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I. Introduction 
 
A. Clustering & Applications 

 
Clustering is a division of data into groups of similar objects. Each group - 

called cluster - consists of objects that are similar amongst themselves and dissimilar 

compared to objects of other groups. Cluster analysis is the organization of a 

collection of patterns (usually represented as a vector of measurements, or a point in 

a multidimensional space) into clusters based on similarity. Patterns within a valid 

cluster are more similar to one another than they are to a pattern belonging to a 

different cluster.  

Cluster analysis is a main task of exploratory data mining and a common 

technique for statistical data analysis used in many fields, including pattern 

recognition, image analysis, information retrieval, bioinformatics, data compression, 

computer graphics and machine learning. Depending on the application, what is meant 

by a “cluster” may differ a lot, and cluster definition and methodology have to be 

adapted to the specific aim of clustering in the application of interest. Different aims 

served through clustering can indicatively be: 

 

§ delimitation of species of plants or animals in biology,  

§ medical classification of diseases,  

§ discovery and segmentation of settlements and periods in archaeology,  

§ image segmentation and object recognition,  

§ social stratification,  

§ market segmentation,  

§ efficient organization of databases for search queries 

 

There are also various general tasks for which clustering is applied in many subject 

areas such as: 

§ exploratory data analysis looking for “interesting parties” without 

prescribing any specific interpretation, potentially thus creating new 

research questions and hypotheses, 

§ information reduction and structuring of sets of entities from any subject 

area for simplification, effective communication, or effective 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 6 

access/action such as either complexity reduction for further data 

analysis or classification systems, 

§ the investigation of the correspondence of a clustering in specific data 

with other groupings or characteristics, whether hypothesized or derived 

from other data. 

 

B. Traditional Clustering Algorithms  

 

Although the presentation of a complete list of all the existing clustering 

algorithms is challenging due to the diversity of information, the intersection of 

research fields and the development of modern computer technology, the traditional 

clustering algorithms can be divided into 9 categories within which some of the most 

used clustering methods are included. As it will be analyzed below, these algorithms 

are explicitly capable of handling datasets that consist of a single type of variable 

(either numeric or categorical).  

 

Clustering Algorithms Based on Partition 

 

The basic idea of this kind of clustering algorithms is to regard the centre of 

data points as the centre of the corresponding cluster. K-means and K-medoids are the 

two most famous of their kind of clustering algorithms. The core idea of K-means is 

to update the center of cluster represented by the center of data points by iterative 

computation and the iterative process will then be continued until some criteria for 

convergence are met. K-mediods is an improvement of K-means aiming at dealing 

with discrete data, which takes the data point, most near the center of data points, as 

the representative of the corresponding cluster. The typical clustering algorithms 

based on partition also include PAM, CLARA, CLARANS. 
 

Clustering Algorithms Based on Hierarchy 

 

The basic idea of this kind of clustering algorithms is the construction of the 

hierarchical relationship among data in order to cluster. Typical algorithms of this 

kind of clustering include BIRCH, CURE, ROCK and Chameleon. BIRCH registers 
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the clustering result by constructing the feature tree of clustering, CF tree, one node 

of which stands for a subcluster. CF tree will dynamically grow when a new data point 

comes. CURE, suitable for large-scale clustering, takes a random sampling technique 

to cluster samples separately and integrates the results in the end. ROCK is an 

improvement of CURE for dealing with data of enumeration type, taking into 

consideration the effect on the similarity from the data around the cluster. Chameleon, 

initially, divides the original data into clusters of smaller size based on the nearest 

graph, and then the clusters of small size are merged into a cluster of a  bigger size, 

based on agglomerative algorithm. 
 

Clustering Algorithms Based on Fuzzy Theory 

 

The basic principle behind this kind of clustering algorithms is that the discrete 

value of belonging label, {0, 1}, is changed into the continuous interval [0, 1], with a 

view to describing the belonging relationship among objects more rationally. Typical 

algorithms of this kind of clustering include FCM, FCS and MM. The core idea of 

FCM is to get membership of each data point to every cluster by optimizing the object 

function. FCS, different from the traditional fuzzy clustering algorithms, takes the 

multidimensional hypersphere as the prototype of each cluster, so as to cluster with 

the distance function based on the hypersphere. MM, based on the Mountain Function, 

is used to find the centre of cluster. 

 

Clustering Algorithms Based on Distribution 
 

The basic concept is that the data, generated from the same distribution, belongs 

to the same cluster if several distributions in the original data exist. The typical 

algorithms are DBCLASD and GMM. The core idea of DBCLASD, a dynamic 

incremental algorithm, is that if the distance between a cluster and its nearest data 

point satisfies the distribution of expected distance generated from the existing data 

points of that cluster then the nearest data point should belong to this cluster. The core 

idea of GMM is that GMM consists of several Gaussian distributions from which the 

original data is generated and the data, obeying the same independent Gaussian 

distribution, is considered to belong to the same cluster. 
 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 8 

Clustering Algorithms Based on Density 

 

The basic idea of this kind of clustering algorithms is that the data located in 

the region with high density of the data space is considered to belong to the same 

cluster. The typical ones include DBSCAN, OPTICS and Mean-shift. DBSCAN is the 

most well known density-based clustering algorithm, generated from the basic idea of 

this kind of clustering algorithms directly. OPTICS is an improvement of DBSCAN 

and it overcomes the shortcoming of DBSCAN of being sensitive to two parameters - 

the radius of the neighborhood and the minimum number of points in a neighbourhood. 

In the process of Mean-shift, the means of offsetting the current data point is 

calculated at first, then the next data point is figured out based on the current data 

point and the offset, and last, the iteration will be continued until some criteria are 

met. 
 

Clustering Algorithms Based on Graph Theory 

 

According to this kind of clustering algorithms, clustering is realized on the 

graph where the node is regarded as the data point and the edge is regarded as the 

relationship among data points. Typical algorithms of this kind of clustering are 

CLICK and MST-based. The core idea of CLICK is to carry out the minimum weight 

division of the graph with iteration in order to generate the clusters. Generating the 

minimum spanning tree from the data graph is the key step to do the cluster analysis 

for the MST-based clustering algorithm. 
 

Clustering Algorithms Based on Grid 

 

The basic notion of this kind of clustering algorithms is that the original data 

space is changed into a grid structure with definite size for clustering. Typical 

algorithms of this kind of clustering are STING and CLIQUE. The core concept of 

STING which can be used for parallel processing is that the data space is divided into 

many rectangular units through constructing the hierarchical structure and the data 

within different structure levels is clustered respectively. CLIQUE takes advantage of 

the grid-based clustering algorithms and the density-based clustering ones. 
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Clustering Algorithms Based on Fractal Theory 

 

Fractal stands for the geometry which can be divided into several parts sharing 

some common characteristics with the whole. The typical algorithm of this kind of 

clustering is FC, the core idea of which is that the change of any inner data of a cluster 

does not have any influence on the intrinsic quality of the fractal dimension.  
 

Clustering Algorithms Based on Model 
 

The basic intention is to select a particular model for each cluster and find the 

best fitting for that model. There are mainly two kinds of model-based clustering 

algorithms, one is based on a statistical learning method and the other is based on a 

neural network learning method. The typical algorithms based on the statistical 

learning method are COBWEB and GMM. The core idea of COBWEB is to build a 

classification tree based on some heuristic criteria in order to realize hierarchical 

clustering on the assumption that the probability distribution of each attribute is 

independent. The typical algorithms based on neural network learning method are 

SOM and ART. The core idea of SOM is to build a mapping of dimension reduction 

from the input space of high dimension to output space of low dimension on the 

assumption that there is topology in the input data. The core idea of ART, an 

incremental algorithm is to generate a new neuron dynamically to match a new pattern 

which will then create a new cluster when the current neurons are not enough. 

 

The detailed and comprehensive comparisons of the afore mentioned clustering 

algorithms are summarized in the table below as follows: 

 

Category Typical Algorithm 

Clustering algorithm based on partition K-means, K-medoids, PAM, CLARA, 

CLARANS 

Clustering algorithm based on hierarchy BIRCH, CURE, ROCK, Chameleon 

Clustering algorithm based on fuzzy 

theory 

FCM, FCS, MM 
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Clustering algorithm based on 

distribution 

DBCLASD, GMM 

Clustering algorithm based on density DBSCAN, OPTICS, Mean-shift 

Clustering algorithm based on graph 

theory 

CLICK, MST 

Clustering algorithm based on grid STING, CLIQUE 

Clustering algorithm based on fractal 

theory 

FC 

Clustering algorithm based on model COBWEB, GMM, SOM, ART 

 
Table 1 Traditional Algorithms  

C. Clustering Mixed Mode Data 
 

The advent of sophisticated tools of measurement has given rise to new modes 

of data collection for cluster analysis. As a result, data often come along with complex 

dependence structures. These complex structures typically require non-standard 

statistical approaches that usually entail computationally intensive methodologies. 

Conventional tools generally rely on the assumption that data or some suitable 

transformations of them, follow a normal distribution. This assumption no longer 

applies to these contexts directly. Over the past 20 years, there have been remarkable 

advancements in statistical methodology for the analysis of such data. The 

development of statistical software and packages has unfortunately not kept pace with 

these methodological advances, but practitioners nonetheless now have a host of 

increasingly sophisticated tools available to them for handling complex data. This has 

made their adoption as well as their application in the solution of important 

substantive problems across several disciplines made possible particularly in 

engineering, finance, medicine and health. 

Multivariate data comprising mixtures of discrete (i.e., categorical, binary, 

count) and continuous measurements (also referred to as “non-commensurate” 

outcomes) are a particularly common example of non-standard correlated data in 

practice. And since most real data contain different types of variables, an important 

area in cluster analysis deals with clustering mixed data. In practice, mixed data sets 

arise when the variables observed consist of heterogeneous sets of variables indicating 
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several variable types, e.g., numeric, categorical, etc. Numeric features can take real 

values such as height, weight, and distance. Categorical features represent data that 

can be divided into a fixed number of categories such as colour, race, gender, 

profession, and blood group. The capability of dealing with datasets containing both 

numeric and categorical attributes is undoubtedly crucial since datasets with mixed 

types of characteristics are the most common case in real life data mining applications.  

As it is already acknowledged, clustering algorithms group data points into 

clusters using some notion of “similarity” which can be as simple as the Euclidean 

distance. To compute the similarity between numeric feature values mathematical 

operations (such as distances, angles, summation, or mean) are applied to them. 

Distance-based similarity measures are mostly utilised for numeric data points. In 

general, categorical feature values are not inherently ordered (e.g., red and blue) and 

consequently it is not possible to directly compute the distance between two 

categorical feature values. Therefore, computing distance-based similarity measures 

for categorical data is a demanding task partly justifying the existence of several 

options for clustering mixed data. The fundamental challenges encountered when 

dealing with this kind of data is to equitably balance the contribution from continuous 

and categorical variables (considering that the current clustering algorithms are unable 

to properly handle data sets in which only a subset of variables is related to the 

underlying cluster structure of interest) and to characterise the nature of relationships 

between measurements of different and/or the same subjects either over time or cross-

sectionally in one or more spatial dimensions. Furthermore, the ad hoc approach of 

carrying out separate analyses for the numeric and continuous variables in the data is 

not only clearly deficient in many applications, but also not a straightforward 

undertaking. 

It should be highlighted that the primary focus in the literature for the last 

decades has been on clustering data sets that are comprised of a single type, that is all 

variables are either numeric, or categorical (nominal or ordinal). For cluster analysis 

based on mixed-type data, comparatively few clustering methods are available. As 

such, the analysts working with data sets containing a mix of numeric and categorical-

valued data apply clustering algorithms that usually adopt the following approaches: 

convert the data set to a single data type (by either coding the categorical variables as 

numbers and applying methods designed for continuous variables or converting the 

continuous variables into categorical variables via interval-based bucketing) or 
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directly handle mixed data clustering. And the fact that few researchers have 

developed methods for converting a mixed dataset to a pure numeric dataset so that 

clustering algorithms meant for pure numeric datasets can be employed is of interest. 

So, this is indeed a new perspective on the challenging problem of mixed data 

clustering. In general, the clustering methods for mixed-type data which belong to the 

first approach (i.e. that convert the data sets to a single data type) suffer from 

significant drawbacks including loss of information due to discretization thus raising 

an open demand to the research community to develop algorithms able to reduce the 

adverse effects of data transformation, computation of distances between any 

observations not feasible for large data sets, arbitrary weighting of continuous versus 

categorical variables (e.g., as in dummy coding or the similarity metric of Gower 

1971) and inability to equitably balance the contribution of continuous and categorical 

variables without strong parametric assumptions or difficult-to-specify tuning 

parameters.  

Regarding the area of big data mentioned, it is common knowledge that most 

successful machine learning algorithms lose their interpretability and may be treated 

as a black box when datasets increase in size and domains become complex. Hence, 

mixed data clustering algorithms are no exception to this. The idea of clustering 

models that are easy to explain is appealing to practitioners such as clinicians, 

business analysts, geologists, and biologists - interpretable models can assist them in 

making informed decisions. Unfortunately, only a few researchers have explored this 

area of developing interpretable mixed data clustering methods to address critical 

aspects of the models: e.g., why a certain set of data points forms a cluster or how 

different clusters can be distinguished from one another. Novel research in this area 

will produce outcomes outside the realms of the research community. Many clustering 

algorithms may benefit from reducing the dimensions of multivariate mixed data as a 

result of reducing their execution time and model complexity. Recent research in the 

field of feature selection for mixed data has been carried out; however, combining 

such results with clustering has not been satisfactorily explored. The selection of a 

subset of relevant features has the potential of enhancing the interpretability of 

clustering algorithms as well. Another repercussion of big data is ensuring the 

scalability of clustering algorithms so as to make them useful in real-world scenarios. 

Parallelization of mixed data clustering algorithms is a viable approach to allow 

scaling with increasing data size and maintaining linear time complexity (especially 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 13 

for partitional clustering). Active research in this area is in progress to keep the field 

in synchronization with big data challenges. Similarly, developing fast and accurate 

online clustering algorithms to handle large streams of mixed data requires attention 

to address shortcomings which include low clustering quality, evaluation of new 

concepts and concept drift in the underlying data, difficulties in determining cluster 

centers, and insufficient ability to deal with outliers.  

 

Significant Application Areas  
 

Employing mixed data clustering in multiple domains is of paramount 

importance. Mixed data frequently occur in many applications such as health, 

marketing, business, finance, and social studies. For instance, in the field of health 

and biology, McParland, Gormley, and McParland et al. developed a mixed data 

clustering algorithm to study high dimensional numeric phenotypic data and 

categorical genotypic data. The study led to a better understanding of metabolic 

syndrome (MetS). Malo et al. used mixed data clustering to study people who died of 

cancer in Hijuelas between 1994 and 2006. Storlie et al. developed a model-based 

clustering for mixed datasets with missing feature values to cluster autism spectrum 

disorder. Aerts et al. gave several examples from developmental toxicology where 

fetal data from laboratory animals include binary, categorical, and continuous 

outcomes. More recently, Daniels and Normand analysed mixed patient data to profile 

the performance of regional networks of health care providers in the United States. 

Researchers have used various types of clustering approaches for mixed data for heart 

disease, occupational medicine, digital mammograms, acute inflammations, age of 

abalone snails, human life span, dermatology, medical diagnosis, toxicogenomic, 

genetic regulation, analysis of biomedical datasets, and cancer.  

Another example in the field of business and marketing is Hennig and Liao who 

applied mixed data clustering techniques for socio-economic stratification by using a 

2007 US data survey of consumer finances. Kassi et al. developed a mixed data 

clustering algorithm to segment gasoline services stations in Morocco to determine 

important features able to influence the profit of these service stations. Mixed data 

clustering has also been used in credit approval, income prediction (adult data), 

marketing research, customer behaviour discovery, customer segmentation and 

catalogue marketing, customer behaviour pattern discovery, motor insurance, and 
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construction management. Other applications could be these of Moustaki and 

Papageorgiou who applied mixed data clustering in archaeometry for the classification 

of archaeological findings into groups. Philip and Ottaway used mixed data clustering 

to cluster Cypriot hooked-tang weapons. Chiodi used mixed data clustering for 

andrological data and Iam-On and Boongoen for student dropout prediction in a Thai 

university. Mixed data clustering has also been used in teaching assistant evaluation, 

class examination, petroleum recovery, intrusion detection, forest cover type, online 

learning systems, automobiles, printing process delays and country flags mining.  

 

Impact Areas  

 

As discussed in the previous subsection, mixed data clustering algorithms have 

been applied in various application domains. Although employing mixed data 

clustering in multiple domains is very important, areas like these of health and 

business informatics will have more impact because they attempt to solve real-world 

problems related to people. 

More specifically, most of the data for health applications are based on either 

electronic health records (EHR) or sensors. EHR data can contain a patient's medical 

history, diagnoses, medications, treatment plans, immunization dates, allergies, 

radiology images as well as laboratory and test results. EHR is a great resource to 

allow the deployment of evidence based machine learning tools (supervised and 

unsupervised) to make decisions about patients' care. Therefore, EHR data is a good 

example of mixed data with high-impact real-world applications. Data from sensors 

can be either numeric (e.g., motion or physiology) or categorical (e.g., door open or 

closed). These datasets are important in building machine learning driven applications 

for rehabilitation, assessment of medical conditions, and detection and prediction of 

health-related events. Application of mixed data clustering on these datasets is crucial 

in identifying medical conditions among people with disability, morbidity or cognitive 

disorders. Clustering on these diverse datasets can also help in performing sex and 

gender-based research, vulnerable populations and older adults. 

Business analytics is another domain in which a large number of mixed datasets 

is created. Market research is an important area in this domain. Analysis of customer 

datasets containing categorical features (e.g., type of a customer, preference, and 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 15 

income group) and numeric features (e.g., age and the number of transactions) provide 

managers with insights into customer behaviour. Credit card data analysis is used for 

the prediction of the financial health of an individual. Typically, credit card datasets 

are mixed datasets on which various clustering algorithms have been applied. The 

financial statements of a company are analysed to assess the company's financial 

health; the datasets consisting of categorical features (e.g., the type, products, and the 

region of the company) along with numeric features (e.g., financial ratios) present 

better information about a company. People analytics is also an emerging area: 

companies are interested in knowing about present and potential employees to improve 

both productivity and satisfaction. Employee datasets consisting of categorical 

features (e.g., education, department, and job type) and numeric features (e.g., age, 

years in job, and salary) can capture information about employees better than datasets 

containing only one type of feature. 

 

In the current thesis, the research problem that will be approached covers the 

clustering of mixed mode data, its benefits and applications. In the subsequent 

Chapter 2, the literature review for clustering mixed mode data is detailed including 

the methodologies that will be used as part of the thesis and any additional 

methodologies that are available for this type of clustering according to the 

bibliography. In Chapter 3, a detailed overview and analysis is presented for the 

dataset on which the selected clustering methods will be applied while in Chapter 4 

the clustering results and their interpretation are provided. In chapter 5 that follows, 

the conclusions drawn from this research are described along with any future work 

required for the clustering of mixed mode data. 
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II. Literature Review: Methodologies for clustering mixed mode 

data 
 

In this chapter, the clustering algorithms to be used as part of the current thesis 

are analysed and compared and other clustering algorithms for mixed mode data 

included in the relevant bibliography are also presented.  
 

A. Comparison of used clustering methods  

 

Within the scope of this thesis, three clustering algorithms are used: K-

Prototypes, Kamila, and Latent Variable Model, each one of which can cluster mixed-

type data.   

The K-Prototypes algorithm, proposed by Huang, belongs to the family of 

distance-based and partitional cluster algorithms and it is an extension to the K-means 

and K-modes algorithms. The algorithm depends on the concept of K-means algorithm 

and, furthermore, it eliminates the numeric data constraint of that algorithm. In this 

type of algorithms, the centre of data point becomes the centre of the consistent 

cluster. The cluster centres are represented by mean values for numeric features and 

mode values for categorical features. The cluster objects are subsequently divided, 

and the clusters are updated depending on the partition. However, as proposed by the 

bibliography and will be further examined as part of the thesis, there are some 

shortcomings in this clustering process: (1) The random selection of the initial cluster 

centres results in the uncertainty and randomness of the clustering results, and the 

number of clusters should be manually determined; (2) the simple Hamming distance 

is used to calculate the dissimilarity between the categorical data (0 or 1 depending 

on whether the feature values are same or different) and the cluster centres resulting 

in the loss of information and the inability to objectively reflect the real situation 

between the data objects and the clusters resulting in inaccurate clustering results; (3) 

the parameter used to adjust the proportion between categorical data and numerical 

data needs to be manually determined; and (4) the structural characteristics of 

categorical data and numerical ones and the overall distribution of datasets have not 

been fully considered. This algorithm can be found in the (kproto, Kproto) function 

of the clustMixType R package. 
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The KAMILA (KAy-means for MIxed LArge data) algorithm, proposed by 

Foss, A., Markatou, M. and Ray, B., is a model-based adaptation of the K-means 

algorithm and the Gaussian multinomial mixture models. It overcomes the challenges 

inherent in the various extant methods for clustering mixed continuous and categorical 

data. More specifically, in this type of clustering, the variables (i.e., interval, nominal, 

or categorical scale) are used in their original measurement scale and hence they are 

not transformed to either all numeric or all categorical ones thus avoiding a loss of 

information. Moreover, this algorithm ensures: (1) a sensible balancing between 

continuous and categorical variables by using the properties of Gaussian-multinomial 

mixture models and (2) the avoidance of overly restrictive parametric assumptions for 

numeric features generalizing the form of the clusters to a broad class of elliptical 

distributions as it happens in K-means. The sample of continuous variables is assumed 

to follow a mixture distribution with arbitrary spherical clusters (where the density of 

the data is only dependent on the distance to the centre of the distribution) by using a 

kernel density estimation technique, the categorical variables are supposed to be 

sampled from a mixture of multinomial variables and the Modha-Spangler weighting 

of variables is also used in which categorical variables must be transformed into 

indicator variables in advance. The latter results in not requiring the user to specify 

any variable weights or use coding schemes which facilitate algorithm reproducibility 

and ease of use. This algorithm begins with a set of centroids for the continuous 

variables and a set of parameters for the categorical variables. For continuous 

variables, the Euclidean distance with the closest centroid is computed. This set of 

minimal distances is used for the estimation of the mixture distribution of continuous 

variables. For categorical variables, the probabilities of observing the data in the 

corresponding cluster are computed. The log-likelihood of the sum of these 

components is then used to find the most appropriate cluster for each subject. Based 

on this temporary partition, the centroids and the parameters are updated to best 

represent the clusters. These steps are repeated until the clusters are stable. Finally, 

multiple runs of this process are performed with various initializations and the 

partition maximizing the sum of the best final likelihoods is retained. The R package 

Kamila is a direct implementation of this technique by its authors.  

The Latent Variable Model, proposed by McParland, D. and Gormley, I.C., is 

a model-based clustering procedure which uses a latent variable model. It is proposed 

that a latent variable, following a mixture of Gaussian distributions, generates the 
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observed data of mixed type. The observed data may be any combination of 

continuous, binary, ordinal or nominal variables. A parsimonious covariance structure 

is employed for the latent variables, leading to a suite of six clustering models that 

vary in complexity and provide an elegant and unified approach to clustering mixed 

data. An expectation maximisation (EM) algorithm is used to estimate clustMD; in the 

presence of nominal data a Monte Carlo EM algorithm is required. The Latent Variable 

Model algorithm is implemented by its authors in the clustMD R package. 

The Latent Class Model, proposed by Marbac, M., Sedki, M. and Patin, T., is 

model-based clustering focusing on variable selection. The proposed model 

considered two types of variables (relevant - having a different distribution among 

components - and irrelevant - having the same distribution among components) and 

assumes independence within components. Additionally, it presents two methods of 

model selection: the first one simultaneously performs model/variable selection and 

parameter inference and optimizes the Bayesian Information Criterion (BIC) with a 

modified version of the standard expectation – maximization algorithm (EM) to permit 

the maximization of the penalized likelihood while the second one selects variables of 

a diagonal Gaussian mixture model without requiring parameter inference by 

maximizing the Maximum Integrated Complete-data Likelihood criterion (MICL). An 

important difference between the previous cluster analysis techniques and LCM is that 

the latter is a model-based approach which means that it is postulated for the 

population the data sample is obtained from. More precisely, it is assumed that a 

mixture of underlying probability distributions generates the data. The specific 

clustering approach is similar to standard non-hierarchical cluster techniques such as 

k-means clustering, in which the allocation of objects to clusters should be optimal 

according to some criteria. These criteria typically involve minimizing the within-

cluster variation or, equivalently, maximizing the between-cluster one. An advantage 

of using a statistical model is that the choice of the cluster criterion is less arbitrary 

and the approach includes rigorous statistical tests. Therefore, instead of finding 

clusters with a chosen distance measure as happens in the other algorithms, a model 

is used that describes the data distribution and depending on this model, the 

probabilities that certain cases are members of certain latent classes are assessed. 

Moreover, LC clustering is very flexible as both simple and complicated distributional 

forms can be used for the observed variables within clusters. As in any statistical 

model, restrictions can be imposed on the parameters to obtain more parsimony and 
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formal tests can be used to check their validity. Another advantage of the model-based 

clustering approach is that several criteria can be used to assess the optimal number 

of clusters- a direct consequence of the statistical model used to describe the data- and 

no decisions must be made about the scaling of the observed variables. The first one 

is a large advantage compared to, e.g., hierarchical clustering methods where a cut-

off value must be chosen by the user and in most cases, no clear criteria exist for such 

a choice. For the second one, when working with normal distributions with unknown 

variances, the results will be the same irrespective of whether the variables are 

normalized or not. This is very different from standard non-hierarchical cluster 

methods like k-means, where scaling is always an issue. Other advantages are that it 

is relatively easy to deal with variables of mixed measurement levels (different scale 

types) and that there are more formal criteria to be met in order to make decisions 

about the number of clusters (i.e., Bayesian information criterion (BIC) and 

dissimilarity-based ones) and other model characteristics. The Latent Class Model 

algorithm is implemented by its authors in the VarSelLCM R package. 

After thoroughly analysing the afore mentioned clustering methods, the 

subsequent Table 2 summarizes these selected algorithms as far as three design areas 

are concerned in the specific setting of mixed data clustering. The first area relates to 

how these algorithms calculate similarities/distances for categorical and numeric data 

when they are distance-based algorithms or how they transform the data when they are 

model-based methods. The second area refers to the methodology used to merge 

numerical and categorical parts. The last area concerns the algorithm choice regarding 

the approach to be used to build optimal clusters.  

As seen below, algorithms are grouped as distance-based or model-based - K-

Prototypes algorithm belongs to the first category while Kamila, Latent Variable 

Model and Latent Class Model belong to the second category. It is concluded that the 

dissimilarity criterion used by the K-Prototypes algorithm is different between 

numeric and categorical data as Euclidean distance is calculated for the numeric 

variables and Hamming distance for the categorical ones. For this method, merging is 

also required by using the weighted sum of the distances with the optimization 

algorithm to be this of K-means. For Latent Class Model, the distributions of both 

numeric and categorical variables are transformed into probabilities as opposed to 

Kamila where Euclidean distance is used to handle numeric variables and probabilities 

for categorical ones. Due to this different variable handling, Kamila needs to set up 
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an ensemble-like approach to merge both types of data using both K-means and 

Expectation Maximization (EM) as optimization algorithms. On the other hand, Latent 

Class Model does not need any merging procedure as both types of variables are 

included in a unique probabilistic model and EM algorithm is used with specific 

variants. 
 

Clustering  

Method 

Distance or transformation Merge  

Mode 

Optimization 

Algorithm Numeric Categorical 

Distance-based methods 

K-Prototypes Euclidean Hamming Weighted sum K-means 

Model-based methods 

Kamila Euclidean Probabilities Ensemble-like 

approach 

K-means & EM 

Latent Class 

Model (LCM) 

Probabilities Probabilities NA EM & feature 

selection 

 

Table 2 Description of selected methods with regards to design questions related to (1) 

similarities/distances or data transformation, (2) methodology to merge numerical and 

categorical parts and (3) algorithm choice 

 
B. Analysis of used clustering methods  

 

Kamila Clustering 

Detailed material for the Kamila clustering method can be found in the bibliography: 

§ Foss, A., Markatou, M., Ray, B. and Heching, A. (2016). A semiparametric 

method for clustering mixed data. Machine Learning, Volume 105(Issue 3), 

pp.419–458. 

§ Foss, A.H. and Markatou, M. (2018). kamila: Clustering Mixed-Type Data in 

R and Hadoop. Journal of Statistical Software, Volume 83(Issue 13). 
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Notation & Definitions 

 
Consider a data set that consists of N independent and identically distributed 

observations of a (P + Q) - dimensional vector of random variables (VT, WT)T that 

follow a finite mixture distribution with g components. V is a P-dimensional vector of 

continuous random variables and W is a vector of Q categorical random variables 

where the qth element of W has Lq categorical levels denoted 1, 2, . . ., Lq with q = 1, 

2, . . ., Q. Note that vector V is conditionally independent of W, given population 

membership. 

 

Given membership in the gth cluster, the following are considered: 

• V is modelled as a vector following a mixture distribution with arbitrary 

spherical clusters with individual component density functions fv,g (v; μg, Σg), 

where g is the number of clusters in the mixture, μg denotes the gth centroid, 

and Σg the gth scaling matrix.  

• W is modelled as a vector following a mixture of multinomial random variables 

with individual component probability mass functions fw,g(w) = ΠqQ =1m(wq; 

θgq), where m(·; ·) denotes the multinomial probability mass function, and θgq 

is the parameter vector of the multinomial mass function of the qth categorical 

variable for the gth cluster.  

• Taking into account the local independence assumption, the joint density of 

(VΤ, WΤ) Τ is                                                            

 
with the overall density unconditional on cluster membership to be 

                              (1) 

where πg is the prior probability of observing the gth cluster. 
 

Kernel Density Estimation 

 

The Proposition 2 states that if ΧÎℝp follows a spherically symmetric distribution 

with centre μ, then 
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                                             (2) 

 

where r = "(𝑥 − 𝜇)!(𝑥 − 𝜇)	, R = "(𝑋 − 𝜇)"(X	 − 	µ)	and fR is the probability density 

of R. The 𝑓# 	- is constructed by using a kernel density estimation scheme, which is then 

substituted into (2) in place of fR. Note that X corresponds to vector V above within a 

particular cluster, and that by using a scaling matrix Σg, the result can be extended to 

elliptical distributions. The KAMILA function currently uses Σg equal to the identity 

matrix.  

 

Algorithm Description 
 

Kamila proceeds by estimating the unknown parameters of (1) through an iterative 

process. For each initialization, the algorithm runs iteratively for multiple times until 

either a pre-specified maximum number of iterations is reached or until population 

membership is unaltered from the previous iteration. 

 

At the tth iteration of the algorithm, let 𝜇̂$(t) denote the estimator for the centroid of 

population g and 𝜃0$% (t) denote the estimator for the parameters of the multinomial 

distribution corresponding to the qth discrete random variable drawn from population 

g. The estimation procedure proceeds iteratively, with each iteration consisting of two 

broad steps: the partition and the estimation ones. The partition step assigns each of 

N observations to one of g clusters and the estimation step re-estimates the parameters 

of interest by using the memberships of the new cluster. 

 

Given a complete set of and 𝜇̂$(t) and 𝜃0$% (t) ’s at the tth iteration, the Euclidean distance 

from observation i to each of the 𝜇̂$(t) ‘s is calculated as: 
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where ξp is an optional weight for the variable p. The minimum distance for the ith 

observation is ri(t) = ming(dig(t)) and the kernel density estimate of the minimum 

distances is calculated as follows: 

 

                                      (3) 

 

where k(·) is a kernel function and h(t) is the corresponding bandwidth parameter at 

iteration t. The Gaussian kernel is currently used with bandwidth h = 0.9An−1/5, 

where A = min (𝜎2, 𝑞2 /1.34), 𝜎2 is the sample standard deviation and 𝑞2 is the sample 

interquartile range. The function 𝑓# 	- (t) is used to construct 𝑓&	-(x), as shown above. 

Taking into account the independence between the Q categorical variables within a 

given cluster g, the log probability of observing the ith categorical vector given 

population membership is calculated as log(cig(t)) = ΣqQ = 1 ξq · log (m (wiq; 𝜃0$% (t))), 

where m (·; ·) is the multinomial probability mass function and ξq is an optional weight 

for the variable q. 

 

The ith object is assigned to the cluster g when the following function is maximized: 

 

                                (4) 
 

Given a partition of the N observations at iteration (t), the estimation step calculates 

𝜇̂$'(t+1) and 𝜇̂$% (t+1) for all g, p, and q. Given that Ωg(t) denotes the set of indices of 

observations assigned to cluster g at iteration t, the parameter estimates are calculated 

as: 

 
 

where I {·} denotes the indicator function and |A| denotes the cardinality of the set A. 

The partition and estimation steps are repeated until a stable solution is reached (or 
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the maximum number of iterations is reached. For each initialization, we calculate the 

objective function as follows: 
 

                                                 (5) 

 

After all runs are executed, the best partitioning which maximizes the objective 

function of equation (5) over all runs is selected. 
 

K-Prototypes Clustering  

Detailed material for the K-Prototypes clustering method can be found in the following 

bibliography: 

§ Huang, Z. (1998). Extensions to the k-Means Algorithm for Clustering Large 

Data Sets with Categorical Values. Data Mining and Knowledge Discovery 2, 

pp.283–304.  

§ Szepannek, G. (2019). clustMixType: User-Friendly Clustering of Mixed-Type 

Data in R. The R Journal, Volume 10(Issue 2), p.200. 
 

The Model 
 

The current algorithm is almost identical to the k-means: initial prototypes are selected 

as temporary centres of the clusters and then each subject is allocated to the closest 

prototypes. When all subjects are allocated, the prototypes are updated to represent 

their optimal class. The subjects are then reallocated to the updated prototypes if 

needed and the process is repeated until the partition is stable. The objective function 

in K-Prototypes clustering is given by: 

 

                                                (1) 
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where xi, i = 1, . . ., Ν are the observations in the sample, μj, j = 1, . . ., k are the 

cluster prototype observations and uij are the elements of the binary partition matrix 

UNxk satisfying 𝛴() = 1 uij = 1,  i. 

 

The distance function between two points is given by: 

 

                             (2)  

 

As seen above, d() is the weighted sum of Euclidean distance between two points in 

the metric space and simple matching distance for categorical variables where δ(a, b) 

= 0 for a = b and δ(a, b) = 1 for a <> b. In equation (2), m is an index over all variables 

in the data set where the first q variables are numeric and the remaining p - q variables 

are categorical. The parameter λ defines the trade-off between both terms and has to 

be specified in advance as the number of clusters k does as well. Note that the impact 

of the categorical variables increases as the value of λ increases while for λ = 0, the 

impact of the categorical variables vanishes, and only numeric variables are taken into 

account.  

 

As in the traditional K-means algorithm, the means for the numeric variables and the 

mode for the categorical variables minimizes the total distance within the cluster. 

More specifically, the following steps are applied in the iterations of the algorithm: 

 

1. Random cluster prototypes are initialized. 

2. For each point (observation): 

(a) The closest prototype according to d() is assigned. 

(b) Upon their allocation, the cluster prototypes are updated by cluster - specific 

means/modes for all variables. 

3. In case any observations have swapped their cluster assignment in step (2), or 

the maximum number of iterations has not been reached, then step (2) is 

repeated. 
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Latent Variable Model  

Detailed material for the Latent Variable Model method can be found in the following 

bibliography: 

§ Mcparland, D. and Gormley, I.C. (2015). Model Based Clustering for Mixed 

Data: clustMD. Advances in Data Analysis and Classification, [online] 

Volume 10(Issue 2), pp.155–169.  
 

The Model 
 

This model employs a mixture of latent variable models to cluster mixed type data. It 

assumes the observed J mixed type variables in each observation vector yi are a 

manifestation of an underlying latent continuous vector, zi (for i = 1, . . ., N), which 

follows a Gaussian mixture distribution. 

 

Modelling Continuous Data 

 

Under the clustMD model, continuous variables follow a multivariate Gaussian 

distribution, i.e., if variable j is continuous, yij = zij ∼ N (μj, 𝜎(*).  

 

Modelling Ordinal Data 

 

In the case of an ordinal variable, it is supposed that the observed response, yij is a 

categorical manifestation of the latent continuous variable, zij, as is typical in item 

response theory models (Johnson and Albert 1999; Fox 2010). For ordinal variable j 

with Kj levels let γj denote a Kj + 1 vector of thresholds that partition the real line. 

The value of the latent zij in relation to γj determines the observed ordinal response 

yij. The threshold parameters are constrained such that −∞ = γj,0 ≤ γj,1 ≤ · · · ≤ γj,Kj = 

∞. If the latent zij is such that γj,k−1 < zij < γj,k then the observed ordinal response, yij 

= k. The latent zij follows a Gaussian distribution i.e., zij ∼ N (μj, 𝜎(*). Thus, the 

probability of observing level k can be expressed as the difference between two 

Gaussian cumulative distribution functions (CDF) denoted by Φ: P (yij = k) = Φ 
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6+!,#,	.!	
/!

7 – Φ 6+!,#$%,	.!	
/!

7. The threshold parameters are invariant under translation and 

their values are not of primary interest in clustMD. Thus, for reasons of identifiability 

and efficiency, γj,k is fixed such that γj,k = Φ-1 (δk), where δk is the proportion of the 

observed values of variable J which are less than or equal to level k. A binary variable 

can be thought of as an ordinal variable with two levels, denoted 1 and 2. Thus if 

variable j is binary, then P (yij = 2) = 1 – Φ 6+!,%,	.!	
/!

7.  

 

Modelling Nominal Data 

 

Nominal variables are more difficult to model since the set of possible responses is 

unordered. In this case, a multivariate latent vector is assumed to underlie the observed 

nominal variable. For nominal variable j with Kj possible responses, the underlying 

continuous vector has Kj − 1 dimensions, i.e., zi j = (𝑧0(1 , . . ., 𝑧0(
2!$%) ∼ MVNKj−1(μj, 

Σj), where MVN denotes the multivariate Gaussian distribution. The observed nominal 

response yij is a manifestation of the values of the elements of zij relative to each other 

and to a threshold, assumed to be 0. That is, 

 

 
 

Binary data can be considered as nominal with two unordered responses. This model 

for nominal data is equivalent to the proposed ordinal data model in such a case. A 

similar latent variable approach to modelling nominal data is the mutinomial probit 

model (Geweke et al. 1994). 
 

A Joint Model for Mixed Data 

 

Let Y denote a data matrix with N rows and J columns. Without loss of generality, 

suppose that the continuous variables are in the first C columns, the ordinal and binary 

variables are in the following O columns and the nominal variables are in the final J 

− (C + O) columns. The latent continuous data underlying both the ordinal and 
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nominal data are assumed to be Gaussian, as are any observed continuous data. Thus, 

the joint vector of observed and latent continuous data is assumed to follow a 

multivariate Gaussian distribution zi ∼ MVNP(μ, Σ). Since more than one latent 

dimension is required to model each nominal variable P = C + O + ∑ =3(  C+O+1 (Kj – 1). 

This model provides a unified way to simultaneously model continuous, ordinal and 

nominal data. 
 

A Mixture Model for Mixed Data 
 

The joint model for mixed data is embedded in a finite mixture model, facilitating the 

clustering of mixed data. This model, clustMD, is closely related to the parsimonious 

mixture of Gaussian distributions (Banfield and Raftery 1993; Celeux and Govaert 

1995). In clustMD, it is assumed that zi follows a mixture of G Gaussian distributions 

i.e., zi ∼ ∑ =4
$  1πg MVNp (μg, ∑𝑔) where πg is the marginal probability of belonging 

to cluster g and μg and ∑𝑔 denote the mean and covariance for cluster g respectively. 
 

Decomposing the Covariance Matrix 

 

Gaussian parsimonious mixture models utilise an eigenvalue decomposition of the 

cluster covariance matrix ∑𝑔 = λgDgAgDg where |Ag| = 1. The λg parameter controls 

the cluster volume, Dg is a matrix of eigenvectors of ∑𝑔 that controls the orientation 

of the cluster and Ag is a diagonal matrix of eigenvalues of ∑𝑔 that controls the shape 

of the cluster. The decomposed covariance is constrained in various ways to produce 

parsimonious models. The covariance matrix for the clustMD model is assumed to be 

diagonal, meaning that Dg = I, the identity matrix. This assumption implies that 

variables are conditionally independent given their cluster membership. Thus, under 

clustMD ∑𝑔 = λgAg. These parameters can then be constrained to be different or equal 

across groups and A can also be constrained to be the identity matrix. This gives rise 

to a suite of 6 clustMD models with varying levels of parsimony. The 6 clustMD 

models and corresponding constraints are detailed in below. 
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Identifying clustMD in the Presence of Nominal Variables 
 

If no nominal variables are present in the data, then the clustMD model is identified 

because the threshold parameters are fixed. However, in the presence of nominal 

variables, the model as it stands is not identified. Infinitely many combinations of the 

model parameters give rise to the same likelihood. Constraints must be placed on the 

parameters relating to nominal variables to obtain consistent parameter estimates. As 

in Cagnone and Viroli (2012), the constraint ∑𝑔 πgμgp = 0 for each dimension p 

corresponding to a nominal variable is applied across the suite of models, which 

amounts to insisting that E(zip) = 0 for p = C +O +1, . . ., P. Further, a separate volume 

parameter 𝜆$= which applies only to the latent dimensions corresponding to nominal 

variables is also required. The diagonal elements of ∑𝑔 corresponding to these 

dimensions are 𝜆>gαgp, where αgp is the pth diagonal element of Ag. 

 

Different constraints on 𝜆$= are required in the different clustMDmodels. For example, 

the EII model is identified by fixing 𝜆> = 1, meaning that the diagonal elements of Σ 

corresponding to nominal variables are simply set to 1. The VII model is identified by 

insisting that ∑𝑔 𝜆$=	= 1. This may be accomplished by dividing each 𝜆$= by ∑𝑔 𝜆$=	after 

each iteration of the model fitting algorithm. To identify the EEI model 𝜆> is set to 1, 

as is ap for p corresponding to nominal variables. The VEI model is constrained so 

that ∑𝑔 𝜆$=	 = 1 and ap = 1 for nominal dimensions p. Thus, the nominal portions of 

the EEI and VEI models are the same as the EII and VII models respectively. 
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The EVI model is identified by fixing 𝜆> = 1 and constraining agp so that ∑𝑔 𝑎$' = 1 

for nominal dimensions p. This constraint on 𝑎$' is implemented by dividing each 𝑎$' 

term by ∑𝑔 𝑎$' after each iteration of the model fitting algorithm. Finally, the VVI 

model is identified by constraining 𝜆$= and 𝑎$' so that ∑𝑔 𝑎$' = 1 for each nominal 

dimension p. It is possible to fit all 6 clustMD models, even in the presence of nominal 

data. However, there are only 4 models for the nominal portion of the clustMD model. 

 

Fitting the model 

 

The clustMD model is fitted using an EM algorithm. If nominal data are present, then 

a Monte Carlo approximation is required for the expectation step and hence the 

algorithm is a Monte Carlo EM (MCEM) algorithm. 
 

Deriving the Complete Data Log Likelihood 
 

The categorical part of each observation can be thought of as one of a (possibly large) 

number, M, of response patterns. Let 𝑦0
5 be a binary vector of length M indicating 

which response pattern is observed, i.e., if response pattern m is observed, write yim = 

1; all other entries are 0. Thus, 𝑦0
5∼ Multinomial (1, q) where q = (q1, . . ., qM) and qm 

= ∫ f(𝑧0)d𝑧06&
. The portion of RP−C that generates pattern m is denoted Ωm. Let 𝑧0

5 

denote the latent continuous vector corresponding to the observed categorical 

variables and the superscript β denote the portions of the model parameters 

corresponding to these data. A binary latent variable, li is introduced that indicates the 

cluster membership of observation i, i.e., lig = 1 if observation i belongs to cluster g; 

all other entries are 0. Thus, the joint density of 𝑦0
5and 𝑧0

5 	can be written as 

 

where li ∼ Multinomial (1, π), where π = (π1, . . ., πg), 𝑦0
5 | lig = 1 ∼ Multinomial (1, 

qg) where qg = (qg1, . . ., qgM) and qgM = ∫ fD𝑧0
5 	E𝑙0$6&

 = 1)d𝑧0
5 = ∫ 𝑀𝑉𝑁(6&

𝑧0
5|	𝜇$

5, 

∑ )5$ d𝑧0
5 , 𝑧0

5|	𝑦0
5, lig  = 1 ∼ MVNT ( 𝑧0

5 | 𝜇$
5, ∑ )5$ , a truncated multivariate Gaussian 
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distribution. The points of truncation are those which satisfy the ordinal and/or 

nominal conditions given 𝑦0
5. Thus, 

 

Let 𝑦07= 𝑧08 denote the observed continuous variables and the superscript α denote the 

portions of the model parameters that apply to continuous variables. Since ∑𝑔 is 

assumed to be diagonal, the complete data likelihood is the product of the likelihood 

of the continuous variables and the likelihood of the latent variables relating to the 

observed categorical variables: 

 

where B denotes a constant. 

The Expectation Step 

 

The expectation step (E-step) of the EM algorithm consists of computing the 

expectation of the complete log likelihood with respect to the latent data 𝑧0
5 	 and the 

latent cluster labels 𝑙0$. The below three expectations are therefore required:  
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For the first expectation, since 𝑙0$ takes the values 0 or 1, then: 

 

Since the covariance matrix ∑ 𝑖𝑠5
$  assumed to be diagonal, the integrals in (2) can be 

expressed as a product of probabilities. The probabilities corresponding to ordinal 

variables are easily approximated given the threshold parameters. However, in the 

presence of nominal variables, calculating the probabilities is more challenging, due 

to the way in which the latent data generate a nominal response. Thus, for each cluster, 

a Monte Carlo approximation of the probability of each possible response is obtained 

by simulating a large number of continuous vectors from a multivariate Gaussian 

distribution with mean 𝜇$
(  and covariance ∑ 𝑎𝑟𝑒(

$  the portions of the mean vector and 

covariance matrix for cluster g, corresponding to nominal variable j. The probability 

of each response is approximated by the proportion of these simulations that generate 

each response. The Monte Carlo approximations can then be used to estimate τig above. 

Like Karlis and Santourian (2009), the second expectation is 

 

and the third expectation is 

 

The computation of migp and sigp corresponding to ordinal variables is straightforward: 

given the relevant threshold parameters, they are simply the first and second moments 

of a truncated Gaussian distribution. In the case of dimensions relating to nominal 

variables, migp and sigp are also related to the first and second moments of a truncated 
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multivariate Gaussian, but they are difficult to calculate given the outlined truncations 

outlined. A Monte Carlo approximation again is used in these cases. Suppose that yij 

= k for nominal variable j, then the below 

 

  
 

 
 

must be calculated. The Monte Carlo samples generated to calculate the probabilities 

τig for the first expectation can be reused to this end. For each possible response k and 

each cluster g the first moment can be approximated by calculating the sample mean 

of those Monte Carlo samples which generate response k. The second moment can be 

approximated by calculating the inner product of the vectors that generate response k 

and then calculating the sample mean of these inner products. The second expectation 

can then be approximated by summing the elements of this sample mean vector. 
 

The Maximisation Step 

 

The maximisation (M-step) of the algorithm maximises the expected value, Q, of the 

complete log likelihood based on the current values of the model parameters. The M-

step in the case of the VVI model is derived below. The VVI model is the most general 

of the 6 clustMD models i.e., ∑𝑔 = λgAg. The M-step maximises: 

 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 34 

where R denotes a constant and 𝑧0$∗ = (𝑧08 , 𝑚0$)T . Maximising Q with respect to λg 

yields 

 

 
 

and, if nominal variables are present, maximising Q with respect to λg= yields 

 

 
 

Maximising Q with respect to agp yields 

 

 

 
 

The (Monte Carlo) E and M steps are iterated until convergence is reached. 

Convergence is guaranteed even though a Monte Carlo approximation is used. 

However, the monotone increase in the likelihood at each iteration, which a standard 

EM algorithm guarantees, does not apply here. The example of Wei and Tanner (1990) 

is followed, and the algorithm is terminated when a plot of the parameter estimates 

against the iteration number show that the process has stabilised. For more detail on 

convergence and the Monte Carlo EM algorithm see McLachlan and Krishnan (2008). 

The algorithm is initialised by obtaining an initial clustering and estimating model 

parameters based on that clustering. To avoid local minima a number of different 

initialisations are used; namely K means, hierarchical and random clustering. The 

sensitivity of the EM algorithm to initialising values is a known problem. Recent work 
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on this issue includes that of O’Hagan et al. (2012). However, for the data sets 

analysed in this paper, the (MC)EM algorithm has not displayed particular sensitivity. 

 

Model Selection 

 

The best fitting covariance structure and number of components is selected using an 

approximation of the Bayesian information criterion (BIC) (Schwarz 1978; Kass and 

Raftery 1995). The BIC cannot be evaluated for clustMD models since the observed 

likelihood relies on the calculation of intractable integrals. However, the observed 

likelihood may be estimated as follows. The observed data vector yi = (𝑦08, 𝑦0
5) where 

𝑦08 =	𝑧08∼ ∑ =4
$  1πg MVN (𝜇$8 , ∑ )7$  and 𝑦0

5∼ Multinomial (1, q). Treating these random 

variables as independent, the joint density can be approximated as the product of their 

marginals: 

 

The first term in (3) is easily evaluated but the second term requires the probability 

of the observed categorical response pattern for observation i. i.e., 

 

The products in (4) consist of probabilities which were estimated in order to calculate 

τig during the model fitting process. The products in the first term in (4) are easily 

obtained from a normal distribution while the probabilities in the second are obtained 

by the Monte Carlo approximation. It should be noted that qm need only be estimated 

for the observed response patterns and not all M possible response patterns. Thus, the 

observed likelihood is approximated by: 
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The approximated BIC is then 𝐵𝐼𝐶-  = 2𝐿0 − ν log(N) where ν is the number of free 

parameters in the model.  

 

Latent Class Model 

Detailed material for the Latent Class Model method can be found in the following 

bibliography: 

§ Matthieu, M. and Mohammed, S. (2017). Variable selection for model-based 

clustering using the integrated complete-data likelihood. Statistics and 

Computing, Volume 27(Issue 4), pp.1049–1063.  

§ Marbac, M., Mohammed, S. and Patin, T. (2019). Variable Selection for Mixed 

Data Clustering: Application in Human Population Genomics. Journal of 

Classification, Volume 37(Issue 2).  

The Model 
 

Data to analyse consist of Ν observations x = (x1, ..., xΝ), where each observation xi = 

(xi1, ..., xid) is defined by space X1 × ... × Xd, Xj depending on the nature of variable j. 

Hence, Xj = R (respectively N, {1, ..., mj}) if variable j is continuous (respectively 

integer and categorical with mj levels). Observations are assumed to arise 

independently from the mixture of g components defined by its probability distribution 

function (pdf): 

             (1) 

 

where, θ = {τk, αk; k=1, ..., g} groups the model parameters, τk is the proportion of 

component k such that 0 < τk ≤ 1 and ∑ =$
)  1τk = 1, fk is the pdf of component k 

parametrized by αk = (αk1, ..., αkd), and fkj is the pdf of variable j for component k 

parametrized by αkj. The univariate marginal distribution of variable j depends on its 
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definition space; therefore, fkj is the pdf of a Gaussian distribution N (μkj, 𝜎)(* ) (Poisson 

P (αkj) and multinomial M (αkj1, ..., αkjmj)) if variable j is continuous (respectively 

integer and categorical) with αkj = (μkj, σkj) (respectively αkj = αkj and αkj = (αkj1, ..., 

αkjmj)). 

 

In clustering, a variable is said to be irrelevant if its univariate margins are invariant 

over the mixture constituents. Considering the model defined by equation (1), variable 

j is irrelevant if α1j = ... = αgj, and it is relevant otherwise. The role of the variables is 

defined by the binary vector ω = (ω1, ..., ωg), since ωj = 0 if variable j is irrelevant 

and ωj = 1 otherwise. Consequently, the couple m = (g, ω) defines the model at hand, 

because it defines the parameter space. Therefore, for a model m, the pdf of xi is 

 

               (2) 

 

where Ω = {j: ωj = 1} and 𝛀: = {1, ..., d} \ Ω. 

 

Maximum Likelihood Inference 

 

The general form of the observed-data log-likelihood of model m is defined by ℓ(θ|m, 

x) = ∑ =;
0  1 ln ( ∑ =$

)  1 τk ∏ =<
(  1 fkj (xij |αkj)). Therefore, equalities between the 

parameters defined by ω imply that: 

 

           (3) 

 

The MLE of the parameters corresponding to the irrelevant variables are explicit, but 

not those of the proportions and the relevant variables. Thus, it is standard to use an 

expectation– maximization (EM) algorithm to maximize the observed-data log-

likelihood. Here, the partition among the observations is unobserved. This partition is 

denoted by z = (z1, ..., zN) with zi = (zi1, ..., zig), where zik = 1 if observation i arises 
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from component k and zik = 0 otherwise. Accordingly, the complete-data likelihood of 

model m (log-likelihood computed on the observed and unobserved variables) is 

defined by: 

           (4) 

The EM algorithm alternates between two steps: The Expectation step (E-step) 

consisting of computing the expectation of the complete-data likelihood under the 

current parameters, and the maximization step (M-step) consisting of maximizing this 

expectation over the model parameters. Therefore, this algorithm starts from the initial 

value of the model parameter θ [0] randomly sampled and its iteration [r] is defined 

by: 

 

E-step: Computation of the fuzzy partition 𝑡0)
[>]:= 𝔼	[Zik|xi, m, θ[r−1]]; hence, 

 

 
 

M-step: Maximization of the expected value of the complete-data log-likelihood 

over the parameters: 

 

where, 𝑁)
[>] = ∑ =;

0 1 𝑡0)
[>], 𝑎\1j = argmaxα1j ∑ =;

0  1 ln f1j (xij |α1j) is the MLE for an 

irrelevant variable, and  𝒂()
∗[>]= arg maxαkj ∑ =;

0  1 𝑡0)
[>] ln fkj (xij |αkj) is the estimate for 

a relevant variable. This algorithm converges to a local optimum of the observed-data 

log-likelihood. Accordingly, the MLE for the model m, denoted by 𝜃0m, is obtained by 

performing many different random initializations of θ [0]. 
 

Model Selection by Optimizing the BIC 

 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 39 

Information Criterion for Data Modeling 

 

Model selection generally aims at finding the model 𝐦_  which obtains the greatest 

posterior probability, among a collection of competing models 𝕄. The number of 

components of the competing models is usually bounded by a value gmax. Thus, 

                 (5) 

 

By assuming uniformity for the prior distribution of m, 𝐦_  maximizes the integrated 

likelihood defined by: 

 

                  (6) 

 

where 𝚯𝐌 is the parameter space of model m, p(x|m, θ) = ∏ =;
0  1 f (xi|m, θ) is the 

likelihood function, and p(θ|m) is the pdf of the prior distribution of the parameters. 

Regrettably, the integrated likelihood is intractable, nevertheless, many methods allow 

for approximations of its value. The most popular approach comprises using the BIC, 

which approximates the logarithm of the integrated likelihood by Laplace 

approximation, and consequently requires MLE. The BIC is defined by: 

                           (7) 

where, νm is the number of independent parameters required by m. 

 

Optimizing the Penalized Likelihood 
 

For a fixed number of components g, selecting the variables necessitates the 

comparison of 2d models. Therefore, an exhaustive approach approximating the 

integrated likelihood for each competing model is not deemed feasible. Instead, 

Raftery and Dean perform model selection by deterministic algorithms like a stepwise 

method. Yet, this approach cannot safeguard the acquisition of the model maximizing 

the BIC. Furthermore, it can be computationally expensive if many variables are 
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observed. The component assumption permits the direct maximization of any 

penalized log-likelihood function defined by 

 

                                (8) 

 

for any constant c. This function is maximized by means of a modified version of the 

EM algorithm. Thereupon, the penalized complete-data log-likelihood function is 

introduced: 

 

         (9) 

 

where, νj is the number of parameters for one univariate marginal distribution of 

variable j (i.e., νj = 2 if the variable is continuous, νj = 1 if the variable is integer, and 

νj = mj − 1 if the variable is categorical with mj levels). This modified version of the 

EM algorithm finds the model maximizing the penalized log-likelihood for a fixed 

number of components. It starts at an initial point (m[0], θ[0]) randomly sampled with 

m[0] = (g, ω[0]), and its iteration [r] is constituted of two steps: 

 

E-step: Computation of the fuzzy partition 

 

 
 

M-step: Maximization of the expectation of the penalized complete-data log-

likelihood over (ω, θ), hence m[r] = (g, ω[r]) with 

 

 
 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 41 

where Δj = ∑ =$
)  ∑ =;

0  1 𝑡0)
[>] (ln fkj (xij |𝑎)(

∗[>]) − ln f1j (xij |𝑎\1j) − (g − 1)νjc is the 

difference between the maximum of the expected value of the penalized complete-data 

loglikelihood obtained when variable j is relevant and when it is not. To obtain the 

couple (ω, θ) maximizing the penalized observed-data log-likelihood for a fixed 

number of components, many random initializations of this algorithm should be done. 

So, the couple (m, θ) maximizing the penalized observed-data log-likelihood is 

acquired through performing this algorithm for every value of g between 1 and gmax. 

By considering c = 1
*
 ln(N), this algorithm carries out the model selection according 

to the BIC. Moreover, other criteria like the AIC by setting c = 1 can also be 

considered. 
 

Model Selection by Optimizing the MICL 

 

Information Criterion 

 

Although the BIC has good properties of consistency, it does not focus on the 

clustering goal. Moreover, it involves an approximation in 𝕆(1) which can deteriorate 

its performances, especially when Ν is small or when 𝕄 is large. Criteria based on the 

complete-data likelihood like the ICL or the MICL have been introduced. The 

integrated complete-data likelihood is defined by: 

 

                        (10) 

 

where, p(x, z|m, θ) =  ∏ =0
; 1 ∏ =$

) 1[τkfk(xi|αk)]zik is the complete-data likelihood. 

When conjugate prior distributions are used, the integrated complete-data likelihood 

has the following closed form. Thus, independence is assumed between the prior 

distributions, such that: 
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                  (11) 

 

where, α•j = (α1j, ..., αgj). Conjugate prior distributions are used, thus τ |m follows a 

Dirichlet distribution Dg(u, . . . , u). If variable j is continuous, p(αkj) = p(𝜎)(* ) p(μkj|𝜎)(* ) 

where 𝜎)(*  follows an Inverse-Gamma distribution 𝕀𝔾(aj / 2, 𝑏(* / 2) and μkj|m, 𝜎)(*  

follows a Gaussian distribution N (cj, 𝜎)(*  / dj). If variable j is an integer, then αkj 

follows a Gamma distribution 𝔾a(aj, bj) while αkj follows a Dirichlet distribution 𝔻mj 

(aj, ..., aj) in case variable j is categorical with mj levels. If there is no information on 

the parameters a priori, the Jeffreys non-informative prior distributions for the 

proportions (i.e., uk = 1/2) are used for the hyperparameters of a categorical variable 

(i.e., ajk = 1/2) as well. Such prior distributions do not exist for the parameters of the 

Gaussian and Poisson distributions, so flat prior distributions are used. The conjugate 

prior distribution implies the following closed form of the integrated complete-data 

likelihood: 

 

                (12) 

 

where x•j = (xij; i = 1, . . ., N), nk = ∑ =;
0 1zik and 

 

         (13) 

 

The integral defined by equation (13) is explicit, thus providing a closed form of the 

integrated complete-data likelihood. The MICL corresponds to the greatest value of 

the integrated complete-data likelihood among all the possible partitions. Thus, the 

MICL is defined by: 
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     (14) 

 

This criterion is similar to the ICL and inherits its main properties. More specifically, 

it is less sensitive to model misspecification than the BIC. Unlike the ICL and the 

BIC, it does not require the MLE and thus avoids the multiple calls to the EM 

algorithm. Because ω does not impact the dimension of z, we can maximize the 

integrated complete data likelihood over (ω, z), and thus the best model according the 

MICL can be obtained for a fixed number of components. 
 

Optimizing the MICL 
 

An iterative algorithm is used for finding the model maximizing the MICL for a fixed 

number of components. Starting at the initial point (z[0], m[0]) with m[0] = (g, ω[0]), the 

algorithm alternates between two optimizations of the integrated complete-data 

likelihood: optimization on z given (x, m), and maximization on ω given (x, z). The 

algorithm is initialized as follows: 𝜔(
[A] = 1 with probability 0.5 then z[0] = 𝐳2m[0] is the 

partition provided by a MAP rule associated to model m[0] and to its MLE 𝜽jm[0]. 

Iteration [r] of the algorithm is written as: 

 

Partition step: Find z[r] such that 

 

 
 

 

Model step: Find m[r+1] = arg maxm∈Mg ln p(x, z[r]|m) such that 
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At iteration [r], the model step consists of finding the vector m[r+1] maximizing the 

integrated completed-data likelihood for the current partition z[r]. This optimization 

can be performed independently for each element ωj, due to the within-component 

independence assumption. The partition step is more complex; therefore, z[r] is defined 

as a partition increasing the value of the integrated complete-data likelihood for the 

current model. It is obtained by an iterative method initialized at the partition z[r−1]. 

Each iteration consists of sampling an individual uniformly, which is affiliated to the 

component maximizing the integrated complete-data likelihood while the other 

component memberships are unchanged. Like the EM algorithm, the proposed 

algorithm converges to a local optimum of ln p(x, z|m), so many different 

initializations should be done. 

 

C. Other clustering algorithms for mixed data 

 

According to the extensive taxonomy for mixed data clustering proposed by A. 

Ahmad and S. S. Khan, there are five major research themes of clustering methods for 

heterogeneous data - partitional, hierarchical, model based, neural network-based, 

and other. The “other” category encompasses several minor groups of clustering 

algorithms that either do not fit into the other major research themes or have not been 

extensively studied. In the current sub-section, a subset of clustering algorithms that 

belong to some of these categories but are out of scope in the thesis, is presented. 

According to the bibliography, the algorithms below are available in the 

category of hierarchical clustering methods, as shown in Table 3. As already 

mentioned, hierarchical clustering methods create a hierarchy of clusters organized in 

a top to bottom (or bottom to top) order. To create clusters, the hierarchical algorithms 

need both of the following: (i) Similarity matrix - this is constructed by finding the 

similarity between each pair of mixed data points, (ii) Linkage criterion - this 

determines the distance between sets of observations. 

Algorithm Clustering Algorithm 

Philip and Ottaway 

Chiu et al. 

Li and Biswas  

 

Agglomerative hierarchical clustering 

method 

BIRCH algorithm 
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Hsu et al.  

Hsu and Chen  

Hsu and Huang  

Shih et al. 

Lim et al. 

Chae et al.  

Agglomerative hierarchical clustering 

with group-average method 

Agglomerative hierarchical clustering 

Incremental clustering 

Adaptive resonance theory network 

Agglomerative hierarchical clustering 

algorithm 

Agglomerative hierarchical clustering 

method 

Agglomerative hierarchical clustering 

method 

 

Table 3 Some hierarchical clustering algorithms for mixed datasets 

Philip and Ottaway used Gower's similarity measure to compute the similarity 

matrix for mixed datasets. Gower's similarity measure computes the similarity by 

dividing features into two subsets - one for categorical features and the other for 

numeric features. Hamming distance is applied to compute the similarity between two 

data points for a categorical feature. A weighted average of similarities for all 

categorical features is the similarity between two data points in a categorical feature 

space. For numeric features, the similarity is computed so that the one between the 

same feature values is 1, whereas if the difference between the values is the maximum 

possible difference (the difference between maximum and minimum values of the 

feature), the similarity is 0. The sum of the similarity values for all numeric features 

is the one of two data points in a numeric feature space. The similarity in the 

categorical feature space and the numeric feature sone are added to compute the 

similarity between two data points. Hierarchical agglomerative clustering is then used 

to create clusters.  

Fang et al. developed a similarity measure to compute the similarity between 

two clusters for mixed data. This similarity measure is related to the decrease in the 

log-likelihood function when two clusters are merged. Zhang et al. combined the 

BIRCH clustering algorithm, which uses hierarchical clustering algorithm with their 

proposed similarity measure to develop a clustering algorithm that can handle mixed 

datasets. Li and Biswas proposed a similarity-based agglomerative clustering (SBAC) 
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algorithm for mixed data clustering. SBAC used the Goodall similarity measure and 

applied a hierarchical agglomerative approach to build cluster hierarchies. Hsu et al. 

proposed a distance measure based on a concept hierarchy consisting of concept nodes 

and links. More general concepts are represented by higher level nodes whereas more 

specific concepts are represented by lower-level nodes. The categorical values are 

represented by a tree structure in a way that each leaf is represented by a categorical 

value. Each feature of a data point is associated with a distance hierarchy. The 

distances between two data points are calculated by using their associated distance 

hierarchies. An agglomerative hierarchical clustering algorithm is applied to a 

distance matrix to obtain the clusters.  

Hsu and Chen proposed a new similarity measure to cluster mixed data. The 

algorithm uses variance for computing the similarity of numeric values. For similarity 

between categorical values, they utilized entropy with distance hierarchies. The 

similarities are then aggregated to compute the similarity matrix for a mixed dataset. 

Incremental clustering is used on the similarity matrix to obtain the clusters. In an 

extended work, Hsu and Huang applied an adaptive resonance theory network (ART) 

to cluster data points by using the distance hierarchies as the input of the network. A 

better interpretation of clusters is possible with the proposed algorithm as compared 

to the K-prototypes algorithm. Shih et al. converted categorical features of a mixed 

dataset into numeric features by using frequencies of co-occurrence of categorical 

feature values. The dataset with all numeric features is then clustered by using a 

hierarchical agglomerative clustering algorithm. Lim et al. partitioned the data into 

two sections: categorical and numeric data. The two types are clustered separately. 

The clustering results are combined by using a weighted scheme to obtain a similarity 

matrix. The agglomerative hierarchical clustering method is applied on the similarity 

matrix to obtain the final clusters. Gower's similarity measure assigns equal weights 

to both types of features in computing the similarity between two data points. The 

similarity matrices may be dominated by one feature type. Chae and Yang assigned 

weights to the different feature types to overcome this problem. Improved clustering 

results are shown with these weighted similarity matrices.  

 In the category of model-based clustering algorithms, a great number of 

algorithms is also included, as shown in Table 4. As already mentioned, model-based 

clustering methods assume that a data point matches a model, in many cases, a 

statistical distribution. The models are generally user-defined, so they are prone to 
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yielding undesirable clustering outcomes if inappropriate models (or their parameters) 

are chosen. 

 

Algorithm Model 

Cheeseman and Stutz 

Everitt 

 

Lawrence and Krzanowski 

 

Moustaki and Papageorgiou 

Browne and McNicholas 

 

Andreopoulos et al. 

 

Hunt and Jorgensen 

 

McParland et al. 

Saadaoui et al. 

 

Bayesian methods 

Model-based clustering with the use of 

thresholds for the categorical features 

Extension of homogeneous conditional 

Gaussian model to the finite mixture 

situation 

Latent class mixture model 

A mixture of latent variables with the 

expectation-maximization framework 

Pseudo-Bayesian process with 

categorical data clustering to guide 

clustering of numeric data 

A finite mixture of multivariate 

distributions is fitted to data 

Bayesian finite mixture model 

A projection of the categorical features 

on the subspaces spanned by numeric 

features and then the application of the 

Gaussian Mixture Model 

 

Table 4 Some model-based clustering algorithms for mixed datasets 

AUTOCLASS performed clustering by integrating finite mixture distribution 

and Bayesian methods with prior distribution of each feature. AUTOCLASS can 

cluster data containing both categorical and numeric features. Everitt proposed a 

clustering algorithm by using model-based clustering for datasets consisting of both 

numeric and binary or ordinal features. The normal model is extended to handle mixed 

datasets by using thresholds for the categorical features. Because of high 

computational cost, the method is only useful for datasets containing very few 

categorical features. To overcome this problem, Lawrence and Krzanowski extended 
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the homogeneous Conditional Gaussian model to the finite mixture case, to compute 

maximum likelihood estimates for the parameters in a sample population. They 

suggest that their method works for an arbitrary number of features. Moustaki and 

Papageorgiou used a latent class mixture model for mixed data clustering. Categorical 

features are converted to binary ones by a 1-in-q representation. A multinomial 

distribution is used for categorical features and a normal distribution for a numeric 

feature. Features are considered independent in each cluster. Browne and McNicholas 

proposed a mixture of latent features model for clustering and the expectation-

maximization (EM) framework is used for model fitting.  

Andreopoulos et al. presented a clustering algorithm - Bi-level clustering of 

mixed categorical and numeric data types (BILCOM) for mixed datasets. The 

algorithm uses categorical data clustering to guide the clustering of numeric data. Hunt 

and Jorgensen proposed a mixture model clustering approach for mixed data. In this 

approach, a finite mixture of multivariate distributions is fitted to data and then the 

membership of each data point is calculated by computing the conditional probabilities 

of cluster membership. A local independence assumption can be used to reduce the 

model parameters. They further show that the method can also be applied for 

clustering mixed datasets with missing values. McParland et al. proposed a clustering 

algorithm for high-dimensional mixed data by using a Bayesian finite mixture model. 

In this algorithm, the estimation is done by using the Gibbs sampling algorithm. To 

select the optimal model, they also proposed an approximate Bayesian Information 

Criterion-Markov chain Monte Carlo criterion. They showed that the method works 

well on a mixed medical dataset consisting of high-dimensional numeric phenotypic 

features and categorical genotypic features. Saâdaoui et al. proposed a projection of 

the categorical features on the subspaces spanned by numeric features while an 

optimal Gaussian mixture model is obtained from the resulting principal component 

analysis regressed subspaces. 
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III. Dataset 
 

A. Context Background 
 

This thesis focuses on the analysis of data for prostate cancer to determine areas 

such as whether a personalized treatment based on the individual characteristics of 

each patient could be of significant benefit for their health improvement. Before 

thoroughly analysing the dataset utilized to perform this kind of exploration, let us 

firstly acquire the domain knowledge and comprehend the scientific framework within 

which this research moves.    

Prostate cancer is a form of cancer marked by an uncontrolled (malignant) 

growth of cells in the prostate gland. The prostate is a walnut-sized gland located 

behind the base of the penis, in front of the rectum, and below the bladder. It surrounds 

the urethra, the tube-like channel that carries urine and semen through the penis. The 

prostate's main function is to make seminal fluid, the liquid in semen that protects, 

supports, and helps transport sperm. Prostate cancer can be so slow-growing that a lot 

of people die of other diseases before the prostate cancer causes significant problems. 

Some prostate cancer cases may not even cause symptoms or problems for years or 

ever. Even when prostate cancer has spread to other parts of the body, it can often be 

under control for a long time. So, people with prostate cancer, and even those at an 

advanced stage, may live in good health and enjoy quality of life for many years to 

come. On the other hand, other prostate cancer cases could be more aggressive and 

can spread outside the confines of the prostate gland, which can be deadly. The 

prostate cancer survival rate is greatly improved with early detection and personalized 

treatment.  

Based on the statistics, prostate cancer is the second most commonly occurring 

cancer in men and the fourth most commonly occurring cancer overall. Age-adjusted 

incidence rates of prostate cancer have increased dramatically, and this is largely 

because of the increased availability of screening for prostate-specific antigen (PSA) 

in men without symptoms of the disease. Prostate-specific antigen (PSA or serum 

prostatic acid phosphatase) is a protein produced by cells in the prostate gland and 

released into the bloodstream. Although there is no specific indication for a “normal 

PSA” for anyone at any given age, a higher-than-normal level of PSA can be found in 
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people with prostate cancer. Therefore, such blood test may lead to the detection of 

many prostate cancers that are small and/or would otherwise remain unrecognised, and 

which may or may not develop further into higher stage disease. 

Some people with several known risk factors may never develop cancer, while 

others with no known risk factors do. The following indicative factors may raise a 

person’s risk of developing prostate cancer: 

§ Age - The risk of prostate cancer increases with age, especially after the 

age of 50. Around 60% of prostate cancers are diagnosed in people who 

are 65 or older. Older adults who are diagnosed with prostate cancer can 

face unique challenges, specifically regarding cancer treatment.  

§ Race - Black men in the United States and other men of African ancestry 

are diagnosed with prostate cancer more than men of other races. Black 

men are more likely to die from prostate cancer than white men. 

§ North American or northern European location - Prostate cancer occurs 

most often in North America and northern Europe. It also appears that 

prostate cancer is increasing among Asian people living in urbanized 

environments, such as Hong Kong, Singapore, and North American as 

well as European cities, particularly among those with a lifestyle of less 

physical activity and a less healthy diet. 

§ Family history - Prostate cancer that runs in a family-called familial 

prostate cancer- makes up of about 20% of all prostate cancers. This type 

of prostate cancer develops because of a combination of shared genes and 

shared environmental or lifestyle factors. Hereditary prostate cancer, 

which is inheriting the risk from a relative, is rare and accounts for about 

5% of all cases. Hereditary prostate cancer occurs when changes in genes, 

or mutations, are passed down within a family from one generation to the 

next. Hereditary prostate cancer may be suspected if a family history 

includes any of the following characteristics: 

 

• 3 or more first-degree relatives with prostate cancer 

• Prostate cancer in 3 generations on the same side of the family 
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• 2 or more close relatives, such as a parent, sibling, child, 

grandparent, uncle, or nephew, on the same side of the family 

diagnosed with prostate cancer before the age of 55 

§ Hereditary breast and ovarian cancer (HBOC) syndrome – HBOC is 

associated with germline, or inherited, DNA-repair mutations to 

the BRCA1 and/or BRCA2 genes. BRCA stands for “BReast Cancer”. 

HBOC is most associated with an increased risk 

of breast and ovarian cancers in women. However, people with HBOC 

also have an increased risk of developing breast cancer and a more 

aggressive form of prostate cancer, as well. Moreover, mutations in 

the BRCA1 and BRCA2 genes are thought to cause only a small 

percentage of inherited prostate cancers. Those who 

have BRCA1 or BRCA2 mutations should consider screening for prostate 

cancer at an earlier age. Genetic testing may only be appropriate for 

families with prostate cancer that may also have HBOC.  

§ Other genetic changes – Other genes that may carry an increased risk of 

developing prostate cancer include HPCI, HPC2, HPCX, CAPB, ATM, 

FANCA, HOXB13, and mismatch repair genes. However, none of them 

has been directly shown to cause prostate cancer or be specific to this 

disease. Research to identify genes associated with an increased risk of 

prostate cancer is ongoing, and researchers are constantly learning more 

about how specific genetic changes can influence the development of 

prostate cancer.  

§ Eating habits - No study has proven that diet and nutrition can directly 

cause or prevent the development of prostate cancer. However, many 

studies that look at links between certain eating behaviours and cancer 

suggest there may be a connection. For example, obesity is associated 

with many cancers, including prostate cancer. 

There are several types of treatments that are the standardised types of care for 

prostate cancer including active surveillance and watchful waiting, local treatments 

and systemic treatments. Active surveillance and watchful waiting are usually 

preferred for patients with very low and low risk prostate cancer and for older adults 

besides those with other serious or life-threatening illnesses expected to live less than 
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5 years. Local treatments (e.g., surgery, radiation therapy, focal therapy, etc.) intend 

to remove cancer from a specific, limited area of the body. If the cancer has spread 

outside the prostate gland, the systemic treatments (e.g., hormonal therapy, targeted 

therapy, chemotherapy, immunotherapy, radiopharmaceuticals, bone-modifying 

drugs, etc.) may be needed to destroy cancer cells located in other parts of the body. 

In any case, regardless of which treatment may be chosen for the specific patient, 

several key parameters regarding the current state of the cancer should also be taken 

into consideration-parameters such as whether symptoms exist or PSA levels are rising 

rapidly or cancer has spread to the bones, the health history, the quality of life, the 

current urinary and sexual function and any other medical conditions the patient may 

have. 

However, there are times where the cancer may be spread from the prostate to 

other parts of the body, most commonly to the bones and lymph nodes, and in that 

case the prostate cancer is described as metastatic, secondary, secondaries, metastases 

or mets. As depicted below, lymph nodes (sometimes called lymph glands) are part of 

the lymphatic system, which is part of the body’s immune system. Lymph nodes are 

found throughout the body including in the pelvic area, near the prostate. This kind of 

spread may be developed when prostate cancer cells move through the blood stream 

or lymphatic system. Unfortunately, if a patient is diagnosed with advanced prostate 

cancer, although there are some treatment options like chemotherapy with hormone 

therapy, hormone therapy alone and clinical trials, these may not cure the cancer but 

only keep it under control and manage any symptoms.    

 

 



 Master’s Thesis: Clustering Mixed Mode Data                      Apostolaki Eleftheria 

 53 

B. Dataset Overview 
 

The dataset used (provided in the clustMD R package) contains information for 

a group of 475 prostate cancer patients. These patients have either stage 3 or stage 4 

prostate cancer. The specific data consist of variables of mixed type (continuous, 

binary, ordinal or nominal). Most of them are continuous followed by binary, nominal 

and then ordinal variables. The nine continuous variables consist of age, weight, 

systolic blood pressure, diastolic blood pressure, serum haemoglobin, size of primary 

tumour, index of tumour stage and histolic grade, serum prostatic acid phosphatase 

and patient observation ID. The categorical variables consist of 3 binary ones: 

cardiovascular disease history, bone metastases and cancer stage, two nominal ones: 

electrocardiogram code and patient post trial survival status, and one ordinal one: 

patient performance rating. It is also of importance to emphasise that different 

measurement units are used for the continuous variables (e.g., g/100ml, centimetres 

squared, King-Armstrong units, etc.).    

 

Variable Name Description Type 

Age Α numeric vector indicating 

the age of the patient. 

 

Continuous  

Weight Α numeric vector indicating 

the weight of the patient. 

 

Continuous  

Performance.rating An ordinal variable indicating 

how active the patient is:  

 

0 - normal activity,  

1 - in bed less than 50% of 

daytime,  

2 - in bed more than 50% of 

daytime,  

3 - confined to bed 

 

Ordinal 
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Cardiovascular.disease.history Α binary variable indicating if 

the patient has a history of 

cardiovascular disease:  

 

0 - no,  

1 – yes 

 

Binary 

Systolic.Blood.pressure Α numeric vector indicating 

the systolic blood pressure of 

the patient in units of ten. 

 

Continuous  

Diastolic.blood.pressure Α numeric vector indicating 

the diastolic blood pressure of 

the patient in units of ten. 

 

Continuous  

Electrocardiogram.code Α nominal variable indicating 

the electrocardiogram code:  

 

0 - normal,  

1 - benign,  

2 - rhythmic disturbances and 

electrolyte changes,  

3 - heart blocks or conduction 

defects,  

4 - heart strain,  

5 - old myocardial infarct,  

6 - recent myocardial infarct 

 

Nominal 

 

 

 

 

Serum.haemoglobin Α numeric vector indicating 

the serum haemoglobin levels 

of the patient measured in 

g/100ml. 

 

Continuous  
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Size.of.primary.tumour Α numeric vector indicating 

the estimated size of the 

patient's primary tumour in 

centimetres squared. 

 

Continuous  

Index.of.tumour.stage.and.histoli

c.grade 

Α numeric vector indicating 

the combined index of tumour 

stage and histolic grade of the 

patient. 

 

Continuous  

Serum.prostatic.acid.phosphatase Α numeric vector indicating 

the serum prostatic acid 

phosphatase levels of the 

patient in King-Armstrong 

units. 

 

Continuous  

Bone.metastases Α binary vector indicating the 

presence of bone metastasis:  

 

0 - no,  

1 - yes 

 

Binary 

Stage Τhe stage of the patient's 

prostate cancer. 

 

Binary 

Observation Α patient ID number. 

 

Continuous 

SurvStat Τhe post trial survival status 

of the patient:  

 

0 - alive,  

1 - dead from prostatic cancer,  

Nominal 
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2 - dead from heart or vascular 

disease,  

3 - dead from cerebrovascular 

accident,  

4 - dead form pulmonary 

embolism,  

5 - dead from other cancer,  

6 - dead from respiratory 

disease,  

7 - dead from other specific 

non-cancer cause,  

8 - dead from other 

unspecified non-cancer cause,  

9 - dead from unknown cause 

 

 

Table 5 Dataset Variables 

C. Data Insights 
 

In Table 6, the summary statistics for the continuous variables are presented. It 

is observed that the patients are middle-aged and elderly people whose weight may 

vary depending on their age. Moreover, it seems that for most quantitative 

characteristics, the range and the standard deviation are relatively low (e.g., the 

systolic blood pressure of the patients varies from 8 to 30 units with the standard 

deviation to be 2,43 units) with the latter metric to generally indicate that the data 

points tend to be close to the mean. Another interesting inference from the output is 

that the mean is not equal to the median for any of the variables which suggests an 

indication on the lack of symmetric and thus normal distribution; a conclusion that 

will be further investigated considered that this may affect the effectiveness of the 

discrimination mechanism for the clusters. Moreover, a variable that needs to be 

remarked on as it draws the statistical attention is this of the serum prostatic acid 

phosphatase, known to be highly related with the development of prostate cancer. It 

is the characteristic that, both in terms of comparison and absolutely, presents an 
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extremely high standard deviation equal to 638,48 King-Armstrong units implying a 

spread of the values over a large range of values, a wide range of 9.998 King-

Armstrong units and a significant difference of 118,7 King-Armstrong units between 

the mean and the median, as well. The above findings verify a sharp distribution skew 

for the variable of serum prostatic acid phosphatase with this skewness to be 

quantified in Table 7 and visualized in Figures 1,2 and 3.  

 

Variable  

Name 

Min  1st 

Quart 

Median Mean 3rd 

Quart 

Max St. Dev. 

Age 48,0    70,0    73,0    71,56    76,0    89,0 6,92 

Weight 69,0    90,0 98,0 99,01 107,0 152,0 13,34 

Systolic.Blood.pressure 8,0    13,0 14,0 14,38 16,0 30,0 2,43 

Diastolic.blood.pressure 4,0    7,00 8,00 8,15 9,0 18,0 1,46 

Serum.haemoglobin 59,0    122,5 137,0 134,2 147,0 182,0 19,38 

Size.of.primary.tumour 0,0     5,0 10,0 14,29 21,0 69,0 12,23 

Index.of.tumour.stage.and. 

histolic.grade 

5,0      9,0 10,0 10,3 11,0 15,0 2,01 

Serum.prostatic.acid. 

phosphatase 

1.0      5,0 7,0 125,7 29,5 9.999,0 638,48 

 

Table 6 Continuous Variables - Summary Statistics 

The skewness, a significant metric of symmetry, may exist due to either the 

presence of extreme abnormal outliers, that may not be important to us, or due to the 

natural distribution itself that is skewed with the tail to be important to us. Considering 

that a highly skewed distribution, a moderately skewed distribution and an 

approximately symmetric distribution exists when the skewness value is less than −1 

or greater than +1, is between −1 and −½ or between +½ and +1 and is between −½ 

and +½ respectively, significant conclusions may be drawn for the continuous 

variables of this dataset.  

As shown in Table 7 in which different colors are used for the distinction of 

the various distributions (red color - highly skewed distribution, yellow color - 

moderately used distribution, green color - approximately normal distribution), most 
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of the characteristics such as weight, systolic blood pressure and diastolic blood 

pressure follow a moderately skewed distribution as the skewness calculated is within 

the boundaries of −½ and +½. On the contrary, other characteristics like these of age, 

size of primary tumour and serum prostatic acid phosphatase exceed -1 or +1 verifying 

the existence of a highly skewed distribution. Again, it is of interest that the serum 

prostatic acid phosphatase presents the highest skewness (that equals to 10,66) among 

all variables, a remark that is all but expected considering the non-normal statistical 

behavior identified and analyzed above.  
.  

Variable Name Skewness Index  

Age - 1,068929  

Weight 0,5418303 

Systolic.Blood.pressure 0,9795097 

Diastolic.blood.pressure 0,8027419 

Serum.haemoglobin - 0,5402281 

Size.of.primary.tumour 1,418378 

Index.of.tumour.stage.and.histolic.grade 0,2714751 

Serum.prostatic.acid.phosphatase 10,66378 

 

Table 7 Continuous Variables – Skewness Index 

Next, in Figure 1 the representation of the distribution of numerical data is 

thoroughly examined. Through this visualization, interesting insights are gained into 

the profile of the under-research prostate cancer patients. This profile is aligned with 

the factors of age, obesity and poor nutrition which may increase the probability of 

developing prostate cancer as it is revealed that the majority of patients 

(a) are elderly people at the age of about 70 - 75,  

(b) are at relatively high weight levels ranging between 90 - 100 kg,  

(c) have marginally high pressure considering that the optimal blood pressure in 

healthy adults is below 120 for systolic and below 80 for diastolic pressure,  

(c) have a rather small size of primary tumour up to approximately 5 square 

centimeters. 

  Moreover, through Figure 1 and Figure 2 that follows, the tendency for 

skewness is once again identified. Variables such as age and serum haemoglobin 
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present a negative skewness, which reveals that the mean of the values is less than the 

median, which in its turn means that the data distribution is left-skewed. On the other 

hand, the positive skewness of weight, systolic and diastolic blood pressure, primary 

tumour size, tumour stage and histolic grade index and serum prostatic acid 

phosphatase suggests that the mean of the data values is larger than the median, and 

the data distribution is right-skewed. 
 

 
 

Figure 1 Continuous Variables – Histograms 

 

 
 

Figure 2 Continuous Variables – Density Plots 
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The QQ plots of Figure 3 below, which represent the pairing of two probability 

distributions, the one of the given sample and the other of the normal distribution are 

used to visually check the normality of the continuous data in the given dataset by 

plotting their quantiles against each other. It is known that, if the two distributions 

being compared are similar, the points in the Q-Q plot will approximately lie on the 

line y = x. If the distributions are linearly related, the points in the Q-Q plot will 

approximately lie on a line, but not necessarily on the line y = x. If the distributions 

are not similar (demonstrating non-normality), then the points in the tails of the plot 

will deviate from the overall trend of the points.  

The afore mentioned being taken into account, when examining each of the 

subplots in this Figure in detail, it is concluded that normality does not exist for any 

of these quantitative characteristics. Especially for the variables of age, primary 

tumour size, tumour stage and histolic grade index and serum prostatic acid 

phosphatase, the phenomenon of non-normality is more apparent as the points seem 

to form a curve that deviates markedly from the straight line of reference. In this 

Figure, a number of possible outliers is also observed since there are points at the end 

of each reference line which are distanced from the bulk of the remaining observations. 

These outliers are additionally calculated by using the method of percentiles (where 

any observation that lies outside the interval formed by the 0,01 and 99,0 percentiles 

is considered to be a potential outlier) and presented in Table 8. 

 

 
 

Figure 3 Continuous Variables – QQ Plots 
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When examining the results of Table 8, it is found that all continuous variables, 

except this of tumour stage and histolic grade index, appear to have outliers the count 

of which may vary from 3 to 6 in total.  In general, this count represents an extremely 

small percentage (ranging from 0,63% to 1,26%) for the given dataset that consists of 

475 observations. However, since outliers may skew the clusters substantially and thus 

significantly hinder the efficiency of the respective clustering algorithm, it should be 

further investigated whether the current ones are influential points. If that is the case, 

then it should be subsequently examined whether outlier detection methods are 

automatically used by the respective clustering algorithm to isolate outliers or manual 

removal of these outliers is required. 
 

Variable Name Observation Sequence 

[Value]  

Percentage 

(Outliers / 

Observations) 

Age 15 [87], 116 [85], 183 

[48], 188 [87], 306 

[89], 432 [88] 

1,26% 

Weight 31 [150], 140 [69], 229 

[152], 257 [136], 299 

[145] 

1,05% 

Systolic.Blood.pressure 64 [8], 178 [23], 231 

[24], 466 [30] 

0,84% 

Diastolic.blood.pressure 11 [14], 72 [13],  

466 [18] 

0,63% 

Serum.haemoglobin 3 [176], 94 [182],  

319 [175], 324 [173], 

332 [175], 419[59] 

1,26% 

Size.of.primary.tumour 107 [61], 191 [69], 217 

[61], 221 [62], 387 

[55] 

1,05% 

Index.of.tumour.stage.and.histolic.grade - - 

Serum.prostatic.acid.phosphatase 30 [3.160], 137 

[3.670], 216 [5.960], 

1,05% 
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243 [3.535], 263 

[9.999] 

 

Table 8 Continuous Variables - Outliers 

As previously highlighted, non-normality is recognized for the continuous data 

by using the visualization means of histogram and QQ plots and this is further 

quantified by applying the Shapiro-Wilk normality test. In this test, the p-value is 

compared to the selected significance level of 0,05 which indicates that the risk of 

concluding the data is 5% in case these data do not follow the specified distribution 

— when in actual fact the data do follow it.  
 

§ P-value ≤ 0,05: The data do not follow the specified distribution (Reject 

H0) 

 

If the p-value is less than or equal to the significance level of 0,05, the decision is to 

reject the null hypothesis and conclude that the data do not follow the specified 

distribution. 

 

§ P-value > 0,05: Cannot conclude the data do not follow the specified 

distribution (Fail to reject H0) 

 

If the p-value is larger than the significance level of 0,05, the decision is to fail to 

reject the null hypothesis because there is not enough evidence to conclude that the 

data do not follow the specified distribution. However, it cannot be concluded that the 

data do follow the specified distribution. 

Null hypothesis H₀: Data follow a normal distribution 

Alternative 

hypothesis  

H₁: Data do not follow a normal 

distribution 

 

Table 9 Shapiro-Wilk Normality Test – Hypotheses 

For each of the continuous variables, the p-value is calculated and presented in 

Table 10. It is concluded that since all the calculated p-values are less than the 
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significance level of 0,05, the decision is to reject the null hypothesis; the data do not 

follow a normal distribution.  

Variable Name P-value  

Age 6,194e - 16 

Weight 1,378e - 05 

Systolic.Blood.pressure 1,384e - 12 

Diastolic.blood.pressure 3,407e - 15 

Serum.haemoglobin 6,971e - 06 

Size.of.primary.tumour < 2,2e - 16 

Index.of.tumour.stage.and.histolic.grade 1,619e – 12 

Serum.prostatic.acid.phosphatase < 2,2e – 16 

 

Table 10 Continuous Variables - Shapiro-Wilk Normality Test 

Another aspect for the exploration of the continuous data deals with the 

phenomenon of collinearity. This aspect needs to be investigated since when the 

variables used in clustering are collinear, then they get a higher weight than others. If 

two variables are perfectly correlated, they effectively represent the same concept. 

But that concept is represented twice in the data and hence gets twice the weight of 

all the other variables. The final solution is likely to be skewed in the direction of that 

concept, which could be a problem if it is not anticipated. In the case of multiple 

variables and multicollinearity, the analysis is in effect being conducted on some 

unknown number of concepts that are a subset of the actual number of variables being 

used in the analysis. 

In the following Figure 4, the correlation between each pair of variables in the 

given dataset is depicted. As it is visible, the size of the dot indicates the degree of 

correlation between the variables. It is observed that  

§ Diastolic and systolic blood pressure present a strong positive relationship with 

their correlation to be more than 0,5, an expected conclusion to be drawn, 

§ Weight and diastolic or systolic blood pressure are also positively correlated 

with this degree to be close to 0,2 and 

§ Size of primary tumour and index of tumour stage and holistic grade have the 

most negative association among all that is close to 0,5 
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Figure 4 Continuous Variables – Correlation 

 Upon further analyzing data and going on to do so on the categorical 

variables, several remarkable conclusions are also drawn. Figure 9 below depicts the 

distribution of patients per survival status and performance rating. As shown, out of 

475 people diagnosed with prostate cancer, a percentage of approximately 30% is still 

alive (Level 0), 25% have died due to cancer (Level 1) while 20% have died due to 

heart or vascular disease (Level 3). It is also of importance to notice that the 

overwhelming majority of the patients deceased due to heart/vascular disease (84 in 

total out of 93) or cancer (101 in total out of 121) had a normal activity (Level 0) (e.g., 

walking, and other aerobic exercise like outdoor work). This fact is of particular 

interest as it may imply that this type of cancer may not physically overwhelm the 

patients so much.  
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Table 11 Number of Patients Per Survival Status & Performance Rating 

Figure 10 showcases the fact that the activity of the patients (e.g., normality, 

bed confinement, etc.) is barely affected by the cancer stage. More specifically, it is 

observed that irrespective of whether patients are at a stage 3 or 4, most of them 

continue to have a normal activity in their life (Level 0). Nevertheless, it is also 

noticeable that compared to stage 3 patients, at cancer stage 4, patients stay in bed 

more than 50% of the daytime (Level 2) while few of them are bedridden (Level 3), 

which verifies once again the afore mentioned conclusion regarding the physical 

impact of this potentially terminal disease on patients. 

 
Figure 5 Number of Patients Per Cancer Stage & Performance Rating 
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It is a well-known fact worldwide that cardiovascular disease is the second most 

common cause of death in prostate cancer patients. This is clearly observed in Figure 

6 as it is derived that the most important underlying cause of death in patients 

diagnosed with prostate cancer is either the cancer itself (Level 1) or the heart and 

blood vessels (Level 2). In the case of cancer stage 3, the majority of the patients who 

have died, have done so due to heart or vascular disease while in the case of cancer 

stage 4 this happens owing to prostate cancer. Based on these statistics, the other 

factors such as cerebrovascular accident (Level 3), pulmonary embolism (Level 4), 

respiratory disease (Level 6), etc. do not appear to significantly affect the mortality of 

prostate cancer patients. Of course, it is noteworthy that there is a - not negligible at 

all - survival rate in the prostate cancer patients considering that several of them at 

both stage 3 and 4 stay alive (around 140 in total representing a percentage of 30% of 

the patients).   
 

 
Figure 6 Number of Patients Per Survival Status & Cancer Stage 

Going deeper into the cardiovascular disease of the under-study prostate cancer 

patients, it is observed that about half of them (207 out of 475) have heart problems 

(Level 1) with a history of heart strain (Level 4) to be present in the majority and a 

normal electrocardiogram (Level 0) or an old myocardial infarct (Level 5) to the rest 

of them. This group of people is likely to benefit from aggressive primary and 

secondary prevention therapies by improving the survival care in these people. In case 

the cardiovascular disease history is proved to affect the discrimination mechanism of 
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the clusters, then specific care processes could be proposed and applied to this patient 

population to improve patient specific cardiac and cancer related outcomes and 

identify at-risk individuals including standard cardiovascular risk factor assessment 

and modification or referral to a cardiology oncology clinic where available.  

 
 

Table 12 Number of Patients Per Cardiovascular Disease History & Electrocardiogram 

Code 

As already analyzed, when prostate cancer spreads, the bones, such as the hip, 

spine, and pelvis ones, are typically the first area affected. It can be by a direct 

invasion or by traveling through the blood or lymphatic system. Bone metastases can 

weaken the patients’ bones and lead to symptoms like bone pain, bladder and urinary 

troubles, soreness in the groin, leg swelling or unexplained weight loss. This kind of 

information is depicted in Figure 9 where it is observed that a number of about 76 

patients with cancer stage 4 out of 202 in total have their cancer spread to the bones 

(Level 1). The factor of bone metastases could be proved determinant for the 

subsequent cluster analysis because this group of people is by default treated 

differently in terms of surveillance and treatment.  
 

 
Figure 7 Number of Patients with Bone Metastases Per Stage Cancer 
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To summarize, it is of importance to draw special attention to the fact that the 

findings presented above undoubtedly shed light on the medical profile of the under-

study patients for several key areas of their health status. The major challenges about 

to be approached when it comes to clustering of these patients diagnosed with prostate 

cancer are associated with the identification of their various groups, each one of which 

has different needs in terms of care, vigilance, and therapeutics. The primary goal of 

the current thesis is to determine the baseline variables which most efficiently 

discriminate the clusters of the patients and propose customized actionable items that 

best cater for the health management of these patients.  
 

D. Data Manipulation & Transformation 
 

As thoroughly analyzed in the previous subsection Data Insights, phenomena 

such as this of the asymmetric distribution, the usage of different units of 

measurement, and the outliers are present in the dataset. To reduce the negative effect 

of the first two phenomena in the subsequent clustering performed by the Kamila and 

K-Prototypes algorithms, the transformation steps below are applied: 

 

§ The initial understanding of the data has shown us that they contain attributes 

of different units. Units affect what clustering algorithms will discover. Due to 

this, the data standardization is used to make continuous variables in a common 

scale (i.e., -1 and 1) which practically means to have each attribute weighed 

properly. If non-normalized data existed, then this would lead to simply 

disregarding the attribute with the smaller range. 

§ The highly skewed continuous variable Serum.prostatic.acid.phosphatase is 

transformed by using the log. This is required to firstly create a smoother 

distribution, as the values of this variable are ranged over several orders of 

magnitude, and secondly to minimize as much as possible the time efficiency 

of the clustering algorithms which might hinder processing these wide data 

ranges.  

§ The variables Performance.rating, Cardiovascular.disease.history, 

Electrocardiogram.code, Bone.metastases, Stage and SurvStat are transformed 

to factors.  
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It is of importance to highlight that regarding the Latent Class Model, only the 

above steps of data standardization and log transformation are applied. Additionally, 

the categories of the nominal variable Electrocardiogram.code are reduced to 3 

(instead of 7) by combining some categories (i.e., Levels 0,1 -> Category 1, Levels 

2,3,4 -> Category 2, Levels 5,6,7 -> Category 3) since the Monte Carlo approximation 

used in Latent Class Model can be inefficient if there is a small number of observations 

in a particular category for a particular cluster. Moreover, regardless of the clustering 

algorithm used, additional steps are applied to drop the variables of Age, Weight and 

Observation which represents a random patient ID number of no statistical interest.  

Finally, several potential problems of different nature for cluster analysis could 

emerge. These problems that could potentially arise are related to: 

 

§ The number of clusters to be defined: Identifying the number of clusters is a 

difficult task if the number of class labels is not known beforehand. A careful 

analysis of the number of clusters is necessary in order to produce correct 

results. Otherwise, it is found that heterogenous tuples may merge or similar 

types of tuples may be broken into many.  

§ The data structure: Real life data may not always contain clearly identifiable 

clusters. Also, the order in which the tuples are arranged may affect the results 

when an algorithm is executed if the distance measure used is not perfect. With 

structureless data, even identification of the appropriate number of clusters will 

not yield good results. For instance, if a record has all values missing, then this 

should be removed from the dataset. If an attribute has missing values in all 

tuples, then that attribute should also be removed.  

§ The identification of distance measure: For numerical attributes, distance 

measures able to be used are standard equations like Euclidean, Manhattan, etc. 

However, the identification of measure for categorical attributes is difficult and 

the respective clustering algorithms may not have the same efficiency in this 

area.  

§ The sensitivity of clustering algorithm to the outliers: Outliers may be of 

significant importance. In general, finding these outliers is highly non-trivial 

and removing them is not necessarily desirable. 
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IV. Clustering Application 
 

In the current chapter, it is in-depth analyzed how the three different clustering 

algorithms (Kamila, K-Prototypes, Latent Class Model) presented in the section 

Literature Review: Methodologies for clustering mixed mode data are applied to the 

dataset of prostate cancer patients. The perspective which is distinctively investigated 

for each case of algorithm relates to the cluster characteristics; the key baseline 

variables which most suitably discriminate the clusters are identified. Moreover, 

regardless of the clustering method, since the true number of clusters is always 

unknown, this significant parameter is determined as a combination of a relevant 

objective criterion (e.g., BIC, Silhouette score, etc.) and the practitioner prior 

experience and knowledge.  

The open-source tool of RStudio (Version 1.3.959) is used to develop the R 

code (Version 4.0.2) for the implementation of the clustering algorithms on the 

prostate cancer data. 
 

Method 1: Kamila Clustering (Kamila R package) 
 

Our research is initiated by running a Kamila clustering procedure on the data. 

It is of importance to note that several experiments are made regarding the ideal 

number of clusters that are meaningful in terms of interpretation and practical 

application. Moreover, what is of particular interest with this experimentation is that 

as the number of clusters is increased, their vagueness becomes more intense as it is 

quite difficult to identify the characteristics that differentiate the clusters among them, 

meaning that the clusters have the tendency to present similar characteristics. In any 

case, taking into account the possible patterns identified in the proposed clusters of 

each experiment, 3 clusters are eventually created with the Kamila clustering method 

by  

 

§ specifying the number of cross-validation runs to 10 and 

§ defining the threshold for determining the number of clusters to 50 and 

§ setting the weights of continuous and categorical variables equal to 1 
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As observed in Table 13, the prostate cancer patients are relatively evenly 

distributed in the clusters as opposed to the cases where more clusters existed (e.g., 

five, six, etc.) in which unexpectedly small groups of patients formed some of these 

clusters. As seen below, in the implemented solution most of the patients belong to 

Cluster 1 (approximately 40%), then to Cluster 2 (approximately 31%) and the rest of 

them to Cluster 3 (approximately 27%).  

 

Cluster 1 194 patients 

Cluster 2 150 patients 

Cluster 3 131 patients 

 

Table 13 Kamila - Cluster Membership 

To accurately comprehend the differentiated features of the three clusters, 

statistical data on important variables are retrieved and visualizations are drawn, as 

presented below. To begin with, a trial is made to investigate whether the survival 

status is a decisive factor affecting the formulation of the clusters. Significant 

conclusions are drawn from the subsequent Table 14 when identifying that each 

survival status category (i.e., alive, or dead due to prostate cancer, or dead due to other 

factors) is particularly dominant in each cluster. More specifically, as indicated by the 

red colour of each category in this table, a high proportion of patients who are  

 

§ Dead due to prostate cancer constitute Cluster 1 (89 out of 194) 

§ Survivors or have died due to reasons not related with cancer constitute 

Cluster 2 (129 out of 150) 

§ Dead due to other factors such as heart or vascular disease, cerebrovascular 

accident, pulmonary embolism, other cancer, respiratory disease, etc. constitute 

Cluster 3 (95 out of 131) 

 

 

Cluster No. 

Survival Status 

Alive Dead due to  

prostate cancer 

Dead due to  

other factors 

Cluster 1 44 89 61 

Cluster 2 68 21 61 
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Cluster 3 25 11 95 

 

Table 14 Kamila - Patients' Survival Status Per Cluster 

Based on these figures, it is unquestionably suggested that the Kamila 

clustering depicts mortality from a disease-specific perspective. As it might be 

expected, the highly correlated relationship between the structure of the clusters and 

the outcome variable (i.e., survival status) is further approved by the Chi-Square 

Goodness of Fit Test as p-value ≤ 0,05.  

 

 
 

When also looking at the results depicted in Figure 8, we see that Cluster 1 

appears to have a prevalence of patients with high indices of tumour stage and holistic 

grade, and serum prostatic acid phosphatase (ranged mostly between 0,6 - 1 and 0,25 

- 1 respectively), while Clusters 2 and 3 seem to primarily relate with patients with 

low levels of serum prostatic acid phosphatase and low indices of tumour stage and 

holistic grade (ranged mostly between 0 - 0,5 and 0 - 0,25 respectively). 

 
Figure 8 Kamila - Index of Tumour Stage & Serum Prostatic Acid Phosphatase Levels Per 

Cluster 
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 To further analyse the profile of patients in each cluster, it is found in the results 

of Figure 9 that the vast majority of patients of Cluster 1 is in Stage 4 of prostate 

cancer with the size of their primary tumour to mostly variate at high levels. On the 

contrary, as observed in the same Figure, the patients of Cluster 2 and 3 have 

comparatively smaller sizes of primary tumour, a condition dominantly justified by 

the fact that they are numerically dominant in Stage 3.  

 
 

Figure 9 Kamila - Size of Primary Tumour in Each Stage Per Cluster 

Additionally, Τable 15 below that includes tumour stage and bone metastasis 

for each Kamila cluster membership seems to imply relationships with other variables, 

as well. More specifically, we can see that every single patient in Cluster 1 had a 

tumour of stage 4 with the significant percentage of 40% of the patients to have 

metastatic prostate cancer (76 out of 194). On the other hand, almost all individuals 

in clusters 2 and 3 have cancer tumours of stage 3. The exception to this are eight 

people who belong to Cluster 3 and have no spread of the prostate tumour and one 

person who belongs to Cluster 2 and has metastatic spread of the prostate tumour to 

the bone, as seen below. Therefore, these findings indicate that the bone metastasis 
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characteristic suggests an important feature for the individuals who compose Cluster 

1 and in fact represent those patients that have mostly died due to prostate cancer.  
 

Bone 

Metastasis 

Tumour  

Stage 

Cluster 1 Cluster 2 Cluster 3 

No Stage 3 0 149 123 

Stage 4 118 0 8 

Yes Stage 3 0 1 0 

Stage 4 76 0 0 

 

Table 15 Kamila - Bone Metastasis & Tumour Stage Per Cluster 

After having identified the various characteristics that uniquely determine each 

cluster, the prediction strength method offered in the Kamila package is also used to 

investigate in a more formal and accurate way whether the selected number of clusters 

(i.e., three) in this research is comparatively the most optimal choice to be made for 

the provided dataset. As observed in the below Figure 10, the prediction strength 

values are plotted against the number of clusters that range between 2 and 15, with the 

error bars to indicate plus or minus one standard error. The horizontal dotted line 

which counts at y = 0.8 denotes the default threshold for determining the number of 

clusters. According to the findings of this method, the ideal number of clusters to be 

selected is two (as this case presents the highest prediction strength value) followed 

by the number of three clusters. Apparently, it seems that when examining the case of 

a greater number of clusters (more than three) to be selected, this is not indicated by 

the results of the prediction strength method.  
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Figure 10 Kamila - Prediction Strength Method (PS Values VS Number of Clusters) 

We run again the Kamila clustering on the prostate cancer data by using the 

prediction strength method that proposes two clusters. When selecting to compare how 

the patients are distributed in the three clusters of the implemented solution versus the 

two clusters of the prediction strength method, it is concluded that the two-cluster 

solution is quite similar to the three-cluster one. Apart from an extremely small 

number of nine patients, Clusters 2 and 3 with the lowest proportion of deaths due to 

prostate cancer appear seem to be somehow merged. Of course, this conclusion leads 

to an equally important conclusion that the initial selection of three clusters is well 

documented and on target.  
 

Implemented  

Solution 

Kamila Predictive Method 

Cluster 1 Cluster 2 

Cluster 1 194 0 

Cluster 2 1 149 

Cluster 3 8 123 
 

Table 16 Patients' Distribution: Implemented Solution VS Kamila Predictive Method  
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Method 2: K-Prototypes Clustering (clustMix R package) 
 

 We continue by running a K-Prototypes clustering procedure on the data. The 

approach is based initially on the discovery of the optimal number of clusters by using 

measures such as these of the Elbow and Silhouette method.  

The Elbow method plots the value of the cost function produced by different 

values of k (number of clusters). This method is helpful because it shows how 

increasing the number of the clusters contributes to separating the clusters in a 

meaningful, not marginal way. When k increases, the average distortion is decreased, 

each cluster has fewer constituent instances, and the instances are closer to their 

respective centroids. On the other hand, the improvements in average distortion are 

declined as k increases. The value of k at which improvement in distortion declines 

the most is called the elbow, at which the data should no longer be divided into further 

clusters. According to this method and as depicted on Figure 11 below, for the given 

dataset it is concluded that the optimal number of clusters is 5. 

 
Figure 11 K-Prototypes - Evaluation of Clusters' Number (Elbow Method) 

The Silhouette value is a measure of how similar an object is to its own cluster 

(cohesion) compared to other clusters (separation). The value of the silhouette ranges 

between [1, -1], where a high value indicates that the object is well matched to its own 

cluster and poorly matched to neighbouring clusters. If most objects have a high value, 

then the clustering configuration is appropriate. If many points have a low or negative 

value, then the clustering configuration may have too many or too few clusters. So, 

the silhouette plot displays a measure of how close each point in one cluster is to 

points in the neighboring clusters and thus provides a way to assess parameters like 

the number of clusters visually. For the under-study case, the Silhouette method 
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(Figure 12, 13) suggests that the most suitable number of clusters is 2 as the “peak” 

characteristic is spotted there. 

 
Figure 12 K-Prototypes - Evaluation of Clusters' Number (Silhouette Method) 

 

 
Figure 13 Validating K-Prototypes (Method ‘validation_kproto’ - Silhouette index) 

Taking into account that the Elbow method uses only intra-cluster distances 

while the Silhouette method uses a combination of inter-cluster and intra-cluster 

distances in its scoring function, it is expected that these two methods end up with 

different results. However, it is decided to run a K-Prototypes clustering procedure on 

the data with the selected number of clusters to be 2, as indicated by the Silhouette 

method. This is justified by the fact that this method uses more evaluation criteria 

(both inter-cluster and intra-cluster distances) and from what we have already 

observed in the previous clustering method is that the differentiated characteristics of 

the clusters begin to disappear when their number is substantially increased. In the 

implemented K-Prototypes solution 
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§ the threshold for determining the number of clusters is defined to 50 and 

§ the lambda parameter that specifies the tradeoff between the Euclidean distance 

of numeric variables and the simple matching coefficient between categorical 

variables is automatically calculated to 0,05076704 by using the K-Prototypes 

function lambdaest 

 

In Table 17, the distribution of prostate cancer patients is shown. It is observed 

that most of the patients belong to Cluster 2 (approximately 59%) and all the others 

to Cluster 1 (approximately 41%).  

 

Cluster 1 194 patients 

Cluster 2 281 patients 

 

Table 17 K-Prototypes - Cluster Membership 

 When also examining the prototypes of the two clusters (Table 18), several 

interesting conclusions are drawn regarding the characteristics of the patients 

belonging to each cluster. More specifically, it seems that on average the patients who 

belong to Cluster 1 have prostate cancer stage 3 with a proven record of cardiovascular 

disease history and symptoms of heart pressure. On the other hand, the patients of 

Cluster 2 are at a more advanced stage of cancer with their tumours to be almost double 

in size and their levels of serum prostatic acid phosphatase to rank much higher (0,43 

as opposed to 0,18 of Cluster 1).  
 

Variable Cluster 1 Cluster 2 

Performance rating 0 0 

Cardiovascular disease 

history 

1 0 

Systolic blood pressure 0,2953737 0,2818650 

Diastolic blood pressure 0,3050330 0,2853461 

Electrocardiogram code  4 0 

Serum haemoglobin 0,6418135 0,5672618 

Size of primary tumour 0,1404405 0,3035261 
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Index of tumour stage 

and histolic grade  

0,3996441 0,7190722 

Serum prostatic acid 

phosphatase 

0,1856953 0,4326166 

Bone metastases  0 0 

Stage 3 4 

Survival status 0 1 

 

Table 18 K-Prototypes - Cluster Prototypes (2 Clusters) 

The above profiling is also verified when observing the visualizations of the K-

Prototypes clustering result for cluster interpretation. As it can be seen, boxplots are 

generated for the numerical variables and bar plots for the factor variables of each 

cluster. The homogeneity of the clusters can be identified in characteristics like these 

of performance rating, systolic or diastolic pressure and serum haemoglobin. 

However, the clusters seem to differ significantly when it comes to factors such as 

these of cardiovascular disease history, electrocardiogram code, size of primary 

tumour, index of tumour stage and histolic grade, serum prostatic acid phosphatase, 

bone metastasis, cancer stage and survival status.  

 

 
Figure 14 K-Prototypes – Visualization Results (A) 
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Regarding the survival status, it is reasonable to verify that the majority of 

patients who belong to Cluster 2 have died due to prostate cancer while the patients 

of Cluster 1 are mostly either alive or have died due to heart or vascular disease, as 

observed in Figure 16 below.  

 
Figure 15 K-Prototypes – Visualization Results (B) 

 
 

Figure 16 K-Prototypes – Visualization Results (C) 
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 A K-Prototypes clustering procedure on the data is performed yet again. For 

this algorithm execution, the number of clusters is set to 3 in order to investigate if 

more than one sub-groups with different characteristics exist in the Cluster 1 presented 

above.  

 

Variable Cluster 1  

(N = 146)  

Cluster 2  

(N = 173) 

Cluster 3  

(N = 156) 

Performance rating 0 0 0 

Cardiovascular 

disease history 

1 0 0 

Systolic blood 

pressure 

0.3315691                 0.2803468                 0.2613636                 

Diastolic blood 

pressure 

0.3302348 0.2824112 0.2820513 

Electrocardiogram 

code  

4 0 0 

Serum haemoglobin 0.6308609               0.5574980               0.6528560               

Size of primary 

tumour 

0.1501886 0.3173327 0.1379599 

Index of tumour 

stage and histolic 

grade  

0.4164384                         0.7323699                         0.4121795                         

Serum prostatic 

acid phosphatase 

0.1871842 0.4552140 0.1924813 

Bone metastases  0 0 0 

Stage 3 4 3 

Survival status 2 1 0 

 
Table 19 K-Prototypes - Cluster Prototypes (3 Clusters) 

In this experimentation, it is observed that although Clusters 1 and 3 appear to 

be similar since on average patients with cancer of stage 3 belong to both clusters, the 

characteristic that differentiates the clusters between them is the fact that the patients 

in Cluster 1 seem to have a cardiovascular disease history and heart strain - features 
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that do not exist in patients of Cluster 3. The rest characteristics (e.g., systolic, and 

diastolic blood pressure, serum haemoglobin, performance rating, etc.) are more or 

less the same between Clusters 1 and 3. The value of this insight will be further 

investigated in the subsequent sub-section Comparison of clustering methods.  
 

Method 3: Latent Variable Model (clustMD R package) 
 

In the last clustering method, the optimal number of clusters for the provided 

dataset taking into account the characteristics of this algorithm is again investigated. 

Through this perspective, a suite of six different clustMD models was fitted to the set 

of prostate cancer patients with the number of clusters ranging from 1 to 4, as depicted 

in Figure 13. Each model represents a unique covariance structure offered by the 

algorithm. More specifically, Model 1 matches to EII, Model 2 to VII, Model 3 to EEI, 

Model 4 to VEI, Model 5 to EVI and Model 6 to VVI. The line plot below depicts the 

approximated BIC values for the models which vary from around -12.450 to -11.730. 

As it is observed the EII, VII, EEI and VEI. models perform worse in comparison to 

the EVI and VVI ones which are way ahead and competing with each other as to which 

of the two will be leading eventually with the EVI currently prevailing. Thus, it is 

concluded that in our case the appropriate model which maximizes the BIC criterion 

is a 3-cluster model, with the EVI covariance structure. 

 
 

Figure 17 Latent Class Model - Line Plot of BIC Values 
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 Based on this observation, we finally choose to implement a model of EVI 

covariance structure with 3 clusters. However, it is essential to highlight that, in 

comparison with the Kamila and K-Prototypes clustering algorithms, the computation 

time differed significantly for Latent Variable Model (for the same number of fifty 

maximum iterations) since for the latter method a two-fold clustering time is 

approximately required. A possible cause for this problem could be the Monte Carlo 

approximation used in the E-step of the model fitting algorithm, which is a simple and 

effective solution, but it does not come without issues. If the probability of observing 

a particular response on a nominal variable is very small for a particular cluster, then 

a large number of Monte Carlo samples may be required to observe a response in this 

category. This can slow the model fitting algorithm or even cause instability. Of 

course, having acknowledged that the specific dataset consists of only 475 

observations, this problem scales significantly when dealing with larger datasets and 

undoubtedly raises concerns regarding the efficiency of the algorithm in such cases - 

this aspect should not be underestimated as datasets can quickly reach huge 

proportions in a big-data context. As McParland, D. and Gormley, I.C. already 

suggested, a more efficient way to approximate the intractable integrals could improve 

the model fitting efficiency.  

Upon further analyzing the results of the implemented solution, the number of 

patients in each of these clusters is presented in Table 18. As we can see, around 42% 

of the patients belong to Cluster 3 while 26% of the patients belong to Cluster 2 and 

30% of them belong to Cluster 1.  

 

Cluster 1 145 patients 

Cluster 2 127 patients 

Cluster 3 203 patients 

 

Table 20 Latent Class Model - Cluster Membership 

When assessing the health status of the patients in each cluster with regards to 

the cancer stage (Table 19), it is easily observed that stage 4 patients are dominant in 

Cluster 3 while Clusters 1 and 2 seem quite similar since mostly patients diagnosed 

with stage 3 are included in them.  
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 Stage 3 Stage 4 

Cluster 1 139 6 

Cluster 2 108 19 

Cluster 3 26 177 

 

Table 21 Latent Class Model – Distribution of Patients Per Stage & Cluster 

However, this similarity is questioned when comparing the estimated mean 

vectors for all three clusters (Figures 14, 15). It is surprising that patients in Cluster 

1 have on average much higher levels of diastolic and systolic blood pressure; the 

metrics for these patients approximate around 0,360 and 0,396 respectively as 

compared to - 0,238 and - 0,351 of Cluster 2. Additionally, chances are higher for 

them to have a history of cardiovascular disease and their electrocardiogram index is 

more likely to point out a severe abnormality in their health. This suggests that a 

cardiovascular health issue differentiates patients in Cluster 1 from those in Cluster 2. 

On the other hand, as also shown in Figures 14 and 15, it seems that the patients 

of Cluster 3 suffer the effects of the advanced prostate cancer on their health as they 

are more likely to have bone metastasis and on average the size of their primary tumour 

is enlarged significantly with the index of tumour stage, histolic grade and serum 

prostatic acid phosphatase levels to be extremely high.  

 

 
 

Figure 18 Latent Class Model – Estimated Cluster Means (A) 
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Figure 19 Latent Class Model – Estimated Cluster Means (B) 

The above findings for the patients’ profile are also verified by examining their 

post-trial survival status. Indicatively, it seems that 43% of Cluster 1 patients died due 

to heart or vascular disease or a cerebrovascular accident, 21% are alive and only 9% 

died due to prostate cancer. The remaining 27% died of other causes. 

Moreover, it can be seen that 50% of patients in Cluster 3 died due to prostatic 

cancer (as compared to 9% in Cluster 1 and 6% in Cluster 2), 19% survived until the 

end of the trial (as compared to 21% in Cluster 1 and 62% in Cluster 2) and the rest 

31% died of other reasons (as compared to 27% in Cluster 1 and 40% in Cluster 2). 
 

 

Cluster No. 

Survival Status 

Alive Died due to  

prostate cancer 

Died due to heart  

or vascular disease 

or stroke 

Cluster 1 30 13 62 

Cluster 2 68 7 22 

Cluster 3 39 101 40 

 

Table 22 Latent Class Model – Survival Status of Patients Per Cluster 

After having completed the profiling of the patients among clusters, the 

evaluation of the clustering performance follows by analysing the cluster variances 

and uncertainty, as depicted in Figures 16 and 17 below. As it is already known, the 

cluster variance is the coordinate-wise squared deviations from the mean of the cluster 

of all the observations belonging to that cluster. A small variance indicates that the 
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data points tend to be very close to the mean, and to each other within the cluster while 

a high variance indicates that the data points are very spread out from the mean, and 

from one another within the cluster.  

In Figure 16, it is noticeable that the variances are relatively small (less than 

2) for all three clusters. An exception to this are the variances for the variables of 

cardiovascular disease history, electrocardiogram code and survival status of Cluster 

2 and the variable of cardiovascular disease of Cluster 1. For these cases, it seems that 

the variances range at higher levels indicating that some patients may have been 

wrongly included in these clusters as these clusters are not so clearly separated. In 

Figure 17, the misclassification rate is neither very high nor low as for around 250 

patients (> 50%) the clustering uncertainty is rather low and for the other 225 patients, 

it presents a higher clustering uncertainty that ranges between 0,1 and 0,5 

approximately. 
 

 
Figure 20 Latent Class Model – Cluster Variances 

 
 

Figure 21 Latent Class Model – Clustering Uncertainty 
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Comparison of clustering methods 
 

As known, cluster analysis can be considered as successful only if the partition 

makes sense for the practitioner. In the current section, the clustering results of all 

three methods are compared in terms of interpretation, performance and efficiency.  
 

Interpretation.        In the Kamila clustering, 3 clusters are created with the factor 

of the patients’ survival status to stand out as the most significant factor in the 

formulation of clusters. In this method, one cluster (Cluster 1) consists primarily of 

patients whose mortality cause is prostate cancer, they are in cancer stage 4 with bone 

metastasis, have increased tumour sizes, high indices of tumour stage and holistic 

grade, and serum prostatic acid phosphatase. The other two clusters (Cluster 2 & 3) 

consist mainly of patients with less deteriorated health who have died due to other 

reasons different from prostate cancer (e.g., heart or vascular disease, cerebrovascular 

accident, etc.) or have survived from the trial and appear to have treatable tumours 

and low levels of serum prostatic acid phosphatase and indices of tumour stage and 

holistic grade.  

 In the K-Prototypes clustering, two different experiments are made involving 

clusters 2 and 3. For the former experiment, stage 3 patients on average are included 

in the first cluster (Cluster 1). In general, these people deal with cardiovascular 

problems, are diagnosed with heart pressure, and are still alive or dead because of 

heart or vascular diseases. The remaining health indicators for these patients (e.g., 

serum haemoglobin, tumour size, serum prostatic acid phosphatase, etc.) usually range 

within normal levels. In the second cluster (Cluster 2), patients with metastatic 

prostatic cancer belong to the group with oversized tumours, high levels of serum 

prostatic acid phosphatase and indices of tumour stage and holistic grade and for 

whom prostate cancer is the main cause of death. For the latter experiment, the patients 

who belong to Cluster 1 of the first experiment are practically divided into two 

different clusters (Cluster 1 & 3) with the distinction between them to be the severe 

cardiovascular problems of the patients in Cluster 1.  

In the Latent Variable Model clustering, 3 clusters are formed. The first two 

clusters (Cluster 1 & 2) are comprised of patients with stage 3 who have survived or 

have died because of heart or vascular disease or stroke and for these patients, indices 

like primary tumour size, serum prostatic acid phosphatase, serum haemoglobin, etc. 
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are relatively low. The difference which is identified between these two clusters is 

that the patients of Cluster 1 cope with blood pressure and cardiovascular health 

issues. The third cluster (Cluster 3) consists of advanced prostate cancer patients who 

have mainly died due to cancer disease and present large tumours and high levels of 

serum prostatic acid phosphatase.  

 Based on the above findings, it is derived that the three algorithms move within 

an interpretative framework that is quite similar. All algorithms have separate clusters 

of stage 3 patients who are either in relatively good health conditions or suffer from 

various problems that are not related to cancer (e.g., cardiovascular ones) and stage 4 

patients who face cancer-related issues (e.g., bone metastasis). Moreover, for any of 

the three clustering methods both categorical variables (e.g., stage, cardiovascular 

disease history, bone metastases, etc.) and continuous variables (e.g., tumour size, 

serum haemoglobin, serum prostatic acid phosphatase) play a significant role in the 

discrimination of the clusters with the most decisive factor for the generation of 

clusters to be most probably this of the patients’ survival status (the outcome variable).  

 Additionally, at this point it is also of interest to emphasise that from the 

experience acquired in the context of the current research, it is observed that the K-

Prototypes and Latent Variable Model are incorporated in “ready-to-use” R software 

packages which in some extend can be easily used by non-expert teams. This is 

because several built-in visualization functions are offered in these packages and any 

researcher who is not familiar with the relevant algorithm can effortlessly and directly 

interact with these functions to better interpret and fine-tune the clustering results as 

desired. On the other hand, even if Kamila algorithm is well suited for a big-data 

setting and recommends an advance over existing methods as it uses variables in their 

original measurement, ensures equitable impact of continuous and categorical 

variables and does not require the user to specify variable weights or coding schemes, 

it does not offer such provision for visualization to the potential researchers. Τhe 

interested parties are required to invest more time and effort to extract the necessary 

data insights from the clustering of the Kamila algorithm.  
  

Performance & Efficiency.        To compare the partitions produced by any of the 

clustering methods, the Adjusted Rand Index (ARI) and the Rand Index 

(cluster_similarity function in clusteval R package) are used. The ARI and the Rand 
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measures provide an agreement score between a pair of partitions, ranging from 0 

(complete disagreement) to 1 (complete agreement).  

As depicted in Table 21 below, for some pairs of algorithms such as these of 

Kamila – K-Prototypes (2 clusters), K-Prototypes (2 clusters) – LVM and K-

Prototypes (3 clusters) – LVM where both the Rand Index and the ARI score are close 

to or above 50%, the clustering results can be described as quite satisfactory. This 

practically means that there is an evident similarity in the resulting partitions for these 

methods (Kamila - K-Prototypes, K-Prototypes – LVM). This is not, however, the case 

for the Kamila - Latent Variable Model methods since the performance measures for 

this specific clustering pair present the lowest values of 0,28 and 0,39 for the ARI and 

Rand Index respectively indicating the greatest dissimilarity among all possible 

combinations of methods.  

 

Clustering Methods Rand Index Adjusted Rand Index 

Kamila – K-Prototypes  

(2 clusters) 

0,61 0,54 

K-Prototypes (2 clusters) – 

LVM  

0,55 0,50 

LVM – Kamila 0,39 0,28 

Kamila – K-Prototypes  

(3 clusters) 

0,39 0,31 

K-Prototypes (3 clusters) – 

LVM  

0,51 0,50 

 

Table 23 Clustering Methods – RI & ARI Measures 

Additionally, as already indicated in the previous sub-section Method 3: Latent 

Variable Model (clustMD R package), an increased computational complexity is 

shown for the Latent Variable Model when compared to the other algorithms since in 

the former case, almost double time is required for the clustering results of 475 

observations to be generated. The computation time for this model-based method 

seems to heavily depend on the complexity of the selected model, the number of 

iterations and the additional features. When also judging the Kamila algorithm from 

this time-efficiency standpoint, this method appears to offer the best performance 
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when dealing with large datasets as it has been implemented to work in a Big-Data 

setting by taking advantage of the scalability of its algorithm.  

Taking into consideration the aforementioned analysis with regards to the 

interpretation, performance, and efficiency pillars, it is considered that the selection 

of the optimal clustering algorithm lies between the K-Prototypes (2 clusters) and 

Kamila methods. A valid argument justifying this statement is that the greatest 

partition similarity is identified between these two algorithms (0,54 for ARI and 0,61 

for RI). Moreover, from the interpretation perspective, they both have clusters 

consisting of 

§ stage 3 patients who have either survived or have died due to reasons different 

than cancer (e.g., cardiovascular diseases) and their health indicators such as 

tumour size, serum prostatic acid phosphatase, etc. are relatively normal and 

§ stage 4 patients who have oversized tumours, high indices of tumour stage and 

holistic grade, and serum prostatic acid phosphatase and die mostly due to the 

cancer disease  

However, when evaluating the pros and cons of the algorithms themselves, we 

can state that the Kamila algorithm outweighs against K-Prototypes. It overcomes the 

challenges inherent in the various extant methods for clustering mixed continuous and 

categorical data (i.e., variables are used in their original measurement scale, the 

different types of variables are balanced by using the properties of Gaussian-

multinomial mixture models, overly restrictive parametric assumptions are avoided 

for numeric features, etc). On the other hand, the K-Prototypes algorithm may cause 

uncertainty and inaccuracy due to the randomness in the initial clustering results and 

the use of the simple Hamming distance (0 or 1) to calculate the dissimilarity between 

the categorical data. It is therefore concluded that the Kamila clustering method might 

comprise a last resort selection for the clustering of the prostate cancer patients.  

In any case, the above clustering results recommend a powerful asset of 

information likely leading to the generation of patient-specific and evidence-based 

advice and to the creation of reminders for preventive care, and alerts about potentially 

dangerous situations to aid clinical decision making by health care providers. While 

electronic health records and databases help physicians manage the rising tide of 

information, this kind of patient-specific recommendations could feed the clinical 

decision support systems by enhancing decision making and aiding the establishment 

of patient safety. More specifically, each category of cancer patients deriving from 
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the clustering process could belong to a different monitoring protocol in terms of both 

personalized diagnosis and treatment. In addition to this, significant pillars such as 

these of the health economics, the patients’ financial costs, and the resources 

management in health care institutions could be augmented and more strategically 

organized based on the health needs and requirements of the respective cancer patient 

category. This patient-targeted and clinical knowledge unquestionably advances the 

quality and efficiency of medical services, reduces patient inconvenience, and 

probably results in lower costs through clinical interventions, decrease of inpatient 

length-of-stay, integrated systems suggesting cheaper medication alternatives, or 

reducing test duplication.  
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V. Conclusions & Future Work 
 

This thesis aimed to effectively cluster prostate cancer patients into groups of 

similar characteristics by approaching the clustering problem of mixed mode data. 

Based on both the quantitative and the qualitative analyses of the prostate cancer data 

in response to the patients’ health indicators, it can be derived that the mortality causes 

as well as the cancer stage are important factors to take into consideration when 

targeting on patients diagnosed with this disease. The data insights have also 

demonstrated that most patients have a normal activity in their life regardless of the 

cancer stage with the cardiovascular disease to be the second most common cause of 

death in these patients after cancer itself.  

As thoroughly detailed, the focus of research in clustering data has recently 

moved from numeric data to categorical ones because almost all real data are 

categorical. And given the growing access to multiple data sources, it has become 

crucial to be able to manage all types of variables through recent advances in statistics 

and machine-learning. However, clustering categorical data is a slightly more 

challenging task than clustering numeric data because of the absence of any natural 

order, high dimensionality, and existence of subspace clustering. The earlier notions 

of statistics and geometry could not be applied to categorical data due to some 

limitations of the categorical data. As time passes by, researchers have proposed 

clustering methods that can directly be applied to categorical data with the most 

common approach to be this of their conversion into an equivalent numeric form easier 

to handle but with its own limitations. Over the years, various classic clustering 

algorithms have been proposed and are still used (PAM, CLARA, BIRCH, K-Modes, 

etc.). The new developments in this direction are either improvements or extensions 

of the old algorithms (Mixmox, Latent Class Model, Latent Class Analysis, etc.).  

Within the scope of this thesis, the clustering problem of mixed mode data is 

modelled by applying three distance-based and model-based algorithms (Kamila, K-

Prototypes, Latent Variable Model) which approached the various challenges derived 

from data of various types (continuous, nominal, ordinal, etc.) differently and 

uniquely. Several experimentations were performed for each algorithm in order to 

identify the ideal number of clusters which proved to range between two and three 

with the partition results to indicate a particular enlightening aspect for the prostate 
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cancer patients each time. Ιn terms of clustering efficiency and performance, the 

Kamila and K-Prototypes methods ranked higher while all three methods appear to 

similarly illustrate how the prostate cancer patients could be grouped. In the end, after 

closely examining the outcome of each clustering method, the method chosen as the 

optimal one for the under-study case of prostate cancer patients was this of Kamila 

algorithm owing to its eminent scientific capabilities and advantages over the other 

methods.    

According to the clustering results of the selected Kamila algorithm, the 

formulated clusters consisted of stage 3 patients who have either survived after trial 

and are in relatively good health or tackle with other major health diseases such as 

respiratory, cardiovascular, or cerebrovascular issues along with it. The results have 

also confirmed that these patients appear to have smaller tumours and moderately low 

levels of serum prostatic acid phosphatase and indices of tumour stage and holistic 

grade - a fact that justifies why the most frequent cause of their death is not cancer 

but other equally severe diseases. Another significant group that is also derived from 

the clustering process is this of stage 4 patients who are usually diagnosed with 

metastatic cancer, have heightened tumour sizes, elevated indices of tumour stage and 

holistic grade as well as serum prostatic acid phosphatase. It is the category of patients 

mostly dying of cancer. In practice, the described grouping of cancer patients could 

assist the clinical decision support systems used by health care providers in upgrading 

the profiling of patients and the recommended care and treatment actions performed 

for them. 

Within the context of the current thesis, specific data manipulations and 

statistical approaches were adopted with a view to investigating the research problem 

of clustering. Nonetheless, there is clearly future work to be done on exploring this 

scientific area. The research represented in this thesis has addressed some of the 

fundamental problems with regards to clustering of mixed mode data and these hint at 

the direction for the further work as there are extensions and alternative ways of 

dealing with this problem. Indicatively, most close to this work would be to investigate 

the models with more combinations for the weights of continuous and categorical 

variables and the impact of the existing outliers in the proposed models as well. The 

feature of outliers was not used here due to lack of time so the impact of these 

characteristics would be worth probing into. In addition, scenarios with non-normal 

continuous variables would have yielded different results and could constitute the 
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object of further future studies. Future research could also fruitfully explore the issue 

further by potentially examining different number of initializations for the algorithms 

considering that initialization represents a trade-off between the robustness of the 

partition and computation time. 
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