

clusters based on the application’s strategy that the sensors belong.

Additionally to the above approach, an impressive strategy is to �uctuate the number of

cluster members depending on the tperiod. In a gateway with short tperiod, we may have

3.1 Design 13

many team members, because the collected data are sent frequently, instead of a gateway

with a long tperiod that it is better to be a few members in the team because the data are

sent more sparsely in time. Μore speci�cally, the more connected devices to a gateway,

the more data is gathered, so it will be more e�cient to have a smaller tperiod to forward

the data faster in order the gateway be able to receive the new incoming data.

3.2 Implementation

In this section we explain how we implement the simulator to reproduce the RACH

procedure, the AIMD and the Gateway scenarios.

3.2.1 Architecture

As we described in the introduction, we build �ve objects:

• Main

• eNodeB

• UE

• Measurement

• Gateway

In �gure 3.4 we illustrate the objects with their basic attributes and their relation.

Fig. 3.4: This �gure shows the architecture of the simulator.

14 Chapter 3 System Design and Implementation

UE Class

In this class, we implement the behavior of the UE. The important variables are shown

in �gure 3.4. "Preamble" is an integer, where we store the value of the preamble (1-64)

that the UE will select in the initiation of RACH procedure. The variable "id" is a serial

number to identify the UEs, "isCongested" is a Boolean variable, which is used in Case 1

(AIMD) as we will see in next sections. In addition, "period" is an integer which de�nes the

period of the UE (in seconds), "isRandom" is a Boolean variable which is true if the UE is

random and false if it is periodic, and �nally "ms_to_send" is an ArrayList which stores the

measurements of the UE that have not been sent yet. We designate that a random UE is

generating measurements in random time. Later we will see how exactly we implement

this.

The two basic methods of the UE class are those that generate the measurements. Speci�-

cally, we create one method for the periodic UEs (periodic_traffic_generator(period))

and another for the random UEs(random_traffic_generator()). In both methods, in

order to simulate the behavior of a real device (sensor or mobile phone), we use a Java

Class, ScheduledExecutorService, which o�ers methods to run a piece of code periodically.

This methods create an executor (in Java terms), which runs periodically. Speci�cally, for

each method :

• periodic_traffic_generator(period): We create a Measurement object and we

connect it to the UE that generates it (the connection is implemented as follows:

We have created a List in the UE, that we store the Measurement objects that have

not been sent yet. So, we add the Measurement object that was created in this List).

Also, in Case 1, we check if the variable "isCongested" is true and if it is we change

the period of the UE accordingly, as we will see later. This functionality is repeated

based on the UE period.

• random_traffic_generator(): First, we de�ne the probability of a (random) UE

to generate a measurement, which is 0.0025. In order to achieve this, every time that

the executor is running, we use the Java Random Class to generate a random value

between 0-399, then only if this value is 399, we create a Measurement object and

we connect it to the UE. Next, we have set the period of this executor to be 10 ms,

thus the probability of a random UE generating a measurement in 1 second is 0.25.

Finally, in both methods, because we simulate real-world processes, we add randomness

characteristics, so that the simulation will be more precise to them. Speci�cally, we slightly

modify the period of each periodic UE. This modi�cation is implemented with the Java

Random Class as follows: we generate a random value between [-250,250] and we add it to

the period (in Milliseconds) of the UE. Another random characteristic is the modi�cation

3.2 Implementation 15

of the time that a UE (random and periodic) starts. This can be implemented by setting

an initial delay in the Executor. We set this initial delay (in Milliseconds) to be a random

value between [95-135].

eNodeB Class

The eNodeB class basically simulates the cell tower. We have created an array, "ue_assigned",

that keeps the UE that have chosen di�erent preambles, so that no collision occurs at

Message 1.

Measurement Class

In this class, we implement the Measurement. A Measurement can be data, produced by a

sensor, or a cell phone attempt that connects to the eNodeB. Thus, we de�ne a Measurement

to be something that initiates the RACH procedure, resulting in the transmission of Message

1 (as we see in chapter 2).

The important variables are shown in �gure 3.4. "Status" is an enum variable (values:

"PENDING", "COMPLETED"), which shows the state of a Measurement. "PENDING" if it

is not sent and "COMPLETED" if it has been sent.

We restate that a Measurement is sent if it has transmitted the Message 1, which means

that no collision has occured, as we in �gure 3.1.

The variable "id" is a serial number to identify the Measurement, "parent" stores the UE

that generates this Measurement. In addition, "t_start" is a Long variable which de�nes the

time (in UNIX time) that the Measurement was generated and "t_send" is a Long variable

which de�nes the time (in UNIX time) that the Measurement was sent. If the "t_send" is

null, it means that the Measurements has not been sent.

Gateway Class

This Class implements the functionality of the gateway. The variable "id" is a serial number

that identi�es the Gateway, "children" is a List where we store the UEs that are assigned

to the Gateway and "gather_period" is the time period that the gateway is gathering

Measurements from the assigned UEs. Lastly, ms_to_send, is an ArrayList which stores the

measurements of the UEs that have not been sent yet.

The important method of this class is the method start(), which is starting the Gateway.

As in the previously mentioned methods of the UE, (periodic_tra�c_generator(period) and

16 Chapter 3 System Design and Implementation

random_tra�c_generator()), the start() method uses an Executor with a period equal to

gathering period. This Executor includes the piece of code that implements the gathering

of Measurements that the child UEs have generated.

3.2.2 Implementation of RACH

The only class that we did not analyze is the Main. In this class we have implemented

the RACH procedure. To be more precise, we have not implemented the whole RACH

procedure, but only the part that is related to the e�ciency of it. This part includes

the procedures until the Message 1 (as we see in chapter 2). The reason is, that the

collisions, that lead to the decrease of the RACH e�ciency are occurring right after the

the transmission of Message 1, thus we simulate up until to this point.

We implement this part of RACH as follows: we use the ScheduledExecutorService Class

(as in the UE and Gateway Class) to create an Executor with period of 10 ms. In the body

of the Executor we call the slot() method (algorithm 1). So, every 10 ms the algorithm 1

is running. We choose 10 ms because in the RACH procedure the slot has a period of 10

ms.

Algorithm 1 slot

1: procedure slot(UEs)

2: UE← check_UE(UEs) . returns the UEs that has measurements to send

3: for ue ∈ UE do
4: ue.preamble← random(1,64)

5: if check_collision(preamble) then . returns true if no collision occurs

6: ue.send_measurements()

7: else
8: number_of_collisions++

In line 2, we choose the UEs that have Measurements to send (which means that we

take the measurements that have the t_send value to null). Then, we iterate these UEs

and assign to them a random preamble. In line 5, we check if another UE has chosen the

same preamble, leading to a collision. If no collisions have occured, in line 6, we send the

measurements of this UE by calling the send_measurements() method, which changes

the t_send variable of each Measurement to the current time in UNIX format. Thus, we

calculate the delay for each measurement that has been sent, by subtracting the t_start

from the t_send.

3.2 Implementation 17

3.2.3 Implementation of Case 1 - AIMD

We implement Case 1 as follows: �rst, we create the Boolean variable "isCongested", that

de�nes if the network is congested (True) or not (False). If it is congested, we modify the

method of the UE periodic_traffic_generator(period), by doubling the period of this

speci�c UE."isCongested" changes in the slot() procedure, as we see in algorithm 2.

Algorithm 2 Case1

1: procedure slot(UEs)

2: UE← check_UE(UEs) . returns the UEs that has measurements to send

3: for ue ∈ UE do
4: ue.preamble← random(1,64)

5: if check_collision(preamble) then . returns true if no collision occurs

6: measurements← ue.send_measurements()

7: for ms ∈ measurements do
8: if ms.delay() > threshold then . threshold is system parameter

9: ue.isCongested← True

10: else
11: ue.isCongested← False

12: else
13: number_of_collisions++

In lines 7-11, we iterate the measurements that have been sent in this slot and we check

the delay that they have (line 8). If this delay is above the threshold, which is a system

parameter, we set the "isCongested" to True, which means that this UE will generate a

measurement in double time of the period, with s purpose of reducing the amount of

requests of the connection (Message 1) to the eNodeB. Also, we check if the delay is under

the threshold that we have set, and if it is we the "isCongested" to False, in order to reset

the period of the UE back to normal.

3.2.4 Implementation of Case 2 - Gateways

To implement Case 2 we create the Gateway Class as we described later. Then, in the

initiation of the simulator, we separate the total UEs into teams. Each team has a size equal

to the value of the system variable "number_in_each_team", which de�nes the number of

child’s of the gateways. Then, we follow the same procedure similarly as in the Normal

scenario(algorithm 1), as we see in algorithm 3.

It is important to explain extensively how the start() method works. In algorithm4 we

show the basic logic.

18 Chapter 3 System Design and Implementation

Algorithm 3 Case2

1: procedure slot_Case_2(Gateways)

2: GT← check_gt(Gateways) . returns Gateways that has measurements to send

3: for gt ∈ GT do
4: gt.preamble← random(1,64)

5: if check_collision(preamble) then . returns true if no collision occurs

6: gt.send_measurements()

7: else
8: number_of_collisions++

Algorithm 4 Executor in start

1: repeat
2: for ue ∈ children do
3: for ms ∈ ue.measurements do
4: measurements_gt.add(ms)

5: until

The method start() is running inside a Gateway object. This objects has children, as we

de�ne later, which are the UEs that are assigned to this gateway. Thus, in method start()
we iterate the children (line 2) and for every child we take the measurements that they

generate and have not been sent to the eNodeB successfully yet (line 3). Then, we add

those measurements to the gateway’s measurements, that need to be sent(line 4). This

method is running with a period equal to the "gather_period", which means that each

gateway gathers the measurements of the respective UEs every "gather_period" time.

3.2 Implementation 19

4
Evaluation

4.1 Experimental setup

In this section, we will describe the setup of our Experiments. We run the simulator

for each of the scenarios that we describe in chapter 3. Specially we tune the following

parameters:

• the total number of User Equipment

• the percentage of random and periodic User Equipment

• the threshold (Case 1)

• the number of UEs that are assign to one Gateway (Case 2)

• the gathering period of the Gateways (Case 2)

Then, we measure the average delay, the standard deviation of the delays, the number of

collisions, and the total attempts of requests (an UE, before send one or more measurement,

sends the Message 1 to the eNodeB) , in order to investigate how each scenario behaves

and to compare them.

In more detail, after the end of the simulation, we have gathered all the measurements and

their delay. The delay is calculated as follows. We take the time that the measurement is

sent, and we subtract the time that the measurement is generated. Moreover, the number

of total attempts refers to the times that a sensor is sending the Message 1 (preamble

selection), while the number of collisions refers to the times that the sensor did not get a

response from eNodeB, after sending the Message 1. So we can calculate the collision rate(

collisions
totalattempts), which shows the percentage of collisions in the total attempts.

21

Fig. 4.1: Experimental Setup - no collision

In �gure 4.1 we illustrate how we measure the delay. In the �rst step, the periodic UE

generates a measurement and initiates the RACH procedure in order to get up-Link

Resources and send the measurement to the network. This initiation, starts in step 2,

where the periodic UE, choose a preamble and send it to the wireless channel. If collision

does not occur, the eNodeB will respond with the Message 2 (in step 3) and then the UE

will send the Measurement under the Up-Link resources that the eNodeB has assign to it.

The delay that we measure is the time di�erence between step 1 and step 4. As we see in

�gure 4.2 if collision occurs in step 2, then the UE will have to send again the Message 1,

resulting to a higher delay (time di�erence between step 1 and step 5).

Fig. 4.2: Experimental Setup - collision

22 Chapter 4 Evaluation

In �gure 4.3 we show the di�erence between the periodic and the random UE. We observe

that a random UE generates measurements in non periodic time, it produces in slot 1

then in slot 4 and �nally in slot 27. In contrast, a periodic UE generates measurements in

periodic time, as we see, it �rst produces in slot 5, then in slot 10 and so forth. Moreover,

the system parameter "percentage of random and periodic UE", is referring to the number

of each kind of UE.

Fig. 4.3: This �gure shows the di�erence between periodic and random UE. The �rst one, is

requesting in random time, while the second one is requesting in periodic time (every 5

slots).

In �gure 4.4 we show what happens when a collision occurs. The UEs that were involved

in this collision are sending again a request, in the next slot. This extra time of the new

requests leads to a higher delay.

Fig. 4.4: This �gure shows what happens when a collision occurs. The involved UEs are requesting

again to the next available slot.

4.1 Experimental setup 23

4.2 System evaluation

In this section we present the performance evaluation of the proposed system. First, we

quote the results that we get for each Case and then we analyze them, in order to emerge

the e�ect of each strategy in the network.

4.2.1 Results

Next, we present the experimental results for each scenario.

4.2.2 Normal Case

First, in the Normal Case scenario, we run our simulator with tuning parameter the

percentage of random and periodic UEs, in order to see how the average delay and the

collision rate is �uctuating. In �gure 4.5, we present the results while the number of UEs

is 700 and we change the percentage of the Periodic UEs.

(a) Average Delay (b) Collision Rate

(c) Number of Measurements

Fig. 4.5: Sub-�gure (a) presents the average delay while the percentage of periodic UEs is increased,

Sub-�gure (b) presents the collision rate while the percentage of periodic UEs is increased,

Sub-�gure (c) presents the number of measurements that generated while the percentage

of periodic UEs is increased.

24 Chapter 4 Evaluation

We observe that, as we increase the percentage of periodic UEs, by increasing the number

of periodic UEs and decreasing the number of random UEs, the average delay and the

collision rate are decreasing. This is due to the probability of a random UE to generate

a measurement in a given moment. As we see in chapter 3, the probability of a random

UE to generate a measurement in 1 second is 0.25, while, in the beginning of chapter 4,

we state that the period of the UE is at least 10 seconds. Thus, a random UE will generate,

on average, more measurements in a speci�c time period, than a periodic UE. This is the

reason why the average delay and the collision rate are decreasing. In 4.5(c) we evaluate

this by noticing that the number of measurements that were generated, are decreasing as

we increase the percentage of periodic UEs, which means that we increase the number of

periodic UEs and decrease the number of random UEs.

Next, we calculate the average delay and the collision rate for only random UEs, while we

increase the number of UEs.

(a) Average Delay (b) Collision Rate

Fig. 4.6: Sub-�gure (a) presents the average delay while we increase the number of UEs and

sub-�gure (b) presents the collision rate while we increase the number of UEs.

In �gure 4.6, we observe that as we increase the number of UEs, the average delay and

the collision rate is increasing respectively. This is expected because as we increase the

number of UEs, we increase the number of measurements that are generated, leading to a

higher number of requests to the channel. This can cause more collisions, resulting in a

higher delay.

In experiments mentioned above, we compute that the standard deviation is approximately

7.1, thus, instead of calculating the con�dence intervals, we calculate how the measure-

ments are distributed based on their delay. In �gure 4.7, we present the results. We see

that as we increase the number of UEs, the number of measurements whose delay is above

8 milliseconds, is increasing respectively.

4.2 System evaluation 25

(a) 300 UEs (b) 700 UEs

(c) 1200 UEs

Fig. 4.7: These �gures present the distribution of the measurements, based on their delay, as we

increase the number of the UEs(Percentage of Periodic UEs 0).

Following, we run the same experiments, but for the percentage of periodic UEs set to 50%,

which means that we have the same number of periodic and random UEs.

(a) Average Delay (b) Collision Rate

Fig. 4.8: Sub-�gure (a) presents the average delay while the number of UEs is increased and sub-

�gure (b) presents the collision rate while the number of UEs is increased (Percentage of

periodic UEs 0.5).

In �gure 4.8, we see, that the average delay and the collision rate is increasing as we

increase the number of UEs, but the average delay, when the number of UEs is between

26 Chapter 4 Evaluation

100 and 1200 remains somewhat steady. This is, probably, due to the tolerance that the

system may have, up to a speci�c number of UEs.

(a) 300 UEs (b) 700 UEs

(c) 1200 UEs

Fig. 4.9: These �gures present the distribution of the measurements, based on their delay, as we

increase the number of the UEs (Percentage of Periodic UEs 0.5).

Again, in �gure 4.9, we present the distribution of the measurements, based on their delay.

It follows the same pattern with �gure 4.7, but the number of the measurements that are

above 8 milliseconds is smaller. This is due to the smaller number of measurements that

were generated in this experiment. For example, in the experiment of �gure 4.7(b), 20097

was generated, while in the experiment of �gure 4.9(b), 17736 was generated.

Finally, we run the same experiments, but for the percentage of periodic UEs set to 80%. In

�gure 4.10 we present the results.

4.2 System evaluation 27

(a) Average Delay (b) Collision Rate

Fig. 4.10: Sub-�gure (a) presents the average delay while we increase the number of UEs and sub-

�gure (b) presents the collision rate while we increase the number of UEs (Percentage of

periodic UEs 0.8).

We observe that in �gure 4.10(a) the average delay has a upward trend, but up to the value

of 3000 UEs it is approximately 3.5-4.2 milliseconds, which means that the system, with

these parameters, has a tolerance up to 3000 UEs.

In �gure 4.11, we present how the standard deviation and the Top Delay of all measure-

ments are �uctuated. Up to 3000 UEs the standard deviation remains 7 and for value greater

or equal to 3000 UEs, it is increasing exponentially. This shows that the system set with

these parameters can operate normally,up until 3000 UEs. Also in 4.11(b), we observe

that the Top Delay is increasing as we increase the number of UEs. Actually, up to 1200

UEs the Top Delay is increasing slowly and steadily, and when we pass this number, it is

increasing with an exponential rate.

(a) Standard Deviation of average delays (b) Top Delay

Fig. 4.11: Sub-�gure (a) presents Standard Deviation of average delays while the number of UEs

is increased and sub-�gure (b) presents the Top Delay of all measurements for each

experiment (Percentage of periodic UEs 0.8).

28 Chapter 4 Evaluation

4.2.3 Case 1 - AIMD

In Case 1, we �rst tune the system parameter "threshold", in order to �gure out the optimal

value. We run 20 di�erent experiments, that we have divided into four groups:

• Group A: Periodic Percentage 0.5, variable number of UEs and no threshold (Normal

Case)

• Group B : Periodic Percentage 0.5, variable number of UEs and threshold 10 ms

• Group C : Periodic Percentage 0.5, variable number of UEs and threshold 15 ms

• Group D : Periodic Percentage 0.5, variable number of UEs and threshold 20 ms

Figure 4.12 shows the average delay of the above experiments.

Fig. 4.12: This �gure shows the average delay for the di�erent group of experiment while we

increase the UEs.

We observe that the average delay has an upward trend as the number of UEs increased,

which is normal because if the number of UEs is increasing, then the probability of o

collision is increasing.

In order to �gure out if the Case 1 is improving the RACH performance, we create the

�gure 4.13, where we illustrate the di�erence of average delay of group B,C and D from

group A. In other words, we plot how much the average delay has decreased when we

apply Case 1.

4.2 System evaluation 29

Fig. 4.13: This �gure shows the di�erence of average delay of group B,C and D from group A.

We notice that in the value of 700 UEs,Group B (with threshold 10ms) does not perform

better from the Normal Case. This can be a result of a simulation error or if no collisions

have occured in this experiment, so the delay has never exceeded the threshold. Generally,

we observe that up to a number of 1200 UEs we have a standard improvement of 0.2 ms in

the average delay. Then as we increase the number of UEs up to a number of 2000, the

scenario ameliorates the performance of RACH in average delay by 0.4-0.8 ms. In addition,

as we keep increasing the number of UEs the scenario still performs better, but is not the

optimal. We conclude, that threshold of 15ms is the best, based on the average delay.

Next, we will present similar results, but for the collision rate.

Figure 4.14 shows the collision rate of the experiment group A through D.

Fig. 4.14: This �gure shows the collision rate for the di�erent group of experiment while we

increase the UEs.

30 Chapter 4 Evaluation

We observe that the collision rate has an upward trend as the number of UEs is increased,

which is normal because if the number of UEs is increasing, then the probability of o

collision is increasing.

In �gure 4.15, we present the di�erence of the collision rate between the experiments of

group B to D, from the experiments of group A (Normal Case).

Fig. 4.15: This �gure shows the collision rate for the di�erent group of experiment while we

increase the UEs.

First, we notice that the di�erence between the collision rate is in the range between -0.002

to 0.007. This is a small number since, in scenario 1, we seek to reduce the collisions and

the average delay by increasing the UEs’ period. Thus, it is reasonable not to have a big

di�erence in the collision rate because we reduce the collision, but we also decrease the

total measurements. Nevertheless, this is acceptable, as we assume in chapter 3, because

some applications have tolerance in the decrease of the rate that receives data.

However, in �gure 4.14 we see that as we increase the number of UEs more than 1000,

the Group C and B are improving the RACH performance. Especially, group C (15 ms),

displays the best and more stable performance from the other groups.

In �gure 4.16, we present the Variability of the delay in the experiments (Group A-D),

which is the fraction of the average delay and the standard deviation of the average delay.

We observe that the variability is approximately the same for all the experiments. So we

conclude that the scenario 1, with a threshold of 15ms ameliorates the RACH procedure,

even more by increasing the number of UEs above 1200.

4.2 System evaluation 31

Fig. 4.16: This �gure shows the variability for the di�erent group of experiment while we increase

the UEs.

4.2.4 Case 2 - Gateways

First, in Case 2 we run our simulator with tuning parameters the number of UEs and

the gathering period, in order to see how the average delay and the collision rate are

�uctuating. In �gure 4.17, we present the results, while we change the gathering period of

the gateways to 5,10,15 and 20 ms.

(a) Average delay (b) Collision Rate

Fig. 4.17: Sub-�gure (a) presents the average delays of di�erent gathering periods, while we

increase the number of UEs and sub-�gure (b) presents the collision rate of di�erent

gathering periods, while we increase the number of UEs (Percentage of periodic UEs

0.5).

We observe that as we increase the gathering period, the average delay is increasing respec-

tively. The reason is that the gathering period is the actual period that the measurements

are sending. When a measurement is produced, the device is �rst sending it to the gateway,

and the gateway will send it to the network, after the gathering period time has passed.

32 Chapter 4 Evaluation

Thus, in a higher gathering time, the measurements will be sent to the network more

sparse than in a lower gathering time.

Moreover, we notice that the collision rate is similar, between the gathering periods, which

means that this Case, has a tolerance in the increasing number of UEs. This is reasonable,

because the gateways are those that are requesting in the wireless channel. So, if the

number of UE that each team can host is 3, for example, and the total UEs are 1200, then

only
1200

3 = 400 devices (gateways) will interact with the wireless channel.

Next, we tune the number of UEs in each team. Figure 4.18 presents how the average

delay is varying, while we change the number of UEs in each team.

Fig. 4.18: This �gure shows the �uctuation of the average delay as the number of UEs in each

team. is increased. The total number of UE is 1200 and the gathering period is 10 ms.

As the number of UEs in each team is increasing, the average delay has an downward

trend. Indeed, for 20 UEs in each team and more, the average delay remains the same. This

result, shows that the system in the Case 2, is tolerant in the total number of UEs, but at

the same time the average delay is much higher from the other Cases.

In �gure 4.19, we choose 20 UEs per team to observe the tolerance of the system to a

large number of total UEs. Indeed, the average delay is not increasing dramatically as we

increase the total number of UEs to 5000.

4.2 System evaluation 33

Fig. 4.19: This �gure shows the �uctuation of the average delay as the number of total UEs in each

team is increased. The number of UEs in each team is 20 and the gathering period is 10.

Finally, we compare the Case 2 with the Normal Case. In �gure 4.20, we present the results.

Although the average delay of Case 2, is much higher from Normal Case, the tolerance of

Case 2 in a big number of UEs makes it a good strategy for a Massive IoT environment.

Fig. 4.20: This �gure shows the average delay of Normal Case and Case 2.

34 Chapter 4 Evaluation

5Conclusions

As the number of devices increases, the RACH procedure encounters an overload issue, as

described in chapter 2. To investigate this issue, we have built a Simulator, which reproduces

the RACH procedure at the exact moment that a sensor generates a measurement until it is

sent to the network. Furthermore, we use the basic idea of the AIMD algorithm applied by

the TCP, to reduce the sensors’ �ow without evolving the lower layers. Also, we examine

how we can reduce the �ow using gateways. Both of these scenarios were implemented in

the simulator.

The results revealed that as the number of devices is increasing, the delay is increasing

respectively. The idea of the AIMD algorithm performs a little better than the normal

RACH, while the gateways architecture almost triples the delay. Nevertheless, we �gure

out that if the number of UEs is increasing dramatically (5000 and more), the gateway

architecture can keep the performance stable.

35

Bibliography

[AK16] O. Arouk and A. Ksentini. “General Model for RACH Procedure Performance Analysis”.

In: IEEE Communications Letters 20.2 (2016), pp. 372–375 (cit. on p. 6).

[AKT16] O. Arouk, A. Ksentini, and T. Taleb. “How accurate is the RACH procedure model in

LTE and LTE-A?” In: 2016 International Wireless Communications and Mobile Computing

Conference (IWCMC). 2016, pp. 61–66 (cit. on p. 6).

[Bir+15] Andrea Biral, Marco Centenaro, Andrea Zanella, Lorenzo Vangelista, and Michele Zorzi.

“The challenges of M2M massive access in wireless cellular networks”. In: Digital Com-

munications and Networks 1.1 (2015), pp. 1–19 (cit. on p. 6).

[Erion] Erik Dahlaman, Stefan Parkvall, Johan Skold. 4G, LTE-Advanced Pro and The Road to 5G.

Elsevier Ltd., Third Edition (cit. on p. 3).

[Gila] David Gilbert. JFreeChart (A free Java chart library) www.jfree.org (cit. on p. 5).

[Gilb] David Gilbert. LENA+ (a version of the LTE-EPC Network simulator extended with a realistic

RACH model) https://github.com/signetlabdei/lena-plus (cit. on

p. 6).

[Pol+16] M. Polese, M. Centenaro, A. Zanella, and M. Zorzi. “M2M massive access in LTE: RACH

performance evaluation in a Smart City scenario”. In: 2016 IEEE International Conference

on Communications (ICC). 2016, pp. 1–6 (cit. on p. 6).

[PP14] A. Pourmoghadas and P. G. Poonacha. “Performance analysis of a machine-to-machine

friendly MAC algorithm in LTE-advanced”. In: 2014 International Conference on Advances

in Computing, Communications and Informatics (ICACCI). 2014, pp. 99–105 (cit. on p. 6).

[vsi19] vsiris, fotiou, mertzianis15, polyzos. Smart Application-aware IoT Data Collection. Journal

of Reliable Intelligent Environments, 2019 (cit. on p. 10).

[WCT12] C. Wei, R. Cheng, and S. Tsao. “Modeling and Estimation of One-Shot Random Access

for Finite-User Multichannel Slotted ALOHA Systems”. In: IEEE Communications Letters

16.8 (2012), pp. 1196–1199 (cit. on p. 6).

37

www.jfree.org
https://github.com/signetlabdei/lena-plus

[WCT13] C. Wei, R. Cheng, and S. Tsao. “Performance Analysis of Group Paging for Machine-Type

Communications in LTE Networks”. In: IEEE Transactions on Vehicular Technology 62.7

(2013), pp. 3371–3382 (cit. on p. 6).

[Xie+19] J. Xie, W. Cheng, T. Zhang, et al. “Active and Adaptive Application-Level Flow Control

for Latency Sensitive RPC Applications”. In: 2019 IEEE 25th International Conference on

Parallel and Distributed Systems (ICPADS). 2019, pp. 352–359 (cit. on p. 6).

[YEZ15] Mohamed Yousef, Hussein Elsayed, and Abdelhalim Zekry. “Design and Simulation of

Random Access Procedure in LTE”. In: International Journal of Computer Applications

Volume 110 - Number 16 (Jan. 2015) (cit. on p. 6).

[Υur] Υuriy-g. Simple Java Plot http://yuriy-g.github.io/simple-java-

plot/ (cit. on p. 5).

38 Bibliography

http://yuriy-g.github.io/simple-java-plot/
http://yuriy-g.github.io/simple-java-plot/

List of Acronyms

UE User Equipment

eNodeB Evolved Node B

RACH Random Access CHannel procedure

TCP Transmission Control Protocol

RPC Remote Procedure Call

39

List of Figures

2.1 RACH procedure. 4

2.2 This �gure shows that as the number of UEs is increasing, the number of

available preambles is remain the same, leading to collisions. 5

3.1 In the �gure above, we see that the time between tstart and tsend is longer

in an overloaded network. Also, tinit1 is when the RACH is initiated for the

�rst time and tinit2 is when start again, because a collision occurs in the �rst. 11

3.2 This �gure shows the basic architecture of Case 2. There are 2 sensors at

each cluster. Sensor Leaders are the gateways. 12

3.3 Between t1 and t2 the gateway will gather all the data that the sensor will

send. At t2 the gateway will initiate all the necessary procedures to establish

connection with eNodeB and it will start listening for new data from the

sensors until t3. At t3 it will again establish a connection with eNodeB to

send the data that receive in the time between t2 and t3 13

3.4 This �gure shows the architecture of the simulator. 14

4.1 Experimental Setup - no collision . 22

4.2 Experimental Setup - collision . 22

4.3 This �gure shows the di�erence between periodic and random UE. The �rst

one, is requesting in random time, while the second one is requesting in

periodic time (every 5 slots). 23

4.4 This �gure shows what happens when a collision occurs. The involved UEs

are requesting again to the next available slot. 23

4.5 Sub-�gure (a) presents the average delay while the percentage of periodic

UEs is increased, Sub-�gure (b) presents the collision rate while the per-

centage of periodic UEs is increased, Sub-�gure (c) presents the number of

measurements that generated while the percentage of periodic UEs is increased. 24

4.6 Sub-�gure (a) presents the average delay while we increase the number

of UEs and sub-�gure (b) presents the collision rate while we increase the

number of UEs. 25

4.7 These �gures present the distribution of the measurements, based on their

delay, as we increase the number of the UEs(Percentage of Periodic UEs 0). . 26

4.8 Sub-�gure (a) presents the average delay while the number of UEs is increased

and sub-�gure (b) presents the collision rate while the number of UEs is

increased (Percentage of periodic UEs 0.5). 26

41

4.9 These �gures present the distribution of the measurements, based on their

delay, as we increase the number of the UEs (Percentage of Periodic UEs 0.5). 27

4.10 Sub-�gure (a) presents the average delay while we increase the number

of UEs and sub-�gure (b) presents the collision rate while we increase the

number of UEs (Percentage of periodic UEs 0.8). 28

4.11 Sub-�gure (a) presents Standard Deviation of average delays while the num-

ber of UEs is increased and sub-�gure (b) presents the Top Delay of all

measurements for each experiment (Percentage of periodic UEs 0.8). 28

4.12 This �gure shows the average delay for the di�erent group of experiment

while we increase the UEs. 29

4.13 This �gure shows the di�erence of average delay of group B,C and D from

group A. 30

4.14 This �gure shows the collision rate for the di�erent group of experiment

while we increase the UEs. 30

4.15 This �gure shows the collision rate for the di�erent group of experiment

while we increase the UEs. 31

4.16 This �gure shows the variability for the di�erent group of experiment while

we increase the UEs. 32

4.17 Sub-�gure (a) presents the average delays of di�erent gathering periods,

while we increase the number of UEs and sub-�gure (b) presents the collision

rate of di�erent gathering periods, while we increase the number of UEs

(Percentage of periodic UEs 0.5). 32

4.18 This �gure shows the �uctuation of the average delay as the number of UEs

in each team. is increased. The total number of UE is 1200 and the gathering

period is 10 ms. 33

4.19 This �gure shows the �uctuation of the average delay as the number of total

UEs in each team is increased. The number of UEs in each team is 20 and

the gathering period is 10. 34

4.20 This �gure shows the average delay of Normal Case and Case 2. 34

42 List of Figures

	Cover
	Titlepage
	Abstract
	Abstract
	Acknowledgement
	Acknowledgements
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Structure

	2 Background and Related Work
	2.1 Background
	2.1.1 Description of RACH procedure
	2.1.2 Weakness of RACH
	2.1.3 Technical Characteristics of the Simulator

	2.2 Related Work

	3 System Design and Implementation
	3.1 Design
	3.1.1 Traffic Modeling
	3.1.2 Case 1 - AIMD
	3.1.3 Case 2 - Gateways

	3.2 Implementation
	3.2.1 Architecture
	3.2.2 Implementation of RACH
	3.2.3 Implementation of Case 1 - AIMD
	3.2.4 Implementation of Case 2 - Gateways

	4 Evaluation
	4.1 Experimental setup
	4.2 System evaluation
	4.2.1 Results
	4.2.2 Normal Case
	4.2.3 Case 1 - AIMD
	4.2.4 Case 2 - Gateways

	5 Conclusions
	Bibliography
	List of Acronyms
	Acronym
	List of Figures

